Python Library Reference

Release 2.0

Guido van Rossum

Fred L. Drake, Jr., editor

October 16, 2000

BeOpen PythonLabs
E-mail: python-docs@python.org

BEOPEN.COM TERMS AND CONDITIONS FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade hames in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://imww.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI OPEN SOURCE LICENSE AGREEMENT

Python 1.6 is made available subject to the terms and conditions in CNRI's License Agreement. This Agreement
together with Python 1.6 may be located on the Internet using the following unique, persistent identifier (known as a
handle): 1895.22/1012. This Agreement may also be obtained from a proxy server on the Internet using the following
URL.: http://hdl.handle.net/1895.22/1012.

CWI PERMISSIONS STATEMENT AND DISCLAIMER

Copyright(© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While thePython Reference Manudkscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file /O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-in TYPES 3
2.2 BUIlt-INEXCEPLiONS o o e e e e 15
2.3 BUilt-in FUNCLONS L e e e 18

3 Python Runtime Services 27
3.1 sys — System-specific parameters and functions. o oL 27
3.2 gc — Garbage Collectorinterface. e 31
3.3 atexit —Exithandlers. 33
3.4 types —Namesforallbuilt-intypes. 33
3.5 UserDict — Class wrapper for dictionaryobjects 35
3.6 UserList —Classwrapperforlistobjects o 35
3.7 UserString — Class wrapper forstringobjects 36
3.8 operator — Standard operatorsasfunctions.. 37
3.9 traceback — Printorretrieve astacktraceback. o oL 39
3.10 linecache — Randomaccesstotextlines., 41
3.11 pickle — Python objectserialization 42
3.12 cPickle — Alternate implementation gfickle Lo 46
3.13 copy _reg — Registempickle supportfunctions. 46
3.14 shelve — Pythonobjectpersistence. 46
3.15 copy — Shallow and deep copy operations 48
3.16 marshal — Alternate Python object serialization. 49
3.17 imp — Accessthemport internals. 49
3.18 code —Interpreterbaseclasses 52
3.19 codeop — Compile Pythoncode e 54
3.20 pprint — Datapretty printer e 54
3.21 repr — Alternaterepr() implementation. L 56
3.22 new — Creation of runtime internal objects. L Lo 58
3.23 site — Site-specific configurationhook 58
3.24 user — User-specific configurationhook, 59
3.25 __builtin __ —Built-infunctions. 60
3.26 __main __ —Top-level scriptenvironment. 60

4 String Services 61
4.1 string —Commonstringoperations e e e 61
4.2 re —Regularexpressionoperations. 64

4.3 struct — Interpret strings as packed binarydata oL oL 72

4.4 fpformat — Floating pointconversions. i e 74
45 Stringl0 — Read and write stringsasfiles. 75
4.6 cStringlO — Faster version oBtringlO 75
4.7 codecs — Codecregistryandbaseclasses.o 75
4.8 unicodedata —Unicode Database. 80
Miscellaneous Services 81
5.1 math — Mathematical functions. 81
5.2 cmath — Mathematical functions for complexnumbers 83
5.3 random — Generate pseudo-randomnumbers. o 84
5.4 whrandom — Pseudo-random number generator. e 85
5.5 bisect — Array bisectionalgorithm 86
5.6 array — Efficientarraysofnumericvalues 87
5.7 ConfigParser = — Configurationfileparser. 89
5.8 fileinput — lterate over lines from multiple inputstreams 91
5.9 calendar — General calendar-related functions. 92
5.10 cmd— Support for line-oriented command interpretets. oL 93
5.11 shlex — Simplelexicalanalysis 95
Generic Operating System Services 99
6.1 o0s —Miscellaneous OSinterfaces e 99
6.2 os.path — Common pathname manipulations. 110
6.3 dircache — Cacheddirectorylistings. 112
6.4 stat — Interpretingstat() results. 113
6.5 statcache — Anoptimizationofos.stat() 115
6.6 statvfs — Constants used withs.statvfs() oo 115
6.7 fileecmp —File and Directory Comparisons i it 116
6.8 popen2 — Subprocesses with accessiblel/Ostreams. 117
6.9 time —Timeaccessand ConverSionNS v v v ittt e 118
6.10 sched —Eventscheduler. e 122
6.11 getpass — Portable passwordinput. 123
6.12 curses — Terminal handling for character-celldisplays. 123
6.13 curses.textpad — Text input widget for curses programs 137
6.14 curses.wrapper — Terminal handler for cursesprograms 138
6.15 curses.ascii — Utilities for ASCllcharacters 139
6.16 getopt — Parserforcommand lineoptions. o e 141
6.17 tempfile — Generate temporaryfilenames. oL 143
6.18 errno — Standard errnosystemsymbols. oL 143
6.19 glob — UNIx style pathname patternexpansion 149
6.20 fnmatch — UNix filename patternmatching 150
6.21 shutii —High-levelfile operations 150
6.22 locale — Internationalizationservices e 152
6.23 gettext — Multilingual internationalization services. 155
Optional Operating System Services 163
7.1 signal — Sethandlersforasynchronousevents. 163
7.2 socket — Low-level networkinginterface. L 165
7.3 select — Waiting for I/O completion. e 170
7.4 thread — Multiplethreadsofcontrol. 171
7.5 threading — Higher-level threadinginterface. 173
7.6 mutex — Mutual exclusion Support. e 179
7.7 Queue —Asynchronizedqueueclass. 179
7.8 mmap— Memory-mapped file support 180
7.9 anydbm — Generic access to DBM-styledatabases 182

10

11

7.10 dumbdbm— Portable DBM implementation 182
7.11 dbhash — DBM-style interface to the BSD database libraty. 183
7.12 whichdb — Guess which DBM module created adatabase. 184
7.13 bsddb — Interface to Berkeley DB library 184
7.14 zlib — Compression compatible witheip 186
7.15 gzip — Supportforgzipfiles e e 188
7.16 zipfile — Work with ZIP archives. 188
7.17 readline —GNUreadlineinterface. 191
7.18 rlcompleter — Completion function for GNU readline. 193
Unix Specific Services 195
8.1 posix — The mostcommon POSIXsystemcalls. 195
8.2 pwd—Thepassworddatabase. 196
8.3 grp —Thegroupdatabase 197
8.4 crypt —Functiontocheck Mix passwords. e 197
8.5 dl —CallCfunctionsinsharedobjects 198
8.6 dbm— Simple “database” interface. 199
8.7 gdbm— GNU'sreinterpretationofdbm. oL 200
8.8 termios — POSIXstylettycontrol. e 201
8.9 TERMIOS— Constants used with thermios module 202
8.10 tty — Terminalcontrolfunctions. e 202
8.11 pty — Pseudo-terminal utilities 203
8.12 fentl — Thefentl() andioctl() systemecalls. 203
8.13 pipes — Interface toshell pipelines L 204
8.14 posixfile — File-like objects with lockingsupport 205
8.15 resource — Resource usage information. e 207
8.16 nis — Interfaceto Sun's NIS (YellowPages) 210
8.17 syslog — UNix sysloglibraryroutines 210
8.18 commands— Utilities for runningcommands Lo 211
The Python Debugger 213
9.1 DebuggerCommands e 214
9.2 How ItWOrks. o e 216
The Python Profiler 219
10.1 Introductiontothe profiler L 219
10.2 How Is This Profiler Different From The Old Profiler?. 219
10.3 InstantUsers Manual. e 220
10.4 What Is Deterministic Profiling?. 222
10.5 Reference Manual 222
10.6 Limitations. o e 225
10.7 Calibration. e 225
10.8 Extensions — Deriving Better Profilers. 226
Internet Protocols and Support 231
11.1 webbrowser — Convenient Web-browsercontroller. 231
11.2 cgi — Common Gateway Interface support.. e 232
11.3 urlib —Open arbitraryresourcesby URL 239
11.4 httplib —HTTP protocolclient. e 242
115 ftplib —FTP protocolclient. 244
11.6 gopherlib — Gopher protocolclient 247
11.7 poplib —POP3protocolclient. e 248
11.8 imaplib — IMAP4 protocolclient e 249
11.9 nntplib —NNTP protocolclient. 252
11.10smtplib — SMTP protocolclient. 255

12

13

14

15

11.11telnetlib — Telnetclient e 258

11.12urlparse — Parse URLsintocomponents. i i 261
11.13SocketServer — A framework for network servers. Lo 262
11.14BaseHTTPServer —BasicHTTPserver i i i i e 264
11.15SimpleHTTPServer — Simple HTTP requesthandler 266
11.16 CGIHTTPServer — CGl-capable HTTPrequesthandler 267
11.17Cookie — HTTP state management. i i i i i e e e e 268
11.18asyncore — Asynchronous sockethandler. oL 272
Internet Data Handling 275
12.1 formatter — Genericoutputformatting 275
12.2 rfc822 —Parse RFC822mailheaders. 279
12.3 mimetools — Tools for parsing MIME messages i 282
12.4 MimeWriter — Generic MIME filewriter L o 283
12.5 muiltifile — Support for files containing distinctparts. 284
12.6 binhex — Encode and decode binhex4files 286
12.7 uu — Encode and decode uuencodefiles L L Lo 287
12.8 binascii — Convert between binary amdsCIl 287
12.9 xdrlib —Encode anddecode XDRdata. 289
12.10mailcap — Mailcap file handling.. e 291
12.11mimetypes — Map filenamesto MIME types. 292
12.12base64 — Encode and decode MIME base64 data. 293
12.13quopri — Encode and decode MIME quoted-printabledata 294
12.14mailbox — Read various mailboxformats o 294
12.15mhlib — Accessto MH mailboxes L 295
12.16 mimify — MIME processingof mailmessages. e 297
12.17netrc —netrcfile processing. L e 298
12.18robotparser — Parserforrobots.txt o 298
Structured Markup Processing Tools 301
13.1 sgmllib — Simple SGML parser. 0 e e e e 301
13.2 htmllib — AparserforHTMLdocuments i i it i 303
13.3 htmlentitydefs — Definitions of HTML general entities 305
13.4 xml.parsers.expat — Fast XML parsing using the Expatlibrary 305
13.5 xmlsax —Supportfor SAX2 ParserS. . . . v v v v v i e e e e 309
13.6 xml.sax.handler —BaseclassesforSAXhandlers oo 310
13.7 xml.sax.saxutils — SAXUtilities 314
13.8 xml.sax.xmlreader — Interface for XML parsers. 314
13.9 xmllib — A parserfor XMLdocuments. e 318
Multimedia Services 323
14.1 audioop — Manipulateraw audiodata 323
14.2 imageop — Manipulaterawimagedata. e 326
14.3 aifc — Read and write AIFF and AIFCfiles. o 327
14.4 sunau — Read and write Sun AUfiles 329
14.5 wave — Read and write WAV files. 331
14.6 chunk — Read IFFchunkeddata. 333
14.7 colorsys — Conversions betweencolorsystems. 335
14.8 rghimg — Read and write “SGIRGB”"files 335
14.9 imghdr — Determinethetypeofanimage 336
14.10sndhdr — Determine type of soundfile L 336
Cryptographic Services 339
15.1 md5— MD5 message digestalgorithm. o oL 339
15.2 sha — SHA message digestalgorithm. 340

15.3 mpz— GNU arbitrary magnitude integers 341

15.4 rotor — Enigma-like encryptionanddecryption. 342
16 Restricted Execution 345
16.1 rexec — Restricted executionframework o 346
16.2 Bastion — Restrictingaccesstoobjects L o 348
17 Python Language Services 349
17.1 parser — Access Pythonparsetrees. i i i e 349
17.2 symbol — Constants used with Python parsetrees 358
17.3 token — Constants used with Python parsetrees 359
17.4 keyword — Testing for Pythonkeywords 359
17.5 tokenize — Tokenizerfor Pythonsource. 359
17.6 tabnanny — Detection of ambiguousindentation 360
17.7 pyclbr — Python class browsersupport 360
17.8 py_compile — Compile Pythonsourcefiles. 361
17.9 compileall ~— Byte-compile Python libraries L. 361
17.10dis — Disassembler for Pythonbytecode. 362
18 SGI IRIX Specific Services 371
18.1 al — Audio functionsonthe SGI e 371
18.2 AL — Constants used withthed module 373
18.3 cd — CD-ROM access on SGISystems o 0 i i i e e e e e e e 373
18.4 fl — FORMS library interface for GUl applications. 377
18.5 FL — Constantsused withtife module 381
18.6 flp — Functions for loading stored FORMS designs. 382
18.7 fm — Font Managelinterface. e 382
18.8 gl — Graphics Libraryinterface e 383
18.9 DEVICE— Constantsused withthlgd module 385
18.10GL— Constants used with ttgd module o 385
18.11imgfile — Support for SGlimglibfiles 385
18.12jpeg — Read and write JPEGfiles. 386
19 SunOS Specific Services 389
19.1 sunaudiodev — AccesstoSunaudiohardware. oL 389
19.2 SUNAUDIODEW- Constants used wittunaudiodev 390
20 MS Windows Specific Services 391
20.1 msvert —Useful routines from the MS VC++runtime 391
20.2 _winreg —WINdowsS registry @CCeSS v v v v i i e e e e e 392
20.3 winsound — Sound-playing interface for Windows. 396
A Undocumented Modules 399
Al Frameworks e e e 399
A.2 Miscellaneous useful utilities. L 399
A.3 Platform specificmodules 399
Ad Multimedia. e e 400
A5 Obsolete e e 400
A.6 SGl-specific Extension modules. e 401
B Reporting Bugs 403
Module Index 405
Index 409

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World-Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy referénce.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..* notation). The latter conversion is implicitly used when an object is written
by theprint statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use irfanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e zero of any numeric type, for exampl,OL, 0.0 , 0] .

e any empty sequence, for examgle,, () ,[] .

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when that

method returns zerd.

All other values are considered true — so objects of many types are always true.
Operations and built-in functions that have a Boolean result always retimnfalse andl for true, unless otherwise
stated. (Important exception: the Boolean operations and ‘and’ always return one of their operands.)

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.
2Additional information on these special methods may be found ifPtheon Reference Manual

2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result | Notes
x or y | if xis false, thery, elsex (1)
x and vy | if xis false, therx, elsey (1)
not x if xis false, therl, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operatorsned a == bis interpreted agot (a == b), and
a == not bisasyntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for exampley <= zis equivalenttx < y and

y <= z, except thay is evaluated only once (but in both casds not evaluated at all whex < y is found to be

false).

This table summarizes the comparison operations:

Operation | Meaning | Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal (1)
<> not equal 8
is object identity
is not negated object identity
Notes:
(1) <> and!= are alternate spellings for the same operator. (I couldn’t choose betwsseand C! :-) != isthe

preferred spellings> is obsolescent.

Objects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (for example,
file objects) support only a degenerate notion of comparison where any two objects of that type are unequal. Again,
such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class definesrttpe _() method. Refer to the
Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

4 Chapter 2. Built-in Types, Exceptions and Functions

2.1.4 Numeric Types

There are four numeric typeglain integers long integers floating point humbersand complex numbers Plain
integers (also just calleititegers are implemented usinigng in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implementeddaibte in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implementediosislg in C. To extract these
parts from a complex numbeyusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with'aor “ | * suffix yield long integers '

is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appendinjg ‘or ‘J’ to a numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the Same rule.
The functionsnt() ,long() ,float() ,andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation | Result | Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/y guotient ofx andy)
X %y remainderok / y
- X X hegated
+X X unchanged
abs(x) absolute value or magnitude f
int(x) x converted to integer (2)
long(x) x converted to long integer (2)
float(x) x converted to floating point
complex(re, im) | a complex number with real pa#, imaginary partm. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(%, V) thepair(x / 'y, X %Y) 3
pow(X,) X to the powely
X ¥y x to the powely

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftian(s
andceil() inthemath module for well-defined conversions.

(3) See section 2.3, “Built-in Functions,” for a full description.

Bit-string Operations on Integer Types

3As a consequence, the Iigt, 2] is considered equal {d.0, 2.0] , and similar for tuples.

2.1. Built-in Types 5

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operatiofi * has the same priority as the other unary numeric operatietigfid ‘-).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result | Notes

X|y bitwiseor of x andy
X"y bitwise exclusive oiof x andy
X &Yy bitwiseandof x andy

X << n | xshifted left byn bits 1), (2)
x >> n | xshifted right byn bits 1), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéadueError to be raised.
(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) Aright shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.1.5 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

Strings literals are written in single or double quoteyzzy’ |, "frobozz" . See chapter 2 of thHeython Reference
Manual for more about string literals. Unicode strings are much like strings, but are specified in the syntax using
a preceedingu’ character:u’abc’ , u"def" . Lists are constructed with square brackets, separating items with
commasia, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parenthesespe.g., or() . A single item

tuple must have a trailing comma, e.(l,) . Buffers are not directly supported by Python syntax, but can be created
by calling the builtin functiorbuffer() . XRanges objects are similar to buffers in that there is no specific syntax to
create them, but they are created usingdtaange() function.

Sequence types support the following operations. Tié and ‘not in ' operations have the same priorities as the
comparison operations. The'and *’ operations have the same priority as the corresponding numeric operétions.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation | Result | Notes
X in s 1 if an item ofsis equal tax, else0
X not in s | Oifanitem ofsis equal tax, elsel
s+t the concatenation afandt
S * n, n* s| ncopies ofsconcatenated Q)
9] i'th item of s, origin O 2
g i] slice ofsfromi toj 2), (3)
len() length ofs
min(s) smallest item of
max(s) largest item of

4They must have since the parser can't tell the type of the operands.

6 Chapter 2. Built-in Types, Exceptions and Functions

Notes:

(1) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typ®.as

(2) If i orj is negative, the index is relative to the end of the string,le@(s) + iorlen(s) + |is substituted.
But note thatO is still .

(3) The slice ofsfromi toj is defined as the sequence of items with inkexich that <= k < j. If i orj is greater
thanlen(s), uselen(9). If i is omitted, us®. If j is omitted, usden(). If i is greater than or equal {p
the slice is empty.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize 0
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of lengthdth. Padding is done using spaces.

count (sut{, start[, end]])
Return the number of occurrences of substsngin string § start end . Optional argumentstart andend
are interpreted as in slice notation.

encode ([encodingi,errors]])
Return an encoded version of the string. Default encoding is the current default string enardimg may
be given to set a different error handling scheme. The defau#irforsis 'strict’ , meaning that encoding
errors raise &alueError . Other possible values alignore’ and’replace’

endswith (suffi>{, start[, end]])
Return true if the string ends with the specifiadfix otherwise return false. With optionstlart, test beginning
at that position. With optionand stop comparing at that position.

expandtabs ([tabsizd)
Return a copy of the string where all tab characters are expanded using spéatesizés not given, a tab size
of 8 characters is assumed.

find (sut{, starl[, end]])
Return the lowest index in the string where substsabis found, such thadubis contained in the rangstart,
end. Optional argumentstartandendare interpreted as in slice notation. Retetnif subis not found.

index (sut{, starl[, end]])
Like find() , but raisevalueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
isdigit ()

Return true if there are only digit characters, false otherwise.
islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

isspace ()
Return true if there are only whitespace characters in the string and the string is not empty, false otherwise.

2.1. Built-in Types 7

istitle

0

Return true if the string is a titlecased string, i.e. uppercase characters may only follow uncased characters and
lowercase characters only cased ones. Return false otherwise.

isupper ()

Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

join (seq
Return a string which is the concatenation of the strings in the seqseqcéhe separator between elements is
the string providing this method.

ljust (width)
Return the string left justified in a string of lengthdth. Padding is done using spaces. The original string is
returned ifwidthis less tharden(s) .

lower ()
Return a copy of the string converted to lowercase.

Istrip ()

Return a copy of the string with leading whitespace removed.

replace (old, nevx[, maxsplit])

rfind

Return a copy of the string with all occurrences of substoiyreplaced bynew If the optional argument
maxsplitis given, only the firsmaxsplitoccurrences are replaced.

(sub[,start [,end]])
Return the highest index in the string where substsinigis found, such thatubis contained within s[start,end].
Optional argumentstart andendare interpreted as in slice notation. Retetnon failure.

rindex (sul, starf, end]])

rjust

rstrip

split

Like rfind() but raises/alueError when the substringubis not found.

(width)
Return the string right justified in a string of lengtidth. Padding is done using spaces. The original string is
returned ifwidthis less tharden(s) .

0

Return a copy of the string with trailing whitespace removed.

([sep[,maxspii]])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mosmaxsplit

splits are done. Iepis not specified oNone, any whitespace string is a separator.

splitlines ([keepend]s)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependss given and true.

startswith (prefix[, starl{, end]])

strip

Return true if string starts with therefix otherwise return false. With optionatart, test string beginning at
that position. With optionaénd stop comparing string at that position.

0

Return a copy of the string with leading and trailing whitespace removed.

swapcase ()

title

Return a copy of the string with uppercase characters converted to lowercase and vice versa.

0

Return a titlecased version of, i.e. words start with uppercase characters, all remaining cased characters are
lowercase.

translate (table[, deletechari)

Chapter 2. Built-in Types, Exceptions and Functions

Return a copy of the string where all characters occurring in the optional arguleletécharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

upper ()
Return a copy of the string converted to uppercase.

String Formatting Operations

String objects have one unique built-in operation: $heperator (modulo) with a string left argument interprets this
string as a Gprintf() format string to be applied to the right argument, and returns the string resulting from this
formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if the string
requires a single argument, the right argument may also be a single non-tuple’dijedollowing format characters

are understood% c, s, i, d, u, 0, x, X, e, E, f, g, G Width and precision may be*ato specify that an integer
argument specifies the actual width or precision. The flag charactersblank,# and0 are understood. The size
specifiersh, | or L may be present but are ignored. T¥s conversion takes any Python object and converts it to a
string usingstr() before formatting it. The ANSI featurédépand%nare not supported. Since Python strings have

an explicit length%sconversions don’t assume tH&l' is the end of the string.

For safety reasons, floating point precisions are clipped t&&G;onversions for numbers whose absolute value is
over 1e25 are replaced Bygconversions. All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have a parenthesized
key into that dictionary inserted immediately after tB&character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2

>>> language = 'Python’

>>> print '%(language)s has %(count)03d quote types.” % vars()
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard moduleg and in built-in modulee .

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type is
that an xrange object will always take the same amount of memory, no matter the size of the range it represents. There
are no consistent performance advantages.

XRange objects behave like tuples, and offer a single method:

tolist ()
Return a list object which represents the same values as the xrange object.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable

5A tuple object in this case should be a singleton.
6These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 9

sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexds an arbitrary object):

Operation | Result | Notes
gi] = x itemi of sis replaced by
girj] = t slice ofsfromi to is replaced by
del di:j] sameas i:j] = []
s.append(x) same ag{len(s)ylen(9] = [X)
sextend(X) same asgllen(s)len(9] = X (2)
scount(X) return number of's for whichg[i] == x
sindex(X) return smallest such thaq i] == x 3)
sinsert(i, X) sameasi:i] = [x] ifi >= 0
s.pop([i]) sameax = di]; del di]; return X 4)
sremove(X) same aglel o sindex(X)])
sreverse() reverses the items afin place (5)
s.sort([cmpfund) sort the items o§in place (5), (6)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(2) Raises an exception whenis not a list object. Thextend() method is experimental and not supported by
mutable sequence types other than lists.

(3) RaisesvalueError whenxis not found ins.

(4) Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so that
by default the last item is removed and returned.

(5) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. They don't return the sorted or reversed list to remind you of this side effect.

(6) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should returnl , 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort a list
in reverse order it is much faster to use calls to the metBod$) andreverse() than to use the built-in
functionsort() with a comparison function that reverses the ordering of the elements.

2.1.6 Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thetionary. A dictionary’s keys are almost arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (A.@nd1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated lidtepf value pairs within braces, for example:
{jack’> 4098, ’'sjoerd: 4127} or{4098: ‘’jack’, 4127: ’sjoerd?}

The following operations are defined on mappings (wlzeaadb are mappingsk is a key, andr andx are arbitrary
objects):

10 Chapter 2. Built-in Types, Exceptions and Functions

Operation | Result | Notes

len(a) the number of items ia

al K] the item ofa with key k Q)
akl = v seta[k] tov

del al kK] removeal K] froma 1)

a.clear() remove all items frona

a.copy() a (shallow) copy o&

a.has _key(k) 1 if ahas a ke, else0
a.items() a copy ofa’s list of (key, value pairs (2)
a.keys() a copy ofa’s list of keys (2)
a.update(b) for k in b.keys(): ak] = DblK] 3)
a.values() a copy ofa’s list of values 2)
a.get(k[, x) al k] if ahas _key(k), elsex 4)
a.setdefault(kK|, x]) | a K if ahas _key(k), elsex (also setting it)| (5)

Notes:

(1) Raises &eyError exception ifk is not in the map.

(2) Keys and values are listed in random orderkdf/s() andvalues() are called with no intervening modifi-
cations to the dictionary, the two lists will directly correspond. This allows the creatipnalfie key) pairs
usingmap() : ‘pairs = map(None, a.values(), akeys()) .

(3) b must be of the same type as

(4) Never raises an exceptionkifis not in the map, instead it returrsx is optional; wherx is not provided and is
not in the mapNone is returned.

(5) setdefault() is like get() , except that ik is missing x is both returned and inserted into the dictionary as
the value ok.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anchameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thatghert statement is not, strictly
speaking, an operation on a module objaniport foo does not require a module object nanfiedto exist, rather
it requires an (externafjefinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment ta thet __
attribute is not possible (i.e., you can write __dict __[a] = 1 , which definean.a to bel, but you can’t
writem. __dict __ = {} .

Modules built into the interpreter are written like thismodule 'sys’ (built-in)> . If loaded from a file,
they are written asmodule 'os’ from ‘/usr/local/lib/python2.0/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manufdr these.

2.1. Built-in Types 11

Functions
Function objects are created by function definitions. The only operation on a function object is to call it:
fund argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attribufefsinc _code is a function'scode objecisee below)
andf.func _globals is the dictionary used as the function’s global namespace (this is the same aslict
wheremis the module in which the functidhwas defined).

Methods
Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance meathimas:self is the object on
which the method operates, antdim _func is the function implementing the method. Calling arg-1, arg-2,
.., arg-n) is completely equivalent to calling.im _func(m.im _self, arg-1, arg-2, ..., arg-n.

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don't contain a reference to their global execution envi-
ronment. Code objects are returned by the buikkémpile() function and can be extracted from function objects
through theifunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtechstatement or the
built-in eval() function.

See thePython Reference Manutdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdyhds defines names for all standard built-in types.

Types are written like thisstype ’int’>

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedione (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (sedPytbon Reference Manyallt supports no special operations.
There is exactly one ellipsis object, nantedipsis (a built-in name).

It is written asEllipsis

12 Chapter 2. Built-in Types, Exceptions and Functions

File Objects

File objects are implemented using G&lio package and can be created with the built-in functipen() de-
scribed in section 2.3, “Built-in Functions.” They are also returned by some other built-in functions and methods, e.g.,
os.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/0O-related reason, the excep@&nror is raised. This includes situations where
the operation is not defined for some reason, $ikek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written anymore. Any operation which requires that the file be
open will raise alOError after the file has been closed. Callidgse() = more than once is allowed.

flush ()
Flush the internal buffer, liketdio s fflush() . This may be a no-op on some file-like objects.

isatty ()
Return true if the file is connected to a tty(-like) device, else faldate: If a file-like object is not associated

with a real file, this method shoulibtbe implemented.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fcntl oros.read() and friendsNote: File-like objects which do not have a real file descriptor shawit
provide this method!

read ([size])
Read at mossizebytes from the file (less if the read hit®F before obtainingizebytes). If thesizeargument
is negative or omitted, read all data urgibr is reached. The bytes are returned as a string object. An empty
string is returned whesoF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after aiEOFis hit.) Note that this method may call the underlying C funcfi@ad() = more than once
in an effort to acquire as close sizebytes as possible.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $tmg may be absent when a
file ends with an incomplete line). If tr@zeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returnec¢taihen
is hit immediately. Note: Unlikestdio ’s fgets() , the returned string contains null characteéY@’() if
they occurred in the input.

readlines ([sizehinﬂ)
Read untilEoF using readline() and return a list containing the lines thus read. If the opti@mhint
argument is present, instead of reading ugd®, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

seek (offse{, Whencd)
Set the file’s current position, liketdio 's fseek() . Thewhenceargument is optional and defaults @
(absolute file positioning); other values dréseek relative to the current position) abdseek relative to the
file’'s end). There is no return value.

tell ()
Return the file’s current position, likgdio s ftell()

truncate ([size])

"The advantage of leaving the newline on is that an empty string can be returned te araaithout being ambiguous. Another advantage is
that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.1. Built-in Types 13

Truncate the file’s size. If the optionaizeargument present, the file is truncated to (at most) that size. The
size defaults to the current position. Availability of this function depends on the operating system version (for
example, not all Blix versions support this operation).

write (str)
Write a string to the file. There is no return value. Note: Due to buffering, the string may not actually show up
in the file until theflush() orclose() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to mestdlnes() ;
writelines() does not add line separators.)

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
Boolean indicating the current state of the file object. This is a read-only attributeldbe() method
changes the value. It may not be available on all file-like objects.

mode
The 1/0 mode for the file. If the file was created using tipen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirgpen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the formx!..> . This is a read-only attribute and may not be present on all
file-like objects.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vadfidpace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute. Note: This attribute is not used to control thgint statement, but to allow the
implementation oprint to keep track of its internal state.

Internal Objects

See thePython Reference Manu#dr this information. It describes stack frame objects, traceback objects, and slice
objects.

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

__dict __
A dictionary of some sort used to store an object’s (writable) attributes.

__methods __
List of the methods of many built-in object types, e[f., —__methods __ yields['append’, 'count’,
'index’, ’insert’, 'pop’, 'remove’, 'reverse’, 'sort’]

__members__
Similar to__methods __, but lists data attributes.

__class __
The class to which a class instance belongs.

14 Chapter 2. Built-in Types, Exceptions and Functions

__bases __
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. Though most exceptions have been string objects in past versions of
Python, in Python 1.5 and newer versions, all standard exceptions have been converted to class objects, and users are
encouraged to do the same. The exceptions are defined in the neadelgtions . This module never needs to be
imported explicitly: the exceptions are provided in the built-in namespace.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with amxcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit wehibdrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument ofdlkeept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard rootEiasption , the associated value is present as

the exception instance&rgs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions.

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedstffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’sargs attribute, as a tuple.

StandardError
The base class for all built-in exceptions exc8gstemExit . StandardError itself is derived from the
root clas€Exception

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @verflowError |
ZeroDivisionError , FloatingPointError

LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError

EnvironmentError
The base class for exceptions that can occur outside the Python syStermor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instaarces attribute (it is assumed
to be an error number), and the second item is available ostteeor attribute (it is usually the associated
error message). The tuple itself is also available oratige attribute. New in version 1.5.2.

2.2. Built-in Exceptions 15

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tfilename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentsefifhe and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

AssertionError
Raised when aassert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError is raised.)

EOFError
Raised when one of the built-in functionsgut() or raw _input()) hits an end-of-file conditiong0F)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hitEOF.)

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined in the
‘config.h’ file.

IOError
Raised when an I/O operation (such gwimt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived frorenvironmentError . See the discussion above for more information on exception
instance attributes.

ImportError
Raised when aimport statement fails to find the module definition or whefniam ... import fails to

find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

Keyboardinterrupt
Raised when the user hits the interrupt key (norm@lntrol-C or DEL). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipnt() orraw _input()) is waiting
for input also raise this exception.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@dloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

NotlmplementedError

16 Chapter 2. Built-in Types, Exceptions and Functions

This exception is derived frorRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

OSEtrror
This class is derived frofenvironmentError and is used primarily as thies module’'sos.error excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
1.5.2.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occurimpan statement, in amexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttfilutase , lineno , offset and

text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)) . For class exceptionsir() returns only the
message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version string

of the Python interpreteisys.version ; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

SystemEXxit

This exception is raised by thsys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulthayie).
Also, this exception derives directly froException and notStandardError |, since it is not technically
an error.

A call to sys.exit() is translated into an exception so that clean-up handfervally clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately
(e.g., after dork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass NameError . New in version 2.0.

2.2. Built-in Exceptions 17

UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subcladsaiError . New in
version 2.0.

ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegkrror

WindowsError
Raised when a Windows-specific error occurs or when the error number does not corresporatrteman

value. Theerrno andstrerror values are created from the return values of@etLastError() and
FormatMessage() functions from the Windows Platform API. This is a subclas©O&Error . New in
version 2.0.

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thenport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghg statement. For examples
of why and how you would do this, see the standard library modhtesks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_awmport __()

function.

For example, the statemenimport spam ' results in the following call: __import __('spam’,
globals(), locals(), [1) ; the statementfrom spam.ham import eggs results in
__import __('spam.ham’, globals(), locals(), ['eggs’) . Note that even thouglo-

cals() and[eggs’] are passed in as arguments, theémport __() function does not set the local
variable nameckggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitgls argument at all, and uses bfobalsonly to determine the
package context of thenport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named bhyame However, when a non-empigpomlistargument is given, the
module named byameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ', the top-level packagepam must be
placed in the importing namespace, but when usfngm spam.ham import eggs ', the spam.ham
subpackage must be used to find #ggs variable. As a workaround for this behavior, wgetattr() to
extract the desired components. For example, you could define the following helper:

import string

def my_import(hame):
mod = __import__(name)
components = string.split(name, .")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs (x)

18 Chapter 2. Built-in Types, Exceptions and Functions

Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, arg%, keywordg)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargs argument must be a sequence (if it is not a tuple, the sequence is first converted to a tuple). The
functionis called withargsas the argument list; the number of arguments is the the length of the tuple. (This is
different from just callingund args) , since in that case there is always exactly one argument.) If the optional
keywordsargument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments to
be added to the end of the the argument list.

buffer (objec{, oﬁse[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdbgectargument. The buffer object will be a slice from
the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by thaizeargument).

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whaos&cii code is the integer e.g.,chr(97) returns the stringg’ . This
is the inverse obrd() . The argument must be in the range [0..255], inclusiedueError will be raised if
i is outside that range.

cmp(x, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X < vy, zeroifx == yand strictly positive iix > .

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, king
Compile thestringinto a code object. Code objects can be executed Bxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; pas&stgng>’
if it wasn’t read from a file. Th&ind argument specifies what kind of code must be compiled; it caexae’
if string consists of a sequence of statemet@sal’ if it consists of a single expression, @ingle’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else tharNone will printed).

complex (real[, imag])
Create a complex number with the vaheal + imagtj or convert a string or number to a complex number. Each
argument may be any numeric type (including compleximiéigis omitted, it defaults to zero and the function
serves as a humeric conversion function lik) , long() andfloat() ; in this case it also accepts a
string argument which should be a valid complex number.

delattr (object, namg
This is a relative obetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, ' foobar) is equivalenttalel x. foobar.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attribute for that object. This information is gleaned from the objectfict __,
__methods __and__members__ attributes, if defined. The list is not necessarily complete; e.g., for classes,
attributes defined in base classes are not included, and for class instances, methods are not included. The

2.3. Built-in Functions 19

resulting list is sorted alphabetically. For example:

>>> import sys

>>> dir()

['sys’]

>>> dir(sys)

[argv’, 'exit’, 'modules’, 'path’, ’'stderr’, 'stdin’, 'stdout’]

divmod (a, b)

eval

Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same(as/ b, a % b). For floating point numbers the result(iig, a %

b) , whereq is usuallymath.floor(a / b) but may be 1 less than that. Inany casé¢ b + a % bis

very close ta, if a % bis non-zero it has the same signtagnd0 <= abs(a % b) < abs(b).

(expressio[u, globals[, Iocals]])

The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usingltitgalsandlocalsdictionaries as global and
local name space. If tHecalsdictionary is omitted it defaults to thgdobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment winegie is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (e.g. createchpie()). In this case
pass a code object instead of a string. The code object must have been compiled’paabing to thekind
argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalfy or
execfile()

execfile (file[, globals[, Iocals]])

filter

float

This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ghebalsandlocals dictionaries as global and local names-

pace. If thdocalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted, the
expression is executed in the environment wheerecfile() is called. The return value done.

(function, lis)
Construct a list from those elementslist for which functionreturns true. Hist is a string or a tuple, the result
also has that type; otherwise it is always a listfufctionis None, the identity function is assumed, i.e. all
elements ofist that are false (zero or empty) are removed.

(%)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensital goatof(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

8|t is used relatively rarely so does not warrant being made into a statement.

20

Chapter 2. Built-in Types, Exceptions and Functions

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr (object, nam[a, default])
Return the value of the named attributedaject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For examglattr(x, 'foobar’)

is equivalent tax.foobar . If the named attribute does not exiggfaultis returned if provided, otherwise
AttributeError is raised.
globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namp
The arguments are an object and a string. The result is 1 if the string is the name of one of the object’s attributes,
0 if not. (This is implemented by callingetattr(object nameg and seeing whether it raises an exception
or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, e.g. 1 and 1.0).

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit macHie&(-1) yields 'Oxffffffff’ . When

evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

id (objec)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have thégpme
value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw _input(prompd) . Warning: This function is not safe from user errors! It expects
a valid Python expression as input; if the input is not syntactically val®iraxError will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes this is exactly
what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and history
features.

Consider using theaw _input() function for general input from users.

int (X[, radix])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical to
string.atoi(x[, radix]) . Theradix parameter gives the base for the conversion and may be any integer
in the range [2, 36]. Ifadix is specified and is not a string,TypeError is raised. Otherwise, the argument
may be a plain or long integer or a floating point number. Conversion of floating point numbers to integers is
defined by the C semantics; normally the conversion truncates toward® zero.

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare

9This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 21

instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

isinstance (object, clasy
Return true if theobjectargument is an instance of tlodassargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassis a type object andbjectis an object of that type. Ibbjectis not a class
instance or a object of the given type, the function always returns faletad$is neither a class object nor a
type object, aypeError exception is raised.

issubclass (classl, classp
Return true ifclasslis a subclass (direct or indirect) ofass2 A class is considered a subclass of itself. If either
argument is not a class objectTgpeError exception is raised.

len (9)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list (sequence
Return a list whose items are the same and in the same ordegasncs items. If sequencés already a list,
a copy is made and returned, similardequende] . For instancelist(’abc’) returns returng'a’,
b, 'c’] andlist((1, 2, 3)) returns[l, 2, 3]

locals ()
Return a dictionary representing the current local symbol tAllgning: The contents of this dictionary should
not be modified; changes may not affect the values of local variables used by the interpreter.

long (X)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed deci-
mal number of arbitrary size, possibly embedded in whitespace; this behaves idergicagatol(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with the
same value is returned. Conversion of floating point numbers to integers is defined by the C semantics; see the
description ofint()

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additioni@t arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended witime items. Iffunctionis None, the identity function is assumed; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (i.e. a kind of transpose operation). Tis¢ arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single argumerd, return the largest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumerg, return the smallest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the smallest of the arguments.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit macldog;1) vyields’037777777777 . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raisecarerflowError exception.

open (filename[, mode[, bufsizd])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio 's fopen() : filenameis the file name to be openemhodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), arild’ opens it for appending (which aomeUnix

22 Chapter 2. Built-in Types, Exceptions and Functions

systems means thall writes append to the end of the file, regardless of the current seek paosition).

Modes’r+' ,’'w+ and’a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error s raised.

If modeis omitted, it defaults t&r' . When opening a binary file, you should appélpd to themodevalue

for improved portability. (It's useful even on systems which don'’t treat binary and text files differently, where

it serves as documentation.) The optiobafsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for for tty devices and fully
buffered for other files. If omitted, the system default is used.

ord (¢)
Return theascii value of a string of one character or a Unicode character. &dyf’a’) returns the integer
97, ord(u’
u2020’) returns8224 . This is the inverse ofhr() for strings and ofinichr() ~ for Unicode characters.

Returnx to the powery; if zis present, returx to the powery, moduloz (computed more efficiently than
pow(x, Yy) % 2. The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the type of the result; if the result is not expressible
in this type, the function raises an exception; eagw(2, -1) orpow(2, 35000) is not allowed.

range ([start,] stod, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often tmedlaops.
The arguments must be plain integers. If Htepargument is omitted, it defaults tbh. If the start argument
is omitted, it defaults t®. The full form returns a list of plain integefsstart, start + step start + 2
* step ..] . If stepis positive, the last element is the largetdrt + i * stepless tharstop if stepis
negative, the last element is the largstrt + i * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4, 5,6, 7, 8 9]
>>> range(1, 11)

[1, 2, 3, 4,5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

I

>>> range(1, 0)

I

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then

reads a line from input, converts it to a string (stripping a trailing newline), and returns that. dirés read,
EOFError is raised. Example:

105pecifying a buffer size currently has no effect on systems that don'tseiveuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.3. Built-in Functions 23

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus"

If the readline module was loaded, theraw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequem{einitializer])
Apply function of two arguments cumulatively to the items squencefrom left to right, so as to reduce
the sequence to a single value. For exampmeluce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateq(((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is empty.

reload (modulg
Re-parse and re-initialize an already impornteddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (i.e. the same as theoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firsport statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — wigh atatement it can test

for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepysfor

__main __and__builtin ~ __. In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.
If a module imports objects from another module usiram ... import ..., callingreload() for the

other module does not redefine the objects imported from it — one way around this is to re-exefugmthe
statement, another is to ugeport and qualified namesr(odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed t@val()

round (x[, n])
Return the floating point valuerounded ton digits after the decimal point. H is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powen;nifinus
two multiples are equally close, rounding is done away from 0 (soregnd(0.5) is 1.0 andround(-
0.5) is-1.0).

setattr (object, name, valye
This is the counterpart gfetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(%, ' foobar, 123) is equivalent tox. foobar = 123.

24 Chapter 2. Built-in Types, Exceptions and Functions

slice ([start,] stor{, step])
Return a slice object representing the set of indices specifiedrimye(start, stop step . Thestartand
steparguments default to None. Slice objects have read-only data attrittaies , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used, e.g. fa[start:stop:step] " or ‘a[start:stop, i] .

str (objec)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ; its goal is to return a printable string.

tuple (sequence
Return a tuple whose items are the same and in the same ordegasncs items. If sequenceés already
a tuple, it is returned unchanged. For instartagle('abc’) returns returng’a’, 'b’, 'c’) and
tuple([1, 2, 3]) returns(1, 2, 3)

type (objecd
Return the type of anbject The return value is a type object. The standard motjydes defines names for
all built-in types. For instance:

>>> import types
>>> jf type(X) == types.StringType: print "It's a string"

unichr (i)
Return the Unicode string of one character whose Unicode code is the integgrunichr(97) returns the
stringu’a’ . This is the inverse ofrd() for Unicode strings. The argument must be in the range [0..65535],
inclusive.ValueError is raised otherwise. New in version 2.0.

unicode (string[, encodin&, errors]])
Decodesstring using the codec foencoding Error handling is done according éorors. The default behavior
is to decode UTF-8 in strict mode, meaning that encoding errors YakeeError . See also theodecs
module. New in version 2.0.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefiriéd.

xrange ([start,] stor{, step])
This function is very similar t#ange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantagexfange() overrange() is minimal (sincexrange() still has to create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.
MS-DOS) or when all of the range’s elements are never used (e.g. when the loop is usually terminated with
break).

zip (seql,.)
This function returns a list of tuples, where each tuple contains-theslement from each of the argument
sequences. At least one sequence is required, otherWiggekrror is raised. The returned list is truncated
in length to the length of the shortest argument sequence. When there are multiple argument sequences which
are all of the same lengthip() is similar tomap() with an initial argument oNone. With a single sequence
argument, it returns a list of 1-tuples. New in version 2.0.

1n the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

2.3. Built-in Functions 25

26

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
gc

atexit
types
UserDict
UserList
UserString
operator
traceback
linecache
pickle
cPickle

copy _reg
shelve

copy
marshal
imp
code
codeop
pprint
repr
new
site
user
__builtin
__main __

Access system-specific parameters and functions.
Interface to the cycle-detecting garbage collector.

Register and execute cleanup functions.

Names for all built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.

Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version gpickle , but not subclassable.
Registempickle support functions.

Python object persistence.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Access the implementation of tiaport statement.

Base classes for interactive Python interpreters.

Compile (possibly incomplete) Python code.

Data pretty printer.

Alternaterepr() implementation with size limits.

Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The set of built-in functions.

The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv

The list of command line arguments passed to a Python sauigiv[0]

is the script name (it is operating

system dependent whether this is a full pathname or not). If the command was executed usitgth@and

line option to the interpretegrgv[0]

is set to the string-c’ . If no script name was passed to the Python

interpreterargv has zero length.

27

byteorder
An indicator of the native byte order. This will have the valbig' on big-endian (most-signigicant byte first)
platforms, andiittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way wodules.keys() only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

dilhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned drgype valueg tracebach . Their meaning istypegets the exception type

of the exception being handled (a string or class objac)ue gets the exception parameter (#ssociated
valueor the second argumenttaise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning théracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function or
by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the best
solution is to use something likgpe, value = sys.exc _info()[:2] to extract only the exception

type and value. If you do need the traceback, make sure to delete it after use (best dontgywith finally

statement) or to caltxc _info() in a function that does not itself handle an exception.

exc _type
exc _value
exc _traceback
Deprecated since release 1.%Iseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being hand&d,_type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local’ . This can be set at build time with theexec-prefixargument to the
configure script. Specifically, all configuration files (e.g. theohfig.h’ header file) are installed in the di-
rectoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are installed in
exec _prefix + '/lib/python versiorlib-dynload’ , Whereversionis equal toversion[:3]

executable

A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ([arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified by
finally clauses otry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argumerarg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal

28 Chapter 3. Python Runtime Services

termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is pasd€dne is equivalent to passing zero, and any other
object is printed t®ys.stderr and results in an exit code of 1. In particulays.exit("some error

message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Only one function may be installed in this way; to allow multiple functions which will be
called at termination, use tlegexit module. Note: the exit function is not called when the program is killed
by a signal, when a Python fatal internal error is detected, or wken exit() is called.

getrefcount (objec)
Return the reference count of tleject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgsitréscount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit()

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502FO:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called hexversion ’ since it only really looks meaningful when viewed as the result of passing it to
the built-inhex() function. Theversion _info value may be used for a more human-friendly encoding of
the same information. New in version 1.5.2.

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use isrport pdb; pdb.pm() ' to enter the post-mortem debugger; see the chapter
“The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return valuegfoninfo() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke faype etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
modules

This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload() on the corresponding module object.

3.1. sys — System-specific parameters and functions 29

path
A list of strings that specifies the search path for modules. Initialized from the environment variable $PYTHON-
PATH, or an installation-dependent default.

The first item of this listpath[0] , is the directory containing the script that was used to invoke the Python

interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script is
read from standard inpupath[0] is the empty string, which directs Python to search modules in the current
directory first. Notice that the script directory is inserteeforethe entries inserted as a result of SPYTHON-

PATH.

platform
This string contains a platform identifier, e.gunos5’ or’linuxl’ . This can be used to append platform-
specific components feath , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the strinfusr/local’ . This can be set at build time with theprefix argument to
the configure script. The main collection of Python library modules is installed in the diregboefix
+ 'llib/python versiori while the platform independent header files (all excephfig.h’) are stored in
prefix + ’'/include/python version , whereversionis equal toversion[:3]

psl

ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case &®> ' and'... . If a non-string object is
assigned to either variable, #() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defaQlt mseaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a valuee= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See the chapter on the Python Profiler. The system’s profile function is called similarly to the system’s trace
function (seesettrace()), butitisn’t called for each executed line of code (only on call and return and when
an exception occurs). Also, its return value is not used, so it can just fgture.

setrecursionlimit (‘limit)
Set the maximum depth of the Python interpreter stackmd. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a program
that requires deep recursion and a platform that supports a higher limit. This should be done with care, because
a too-high limit can lead to a crash.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. See
section “How It Works” in the chapter on the Python Debugger.

stdin

stdout

stderr
File objects corresponding to the interpreter’'s standard input, output and error stretalims. is used for
all interpreter input except for scripts but including callsriput() andraw _input() . stdout is used
for the output ofprint and expression statements and for the prompiemit() andraw _input()
The interpreter’s own prompts and (almost all of) its error messages gléor . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it head#tey) method that takes a

30 Chapter 3. Python Runtime Services

string argument. (Changing these objects doesn’t affect the standard 1/0 streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __

__stdout

__stderr __
These objects contain the original valuesstafin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defal®0B. When set to O or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the build num-
ber and compiler used. It has a value of the farmersion (# build_number build_date build_time)
[compilef’ . The first three characters are used to identify the version in the installation directories (where
appropriate on each platform). An example:
>>> jmport sys
>>> sys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]

version _info
A tuple containing the five components of the version numisegjor, minor, micro, releaselevelandserial. All
values excepteleaseleveare integers; the release levelatpha’ |, ’beta’ |, ’candidate’ , or’final’
Theversion _info value corresponding to the Python version 2.is 0, 0, ‘'final’, 0) . New
in version 2.0.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in
the Python DLL. The value is normally the first three charactekgeddion . Itis provided in thesys module
for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability:
Windows.

3.2 gc — Garbage Collector interface

The gc module is only available if the interpreter was built with the optional cyclic garbage detector (enabled by
default). If this was not enabled, &mportError is raised by attempts to import this module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector, tune
the collection frequency, and set debugging options. It also provides access to unreachable objects that the collector
found but cannot free. Since the collector supplements the reference counting already used in Python, you can disable
the collector if you are sure your program does not create reference cycles. Automatic collection can be disabled by
calling gc.disable() . To debug a leaking program cagjt.set _debug(gc.DEBUG _LEAK).

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

3.2. gc — Garbage Collector interface 31

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set _debug (flag9
Set the garbage collection debugging flags. Debugging information will be writeyststderr . See below
for a list of debugging flags which can be combined using bit operations to control debugging.

get _debug ()
Return the debugging flags currently set.

set _threshold (threshold(i, thresholdi, thresholdﬂ])
Set the garbage collection thresholds (the collection frequency). S#itagholdo zero disables collection.

The GC classifies objects into three generations depending on how many collection sweeps they have survived.
New objects are placed in the youngest generation (gene@tidhan object survives a collection it is moved

into the next older generation. Since generafiois the oldest generation, objects in that generation remain
there after a collection. In order to decide when to run, the collector keeps track of the number object allocations
and deallocations since the last collection. When the number of allocations minus the number of deallocations
exceedshresholdQ collection starts. Initially only generatidhis examined. If generatiobhas been examined

more thanthreshold1times since generatioh has been examined, then generatiois examined as well.
Similarly, threshold2controls the number of collections of generatibbefore collecting generatidh

get _threshold ()
Return the current collection thresholds as a tuplétbfesholdQ threshold]l threshold? .

The following variable is provided for read-only access:

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
Objects that have_del __() methods and create part of a reference cycle cause the entire reference cycle to
be uncollectable. IDEBUGSAVEALLIs set, then all unreachable objects will be added to this list rather than
freed.

The following constants are provided for use wstit _debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to teebage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIS set, print information about instance objects
found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLErDEBUGUNCOLLECTABLIE set, print information about objects other than
instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appendegdtioagerather than being freed. This can be useful
for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGNSTANCES | DEBUGOBJECTS
| DEBUG_SAVEALL.

32 Chapter 3. Python Runtime Services

3.3 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are automati-
cally executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

This is an alternate interface to the functionality provided bystymeexitfunc variable.

Note: This module is unlikely to work correctly when used with other code thatsgstexitfunc . In partic-
ular, other core Python modules are free to asexit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to usgexit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit ~ and register the function that had been bounshymexitfunc

register (func[, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be pdssed to
must be passed as argumentsetgister()

At normal program termination (for instance sijs.exit() is called or the main module’s execution com-
pletes), all functions registered are called in last in, first out order. The assumption is that lower level modules
will normally be imported before higher level modules and thus must be cleaned up later.

See Also:

Modulereadline (section 7.17):
Useful example oétexit to read and writeeadline history files.

3.3.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter”).read())
except IOError:

_count = O

def incrcounter(n):
global _count

_count = _count + n

def savecounter():
open("/tmp/counter”, "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

3.4 types — Names for all built-in types

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to freet types import * " — the module does not export

3.3. atexit — Exit handlers 33

any names besides the ones listed here. New names exported by future versions of this module will allygred in *

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType

The type ofNone.
TypeType

The type of type objects (such as returnedype()).
IntType

The type of integers (e.d.).
LongType

The type of long integers (e.gL).
FloatType

The type of floating point numbers (e..0).
ComplexType

The type of complex numbers (e .0j).
StringType

The type of character strings (e!§pam’).
UnicodeType

The type of Unicode character strings (eugSpam’).
TupleType

The type of tuples (e.d1, 2, 3, 'Spam’)).
ListType

The type of lists (e.g[0, 1, 2, 3]).
DictType

The type of dictionaries (e.g'Bacon’: 1, 'Ham’. 0}).
DictionaryType

An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdfunctionType

CodeType
The type for code objects such as returnec¢bmpile()

ClassType
The type of user-defined classes.

InstanceType

34 Chapter 3. Python Runtime Services

The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects suchsgs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType

The type of objects returned Isjice()
EllipsisType

The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

3.5 UserDict — Class wrapper for dictionary objects

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to dictionaries.

TheUserDict module defines thElserDict class:

UserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. Ifnitialdata is provided,data is initialized with its contents;
note that a reference toitialdata will not be kept, allowing it be used used for other purposes.

In addition to supporting the methods and operations of mappings (see section2sé)ict instances provide
the following attribute:

data
A real dictionary used to store the contents of theerDict class.

3.6 UserList — Class wrapper for list objects

3.5. UserDict — Class wrapper for dictionary objects 35

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thEserList class:

UserList ([Iist])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessiblelaia the
attribute ofUserList instances. The instance’s contents are initially set to a copigtofdefaulting to the
empty list[] . list can be either a regular Python list, or an instancessdrList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiodsedlL &t instances
provide the following attribute:

data
A real Python list object used to store the contents oltberList class.

Subclassing requirements: Subclasses dffserList are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will
need to be overridden; please consult the sources for information about the methods which need to be provided in that
case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no parameters,
and offer a mutabldata attribute. Earlier versions of Python did not attempt to create instances of the derived class.

3.7 UserString — Class wrapper for string objects

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case foMutableString

TheUserString module defines the following classes:

UserString ([sequenc}a)
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via ttata attribute ofUserString instances. The instance’s
contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode string,
an instance ofJserString (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-instr() function.

MutableString ([sequenc})
This class is derived from thdserString above and redefines strings to teitable Mutable strings can't
be used as dictionary keys, because dictionaries reguiraitableobjects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (overridedshe ()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.1.5, “String Meth-
0ds”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content diseeString class.

36 Chapter 3. Python Runtime Services

3.8 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailing are also provided for convenience.

Theoperator module defines the following functions:

add(a, b
__add__(a,b
Returna + b, for aandb numbers.

sub (a, b)
__sub__(a,b
Returna - b.

mul (a, b)
__mul__(a,b
Returna* b, for a andb numbers.

div (a, b
_div __(a,b
Returna/ b.

mod(a, b)
__mod__(a,b
Returna %b.

neg(o)
__neg__(0)
Returno negated.

pos (0)
__pos__(0)
Returno positive.

abs (0)
__abs__(0)
Return the absolute value of

inv (0)
__inv __(0)
__invert __(0)
Return the inverse ai. The namenvert() and__invert __() were added in Python 2.0.

Ishift (&, b)
__Ishift __(a, b
Returna shifted left byb.

rshift (a, b
__rshift __(a, b
Returna shifted right byb.

and _(a, b
__and__(a,b
Return the bitwise and af andb.

or _(a,h
_or__(ab
Return the bitwise or oh andb.

3.8. operator — Standard operators as functions. 37

xor (a, b)
__xor __(a,b
Return the bitwise exclusive or afandb.

not _(0)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() method for object instances; only the inter-
preter core defines this operation.)

truth (o)
Returnl if ois true, and O otherwise.

concat (a,b)
__concat __(a,b
Returna + b for a andb sequences.

repeat (a, b
__repeat __(a,b
Returna* b whereais a sequence artis an integer.

contains (a,b)

__contains __(a,b
Return the outcome of the tdsin a. Note the reversed operands. The nameontains __() was added
in Python 2.0.

sequencelncludes (..)
Deprecated since release 2.Qsecontains() instead.

Alias for contains()

countOf (a,b)
Return the number of occurrencestah a.

indexOf (a, b)
Return the index of the first of occurrencelmih a.

getitem (a,b)
__getitem __(a, b
Return the value ad at indexb.

setitem (a,b,Q
__setitem __(a,b,q
Set the value oh at indexb to c.

delitem (a,b)
__delitem __(a,b)
Remove the value af at indexb.

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o& from indexb to indexc-1 to the sequence

delslice (a, b, 9
__delslice __(a,b,9
Delete the slice o& from indexb to indexc-1 .

The operator also defines a few predicates to test the type of objddtste: Be careful not to misinterpret the
results of these functions; onigCallable() has any measure of reliability with instance objects. For example:

38 Chapter 3. Python Runtime Services

>>> class C:
pass

>>> jmport operator
>>> 0 = C()
>>> operator.isMappingType(0)

isCallable (0)
Deprecated since release 2.Qse thecallable() built-in function instead.

Returns true if the objectcan be called like a function, otherwise it returns false. True is returned for functions,
bound and unbound methods, class objects, and instance objects which suppodahe __() method.

isMappingType (0)
Returns true if the objea supports the mapping interface. This is true for dictionaries and all instance objects.
Warning: There is no reliable way to test if an instance supports the complete mapping protocol since the
interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isNumberType (0)
Returns true if the objeat represents a number. This is true for all numeric types implemented in C, and for
all instance objectsWarning: There is no reliable way to test if an instance supports the complete numeric
interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the objeat supports the sequence protocol. This returns true for all objects which define se-
quence methods in C, and for all instance objestfarning: There is no reliable way to test if an instance
supports the complete sequence interface since the interface itself is ill-defined. This makes this test less useful
than it otherwise might be.

Example: Build a dictionary that maps the ordinals fr@rto 256 to their character equivalents.

>>> import operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.9 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayasldes _traceback
andsys.last _traceback and returned as the third item frosys.exc _info()

The module defines the following functions:

print _tb (tracebacl{, Iimit[, fiIe]])
Print up tolimit stack trace entries fromaceback If limit is omitted orNone, all entries are printed. ffile
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object to
receive the output.

3.9. traceback — Print or retrieve a stack traceback 39

print _exception (type, value, traceba{klimit[, file]])
Print exception information and up timit stack trace entries fronracebackto file. This differs from
print _tb() in the following ways: (1) itracebackis notNone, it prints a headerTraceback (inner-
most last): ’; (2) it prints the exceptiontypeandvalueafter the stack trace; (3) tfpeis SyntaxError
andvaluehas the appropriate format, it prints the line where the syntax error occurred with a caret indicating
the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file)’. (In fact, it usessys.exc _info() to retrieve the same infor-
mation in a thread-safe way.)

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, limit[, file]]])
This function prints a stack trace from its invocation point. The optidnafgument can be used to spec-
ify an alternate stack frame to start. The optiohalit and file arguments have the same meaning as for
print _exception()

extract _tb (tracebacl{, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback trajeeback
It is useful for alternate formatting of stack traces.liffiit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilename line number function nametexy representing the
information that is usually printed for a stack trace. Tletis a string with leading and trailing whitespace
stripped; if the source is not available ithlone.

extract _stack ([f[, Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same formatxas for
tract _tb() . The optionaf andlimit arguments have the same meaning apfort _stack()

format _list (list)
Given a list of tuples as returned lextract _tb() orextract _stack() , return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last _type andsys.last _value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, 8mntaxError exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format _exception (type, value, t[), Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments t@rint _exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are concatenated and printed, exactly the same text is printed as
doesprint _exception()

format _tb (tb[, limit)

A shorthand foformat _list(extract _tb(th, limit)) .
format _stack ([f[,limit]])
A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (tb)
This function returns the current line number set in the traceback object. This is normally the same as the
tb.tb _lineno field of the object, but when optimization is used (the -O flag) this field is not updated correctly;

40 Chapter 3. Python Runtime Services

this function calculates the correct value.

3.9.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refectaléhenodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")

try:
exec source in envdir
except:
print "Exception in user code:"
print '-*60
traceback.print_exc(file=sys.stdout)
print ’-*60
envdir = {}
while 1:

run_user_code(envdir)

3.10 linecache — Random access to text lines

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is usedrbgd¢hack module to
retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelineno from file namedfilename This function will never throw an exception — it will retuth on
errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search pays.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously readyesiing()

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version.

Example:

>>> import linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\012’

3.10. linecache — Random access to text lines 41

3.11 pickle — Python object serialization

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, marshalling or
flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream of bytes (and back:
“unpickling”). This is a more primitive notion than persistence — althopgikle reads and writes file objects, it

does not handle the issue of naming persistent objects, nor the (even more complicated) area of concurrent access to
persistent objects. Thackle module can transform a complex object into a byte stream and it can transform the
byte stream into an object with the same internal structure. The most obvious thing to do with these byte streams is to
write them onto a file, but it is also conceivable to send them across a network or store them in a database. The module
shelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: Thepickle module is rather slow. A reimplementation of the same algorithm in C, which is up to 1000 times
faster, is available as thePickle module. This has the same interface except®ieitler andUnpickler are
factory functions, not classes (so they cannot be used as base classes for inheritance).

Although thepickle module can use the built-in modutearshal internally, it differs frommarshal in the way
it handles certain kinds of data:

e Recursive objects (objects containing references to themselpale keeps track of the objects it has
already serialized, so later references to the same object won't be serialized agairgiBhel module
breaks for this.)

e Object sharing (references to the same object in different places): This is similar to self-referencing objects;
pickle stores the object once, and ensures that all other references point to the master copy. Shared objects
remain shared, which can be very important for mutable objects.

e User-defined classes and their instancesirshal does not support these at all, kpitkle can save and
restore class instances transparently. The class definition must be importable and live in the same module as
when the object was stored.

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can't represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printablell (and of some other characteristicspékle s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value fointhe
argument to théickler constructor or thelump() anddumps() functions. The binary format is not the default
because of backwards compatibility with the Python 1.4 pickle module. In a future version, the default may change to
binary.

Thepickle module doesn’t handle code objects, whichitmershal module does. | suppogeckle could, and
maybe it should, but there’s probably no great need for it right now (as lomgaashal continues to be used for
reading and writing code objects), and at least this avoids the possibility of smuggling Trojan horses into a program.

For the benefit of persistence modules written ugiigle |, it supports the notion of a reference to an object outside
the pickled data stream. Such objects are referenced by a name, which is an arbitrary string of prsttable
characters. The resolution of such names is not defined bgitkke module — the persistent object module will
have to implement a methquersistent _load() . To write references to persistent objects, the persistent module
must define a methqggersistent _id() which returns eitheNone or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables must be
picklable.

42 Chapter 3. Python Runtime Services

When a pickled class instance is unpickled, itsinit __() method is normallynot invoked. Note: This is a
deviation from previous versions of this module; the change was introduced in Python 1.5b2. The reason for the
change is that in many cases it is desirable to have a constructor that requires arguments; it is a (minor) nuisance to
have to provide a _getinitargs _ () method.

If it is desirable that the__init __() method be called on unpickling, a class can define a method
__Qgetinitargs ——() , which should return &uple containing the arguments to be passed to the class construc-
tor (__init __()). This method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

Classes can further influence how their instances are pickled — if the class defines the meybisthte __() ,

it is called and the return state is pickled as the contents for the instance, and if the class defines the method
__setstate __() , itis called with the unpickled state. (Note that these methods can also be used to implement
copying class instances.) If there is nogetstate __() method, the instance’s_dict __ is pickled. If there
isno__setstate __() method, the pickled object must be a dictionary and its items are assigned to the new in-
stance’s dictionary. (If a class defines bathgetstate __() and__setstate __() , the state object needn't be

a dictionary — these methods can do what they want.) This protocol is also used by the shallow and deep copying
operations defined in theopy module.

Note that when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods and still load objects
that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions
of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the
class’s__setstate __() method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-imported by the
unpickling process. Therefore, the restriction that the class must be defined at the top level in a module applies to
pickled classes as well.

The interface can be summarized as follows.
To pickle an objeck onto a filef , open for writing:

p = pickle.Pickler(f)
p.dump(x)

A shorthand for this is:
pickle.dump(x, f)

To unpickle an object from a filef , open for reading:

u pickle.Unpickler(f)

u.load()

A shorthand is:
x = pickle.load(f)

ThePickler class only calls the methddwrite() with a string argument. ThE&npickler calls the meth-
odsf.read() (with an integer argument) arfdeadline() (without argument), both returning a string. It is
explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for th€ickler class has an optional second argumeitt, If this is present and true, the binary
pickle format is used; if it is absent or false, the (less efficient, but backwards compatible) text pickle format is used.
The Unpickler class does not have an argument to distinguish between binary and text pickle formats; it accepts

3.11. pickle — Python object serialization 43

either format.

The following types can be pickled:

e None

e integers, long integers, floating point numbers

e normal and Unicode strings

e tuples, lists and dictionaries containing only picklable objects

¢ functions defined at the top level of a module (by name reference, not storage of the implementation)
e built-in functions

e classes that are defined at the top level in a module

e instances of such classes whasalict __ or __setstate __() is picklable

Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspecified
number of bytes may have been written to the file.

It is possible to make multiple calls to tltimp() method of the sam®ickler instance. These must then be
matched to the same number of calls toltheed() method of the correspondindnpickler instance. If the same

object is pickled by multiplelump() calls, theload() will all yield references to the same objetarning this

is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify

an object and then pickle it again using the saekler instance, the object is not pickled again — a reference to

it is pickled and thdJnpickler will return the old value, not the modified one. (There are two problems here: (a)
detecting changes, and (b) marshalling a minimal set of changes. | have no answers. Garbage Collection may also
become a problem here.)

Apart from thePickler andUnpickler classes, the module defines the following functions, and an exception:

dump(object, fild, bin])
Write a pickled representation abjectto the open file objecfile. This is equivalent toPickler(file,
bin).dump(objec) . If the optionalbin argument is present and nonzero, the binary pickle format is used; if
it is zero or absent, the (less efficient) text pickle format is used.

load (file)
Read a pickled object from the open file objéle. This is equivalent toUnpickler(file).load() .

dumps(objec{, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the ofitional
argument is present and nonzero, the binary pickle format is used; if it is zero or absent, the (less efficient) text
pickle format is used.

loads (string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled object’s represen-
tation are ignored.

PicklingError
This exception is raised when an unpicklable object is passakber.dump()

See Also:

Modulecopy _reg (section 3.13):
pickle interface constructor registration

Moduleshelve (section 3.14):
indexed databases of objects; upekle

44 Chapter 3. Python Runtime Services

Modulecopy (section 3.15):
shallow and deep object copying

Modulemarshal (section 3.16):
high-performance serialization of built-in types

3.11.1 Example

Here’s a simple example of how to modify pickling behavior for a class. ThéReader class opens a text file, and
returns the line number and line contents each timeeislline() method is called. If &extReader instance

is pickled, all attributegxcepthe file object member are saved. When the instance is unpickled, the file is reopened,
and reading resumes from the last location. Theetstate __ () and__getstate __() methods are used to
implement this behavior.

illustrate _ setstate_ and __ getstate_ methods
used in pickling.

class TextReader:
"Print and number lines in a text file."
def __init__(self file):
self.file = file
self.th = open(file,’r)
self.lineno = 0

def readline(self):
self.lineno = self.lineno + 1
line = self.fh.readline()
if not line:
return None
return "%d: %s" % (self.lineno,line[:-1])

return data representation for pickled object

def _ getstate_ (self):
odict = self.__dict__ # get attribute dictionary
del odict['fh’] # remove filehandle entry
return odict

restore object state from data representation generated
by _ getstate
def __ setstate__(self,dict):
fh = open(dict[file’]) # reopen file
count = dict['lineno’] # read from file...
while count: # until line count is restored
fh.readline()
count = count - 1
dict['fh’] = fh # create filehandle entry
self.__dict__ = dict # make dict our attribute dictionary

A sample usage might be something like this:

3.11. pickle — Python object serialization 45

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

. obj.readline()

'7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open('save.p’,’'w’))

(start another Python session)

>>> jmport pickle

>>> reader = pickle.load(open('save.p’))

>>> reader.readline()

'8: "Print and number lines in a text file.

3.12 cPickle — Alternate implementation of pickle

ThecPickle module provides a similar interface and identical functionality agpthele module, but can be up
to 1000 times faster since it is implemented in C. The only other important difference to noteRsctdat() and
Unpickler() are functions and not classes, and so cannot be subclassed. This should not be an issue in most cases.

The format of the pickle data is identical to that produced usingttide module, so it is possible to ugéckle
andcPickle interchangeably with existing pickles.

(Since the pickle data format is actually a tiny stack-oriented programming language, and there are some freedoms in
the encodings of certain objects, it's possible that the two modules produce different pickled data for the same input
objects; however they will always be able to read each other’s pickles back in.)

3.13 copy _reg — Reqgister pickle support functions

Thecopy _reg module provides support for thigckle andcPickle modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor. bbjectis not callable (and hence not valid as a constructor), raises
TypeError

pickle (type, functimﬁ, constructoﬂ)
Declares thatunctionshould be used as a “reduction” function for objects of tiyges typeshould not a class
object. functionshould return either a string or a tuple. The optiot@hstructorparameter, if provided, is a
callable object which can be used to reconstruct the object when called with the tuple of arguments returned by
functionat pickling time.TypeError will be raised ifobjectis a class oconstructoris not callable.

3.14 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)
in a shelf can be essentially arbitrary Python objects — anything thatithkee module can handle. This includes

46 Chapter 3. Python Runtime Services

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interfac&dy is a string,data is an arbitrary object):

import shelve
d = shelve.open(flename) # open, with (g)dbm filename -- no suffix

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

e The choice of which database package will be used (fagnor gdbm) depends on which interface is available.
Therefore it is not safe to open the database directly usiimy The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

e Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

e Theshelve module does not suppazbncurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. WX file locking can be used to solve this, but this differs acrossxUversions and
requires knowledge about the database implementation used.

See Also:

Moduleanydbm (section 7.9):
Generic interface tdbm-style databases.

Moduledbhash (section 7.11):
BSD db database interface.

Module dbm (section 8.6):
Standard Wix database interface.

Moduledumbdbm(section 7.10):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondbeninterface.

Modulepickle (section 3.11):
Object serialization used tshelve .

ModulecPickle (section 3.12):
High-performance version gfickle

3.14. shelve — Python object persistence a7

3.15 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

X
X

copy.copy(y) # make a shallow copy of y
copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

e A shallow copyconstructs a new compound object and then (to the extent possible) ieferéncesnto it to
the objects found in the original.

e A deep copyonstructs a new compound object and then, recursively, insgptesinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

e Because deep copy copiegerythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memo” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket, window,
array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods called
__getinitargs _ () ,__getstate __() and__setstate __() . See the description of modutéckle for
information on these methods. Thepy module does not use tlwepy _reg registration module.

In order for a class to define its own copy implementation, it can define special methedpy () and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the__deepcopy __() implementation needs to make a deep copy of a component, it should cadlepeopy ()

function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.11):
Discussion of the special methods used to support object state retrieval and restoration.

48 Chapter 3. Python Runtime Services

3.16 marshal — Alternate Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely doés).

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC calls,
see the modulepickle andshelve . Themarshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules giy/c’ files.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are suppsdee; integers,

long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where it
should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein are
themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. Since the coraesttal module uses 32 bits to transfer

plain Python integers, such values are silently truncated. This particularly affects the use of very long integer literals
in Python modules — these will be accepted by the parser on such machines, but will be silently be truncated when
the module is read from thepyc’ instead?

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, fil§
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout or returned byopen() or posix.popen() . It must be opened in binary modevp’ or
‘Wb’).
If the value has (or contains an object that has) an unsupported tyjfady@Error exception is raised — but
garbage data will also be written to the file. The object will not be properly read baldady)

load (file)
Read one value from the open file and return it. If no valid value is read, E&)$&Error , ValueError or
TypeError . The file must be an open file object opened in binary maté (or’r+b’”).

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substitute
None for the unmarshallable type.

dumps(value
Return the string that would be written to a file Bymp(value file) . The value must be a supported type.
Raise avalueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, raig@FError , ValueError or TypeError
Extra characters in the string are ignored.

3.17 imp — Access the import internals

This module provides an interface to the mechanisms used to implememigbe statement. It defines the follow-
ing constants and functions:

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution would bernatshtie
module raise an exception when an integer value would be truncated. At least one of these solutions will be implemented in a future version.

3.16. marshal — Alternate Python object serialization 49

get _magic ()
Return the magic string value used to recognize byte-compiled code fipgs' files). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has th¢ $offirx mode
type , wheresuffixis a string to be appended to the module name to form the filename to searafofte,
is the mode string to pass to the built@pen() function to open the file (this can Be for text files or
rb’ for binary files), andypeis the file type, which has one of the value¥_SOURCEPY_COMPILED or
C_EXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory names, each directory is
searched for files with any of the suffixes returnedyey _suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings) pHthis omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name C_BUILTIN), then a frozen moduldPY_FROZEN, and on some systems some other places are
looked in as well (on the Mac, it looks for a resour€/(RESOURCEon Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a triplde, pathname descriptior) wherefile is an open file

object positioned at the beginningathnameis the pathname of the file found, adéscriptionis a triple as
contained in the list returned lget _suffixes() describing the kind of module found. If the module does

not live in a file, the returnetile is None, filenameis the empty string, and thaescriptiontuple contains empty

strings for its suffix and mode; the module type is as indicate in parentheses above. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In ordeRd/fine.,
submoduleM of packageP, usefind _module() andload _module() to find and load package, and
then usdind _module() with the pathargument set t®. __path __. WhenP itself has a dotted name,
apply this recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously foundfoyd _module() (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported,
it is equivalent to aeload() ! The nameargument indicates the full module name (including the package
name, if this is a submodule of a package). Tileargument is an open file, afitenameis the corresponding
file name; these can kdone and” , respectively, when the module is not being loaded from a file. The
descriptionargument is a tuple, as would be returnedgley _suffixes() , describing what kind of module
must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (uspatrror)
is raised.

Important: the caller is responsible for closing tfike argument, if it was noNone, even when an exception
is raised. This is best done usingra ... finally statement.

new_module (nam§
Return a new empty module object callegime This object isnotinserted insys.modules

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

50 Chapter 3. Python Runtime Services

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG.DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.
PY_FROZEN

The module was found as a frozen module (e _frozen()).

The following constant and functions are obsolete; their functionality is available thingjh _module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin (nameg
Initialize the built-in module calledameand return its module object. If the module was already initialized, it
will be initialized again A few modules cannot be initialized twice — attempting to initialize these again will
raise animportError exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module calledameand return its module object. If the module was already initialized,
it will be initialized again If there is no frozen module callesthme None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python’greezeutility. See Tools/freeze/’ for now.)

is _builtin (nam@
Returnl if there is a built-in module calledamewhich can be initialized again. Retusth if there is a built-in
module callechamewhich cannot be initialized again (sest _builtin()). Return0 if there is no built-in
module callechame

is _frozen (nam@
Returnl if there is a frozen module (séa@t _frozen()) calledname or 0 if there is no such module.

load _compiled (name, pathname, file
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeagain The nameargument is used to create or access a
module object. Thgpathnameargument points to the byte-compiled code file. Tileargument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load _dynamic (name, pathnan{efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializeayjain Some modules don't like that and may raise
an exception. Thpathnameargument must point to the shared library. Tieeneargument is used to construct
the name of the initialization function: an external C function calied * namd) ' in the shared library is
called. The optiondiile argument is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load _source (name, pathname, file
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain The nameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thile argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffigy/c’ or *.pyo’) exists, it will be used instead of
parsing the given source file.

3.17. imp — Access the import internals 51

3.17.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no hierarchical mod-
ule names). (Thismplementatiorwouldn’t work in that version, sincénd _module() has been extended and
load _module() hasbeenaddedin1.4.)

import imp import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and incltelead() function can be
found in the standard modulmee (which is intended as an example only — don't rely on any part of it being a
standard interface).

3.18 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

Interactivelnterpreter ([Iocals])
This class deals with parsing and interpreter state (the user's namespace); it does not deal with input buffering
or prompting or input file naming (the filename is always passed in explicitly). The optimees argument
specifies the dictionary in which code will be executed; it defaults to a newly created dictionary with key
" __name__’ setto’ __console __' andkey __doc__' settoNone.

InteractiveConsole ([Iocals[, filename]])
Closely emulate the behavior of the interactive Python interpreter. This class buildteoactiveln-
terpreter and adds prompting using the familsys.ps1 andsys.ps2 , and input buffering.

interact ([bannel[, readfun({, Iocal]]])
Convenience function to run a read-eval-print loop. This creates a new instahterattiveConsole
and setgeadfuncto be used as theaw _input() = method, if provided. [flocal is provided, it is passed
to the InteractiveConsole constructor for use as the default namespace for the interpreter loop. The
interact() method of the instance is then run witAnnerpassed as the banner to use, if provided. The
console object is discarded after use.

compile _command source[, filenam{, symboﬂ])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-

52 Chapter 3. Python Runtime Services

print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This &limcisin
always makes the same decision as the real interpreter main loop.

sourceis the source strindjlenameis the optional filename from which source was read, defaultirigite
put>" ; andsymbolis the optional grammar start symbol, which should be eitsiagle’ (the default) or
‘eval’

Returns a code object (the samecampile(source filename symbo)) if the command is complete and
valid; None if the command is incomplete; rais8yntaxError if the command is complete and contains a
syntax error, or raise@verflowError if the command includes a numeric constant which exceeds the range
of the appropriate numeric type.

3.18.1 Interactive Interpreter Objects

runsource (source[, filenamé, symbo]|])
Compile and run some source in the interpreter. Arguments are the samecasifuite _command() ; the
default forfilenameis '<input>' , and forsymbolis 'single’ . One several things can happen:

eThe input is incorrectcompile _command() raised an exceptiorSyntaxError or Overflow-
Error). A syntax traceback will be printed by calling tlsowsyntaxerror() method. run-
source() returnsO.

eThe input is incomplete, and more input is requiredmpile _command() returnedNone. run-
source() returnsl.

eThe input is completecompile _command() returned a code object. The code is executed by calling
theruncode() (which also handles run-time exceptions, exceptSgstemExit). runsource()
returnso.

The return value can be used to decide whether tesysg@sl orsys.ps2 to prompt the next line.

runcode (code
Execute a code object. When an exception ocahewtraceback() is called to display a traceback. All
exceptions are caught excepistemExit , which is allowed to propagate.

A note aboutKeyboardInterrupt : this exception may occur elsewhere in this code, and may not always
be caught. The caller should be prepared to deal with it.

showsyntaxerror ([filenamé)
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for syntax
errors. Iffilenameis given, it is stuffed into the exception instead of the default filename provided by Python’s
parser, because it always usestring>’ when reading from a string. The output is written by write()
method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter object
implementation. The output is written by thaite() method.

write (data)
Write a string to the standard error streasyg.stderr). Derived classes should override this to provide the
appropriate output handling as needed.

3.18.2 Interactive Console Objects

The InteractiveConsole class is a subclass titeractivelnterpreter , and so offers all the methods
of the interpreter objects as well as the following additions.

3.18. code — Interpreter base classes 53

interact ([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print before
the first interaction; by default it prints a banner similar to the one printed by the standard Python interpreter,
followed by the class name of the console object in parentheses (so as not to confuse this with the real interpreter
— since it's so closel).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpretensource() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid,
the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was
appended. The return valuelisf more input is required) if the line was dealt with in some way (this is the
same asunsource()).

resetbuffer ()
Remove any unhandled source text from the input buffer.

raw _input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters the
EOF key sequenceEOFError is raised. The base implementation uses the built-in functen_input() ;
a subclass may replace this with a different implementation.

3.19 codeop — Compile Python code

The codeop module provides a function to compile Python code with hints on whether it is certainly complete,
possibly complete or definitely incomplete. This is used bydhée module and should not normally be used
directly.

Thecodeop module defines the following function:

compile _command source[, filenamé, symboﬂ])
Tries to compilesource which should be a string of Python code and return a code objscdluifceis valid
Python code. In that case, the filename attribute of the code object wilehame which defaults td<in-
put>" . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

If there is a problem witlsource an exception will be raise@®yntaxError is raised if there is invalid Python
syntax, andDverflowError if there is an invalid numeric constant.

The symbolargument determines whetha&urceis compiled as a statemensifigle’ , the default) or as an
expression’éval’). Any other value will caus®¥alueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API for
the parser is better.

3.20 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be

used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don't
fit within the allowed width. ConstrudrettyPrinter objects explicitly if you need to adjust the width constraint.

Thepprint module defines one class:

54 Chapter 3. Python Runtime Services

PrettyPrinter (..)
Construct &PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using tereamkeyword; the only method used on the stream object is the file protocol's
write() method. If not specified, therettyPrinter adoptssys.stdout . Three additional parameters
may be used to control the formatted representation. The keywordiscemet depth andwidth. The amount
of indentation added for each recursive level is specifiethtgnt the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth if the data structure being printed is too deep, the next contained level is replaced by
‘... ". By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using theidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

>>> jmport pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff[:])

>>> pp = pprint.PrettyPrinter(indent=4)

>>> pp.pprint(stuff)

[[
'fusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/python1.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’],

"lusr/local/lib/pythonl.5’,

"lusr/local/lib/pythonl.5/test’,

"lusr/local/lib/python1.5/sunos5’,

"lusr/local/lib/pythonl.5/sharedmodules’,

"lusr/local/lib/pythonl.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(

parser.suite(open(’pprint.py’).read()))[1][1][1]

>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (..)))))

ThePrettyPrinter class supports several derivative functions:

pformat (objec)
Return the formatted representatiorbifectas a string. The default parameters for formatting are used.

pprint (objec{, stream])
Prints the formatted representation olbject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteadpdhts statement for in-
specting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

'lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’]

3.20. pprint — Data pretty printer 55

isreadable (objec)
Determine if the formatted representationotijectis “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
0

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representation object protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representelexifsion on typename
with id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", ’'/usr/local/lib/pythonl.5’, 'fusr/loca
Illib/pythonl.5/test’, ’'/usr/local/lib/pythonl.5/sunos5’, 'lusr/local/lib/python
1.5/sharedmodules’, ’/ust/local/lib/pythonl.5/tkinter’]"

3.20.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation aifject This takes into Account the options passed to Fhet-
tyPrinter constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since ResttyPrinter objects don't need to be created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. Ifdepthparameter of th@rettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

3.21 repr — Alternate repr() implementation

Therepr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

Repr ()
Class which provides formatting services useful in implementing functions similar to the brélpif) ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

56 Chapter 3. Python Runtime Services

aRepr
This is an instance dRepr which is used to provide theepr() function described below. Changing the
attributes of this object will affect the size limits useddepr() and the Python debugger.

repr (obj)
Thisis therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

3.21.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defafilt is

maxdict

maxlist

maxtuple
Limits on the number of entries represented for the named object type. The defaulxdict is 4, for the
others6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The defadt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. Itis applied in a similar manner amxstring . The default i20.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used tgpr() . This uses the type ahbjto determine which formatting method to
call, passing ibbj andlevel The type-specific methods should a&prl() to perform recursive formatting,
with level - 1 for the value ofevelin the recursive call.

repr _typg obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method nameypeis replaced bystring.join(string.split(type(obj). __name__, ') .
Dispatch to these methods is handledrégrl() . Type-specific methods which need to recursively format a
value should callself.repri(subobj level - 1) .

3.21.2 Subclassing Repr Objects

The use of dynamic dispatching Repr.repri() allows subclasses &tepr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

3.21. repr — Alternate repr() implementation 57

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in ['<stdin>’, '<stdout>’, '<stderr>']:
return obj.name
else:
return ‘obj*

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>’

3.22 new — Creation of runtime internal objects

Thenew module allows an interface to the interpreter object creation functions. This is for use primarily in marshal-
type functions, when a new object needs to be created “magically” and not by using the regular creation functions.
This module provides a low-level interface to the interpreter, so care must be exercised when using this module.

Thenew module defines the following functions:

instance (class, dic}
This function creates an instance @ésswith dictionarydict without calling the__init __() constructor.
Note that there are no guarantees that the object will be in a consistent state.

instancemethod (function, instance, clays
This function will return a method object, bounditstance or unbound ifinstanceis None. functionmust be
callable, andnstancemust be an instance objectipbne.

function (code, gIobaIE, name{, argdefs]])
Returns a (Python) function with the given code and globalsaifieis given, it must be a string d&fone. Ifitis
a string, the function will have the given name, otherwise the function name will be takedieeno _name.
If argdefsis given, it must be a tuple and will be used to determine the default values of parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Inotab
This function is an interface to tHeyCode _New() C function.

module (namg
This function returns a new module object with nanane namemust be a string.

classobj (name, baseclasses, gict
This function returns a new class object, with namaeng derived frombaseclasse@vhich should be a tuple of
classes) and with namespatiet.

3.23 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific modules
would place import site ' somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head partsjsipesfix and

58 Chapter 3. Python Runtime Services

sys.exec _prefix ;empty heads are skipped. For the tail part, it uses the empty string (on Macintosh or Windows)
or it uses first lib/python2.0/site-packages’ and then lib/site-python’ (on UNIx). For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, addgs@ath , and also inspects the path for
configuration files.

A path configuration file is a file whose name has the fopackagepth’; its contents are additional items (one per
line) to be added tgys.path . Non-existing items are never addedstgs.path , but no check is made that the
item refers to a directory (rather than a file). No item is addesytopath more than once. Blank lines and lines
beginning with# are skipped.

For example, supposgys.prefix andsys.exec _prefix are setto/usr/local’. The Python 2.0 library is then
installed in Yusr/local/lib/python2.0’ (where only the first three characters ®fs.version are used to form the
installation path name). Suppose this has a subdirectasylbcal/lib/python2.0/site-packages’ with three subsubdi-
rectories, foo’, bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume foo.pth’ contains
the following:

foo package configuration

foo
bar
bletch

and ar.pth’ contains:

bar package configuration

bar

Then the following directories are addedsys.path , in this order:

lusr/local/lib/python1.5/site-packages/bar
Jusr/localllib/python1.5/site-packages/foo

Note that bletch’ is omitted because it doesn't exist; theat’ directory precedes thddo’ directory becausebar.pth’
comes alphabetically beforéb.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration
file.

After these path manipulations, an attempt is made to import a module rateedstomize , which can perform
arbitrary site-specific customizations. If this import fails withlarportError ~ exception, it is silently ignored.

Note that for some non-MWix systemssys.prefix andsys.exec _prefix are empty, and the path manipula-
tions are skipped; however the importsifecustomize is still attempted.

3.24 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the $PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

3.24. user — User-specific configuration hook 59

import user

Theuser module looks for a file.pythonrc.py’ in the user’s home directory and if it can be opened, executes it (using
execfile()) in its own (i.e. the moduleser ’s) global namespace. Errors during this phase are not caught; that's
up to the program that imports thuser module, if it wishes. The home directory is assumed to be named by the
$HOME environment variable; if this is not set, the current directory is used.

The user’s ‘pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in ygythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in thpythonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variabter.spam _verbose , as follows:

import user
try:

verbose = user.spam_verbose # user's verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shaubdimport this module; a user can easily break into a program by
placing arbitrary code in thegythonrc.py’ file.

Modules for general use shoubdtimport this module; it may interfere with the operation of the importing program.
See Also:

Modulesite (section 3.23):
site-wide customization mechanism

3.25 __ Dbuiltin ___ — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.chuiltin -~ __.open is the full name
for the built-in functionopen() . See section 2.3, “Built-in Functions.”

3.26 __main __ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes — com-
mands read either from standard input, from a script file, or from an interactive prompt. It is this environment in which
the idiomatic “conditional script” stanza causes a script to run:

if _name__ == "__main__"
main()

60 Chapter 3. Python Runtime Services

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.
re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.
fpformat General floating point formatting functions.
StringlO Read and write strings as if they were files.
cStringlO Faster version aBtringlO , but not subclassable.
codecs Encode and decode data and streams.
unicodedata Access the Unicode Database.
4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions. See the
modulere for string functions based on regular expressions.

The constants defined in this module are are:
digits
The string0123456789’

hexdigits
The string'0123456789abcdefABCDEF

letters
The concatenation of the stringavercase anduppercase described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
"abcdefghijkimnopqgrstuvwxyz’ . Do not change its definition — the effect on the routinpper()
andswapcase() is undefined.

octdigits
The string01234567’

punctuation

String of Ascii characters which are considered punctuation characters i€tlusale.

printable
String of characters which are considered printable. This is a combinatiigits , letters , punctua-
tion , andwhitespace

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the string

61

"ABCDEFGHIJKLMNOPQRSTUVWXYDo not change its definition — the effect on the routifmser()
andswapcase() is undefined.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
strip() andsplit() is undefined.

Many of the functions provided by this module are also defined as methods of string and Unicode objects; see “String
Methods” (section 2.1.5) for more information on those. The functions defined in this module are:

atof (s)
Deprecated since release 2.Qse thefloat() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sigr-'('or ‘-). Note that this behaves identical to the built-in function
float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi (s[, basd)
Deprecated since release 2.Qse theint() built-in function.

Convert strings to an integer in the givebbase The string must consist of one or more digits, optionally
preceded by a sign{' or ‘-). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the sig@x’ ‘or ‘0X' means 16, 0’ means 8, anything else
means 10. Ibaseis 16, a leading0x’ or ‘ 0X’ is always accepted, though not required. This behaves identically
to the built-in functionint() when passed a string. (Also note: for a more flexible interpretation of numeric
literals, use the built-in functioaval() .)

atol (s[, basé)
Deprecated since release 2.Q@se thelong() built-in function.

Convert strings to a long integer in the givebase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘-). The baseargument has the same meaning asatoi() . A trailing ‘I "or ‘L’

is not allowed, except if the base is 0. Note that when invoked withaséor with baseset to 10, this behaves
identical to the built-in functiomong() when passed a string.

capitalize ('word)
Capitalize the first character of the argument.

capwords (9
Split the argument into words usirgplit() , capitalize each word usingapitalize() , and join the
capitalized words usin@in() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

expandtabs (s[, tabsize])
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sut[, starl{,end]])
Return the lowest index iswhere the substringubis found such thasubis wholly contained irg start end .
Return-1 on failure. Defaults fostartandendand interpretation of negative values is the same as for slices.

rfind (s, suk{, starl{, end]])
Like find() but find the highest index.

index (s, suki, starl[, end]])
Like find() but raiseValueError ~ when the substring is not found.

62 Chapter 4. String Services

rindex (s, suk{, starl[, end]])
Like rfind() but raiseValueError when the substring is not found.

count (s, suk[, starl{, end]])
Return the number of (non-overlapping) occurrences of substtib@ string g start end . Defaults forstart
andendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy o§, but with upper case letters converted to lower case.

maketrans (from, to
Return a translation table suitable for passingramslate() or regex.compile() , that will map each
character irfrominto the character at the same positiotanfrom andto must have the same length.

Warning: don't use strings derived frohowercase anduppercase as arguments; in some locales, these
don’t have the same length. For case conversions, alwayswee() andupper()

split (s[, se;{, maxsplit]])
Return a list of the words of the strirgy If the optional second argumesépis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and nadtlone, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string.
The optional third argumemaxsplitdefaults to O. If it is nonzero, at mostaxsplithumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have ahenxcstit-1

elements).

splitfields (s[, se;{, maxspliﬂ])
This function behaves identically split() . (In the pastsplit() was only used with one argument, while
splitfields() was only used with two arguments.)

join (word{, sep])
Concatenate a list or tuple of words with intervening occurrencegpfThe default value fosepis a single
space character. It is always true thatting.join(string.split(s, sep, sep’equalss.

joinfields (words[, sep])
This function behaves identical foin() . (In the pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.)

Istrip (9
Return a copy of but without leading whitespace characters.

rstrip (9
Return a copy o8 but without trailing whitespace characters.

strip (9
Return a copy of without leading or trailing whitespace.

swapcase (9)
Return a copy o§, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechari)
Delete all characters frommthat are indeletechargif present), and then translate the characters usihip
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper ()
Return a copy o§, but with lower case letters converted to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leastidth characters wide, created by padding the stemgth spaces until the given width on

4.1. string — Common string operations 63

the right, left or both sides. The string is never truncated.

zfill (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, nev[, maxsplit])
Return a copy of stringtr with all occurrences of substringld replaced bynew If the optional argument
maxsplitis given, the firstmaxsplitoccurrences are replaced.

This module is implemented in Python. Much of its functionality has been reimplemented in the built-in module
strop . However, you shouldeverimport the latter module directly. Whestring discovers thastrop exists, it
transparently replaces parts of itself with the implementation fstnop . After initialization, there isno overhead

in usingstring instead ofstrop

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte usifgitirebemotation. Both patterns and
strings to be searched can be Unicode strings as well as 8-bit stringse Thedule is always available.

Regular expressions use the backslash charas&tgrt@ indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have td\Write as the pattern

string, because the regular expression musi\be, ‘and each backslash must be expressed\asihside a regular

Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with ™. So r"\n" is a two-character string containing’‘and ‘n’, while

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

Implementation note: There module has two distinct implementationsre is the default implementation and
includes Unicode support, but may run into stack limitations for some patterns. Though this will be fixed for a future
release of Python, the older implementation (without Unicode support) is still available m®thraodule.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressidasidiB are both regular expressions,
thenABis also an regular expression. If a stripgnatches A and another striggnatches B, the stringqwill match

AB. Thus, complex expressions can easily be constructed from simpler primitive expressions like the ones described
here. For details of the theory and implementation of regular expressions, consult the Friedl book referenced below,
or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fiiapyv/www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characteés,‘ Bkedr

‘0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so last ; matches the strindast’ . (In the rest of this section, we’'ll write RE’s itthis special style b

usually without quotes, and strings to be matchedsingle quotes’)

Some characters, lik¢ *or ‘ (’, are special. Special characters either stand for classes of ordinary characters, or affect

64 Chapter 4. String Services

how the regular expressions around them are interpreted.

The special characters are:

*?,+?,7??

{m, n}

{m, n}?

(Dot.) In the default mode, this matches any character except a newline. D@IALLflag has been
specified, this matches any character including a newline.

(Caret.) Matches the start of the string, andMULTILINE mode also matches immediately after each
newline.

Matches the end of the string, and MUULTILINE mode also matches before a newliffeo ; matches
both 'foo’ and 'foobar’, while the regular expressiioo$; matches only 'foo’.

Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible.lab* y will match 'a’, 'ab’, or 'a’ followed by any number of 'b’s.

Causes the resulting RE to match 1 or more repetitions of the precedingREwill match 'a’ followed
by any non-zero number of 'b’s; it will not match just 'a’.

Causes the resulting RE to match 0 or 1 repetitions of the precedindaBRE.will match either 'a’ or
‘ab’.

The *’, *+', and *?’ qualifiers are allgreedy they match as much text as possible. Sometimes this
behaviour isn't desired; if the RE.*> | is matched againsgH1>title</H1>’ , it will match the
entire string, and not juskH1>' . Adding ‘?’ after the qualifier makes it perform the matchrion-
greedyor minimal fashion; affew characters as possible will be matched. Usiig | in the previous
expression will match ongH1>" .

Causes the resulting RE to match fremto n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For examfd€3,5} will match from 3 to 5 &’ characters. Omitting
specifies an infinite upper bound; you can’t omit

Causes the resulting RE to match framto n repetitions of the preceding RE, attempting to match as
fewrepetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character strintpaaaaa’ , a{3,5} ;will match 5 ‘a’ characters, whiléa{3,5}? ;will only match

3 characters.

Either escapes special characters (permitting you to match charactefs Jike'; and so forth), or signals
a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn't recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand,
so it's highly recommended that you use raw strings for all but the simplest expressions.

Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them by.aSpecial characters are not active
inside sets. For exampléakm$] ; will match any of the charactera® ‘k’, ‘m, or ‘$’; Ta-z] | will

match any lowercase letter, afadzA-Z0-9] matches any letter or digit. Character classes sutl as

or\S (defined below) are also acceptable inside a range. If you want to inclideoaa ‘- ' inside a

set, precede it with a backslash, or place it as the first character. The galterwill match’]" , for
example.

You can match the characters not within a range@yplementinghe set. This is indicated by including
a "’ as the first character of the sef;’‘elsewhere will simply match the ° character. For example,
T'5] ;will match any character excef@"

4.2. re — Regular expression operations 65

(..)

..)

(?iLmsux)

(?:...)

A|B, where A and B can be arbitrary RESs, creates a regular expression that will match either A or B.
An arbitrary number of REs can be separated by fhén' this way. This can be used inside groups (see
below) as well. REs separated Ry are tried from left to right, and the first one that allows the complete
pattern to match is considered the accepted branch. This meansAlmtithesB will never be tested,

even if it would produce a longer overall match. In other words, tHeoperator is never greedy. To
match a literal [’, use\| ;, or enclose it inside a character class, af{jin ..

Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the\ numberspecial sequence, described below. To match the litefatsr“) ’, use\(; or

\) , or enclose them inside a character cld¢k:[)] .

This is an extension notation (2 *following a ‘(' is not meaningful otherwise). The first character after

the 2’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group(?P< name-...) is the only exception to this rule. Following are the currently
supported extensions.

(One or more letters from the set’; ‘L', ‘m, ‘s’, ‘u’, ‘x’.) The group matches the empty string;
the letters set the corresponding flagsl(,re.L ,re.M ,re.S ,re.U ,re.X) for the entire regular
expression. This is useful if you wish to include the flags as part of the regular expression, instead of
passing dlag argument to theompile() function.

Note that thé(?x) | flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the gramotbe retrieved after performing a match or referenced
later in the pattern.

(?P<name-...) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-

bolic group namename Group names must be valid Python identifiers. A symbolic group is also a
numbered group, just as if the group were not named. So the group named 'id’ in the example above can
also be referenced as the numbered group 1.

For example, if the pattern i§?P<id>[a-zA-Z _]\w*) |, the group can be referenced by its name
in arguments to methods of match objects, sucmagoup(’id’) or m.end(’id") , and also by
name in pattern text (e.d?P=id)) and replacement text (e.@g<id>).

(?P=namg Matches whatever text was matched by the earlier group naaed

(?#...)
(?=..)
(?1...)
(?<:)
(?<!..)

A comment; the contents of the parentheses are simply ignored.

Matchesifl... ;matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For examplellsaac (?=Asimov) ;will match’lsaac ' only if it's followed by 'AsimoVv’

Matches if'... | doesn’t match next. This is a negative lookahead assertion. For exaisphg
(?'Asimov) jwill match’lsaac ' only if it's notfollowed by’Asimov’

Matches if the current position in the string is preceded by a match.for, that ends at the current
position. This is called a positive lookbehind asserti@Px=abc)def ;will match ‘abcdef ’, since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern
must only match strings of some fixed length, meaning iat, or 'ab | are allowed, buia* | isn't.

Matches if the current position in the string is not preceded by a matdh.for. This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match
strings of some fixed length.

The special sequences consist\ofand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exarfplenatches the characte’

66

Chapter 4. String Services

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For

\b

\B
\d
\D
\s
\S

\w

\W

\Z
\

example,(.+) \1 ;matchesthe the’ or’55 55 ,butnot'the end’ (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit
of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as the
character with octal valueumber Inside the [’ and ‘]’ of a character class, all numeric escapes are
treated as characters.

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.
Inside a character rang&h | represents the backspace character, for compatibility with Python'’s string
literals.

Matches the empty string, but only when ifist at the beginning or end of a word.
Matches any decimal digit; this is equivalent to the 8] .

Matches any non-digit character; this is equivalent to th €8] .

Matches any whitespace character; this is equivalent to the s&t\r\fiv] X
Matches any non-whitespace character; this is equivalent to ti{e $8n\r\fiv] X

When theLOCALEand UNICODEflags are not specified, matches any alphanumeric character; this is
equivalent to the sefa-zA-Z0-9 _],. With LOCALE it will match the set[0-9 _], plus whatever
characters are defined as letters for the current localdNICODEs set, this will match the characters
T0-9 _],plus whatever is classified as alphanumeric in the Unicode character properties database.

When theLOCALEandUNICODHflags are not specified, matches any non-alphanumeric character; this
is equivalent to the s€f'a-zA-Z0-9 _],. With LOCALE it will match any character not in the set

T0-9 _],, and not defined as a letter for the current localdJNICODEis set, this will match anything

other than[0-9 _],and characters marked at alphanumeric in the Unicode character properties database.

Matches only at the end of the string.

Matches a literal backslash.

4.2.2 Matching vs. Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are accustomed
to Perl's semantics, the search operation is what you're looking for. Sexe#iieh() function and corresponding
method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning withi * matches only at the start

of the string, or iNMULTILINE mode also immediately following a newline. The “match” operation succeeds only
if the pattern matches at the start of the string regardless of mode, or at the starting position given by thepmational
argument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile(""a").search("ba", 1) # fails; 'a’ not at start
re.compile(""a").search("\na", 1) # fails; 'a’ not at start

re.compile(""a", re.M).search(\na", 1) # succeeds
re.compile("a", re.M).search("ba", 1) # fails; no preceding \n

4.2. re — Regular expression operations 67

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile (patterr{, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifiggs value. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version usingompile() is more efficient when the expression will be used several times in a single
program.

|

IGNORECASE
Perform case-insensitive matching; expressions ikeZ] ; will match lowercase letters, too. This is not
affected by the current locale.

L
LOCALE
Make \w, \W, \b ;, and\B, dependent on the current locale.
M
MULTILINE
When specified, the pattern character matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chara®ematches at the end of the string and at
the end of each line (immediately preceding each newline). By defauthatches only at the beginning of the
string, and $’ only at the end of the string and immediately before the newline (if any) at the end of the string.
S
DOTALL
Make the ! ’ special character match any character at all, including a newline; without this.flagilt match
anythingexcepta newline.
U
UNICODE
Make \w, "W, \b ;, and\B, dependent on the Unicode character properties database. New in version 2.0.
X
VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line gniaitisea *

in a character class or preceded by an unescaped backslash, all characters from the leftm&5sttsocigh

the end of the line are ignored.

search (pattern, string{, flags])
Scan througlstring looking for a location where the regular expresgiatternproduces a match, and return a
correspondinglatchObject instance. Returione if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

68 Chapter 4. String Services

match (pattern, string[, flags])
If zero or more characters at the beginningting match the regular expressipattern return a corresponding
MatchObject instance. ReturiNone if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywheregtring, usesearch() instead.

split (pattern, string{, maxsplit = 0])
Split string by the occurrences gattern If capturing parentheses are usegattern then the text of all groups
in the pattern are also returned as part of the resulting lishalfsplitis nonzero, at moshaxsplitsplits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 releasepaxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(\W+', 'Words, words, words.")
[Words', 'words’, 'words’, "]

>>> re.splitC(\W+)", 'Words, words, words.")
[Words', ’, ', 'words’, ’, ’, 'words’, ", "]
>>> re.split(\W+', 'Words, words, words.’, 1)
[Words’, 'words, words.]

This function combines and extends the functionality of theefgub.split() andregsub.splitx()

findall (pattern, string
Return a list of all non-overlapping matchespatternin string. If one or more groups are present in the pattern,
return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are
included in the result. New in version 1.5.2.

sub (pattern, repl, strinﬁ, count = 0])
Return the string obtained by replacing the leftmost non-overlapping occurrenpasteiin string by the
replacementepl. If the pattern isn’t foundstring is returned unchangedepl can be a string or a function; if a
function, it is called for every non-overlapping occurrencgattern The function takes a single match object
argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == ’-": return
else: return '~
>>> re.sub(’-{1,2}, dashrepl, 'pro----gram-files’)
‘pro--gram files’

[

The pattern may be a string or a regex object; if you need to specify regular expression flags, you must use
a regex object, or use embedded modifiers in a pattern; suh(“(?i)b+", "x", "bbbb BBBB") '
returns’x x’

The optional argumerdountis the maximum number of pattern occurrences to be replameitmust be a
non-negative integer, and the default value of 0 means to replace all occurrences.

Empty matches for the pattern are replaced only when not adjacent to a previous matab('sd’; -,

‘abc’) ' returns’-a-b-c-’

If replis a string, any backslash escapes in it are processed. That'iss tonverted to a single newline charac-
ter, \r 'is converted to a linefeed, and so forth. Unknown escapes sudh aare left alone. Backreferences,
such as\6 ', are replaced with the substring matched by group 6 in the pattern.

In addition to character escapes and backreferences as described &pavame> ' will use the substring
matched by the group namedame’, as defined by th§?P<name>...) | syntax. \g<number> ’ uses the
corresponding group numbeig<2> ' is therefore equivalent to\2 ’, but isn’t ambiguous in a replacement
such as\g<2>0 . ‘\20 " would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal charactei0".

subn (pattern, repl, strini, count = O])
Perform the same operationsigh() , but return a tuplé new_string, number of_subs madg .

4.2. re — Regular expression operations 69

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. It is never an error if a
string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

search (string[, pos[, endpoﬁ])
Scan througtstring looking for a location where this regular expression produces a match, and return a corre-
spondingMatchObject instance. Returbone if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optionaposandendpogarameters have the same meaning as fomateh() method.
match (string[, pos[, endpog])
If zero or more characters at the beginningstifing match this regular expression, return a corresponding

MatchObject instance. Returbone if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

The optional second paramefesgives an index in the string where the search is to start; it defaults This
is not completely equivalent to slicing the string; thie pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parametendpodimits how far the string will be searched; it will be as if the stringeisdpos
characters long, so only the characters figmsto endposwill be searched for a match.

split (string[, maxsplit = O])
Identical to thesplit() function, using the compiled pattern.

findall ~ ('string)
Identical to thefindall() function, using the compiled pattern.

sub (repl, string{, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string{, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the regex object was compil@df oo flags were provided.

groupindex
A dictionary mapping any symbolic group names defined(®l< id>) | to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the regex object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

70 Chapter 4. String Services

expand (templatg
Return the string obtained by doing backslash substitution on the templatetsiriptate as done by theub()
method. Escapes such as ‘ are converted to the appropriate characters, and numeric backreferéices (*
‘\2 ') and named backreference$g&l> ’, ‘\g<name>) are replaced by the contents of the corresponding

group.

group ([groupl,])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if there

are multiple arguments, the result is a tuple with one item per argument. Without argugrenfsl defaults

to zero (i.e. the whole match is returned). IfgjeoupN argument is zero, the corresponding return value is

the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
anindexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result il . If a group is contained in a part of the pattern that matched multiple times, the last
match is returned.

If the regular expression uses tffgP< name»...) | syntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattetex&rror
exception is raised.

A moderately complicated example:

m = re.match(r"(?P<int>\d+)\.(\d*)", '3.14’)

After performing this matchm.group(1) is’'3’ , asism.group(’int’) , andm.group(2) is’'14’

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The defaultargument is used for groups that did not participate in the match; it defauMsrte. (Incompat-
ibility note: in the original Python 1.5 release, if the tuple was one element long, a string would be returned
instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

groupdict ([default])
Return a dictionary containing all teamedsubgroups of the match, keyed by the subgroup namedéfailt
argument is used for groups that did not participate in the match; it defalisrte.

start ([group])

end ([group])
Return the indices of the start and end of the substring matchedooys group defaults to zero (meaning the
whole matched substring). Retwh if groupexists but did not contribute to the match. For a match olject
and a group that did contribute to the match, the substring matched by ggdeguivalent tan.group(g))
is

m.string[m.start(g):m.end(g)]

Note thatm.start(group) will equalm.end(group) if groupmatched a null string. For example, after=
re.search(’b(c?)’, 'cba’) , m.start(0) is 1, mend(0) is 2, m.start(1) andm.end(1)
are both 2, andn.start(2) raises arindexError exception.

span ([group])
ForMatchObject m, return the 2-tuplé m.start(group, m.end(group) . Note that ifgroupdid not

contribute to the match, this(sl, -1) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to tleearch() ormatch() function. This is the index into the string at
which the regex engine started looking for a match.

endpos

The value ofendposwhich was passed to tteearch() or match() function. This is the index into the

4.2. re — Regular expression operations 71

string beyond which the regex engine will not go.

re
The regular expression object whasatch() orsearch() method produced thiglatchObject instance.
string
The string passed tmatch() or search()
See Also:

Jeffrey Friedl,Mastering Regular Expression®’Reilly. The Python material in this book dates from beforerhe
module, but it covers writing good regular expression patterns in great detail.

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python stringsrnitises
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values. This can be used in handling binary data stored in files or from network connections, among other
sources.

The module defines the following exception and functions:

error
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2,..)
Return a string containing the valuey v2, ... packed according to the given format. The arguments must
match the values required by the format exactly.

unpack (fmt, string
Unpack the string (presumably packed fgck(fmt, ...)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (i.e.len(string) must equatalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

Format | C Type | Python | Notes
‘X’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B unsigned char integer
‘h’ short integer
‘H unsigned short integer
i int integer
1 unsigned int long QD
1 long integer
‘L unsigned long long
“fr float float
d’ double float
‘s’ charl] string
‘P’ char[] string
‘P void * integer

Notes:

72 Chapter 4. String Services

(1) The 'l ' conversion code will convert to a Python long if thar@ is the same size as al@nhg , which is typical
on most modern systems. If ai@@ is smaller than a ®ng , an Python integer will be created instead.

A format character may be preceded by an integral repeat count; e.g. the formatstringneans exactly the same
as’hhhh’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the 5’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; e.g10s’ means a single 10-byte string, whilDc’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special &&se, means a single, empty string (whilg&c’ means

0 characters).

The ‘p’ format character can be used to encode a Pascal string. The first byte is the length of the stored string, with the
bytes of the string following. If count is given, it is used as the total number of bytes used, including the length byte.
If the string passed in tpack() is too long, the stored representation is truncated. If the string is too short, padding

is used to ensure that exactly enough bytes are used to satisfy the count.

For the 1 " and ‘L’ format characters, the return value is a Python long integer.

For the P’ format character, the return value is a Python integer or long integer, depending on the size needed to hold
a pointer when it has been cast to an integer typeNUAL pointer will always be returned as the Python inte@er

When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha and
Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order | Size and alignment
‘@ native native
= native standard
‘< little-endian standard
> big-endian standard

i network (= big-endian) standard

If the first character is not one of thes@ls assumed.

Native byte order is big-endian or little-endian, depending on the host system (e.g. Motorola and Sun are big-endian;
Intel and DEC are little-endian).

Native size and alignment are determined using the C compdiménf expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is 2 bytes;int andlong are 4 bytes.float anddouble are 32-bit and 64-bit IEEE floating point
numbers, respectively.

Note the difference betwee@ and ‘=": both use native byte order, but the size and alignment of the latter is stan-
dardized.

The form 1’ is available for those poor souls who claim they can’t remember whether network byte order is big-endian
or little-endian.

There is no way to indicate non-native byte order (i.e. force byte-swapping); use the appropriate chdioe ‘of".

The ‘P’ format character is only available for the native byte ordering (selected as the default or withhlyee' order

4.3. struct — Interpret strings as packed binary data 73

character). The byte order character thooses to use little- or big-endian ordering based on the host system. The
struct module does not interpret this as native ordering, sdXHermat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(hhl’, 1, 2, 3)
’\000\0011000\002\000\000\000\003’

>>> unpack(’hhl’, \000\001\000\002\000\000\000\003’)

1, 2, 3)
>>> calcsize('hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero, e.g. the foriiadl’ specifies two pad bytes at the end, assuming longs

are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size and
alignment does not enforce any alignment.

See Also:

Modulearray (section 5.6):
Packed binary storage of homogeneous data.

Modulexdrlib (section 12.9):
Packing and unpacking of XDR data.

4.4 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python.Note: This module is unneeded: everything here could be done vig#teng interpolation operator.

Thefpformat module defines the following functions and an exception:

fix (x,dig9
Formatx as[-]ddd.ddd with digs digits after the point and at least one digit before.dijs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like afigsis an integer.
Return value is a string.

sci (X, dig9
Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit beforedifs <= 0,
one digit is kept and the point is suppressed.
x can be either a real number, or a string that looks like digsis an integer.
Return value is a string.
NotANumber
Exception raised when a string passetix() orsci() asthexparameter does not look like a number. This

is a subclass ofalueError when the standard exceptions are strings. The exception value is the improperly
formatted string that caused the exception to be raised.

Example:

74 Chapter 4. String Services

>>> import fpformat
>>> fpformat.fix(1.23, 1)
1.2’

4.5 StringlO — Read and write strings as files

This module implements a file-like clasStringlO , that reads and writes a string buffer (also knownresmory
files). See the description on file objects for operations (section 2.1.7).

stringlo ([buffer])
When aStringlO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, tH&tringlO will start empty.

The following methods o6tringlO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time beforeSkiinglO object'sclose() method is called.

close ()
Free the memory buffer.

4.6 cStringlO — Faster version of StringlO

The modulecStringlO provides an interface similar to that of tlsringlO module. Heavy use dbtrin-
glO.StringlO objects can be made more efficient by using the funciisimglO() from this module instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. Use the origiSainglO module in that case.

The following data objects are provided as well:

InputType
The type object of the objects created by callBtgnglO with a string parameter.

OutputType
The type object of the objects returned by callBtginglO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

4.7 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec lookup process.

It defines the following functions:

register (search_function
Register a codec search function. Search functions are expected to take one argument, the encoding name in
all lower case letters, and return a tuple of functioencoder decoder stream.reader, stream.writer)
taking the following arguments:

encoderand decoder These must be functions or methods which have the same interface a&n-the
code() /decode() methods of Codec instances (see Codec Interface). The functions/methods are expected

4.5. Stringl0O — Read and write strings as files 75

to work in a stateless mode.
stream_readerandstream writer: These have to be factory functions providing the following interface:
factory(stream errors='strict’)

The factory functions must return objects providing the interfaces defined by the base Stasaa8/Nriter
andStreamReader , respectively. Stream codecs can maintain state.

Possible values for errors arsrict’ (raise an exception in case of an encoding erfogplace’ (re-
place malformed data with a suitable replacement marker, sué)amd 'ignore’ (ignore malformed data
and continue without further notice).

In case a search function cannot find a given encoding, it should ndtura.

lookup (‘encoding
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no codecs tuple is found, @kupError s raised. Otherwise, the codecs tuple is stored in the
cache and returned to the caller.

To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, moc{e encodini, errors[, buffering]]])
Open an encoded file using the givemode and return a wrapped version providing transparent encod-
ing/decoding.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects for
most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

encodingspecifies the encoding which is to be used for the the file.

errors may be given to define the error handling. It defaultstact’ which causes ®alueError to be
raised in case an encoding error occurs.

bufferinghas the same meaning as for the builspen() function. It defaults to line buffered.

EncodedFile (file, inpul[, outpu{, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the giyaurt encoding and then written to
the original file as strings using tlmutputencoding. The intermediate encoding will usually be Unicode but
depends on the specified codecs.

If outputis not given, it defaults tinput

errors may be given to define the error handling. It defaultsstdct’ , Which cause¥alueError to be
raised in case an encoding error occurs.

The module also provides the following constants which are useful for reading and writing to platform dependent files:

BOM

BOMBE

BOMLE

BOM32BE

BOM32LE

BOM64 BE

BOM64 LE
These constants define the byte order marks (BOM) used in data streams to indicate the byte order used in the
stream or file BOMs eitherBOM BE or BOM LE depending on the platform’s native byte order, while the others
represent big endian(BE suffix) and little endian (" LE’ suffix) byte order using 32-bit and 64-bit encodings.

76 Chapter 4. String Services

47.1 Codec Base Classes

The codecs defines a set of base classes which define the interface and can also be used to easily write you own
codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to imple-
ment the file protocols.

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, #recode() anddecode() methods may implement different error
handling schemes by providing tleerors string argument. The following string values are defined and implemented
by all standard Python codecs:

e 'strict’ RaiseValueError (or a subclass); this is the default.
e ‘ignore’ Ignore the character and continue with the next.

e 'replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPLACE-
MENT CHARACTER for the builtin Unicode codecs.

Codec Objects

TheCodec class defines these methods which also define the function interfaces of the stateless encoder and decoder:
encode (input[, errors])

Encodes the objedput and returns a tuple (output object, length consumed).

errors defines the error handling to apply. It defaultsdtict’ handling.

The method may not store state in fiedec instance. Usé&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

decode (input[, errors])
Decodes the objedtput and returns a tuple (output object, length consumed).

input must be an object which provides thé _getreadbuf buffer slot. Python strings, buffer objects and
memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaultsdwict’ handling.

The method may not store state in tBedec instance. Usé&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

The StreamWriter andStreamReader classes provide generic working interfaces which can be used to imple-
ment new encodings submodules very easily. Semdings.utf _8 for an example on how this is done.

StreamWriter Objects
TheStreamWriter class is a subclass Godec and defines the following methods which every stream writer must
define in order to be compatible to the Python codec registry.

StreamWriter (strean{, errors])
Constructor for é&streamWriter instance.

4.7. codecs — Codec registry and base classes 77

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for writing (binary) data.

The StreamWriter may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are defined:

e’strict’ RaiseValueError (or a subclass); this is the default.
e’'ignore’ Ignore the character and continue with the next.
e'replace’ Replace with a suitable replacement character

write (objec)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusingite€) method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows appending of
new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, tBéreamWriter must also inherit all other methods and attribute from the
underlying stream.

StreamReader Objects

The StreamReader class is a subclass @odec and defines the following methods which every stream reader
must define in order to be compatible to the Python codec registry.

StreamReader (strean{, errors])
Constructor for &streamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are defined:

e’strict’ RaiseValueError (or a subclass); this is the default.
e’'ignore’ Ignore the character and continue with the next.
e'replace’ Replace with a suitable replacement character.
read ([size])
Decodes data from the stream and returns the resulting object.

sizeindicates the approximate maximum number of bytes to read from the stream for decoding purposes. The
decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as much as
possible sizeis intended to prevent having to decode huge files in one step.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within the
definition of the encoding and the given size, e.qg. if optional encoding endings or state markers are available on
the stream, these should be read too.

78 Chapter 4. String Services

readline ([size])
Read one line from the input stream and return the decoded data.

Note: Unlike thereadlines() method, this method inherits the line breaking knowledge from the underlying
stream’sreadline() method — there is currently no support for line breaking using the codec decoder due
to lack of line buffering. Sublcasses should however, if possible, try to implement this method using their own
knowledge of line breaking.

size if given, is passed as size argument to the streagaidline() method.

readlines ([sizehint])
Read all lines available on the input stream and return them as list of lines.

Line breaks are implemented using the codec’s decoder method and are included in the list entries.
sizehint if given, is passed asizeargument to the strean¥ead() method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, tBéreamReader must also inherit all other methods and attribute from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may provide
useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.
The design is such that one can use the factory functions returned lopkug() function to construct the instance.

StreamReaderWriter (stream, Reader, Writer, erroys
Creates &treamReaderWriter instance streammust be a file-like objecReaderandWriter must be fac-
tory functions or classes providing tistreamReader andStreamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfacesStfeamReader and StreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned lopkugp() function to construct the instance.

StreamRecoder (stream, encode, decode, Reader, Writer, ejrors
Creates &treamRecoder instance which implements a two-way conversiencodeanddecodework on
the frontend (the input toead() and output ofwrite()) while Readerand Writer work on the backend
(reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
streammust be a file-like object.

encode decodemust adhere to th€odec interface,Reader Writer must be factory functions or classes pro-
viding objects of the th&treamReader andStreamWriter interface respectively.

4.7. codecs — Codec registry and base classes 79

encodeanddecodeare needed for the frontend translati®@eaderandWriter for the backend translation. The
intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use Unicode as
intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaceStoéamReader andStreamWriter classes. They
inherit all other methods and attribute from the underlying stream.

4.8 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based otthetieData.txt’ file version 3.0.0 which is publically available
from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.0.0 (see
http://www.unicode.org/Public/UNIDATA/UnicodeData.html). It defines the following functions:

decimal (unichr[, default])
Returns the decimal value assigned to the Unicode charantehr as integer. If no such value is defined,
defaultis returned, or, if not giverialueError s raised.

digit (unichr[, default])
Returns the digit value assigned to the Unicode charactiehr as integer. If no such value is definet&fault
is returned, or, if not giveriValueError is raised.

numeric (unichr[, default])
Returns the numeric value assigned to the Unicode chanagiehr as float. If no such value is definedkfault
is returned, or, if not giveriValueError is raised.

category (‘unichr)
Returns the general category assigned to the Unicode chauadtér as string.

bidirectional (‘unichr)
Returns the bidirectional category assigned to the Unicode chauaithir as string. If no such value is defined,
an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode charaitler as integer. Return8 if no
combining class is defined.

mirrored (unichr)
Returns the mirrored property of assigned to the Unicode chanawighr as integer. Returns if the character
has been identified as a “mirrored” character in bidirectional textherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode chanatteras string. An empty
string is returned in case no such mapping is defined.

80 Chapter 4. String Services

CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions. Here’s

an overview:

math
cmath
random
whrandom
bisect
array
ConfigParser
fileinput
calendar
cmd

shlex

Mathematical functionss{n() etc.).

Mathematical functions for complex numbers.

Generate pseudo-random numbers with various common distributions.

Floating point pseudo-random number generator.

Array bisection algorithms for binary searching.

Efficient arrays of uniformly typed numeric values.

Configuration file parser.

Perl-like iteration over lines from multiple input streams, with “save in place” capability.
General functions for working with the calendar, including some emulation of th& dal program.
Build line-oriented command interpreters.

Simple lexical analysis for Nix shell-like languages.

5.1 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name droaittheodule

if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the first

place.

The following functions provided by this module:

acos (X)

Return the arc cosine of

asin (x)

Return the arc sine of

atan (x)

Return the arc tangent &f

atan2 (v, X

Returnatan(y / X).

ceil (X)

Return the ceiling ok as a real.

81

cos (X)
Return the cosine of.

cosh (X)

Return the hyperbolic cosine &f
exp (X)

Returne** x.

fabs (x)
Return the absolute value of the real

floor (x)
Return the floor ok as a real.

fmod (x,y)
Returnfmod(%, V), as defined by the platform C library. Note that the Python expressiéfiy may not
return the same result.

frexp (X)
Return the mantissa and exponenkafs the pai{ m, €). mis a float anckis an integer such that == m *
2** e, If xis zero, returng0.0, 0) , otherwised.5 <= abs(m) < 1.

hypot (x,Y)
Return the Euclidean distancrt(x*x + y*vy).

Idexp (X, i)

Returnx * (2** i) .
log (X)

Return the natural logarithm aof
logl0 (X)

Return the base-10 logarithm xf
modf (X)

Return the fractional and integer partsxoBoth results carry the sign @f The integer part is returned as a real.
pow(X, y)

Returnx** y.
sin (X)

Return the sine aof.
sinh (X)

Return the hyperbolic sine af
sqrt (X)

Return the square root af
tan (X)

Return the tangent of
tanh (x)

Return the hyperbolic tangent »f

Note thatfrexp() andmodf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

The module also defines two mathematical constants:

pi
The mathematical constapi

82 Chapter 5. Miscellaneous Services

The mathematical constaat
See Also:

Modulecmath (section 5.2):
Complex number versions of many of these functions.

5.2 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

acos (X)

Return the arc cosine af
acosh (x)

Return the hyperbolic arc cosine xf
asin (x)

Return the arc sine of
asinh (x)

Return the hyperbolic arc sine »f
atan (x)

Return the arc tangent &f
atanh (x)

Return the hyperbolic arc tangentof
cos (x)

Return the cosine of.
cosh (X)

Return the hyperbolic cosine &f
exp (X)

Return the exponential valeg™* x.
log (%)

Return the natural logarithm aof
log10 (x)

Return the base-10 logarithm xf
sin (X)

Return the sine of.
sinh (x)

Return the hyperbolic sine af
sqrt (X)

Return the square root a&f
tan (X)

Return the tangent of
tanh (x)

Return the hyperbolic tangent »f

The module also defines two mathematical constants:

5.2. cmath — Mathematical functions for complex numbers 83

pi
The mathematical constapi, as a real.

The mathematical constaatas a real.

Note that the selection of functions is similar, but not identical, to that in modalén . The reason for having two
modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather havenath.sqrt(-1) raise an exception than return a complex number. Also note that the functions
defined incmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

5.3 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions: on the real line, there are func-
tions to compute normal or Gaussian, lognormal, negative exponential, gamma, and beta distributions. For generating
distribution of angles, the circular uniform and von Mises distributions are available.

Therandom module supports thRandom Number Generatanterface, described in section 5.3.1. This interface
of the module, as well as the distribution-specific functions described below, all use the pseudo-random generator
provided by thevhrandom module.

The following functions are defined to support specific distributions, and all return real values. Function parameters
are named after the corresponding variables in the distribution’s equation, as used in common mathematical practice;
most of these equations can be found in any statistics text. These are expected to become part of the Random Number
Generator interface in a future release.

betavariate (alpha, beta
Beta distribution. Conditions on the parameters @pha > -1 andbeta > -1 . Returned values range
between 0 and 1.

cunifvariate (mean, arg
Circular uniform distributionmeanis the mean angle, aratc is the range of the distribution, centered around
the mean angle. Both values must be expressed in radians, and can range betwepn Randned values
will range betweemean - arc/2 andmean + arc/2 .

expovariate (lambd
Exponential distributionlambdis 1.0 divided by the desired mean. (The parameter would be called “lambda”,
but that is a reserved word in Python.) Returned values will range from 0 to positive infinity.

gammd alpha, beta
Gamma distribution.Notthe gamma function!) Conditions on the parametersaafpka > -1 andbeta > O.

gauss (mu, sigma
Gaussian distributionmu is the mean, andigmais the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate (' mu, sigma
Log normal distribution. If you take the natural logarithm of this distribution, you'll get a normal distribution
with meanmuand standard deviatissigma mucan have any value, arsigmamust be greater than zero.

normalvariate (mu, sigma
Normal distribution.muis the mean, andigmais the standard deviation.

vonmisesvariate (mu, kappa
muis the mean angle, expressed in radians between 0 guda2idkappais the concentration parameter, which
must be greater than or equal to zerokdppais equal to zero, this distribution reduces to a uniform random
angle over the range 0 to @

84 Chapter 5. Miscellaneous Services

paretovariate (alpha
Pareto distributionalphais the shape parameter.

weibullvariate (alpha, beta
Weibull distribution.alphais the scale parameter abdtais the shape parameter.

See Also:

Modulewhrandom (section 5.4):
The standard Python random number generator.

5.3.1 The Random Number Generator Interface

TheRandom Number Generatmterface describes the methods which are available for all random number generators.
This will be enhanced in future releases of Python.

In this release of Python, the modulesidom , whrandom, and instances of thehrandom.whrandom class all
conform to this interface.

choice (seq
Chooses a random element from the non-empty sequsataand returns it.

randint (a, b
Deprecated since release 2.Qserandrange() instead.

Returns a random integdfsuch thab <= N <= h.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

randrange ([start,] stop{, step])
Return a randomly selected element fromange(start, stop step . This is equivalent to
choice(range(start, stop step) . Newinversion 1.5.2.

uniform (a, b)
Returns a random real numbersuch that <= N < b.

5.4 whrandom — Pseudo-random number generator

This module implements a Wichmann-Hill pseudo-random number generator class that is alsontaaratbm .
Instances of thevhrandom class conform to the Random Number Generator interface described in section 5.3.1.
They also offer the following method, specific to the Wichmann-Hill algorithm:

seed ([x, Y, z])
Initializes the random number generator from the integegsandz. When the module is first imported, the
random number is initialized using values derived from the current time, Jf andz are either omitted or
0, the seed will be computed from the current system time. If one or two of the paramet@rshartenot all
three, the zero values are replaced by ones. This causes some apparently different seeds to be equal, with the
corresponding result on the pseudo-random series produced by the generator.

choice (seq
Chooses a random element from the non-empty sequssgand returns it.

randint (a, b)
Returns a random integst such thab<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

5.4. whrandom — Pseudo-random number generator 85

seed (X, Y, 2
Initializes the random number generator from the integessandz. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (a, b)
Returns a random real numkérsuch that<=N<b.

When imported, thevhrandom module also creates an instance of Wwlgwandom class, and makes the methods of
that instance available at the module level. Therefore one can write Bitrerwhrandom.random() or:

generator = whrandom.whrandom()
N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random numbers.
See Also:

Modulerandom (section 5.3):
Generators for various random distributions and documentation for the Random Number Generator interface.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190.

5.5 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is callbisect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (i.e., the boundary conditions are already right!).

The following functions are provided:

bisect (list, iten], Io[, hi]])
Locate the proper insertion point fdtemin list to maintain sorted order. The parametkrandhi may be
used to specify a subset of the list which should be considered. The return value is suitable for use as the first
parameter tdist.insert()

insort (list, iten{, Io[, hi]])
Insertitemin list in sorted order. This is equivalent tist.insert(bisect.bisect(list, item lo,
hi), item).

5.5.1 Example

Thebisect() function is generally useful for categorizing numeric data. This examplelisest() to look up
a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A, 75..84 is a
‘B’, etc.

86 Chapter 5. Miscellaneous Services

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
return grades[bisect(breakpoints, total)]

>>> grade(66)

cr

>>> map(grade, [33, 99, 77, 44, 12, 88])
[IEI’ 1A1, 1Bl’ IDI’ 1F1, 1Al]

5.6 array — Efficient arrays of numeric values

This module defines a new object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by usipg eode which is a single
character. The following type codes are defined:

Type code | C Type | Minimum size in bytes
'c’ character 1
b’ signed int 1
B’ unsigned int 1
'n signed int 2
'H unsigned int 2
T signed int 2
T unsigned int 2
T signed int 4
L unsigned int 4
'f float 4
o’ double 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed throughtéhesize attribute. The values stored far and’l’ items

will be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the
full range of C’s unsigned (long) integers.

The module defines the following function and type object:

array (typecodé, initializer])
Return a new array whose items are restrictedyipecode and initialized from the optionahitializer value,
which must be a list or a string. The list or string is passed to the new afragitist() orfromstring()
method (see below) to add initial items to the array.

ArrayType
Type object corresponding to the objects returnedtogy()

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

5.6. array — Efficient arrays of numeric values 87

append (X)
Append a new item with valueto the end of the array.

buffer _info ()
Return a tupl€ address length giving the current memory address and the length in bytes of the buffer used
to hold array’s contents. This is occasionally useful when working with low-level (and inherently unsafe) 1/0
interfaces that require memory addresses, such as cextdif operations. The returned numbers are valid
as long as the array exists and no length-changing operations are applied to it.

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other
types of valuesRuntimeError is raised. It is useful when reading data from a file written on a machine with
a different byte order.

count (Xx)
Return the number of occurencesxdh the array.

extend (a)
Append array items frora to the end of the array.

fromfile (f, n)
Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availablezOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else wittead() method won't do.

fromlist (list)
Append items from the list. This is equivalent for x in list: a.append(x) ' exceptthatif thereis a
type error, the array is unchanged.

fromstring (9
Appends items from the string, interpreting the string as an array of machine values (i.e. as if it had been read

from a file using théromfile() method).
index (X)

Return the smallestsuch that is the index of the first occurence »fn the array.
insert (i, X)

Insert a new item with valurin the array before position
pop([i])

Removes the item with the indéxXrom the array and returns it. The optional argument defaults tcso that
by default the last item is removed and returned.

read (f, n)
Deprecated since release 1.5.Use thefromfile() method.

Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availablezOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else wittead() method won't do.

remove (X)
Remove the first occurence wfrom the array.

reverse ()
Reverse the order of the items in the array.

tofile (f)
Write all items (as machine values) to the file object

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()

88 Chapter 5. Miscellaneous Services

Convert the array to an array of machine values and return the string representation (the same sequence of bytes
that would be written to a file by thifile() method.)

write ()
Deprecated since release 1.5.Use thetofile() method.

Write all items (as machine values) to the file object

When an array object is printed or converted to a string, it is representedagg typecode initializer). The

initializer is omitted if the array is empty, otherwise it is a string if tiypecodes 'c’ , otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
reverse quotes'(), so long as tharray() function has been imported usingdm array import array .
Examples:

array('l')

array(’c’, ’hello world’)
array(l', [1, 2, 3, 4, 5)])
array('d’, [1.0, 2.0, 3.14])

See Also:

Modulestruct (section 4.3):
packing and unpacking of heterogeneous binary data

Modulexdrlib (section 12.9):
packing and unpacking of XDR data

The Numeric Python extension (NumPy) defines another array typ&hseumerical Python Manu#&br additional
information (available online dip://ftp-icf.linl.gov/pub/python/numericalpython.pdf). Further information about NumPy
is available atttp://www.python.org/topics/scicomp/numpy.html.

5.7 ConfigParser = — Configuration file parser

This module defines the cla€onfigParser . TheConfigParser class implements a basic configuration file
parser language which provides a structure similar to what you would find on Microsoft Windows INI files. You can
use this to write Python programs which can be customized by end users easily.

The configuration file consists of sections, lead bysaction] ' header and followed bynfame: value ’en-

tries, with continuations in the style of RFC 822ame=value ' is also accepted. Note that leading whitespace is
removed from values. The optional values can contain format strings which refer to other values in the same section,
or values in a speciddEFAULTsection. Additional defaults can be provided upon initialization and retrieval. Lines
beginning with #' or *; " are ignored and may be used to provide comments.

For example:

foodir: %(dir)s/whatever
dir=frob

would resolve the%(dir)s ' to the value of tir ’ (‘frob ’ in this case). All reference expansions are done on
demand.

Default values can be specified by passing them intocQbefigParser constructor as a dictionary. Additional
defaults may be passed into thet() method which will override all others.

ConfigParser ([defaultﬁ)
Return a new instance of tli@onfigParser class. Wherefaultsis given, it is initialized into the dictionary

5.7. ConfigParser = — Configuration file parser 89

of intrinsic defaults. They keys must be strings, and the values must be appropriate fé6(Jhe string
interpolation. Note that _name__ is an intrinsic default; its value is the section name, and will override any
value provided irdefaults

NoSectionError
Exception raised when a specified section is not found.

DuplicateSectionError
Exception raised when multiple sections with the same name are foundyad ifsection() is called with
the name of a section that is already present.

NoOptionError
Exception raised when a specified option is not found in the specified section.

InterpolationError
Exception raised when problems occur performing string interpolation.

InterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations exceeds
MAXINTERPOLATION_DEPTH

MissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

ParsingError
Exception raised when errors occur attempting to parse a file.

MAX_INTERPOLATION_DEPTH
The maximum depth for recursive interpolation &mt() when theraw parameter is false. Setting this does
not change the allowed recursion depth.

See Also:

Moduleshlex (section 5.11):
Support for a creating NiX shell-like minilanguages which can be used as an alternate format for application
configuration files.

5.7.1 ConfigParser Objects

ConfigParser instances have the following methods:

defaults ()
Return a dictionary containing the instance-wide defaults.

sections ()
Return a list of the sections availabREFAULTIs not included in the list.

add _section (sectior)
Add a section nameskectionto the instance. If a section by the given name already exXisiglicateSec-
tionError is raised.

has _section (sectior)
Indicates whether the named section is present in the configuratiodHRAUL Tsection is not acknowledged.

options (section
Returns a list of options available in the specifsettion

has _option (section, optioh
If the given section exists, and contains the given option. return 1; otherwise return 0. (New in 1.6)

read (filename}
Read and parse a list of filenamesfilénamess a string or Unicode string, it is treated as a single filename.

20 Chapter 5. Miscellaneous Services

readfp (fp[, filenamd)
Read and parse configuration data from the file or file-like objeigt fonly thereadline() method is used).
If filenameis omitted andp has aname attribute, that is used fdilename the default is «???>".

get (section, optio[m, raw[, vars]])
Get anoptionvalue for the providedection All the ‘% interpolations are expanded in the return values, based
on the defaults passed into the constructor, as well as the optosgrovided, unless theaw argument is true.

getint (section, optioh
A convenience method which coerces tpgionin the specifiedectionto an integer.

getfloat (' section, optioh
A convenience method which coerces dpionin the specifiegectionto a floating point number.

getboolean (section, optioh
A convenience method which coerces tiionin the specifiedsectionto a boolean value. Note that the only
accepted values for the option a8 and ‘1’, any others will raise/alueError

set (' section, option, valye
If the given section exists, set the given option to the specified value; otherwisdla8setionError . (New
in 1.6)
write (fileobjec)
Write a representation of the configuration to the specified file object. This representation can be parsed by a
futureread() call. (New in 1.6)

remove _option (section, optioh
Remove the specifieabtionfrom the specifiedection If the section does not exist, rais®SectionError
If the option existed to be removed, return 1; otherwise return 0. (New in 1.6)

remove _section (sectior)
Remove the specifiesectionfrom the configuration. If the section in fact existed, return 1. Otherwise return 0.

5.8 fileinput — lterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.

The typical use is:

import fileinput
for line in fileinput.input():
process(line)

This iterates over the lines of all files listed sys.argv[1:] , defaulting tosys.stdin if the list is empty. If
a filename is-’* , itis also replaced bgys.stdin . To specify an alternative list of filenames, pass it as the first
argument tanput() . A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading EXteror s raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for interactive
use, or if it has been explicitly reset (e.g. usByg.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable at all
is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including the trailing
newline when it is present.

The following function is the primary interface of this module:

5.8. fileinput — lterate over lines from multiple input streams 91

input ([fileq, inplacd, backup]]])
Create an instance of thdlelnput class. The instance will be used as global state for the functions of this
module, and is also returned to use during iteration.

The following functions use the global state createdrput() ; if there is no active statdRuntimeError is
raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, Keinms

lineno ()
Return the cumulative line number of the line that has just been read. Before the first line has been read, returns
0. After the last line of the last file has been read, returns the line number of that line.

filelineno 0
Return the line number in the current file. Before the first line has been read, rétukfter the last line of the
last file has been read, returns the line number of that line within the file.

isfirstline 0
Returns true the line just read is the first line of its file, otherwise returns false.

isstdin ()
Returns true if the last line was read frays.stdin , otherwise returns false.

nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not read
from the file will not count towards the cumulative line count. The filename is not changed until after the first
line of the next file has been read. Before the first line has been read, this function has no effect; it cannot be
used to skip the first file. After the last line of the last file has been read, this function has no effect.

close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

Filelnput ([files[, inplace[, backud]])
ClassFilelnput is the implementation; its methoddename() , lineno() , fileline() , Is-
firstline() , isstdin() , nextfile() and close() correspond to the functions of the same
name in the module. In addition it hasreadline() method which returns the next input line, and a
__getitem __() method which implements the sequence behavior. The sequence must be accessed in strictly
sequential order; random access asalline() cannot be mixed.

Optional in-place filtering: if the keyword argumentplace=1 is passed tanput() or to theFilelnput con-

structor, the file is moved to a backup file and standard output is directed to the input file. This makes it possible to
write a filter that rewrites its input file in place. If the keyword argumesitkup='.<some extension>’ is also

given, it specifies the extension for the backup file, and the backup file remains around; by default, the extension is
"bak’ anditis deleted when the output file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

5.9 calendar — General calendar-related functions

This module allows you to output calendars like thaild cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Usetfirstweekday() to set the first day of the week to Sunday (6) or to any other
weekday.

setfirstweekday (weekday
Sets the weekday)(is Monday,6 is Sunday) to start each week. The valVeSNDAYTUESDAYWEDNESDAY

92 Chapter 5. Miscellaneous Services

THURSDAYFRIDAY, SATURDAYandSUNDAYare provided for convenience. For example, to set the first
weekday to Sunday:

import calendar
calendar.setfirstweekday(calendar. SUNDAY)

firstweekday ()
Returns the current setting for the weekday to start each week.

isleap (yean
Returns true ifyearis a leap year.

leapdays (y1,y9
Returns the number of leap years in the rande.[.y2).

weekday (year, month, day
Returns the day of the weeR (s Monday) foryear(1970—...),month(1-12), day(1-31).

monthrange (year, month
Returns weekday of first day of the month and number of days in month, for the spgefiemhdmonth

monthcalendar (year, montf
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless setfirgtweekday()

prmonth (theyear, themon{h W[, I]])
Prints a month’s calendar as returnedrbgnth() .

month (theyear, themon{h w[, I]])
Returns a month’s calendar in a multi-line string.wls provided, it specifies the width of the date columns,
which are centered. Ifis given, it specifies the number of lines that each week will use. Depends on the first
weekday as set bgetfirstweekday()

prcal (year[, W[, I[c]]])

Prints the calendar for an entire year as returnedddgndar()

calendar (yeaf, w[,1[c]]])

Returns a 3-column calendar for an entire year as a multi-line string. Optional parameteandc are for
date column width, lines per week, and number of spaces between month columns, respectively. Depends on
the first weekday as set Isgtfirstweekday()

timegm (tuple)
An unrelated but handy function that takes a time tuple such as returned lgyntivae() function in the

time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the POSIX
encoding. In facttime.gmtime() andtimegm() are each others’ inverse.

See Also:

Moduletime (section 6.9):
Low-level time related functions.

5.10 cmd— Support for line-oriented command interpreters

The Cmdclass provides a simple framework for writing line-oriented command interpreters. These are often useful
for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated interface.

cmd)
A Cmdinstance or subclass instance is a line-oriented interpreter framework. There is no good reason to instan-
tiate Cmditself; rather, it's useful as a superclass of an interpreter class you define yourself in order to inherit

5.10. cmd— Support for line-oriented command interpreters 93

Cmds methods and encapsulate action methods.

5.10.1 Cmd Objects

A Cmdinstance has the following methods:

cmdloop ([intro])
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrida® the
class member).

If thereadline module is loaded, input will automatically inhebiashlike history-list editing (e.gCtrl-P
scrolls back to the last comman@irl-N forward to the next oneCtrl-F moves the cursor to the right
non-destructivelyCtrl-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the sttEQF’ .

An interpreter instance will recognize a command nafoe ° if and only if it has a methodlo _foo() . As
a special case, a line beginning with the charac®éris dispatched to the methadb _help() . As another
special case, a line beginning with the charadtéris dispatched to the methatb _shell (if such a method
is defined).

All subclasses o€mdinherit a predefinedo _help . This method, called with an argumegdr , invokes the
corresponding metholdelp _bar() . With no argumentdo_help() lists all available help topics (that is,
all commands with correspondimglp _*() methods), and also lists any undocumented commands.

onecmd(str)
Interpret the argument as though it had been typed in in response to the prompt.

emptyline ()
Method called when an empty line is entered in response to the prompt. If this method is not overridden, it
repeats the last nonempty command entered.

default (line)
Method called on an input line when the command prefix is not recognized. If this method is not overridden, it
prints an error message and returns.

precmd ()
Hook method executed just before the input prompt is issued. This method is a sDuhdinit exists to be
overridden by subclasses.

postcmd ()
Hook method executed just after a command dispatch is finished. This method is a Gl ihexists to be
overridden by subclasses.

preloop ()
Hook method executed once whemdloop() is called. This method is a stub @md it exists to be overrid-

den by subclasses.

postloop ()
Hook method executed once whemdloop() is about to return. This method is a stubdmd it exists to be
overridden by subclasses.

Instances o€mdsubclasses have some public instance variables:

prompt
The prompt issued to solicit input.

identchars
The string of characters accepted for the command prefix.

94 Chapter 5. Miscellaneous Services

lastcmd
The last nonempty command prefix seen.

intro
A string to issue as an intro or banner. May be overridden by givingitidloop() method an argument.

doc _header
The header to issue if the help output has a section for documented commands.

misc _header
The header to issue if the help output has a section for miscellaneous help topics (that is, thehe ar)
methods without correspondimtp _*() methods).

undoc _header
The header to issue if the help output has a section for undocumented commands (that is, theré (re
methods without correspondimglp _*() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line is drawn. It
defaults to £’.

5.11 shlex — Simple lexical analysis

New in version 1.5.2.

Theshlex class makes it easy to write lexical analyzers for simple syntaxes resembling that ofithestell. This
will often be useful for writing minilanguages, e.g. in run control files for Python applications.

shlex ([strean[, file]])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if present,
specifies where to read characters from. It must be a file- or stream-like objecewilf) andreadline()
methods. If no argument is given, input will be taken fregs.stdin . The second optional argument is a
filename string, which sets the initial value of tinéile member. If the stream argument is omitted or equal
tosys.stdin , this second argument defaults to “stdin”.

See Also:

Module ConfigParser (section 5.7):
Parser for configuration files similar to the Windowisi® files.

5.11.1 shlex Objects

A shlex instance has the following methods:

get _token ()
Return a token. If tokens have been stacked ugimh _token() , pop a token off the stack. Otherwise, read
one from the input stream. If reading encounters an immediate end-of-file, an empty string is returned.

push _token (str)
Push the argument onto the token stack.

read _token ()
Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not ordinarily a
useful entry point, and is documented here only for the sake of completeness.)

sourcehook (filenamé
Whenshlex detects a source request (seeirce below) this method is given the following token as argu-
ment, and expected to return a tuple consisting of a filename and an open file-like object.

5.11. shlex — Simple lexical analysis 95

Normally, this method first strips any quotes off the argument. If the result is an absolute pathname, or there
was no previous source request in effect, or the previous source was a streasygssiglin), the result is

left alone. Otherwise, if the result is a relative pathname, the directory part of the name of the file immediately
before it on the source inclusion stack is prepended (this behavior is like the way the C preprocessor handles
#include "file.h"). The result of the manipulations is treated as a filename, and returned as the first
component of the tuple, witbpen() called on it to yield the second component.

This hook is exposed so that you can use it to implement directory search paths, addition of file extensions, and
other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance will clalbéie
method of the sourced input stream when it returos.

error _leader ([file[, Iine]])
This method generates an error message leader in the format mha@compiler error label; the format is
"%s”, line %d: ’, where the %s is replaced with the name of the current source file and #%d Wwith the
current input line number (the optional arguments can be used to override these).

This convenience is provided to encouraidex users to generate error messages in the standard, parseable
format understood by Emacs and othevil tools.

Instances oBhlex subclasses have some public instance variables which either control lexical analysis or can be
used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the comment beginner
to end of line are ignored. Includes jugt by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includsgalblphanu-
merics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default, includes
space, tab, linefeed and carriage-return.

guotes
Characters that will be considered string quotes. The token accumulates until the same quote is encountered
again (thus, different quote types protect each other as in the shell.) By default, inglsidessingle and
double quotes.

infile
The name of the current input file, as initially set at class instantiation time or stacked by later source requests.
It may be useful to examine this when constructing error messages.

instream
The input stream from which thighlex instance is reading characters.

source
This member ifNone by default. If you assign a string to it, that string will be recognized as a lexical-level
inclusion request similar to theource ' keyword in various shells. That is, the immediately following token
will opened as a filename and input taken from that stream Bo# at which point theclose() method of
that stream will be called and the input source will again become the original input stream. Source requests may
be stacked any number of levels deep.

debug
If this member is numeric antl or more, ashlex instance will print verbose progress output on its behavior.
If you need to use this, you can read the module source code to learn the details.

Note that any character not declared to be a word character, whitespace, or a quote will be returned as a single-character
token.

Quote and comment characters are not recognized within words. Thus, the bareawstds™and ‘ain#t ' would
be returned as single tokens by the default parser.

96 Chapter 5. Miscellaneous Services

lineno
Source line number (count of newlines seen so far plus one).

token
The token buffer. It may be useful to examine this when catching exceptions.

5.11. shlex — Simple lexical analysis

97

98

CHAPTER
SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on (almost) all

operating systems, such as files and a clock. The interfaces are generally modeled aftextbe ©interfaces, but
they are available on most other systems as well. Here’s an overview:

0s

0s.path
dircache
stat
statcache
statvfs
filecmp
popen2
time

sched
getpass
curses
curses.textpad
curses.wrapper
curses.ascii
getopt
tempfile
errno

glob
fnmatch
shutil

locale
gettext

Miscellaneous OS interfaces.

Common pathname manipulations.

Return directory listing, with cache mechanism.
Utilities for interpreting the results afs.stat()
Stat files, and remember results.

Constants for interpreting the resultas.statvfs()
Compare files efficiently.

Subprocesses with accessible standard I/O streams.

Time access and conversions.

General purpose event scheduler.

Portable reading of passwords and retrieval of the userid.

An interface to the curses library, providing portable terminal handling.

Emacs-like input editing in a curses window.

Terminal configuration wrapper for curses programs.

Constants and set-membership functionsafecii characters.

Portable parser for command line options; support both short and long option names.
Generate temporary file names.

Standard errno system symbols.

UNIx shell style pathname pattern expansion.

UNIX shell style filename pattern matching.

High-level file operations, including copying.

Internationalization services.

Multilingual internationalization services.

, 0s.Istat() andos.fstat()

6.1 o0s — Miscellaneous OS interfaces

This module provides a more portable way of using operating system (OS) dependent functionality than importing an

OS dependent built-in module likgsix ornt .

This module searches for an OS dependent built-in moduleda&eor posix and exports the same functions and data
as found there. The design of all Python’s built-in OS dependent modules is such that as long as the same functionality
is available, it uses the same interface; e.g., the funcostat(

path) returns stat information abopathin the

same format (which happens to have originated with the POSIX interface).

Extensions peculiar to a particular OS are also available througbstireodule, but using them is of course a threat

to portability!

99

Note that after the first times is imported, there i:i0 performance penalty in using functions frams instead of
directly from the OS dependent built-in module, so there shoulidreason not to uses!

error
This exception is raised when a function returns a system-related error (e.g., not for illegal argument types). This
is also known as the built-in excepti@SError . The accompanying value is a pair containing the numeric
error code fromerrno and the corresponding string, as would be printed by the C funpgoror() . See
the modulesrrno , which contains names for the error codes defined by the underlying operating system.

When exceptions are classes, this exception carries two attrileutas, andstrerror . The first holds the
value of the Cerrno variable, and the latter holds the corresponding error messagestrermor() . For
exceptions that involve a file system path (elgdir() orunlink()), the exception instance will contain a
third attribute filename , which is the file name passed to the function.

When exceptions are strings, the string for the exceptid@$Error’

name
The name of the OS dependent module imported. The following names have currently been registered:
‘posix’ ,'nt'" ,’dos’ ' , Java’

,’mac’ ,’os2’ ,’ce’
path
The corresponding OS dependent standard module for pathname operatiommsixgath or macpath .
Thus, given the proper importgs.path.split(file) is equivalent to but more portable th@osix-
path.split(file) . Note that this is also a valid module: it may be imported directlgsapath

6.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

environ
A mapping object representing the string environment. For exarapié;onHOME'] is the pathname of
your home directory (on some platforms), and is equivalegetenv("HOME") in C.

If the platform supports thputenv() function, this mapping may be used to modify the environment as well

as query the environmentutenv() will be called automatically when the mapping is modified.

If putenv() is not provided, this mapping may be passed to the appropriate process-creation functions to
cause child processes to use a modified environment.

chdir (path)
getcwd ()
These functions are described in “Files and Directories” (section 6.1.4).

ctermid ()
Return the filename corresponding to the controlling terminal of the process. Availabitity. U
getegid ()
Return the current process’ effective group id. Availabilitysid.
geteuid ()
Return the current process’ effective user id. Availabilitysi.
getgid ()

Return the current process’ group id. AvailabilityNix.

getgroups ()
Return list of supplemental group ids associated with the current process. Availabiity: U

getlogin ()
Return the actual login name for the current process, even if there are multiple login names which map to the
same user id. Availability: tix.

100 Chapter 6. Generic Operating System Services

getpgrp ()
Return the current process group id. AvailabilityniX.

getpid ()
Return the current process id. Availability:Nuk, Windows.

getppid ()
Return the parent’s process id. Availability Nux .

getuid ()
Return the current process’ user id. AvailabilitynLX.

putenv (varname, valug
Set the environment variable namesinameto the stringvalue Such changes to the environment affect sub-
processes started withs.system() , popen() orfork() andexecv() . Availability: most flavors of
UNIX, Windows.

Whenputenv() is supported, assignments to itemsmenviron are automatically translated into cor-
responding calls t@utenv() ; however, calls tqputenv() don’t updateos.environ , so it is actually
preferable to assign to items o$.environ

setegid (egid)
Set the current process’s effective group id. Availabilitysi.

seteuid (euid)
Set the current process’s effective user id. Availabilitya1k.

setgid (gid)
Set the current process’ group id. AvailabilityNuX .

setpgrp ()
Calls the system cafletpgrp() or setpgrp(0, 0) depending on which version is implemented (if any).

See the Wix manual for the semantics. Availability: NJX.

setpgid (pid, pgrp
Calls the system cafletpgid() . See the Wix manual for the semantics. Availability: NUX.

setreuid (ruid, euid)
Set the current process’s real and effective user ids. AvailabilityxU

setregid (rgid, egid
Set the current process’s real and effective group ids. AvailabilityrxU

setsid ()
Calls the system cadletsid() . See the Wix manual for the semantics. Availability: NJX.

setuid (uid)
Set the current process’ user id. AvailabilityNLX.

strerror (code
Return the error message corresponding to the error cattedi|n Availability: UNIX, Windows.

umask(mask
Set the current numeric umask and returns the previous umask. Availability, Windows.

uname()

Return a 5-tuple containing information identifying the current operating system. The tuple contains 5 strings:

(sysnamg nodenamg release version maching. Some systems truncate the nodename to 8 charac-
ters or to the leading component; a better way to get the hostnaseekst.gethostname() or even
socket.gethostbyaddr(socket.gethostname()) . Availability: recent flavors of Wix.

6.1. os — Miscellaneous OS interfaces 101

6.1.2 File Object Creation

These functions create new file objects.

fdopen (fd[, mode[, bufsizd])
Return an open file object connected to the file descrifstoiThe modeandbufsizearguments have the same
meaning as the corresponding arguments to the buipien() function. Availability: Macintosh, Wix,
Windows.

popen (comman@, mode{, bufsizd])
Open a pipe to or fromommand The return value is an open file object connected to the pipe, which can be read
or written depending on whetherodeis'r’ (default) orw’ . Thebufsizeargument has the same meaning as
the corresponding argument to the builtepen() function. The exit status of the command (encoded in the
format specified fowait()) is available as the return value of thlese() method of the file object, except
that when the exit status is zero (termination without errddspe is returned. Availability: Wix, Windows.

Changed in version 2.0: This function worked unreliably under Windows in earlier versions of Python. This was
due to the use of thepopen() function from the libraries provided with Windows. Newer versions of Python
do not use the broken implementation from the Windows libraries.

tmpfile ()
Return a new file object opened in update mode+}. The file has no directory entries associated with it and
will be automatically deleted once there are no file descriptors for the file. Availabilityx U

For each of thespopen() variants, ifbufsizeis specified, it specifies the buffer size for the 1/0O pipesode if
provided, should be the strily’ or’t" ; on Windows this is needed to determine whether the file objects should be
opened in binary or text mode. The default valuerfadeis 't’

popen2 (cmc{, bufsiZ({, mode]])
Executexmdas a sub-process. Returns the file objéctsild_stdin, child_stdou) . New in version 2.0.

popen3 (cmc{, bufsizé, modd])
Executexmdas a sub-process. Returns the file objéaisild_stdin child_stdout child_stderr). New in
version 2.0.

popen4 (cmc{, bufsizé, modd])
Executexcmdas a sub-process. Returns the file objéatkild_stdin, child_stdout and_stder) . New in
version 2.0.

This functionality is also available in theopen2 module using functions of the same names, but the return values of
those functions have a different order.

6.1.3 File Descriptor Operations

These functions operate on I/O streams referred to using file descriptors.
close (fd)
Close file descriptofd. Availability: Macintosh, Wix, Windows.

Note: this function is intended for low-level /0 and must be applied to a file descriptor as returogey
orpipe() . To close a “file object” returned by the built-in functiopen() or by popen() orfdopen() ,
use itsclose() method.

dup (fd)
Return a duplicate of file descriptéd. Availability: Macintosh, WNix, Windows.

dup?2 (fd, fd2
Duplicate file descriptofd to fd2, closing the latter first if necessary. Availability:Nux, Windows.

fpathconf (fd, namé
Return system configuration information relevant to an open fil@mespecifies the configuration value to

102 Chapter 6. Generic Operating System Services

retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, Unix95, Unix98, and others). Some platforms define additional names as well. The
names known to the host operating system are given ipatieconf _names dictionary. For configuration
variables not included in that mapping, passing an integaendareis also accepted. Availability: MiX.

If nameis a string and is not known/alueError is raised. If a specific value farameis not supported by
the host system, even if it is includedpathconf _names, anOSError is raised witherrno.EINVAL for
the error number.

fstat (fd)
Return status for file descriptéd, like stat() . Availability: UNix, Windows.

fstatvfs (fd)
Return information about the filesystem containing the file associated with file desddiptke statvfs()
Availability: UNIX.

ftruncate (fd, length
Truncate the file corresponding to file descrigthrso that it is at modengthbytes in size. Availability: Wix.

isatty (fd)
Returnl if the file descriptoifd is open and connected to a tty(-like) device, élsdvailability: UNiIx

Iseek (fd, pos, hoy
Set the current position of file descriptial to positionpos modified byhow. 0 to set the position relative to
the beginning of the filel to set it relative to the current positiof;to set it relative to the end of the file.
Availability: Macintosh, WNix, Windows.

open (file, flags[, modei)
Open the filefile and set various flags accordingftagsand possibly its mode accordingitwode The default
modeis 0777 (octal), and the current umask value is first masked out. Return the file descriptor for the newly
opened file. Availability: Macintosh, NIx, Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constat&KROKENLY
andO_WRONL)vare defined in this module too (see below).

Note: this function is intended for low-level 1/0. For normal usage, use the built-in funopen() , which
returns a “file object” wittread() andwrite() methods (and many more).

openpty ()
Open a new pseudo-terminal pair. Return a pair of file descrigtoraster slave for the pty and the tty,
respectively. For a (slightly) more portable approach, use@themodule. Availability: Some flavors of Nix

pipe ()
Create a pipe. Return a pair of file descriptors w) usable for reading and writing, respectively. Availability:
UNIX, Windows.

read (fd, n)
Read at most bytes from file descriptdid. Return a string containing the bytes read. Availability: Macintosh,
UNIX, Windows.

Note: this function is intended for low-level /0 and must be applied to a file descriptor as returogey
or pipe() . To read a “file object” returned by the built-in functiopen() or by popen() orfdopen() ,
orsys.stdin , useitsread() orreadline() methods.

tcgetpgrp (fd)
Return the process group associated with the terminal givefd lfgn open file descriptor as returned by
open()). Availability: UNIX.

tcsetpgrp (fd, pg
Set the process group associated with the terminal givéd gn open file descriptor as returneddyyen())

to pg. Availability: UNIX.
ttyname (fd)

6.1. os — Miscellaneous OS interfaces 103

Return a string which specifies the terminal device associated with file-desddptbfd is not associated with
a terminal device, an exception is raised. Availabilitysiid.

write (fd, str)
Write the stringstr to file descriptorfd. Return the number of bytes actually written. Availability: Macintosh,
UNIX, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returppe oy
orpipe() . To write a “file object” returned by the built-in functiampen() or by popen() orfdopen() |,
orsys.stdout orsys.stderr ,useitswrite() method.

The following data items are available for use in constructinglgsparameter to thepen() function.

O_RDONLY

O_WRONLY

O_RDWR

O_NDELAY

O_NONBLOCK

O_APPEND

O_DSYNC

O_RSYNC

O_SYNC

O_NOCTTY

O_CREAT

O_EXCL

O_TRUNC
Options for theflag argument to theopen() function. These can be bit-wise OR’d together. Availability:
Macintosh, Wix, Windows.

O_BINARY
Option for theflag argument to th@pen() function. This can be bit-wise OR'd together with those listed
above. Availability: Macintosh, Windows.

6.1.4 Files and Directories

access (path, modg
Check read/write/execute permissions for this process or existenceptfilenodeshould bd=_OKto test the
existence opath, or it can be the inclusive OR of one or moreRfOK W_OK andX_OKto test permissions.
Returnl if access is allowed) if not. See the WiIx man pageaccesé) for more information. Availability:
UNIX, Windows.

F_OK
Value to pass as thmodeparameter ofccess() to test the existence plath

R_OK
Value to include in thenodeparameter oficcess() to test the readability gfath

W_OK
Value to include in thenodeparameter oficcess() to test the writability ofpath

X_OK
Value to include in thenodeparameter oficcess() to determine ifpathcan be executed.

chdir (path)
Change the current working directorypath Availability: Macintosh, Wix, Windows.

getcwd ()
Return a string representing the current working directory. Availability: Macintosix DWindows.

chmod(path, modg

104 Chapter 6. Generic Operating System Services

Change the mode gfathto the numerignode Availability: UNix, Windows.

chown (path, uid, gig
Change the owner and group iddthto the numeriaiid andgid. Availability: UNIX.

link (src, ds}
Create a hard link pointing terc nameddst Availability: UNIX.

listdir (path
Return a list containing the names of the entries in the directory. The list is in arbitrary order. It does not include
the special entries’ and’..’ even if they are present in the directory. Availability: Macintoshyix),
Windows.

Istat (path
Like stat() , but do not follow symbolic links. Availability: ®iix.

mkfifo (path, modd)
Create a FIFO (a named pipe) namgath with numeric modenode The defaultmodeis 0666 (octal). The
current umask value is first masked out from the mode. Availability1XJ

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes: the
server opens the FIFO for reading, and the client opens it for writing. Notentkiifio() doesn’t open the

FIFO — it just creates the rendezvous point.

mkdir (patl{, modﬂ)
Create a directory namezhthwith numeric modanode The defaulimodeis 0777 (octal). On some systems,
modeis ignored. Where it is used, the current umask value is first masked out. Availability: Macintesh, U
Windows.

makedirs (patf‘[, modﬂ)
Recursive directory creation function. Likekdir() , but makes all intermediate-level directories needed to
contain the leaf directory. Throws @&mror exception if the leaf directory already exists or cannot be created.
The defaultmodeis 0777 (octal). New in version 1.5.2.

pathconf (path, namg
Return system configuration information relevant to a named filemespecifies the configuration value to
retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, Unix95, Unix98, and others). Some platforms define additional names as well. The
names known to the host operating system are given ipaltieconf _names dictionary. For configuration
variables not included in that mapping, passing an integendareis also accepted. Availability: MiX.

If nameis a string and is not known/alueError s raised. If a specific value farameis not supported by
the host system, even if itis includedpathconf _names, anOSError is raised witherrno.EINVAL for
the error number.

pathconf _names
Dictionary mapping names accepted figthconf() andfpathconf() to the integer values defined for
those names by the host operating system. This can be used to determine the set of names known to the system.
Availability: UNIX.

readlink (path)
Return a string representing the path to which the symbolic link points. Availabilityx U

remove (path)
Remove the filpath Seermdir() below to remove a directory. This is identical to tinaink() function
documented below. Availability: Macintosh,Nux, Windows.

removedirs (path
Recursive directory removal function. Works likedir() except that, if the leaf directory is successfully
removed, directories corresponding to rightmost path segments will be pruned way until either the whole path
is consumed or an error is raised (which is ignored, because it generally means that a parent directory is not

6.1. os — Miscellaneous OS interfaces 105

empty). Throws arrror exception if the leaf directory could not be successfully removed. New in version
1.5.2.

rename (src, dsj)
Rename the file or directoisrc to dst Availability: Macintosh, WNix, Windows.

renames (old, new
Recursive directory or file renaming function. Works lilemame() , except creation of any intermediate di-
rectories needed to make the new pathname good is attempted first. After the rename, directories corresponding
to rightmost path segments of the old nhame will be pruned away usmgvedirs()

Note: this function can fail with the new directory structure made if you lack permissions needed to remove the
leaf directory or file. New in version 1.5.2.

rmdir (path
Remove the directorgath Availability: Macintosh, WNix, Windows.

stat (path
Perform astat() system call on the given path. The return value is a tuple of at least 10 integers giving
the most important (and portable) members of sted structure, in the ordest _mode, st _ino , st _dev,
st _nlink ,st _uid ,st _gid , st _size ,st _atime , st _mtime , st _ctime . More items may be added
at the end by some implementations. Note that on the Macintosh, the time values are floating point values, like
all time values on the Macintosh. (On MS Windows, some items are filled with dummy values.) Availability:
Macintosh, Wix, Windows.

Note: The standard modul¢at defines functions and constants that are useful for extracting information from
astat structure.

statvfs (path)
Perform astatvfs() system call on the given path. The return value is a tuple of 10 integers giving the most
common members of thetatvfs structure, in the ordefr _bsize , f _frsize , f _blocks , f _bfree ,
f _bavail ,f _files ,f _ffree ,f _favail ,f _flag ,f _namemax Availability: UNIX.

Note: The standard modulgtatvfs defines constants that are useful for extracting information from a
statvfs structure.

symlink (src, ds}
Create a symbolic link pointing terc nameddst Availability: UNIX.

tempnam([dir[, prefix]])
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in the directdiyor a common location for temporary filesdir is omitted
or None. If given and notNone, prefixis used to provide a short prefix to the filename. Applications are
responsible for properly creating and managing files created using paths retuteetpmam() ; no automatic
cleanup is provided.

tmpnam()
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in a common location for temporary files. Applications are responsible for
properly creating and managing files created using paths returngéchgonyam() ; no automatic cleanup is
provided.

TMP_MAX
The maximum number of unique names ttrapnam() will generate before reusing names.

unlink (path)
Remove the filgpath This is the same function asmove() ; theunlink() name is its traditional dix
name. Availability: Macintosh, Nix, Windows.

utime (path, time}
Set the access and modified times of the file specifiegdiir If timesis None, then the file's access and
modified times are set to the current time. Otherwiigeesmust be a 2-tuple of numbers, of the fo(ratime

106 Chapter 6. Generic Operating System Services

mtimé which is used to set the access and modified times, respectively. Changed in version 2.0: added support
for None for times Availability: Macintosh, Wix, Windows.

6.1.5 Process Management

These functions may be used to create and manage processes.

The variousexec*() functions take a list of arguments for the new program loaded into the process. In each case,
the first of these arguments is passed to the new program as its own name rather than as an argument a user may have
typed on a command line. For the C programmer, this isatigg[0] passed to a progran¥esain() . For example,
‘o0s.execv('/binfecho’, [foo’, 'bar’]) " will only print * bar ’ on standard output;f6o * will seem

to be ignored.

abort ()
Generate &IGABRT signal to the current process. OmLX, the default behavior is to produce a core dump;
on Windows, the process immediately returns an exit cod®. oBe aware that programs which usig-
nal.signal() to register a handler f@IGABRTwill behave differently. Availability: Wix, Windows.

execl (path, arg0, argl, .).
This is equivalent toéxecv(path, (arg0, argl, ...)) ". Availability: U Nix, Windows.

execle (path, arg0, arg1l, ..., env
This is equivalent toéxecve(path, (arg0, argl, ..), eny) . Availability: U Nix, Windows.

execlp (path, arg0, arg1, .).
This is equivalent toéxecvp(path, (arg0, argl, ...)) ". Availability: U Nix, Windows.

execv (path, arg3
Execute the executabpathwith argument lisargs replacing the current process (i.e., the Python interpreter).
The argument list may be a tuple or list of strings. Availabilitysid, Windows.

execve (path, args, eny
Execute the executabfmthwith argument lisargs, and environmenény, replacing the current process (i.e.,
the Python interpreter). The argument list may be a tuple or list of strings. The environment must be a dictionary
mapping strings to strings. Availability: \x, Windows.

execvp (path, arg$
This is like ‘execv(path args) ' but duplicates the shell’'s actions in searching for an executable file in a list
of directories. The directory list is obtained framviron['PATH’] . Availability: UNIx, Windows.

execvpe (path, args, eny
This is a cross betweasxecve() andexecvp() . The directory list is obtained fromn{'PATH’] . Avail-
ability: UNix, Windows.

_exit (n)
Exit to the system with status without calling cleanup handlers, flushing stdio buffers, etc. Availabilityi
Windows.

Note: the standard way to exitgys.exit(n). _exit() should normally only be used in the child process
after afork()

fork ()
Fork a child process. Retufhin the child, the child’s process id in the parent. Availabilitynid.
forkpty ()

Fork a child process, using a new pseudo-terminal as the child’s controlling terminal. Return a(paid, of
fd) , wherepid is 0 in the child, the new child’s process id in the parent, &hdis the file descriptor of the
master end of the pseudo-terminal. For a more portable approach, usk theodule. Availability: Some
flavors of UNIx

kil (pid, sig

6.1. os — Miscellaneous OS interfaces 107

Kill the processid with signalsig. Availability: UNIX.

nice (incremeny
Add incremento the process’s “niceness”. Return the new niceness. AvailabilityxU

plock (op)
Lock program segments into memory. The valuepf(defined in<sys/lock.h>) determines which seg-

ments are locked. Availability: NiX.

spawnv (mode, path, args
Execute the prograathin a new process, passing the arguments specifiadjsas command-line parameters.
args may be a list or a tuplemodeis a magic operational constant. See the Visuat @untime Library
documentation for further information; the constants are exposed to the Python programmer as listed below.
Availability: UNix, Windows. New in version 1.5.2.

spawnve (mode, path, args, ehv
Execute the programmathin a new process, passing the arguments specifiadjsas command-line parameters
and the contents of the mappiagvas the environmenargsmay be a list or a tuplenodeis a magic operational
constant. See the Visuat@ Runtime Library documentation for further information; the constants are exposed
to the Python programmer as listed below. Availabilityid, Windows. New in version 1.5.2.

P_WAIT

P_NOWAIT

P_NOWAITO
Possible values for thmodeparameter tepawnv() andspawnve() . Availability: UNix, Windows. New
in version 1.5.2.

P_OVERLAY

P_DETACH
Possible values for themodeparameter tspawnv() andspawnve() . These are less portable than those
listed above. Availability: Windows. New in version 1.5.2.

startfile (path)
Start a file with its associated application. This acts like double-clicking the file in Windows Explorer, or giving
the file name as an argument to the D&&t command: the file is opened with whatever application (if any)
its extension is associated.

startfile() returns as soon as the associated application is launched. There is no option to wait for the
application to close, and no way to retrieve the application’s exit status. patieparameter is relative to

the current directory. If you want to use an absolute path, make sure the first character is not & 3lable ('
underlying Win32ShellExecute() function doesn’t work it is. Use thes.path.normpath() function

to ensure that the path is properly encoded for Win32. Availability: Windows. New in version 2.0.

system (commandl
Execute the command (a string) in a subshell. This is implemented by calling the Standard C fapstion
tem() , and has the same limitations. Changegdsix.environ , sys.stdin , etc. are not reflected in
the environment of the executed command. The return value is the exit status of the process encoded in the
format specified fowait() , except on Windows 95 and 98, where it is alw@ysNote that POSIX does not
specify the meaning of the return value of they@tem() function, so the return value of the Python function
is system-dependent. Availability: Nux , Windows.

times ()
Return a 5-tuple of floating point numbers indicating accumulated (CPU or other) times, in seconds. The items
are: user time, system time, children’s user time, children’s system time, and elapsed real time since a fixed
point in the past, in that order. See thelild manual pagémeg?2) or the corresponding Windows Platform API
documentation. Availability: ®ix, Windows.

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a 16-bit
number, whose low byte is the signal number that killed the process, and whose high byte is the exit status (if

108 Chapter 6. Generic Operating System Services

the signal number is zero); the high bit of the low byte is set if a core file was produced. Availability. U

waitpid (pid, option$
Wait for completion of a child process given by procesgiii and return a tuple containing its process id and
exit status indication (encoded as feait()). The semantics of the call are affected by the value of the integer
options which should b& for normal operation. Availability: BiX.

If pidis greater tha@, waitpid() requests status information for that specific procegsdifs 0, the request
is for the status of any child in the process group of the current procgsisl. iff -1 , the request pertains to any
child of the current process. jpid is less thanl , status is requested for any process in the process gnoidp
(the absolute value qfid).

WNOHANG
The option forwaitpid() to avoid hanging if no child process status is available immediately. Availability:
UNIX.

The following functions take a process status code as returnegdbym() , wait() , orwaitpid() as a param-
eter. They may be used to determine the disposition of a process.

WIFSTOPPEDSstatug
Return true if the process has been stopped. AvailabilityiXJ

WIFSIGNALEL statug
Return true if the process exited due to a signal. AvailabilityxJ

WIFEXITED(statug
Return true if the process exited using &eéf(2) system call. Availability: Wix.

WEXITSTATUS statug
If WIFEXITED(statug is true, return the integer parameter to thétf(2) system call. Otherwise, the return
value is meaningless. Availability: NIX.

WSTOPSIGstatug
Return the signal which caused the process to stop. AvailabiliixU

WTERMSIGstatug
Return the signal which caused the process to exit. AvailabilitytxJ
6.1.6 Miscellaneous System Information

confstr (nameg
Return string-valued system configuration valugemespecifies the configuration value to retrieve; it may be a

string which is the name of a defined system value; these names are specified in a number of standards (POSIX,
Unix95, Unix98, and others). Some platforms define additional names as well. The names known to the host

operating system are given in tbenfstr _names dictionary. For configuration variables not included in that
mapping, passing an integer foameis also accepted. Availability: Mix.

If the configuration value specified mameisn’t defined, the empty string is returned.

If nameis a string and is not known/alueError is raised. If a specific value farameis not supported by
the host system, even if it is includedéonfstr _names, anOSError is raised witherrno.EINVAL for
the error number.

confstr _names
Dictionary mapping names accepteddmnfstr() to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system. Availabiity: U

sysconf (namg
Return integer-valued system configuration values. If the configuration value specifieargysn’t defined,
-1 isreturned. The comments regarding tizneparameter foconfstr() apply here as well; the dictionary
that provides information on the known names is giversysconf _names. Availability: UNIX.

6.1. os — Miscellaneous OS interfaces 109

sysconf _names
Dictionary mapping names accepteddysconf() to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system. Availabiity: U

The follow data values are used to support path manipulation operations. These are defined for all platforms.

Higher-level operations on pathnames are defined imsheath module.

curdir
The constant string used by the OS to refer to the current directory,.’e.g. for POSIX or’;’ for the
Macintosh.

pardir
The constant string used by the OS to refer to the parent directory,.e.g. for POSIX or’:’ for the
Macintosh.

sep

The character used by the OS to separate pathname components,’ éog.POSIX or ;' for the Mac-
intosh. Note that knowing this is not sufficient to be able to parse or concatenate pathnames — use
os.path.split() andos.path.join() — but it is occasionally useful.

altsep
An alternative character used by the OS to separate pathname componewts)eoif only one separator
character exists. This is set tb’'on DOS and Windows systems whesep is a backslash.

pathsep
The character conventionally used by the OS to separate search patch components (as in $PATHJjoe.g.
POSIX or 4’ for DOS and Windows.

defpath
The default search path usedéxec*p*() if the environment doesn’'t have RATH’ key.

linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a single character,
e.g.\n" for POSIXor\r for MacOS, or multiple characters, e’g\n’ for MS-DOS and MS Windows.

6.2 o0s.path — Common pathname manipulations

This module implements some useful functions on pathnames.

abspath (path
Return a normalized absolutized version of the pathnpatle On most platforms, this is equivalenttorm-
path(join(os.getcwd(), path) . New in version 1.5.2.

basename (path)
Return the base name of pathnapagth This is the second half of the pair returneddpfit(path) .

commonprefix (list)
Return the longest path prefix (taken character-by-character) that is a prefix of all pbshslfrlist is empty,
return the empty string’(). Note that this may return invalid paths because it works a character at a time.

dirname (path
Return the directory name of pathnapegh This is the first half of the pair returned Bplit(path) .

exists (path
Return true ifpathrefers to an existing path.

expanduser (path)
Return the argument with an initial component of or ‘™ user replaced by thatisefs home directory. An
initial *~ "’ is replaced by the environment variable $HOME; an initiauser is looked up in the password

110 Chapter 6. Generic Operating System Services

directory through the built-in modulewd. If the expansion fails, or if the path does not begin with a tilde, the
path is returned unchanged. On the Macintosh, this always rgtathsinchanged.

expandvars (path)
Return the argument with environment variables expanded. Substrings of theSioamé or ‘ ${ namé ’ are
replaced by the value of environment variabame Malformed variable names and references to non-existing
variables are left unchanged. On the Macintosh, this always repathsinchanged.

getatime (path)
Return the time of last access fiEname The return value is integer giving the number of seconds since the
epoch (see theme module). Rais@s.error if the file does not exist or is inaccessible. New in version
15.2.

getmtime (path)
Return the time of last modification fifename The return value is integer giving the number of seconds since
the epoch (see thtene module). Rais@s.error if the file does not exist or is inaccessible. New in version
15.2.

getsize (path
Return the size, in bytes, dfename Raiseos.error if the file does not exist or is inaccessible. New in
version 1.5.2.

isabs (path)
Return true ifpathis an absolute pathname (begins with a slash).

isfile (‘path
Return true ifpathis an existing regular file. This follows symbolic links, so battnk() andisfile()
can be true for the same path.

isdir (path)
Return true ifpathis an existing directory. This follows symbolic links, so baghnk() andisdir() can
be true for the same path.

islink (path)
Return true ifpathrefers to a directory entry that is a symbolic link. Always false if symbolic links are not
supported.

ismount (path
Return true if pathnampathis amount point a point in a file system where a different file system has been
mounted. The function checks whethmaths parent, path'..’, is on a different device thapath, or whether
‘path..” and pathpoint to the same i-node on the same device — this should detect mount points forall U
and POSIX variants.

join (pathl[, pach[,]])
Joins one or more path components intelligently. If any component is an absolute path, all previous components
are thrown away, and joining continues. The return value is the concatenatiathdf and optionallypath2
etc., with exactly one slasfi’() inserted between components, unleathis empty.

normcase (path)
Normalize the case of a pathname. ORI, this returns the path unchanged; on case-insensitive filesystems,
it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath (path)
Normalize a pathname. This collapses redundant separators and up-level referenc®4Be,d?/./B and
Alfool../B all becomeA/B. It does not normalize the case (usermcase() for that). On Windows, it
converts forward slashes to backward slashes.

samefile (pathl, path?
Return true if both pathname arguments refer to the same file or directory (as indicated by device number and
i-node number). Raise an exception iba.stat() call on either pathname fails. Availability: Macintosh,
UNIX.

6.2. os.path — Common pathname manipulations 111

sameopenfile (fpl, fp2d
Return true if the file objectfpl andfp2 refer to the same file. The two file objects may represent different file
descriptors. Availability: Macintosh, MiX.

samestat (statl, stat®
Return true if the stat tuplestatl and stat2 refer to the same file. These structures may have been returned

by fstat() ,lIstat() ,orstat() . This function implements the underlying comparison useddype-
file() andsameopenfile() . Availability: Macintosh, WNIX.
split (path)

Split the pathnamgath into a pair,(head tail) wheretail is the last pathname component ameld is
everything leading up to that. Thail part will never contain a slash; jfathends in a slashail will be empty.

If there is no slash ipath headwill be empty. If pathis empty, bottheadandtail are empty. Trailing slashes
are stripped fronmeadunless it is the root (one or more slashes only). In nearly all cfag, head tail)
equalspath (the only exception being when there were multiple slashes sepahatautirom tail).

splitdrive (path)
Split the pathnampathinto a pair(drive, tail) wheredriveis either a drive specification or the empty string.
On systems which do not use drive specificatiatrsje will always be the empty string. In all caseBjve +
tail will be the same apath

splitext (path)
Split the pathnameathinto a pair(root, ex such thatoot + ext == path andextis empty or begins
with a period and contains at most one period.

walk (path, visit, arg
Calls the functiorvisit with argumentg arg, dirname name$ for each directory in the directory tree rooted
at path (including path itself, if it is a directory). The argumertirnamespecifies the visited directory, the
argumennamedists the files in the directory (gotten froos. listdir(dirnamg). Thevisit function may
modify namedo influence the set of directories visited belditname e.g., to avoid visiting certain parts of the
tree. (The object referred to mameanust be modified in place, usimtel or slice assignment.)

6.3 dircache — Cached directory listings

Thedircache module defines a function for reading directory listing using a cache, and cache invalidation using
themtimeof the directory. Additionally, it defines a function to annotate directories by appending a slash.

Thedircache module defines the following functions:

listdir (path)
Return a directory listing gbath as gotten fronos.listdir() . Note that unlespathchanges, further call
to listdir() will not re-read the directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future version should change it to return
atuple?)

opendir (path
Same adistdir() . Defined for backwards compatibility.

annotate (head, lis}
Assumdist is a list of paths relative tbead and append, in place, A to each path which points to a directory.

112 Chapter 6. Generic Operating System Services

>>> jmport dircache

>>> a=dircache.listdir(’/")

>>> ag=a[:] # Copy the return value so we can change 'a’

>>> a

[bin’, ’boot’, 'cdrom’, 'dev’, ’etc’, 'floppy’, ’home’, ’initrd’, ’lib’, ’lost+
found’, 'mnt’, 'proc’, 'root’, 'sbin’, 'tmp’, 'usr’, 'var, 'vmlinuz’]

>>> dircache.annotate(’/’, a)

>>> g

['bin/, 'boot/, 'cdrom/’, 'dev/’, ’etcl’, ‘floppy/, 'home/’, ’initrd/, ’lib/
', 'lost+found/’, 'mnt/’, 'proc/’, 'root/’, 'sbin/’, 'tmp/’, 'usr/’, 'var/’, 'vm

linuz’]
6.4 stat — Interpreting stat() results
Thestat module defines constants and functions for interpreting the resutis.stat() , 0s.fstat() and
os.Istat() (if they exist). For complete details about tsat() , fstat() andlstat() calls, consult the

documentation for your system.
Thestat module defines the following functions to test for specific file types:

S_ISDIR (modg
Return non-zero if the mode is from a directory.

S_ISCHR(mode¢
Return non-zero if the mode is from a character special device file.

S_ISBLK (modg
Return non-zero if the mode is from a block special device file.

S_ISREG(modg
Return non-zero if the mode is from a regular file.

S_ISFIFO (modg
Return non-zero if the mode is from a FIFO (named pipe).

S_ISLNK (mode¢
Return non-zero if the mode is from a symbolic link.

S_ISSOCK(mode
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

S_IMODK mod§
Return the portion of the file’'s mode that can be sebbyhmod() —that is, the file’s permission bits, plus
the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S_IFMT(modg
Return the portion of the file’'s mode that describes the file type (used & t#8%() functions above).

Normally, you would use thes.path.is*() functions for testing the type of a file; the functions here are useful
when you are doing multiple tests of the same file and wish to avoid the overheadstdti)e system call for each
test. These are also useful when checking for information about a file that isn't handbedolayh , like the tests

for block and character devices.

All the variables below are simply symbolic indexes into the 10-tuple returneaststat() , 0s.fstat() or
os.Istat()

6.4. stat — Interpreting stat() results 113

ST_MODE
Inode protection mode.

ST_INO

Inode number.
ST_DEV

Device inode resides on.
ST_NLINK

Number of links to the inode.
ST_UID

User id of the owner.
ST_GID

Group id of the owner.
ST_SIZE

File size in bytes.
ST_ATIME

Time of last access.
ST_MTIME

Time of last modification.
ST_CTIME

Time of last status change (see manual pages for details).
Example:

import 0s, sys
from stat import *

def walktree(dir, callback):
"'recursively descend the directory rooted at dir,
calling the callback function for each regular file™

for f in os.listdir(dir):

pathname = '%s/%s’ % (dir, f)

mode = os.stat(pathname)[ST_MODE]

if S_ISDIR(mode):
It's a directory, recurse into it
walktree(pathname, callback)

elif S_ISREG(mode):
It's a file, call the callback function
callback(pathname)

else:
Unknown file type, print a message
print 'Skipping %s’ % pathname

def visitfile(file):
print ‘visiting’, file

if _name__ =="'_main__"
walktree(sys.argv[1], visitfile)

114 Chapter 6. Generic Operating System Services

6.5 statcache — An optimization of os.stat()

Thestatcache module provides a simple optimizationas.stat() : remembering the values of previous invo-
cations.

Thestatcache module defines the following functions:

stat (path)
This is the main module entry-point. Identical fos.stat() , except for remembering the result for future
invocations of the function.

The rest of the functions are used to clear the cache, or parts of it.

reset ()
Clear the cache: forget all results of previatat() calls.

forget (path
Forget the result oftat(path) , if any.

forget _prefix (prefiX
Forget all results oftat(path) for pathstarting withprefix

forget _dir (prefiy
Forget all results oftat(path) for patha file in the directonprefix includingstat(prefix) .

forget _except _prefix (prefiy
Similar toforget _prefix() , but for allpathvaluesnot starting withprefix

Example:

>>> import os, statcache

>>> statcache.stat(’.")

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)
>>> os.stat(’.’)

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

6.6 statvfs — Constants used with os.statvfs()
Thestatvfs module defines constants so interpreting the resols.$tatvfs() , Which returns a tuple, can be
made without remembering “magic numbers.” Each of the constants defined in this moduledettaf the entry in
the tuple returned bgs.statvfs() that contains the specified information.
F_BSIZE
Preferred file system block size.
F_FRSIZE
Fundamental file system block size.
F_BLOCKS
Total number of blocks in the filesystem.
F_BFREE
Total number of free blocks.
F_BAVAIL
Free blocks available to non-super user.
F_FILES

6.5. statcache — An optimization of os.stat() 115

Total number of file nodes.

F_FFREE
Total number of free file nodes.

F_FAVAIL
Free nodes available to non-super user.

F_FLAG
Flags. System dependent: statvfs() man page.

F_NAMEMAX
Maximum file name length.

6.7 filecmp — File and Directory Comparisons

Thefilecmp module defines functions to compare files and directories, with various optional time/correctness trade-
offs.

Thefilecmp module defines the following function:

cmp(f1, f2[, Sha||0V\[, us&statcache]])
Compare the files naméil andf2, returningl if they seem equaD otherwise.

Unlessshallowis given and is false, files with identicalk.stat() signatures are taken to be equal. If
use_statcaches given and is truestatcache.stat() will be called rather theos.stat() ; the default
is to useos.stat()

Files that were compared using this function will not be compared again unles®stetart() signature
changes. Note that usingge_statcachedrue will cause the cache invalidation mechanism to fail — the stale stat
value will be used fronstatcache s cache.

Note that no external programs are called from this function, giving it portability and efficiency.

cmpfiles (dirl, dir2, commoﬁ, Sha||0V\[, use_statcacha])
Returns three lists of file namesatch mismatch errors. matchcontains the list of files match in both di-
rectories,mismatchincludes the names of those that don't, andos lists the names of files which could not
be compared. Files may be listederrors because the user may lack permission to read them or many other
reasons, but always that the comparison could not be done for some reason.

The shallow and use_statcache parameters have the same meanings and default values as for
filecmp.cmp()

Example:

>>> import filecmp

>>> filecmp.cmp(’libundoc.tex’, ’libundoc.tex’)
1

>>> filecmp.cmp(libundoc.tex’, ’lib.tex’)

0

6.7.1 The dircmp class

dircmp (a, b[ignore[, hide]])
Construct a new directory comparison object, to compare the direc@es b. ignoreis a list of names
to ignore, and defaults tpRCS’, 'CVS’, 'tags’] . hideis a list of names to hid, and defaults to

[os.curdir, os.pardir]

116 Chapter 6. Generic Operating System Services

report ()
Print (tosys.stdout) a comparison betweemandb.

report _partial _closure ()
Print a comparison betweerandb and common immediate subdirctories.

report _full _closure ()
Print a comparison betweerandb and common subdirctories (recursively).

left _list
Files and subdirectories m filtered byhideandignore

right _list
Files and subdirectories I filtered byhideandignore

common
Files and subdirectories in bodhandb.

left _only
Files and subdirectories only &

right _only
Files and subdirectories only n

common_dirs
Subdirectories in both andb.

common._files
Files in botha andb

common_funny
Names in botla andb, such that the type differs between the directories, or names for vasictat()
reports an error.

same_files
Files which are identical in bothandb.
diff _files

Files which are in botla andb, whose contents differ.

funny _files
Files which are in botla andb, but could not be compared.

subdirs
A dictionary mapping names itcommon_dirs todircmp objects.

Note that via__getattr __() hooks, all attributes are computed lazilly, so there is no speed penalty if only those
attributes which are lightweight to compute are used.

6.8 popen2 — Subprocesses with accessible 1/0 streams

This module allows you to spawn processes and connect to their input/output/error pipes and obtain their return codes
under WNIX and Windows.

Note that starting with Python 2.0, this functionality is available using functions fromshmodule which have the
same names as the factory functions here, but the order of the return values is more intuitivesimtheule variants.

The primary interface offered by this module is a trio of factory functions. For each of théndsifeis specified,
it specifies the buffer size for the 1/0 pipewnode if provided, should be the stririg’ or’t’ ; on Windows this is
needed to determine whether the file objects should be opened in binary or text mode. The default vahdeifor
Yti

6.8. popen2 — Subprocesses with accessible 1/0 streams 117

popen2 (cmc{, bufsizé, mode]])
Executexmdas a sub-process. Returns the file objéctsild_stdout child_stdin) .

popen3 (cmc{, bufsizé, mode]])
Executexmdas a sub-process. Returns the file objéctsild_stdout child_stdin, child_stderr) .

popen4 (cm({, bufsiz{, mode]])
Executexmdas a sub-process. Returns the file objéatkild_stdout_.and_stderr, child_stdin). New in
version 2.0.

On UNIX, a class defining the objects returned by the factory functions is also available. These are not used for the
Windows implementation, and are not available on that platform.

Popen3 (cmc{, capturestderf, bufsizd])
This class represents a child process. Normdlgpen3 instances are created using thepen2() and
popen3() factory functions described above.

If not using one off the helper functions to cre®epen3 objects, the parametemdis the shell command to
execute in a sub-process. Ttapturestderiflag, if true, specifies that the object should capture standard error
output of the child process. The default is false. If bufsizeparameter is specified, it specifies the size of the
I/0 buffers to/from the child process.

Popen4 (cmc{, bufsize])
Similar toPopen3, but always captures standard error into the same file object as standard output. These are
typically created usingopen4() . New in version 2.0.

6.8.1 Popen3 and Popen4 Objects

Instances of th®€open3 andPopen4 classes have the following methods:

poll ()
Returns-1 if child process hasn’t completed yet, or its return code otherwise.

wait ()
Waits for and returns the return code of the child process.

The following attributes are also available:

fromchild
A file object that provides output from the child process. Popen4 instances, this will provide both the
standard output and standard error streams.

tochild
A file object that provides input to the child process.

childerr
Where the standard error from the child process goesjsurestderiwas true for the constructor, done.
This will always beNone for Popen4 instances.

pid
The process ID of the child process.

6.9 time — Time access and conversions

This module provides various time-related functions. It is always available, but not all functions are available on all
platforms.

An explanation of some terminology and conventions is in order.

118 Chapter 6. Generic Operating System Services

e Theepochis the point where the time starts. On January 1st of that year, at 0 hours, the “time since the epoch”
is zero. For WX, the epoch is 1970. To find out what the epoch is, loafmatime(0)

e The functions in this module do not handle dates and times before the epoch or far in the future. The cut-off
point in the future is determined by the C library; fonLX, it is typically in 2038.

e Year 2000 (Y2K) issues Python depends on the platform’s C library, which generally doesn’t have year 2000
issues, since all dates and times are represented internally as seconds since the epoch. Functions accepting a time
tuple (see below) generally require a 4-digit year. For backward compatibility, 2-digit years are supported if the
module variableaccept2dyear is a non-zero integer; this variable is initializedltanless the environment
variable $PYTHONY2K is set to a hon-empty string, in which case it is initialize€.torhus, you can set
$PYTHONY2K to a non-empty string in the environment to require 4-digit years for all year input. When
2-digit years are accepted, they are converted according to the POSIX or X/Open standard: values 69-99 are
mapped to 1969-1999, and values 0-68 are mapped to 2000-2068. Values 100-1899 are always illegal. Note
that this is new as of Python 1.5.2(a2); earlier versions, up to Python 1.5.1 and 1.5.2a1, would add 1900 to year
values below 1900.

e UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The acronym UTC
is not a mistake but a compromise between English and French.

e DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year. DST
rules are magic (determined by local law) and can change from year to year. The C library has a table containing
the local rules (often it is read from a system file for flexibility) and is the only source of True Wisdom in this
respect.

e The precision of the various real-time functions may be less than suggested by the units in which their value or
argument is expressed. E.g. on mostii systems, the clock “ticks” only 50 or 100 times a second, and on the
Mac, times are only accurate to whole seconds.

e On the other hand, the precisiontihe() andsleep() is better than their Nix equivalents: times are
expressed as floating point numbetisje() returns the most accurate time available (usingUget-
timeofday() where available), ansleep() will accept a time with a nonzero fraction (Wx select()
is used to implement this, where available).

e The time tuple as returned Igyntime() , localtime() , andstrptime() , and accepted bgsctime()
mktime() andstrftime() , is a tuple of 9 integers:
Index | Field | Values
0 | year (e.g. 1993)
1 | month range [1,12]
2 | day range [1,31]
3 | hour range [0,23]
4 | minute range [0,59]
5 | second range [0,61]; seé€l) in strftime() description
6 | weekday range [0,6], Monday is O
7 | Julian day range [1,366]
8 | daylight savings flag 0, 1 or -1; see below

Note that unlike the C structure, the month value is a range of 1-12, not 0-11. A year value will be handled as
described under “Year 2000 (Y2K) issues” abovelAargument as daylight savings flag, passeuditime()
will usually result in the correct daylight savings state to be filled in.

The module defines the following functions and data items:

accept2dyear
Boolean value indicating whether two-digit year values will be accepted. This is true by default, but will be set
to false if the environment variable $PYTHONY2K has been set to a non-empty string. It may also be modified
at run time.

6.9. time — Time access and conversions 119

altzone
The offset of the local DST timezone, in seconds west of UTC, if one is defined. This is negative if the local
DST timezone is east of UTC (as in Western Europe, including the UK). Only use tlaiglight is nonzero.

asctime (tuple
Convert a tuple representing a time as returnedrgime() orlocaltime() to a 24-character string of the
following form: ’Sun Jun 20 23:21:05 1993’ . Note: unlike the C function of the same name, there is
no trailing newline.

clock ()
Return the current CPU time as a floating point number expressed in seconds. The precision, and in fact the
very definition of the meaning of “CPU time”, depends on that of the C function of the same name, but in any
case, this is the function to use for benchmarking Python or timing algorithms.

ctime (sec3
Convert a time expressed in seconds since the epoch to a string representing locattimeg. sec3 is
equivalent taasctime(localtime(secy) .

daylight

Nonzero if a DST timezone is defined.

gmtime (sec$
Convert a time expressed in seconds since the epoch to a time tuple in UTC in which the dst flag is always zero.
Fractions of a second are ignored. See above for a description of the tuple lay-out.

localtime (secs
Like gmtime() but converts to local time. The dst flag is sefitavhen DST applies to the given time.

mktime (tuple
This is the inverse function dbcaltime() . Its argument is the full 9-tuple (since the dst flag is needed,;
use-1 as the dst flag if it is unknown) which expresses the timéaal time, not UTC. It returns a float-
ing point number, for compatibility withime() . If the input value cannot be represented as a valid time,
OverflowError is raised.

sleep (sec$
Suspend execution for the given number of seconds. The argument may be a floating point number to indicate a
more precise sleep time. The actual suspension time may be less than that requested because any caught signal
will terminate thesleep() following execution of that signal’s catching routine. Also, the suspension time
may be longer than requested by an arbitrary amount because of the scheduling of other activity in the system.

stritime (format, tuplé
Convert a tuple representing a time as returnedrgime() orlocaltime() to a string as specified by the
formatargumentformatmust be a string.

The following directives can be embedded in tbematstring. They are shown without the optional field width
and precision specification, and are replaced by the indicated charactersirittiree() result:

120 Chapter 6. Generic Operating System Services

Directive | Meaning | Notes

%a Locale’s abbreviated weekday name.

%A Locale’s full weekday name.

%b Locale’s abbreviated month name.

%B Locale’s full month name.

%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%)j Day of the year as a decimal number [001,366].

%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM.
%S Second as a decimal number [00,61]. Q)
%U Week number of the year (Sunday as the first day of |the
week) as a decimal number [00,53]. All days in a new ypar
preceding the first Sunday are considered to be in week|O.
%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the
week) as a decimal number [00,53]. All days in a new ygar
preceding the first Sunday are considered to be in week|O.

%X Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year without century as a decimal number [00,99].

%Y Year with century as a decimal number.

%Z Time zone name (or by no characters if no time zone exists).

%% A literal ‘9% character.

Notes:
(1)The range really i§ to 61; this accounts for leap seconds and the (very rare) double leap seconds.

Additional directives may be supported on certain platforms, but only the ones listed here have a meaning
standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the #itél *
a directive in the following order; this is also not portable. The field width is normally 2 exceptjfarhere it
is 3.

strptime (string[, format])
Parse a string representing a time according to a format. The return value is a tuple as retgyméicniey)
orlocaltime() . Theformatparameter uses the same directives as those ussttiftiye() ; it defaults
to "%a %b %d %H:%M:%S %Which matches the formatting returned tyme() . The same platform
caveats apply; see the locaNx documentation for restrictions or additional supported directivestririg
cannot be parsed accordingfarmat, ValueError s raised. Values which are not provided as part of the
input string are filled in with default values; the specific values are platform-dependent as the XPG standard
does not provide sufficient information to constrain the result.

Note: This function relies entirely on the underlying platform’s C library for the date parsing, and some of
these libraries are buggy. There’s nothing to be done about this short of a new, portable implementation of
strptime()

Availability: Most modern WX systems.
time ()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note that even though

the time is always returned as a floating point number, not all systems provide time with a better precision than
1 second.

6.9. time — Time access and conversions 121

timezone
The offset of the local (non-DST) timezone, in seconds west of UTC (i.e. negative in most of Western Europe,
positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the local
DST timezone. If no DST timezone is defined, the second string should not be used.

See Also:

Modulelocale (section 6.22):
Internationalization services. The locale settings can affect the return values for some of the functions in the
time module.

6.10 sched — Event scheduler

Thesched module defines a class which implements a general purpose event scheduler:

scheduler (timefunc, delayfurc
Thescheduler class defines a generic interface to scheduling events. It needs two functions to actually deal
with the “outside world” —timefuncshould be callable without arguments, and return a number (the “time”,
in any units whatsoever). Thielayfuncfunction should be callable with one argument, compatible with the
output oftimefun¢ and should delay that many time unitdelayfuncwill also be called with the argumeit
after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time
>>> s=sched.scheduler(time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time()

>>> def print_some_times():
print time.time()
s.enter(5, 1, print_time, ())
s.enter(10, 1, print_time, ())
s.run()
print time.time()

>>> print_some_times()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343700.276

6.10.1 Scheduler Objects

scheduler instances have the following methods:

enterabs (time, priority, action, argumet
Schedule a new event. Thiene argument should be a numeric type compatible with the return value of the
timefuncfunction passed to the constructor. Events scheduled for thetsaewill be executed in the order of
their priority.
Executing the event means executagply(action argumen}. argumentmust be a tuple holding the pa-
rameters foaction

122 Chapter 6. Generic Operating System Services

Return value is an event which may be used for later cancellation of the eveob(sad()).

enter (delay, priority, action, argumeit
Schedule an event fatelaymore time units. Other then the relative time, the other arguments, the effect and
the return value are the same as thosesfuaerabs()

cancel (evenj
Remove the event from the queue. eNfentis not an event currently in the queue, this method will raise a
RuntimeError

empty ()
Return true if the event queue is empty.

run ()
Run all scheduled events. This function will wait (using ttedayfunc function passed to the constructor)
for the next event, then execute it and so on until there are no more scheduled events.

Eitheractionor delayfunccan raise an exception. In either case, the scheduler will maintain a consistent state
and propagate the exception. If an exception is raiseadtipn, the event will not be attempted in future calls
torun()

If a sequence of events takes longer to run than the time available before the next event, the scheduler will simply
fall behind. No events will be dropped; the calling code is responsible for canceling events which are no longer
pertinent.

6.11 getpass — Portable password input

Thegetpass module provides two functions:

getpass ([prompt])
Prompt the user for a password without echoing. The user is prompted using thestrimg, which defaults
to’Password: ' . Availability: Macintosh, WNix, Windows.

getuser ()
Return the “login name” of the user. Availability: Nux, Windows.

This function checks the environment variables $LOGNAME, $USER, $LNAME and $USERNAME, in order,
and returns the value of the first one which is set to a non-empty string. If none are set, the login name from the
password database is returned on systems which suppantvthenodule, otherwise, an exception is raised.

6.12 curses — Terminal handling for character-cell displays

Changed in version 1.6: Added support for tieairses library and converted to a package.

Thecurses module provides an interface to the curses library, the de-facto standard for portable advanced terminal
handling.

While curses is most widely used in thenlk environment, versions are available for DOS, OS/2, and possibly other
systems as well. This extension module is designed to match the API of ncurses, an open-source curses library hosted
on Linux and the BSD variants of \UX.

See Also:

Modulecurses.ascii (section 6.15):
Utilities for working with Ascli characters, regardless of your locale settings.

Modulecurses.textpad (section 6.13):
Editable text widget for curses supportiBgacslike bindings.

6.11. getpass — Portable password input 123

Modulecurses.wrapper (section 6.14):
Convenience function to ensure proper terminal setup and resetting on application entry and exit.

Curses Programming with Python
(http://www.python.org/doc/howto/curses/curses.html)
Tutorial material on using curses with Python, by Andrew Kuchling, is available on the Python Web site.

6.12.1 Functions

The modulecurses defines the following exception:

error
Exception raised when a curses library function returns an error.

Note: Wheneverx or y arguments to a function or a method are optional, they default to the current cursor location.
Wheneveiattr is optional, it defaults té_NORMAL

The modulecurses defines the following functions:

baudrate ()
Returns the output speed of the terminal in bits per second. On software terminal emulators it will have a fixed
high value. Included for historical reasons; in former times, it was used to write output loops for time delays
and occasionally to change interfaces depending on the line speed.

beep ()
Emit a short attention sound.

can _change _color ()
Returns true or false, depending on whether the programmer can change the colors displayed by the terminal.

cbreak ()
Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line buffering is turned off and
characters are available to be read one by one. However, unlike raw mode, special characters (interrupt, quit,
suspend, and flow control) retain their effects on the tty driver and calling program. Callingfifgt then
cbreak() leaves the terminal in cbreak mode.

color _content (color_numbe)
Returns the intensity of the red, green, and blue (RGB) components in thecotdarnumber which must be
between 0 and COLORS. A 3-tuple is returned, containing the R,G,B values for the given color, which will be
between 0 (no component) and 1000 (maximum amount of component).

color _pair (color_numbej
Returns the attribute value for displaying text in the specified color. This attribute value can be combined
with A_STANDOUTA_REVERSEand the otheA_* attributes.pair _number() is the counterpart to this
function.

curs _set (visibility)
Sets the cursor stateisibility can be set to 0, 1, or 2, for invisible, normal, or very visible. If the terminal
supports the visibility requested, the previous cursor state is returned; otherwise, an exception is raised. On
many terminals, the “visible” mode is an underline cursor and the “very visible” mode is a block cursor.

def _prog _mode()
Saves the current terminal mode as the “program” mode, the mode when the running program is using
curses. (Its counterpart is the “shell” mode, for when the program is not in curses.) Subsequentrealls to
set _prog _mode() will restore this mode.

def _shell _mode()
Saves the current terminal mode as the “shell” mode, the mode when the running program is not using curses.
(Its counterpart is the “program” mode, when the program is using curses capabilities.) Subsequent calls to
reset _shell _mode() will restore this mode.

124 Chapter 6. Generic Operating System Services

delay _output (m9g
Inserts aimsmillisecond pause in output.

doupdate ()
Update the physical screen. The curses library keeps two data structures, one representing the current physical
screen contents and a virtual screen representing the desired next stadeuptate() ground updates the
physical screen to match the virtual screen.

The virtual screen may be updated byautrefresh() call after write operations such asldstr()

have been performed on a window. The normediesh() call is simplynoutrefresh() followed by
doupdate() ;if you have to update multiple windows, you can speed performance and perhaps reduce screen
flicker by issuingnoutrefresh() calls on all windows, followed by a singloupdate()

echo ()
Enter echo mode. In echo mode, each character input is echoed to the screen as it is entered.

endwin ()
De-initialize the library, and return terminal to normal status.

erasechar ()
Returns the user’s current erase character. Under Unix operating systems this is a property of the controlling tty
of the curses program, and is not set by the curses library itself.

filter ()
Thefilter() routine, if used, must be called befargtscr() is called. The effect is that, during those
calls, LINES is set to 1; the capabilities clear, cup, cud, cudl, cuul, cuu, vpa are disabled; and the home string
is set to the value of cr. The effect is that the cursor is confined to the current line, and so are screen updates.
This may be used for enabling cgaracter-at-a-time line editing without touching the rest of the screen.

flash ()
Flash the screen. That is, change it to reverse-video and then change it back in a short interval. Some people
prefer such as ‘visible bell’ to the audible attention signal producelodep() .

flushinp ()
Flush all input buffers. This throws away any typeahead that has been typed by the user and has not yet been
processed by the program.

getmouse ()
After getch() returnsKEY_MOUSHo signal a mouse event, this method should be call to retrieve the queued
mouse event, represented as a 5-tfpte x, y, z bstatg. id is an ID value used to distinguish multiple
devices, and, y, zare the event'’s coordinatez.i$¢ currently unused.pstateis an integer value whose bits will
be set to indicate the type of event, and will be the bitwise OR of one or more of the following constants, where
n is the button number from 1 to 4ABUTTON_PRESSEDBUTTOMN_RELEASEDBUTTOM_CLICKED,
BUTTON_DOUBLECLICKED, BUTTONM_TRIPLE _CLICKED, BUTTONSHIFT, BUTTONCTRL BUT-
TONLALT.

getsyx ()
Returns the current coordinates of the virtual screen cursor in y and x. If leaveok is currently true, then -1,-1 is
returned.

getwin (file)
Reads window related data stored in the file by an egliéwin() call. The routine then creates and initial-
izes a new window using that data, returning the new window object.

has _colors ()
Returns true if the terminal can display colors; otherwise, it returns false.

has _ic ()
Returns true if the terminal has insert- and delete- character capabilities. This function is included for historical
reasons only, as all modern software terminal emulators have such capabilities.

6.12. curses — Terminal handling for character-cell displays 125

has _il ()
Returns true if the terminal has insert- and delete-line capabilities, or can simulate them using scrolling re-
gions. This function is included for historical reasons only, as all modern software terminal emulators have such
capabilities.

has _key (ch)
Takes a key valueh, and returns true if the current terminal type recognizes a key with that value.

halfdelay (tenth3
Used for half-delay mode, which is similar to cbreak mode in that characters typed by the user are immediately
available to the program. However, after blocking tiemthstenths of seconds, an exception is raised if nothing
has been typed. The valuetehthsmust be a number between 1 and 255. tsebreak() to leave half-delay
mode.

init _color (color_number,r, g, b
Changes the definition of a color, taking the number of the color to be changed followed by three RGB values (for
the amounts of red, green, and blue components). The vatt@af numbemust be between 0 and COLORS.
Each ofr, g, b, must be a value between 0 and 1000. Wheinh _color() is used, all occurrences of that
color on the screen immediately change to the new definition. This function is a no-op on most terminals; it is
active only ifcan _change _color() returns 1.

init _pair (pair_number, fg, by
Changes the definition of a color-pair. It takes three arguments: the number of the color-pair to be changed, the
foreground color number, and the background color number. The vaharofhumbermust be between 1 and
COLOR_PAIRS-1 (the 0 color pair is wired to white on black and cannot be changed). The vdlyaradbg
arguments must be between 0 and COLORS. If the color-pair was previously initialized, the screen is refreshed
and all occurrences of that color-pair are changed to the new definition.

initscr ()
Initialize the library. Returns ®WindowObject which represents the whole screen.

isendwin ()
Returns true iendwin() has been called (that is, the curses library has been deinitialized).

keyname (k)
Return the name of the key numbetedThe name of a key generating printable ASCII character is the key’s
character. The name of a control-key combination is a two-character string consisting of a caret followed by the
corresponding printable ASCII character. The name of an alt-key combination (128-255) is a string consisting
of the prefix ‘M-’ followed by the name of the corresponding ASCII character.

killchar ()
Returns the user’s current line kill character. Under Unix operating systems this is a property of the controlling
tty of the curses program, and is not set by the curses library itself.

longname ()
Returns a string containing the terminfo long name field describing the current terminal. The maximum length
of a verbose description is 128 characters. It is defined only after the daildor()

meta (yeg
If yesis 1, allow 8-bit characters to be input.yiésis 0, allow only 7-bit chars.

mouseinterval (interval)
Sets the maximum time in milliseconds that can elapse between press and release events in order for them to be
recognized as a click, and returns the previous interval value. The default value is 200 msec, or one fifth of a
second.

mousemask(mousemagk
Sets the mouse events to be reported, and returns a(tapllmask oldmask . availmaskindicates which
of the specified mouse events can be reported; on complete failure it retwldsri@skis the previous value of
the given window’s mouse event mask. If this function is never called, no mouse events are ever reported.

126 Chapter 6. Generic Operating System Services

newpad (nlines, ncol}
Creates and returns a pointer to a new pad data structure with the given number of lines and columns. A pad is
returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not necessarily associated with
a particular part of the screen. Pads can be used when a large window is needed, and only a part of the window
will be on the screen at one time. Automatic refreshes of pads (e.g., from scrolling or echoing of input) do not
occur. Therefresh() andnoutrefresh() methods of a pad require 6 arguments to specify the part of

the pad to be displayed and the location on the screen to be used for the display. The arguments are pminrow,
pmincol, sminrow, smincol, smaxrow, smaxcol; the p arguments refer to the upper left corner of the the pad
region to be displayed and the s arguments define a clipping box on the screen within which the pad region is to
be displayed.

newwin ([nlines, ncols] begin_y, begin x)
Return a new window, whose left-upper corner is(dtegin.y, begin_x), and whose height/width is
nlinegncols

By default, the window will extend from the specified position to the lower right corner of the screen.

nl ()

Enter newline mode. This mode translates the return key into newline on input, and translates newline into
return and line-feed on output. Newline mode is initially on.

nocbreak ()
Leave cbreak mode. Return to normal “cooked” mode with line buffering.

noecho ()
Leave echo mode. Echoing of input characters is turned off,

nonl ()
Leave newline mode. Disable translation of return into newline on input, and disable low-level translation of
newline into newline/return on output (but this does not change the behavaddoh('\n") , Which always

does the equivalent of return and line feed on the virtual screen). With translation off, curses can sometimes
speed up vertical motion a little; also, it will be able to detect the return key on input.

nogiflush ()
When the nogqiflush routine is used, normal flush of input and output queues associated with the INTR, QUIT
and SUSP characters will not be done. You may want toreadiflush() in a signal handler if you want

output to continue as though the interrupt had not occurred, after the handler exits.

noraw ()
Leave raw mode. Return to normal “cooked” mode with line buffering.

pair _content (pair_numbej
Returns a tupléfg,bg) containing the colors for the requested color pair. The valuga@f numbermust be
between 0 and COLORPAIRS-1.

pair _number (attr)
Returns the number of the color-pair set by the attribute vattre color _pair() is the counterpart to this
function.

putp (string)
Equivalent taputs(str, 1, putchar) ; emits the value of a specified terminfo capability for the current
terminal. Note that the output of putp always goes to standard output.

qifiush ([flag])
If flagis false, the effect is the same as callmagiflush() . If flagis true, or no argument is provided, the
queues will be flushed when these control characters are read.

raw ()
Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit, suspend, and flow control
keys are turned off; characters are presented to curses input functions one by one.

6.12. curses — Terminal handling for character-cell displays 127

reset _prog _mode()
Restores the terminal to “program” mode, as previously savetkeby prog _mode() .

reset _shell _mode()
Restores the terminal to “shell” mode, as previously saveddfy_shell _mode() .

setsyx (v, %
Sets the virtual screen cursorytox. If y andx are both -1, then leaveok is set.

start _color ()
Must be called if the programmer wants to use colors, and before any other color manipulation routine is called.
It is good practice to call this routine right aftieitscr()

start _color() initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white), and
two global variables in theurses module, COLORS and COLQRPAIRS, containing the maximum number

of colors and color-pairs the terminal can support. It also restores the colors on the terminal to the values they
had when the terminal was just turned on.

termattrs ()
Returns a logical OR of all video attributes supported by the terminal. This information is useful when a curses
program needs complete control over the appearance of the screen.

termname ()
Returns the value of the environment variable TERM, truncated to 14 characters.

tigetflag (capnamg
Returns the value of the Boolean capability corresponding to the terminfo capabilityaagamame The value
-1is returned itapnames not a Boolean capability, or O if itis canceled or absent from the terminal description.

tigetnum (capnamég
Returns the value of the numeric capability corresponding to the terminfo capabilityazgmame The value
-2 is returned itapnames not a numeric capability, or -1 if it is canceled or absent from the terminal description.

tigetstr (capnamég
Returns the value of the string capability corresponding to the terminfo capability capmame None is
returned ifcapnames not a string capability, or is canceled or absent from the terminal description.

typeahead (fd)
Specifies that the file descriptéd be used for typeahead checking.fdfis -1, then no typeahead checking is
done.

The curses library does “line-breakout optimization” by looking for typeahead periodically while updating the
screen. If input is found, and it is coming from a tty, the current update is postponed until refresh or doupdate is
called again, allowing faster response to commands typed in advance. This function allows specifying a different
file descriptor for typeahead checking.

unctrl (ch)
Returns a string which is a printable representation of the charattaControl characters are displayed as a
caret followed by the character, for exampl€@s Printing characters are left as they are.

ungetch (ch)
Pushch so the nexgetch() will return it. Note: only onech can be pushed befogetch() is called.

ungetmouse (id, X, y, z, bstate
Push &KEY_MOUSEvent onto the input queue, associating the given state data with it.

use _env (flag)
If used, this function should be called befanéscr or newterm are called. Whdtag is false, the values
of lines and columns specified in the terminfo database will be used, even if environment variables LINES and
COLUMNS (used by default) are set, or if curses is running in a window (in which case default behavior would
be to use the window size if LINES and COLUMNS are not set).

128 Chapter 6. Generic Operating System Services

6.12.2 Window Objects

Window objects, as returned lyitscr() andnewwin() above, have the following methods:

addch ([y, x,] ch[, attr])
Note: A charactermeans a C character (i.e., @aaclii code), rather then a Python character (a string of length 1).
(This note is true whenever the documentation mentions a character.) Thedmdgi(in is handy for conveying
strings to codes.

Paint charactechat(y, x) with attributesattr, overwriting any character previously painter at that location.
By default, the character position and attributes are the current settings for the window object.

addnstr ([y, x,] str, n[, attr])
Paint at mosh characters of the stringtr at (y, X) with attributesattr, overwriting anything previously on
the display.

addstr ([y, x,] str[, attr])
Paint the stringstr at(y, x) with attributesattr, overwriting anything previously on the display.

attroff ~ (attr)
Remove attributattr from the “background” set applied to all writes to the current window.

attron (attr)
Add attributeattr from the “background” set applied to all writes to the current window.

attrset (attr)
Set the “background” set of attributesatir. This set is initially O (no attributes).

bkgd (ch[, attr])
Sets the background property of the window to the charattexith attributesattr. The change is then applied
to every character position in that window:

eThe attribute of every character in the window is changed to the new background attribute.
eWherever the former background character appears, it is changed to the new background character.

bkgdset (ch[, attr])
Sets the window’s background. A window’s background consists of a character and any combination of at-
tributes. The attribute part of the background is combined (OR’ed) with all non-blank characters that are written
into the window. Both the character and attribute parts of the background are combined with the blank charac-
ters. The background becomes a property of the character and moves with the character through any scrolling
and insert/delete line/character operations.

border ([Is[, rs[, s, be, [, [, bi[, br]]11111])

Draw a border around the edges of the window. Each parameter specifies the character to use for a specific
part of the border; see the table below for more details. The characters must be specified as integers; using
one-character strings will cau3gpeError to be raised.

Note: A 0 value for any parameter will cause the default character to be used for that parameter. Keyword
parameters canotbe used. The defaults are listed in this table:

Parameter | Description Default value

Is Left side ACS VLINE
rs Right side ACS_VLINE
ts Top ACS HLINE
bs Bottom ACS HLINE
tl Upper-left corner | ACS_ULCORNER
tr Upper-right corner | ACS_ URCORNER
bl Bottom-left corner | ACS BLCORNER
br Bottom-right corner| ACS_ BRCORNER

box ([vertch, horcl])

6.12. curses — Terminal handling for character-cell displays 129

Similar toborder() , but bothls andrs arevertchand bothts and bs ardworch The default corner characters
are always used by this function.

clear ()
Like erase() , but also causes the whole window to be repainted upon next aatresh()

clearok (yes
If yesis 1, the next call taefresh() will clear the window completely.

clrtobot ()
Erase from cursor to the end of the window: all lines below the cursor are deleted, and then the equivalent of
clrtoeol() is performed.

clrtoeol ()

Erase from cursor to the end of the line.

cursyncup ()
Updates the current cursor position of all the ancestors of the window to reflect the current cursor position of
the window.

delch ([x,y])
Delete any character &, Xx) .

deleteln ()
Delete the line under the cursor. All following lines are moved up by 1 line.

derwin ([nlines, ncols] begin_y, begin.y)
An abbreviation for “derive window"derwin() is the same as callingubwin() , except thabegin_y and
begin_x are relative to the origin of the window, rather than relative to the entire screen. Returns a window
object for the derived window.

echochar (ch[, attr])
Add charactechwith attributeattr, and immediately callefresh on the window.

enclose (v, X
Tests whether the given pair of screen-relative character-cell coordinates are enclosed by the given window,
returning true or false. It is useful for determining what subset of the screen windows enclose the location of a
mouse event.

erase ()
Clear the window.

getbegyx ()
Return atupl€ y, X) of co-ordinates of upper-left corner.

getch ([x,y])
Get a character. Note that the integer returned do¢bave to be imscii range: function keys, keypad keys
and so on return numbers higher then 256. In no-delay mode, an exception is raised if there is no input.

getkey ([x, y])
Get a character, returning a string instead of an integageth() does. Function keys, keypad keys and so
on return a multibyte string containing the key name. In no-delay mode, an exception is raised if there is no
input.
getmaxyx ()
Return atupl€ y, x) of the height and width of the window.

getparyx ()
Returns the beginning coordinates of this window relative to its parent window into two integer variables y and
X. Returns-1,-1 if this window has no parent.

getstr ([x,y])
Read a string from the user, with primitive line editing capacity.

130 Chapter 6. Generic Operating System Services

getyx ()
Return atupl€ y, Xx) of current cursor position relative to the window’s upper-left corner.

hine ([y,x] ch,n
Display a horizontal line starting &y, x) with lengthn consisting of the characteh.

idcok (flag)
If flagis false, curses no longer considers using the hardware insert/delete character feature of the terminal; if
flagis true, use of character insertion and deletion is enabled. When curses is first initialized, use of character
insert/delete is enabled by default.

idlok (yeg
If called with yesequal to 1,curses will try and use hardware line editing facilities. Otherwise, line inser-
tion/deletion are disabled.

immedok (flag)
If flagis true, any change in the window image automatically causes the window to be refreshed; you no longer
have to calfrefresh() yourself. However, it may degrade performance considerably, due to repeated calls to
wrefresh. This option is disabled by default.

inch ([x,y])
Return the character at the given position in the window. The bottom 8 bits are the character proper, and upper
bits are the attributes.

insch ([y, x,] ch[, attr])
Paint charactechat(y, x) with attributesattr, moving the line from positiox right by one character.

insdelin (nlineg
Insertsnlineslines into the specified window above the current line. Tlieesbottom lines are lost. For
negativenlines deletenlineslines starting with the one under the cursor, and move the remaining lines up. The
bottomnlineslines are cleared. The current cursor position remains the same.

insertin ()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

insnstr ([y, x,] str, n [attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor, up to
n characters. Ifiis zero or negative, the entire string is inserted. All characters to the right of the cursor are
shifted right, with the the rightmost characters on the line being lost. The cursor position does not change (after
moving toy, X, if specified).

insstr ([y, x,] str [attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor. All
characters to the right of the cursor are shifted right, with the the rightmost characters on the line being lost. The
cursor position does not change (after moving,te, if specified).

instr ([y, x] [n])
Returns a string of characters, extracted from the window starting at the current cursor positiop, if at
specified. Attributes are stripped from the characters.idfspecifiedjnstr() returns return a string at most
n characters long (exclusive of the trailing NUL).

is _linetouched (line)
Returns true if the specified line was modified since the last cadiftesh() ; otherwise returns false. Raises
acurses.error exception ifline is not valid for the given window.

is _wintouched ()
Returns true if the specified window was modified since the last cadiftesh() ; otherwise returns false.

keypad (ye9
If yesis 1, escape sequences generated by some keys (keypad, function keys) will be interpcateddy. If
yesis 0, escape sequences will be left as is in the input stream.

6.12. curses — Terminal handling for character-cell displays 131

leaveok (yeg
If yesis 1, cursor is left where it is on update, instead of being at “cursor position.” This reduces cursor
movement where possible. If possible the cursor will be made invisible.

If yesis 0, cursor will always be at “cursor position” after an update.

move(hew._y, new x)
Move cursor tq new_y, new.x) .

mvderwin (y, X
Moves the window inside its parent window. The screen-relative parameters of the window are not changed.
This routine is used to display different parts of the parent window at the same physical position on the screen.

mvwin (Nnew_y, new x)
Move the window so its upper-left corner is(@ew.y, new.x) .

nodelay (ye9
If yesis 1,getch() will be non-blocking.

notimeout (yes
If yesis 1, escape sequences will not be timed out.

If yesis 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in the input
stream as is.

noutrefresh ()
Mark for refresh but wait. This function updates the data structure representing the desired state of the window,
but does not force an update of the physical screen.

putwin (file)
Writes all data associated with the window into the provided file object. This information can be later retrieved
using thegetwin() function.

redrawln (beg, num
Indicates that theumscreen lines, starting at lieeg are corrupted and should be completely redrawn on the
nextrefresh() call.

redrawwin ()
Touches the entire window, causing it to be completely redrawn on theefeash() call.

refresh ([pminrow, pmincol, sminrow, smincol, smaxrow, sma](ool
Update the display immediately (sync actual screen with previous drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad createdewiiad() . The
additional parameters are needed to indicate what part of the pad and screen are ipmimezivandpmincol

specify the upper left-hand corner of the rectangle to be displayed in thespaigkow sminco] smaxrow and
smaxcolspecify the edges of the rectangle to be displayed on the screen. The lower right-hand corner of the
rectangle to be displayed in the pad is calculated from the screen coordinates, since the rectangles must be the
same size. Both rectangles must be entirely contained within their respective structures. Negative values of
pminrow; pmincol sminrow or smincolare treated as if they were zero.

scroll ([lines = 1])
Scroll the screen upward bineslines.

scrollok (flag)
Controls what happens when the cursor of a window is moved off the edge of the window or scrolling region,
either as a result of a newline action on the bottom line, or typing the last character of the last flag.isif
false, the cursor is left on the bottom line.fldg is true, the window is scrolled up one line. Note that in order
to get the physical scrolling effect on the terminal, it is also necessary tmitz()

setscrreg (top, botton)
Set the scrolling region from lin®p to line bottom All scrolling actions will take place in this region.

132 Chapter 6. Generic Operating System Services

standend ()
Turn off the standout attribute. On some terminals this has the side effect of turning off all attributes.

standout ()
Turn on attributeA_STANDOUT

subpad ([nlines, ncols] begin_y, begin.y)
Return a sub-window, whose upper-left corner is(dteginy, begin_x), and whose width/height is
ncolgnlines

subwin ([nlines, ncols] begin_y, begin.y)
Return a sub-window, whose upper-left corner is(&tegin.y, begin x), and whose width/height is
ncolgnlines

By default, the sub-window will extend from the specified position to the lower right corner of the window.
syncdown ()

Touches each location in the window that has been touched in any of its ancestor windows. This routine is called
by refresh() , so it should almost never be necessary to call it manually.

syncok (flag)
If called withflag set to true, thesyncup() is called automatically whenever there is a change in the window.

syncup ()
Touches all locations in ancestors of the window that have been changed in the window.

timeout (delay)
Sets blocking or non-blocking read behavior for the windovddfayis negative, blocking read is used, which
will wait indefinitely for input). If delayis zero, then non-blocking read is used, and -1 will be returned by
getch() if no input is waiting. Ifdelayis positive, thergetch() will block for delay milliseconds, and
return -1 if there is still no input at the end of that time.

touchline (start, coun}
Pretendcountlines have been changed, starting with Igtart.

touchwin ()
Pretend the whole window has been changed, for purposes of drawing optimizations.

untouchwin ()
Marks all lines in the window as unchanged since the last ca#ftesh()

viine ([y,x] ch,n
Display a vertical line starting dty, x) with lengthn consisting of the characteh.

6.12.3 Constants

Thecurses module defines the following data members:

version
A string representing the current version of the module. Also availahle @srsion

Several constants are available to specify character cell attributes:

Attribute | Meaning

A_ALTCHARSET] Alternate character set mode.
A_BLINK Blink mode.

A_BOLD Bold mode.

A_DIM Dim mode.

A_NORMAL Normal attribute.
A_STANDOUT Standout mode.
A_UNDERLINE | Underline mode.

6.12. curses — Terminal handling for character-cell displays 133

Keys are referred to by integer constants with names starting WHY*'. The exact keycaps available are system
dependent.

Key constant | Key

KEY_MIN Minimum key value
KEY_BREAK Break key (unreliable)
KEY_DOWN Down-arrow

KEY_UP Up-arrow

KEY_LEFT Left-arrow

KEY_RIGHT Right-arrow

KEY_HOME Home key (upward+left arrow)
KEY_BACKSPACH Backspace (unreliable)
KEY_FO Function keys. Up to 64 function keys are supported.
KEY_Fn Value of function keyn

KEY_DL Delete line

KEY_IL Insert line

KEY_DC Delete character

KEY_IC Insert char or enter insert mode
KEY_EIC Exit insert char mode
KEY_CLEAR Clear screen

KEY_EOS Clear to end of screen
KEY_EOL Clear to end of line

KEY_SF Scroll 1 line forward

KEY_SR Scroll 1 line backward (reverse)
KEY_NPAGE Next page

KEY_PPAGE Previous page

KEY_STAB Set tab

KEY_CTAB Clear tab

KEY_CATAB Clear all tabs

KEY_ENTER Enter or send (unreliable)
KEY_SRESET Soft (partial) reset (unreliable)
KEY_RESET Reset or hard reset (unreliable)
KEY_PRINT Print

KEY_LL Home down or bottom (lower left)
KEY_Al Upper left of keypad

KEY_A3 Upper right of keypad

KEY_B2 Center of keypad

KEY_C1 Lower left of keypad

KEY_C3 Lower right of keypad
KEY_BTAB Back tab

KEY_BEG Beg (beginning)
KEY_CANCEL Cancel

KEY_CLOSE Close

KEY_COMMAND | Cmd (command)

KEY_COPY Copy

KEY_CREATE Create

KEY_END End

KEY_EXIT Exit

KEY_FIND Find

KEY_HELP Help

KEY_MARK Mark

KEY_MESSAGE | Message

KEY_MOVE Move

134 Chapter 6. Generic Operating System Services

Key constant | Key

KEY_NEXT Next

KEY_OPEN Open
KEY_OPTIONS Options
KEY_PREVIOUS | Prev (previous)
KEY_REDO Redo
KEY_REFERENCE Ref (reference)
KEY_REFRESH Refresh
KEY_REPLACE Replace
KEY_RESTART Restart
KEY_RESUME Resume
KEY_SAVE Save

KEY_SBEG Shifted Beg (beginning)
KEY_SCANCEL Shifted Cancel
KEY_SCOMMAND| Shifted Command

KEY_SCOPY Shifted Copy
KEY_SCREATE Shifted Create
KEY_SDC Shifted Delete char
KEY_SDL Shifted Delete line
KEY_SELECT Select
KEY_SEND Shifted End
KEY_SEOL Shifted Clear line
KEY_SEXIT Shifted Dxit
KEY_SFIND Shifted Find
KEY_SHELP Shifted Help
KEY_SHOME Shifted Home
KEY_SIC Shifted Input
KEY_SLEFT Shifted Left arrow
KEY_SMESSAGE | Shifted Message
KEY_SMOVE Shifted Move
KEY_SNEXT Shifted Next

KEY_SOPTIONS | Shifted Options
KEY_SPREVIOUS| Shifted Prev
KEY_SPRINT Shifted Print
KEY_SREDO Shifted Redo
KEY_SREPLACE | Shifted Replace
KEY_SRIGHT Shifted Right arrow
KEY_SRSUME Shifted Resume

KEY_SSAVE Shifted Save
KEY_SSUSPEND | Shifted Suspend
KEY_SUNDO Shifted Undo
KEY_SUSPEND | Suspend

KEY_UNDO Undo

KEY_MOUSE Mouse event has occurred
KEY_RESIZE Terminal resize event
KEY_MAX Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are normally at least four function keys
(KEY_F1, KEY_F2, KEY_F3, KEY_F4) available, and the arrow keys mapped®eY_UP, KEY_DOWNKEY_LEFT

and KEY_RIGHT in the obvious way. If your machine has a PC keybboard, it is safe to expect arrow keys and
twelve function keys (older PC keyboards may have only ten function keys); also, the following keypad mappings are

6.12. curses — Terminal handling for character-cell displays 135

standard:

Keycap Constant
Insert KEY_IC
Delete KEY_DC
Home KEY_HOME
End KEY_END
Page Up KEY _NPAGE
Page Down | KEY_PPAGE

The following table lists characters from the alternate character set. These are inherited from the VT100 terminal, and
will generally be available on software emulations such as X terminals. When there is no graphic available, curses falls

back on a crude printable ASCII approximatidiote: These are available only afteritscr() has been called.
ACS code | Meaning
ACS BBSS alternate name for upper right corner
ACS BLOCK solid square block
ACS BOARD board of squares
ACS BSBS alternate name for horizontal line
ACS BSSB alternate name for upper left corner
ACS BSSS alternate name for top tee
ACS BTEE bottom tee
ACS BULLET bullet
ACS_CKBOARD | checker board (stipple)
ACS_DARROW | arrow pointing down
ACS DEGREE | degree symbol
ACS DIAMOND | diamond
ACS GEQUAL greater-than-or-equal-to
ACS HLINE horizontal line
ACS_LANTERN | lantern symbol
ACS LARROW | left arrow
ACS LEQUAL less-than-or-equal-to
ACS LLCORNER lower left-hand corner
ACS LRCORNER lower right-hand corner
ACS LTEE left tee
ACS NEQUAL not-equal sign
ACS PI letter pi
ACS_PLMINUS | plus-or-minus sign
ACS PLUS big plus sign
ACS RARROW | right arrow
ACS RTEE right tee
ACS S1 scan line 1
ACS S3 scan line 3
ACS S7 scan line 7
ACS_S9 scan line 9
ACS_SBBS alternate name for lower right corner
ACS SBSB alternate name for vertical line
ACS_SBSS alternate name for right tee
ACS _SSBB alternate name for lower left corner
ACS_SSBS alternate name for bottom tee
ACS_SSSB alternate name for left tee
ACS SSSS alternate name for crossover or big plus
ACS STERLING | pound sterling

136

Chapter 6. Generic Operating System Services

ACS code | Meaning

ACS TTEE top tee
ACS_UARROW | up arrow

ACS ULCORNER upper left corner
ACS_URCORNER upper right corner
ACS VLINE vertical line

The following table lists the predefined colors:

Constant | Color
COLORBLACK Black
COLORBLUE Blue

COLORCYAN Cyan (light greenish blue)
COLORGREEN Green
COLORMAGENTA Magenta (purplish red)
COLORRED Red

COLORWHITE White

COLORYELLOW | Yellow

6.13 curses.textpad — Text input widget for curses programs

New in version 1.6.

Thecurses.textpad module provides dextbox class that handles elementary text editing in a curses window,
supporting a set of keybindings resembling those of Emacs (thus, also of Netscape Navigator, BBedit 6.x, FrameMaker,
and many other programs). The module also provides a rectangle-drawing function useful for framing text boxes or
for other purposes.

The modulecurses.textpad defines the following function:

rectangle (‘win, uly, ulx, Iry, IrY
Draw arectangle. The first argument must be a window object; the remaining arguments are coordinates relative
to that window. The second and third arguments are the y and x coordinates of the upper left hand corner of
the rectangle To be drawn; the fourth and fifth arguments are the y and x coordinates of the lower right hand
corner. The rectangle will be drawn using VT100/IBM PC forms characters on terminals that make this possible
(including xterm and most other software terminal emulators). Otherwise it will be drawn with ASCII dashes,
vertical bars, and plus signs.

6.13.1 Textbox objects

You can instantiate @extbox object as follows:

Textbox (‘win)
Return a textbox widget object. Then argument should be a curs@ésndowObject in which the textbox is
to be contained. The edit cursor of the textbox is initially located at the upper left hand corner of the containin
window, with coordinate¢0, 0) . The instance’'stripspaces flag is initially on.

Textbox objects have the following methods:

edit ([validator])
This is the entry point you will normally use. It accepts editing keystrokes until one of the termination keystrokes

6.13. curses.textpad — Text input widget for curses programs 137

is entered. livalidator is supplied, it must be a function. It will be called for each keystroke entered with the
keystroke as a parameter; command dispatch is done on the result. This method returns the window contents as
a string; whether blanks in the window are included is affected bgtifiifgspaces =~ member.

do_command ch)
Process a single command keystroke. Here are the supported special keystrokes:

Keystroke | Action

Ctrl-A Go to left edge of window.

Ctrl-B Cursor left, wrapping to previous line if appropriate.

Ctrl-D Delete character under cursor.

Ctrl-E Go to right edge (stripspaces off) or end of line (stripspaces on).
Ctrl-F Cursor right, wrapping to next line when appropriate.
Ctrl-G Terminate, returning the window contents.

Ctrl-H Delete character backward.

Ctrl-J Terminate if the window is 1 line, otherwise insert newline.
Ctrl-K If line is blank, delete it, otherwise clear to end of line.
Ctrl-L Refresh screen.

Ctrl-N Cursor down; move down one line.

Ctrl-O Insert a blank line at cursor location.

Ctrl-P Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is not possible. The following
synonyms are supported where possible:

Constant | Keystroke
KEY_LEFT Ctrl-B
KEY_RIGHT Ctrl-F
KEY_UP Ctrl-P
KEY_DOWN Ctrl-N

KEY_BACKSPACE Ctrl-h
All other keystrokes are treated as a command to insert the given character and move right (with line wrapping).

gather ()
This method returns the window contents as a string; whether blanks in the window are included is affected by
thestripspaces member.

stripspaces
This data member is a flag which controls the interpretation of blanks in the window. When it is on, trailing
blanks on each line are ignored; any cursor motion that would land the cursor on a trailing blank goes to the end
of that line instead, and trailing blanks are stripped when the window contents is gathered.

6.14 curses.wrapper — Terminal handler for curses programs

New in version 1.6.

This module supplies one functionrapper() , which runs another function which should be the rest of your curses-
using application. If the application raises an exceptrapper() will restore the terminal to a sane state before
passing it further up the stack and generating a traceback.

wrapper (func,..)
Wrapper function that initializes curses and calls another funchiow, restoring normal keyboard/screen be-
havior on error. The callable objeitincis then passed the main window 'stdscr’ as its first argument, followed
by any other arguments passedwapper()

Before calling the hook functiorwrapper() turns on cbreak mode, turns off echo, enables the terminal keypad,
and initializes colors if the terminal has color support. On exit (whether normally or by exception) it restores cooked

138 Chapter 6. Generic Operating System Services

mode, turns on echo, and disables the terminal keypad.

6.15 curses.ascii — Utilities for ASCII characters

New in version 1.6.

The curses.ascii module supplies hame constants fgcllI characters and functions to test membership in
variousAscli character classes. The constants supplied are names for control characters as follows:

Name | Meaning

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
TAB
HT
LF
NL
VT
FF
CR
o)
sl
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SuB
ESC
FS
GS
RS
us
SP
DEL

Start of heading, console interrupt
Start of text

End of text

End of transmission

Enquiry, goes wittACKflow control
Acknowledgement

Bell

Backspace

Tab

Alias for TAB: “Horizontal tab”

Line feed

Alias for LF: “New line”

Vertical tab

Form feed

Carriage return

Shift-out, begin alternate character set
Shift-in, resume default character set
Data-link escape

XON, for flow control

Device control 2, block-mode flow control
XOFF, for flow control

Device control 4

Negative acknowledgement
Synchronous idle

End transmission block

Cancel

End of medium

Substitute

Escape

File separator

Group separator

Record separator, block-mode terminator
Unit separator

Space

Delete

Note that many of these have little practical use in modern usage.

The module supplies the following functions, patterned on those in the standard C library:

isalnum (c)

Checks for amscii alphanumeric character; it is equivalentigaipha(¢) or isdigit(

c’.

6.15. curses.ascii — Utilities for ASCII characters

139

isalpha (c)
Checks for amscii alphabetic character; it is equivalent teupper(¢) or islower(c) .

isascii (c)
Checks for a character value that fits in the 7AsitII set.
isblank (c)
Checks for amscii whitespace character.
iscntrl (c)
Checks for amscii control character (in the range 0x00 to 0x1f).
isdigit (c)
Checks for arascii decimal digit, 0’ through ‘9’. This is equivalent to¢ in string.digits .
isgraph (c¢)
Checks forascii any printable character except space.
islower (c)
Checks for amscii lower-case character.
isprint (c)
Checks for amyascii printable character including space.
ispunct (c)
Checks for any printablescii character which is not a space or an alphanumeric character.
isspace (c¢)
Checks forascii white-space characters; space, tab, line feed, carriage return, form feed, horizontal tab, vertical
tab.
isupper (c)

Checks for amscil uppercase letter.

isxdigit ~ (c¢)
Checks for amscil hexadecimal digit. This is equivalent to ‘in string.hexdigits

isctrl (¢)
Checks for amscii control character (ordinal values 0 to 31).

ismeta (c)
Checks for a nomscii character (ordinal values 0x80 and above).

These functions accept either integers or strings; when the argument is a string, it is first converted using the built-in
functionord()

Note that all these functions check ordinal bit values derived from the first character of the string you pass in; they do
not actually know anything about the host machine’s character encoding. For functions that know about the character
encoding (and handle internationalization properly) seestiieg module.

The following two functions take either a single-character string or integer byte value; they return a value of the same
type.

ascii (¢
Return the ASCII value corresponding to the low 7 bitg.of

ctrl (c¢)
Return the control character corresponding to the given character (the character bit value is bitwise-anded with
0x1f).

alt (¢
Return the 8-bit character corresponding to the given ASCII character (the character bit value is bitwise-ored
with 0x80).

140 Chapter 6. Generic Operating System Services

The following function takes either a single-character string or integer value; it returns a string.

unctrl (c¢)
Return a string representation of theclii charactec. If cis printable, this string is the character itself. If the
character is a control character (0x00-0x1f) the string consists of a catefdllowed by the corresponding
uppercase letter. If the character issgcil delete (0x7f) the string i8?" . If the character has its meta bit
(0Ox80) set, the meta bit is stripped, the preceding rules applied}! amilepended to the result.

controlnames
A 33-element string array that contains th&c1i mnemonics for the thirty-twascii control characters from 0
(NUL) to Ox1f (US), in order, plus the mnemoniSP for the space character.

6.16 getopt — Parser for command line options

This module helps scripts to parse the command line argumestsiargv . It supports the same conventions as

the UNIx getopt() function (including the special meanings of arguments of the ferrand ‘-- ’). Long options

similar to those supported by GNU software may be used as well via an optional third argument. This module provides
a single function and an exception:

getopt (args, optiong, Iongpoptions])
Parses command line options and parameter dsgs is the argument list to be parsed, without the leading
reference to the running program. Typically, this measys. argv[1:] '. optionsis the string of option
letters that the script wants to recognize, with options that require an argument followed by a cglae.(’
the same format thatux getopt() uses).

long_options if specified, must be a list of strings with the names of the long options which should be sup-
ported. The leading-" characters should not be included in the option name. Long options which require an
argument should be followed by an equal sigr)’

The return value consists of two elements: the first is a ligtagtion valug pairs; the second is the list of
program arguments left after the option list was stripped (this is a trailing sliaegef. Each option-and-value

pair returned has the option as its first element, prefixed with a hyphen for short optionsxe.g),or two
hyphens for long options (e.d-;long-option’), and the option argument as its second element, or an
empty string if the option has no argument. The options occur in the list in the same order in which they were
found, thus allowing multiple occurrences. Long and short options may be mixed.

GetoptError
This is raised when an unrecognized option is found in the argument list or when an option requiring an argument
is given none. The argument to the exception is a string indicating the cause of the error. For long options, an
argument given to an option which does not require one will also cause this exception to be raised. The attributes
msg andopt give the error message and related option; if there is no specific option to which the exception
relatesppt is an empty string.

error
Alias for GetoptError ; for backward compatibility.

An example using only Nix style options:

6.16. getopt — Parser for command line options 141

>>> jmport getopt

>>> args = -a -b -cfoo -d bar al a2’.split()
>>> args

[-a’, -b’, '-cfoo’, '-d’, 'bar, 'al’, 'a?’]

>>> optlist, args = getopt.getopt(args, 'abc:d:’)
>>> optlist

[("a,! ”)v ("b,1 ”)v ("C’v ’foo’), (,-d’, ’bar,)]

>>> args

[al’, 'a2]

Using long option names is equally easy:

>>> s = ’--condition=foo --testing --output-file abc.def -x al a2’
>>> args = s.split()
>>> args

[--condition=foo’, ’--testing’, ’--output-file’, 'abc.def’, ’-x’, 'al’, 'a2’]
>>> optlist, args = getopt.getopt(args, X, [
‘condition=", ’output-file=', ’testing’])
>>> optlist
[(--condition’, 'foo’), (--testing’, ™), (--output-file’, 'abc.def’), (-x’,
Bl
>>> argS
[al’, 'a2]

In a script, typical usage is something like this:

import getopt, sys

def main():
try:
opts, args = getopt.getopt(sys.argv[l:], "ho:", ["help”, "output="])
except getopt.GetoptError:
print help information and exit:
usage()
sys.exit(2)
output = None
for o, a in opts:
if o in ("-h", "--help"):

usage()
sys.exit()
if o in ("-0", "--output"):
output = a
..
if _name__ == "_ main__"
main()

142 Chapter 6. Generic Operating System Services

6.17 tempfile — Generate temporary file names

This module generates temporary file names. It is netXdJspecific, but it may require some help on norii
systems.

The module defines the following user-callable functions:

mktemp ([suﬁix])
Return a unique temporary filename. This is an absolute pathname of a file that does not exist at the time the call
is made. No two calls will return the same filenarsaffix if provided, is used as the last part of the generated
file name. This can be used to provide a filename extension or other identifying information that may be useful
on some platforms.

TemporaryFile ([mode{, bufsiz{, suffix]]])
Return a file (or file-like) object that can be used as a temporary storage area. The file is created in the most
secure manner available in the appropriate temporary directory for the host platform. Undethé directory
entry to the file is removed so that it is secure against attacks which involve creating symbolic links to the file
or replacing the file with a symbolic link to some other file. For other platforms, which don’t allow removing
the directory entry while the file is in use, the file is automatically deleted as soon as it is closed (including an
implicit close when it is garbage-collected).

The modeparameter defaults tav+b’ so that the file created can be read and written without being closed.
Binary mode is used so that it behaves consistently on all platforms without regard for the data that is stored.
bufsizedefaults to-1 , meaning that the operating system default is usaffixis passed tonktemp() .

The module uses two global variables that tell it how to construct a temporary name. The caller may assign values to
them; by default they are initialized at the first calindtemp() .

tempdir
When set to a value other thaxone, this variable defines the directory in which filenames returned by
mktemp() reside. The default is taken from the environment variable $TMPDIR; if this is not set, either
‘fusritmp’ is used (on WiIx), or the current working directory (all other systems). No check is made to see
whether its value is valid.

gettempprefix ()
Return the filename prefix used to create temporary files. This does not contain the directory component. Using
this function is preferred over using ttemplate variable directly. New in version 1.5.2.

template
Deprecated since release 2.Qsegettempprefix() instead.

When set to a value other th&one, this variable defines the prefix of the final component of the filenames
returned bymktemp() . A string of decimal digits is added to generate unique filenames. The default is either
‘@pid.” wherepid is the current process ID (onNUx), ““pid-" on Windows NT, Python-Tmp-' on MacOS, or

‘tmp’ (all other systems).

Older versions of this module used to require tiemiplate be set taNone after a call toos.fork() ; this
has not been necessary since version 1.5.2.

6.18 errno — Standard errno system symbols

This module makes available standarcho system symbols. The value of each symbol is the corresponding integer
value. The names and descriptions are borrowed fiix/include/errno.h’, which should be pretty all-inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system. For instance,
errno.errorcode[errno.EPERM] maps toEPERM’.

To translate a numeric error code to an error messageaausterror()

6.17. tempfile — Generate temporary file names 143

Of the following list, symbols that are not used on the current platform are not defined by the module. The specific list
of defined symbols is available asrno.errorcode.keys() . Symbols available can include:

EPERM
Operation not permitted

ENOENT
No such file or directory

ESRCH
No such process

EINTR
Interrupted system call

EIO
I/O error

ENXIO
No such device or address

E2BIG
Arg list too long

ENOEXEC
Exec format error

EBADF
Bad file number

ECHILD
No child processes

EAGAIN

Try again
ENOMEM

Out of memory

EACCES
Permission denied

EFAULT
Bad address

ENOTBLK
Block device required

EBUSY
Device or resource busy

EEXIST
File exists

EXDEV
Cross-device link

ENODEV
No such device

ENOTDIR
Not a directory

EISDIR
Is a directory

144 Chapter 6. Generic Operating System Services

EINVAL
Invalid argument

ENFILE
File table overflow

EMFILE
Too many open files

ENOTTY
Not a typewriter

ETXTBSY
Text file busy

EFBIG
File too large

ENOSPC
No space left on device

ESPIPE
lllegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE
Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

6.18. errno — Standard errno system symbols

145

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

ELNRNG
Link number out of range

EUNATCH
Protocol driver not attached

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO
No anode

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired

ENOSR
Out of streams resources

ENONET
Machine is not on the network

ENOPKG
Package not installed

146

Chapter 6. Generic Operating System Services

EREMOTE
Object is remote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

ECOMM
Communication error on send

EPROTO
Protocol error

EMULTIHOP
Multihop attempted

EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Value too large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

EREMCHG
Remote address changed

ELIBACC
Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
lib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec a shared library directly

EILSEQ
lllegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS
Too many users

6.18. errno — Standard errno system symbols

147

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

ENOPROTOOPT
Protocol not available

EPROTONOSUPPORT
Protocol not supported

ESOCKTNOSUPPORT
Socket type not supported

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT
Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Cannot assign requested address

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

ECONNABORTED
Software caused connection abort

ECONNRESET
Connection reset by peer

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references: cannot splice

148

Chapter 6. Generic Operating System Services

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

ESTALE
Stale NFS file handle

EUCLEAN
Structure needs cleaning

ENOTNAM
Not a XENIX named type file

ENAVAIL
No XENIX semaphores available

EISNAM
Is a named type file

EREMOTEIO
Remote I/O error

EDQUOT
Quota exceeded

6.19 glob — UNIX style pathname pattern expansion

Theglob module finds all the pathnames matching a specified pattern according to the rules used foytisbell.

No tilde expansion is done, btif ?, and character ranges expressed {ittwill be correctly matched. This is done by
using theos.listdir() andfnmatch.fnmatch() functions in concert, and not by actually invoking a subshell.
(For tilde and shell variable expansion, usepath.expanduser() andos.path.expandvars())

glob (pathnamég
Returns a possibly-empty list of path names that mpsthnamewhich must be a string containing a path spec-
ification. pathnamean be either absolute (lik&isr/src/Python-1.5/Makefile’) or relative (like “../../Tools/*/*.gif’),
and can contain shell-style wildcards.

For example, consider a directory containing only the following fildsgif’, ‘ 2.txt’, and ‘card.gif’. glob() will
produce the following results. Notice how any leading components of the path are preserved.

6.19. glob — UNIx style pathname pattern expansion 149

>>> import glob

>>> glob.glob(’./[0-9].*")
[./1.gif, "./2.txt]

>>> glob.glob(*.qgif")
[1.gif", ’'card.gif']

>>> glob.glob('?.gif")
[1.gif]

See Also:

Modulefnmatch (section 6.20):
Shell-style filename (not path) expansion

6.20 fnmatch — UNIX filename pattern matching

This module provides support forNux shell-style wildcards, which aneotthe same as regular expressions (which
are documented in the module). The special characters used in shell-style wildcards are:

Pattern | Meaning

* matches everything

? matches any single character
[sed matches any character seq
[! sed | matches any character notseq

Note that the filename separatdt (on UNIX) is not special to this module. See modul®b for pathname
expansiondlob usesfnmatch() to match pathname segments). Similarly, filenames starting with a period are not
special for this module, and are matched by*thend? patterns.

fnmatch (filename, pattern
Test whether thdéilenamestring matches thpatternstring, returning true or false. If the operating system is
case-insensitive, then both parameters will be normalized to all lower- or upper-case before the comparison is
performed. If you require a case-sensitive comparison regardless of whether that's standard for your operating
system, usénhmatchcase() instead.

fnmatchcase (filename, pattern
Test whethefilenamematchegattern returning true or false; the comparison is case-sensitive.

See Also:

Moduleglob (section 6.19):
UNIx shell-style path expansion.

6.21 shutil — High-level file operations

Theshutil module offers a number of high-level operations on files and collections of files. In particular, functions
are provided which support file copying and removal.

Caveat: On MacOS, the resource fork and other metadata are not used. For file copies, this means that resources will
be lost and file type and creator codes will not be correct.

copyfile ('src, ds)
Copy the contents afrcto dst If dstexists, it will be replaced, otherwise it will be created.

150 Chapter 6. Generic Operating System Services

copyfileobj (fsrc, fds[, Iength])
Copy the contents of the file-like objefstrc to the file-like objecfdst The integetength if given, is the buffer
size. In particular, a negatiengthvalue means to copy the data without looping over the source data in chunks;
by default the data is read in chunks to avoid uncontrolled memory consumption.

copymode (src, ds)
Copy the permission bits frogrcto dst The file contents, owner, and group are unaffected.

copystat (src, ds)
Copy the permission bits, last access time, and last modification timesimtn dst The file contents, owner,

and group are unaffected.

copy (src, ds)
Copy the filesrc to the file or directorydst If dstis a directory, a file with the same basenamerass created
(or overwritten) in the directory specified. Permission bits are copied.

copy2 (src, ds)
Similar to copy() , but last access time and last modification time are copied as well. This is similar to the
UNIX commandcp -p.

copytree (src, ds{, symlinks])
Recursively copy an entire directory tree rootedrat The destination directory, named tst, must not already
exist; it will be created. Individual files are copied usicmpy2() . If symlinksis true, symbolic links in the
source tree are represented as symbolic links in the new tree; if false or omitted, the contents of the linked files
are copied to the new tree. Errors are reported to standard output.

The source code for this should be considered an example rather than a tool.

rmtree (patr{, ignore_errors[, onerror]])
Delete an entire directory tree. ifjnore_errors is true, errors will be ignored; if false or omitted, errors are
handled by calling a handler specified dayerror or raise an exception.

If onerroris provided, it must be a callable that accepts three paramétextion path, andexcinfa The first
parameterfunction is the function which raised the exception; it will be.remove() or os.rmdir()

The second parametgrath, will be the path name passedftmction The third parametegxcinfq will be the
exception information return bgys.exc _info() . Exceptions raised bgnerror will not be caught.

6.21.1 Example

This example is the implementation of tbepytree() function, described above, with the docstring omitted. It
demonstrates many of the other functions provided by this module.

6.21. shutii — High-level file operations 151

def copytree(src, dst, symlinks=0):
names = os.listdir(src)
os.mkdir(dst)
for name in names:
srcname = os.path.join(src, name)
dstname = os.path.join(dst, name)
try:
if symlinks and os.path.islink(srcname):
linkto = os.readlink(srcname)
os.symlink(linkto, dstname)
elif os.path.isdir(srcname):
copytree(srcname, dstname)
else:
copy2(srcname, dstname)
XXX What about devices, sockets etc.?
except (IOError, os.error), why:
print "Can’t copy %s to %s: %s" % (‘srcname’, ‘dsthname’, str(why))

6.22 locale — Internationalization services

Thelocale module opens access to the POSIX locale database and functionality. The POSIX locale mechanism
allows programmers to deal with certain cultural issues in an application, without requiring the programmer to know
all the specifics of each country where the software is executed.

Thelocale module is implemented on top of théocale module, which in turn uses an ANSI C locale imple-
mentation if available.

Thelocale module defines the following exception and functions:

setlocale (categor)[, value])
If valueis specified, modifies the locale setting for ttetegory The available categories are listed in the data
description below. The value is the name of a locale. An empty string specifies the user’s default settings. If the
modification of the locale fails, the excepti@nror is raised. If successful, the new locale setting is returned.

If no valueis specified, the current setting for tbategoryis returned.
setlocale() is not thread safe on most systems. Applications typically start with a call of

import locale
locale.setlocale(locale.LC_ALL,™)

This sets the locale for all categories to the user’s default setting (typically specified in the $LANG environment
variable). If the locale is not changed thereafter, using multithreading should not cause problems.

Error
Exception raised whesetlocale() fails.

localeconv ()
Returns the database of of the local conventions as a dictionary. This dictionary has the following strings as

keys:

edecimal _point specifies the decimal point used in floating point number representations for the
LC_NUMERIGCcategory.

egrouping is a sequence of numbers specifying at which relative positionshitesands _sep is
expected. If the sequence is terminated V@ithAR MAX no further grouping is performed. If the sequence
terminates with &, the last group size is repeatedly used.

152 Chapter 6. Generic Operating System Services

ethousands _sep is the character used between groups.

eint _curr _symbol specifies the international currency symbol from tii2 MONETAR¥ategory.

ecurrency _symbol is the local currency symbol.

emon_decimal _point is the decimal point used in monetary values.

emon_thousands _sep is the separator for grouping of monetary values.

emon_grouping has the same format as theouping key; it is used for monetary values.

epositive _sign andnegative _sign gives the sign used for positive and negative monetary quan-
tities.

eint _frac _digits andfrac _digits specify the number of fractional digits used in the interna-
tional and local formatting of monetary values.

ep_cs _precedes andn_cs _precedes specifies whether the currency symbol precedes the value for
positive or negative values.

ep_sep _by_space andn_sep _by_space specifies whether there is a space between the positive or
negative value and the currency symbol.

ep_sign _posn andn_sign _posn indicate how the sign should be placed for positive and negative
monetary values.
The possible values f@r_sign _posn andn_sign _posn are given below.
Value | Explanation

0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.
LC_MAX]| Nothing is specified in this locale.

strcoll (' stringl,stringd
Compares two strings according to the curie@t COLLATEsetting. As any other compare function, returns a
negative, or a positive value, 0r depending on whethetringl collates before or aftestring2or is equal to it.

strxfrm (' string)
Transforms a string to one that can be used for the built-in funatiop() , and still returns locale-aware
results. This function can be used when the same string is compared repeatedly, e.g. when collating a sequence
of strings.

format (format, val,[grouping =0])
Formats a numberal according to the currentC_NUMERICsetting. The format follows the conventions of
the %operator. For floating point values, the decimal point is modified if appropriatgolfpingis true, also
takes the grouping into account.

str (floaf)
Formats a floating point number using the same format as the built-in fursttionfloat) , but takes the decimal
point into account.

atof (string)
Converts a string to a floating point number, following th&@ NUMERIGsettings.

atoi (string)
Converts a string to an integer, following th€_NUMERICconventions.

LC_CTYPE
Locale category for the character type functions. Depending on the settings of this category, the functions of
modulestring dealing with case change their behaviour.

6.22. locale — Internationalization services 153

LC_COLLATE

Locale category for sorting strings. The functistecoll() andstrxfrm() of thelocale module are
affected.

LC_TIME
Locale category for the formatting of time. The functiiime.strftime() follows these conventions.

LC_MONETARY
Locale category for formatting of monetary values. The available options are available from the
localeconv() function.

LC_MESSAGES
Locale category for message display. Python currently does not support application specific locale-aware mes-
sages. Messages displayed by the operating system, like those retuosesttsrror() might be affected
by this category.

LC_NUMERIC
Locale category for formatting numbers. The functidosnat() , atoi() , atof() andstr() of the
locale module are affected by that category. All other numeric formatting operations are not affected.

LC_ALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale for all
categories is attempted. If that fails for any category, no category is changed at all. When the locale is retrieved
using this flag, a string indicating the setting for all categories is returned. This string can be later used to restore
the settings.

CHARMAX
This is a symbolic constant used for different values returnelddsleconv()

Example:

>>> import locale

>>> |oc = locale.setlocale(locale.LC_ALL) # get current locale

>>> |ocale.setlocale(locale.LC_ALL, "de") # use German locale

>>> |ocale.strcoll("\344n", "foo") # compare a string containing an umlaut
>>> |ocale.setlocale(locale.LC_ALL, ") # use user's preferred locale

>>> |ocale.setlocale(locale.LC_ALL, "C") # use default (C) locale

>>> |ocale.setlocale(locale.LC_ALL, loc) # restore saved locale

6.22.1 Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change. On top of
that, some implementation are broken in such a way that frequent locale changes may cause core dumps. This makes
the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is ti& locale, no matter what the user’s preferred locale is. The
program must explicitly say that it wants the user’s preferred locale settings by cadlttagale(LC ~ _ALL,

™)

It is generally a bad idea to cadketlocale() in some library routine, since as a side effect it affects the entire
program. Saving and restoring it is almost as bad: it is expensive and affects other threads that happen to run before
the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that is affected by the
locale (e.gstring.lower() , or certain formats used witime.strftime())), you will have to find a way to

do it without using the standard library routine. Even better is convincing yourself that using locale settings is okay.
Only as a last resort should you document that your module is not compatible witlChioegdle settings.

154 Chapter 6. Generic Operating System Services

The case conversion functions in theéing andstrop modules are affected by the locale settings. When

a call to thesetlocale() function changes th& C_CTYPE settings, the variablestring.lowercase ,
string.uppercase andstring.letters (and their counterparts istrop) are recalculated. Note that this
code that uses these variable throufstbrh ... import ../, e.g. from string import letters , IS not af-
fected by subsequesttlocale() calls.

The only way to perform numeric operations according to the locale is to use the special functions defined by this
module:atof() ,atoi() ,format() ,str()

6.22.2 For extension writers and programs that embed Python

Extension modules should never caditlocale() , except to find out what the current locale is. But since the
return value can only be used portably to restore it, that is not very useful (except perhaps to find out whether or not
the locale isC).

When Python is embedded in an application, if the application sets the locale to something specific before initializing
Python, that is generally okay, and Python will use whatever locale is)sspthat theLC_NUMERIQocale should
always be C.

The setlocale() function in thelocale = module gives the Python programmer the impression that you can
manipulate the.C_NUMERIClocale setting, but this not the case at the C level: C code will always find that the
LC_NUMERIdocale setting isC'. This is because too much would break when the decimal point character is set to
something else than a period (e.g. the Python parser would break). Caveat: threads that run without holding Python’s
global interpreter lock may occasionally find that the numeric locale setting differs; this is because the only portable
way to implement this feature is to set the numeric locale settings to what the user requests, extract the relevant
characteristics, and then restore t@erdumeric locale.

When Python code uses tlezale module to change the locale, this also affects the embedding application. If the
embedding application doesn’t want this to happen, it should removeltitale extension module (which does

all the work) from the table of built-in modules in theohfig.c’ file, and make sure that thelocale module is not
accessible as a shared library.

6.23 gettext — Multilingual internationalization services

Thegettext module provides internationalization (118N) and localization (L10N) services for your Python modules

and applications. It supports both the GNjdttext = message catalog APl and a higher level, class-based API

that may be more appropriate for Python files. The interface described below allows you to write your module and
application messages in one natural language, and provide a catalog of translated messages for running under different
natural languages.

Some hints on localizing your Python modules and applications are also given.

6.23.1 GNU gettext API

Thegettext module defines the following API, which is very similar to the Gigektext API. If you use this API

you will affect the translation of your entire application globally. Often this is what you want if your application is
monolingual, with the choice of language dependent on the locale of your user. If you are localizing a Python module,
or if your application needs to switch languages on the fly, you probably want to use the class-based API instead.

bindtextdomain (domair{, Iocaledir])
Bind thedomainto the locale directoryocaledir. More concretelygettext — will look for binary *.mo’ files
for the given domain using the path (omLx): ‘localedir/languagéLC_MESSAGES/domainmo’, where
languagesis searched for in the environment variables $LANGUAGE, $IACL, $LC_MESSAGES, and
SLANG respectively.

6.23. gettext — Multilingual internationalization services 155

If localediris omitted orNone, then the current binding fatomainis returned:

textdomain ([domain])
Change or query the current global domain.défimainis None, then the current global domain is returned,
otherwise the global domain is setdomain which is returned.

gettext (message
Return the localized translation nfessagebased on the current global domain, language, and locale directory.
This function is usually aliased asin the local namespace (see examples below).

dgettext (domain, message
Like gettext() , but look the message up in the speciftknain

Note that GNUgettext also defines acgettext() method, but this was deemed not useful and so it is currently
unimplemented.

Here’s an example of typical usage for this API:

import gettext

gettext.bindtextdomain(’'myapplication’, '/path/to/my/language/directory’)
gettext.textdomain(’'myapplication’)

_ = gettext.gettext

...

print _('This is a translatable string.”)

6.23.2 Class-based API

The class-based API of thgettext module gives you more flexibility and greater convenience than the GNU
gettext API. It is the recommended way of localizing your Python applications and modgkttext defines a
“translations” class which implements the parsing of GNitdo” format files, and has methods for returning either

standard 8-bit strings or Unicode strings. Translations instances can also install themselves in the built-in namespace

as the function_() .

find (domair{, Iocaledir{, Ianguagei])
This function implements the standarand’ file search algorithm. It takes domain identical to what
textdomain() takes, and optionally &caledir (as in bindtextdomain()), and a list of languages.
All arguments are strings.

If localedir is not given, then the default system locale directory is dséfdlanguagess not given, then the
following environment variables are searched: $LANGUAGE, $SIACL, $LC_MESSAGES, and $LANG.
The first one returning a non-empty value is used forlmguagesvariable. The environment variables can
contain a colon separated list of languages, which will be split.

find() then expands and normalizes the languages, and then iterates through them, searching for an existing

file built of these components:
‘localedir/languagél. C_MESSAGES/domainmo’
The first such file name that exists is returnedibg() . If no such file is found, theNone is returned.

translation (domair{, Iocaledir[, IanguageE, clas&]]])
Return aTranslations instance based on tltmain localedir, andlanguageswhich are first passed to
find() to get the associatedhio’ file path. Instances with identicalmo’ file names are cached. The actual
class instantiated is eithetass_ if provided, otherwiseGNUTranslations . The class’s constructor must
take a single file object argument. If neno’ file is found, this function raisekDError

1The default locale directory is system dependent; e.g. on RedHat Linuxltsg/share/locale’, but on Solaris it is fust/lib/locale’. The
gettext module does not try to support these system dependent defaults; instead its desygitpsefix ~ /share/locale’. For this reason,
it is always best to calbindtextdomain() with an explicit absolute path at the start of your application.

2See the footnote fdsindtextdomain() above.

156 Chapter 6. Generic Operating System Services

install (domair{, Iocaledir{, unicodd])
This installs the function_ in Python’s builtin namespace, based aomain andlocaledir which are passed
to the functiontranslation() . Theunicodeflag is passed to the resulting translation objeictgall
method.

As seen below, you usually mark the strings in your application that are candidates for translation, by wrapping
them in a call to the function() , e.g.

print _('This string will be translated.’)

For convenience, you want thg€) function to be installed in Python’s builtin namespace, so it is easily acces-
sible in all modules of your application.

The NullTranslations class

Translation classes are what actually implement the translation of original source file message strings to translated

message strings. The base class used by all translation clabk# isinslations ; this provides the basic inter-
face you can use to write your own specialized translation classes. Here are the metioliiErahslations
__init __([fo])

Takes an optional file objedp, which is ignored by the base class. Initializes “protected” instance variables
_info and_charsetwhich are set by derived classes. It then cadl. _parse(fp) if fpis notNone.

_parse (fp)
No-op'd in the base class, this method takes file objg@nd reads the data from the file, initializing its message
catalog. If you have an unsupported message catalog file format, you should override this method to parse your
format.

gettext (message
Return the translated message. Overridden in derived classes.

ugettext (message
Return the translated message as a Unicode string. Overridden in derived classes.

info ()
Return the “protected”info variable.

charset ()
Return the “protected”charset variable.

install ~ ([unicode])
If the unicodeflag is false, this method instalielf.gettext() into the built-in namespace, binding it to
‘_". If unicodeis true, it bindsself.ugettext() instead. By defaultinicodeis false.

Note that this is only one way, albeit the most convenient way, to make f@ction available to your ap-
plication. Because it affects the entire application globally, and specifically the built-in namespace, localized
modules should never install Instead, they should use this code to malkavailable to their module:

import gettext
t = gettext.translation('mymodule’, ...)
_ = t.gettext

This puts_ only in the module’s global namespace and so only affects calls within this module.

The GNUTranslations class

Thegettext module provides one additional class derived fridoil Translations : GNUTranslations
This class overridesparse() to enable reading GNgettextformat “mo’ files in both big-endian and little-endian
format.

6.23. gettext — Multilingual internationalization services 157

It also parses optional meta-data out of the translation catalog. It is convention withg@ftixt to include meta-
data as the translation for the empty string. This meta-data is in RFC 82Zkstyle value pairs. If the key
Content-Type is found, then thecharset property is used to initialize the “protected’tharset instance
variable. The entire set of key/value pairs are placed into a dictionary and set as the “protécted” instance
variable.

If the “.mo’ file’s magic number is invalid, or if other problems occur while reading the file, instantiating a
GNUTranslations class can raiseEOError

The other usefully overridden methoduigettext() , Which returns a Unicode string by passing both the translated
message string and the value of the “protectectiarset variable to the builtirunicode() function.

Solaris message catalog support

The Solaris operating system defines its own binang*file format, but since no documentation can be found on this
format, it is not supported at this time.

The Catalog constructor

GNOME uses a version of thgettext module by James Henstridge, but this version has a slightly different API.
Its documented usage was:

import gettext

cat = gettext.Catalog(domain, localedir)
_ = cat.gettext

print _(’hello world’)

For compatibility with this older module, the functi@atalog() is an alias for the thganslation() function
described above.

One difference between this module and Henstridge’s: his catalog objects supported access through a mapping API,
but this appears to be unused and so is not currently supported.

6.23.3 Internationalizing your programs and modules

Internationalization (I18N) refers to the operation by which a program is made aware of multiple languages. Localiza-
tion (L1ON) refers to the adaptation of your program, once internationalized, to the local language and cultural habits.
In order to provide multilingual messages for your Python programs, you need to take the following steps:

prepare your program or module by specially marking translatable strings

run a suite of tools over your marked files to generate raw messages catalogs

create language specific translations of the message catalogs

R

use thggettext module so that message strings are properly translated

In order to prepare your code for 118N, you need to look at all the strings in your files. Any string that needs to be
translated should be marked by wrapping itif..") —i.e. a call to the function() . For example:

158 Chapter 6. Generic Operating System Services

filename = 'mylog.txt’

message = _(‘writing a log message’)
fp = open(filename, 'w’)
fp.write(message)

fp.close()
In this example, the stringvriting a log message’ is marked as a candidate for translation, while the strings
'mylog.txt’ and'w’ are not.

The GNUgettext package provides a tool, calledettext, that scans C and3 source code looking for these spe-
cially marked stringsxgettextgenerates what are callegot’ files, essentially structured human readable files which
contain every marked string in the source code. These' files are copied and handed over to human translators
who write language-specific versions for every supported natural language.

For 118N Python programs howeveagettextwon't work; it doesn’t understand the myriad of string types support by
Python. The standard Python distribution provides a tool cgijegtttext that does though (found in th&dols/i18n/’
directory)® This is a command line script that supports a similar interfacegastext, see its documentation for
details. Once you've usquygettextto create your.pot’ files, you can use the standard GNydttexttools to generate
your machine-readablemo’ files, which are readable by thieNUTranslations class.

How you use thgettext module in your code depends on whether you are internationalizing your entire application
or a single module.

Localizing your module
If you are localizing your module, you must take care not to make global changes, e.g. to the built-in namespace. You
should not use the GNgettext API but instead the class-based API.

Let's say your module is called “spam” and the module’s various natural language translatofiles reside in
‘lusr/share/locale’ in GNU gettextformat. Here’s what you would put at the top of your module:

import gettext
t = gettext.translation('spam’, 'fusr/share/locale’)
_ = t.gettext

If your translators were providing you with Unicode strings in theio* files, you'd instead do:

import gettext
t = gettext.translation('spam’, 'fusr/share/locale’)
_ = t.ugettext

Localizing your application

If you are localizing your application, you can install th® function globally into the built-in namespace, usually
in the main driver file of your application. This will let all your application-specific files just.use’) without
having to explicitly install it in each file.

In the simple case then, you need only add the following bit of code to the main driver file of your application:

SFrancois Pinard has written a program callegot which does a similar job. It is available as part of hps-utils package at
http://www.iro.umontreal.ca/contrib/po-utils/HTML.

6.23. gettext — Multilingual internationalization services 159

import gettext
gettext.install’myapplication’)

If you need to set the locale directory or theicodeflag, you can pass these into tinstall() function:

import gettext
gettext.install’myapplication’, '/usr/share/locale’, unicode=1)

Changing languages on the fly

If your program needs to support many languages at the same time, you may want to create multiple translation
instances and then switch between them explicitly, like so:

import gettext

langl = gettext.translation(languages=['en’])
lang2 = gettext.translation(languages=['fr'])
lang3 = gettext.translation(languages=['de’])

start by using languagel
langl.install()

... time goes by, user selects language 2
lang2.install()

... more time goes by, user selects language 3
lang3.install()

Deferred translations

In most coding situations, strings are translated were they are coded. Occasionally however, you need to mark strings
for translation, but defer actual translation until later. A classic example is:

animals = ['mollusk’,

"albatross’,
rat’,
‘penguin’,
'python’,
]
..
for a in animals:
print a

Here, you want to mark the strings in thaimals list as being translatable, but you don’t actually want to translate
them until they are printed.

Here is one way you can handle this situation:

160 Chapter 6. Generic Operating System Services

def _(message): return message

animals = [_('mollusk’),
_('albatross’),
_(rat)),

_('penguin’),
_(python’),
]
del _
..
for a in animals:
print _(a)

This works because the dummy definition_df) simply returns the string unchanged. And this dummy definition
will temporarily override any definition aof() in the built-in namespace (until tieel command). Take care, though
if you have a previous definition af in the local namespace.

Note that the second use of) will not identify “a” as being translatable to thgygettext program, since it is not a
string.

Another way to handle this is with the following example:

def N_(message): return message

animals = [N_('mollusk’),
N_(albatross’),
N_(rat),
N_('penguin’),
N_(python’),
]

..
for a in animals:
print _(a)

In this case, you are marking translatable strings with the fundlig ,* which won’t conflict with any definition of
_() . However, you will need to teach your message extraction program to look for translatable strings marked with
N_() . pygettextandxpot both support this through the use of command line switches.

6.23.4 Acknowledgements

The following people contributed code, feedback, design suggestions, previous implementations, and valuable experi-
ence to the creation of this module:

e Peter Funk

e James Henstridge

e Marc-Andé Lemburg

e Martin von Lowis

4The choice oN_() here is totally arbitrary; it could have just as easily batarkThisStringForTranslation()

6.23. gettext — Multilingual internationalization services 161

e Francois Pinard

e Barry Warsaw

162 Chapter 6. Generic Operating System Services

CHAPTER
SEVEN

Optional Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on selected
operating systems only. The interfaces are generally modeled aftemtixedd C interfaces but they are available on
some other systems as well (e.g. Windows or NT). Here’s an overview:

signal Set handlers for asynchronous events.
socket Low-level networking interface.
select Wait for I/O completion on multiple streams.
thread Create multiple threads of control within one interpreter.
threading Higher-level threading interface.
mutex Lock and queue for mutual exclusion.
Queue A synchronized queue class.
mmap Interface to memory-mapped files for Unix and Windows.
anydbm Generic interface to DBM-style database modules.
dumbdbm Portable implementation of the simple DBM interface.
dbhash DBM-style interface to the BSD database library.
whichdb Guess which DBM-style module created a given database.
bsddb Interface to Berkeley DB database library
zlib Low-level interface to compression and decompression routines compatiblgzipth
gzip Interfaces foigzip compression and decompression using file objects.
zipfile Read and write ZIP-format archive files.
readline GNU readline support for Python.
ricompleter Python identifier completion for the GNU readline library.
7.1 signal — Set handlers for asynchronous events

This module provides mechanisms to use signal handlers in Python. Some general rules for working with signals and
their handlers:

e A handler for a particular signal, once set, remains installed until it is explicitly reset (i.e. Python emulates
the BSD style interface regardless of the underlying implementation), with the exception of the handler for
SIGCHLD which follows the underlying implementation.

e There is no way to “block” signals temporarily from critical sections (since this is not supported bywiadl U
flavors).

e Although Python signal handlers are called asynchronously as far as the Python user is concerned, they can only
occur between the “atomic” instructions of the Python interpreter. This means that signals arriving during long
calculations implemented purely in C (e.g. regular expression matches on large bodies of text) may be delayed
for an arbitrary amount of time.

163

e When a signal arrives during an 1/O operation, it is possible that the 1/O operation raises an exception after
the signal handler returns. This is dependent on the underlying Wystem’s semantics regarding interrupted
system calls.

e Because the C signal handler always returns, it makes little sense to catch synchronous e/$6@&HHE or
SIGSEGV

e Python installs a small number of signal handlers by defa®iGPIPE is ignored (so write errors
on pipes and sockets can be reported as ordinary Python exception§I@HdT is translated into a
Keyboardinterrupt exception. All of these can be overridden.

e Some care must be taken if both signals and threads are used in the same program. The fundamental thing to
remember in using signals and threads simultaneously is: always pesionail() operations in the main
thread of execution. Any thread can performederm() , getsignal() ,orpause() ;onlythe mainthread
can set a new signal handler, and the main thread will be the only one to receive signals (this is enforced by the
Pythonsignal module, even if the underlying thread implementation supports sending signals to individual
threads). This means that signals can’t be used as a means of inter-thread communication. Use locks instead.

The variables defined in treégnal module are:

SIG_DFL
This is one of two standard signal handling options; it will simply perform the default function for the signal.
For example, on most systems the default actiorsiI@QUIT is to dump core and exit, while the default action
for SIGCLDis to simply ignore it.

SIG_IGN
This is another standard signal handler, which will simply ignore the given signal.

SIG*
All the signal numbers are defined symbolically. For example, the hangup signal is defined as
signal. SIGHUP ; the variable names are identical to the names used in C programs, as found in
<signal.h> . The UNIX man page forsignal() ' lists the existing signals (on some systems thisiis
nal(2), on others the list is isignal7)). Note that not all systems define the same set of signal names; only
those names defined by the system are defined by this module.

NSIG
One more than the number of the highest signal number.

Thesignal module defines the following functions:

alarm (time
If timeis non-zero, this function requests thaBBSALRMsignal be sent to the processtime seconds. Any
previously scheduled alarm is canceled (i.e. only one alarm can be scheduled at any time). The returned value
is then the number of seconds before any previously set alarm was to have been deliviineglis Izero, no
alarm id scheduled, and any scheduled alarm is canceled. The return value is the number of seconds remaining
before a previously scheduled alarm. If the return value is zero, no alarm is currently scheduled. (Se&the U
man pagelarm(2).)

getsignal (signalnum
Return the current signal handler for the sigsighalnum The returned value may be a callable Python object,
or one of the special valuesignal.SIG _IGN, signal.SIG _DFL or None. Here,signal.SIG _IGN
means that the signal was previously ignorsidnal.SIG ~ _DFL means that the default way of handling the
signal was previously in use, afbne means that the previous signal handler was not installed from Python.

pause ()

Cause the process to sleep until a signal is received; the appropriate handler will then be called. Returns nothing.
(See the Wix man pagesignal2).)

signal (signalnum, handlgr
Set the handler for signaignalnumto the functionhandler. handlercan be a callable Python object taking

164 Chapter 7. Optional Operating System Services

two arguments (see below), or one of the special vafigsal.SIG _IGN or signal.SIG _DFL. The
previous signal handler will be returned (see the descriptiogetdignal() above). (See the ix man

pagesignal2).)
When threads are enabled, this function can only be called from the main thread; attempting to call it from other
threads will cause ®alueError exception to be raised.

The handleris called with two arguments: the signal number and the current stack fidoree (or a frame
object; see the reference manual for a description of frame objects).

7.1.1 Example

Here is a minimal example program. It uses #t@m() function to limit the time spent waiting to open a file; this

is useful if the file is for a serial device that may not be turned on, which would normally causs.tigen() to

hang indefinitely. The solution is to set a 5-second alarm before opening the file; if the operation takes too long, the
alarm signal will be sent, and the handler raises an exception.

import signal, os, FCNTL

def handler(signum, frame):
print 'Signal handler called with signal’, signum
raise IOError, "Couldn’t open device!"

Set the signal handler and a 5-second alarm
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)

This open() may hang indefinitely
fd = os.open(/dev/ttyS0’, FCNTL.O_RDWR)

signal.alarm(0) # Disable the alarm

7.2 socket — Low-level networking interface

This module provides access to the BSa@cketinterface. It is available on all modernNux systems, Windows,
MacOS, BeOS, 0S/2, and probably additional platforms.

For an introduction to socket programming (in C), see the following pap&mstntroductory 4.3BSD Interprocess
Communication Tutorialby Stuart Sechrest anin Advanced 4.3BSD Interprocess Communication Tutobgl

Samuel J. Leffler et al, both in theNUx Programmer’'s Manual, Supplementary Documen{sdctions PS1:7 and

PS1:8). The platform-specific reference material for the various socket-related system calls are also a valuable source
of information on the details of socket semantics. FanxJ refer to the manual pages; for Windows, see the WinSock

(or Winsock 2) specification.

The Python interface is a straightforward transliteration of thaxJsystem call and library interface for sockets

to Python’s object-oriented style: trsmcket() function returns asocket objectvhose methods implement the
various socket system calls. Parameter types are somewhat higher-level than in the C interfacereasl{)ithand

write() operations on Python files, buffer allocation on receive operations is automatic, and buffer length is implicit
on send operations.

Socket addresses are represented as a single string faFtiéNIX address family and as a pdihost port) for
the AF_INET address family, wherhostis a string representing either a hostname in Internet domain notation like
'daring.cwi.nl’ or an IP address likd00.50.200.5’ , andport is an integral port number. Other address

7.2. socket — Low-level networking interface 165

families are currently not supported. The address format required by a particular socket object is automatically selected
based on the address family specified when the socket object was created.

For IP addresses, two special forms are accepted instead of a host address: the empty string I&AXBEERRIANY,
and the string<broadcast>’ representtNADDR_BROADCAST

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can be
raised; errors related to socket or address semantics raise theaaket.error

Non-blocking mode is supported through setblocking() method.
The modulesocket exports the following constants and functions:

error
This exception is raised for socket- or address-related errors. The accompanying value is either a string telling
what went wrong or a pairerrno, string) representing an error returned by a system call, similar to the value
accompanyingps.error . See the modulerrno , which contains names for the error codes defined by the
underlying operating system.

AF_UNIX

AF_INET
These constants represent the address (and protocol) families, used for the first argeoekat® . If the
AF_UNIX constant is not defined then this protocol is unsupported.

SOCK STREAM

SOCKDGRAM

SOCKRAW

SOCKRDM

SOCKSEQPACKET
These constants represent the socket types, used for the second argusoeket) . (OnlySOCKSTREAM
andSOCK DGRAMppear to be generally useful.)

SO_*

SOMAXCONN

MSG*

SOoL *

IPPROTQ *

IPPORT_*

INADDR_*

P _*
Many constants of these forms, documented in theXJdocumentation on sockets and/or the IP protocol,
are also defined in the socket module. They are generally used in argumentssttsiekopt() and
getsockopt() methods of socket objects. In most cases, only those symbols that are defined mixhe U
header files are defined; for a few symbols, default values are provided.

getfqdn ([name])
Return a fully qualified domain name faoame If nhameis omitted or empty, it is interpreted as the local host.
To find the fully qualified name, the hostname returnedybthostbyaddr() is checked, then aliases for
the host, if available. The first name which includes a period is selected. In case no fully qualified domain name
is available, the hostname is returned. New in version 2.0.

gethostbyname (hostnamg
Translate a host name to IP address format. The IP address is returned as a stridf0e5§.,200.5’
If the host name is an IP address itself it is returned unchangedg&kestbyname _ex() for a more
complete interface.

gethostbyname _ex(hostnamg
Translate a host name to IP address format, extended interface. Return éhtsgileame, aliaslist,
ipaddrlist) wherehostname is the primary host name responding to the giyeraddressaliaslist
is a (possibly empty) list of alternative host names for the same addres#pautlist is a list of IP

166 Chapter 7. Optional Operating System Services

addresses for the same interface on the same host (often but not always a single address).

gethostname ()
Return a string containing the hostname of the machine where the Python interpreter is currently executing.
If you want to know the current machine’'s IP address, gsthostbyname(gethostname())
Note: gethostname() doesn't always return the fully qualified domain name; use
gethostbyaddr(gethostname()) (see below).

gethostbyaddr (ip_addres$
Return a triple(hostname aliaslist, ipaddrlist) wherehostnameds the primary host name responding to
the givenip_address aliaslist is a (possibly empty) list of alternative host names for the same address, and
ipaddrlistis a list of IP addresses for the same interface on the same host (most likely containing only a single
address). To find the fully qualified domain name, use the functafgydn()

getprotobyname (protocolnamég
Translate an Internet protocol name (eignp’) to a constant suitable for passing as the (optional) third argu-
ment to thesocket() function. This is usually only needed for sockets opened in “raw” m8@@QGK RAVY,
for the normal socket modes, the correct protocol is chosen automatically if the protocol is omitted or zero.

getservbyname (servicename, protocolname
Translate an Internet service name and protocol name to a port number for that service. The protocol name
should bétcp’ or’udp’

socket (family, type{, proto])
Create a new socket using the given address family, socket type and protocol number. The address family should
be AF_INET or AF_UNIX. The socket type should EBOCK STREAMSOCK DGRAMr perhaps one of the
other ‘'SOCK_’ constants. The protocol number is usually zero and may be omitted in that case.

fromfd (fd, family, typ(£, proto])
Build a socket object from an existing file descriptor (an integer as returned by a file olfijlecity))
method). Address family, socket type and protocol number are as feothet() function above. The file
descriptor should refer to a socket, but this is not checked — subsequent operations on the object may fail if the
file descriptor is invalid. This function is rarely needed, but can be used to get or set socket options on a socket
passed to a program as standard input or output (e.g. a server started by xhimét daemon).

ntohl (x)
Convert 32-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

ntohs (x)
Convert 16-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

htonl (x)
Convert 32-bit integers from host to network byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

htons (X)
Convert 16-bit integers from host to network byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

inet _aton (ip_string)
Convert an IP address from dotted-quad string format (e.g. '123.45.67.89") to 32-bit packed binary format, as a
string four characters in length.

Useful when conversing with a program that uses the standard C library and needs objectsstrutyipe
in _addr , which is the C type for the 32-bit packed binary this function returns.

If the IP address string passed to this function is invadia;ket.error will be raised. Note that exactly
what is valid depends on the underlying C implementatiomef _aton()

inet _ntoa (packed.ip)

7.2. socket — Low-level networking interface 167

Convert a 32-bit packed IP address (a string four characters in length) to its standard dotted-quad string repre-
sentation (e.g. '123.45.67.89").

Useful when conversing with a program that uses the standard C library and needs objectsstiutipe
in _addr , which is the C type for the 32-bit packed binary this function takes as an argument.

If the string passed to this function is not exactly 4 bytes in lergghket.error will be raised.

SocketType
This is a Python type object that represents the socket object type. It is the stype(ascket(...))

See Also:

Module SocketServer (section 11.13):
Classes that simplify writing network servers.

7.2.1 Socket Objects

Socket objects have the following methods. Exceptnfiakefile() these correspond toNux system calls appli-
cable to sockets.

accept ()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair(conn addres3 whereconnis anewsocket object usable to send and receive data on the connection,
andaddresss the address bound to the socket on the other end of the connection.

bind (addres}¥
Bind the socket taddress The socket must not already be bound. (The formaidifressdepends on the
address family — see aboveNote: This method has historically accepted a pair of parameter&FatNET
addresses instead of only a tuple. This was never intentional and will no longer be available in Python 1.7.

close ()
Close the socket. All future operations on the socket object will fail. The remote end will receive no more data
(after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

connect (addres$
Connect to a remote socketaddress (The format ofaddressdepends on the address family — see above.)
Note: This method has historically accepted a pair of parameteraFolNET addresses instead of only a
tuple. This was never intentional and will no longer be available in Python 1.7.

connect _ex(addres$
Like connect(addres$, but return an error indicator instead of raising an exception for errors returned by
the C-levelconnect() call (other problems, such as “host not found,” can still raise exceptions). The error
indicator isO if the operation succeeded, otherwise the value ofdtieo variable. This is useful, e.g.,
for asynchronous connectdlote: This method has historically accepted a pair of parameter8FalNET
addresses instead of only a tuple. This was never intentional and will no longer be available in Python 1.7.

fileno ()
Return the socket’s file descriptor (a small integer). This is useful satact.select()

getpeername ()
Return the remote address to which the socket is connected. This is useful to find out the port number of a
remote IP socket, for instance. (The format of the address returned depends on the address family — see above.)
On some systems this function is not supported.

getsockname ()
Return the socket’s own address. This is useful to find out the port number of an IP socket, for instance. (The
format of the address returned depends on the address family — see above.)

getsockopt (level, optnam[e, buflen])
Return the value of the given socket option (see theXUman pagegetsockof®)). The needed symbolic

168 Chapter 7. Optional Operating System Services

constants$Q_* etc.) are defined in this module.btiflenis absent, an integer option is assumed and its integer
value is returned by the function. Buflenis present, it specifies the maximum length of the buffer used to
receive the option in, and this buffer is returned as a string. It is up to the caller to decode the contents of the
buffer (see the optional built-in modutgéruct for a way to decode C structures encoded as strings).

listen (backlog
Listen for connections made to the socket. Taeklogargument specifies the maximum number of queued
connections and should be at least 1; the maximum value is system-dependent (usually 5).

makefile ([modd, bufsizd])
Return afile objectassociated with the socket. (File objects are described in 2.1.7, “File Objects.”) The file
object references dup() ped version of the socket file descriptor, so the file object and socket object may be
closed or garbage-collected independently. The optiomaleand bufsizearguments are interpreted the same
way as by the built-impen() function.

recv (bufsizé, flags])
Receive data from the socket. The return value is a string representing the data received. The maximum amount
of data to be received at once is specifietbhfsize See the Biix manual pageecy?2) for the meaning of the
optional argumenfiags it defaults to zero.

recvfrom (bufsiza{, flags])
Receive data from the socket. The return value is a(pgting, addres$ wherestringis a string representing
the data received aratidresds the address of the socket sending the data. The opfiagaklrgument has the
same meaning as foecv() above. (The format ciddressdepends on the address family — see above.)

send (string[, flags])
Send data to the socket. The socket must be connected to a remote socket. The ftaugeengument has the
same meaning as foecv() above. Returns the number of bytes sent.

sendto (string[, flags], addres}
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket
is specified byaddress The optionafflagsargument has the same meaning aséov() above. Return the
number of bytes sent. (The formataddressdepends on the address family — see above.)

setblocking (flag)
Set blocking or non-blocking mode of the socketffla is 0, the socket is set to non-blocking, else to blocking
mode. Initially all sockets are in blocking mode. In non-blocking moderéfcv() call doesn't find any data,
orifasend() call can'timmediately dispose of the dategmor exception is raised; in blocking mode, the
calls block until they can proceed.

setsockopt (level, optname, valye
Set the value of the given socket option (see theXUmanual pagesetsockofg®)). The needed symbolic
constants are defined in tecket module §O_* etc.). The value can be an integer or a string representing
a buffer. In the latter case it is up to the caller to ensure that the string contains the proper bits (see the optional
built-in modulestruct ~ for a way to encode C structures as strings).

shutdown (how)
Shut down one or both halves of the connectioadivis O, further receives are disallowed.Hbwis 1, further
sends are disallowed. owis 2, further sends and receives are disallowed.

Note that there are no methodsad() orwrite() ;userecv() andsend() withoutflagsargumentinstead.

7.2.2 Example

Here are two minimal example programs using the TCP/IP protocol: a server that echoes all data that it receives back
(servicing only one client), and a client using it. Note that a server must perform the segoeke) ,bind() ,

listen() , accept() (possibly repeating thaccept() to service more than one client), while a client only
needs the sequensecket() , connect() . Also note that the server does rs&@nd() /recv() on the socket it

7.2. socket — Low-level networking interface 169

is listening on but on the new socket returnechiogept()

Echo server program
import socket

HOST =~ # Symbolic nhame meaning the local host
PORT = 50007 # Arbitrary non-privileged port
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
print 'Connected by’, addr
while 1:

data = conn.recv(1024)

if not data: break

conn.send(data)
conn.close()

Echo client program
import socket

HOST = 'daring.cwi.nl’ # The remote host

PORT = 50007 # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))

s.send('Hello, world")

data = s.recv(1024)

s.close()

print 'Received’, ‘data’

7.3 select — Waiting for I/O completion

This module provides access to gedect() andpoll() functions available in most operating systems. Note that

on Windows, it only works for sockets; on other operating systems, it also works for other file types (in particular, on
UNIX, it works on pipes). It cannot be used on regular files to determine whether a file has grown since it was last
read.

The module defines the following:

error
The exception raised when an error occurs. The accompanying value is a pair containing the numeric error code
fromerrno and the corresponding string, as would be printed by the C funptoror()

poll ()
(Not supported by all operating systems.) Returns a polling object, which supports registering and unregistering

file descriptors, and then polling them for 1/O events; see section 7.3.1 below for the methods supported by
polling objects.

select (iwtd, owtd, ewt@, timeout])
This is a straightforward interface to thenik select() system call. The first three arguments are lists of
‘waitable objects’: either integers representingi¥ file descriptors or objects with a parameterless method
namedfileno() returning such an integer. The three lists of waitable objects are for input, output and
‘exceptional conditions’, respectively. Empty lists are allowed. The optitim&loutargument specifies a time-
out as a floating point number in seconds. Whentilmeoutargument is omitted the function blocks until at

170 Chapter 7. Optional Operating System Services

least one file descriptor is ready. A time-out value of zero specifies a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments. When the
time-out is reached without a file descriptor becoming ready, three empty lists are returned.

Amongst the acceptable object types in the lists are Python file objectsys.gtdin , or objects returned
by open() oros.popen()), socket objects returned tspcket.socket() , and the moduletdwin
which happens to define a functidieno() for just this purpose. You may also definevaapper class
yourself, as long as it has an approprifieno() method (that really returns aNUx file descriptor, not just
a random integer).

7.3.1 Polling Objects

Thepoll() system call, supported on most Unix systems, provides better scalability for network servers that service
many, many clients at the same timpoll() scales better because the system call only requires listing the file
descriptors of interest, whilgelect() builds a bitmap, turns on bits for the fds of interest, and then afterward the
whole bitmap has to be linearly scanned agaglect() is O(highest file descriptor), whilgoll() is O(humber

of file descriptors).

register (fd[, eventmas]<)
Register a file descriptor with the polling object. Future calls topb) method will then check whether
the file descriptor has any pending I/O eveiftican be either an integer, or an object witlileno() method
that returns an integer. File objects implemfiieho() , S0 they can also be used as the argument.

eventmasks an optional bitmask describing the type of events you want to check for, and can be a combination
of the constant®OLLIN, POLLPRI, andPOLLOUT described in the table below. If not specified, the default
value used will check for all 3 types of events.

Constant | Meaning

POLLIN There is data to read

POLLPRI There is urgent data to read

POLLOUT | Ready for output: writing will not block

POLLERR | Error condition of some sort

POLLHUP | Hung up

POLLNVAL| Invalid request: descriptor not open

Registering a file descriptor that's already registered is not an error, and has the same effect as registering the
descriptor exactly once.

unregister (fd)
Remove a file descriptor being tracked by a polling object. Just likegbister() method,fd can be an
integer or an object with eileno() method that returns an integer.

Attempting to remove a file descriptor that was never registered cal&mgaror exception to be raised.

poll ([timeout])
Polls the set of registered file descriptors, and returns a possibly-empty list confdidingeven) 2-tuples for
the descriptors that have events or errors to refait the file descriptor, anelventis a bitmask with bits set for
the reported events for that descriptorROLLIN for waiting input,POLLOUTto indicate that the descriptor
can be written to, and so forth. An empty list indicates that the call timed out and no file descriptors had any
events to report.

7.4 thread — Multiple threads of control

This module provides low-level primitives for working with multiple threads (a.kght-weight processesr taskg
— multiple threads of control sharing their global data space. For synchronization, simple locksnjaiexeor
binary semaphorgsare provided.

7.4. thread — Multiple threads of control 171

The module is optional. It is supported on Windows NT and '95, SGI IRIX, Solaris 2.x, as well as on systems that
have a POSIX thread (a.k.a. “pthread”) implementation.

It defines the following constant and functions:

error
Raised on thread-specific errors.

LockType
This is the type of lock objects.

start _new_thread (function, arg{, kwargs])
Start a new thread. The thread executes the fundtiontionwith the argument lisargs (which must be a
tuple). The optionakwargsargument specifies a dictionary of keyword arguments. When the function returns,
the thread silently exits. When the function terminates with an unhandled exception, a stack trace is printed and
then the thread exits (but other threads continue to run).

exit ()
Raise theSystemExit exception. When not caught, this will cause the thread to exit silently.

exit _thread ()
Deprecated since release 1.5.Rseexit()

This is an obsolete synonym fexit()

allocate _lock ()
Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

get _ident ()
Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct meaning;
it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread identifiers
may be recycled when a thread exits and another thread is created.

Lock objects have the following methods:

acquire ([waitﬂag])
Without the optional argument, this method acquires the lock unconditionally, if necessary waiting until it is
released by another thread (only one thread at a time can acquire a lock — that’s their reason for existence), and
returnsNone. If the integerwaitflagargument is present, the action depends on its value: if it is zero, the lock
is only acquired if it can be acquired immediately without waiting, while if it is nonzero, the lock is acquired
unconditionally as before. If an argument is present, the return valud the lock is acquired successfull,

if not.
release ()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.
locked ()
Return the status of the lock:if it has been acquired by some thre@df not.
Caveats:
e Threads interact strangely with interrupts: teyboardinterrupt exception will be received by an arbi-
trary thread. (When theignal module is available, interrupts always go to the main thread.)
e Calling sys.exit() or raising theSystemExit exception is equivalent to callirexit()
e Not all built-in functions that may block waiting for I/O allow other threads to run. (The most popular ones
(time.sleep() ,fileread() , select.select()) work as expected.)
e Itis not possible to interrupt thecquire() method on a lock — th&eyboardinterrupt exception will

happen after the lock has been acquired.

172 Chapter 7. Optional Operating System Services

e When the main thread exits, it is system defined whether the other threads survive. On SGI IRIX using the
native thread implementation, they survive. On most other systems, they are killed without exéguting
finally clauses or executing object destructors.

e When the main thread exits, it does not do any of its usual cleanup (exceptythat. finally clauses are
honored), and the standard I/O files are not flushed.

7.5 threading — Higher-level threading interface

This module constructs higher-level threading interfaces on top of the lowetthegeld module.
This module is safe for use witfrom threading import * . It defines the following functions and objects:

activeCount ()
Return the number of currently actiidhread objects. The returned count is equal to the length of the list
returned byenumerate() . A function that returns the number of currently active threads.

Condition ()
A factory function that returns a new condition variable object. A condition variable allows one or more threads
to wait until they are notified by another thread.

currentThread ()
Return the currenThread object, corresponding to the caller’'s thread of control. If the caller’s thread of
control was not created through tlieeading module, a dummy thread object with limited functionality is
returned.

enumerate ()
Return a list of all currently activ€hread objects. The list includes daemonic threads, dummy thread objects
created bycurrentThread() , and the main thread. It excludes terminated threads and threads that have not
yet been started.

Event ()
A factory function that returns a new event object. An event manages a flag that can be set to true with the
set() method and reset to false with thkear() method. Thevait() method blocks until the flag is true.

Lock ()
A factory function that returns a new primitive lock object. Once a thread has acquired it, subsequent attempts
to acquire it block, until it is released; any thread may release it.

RLock ()
A factory function that returns a new reentrant lock object. A reentrant lock must be released by the thread that
acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking;
the thread must release it once for each time it has acquired it.

Semaphore ()
A factory function that returns a new semaphore object. A semaphore manages a counter representing the
number ofrelease() calls minus the number @cquire() calls, plus an initial value. Thacquire()
method blocks if necessary until it can return without making the counter negative.

Thread ()
A class that represents a thread of control. This class can be safely subclassed in a limited fashion.

Detailed interfaces for the objects are documented below.

The design of this module is loosely based on Java’s threading model. However, where Java makes locks and condition
variables basic behavior of every object, they are separate objects in Python. Pytivead class supports a subset

of the behavior of Java's Thread class; currently, there are no priorities, no thread groups, and threads cannot be
destroyed, stopped, suspended, resumed, or interrupted. The static methods of Java’s Thread class, when implemented,
are mapped to module-level functions.

7.5. threading — Higher-level threading interface 173

All of the methods described below are executed atomically.

7.5.1 Lock Objects

A primitive lock is a synchronization primitive that is not owned by a particular thread when locked. In Python, it is
currently the lowest level synchronization primitive available, implemented directly biyithed extension module.

A primitive lock is in one of two states, “locked” or “unlocked”. It is created in the unlocked state. It has two basic
methodsacquire() andrelease() . When the state is unlocked¢quire() changes the state to locked and
returns immediately. When the state is lockadquire() blocks until a call torelease() in another thread
changes it to unlocked, then thequire() call resets it to locked and returns. Treease() method should

only be called in the locked state; it changes the state to unlocked and returns immediately. When more than one thread
is blocked inacquire() waiting for the state to turn to unlocked, only one thread proceeds whelease()

call resets the state to unlocked; which one of the waiting threads proceeds is not defined, and may vary across
implementations.

All methods are executed atomically.

acquire ([blocking = 1])
Acquire a lock, blocking or non-blocking.

When invoked without arguments, block until the lock is unlocked, then set it to locked, and return. There is no
return value in this case.

When invoked with thdlockingargument set to true, do the same thing as when called without arguments, and
return true.

When invoked with thélockingargument set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and return true.

release ()
Release alock.

When the lock is locked, reset it to unlocked, and return. If any other threads are blocked waiting for the lock to
become unlocked, allow exactly one of them to proceed.

Do not call this method when the lock is unlocked.
There is no return value.

7.5.2 RLock Objects

A reentrant lock is a synchronization primitive that may be acquired multiple times by the same thread. Internally, it
uses the concepts of “owning thread” and “recursion level” in addition to the locked/unlocked state used by primitive
locks. In the locked state, some thread owns the lock; in the unlocked state, no thread owns it.

To lock the lock, a thread calls iecquire() method; this returns once the thread owns the lock. To unlock the
lock, a thread calls itselease() method. acquire() /release() call pairs may be nested; only the final
release() (i.e. therelease() of the outermost pair) resets the lock to unlocked and allows another thread
blocked inacquire() to proceed.

acquire ([blocking = 1])
Acquire a lock, blocking or non-blocking.

When invoked without arguments: if this thread already owns the lock, increment the recursion level by one, and
return immediately. Otherwise, if another thread owns the lock, block until the lock is unlocked. Once the lock
is unlocked (not owned by any thread), then grab ownership, set the recursion level to one, and return. If more
than one thread is blocked waiting until the lock is unlocked, only one at a time will be able to grab ownership
of the lock. There is no return value in this case.

174 Chapter 7. Optional Operating System Services

When invoked with thélockingargument set to true, do the same thing as when called without arguments, and
return true.

When invoked with thélockingargument set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and return true.

release ()
Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock to unlocked
(not owned by any thread), and if any other threads are blocked waiting for the lock to become unlocked, allow
exactly one of them to proceed. If after the decrement the recursion level is still nonzero, the lock remains
locked and owned by the calling thread.

Only call this method when the calling thread owns the lock. Do not call this method when the lock is unlocked.
There is no return value.

7.5.3 Condition Objects

A condition variable is always associated with some kind of lock; this can be passed in or one will be created by
default. (Passing one in is useful when several condition variables must share the same lock.)

A condition variable haacquire() andrelease() = methods that call the corresponding methods of the associated
lock. It also has avait() method, andotify() andnotifyAll() methods. These three must only be called
when the calling thread has acquired the lock.

Thewait() method releases the lock, and then blocks until it is awakenedrintify() or notifyAll()
call for the same condition variable in another thread. Once awakened, it re-acquires the lock and returns. It is also
possible to specify a timeout.

The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting. The

notifyAll() method wakes up all threads waiting for the condition variable.

Note: thenotify() and notifyAll() methods don't release the lock; this means that the thread or threads
awakened will not return from thewait() call immediately, but only when the thread that caltestify() or
notifyAll() finally relinquishes ownership of the lock.

Tip: the typical programming style using condition variables uses the lock to synchronize access to some shared state;
threads that are interested in a particular change of statwai{) repeatedly until they see the desired state, while
threads that modify the state cabtify() or notifyAll() when they change the state in such a way that it could
possibly be a desired state for one of the waiters. For example, the following code is a generic producer-consumer
situation with unlimited buffer capacity:

Consume one item

cv.acquire()

while not an_item_is_available():
cv.wait()

get_an_available_item()

cv.release()

Produce one item
cv.acquire()
make_an_item_available()
cv.notify()

cv.release()

To choose betweenotify() and notifyAll() , consider whether one state change can be interesting for only
one or several waiting threads. E.g. in a typical producer-consumer situation, adding one item to the buffer only needs
to wake up one consumer thread.

7.5. threading — Higher-level threading interface 175

Condition ([lock])
If the lock argument is given and ndtone, it must be d.ock or RLock object, and itis used as the underlying
lock. Otherwise, a neRLock object is created and used as the underlying lock.

acquire (*args)
Acquire the underlying lock. This method calls the corresponding method on the underlying lock; the return
value is whatever that method returns.

release ()

Release the underlying lock. This method calls the corresponding method on the underlying lock; there is no
return value.

wait ([timeout])
Wait until notified or until a timeout occurs. This must only be called when the calling thread has acquired the

lock.
This method releases the underlying lock, and then blocks until it is awakened rmtifg() or
notifyAll() call for the same condition variable in another thread, or until the optional timeout occurs.

Once awakened or timed out, it re-acquires the lock and returns.

When thetimeoutargument is present and ndbne, it should be a floating point number specifying a timeout
for the operation in seconds (or fractions thereof).

When the underlying lock is aRLock, it is not released using it®lease() method, since this may not
actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface of the
RLock class is used, which really unlocks it even when it has been recursively acquired several times. Another
internal interface is then used to restore the recursion level when the lock is reacquired.

notify ()
Wake up a thread waiting on this condition, if any. This must only be called when the calling thread has acquired
the lock.

This method wakes up one of the threads waiting for the condition variable, if any are waiting; it is a no-op if
no threads are waiting.

The current implementation wakes up exactly one thread, if any are waiting. However, it's not safe to rely on
this behavior. A future, optimized implementation may occasionally wake up more than one thread.

Note: the awakened thread does not actually return fromvaif) call until it can reacquire the lock. Since
notify() does not release the lock, its caller should.

notifyAll 0

Wake up all threads waiting on this condition. This method acts riddfy() , but wakes up all waiting
threads instead of one.

7.5.4 Semaphore Objects

This is one of the oldest synchronization primitives in the history of computer science, invented by the early Dutch
computer scientist Edsger W. Dijkstra (he usd)l andV() instead ofacquire() andrelease()).

A semaphore manages an internal counter which is decremented bgapéte() call and incremented by each
release() call. The counter can never go below zero; wiaequire() finds that it is zero, it blocks, waiting
until some other thread calislease()

Semaphore ([value])
The optional argument gives the initial value for the internal counter; it defaults to

acquire ([blocking])
Acquire a semaphore.

When invoked without arguments: if the internal counter is larger than zero on entry, decrement it by one
and return immediately. If it is zero on entry, block, waiting until some other thread has celéedge() to

176 Chapter 7. Optional Operating System Services

make it larger than zero. This is done with proper interlocking so that if mubtipdgiire() calls are blocked,
release() will wake exactly one of them up. The implementation may pick one at random, so the order in
which blocked threads are awakened should not be relied on. There is no return value in this case.

When invoked withblockingset to true, do the same thing as when called without arguments, and return true.

When invoked withblockingset to false, do not block. If a call without an argument would block, return false
immediately; otherwise, do the same thing as when called without arguments, and return true.

release ()
Release a semaphore, incrementing the internal counter by one. When it was zero on entry and another thread
is waiting for it to become larger than zero again, wake up that thread.

7.5.5 Event Objects

This is one of the simplest mechanisms for communication between threads: one thread signals an event and one or
more other threads are waiting for it.

An event object manages an internal flag that can be set to true wietf)e method and reset to false with the
clear() method. Thavait() method blocks until the flag is true.

Event ()
The internal flag is initially false.

isSet ()
Return true if and only if the internal flag is true.

set ()
Set the internal flag to true. All threads waiting for it to become true are awakened. Threads thvaiit¢pll
once the flag is true will not block at all.

clear ()
Reset the internal flag to false. Subsequently, threads caliaiif) will block until set() is called to set
the internal flag to true again.

wait ([timeout])
Block until the internal flag is true. If the internal flag is true on entry, return immediately. Otherwise, block
until another thread callset() to set the flag to true, or until the optional timeout occurs.

When the timeout argument is present andMohe, it should be a floating point number specifying a timeout
for the operation in seconds (or fractions thereof).

7.5.6 Thread Objects

This class represents an activity that is run in a separate thread of control. There are two ways to specify the activity:
by passing a callable object to the constructor, or by overridinguh® method in a subclass. No other methods
(except for the constructor) should be overridden in a subclass. In other waolgsyerride the__init __() and

run() methods of this class.

Once a thread object is created, its activity must be started by calling the thett{s method. This invokes the
run() method in a separate thread of control.

Once the thread’s activity is started, the thread is considered ’alive’ and ’active’ (these concepts are almost, but not
quite exactly, the same; their definition is intentionally somewhat vague). It stops being alive and active when its
run() method terminates — either normally, or by raising an unhandled exceptionisAlhe() method tests
whether the thread is alive.

Other threads can call a threadtsn() method. This blocks the calling thread until the thread whos®)
method is called is terminated.

7.5. threading — Higher-level threading interface 177

A thread has a name. The name can be passed to the constructor, set s&tiNdmae() method, and retrieved with
thegetName() method.

A thread can be flagged as a “daemon thread”. The significance of this flag is that the entire Python program exits
when only daemon threads are left. The initial value is inherited from the creating thread. The flag can be set with the
setDaemon() method and retrieved with trgetDaemon() method.

There is a “main thread” object; this corresponds to the initial thread of control in the Python program. It is not a
daemon thread.

There is the possibility that “dummy thread objects” are created. These are thread objects corresponding to “alien
threads”. These are threads of control started outside the threading module, e.g. directly from C code. Dummy thread
objects have limited functionality; they are always considered alive, active, and daemonic, and cgoing} beed.

They are never deleted, since it is impossible to detect the termination of alien threads.

Thread (group=None, target=None, name=None, args=(), kwargsF—"
This constructor should always be called with keyword arguments. Arguments are:
group Should beNone; reserved for future extension whehreadGroup class is implemented.
targetCallable object to be invoked by tlmen() method. Defaults tblone, meaning nothing is called.

nameThe thread name. By default, a unique name is constructed of the form “Threatiere N is a small
decimal number.

argsArgument tuple for the target invocation. Defaultg}to.
kwargsKeyword argument dictionary for the target invocation. Defaultg to

If the subclass overrides the constructor, it must make sure to invoke the base class constructor
(Thread. __init __()) before doing anything else to the thread.

start ()
Start the thread’s activity.

This must be called at most once per thread object. It arranges for the obj@)’'s method to be invoked in
a separate thread of control.

run ()
Method representing the thread’s activity.

You may override this method in a subclass. The standar) method invokes the callable object passed to
the object’s constructor as thargetargument, if any, with sequential and keyword arguments taken from the
argsandkwargsarguments, respectively.

join ([timeout])
Wait until the thread terminates. This blocks the calling thread until the thread ygin§e method is called
terminates — either normally or through an unhandled exception — or until the optional timeout occurs.

When thetimeoutargument is present and ngobne, it should be a floating point number specifying a timeout
for the operation in seconds (or fractions thereof).

A thread can bgin() ed many times.
A thread cannot join itself because this would cause a deadlock.
Itis an error to attempt tfpin() a thread before it has been started.

getName ()
Return the thread’s name.

setName (namg
Set the thread’s name.

The name is a string used for identification purposes only. It has no semantics. Multiple threads may be given
the same name. The initial name is set by the constructor.

178 Chapter 7. Optional Operating System Services

isAlive ()
Return whether the thread is alive.

Roughly, a thread is alive from the moment 8tart() method returns until iteun() method terminates.

isDaemon ()
Return the thread’s daemon flag.

setDaemon (daemonig
Set the thread’s daemon flag to the Boolean vdiaemonic This must be called beforstart() is called.

The initial value is inherited from the creating thread.
The entire Python program exits when no active non-daemon threads are left.

7.6 mutex — Mutual exclusion support

The mutex defines a class that allows mutual-exclusion via acquiring and releasing locks. It does not require (or
imply) threading or multi-tasking, though it could be useful for those purposes.

Themutex module defines the following class:

mutex ()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue
is empty. Otherwise, the queue contains 0 or mdiwnction argumen} pairs representing functions (or
methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not empty, the first queue
entry is removed and ifsinctior(argumen} pair called, implying it now has the lock.

Of course, no multi-threading is implied — hence the funny interface for lock, where a function is called once
the lock is acquired.

7.6.1 Mutex Objects

mutex objects have following methods:

test ()
Check whether the mutex is locked.

testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and return true, otherwise, return false.

lock (function, argument
Executefunction(argumeny , unless the mutex is locked. In the case it is locked, place the function and argu-
ment on the queue. Sealock for explanation of wheffunction(argumeny is executed in that case.

unlock ()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

7.7 Queue — A synchronized queue class

The Queue module implements a multi-producer, multi-consumer FIFO queue. It is especially useful in threads
programming when information must be exchanged safely between multiple thread3u&he class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python.

The Queue module defines the following class and exception:

7.6. mutex — Mutual exclusion support 179

Queue(maxsizg
Constructor for the clasgnaxsizes an integer that sets the upperbound limit on the number of items that can
be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed. If
maxsizes less than or equal to zero, the queue size is infinite.

Empty
Exception raised when non-blockiggt() (orget _nowait()) is called on @ueue object which is empty
or locked.

Full

Exception raised when non-blockimpmyit() (or put _nowait()) is called on a&Queue object which is full
or locked.

7.7.1 Queue Objects

ClassQueue implements queue objects and has the methods described below. This class can be derived from in order
to implement other queue organizations (e.g. stack) but the inheritable interface is not described here. See the source
code for details. The public methods are:

gsize ()
Return the approximate size of the queue. Because of multithreading semantics, this number is not reliable.

empty ()
Returnl if the queue is empty) otherwise. Because of multithreading semantics, this is not reliable.

full ()
Returnl if the queue is fullQ otherwise. Because of multithreading semantics, this is not reliable.

put (item[, block])
Putiteminto the queue. If optional argumehtockis 1 (the default), block if necessary until a free slot is
available. Otherwiseb{ockis 0), putitemon the queue if a free slot is immediately available, else raise the
Full exception.

put _nowait (item)
Equivalent toput(item 0) .

get ([block])
Remove and return an item from the queue. If optional arguimeckis 1 (the default), block if necessary until

an item is available. Otherwisblpckis 0), return an item if one is immediately available, else rais&thpty
exception.

get _nowait ()
Equivalent toget(0)

7.8 mmap— Memory-mapped file support

Memory-mapped file objects behave like both mutable strings and like file objects. You can use mmap objects in most
places where strings are expected; for example, you can use tiodule to search through a memory-mapped file.
Since they’re mutable, you can change a single character by dbifigindey = 'a’ , or change a substring by
assigning to a sliceobj[il1l:i2] = ..’ . You can also read and write data starting at the current file position,
andseek() through the file to different positions.

A memory-mapped file is created by the following function, which is different on Unix and on Windows.

mmay fileno, Iengtrﬁ, tagnamd)
(Windows version) Maps length bytes from the file specified by the file handieeng and returns a mmap
object. If you wish to map an existing Python file object, uséiliésio() method to obtain the correct value

180 Chapter 7. Optional Operating System Services

for thefilenoparameter.

tagnameif specified, is a string giving a tag name for the mapping. Windows allows you to have many different
mappings against the same file. If you specify the name of an existing tag, that tag is opened, otherwise a new
tag of this name is created. If this parameter is None, the mapping is created without a name. Avoiding the use
of the tag parameter will assist in keeping your code portable between Unix and Windows.

mmayg fileno, sizé, flags, prol])
(Unix version) Mapslengthbytes from the file specified by the file handileno, and returns a mmap object.
If you wish to map an existing Python file object, usefiesno() method to obtain the correct value for the
filenoparameter.

flagsspecifies the nature of the mappifdAP_PRIVATE creates a private copy-on-write mapping, so changes
to the contents of the mmap object will be private to this processMahid SHAREXreates a mapping that's
shared with all other processes mapping the same areas of the file. The default MARSB1ARED

prot, if specified, gives the desired memory protection; the two most useful valuePRGT READ
and PROT.WRITE to specify that the pages may be read or writteprot defaults toPROT.READ |
PROTWRITE

Memory-mapped file objects support the following methods:

close ()
Close the file. Subsequent calls to other methods of the object will result in an exception being raised.

find (string[, start])
Returns the lowest index in the object where the subsstrigg is found. Returnsl on failure. startis the
index at which the search begins, and defaults to zero.

flush ([offset, sizd)
Flushes changes made to the in-memory copy of a file back to disk. Without use of this call there is no guarantee
that changes are written back before the object is destroyeffsHftandsizeare specified, only changes to the
given range of bytes will be flushed to disk; otherwise, the whole extent of the mapping is flushed.

move(dest, src, count
Copy thecountbytes starting at offsedrc to the destination indegtest

read (num
Return a string containing up tmumbytes starting from the current file position; the file position is updated to
point after the bytes that were returned.

read _byte ()
Returns a string of length 1 containing the character at the current file position, and advances the file position
by 1.

readline ()
Returns a single line, starting at the current file position and up to the next newline.
resize (newsizg

seek (pos[, Whence])
Set the file’s current positionwhenceargument is optional and defaults@o(absolute file positioning); other
values ardl (seek relative to the current position) addseek relative to the file’s end).

size ()
Return the length of the file, which can be larger than the size of the memory-mapped area.
tell ()

Returns the current position of the file pointer.

write (string)
Write the bytes irstring into memory at the current position of the file pointer; the file position is updated to
point after the bytes that were written.

7.8. mmap— Memory-mapped file support 181

write _byte (byt
Write the single-character stridgyteinto memory at the current position of the file pointer; the file position is
advanced byl

7.9 anydbm — Generic access to DBM-style databases

anydbm is a generic interface to variants of the DBM databasdbkash (requiressddb), gdbm, ordbm. If none
of these modules is installed, the slow-but-simple implementation in madutéddbmwill be used.

open (filename{, flag[, mode]])
Open the database fifdkenameand return a corresponding object.

If the database file already exists, thieichdb module is used to determine its type and the appropriate module
is used; if it does not exist, the first module listed above that can be imported is used.

The optionalflag argument can b&' to open an existing database for reading ofly, to open an existing
database for reading and writirig, to create the database if it doesn’t exist,ror , which will always create
a new empty database. If not specified, the default valire is

The optionalmodeargument is the Nix mode of the file, used only when the database has to be created. It
defaults to octaD666 (and will be modified by the prevailing umask).

error
A tuple containing the exceptions that can be raised by each of the supported modules, with a unique exception
anydbm.error as the first item — the latter is used whamydbm.error is raised.

The object returned bgpen() supports most of the same functionality as dictionaries; keys and their corresponding
values can be stored, retrieved, and deleted, andhdlse key() andkeys() methods are available. Keys and
values must always be strings.

See Also:

Moduleanydbm (section 7.9):
Generic interface tdbm-style databases.

Moduledbhash (section 7.11):
BSD db database interface.

Module dbm (section 8.6):
Standard Wix database interface.

Moduledumbdbm(section 7.10):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondbeninterface.

Moduleshelve (section 3.14):
General object persistence built on top of the Pytdbminterface.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

7.10 dumbdbm— Portable DBM implementation

A simple and slow database implemented entirely in Python. This should only be used when no other DBM-style
database is available.

open (filename{, fIag[, mode]])

182 Chapter 7. Optional Operating System Services

Open the database fifdeenameand return a corresponding object. The optidied argument can b&” to
open an existing database for reading oy, to open an existing database for reading and writiog, to
create the database if it doesn't exist,ror , which will always create a new empty database. If not specified,
the default value i&’

The optionalmodeargument is the Nix mode of the file, used only when the database has to be created. It
defaults to octaD666 (and will be modified by the prevailing umask).

error
Raised for errors not reported isyError errors.

See Also:

Moduleanydbm (section 7.9):
Generic interface tdbm-style databases.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

7.11 dbhash — DBM-style interface to the BSD database library

The dbhash module provides a function to open databases using the @&Shbrary. This module mirrors the
interface of the other Python database modules that provide access to DBM-style databasesidibhenodule is
required to uselbhash .

This module provides an exception and a function:

error
Exception raised on database errors other #ayError . Itis a synonym fobsddb.error

open (path, flag[, modd)
Open adb database and return the database object.paltieargument is the name of the database file.

Theflagargument can b&' (the default);w’ ,’c’ (which creates the database if it doesn’t exist)nor
(which always creates a new empty database). For platforms on which theB8rary supports locking, an
‘| * can be appended to indicate that locking should be used.

The optionaimodeparameter is used to indicate theild permission bits that should be set if a new database
must be created; this will be masked by the current umask value for the process.
See Also:

Moduleanydbm (section 7.9):
Generic interface tdbm-style databases.

Modulebsddb (section 7.13):
Lower-level interface to the BSBb library.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

7.11.1 Database Objects

The database objects returneddpen() provide the methods common to all the DBM-style databases. The follow-
ing methods are available in addition to the standard methods.

first ()
It's possible to loop over every key in the database using this method anéxt®@ method. The traversal is
ordered by the databases internal hash values, and won't be sorted by the key values. This method returns the
starting key.

7.11. dbhash — DBM-style interface to the BSD database library 183

last ()
Return the last key in a database traversal. This may be used to begin a reverse-order traversal, see
previous()

next (key)
Returns the key that followlseyin the traversal. The following code prints every key in the datablbsevithout
having to create a list in memory that contains them all:

k = db.first()
while k !'= None:
print k

k = db.next(k)

previous (key)
Return the key that comes befdeeyin a forward-traversal of the database. In conjunction \>() , this
may be used to implement a reverse-order traversal.

sync ()
This method forces any unwritten data to be written to the disk.

7.12 whichdb — Guess which DBM module created a database

The single function in this module attempts to guess which of the several simple database modules al@itable—
gdbm, or dbhash —should be used to open a given file.

whichdb (filenameg
Returns one of the following valueslone if the file can’t be opened because it's unreadable or doesn't exist;
the empty string’{) if the file’s format can’t be guessed; or a string containing the required module name, such
as’dbm’ or’gdbm’ .

7.13 bsddb — Interface to Berkeley DB library

The bsddb module provides an interface to the Berkeley DB library. Users can create hash, btree or record based
library files using the appropriate open call. Bsddb objects behave generally like dictionaries. Keys and values must
be strings, however, so to use other objects as keys or to store other kinds of objects the user must serialize them
somehow, typically using marshal.dumps or pickle.dumps.

There are two incompatible versions of the underlying library. Version 1.85 is widely available, but has some known
bugs. Version 2 is not quite as widely used, but does offer some improvementfsditie module uses the 1.85
interface. Starting with Python 2.0, thenfigure script can usually determine the version of the library which is avail-
able and build it correctly. If you have difficulty gettimgpnfigure to do the right thing, run it with the-help option to

get information about additional options that can help. On Windows, you will need to defikkANE DB 185 _H

macro if you are building Python from source and using version 2 of the DB library.

The bsddb module defines the following functions that create objects that access the appropriate type of Berkeley
DB file. The first two arguments of each function are the same. For ease of portability, only the first two arguments
should be used in most instances.

hashopen (fiIenameE, flag[, modt{, bsize{, ffactm{, nelen[, cachesiz[a hasi{, Iorder]]]]]]]])
Open the hash format file namétbname The optionalflag identifies the mode used to open the file. It may
be r’ (read only), W (read-write), ¢’ (read-write - create if necessary) or'‘(read-write - truncate to zero
length). The other arguments are rarely used and are just passed to the lodbgyeh() function. Consult
the Berkeley DB documentation for their use and interpretation.

btopen (filenam{, flag[, mode{, btflags[, cachesiz[a maxkeypag{e minkeypag[a psize[, Iorder]]]]]]]])

184 Chapter 7. Optional Operating System Services

Open the btree format file naméitename The optionalflag identifies the mode used to open the file. It may

be r’ (read only), W (read-write), ¢’ (read-write - create if necessary) or'‘(read-write - truncate to zero
length). The other arguments are rarely used and are just passed to the low-level dbopen function. Consult the
Berkeley DB documentation for their use and interpretation.

rnopen (fiIenameE, flag[, mode[, mflags[, cachesiz[a psize[, Iorder[, recler{, bval[, bfnamd]]]]]]]])
Open a DB record format file namdidename The optionalflag identifies the mode used to open the file. It
may be t’ (read only), W (read-write), ¢’ (read-write - create if necessary) ar’‘(read-write - truncate to
zero length). The other arguments are rarely used and are just passed to the low-level dbopen function. Consult
the Berkeley DB documentation for their use and interpretation.

See Also:

Moduledbhash (section 7.11):
DBM-style interface to thésddb

7.13.1 Hash, BTree and Record Objects

Once instantiated, hash, btree and record objects support the following methods:

close ()
Close the underlying file. The object can no longer be accessed. Since there is ropepemethod for these
objects, to open the file again a neaddb module open function must be called.

keys ()
Return the list of keys contained in the DB file. The order of the list is unspecified and should not be relied on.
In particular, the order of the list returned is different for different file formats.

has _key (key)
Returnl if the DB file contains the argument as a key.

set _location (key)
Set the cursor to the item indicated by the key and return it.

first ()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases.

next ()
Set the cursor to the next item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases.

previous ()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases. This is not supported on hashtable databases (those opleasitbpéh()).

last ()
Set the cursor to the last item in the DB file and return it. The order of keys in the file is unspecified. This is not
supported on hashtable databases (those openetiagitiopen()).

sync ()
Synchronize the database on disk.

Example:

7.13. bsddb — Interface to Berkeley DB library 185

>>> import bsddb
>>> db = bsddb.btopen(/tmp/spam.db’, ’'c’)
>>> for i in range(10): db['%d'%i] = '%d'% (i*i)

>>> db['3]

>>> db.keys()

ro, 'v, 2, '3, '4,'5, e, '7, '8, 9]
>>> db.first()

(0", 0)

>>> db.next()

(1, ')

>>> db.last()

(9", '81)

>>> db.set_location('2’)
(2, '4)

>>> db.previous()

(1, '1)

>>> db.sync()

7.14 zlib — Compression compatible with gzip

For applications that require data compression, the functions in this module allow compression and decompression,
using the zlib library. The zlib library has its own home pagetiat//www.info-zip.org/publ/infozip/zlib/. Version 1.1.3 is

the most recent version as of September 2000; use a later version if one is available. There are known incompatibilities
between the Python module and earlier versions of the zlib library.

The available exception and functions in this module are:

error
Exception raised on compression and decompression errors.

adler32 (string[, value])
Computes a Adler-32 checksumsifing. (An Adler-32 checksum is almost as reliable as a CRC32 but can be
computed much more quickly.) Wfalueis present, it is used as the starting value of the checksum; otherwise,
a fixed default value is used. This allows computing a running checksum over the concatenation of several
input strings. The algorithm is not cryptographically strong, and should not be used for authentication or digital
signatures.

compress (string[, Ievel])
Compresses the data §tring, returning a string contained compressed dé¢aelis an integer froni to 9
controlling the level of compressiof;is fastest and produces the least compres8ias slowest and produces
the most. The default value & Raises therror exception if any error occurs.

compressobj ([Ievel])
Returns a compression object, to be used for compressing data streams that won't fit into memoryletelnce.
is an integer froml to 9 controlling the level of compression;is fastest and produces the least compression,
9 is slowest and produces the most. The default valée is

crc32 (string[, value])
Computes a CRC (Cyclic Redundancy Check) checksustrofg. If valueis present, it is used as the starting
value of the checksum; otherwise, a fixed default value is used. This allows computing a running checksum over
the concatenation of several input strings. The algorithm is not cryptographically strong, and should not be used

186 Chapter 7. Optional Operating System Services

for authentication or digital signatures.

decompress (string[, Wbits[, bufsize]])
Decompresses the datasiring, returning a string containing the uncompressed data. Wihits parameter
controls the size of the window buffer. blufsizeis given, it is used as the initial size of the output buffer. Raises
theerror exception if any error occurs.

The absolute value afbitsis the base two logarithm of the size of the history buffer (the “window size”) used
when compressing data. Its absolute value should be between 8 and 15 for the most recent versions of the zlib
library, larger values resulting in better compression at the expense of greater memory usage. The default value
is 15. Whenwbitsis negative, the standagrip header is suppressed; this is an undocumented feature of the
zlib library, used for compatibility witlunzip’s compression file format.

bufsizeis the initial size of the buffer used to hold decompressed data. If more space is required, the buffer size
will be increased as needed, so you don't have to get this value exactly right; tuning it will only save a few calls
tomalloc() . The default size is 16384.

decompressobj ([wbits])
Returns a compression object, to be used for decompressing data streams that won't fit into memory at once.
Thewbitsparameter controls the size of the window buffer.

Compression objects support the following methods:

compress (string)
Compresstring, returning a string containing compressed data for at least part of the datangn This data
should be concatenated to the output produced by any preceding callstoripeess() method. Some input
may be kept in internal buffers for later processing.

flush ([mode])
All pending input is processed, and a string containing the remaining compressed output is retauechn
be selected from the consta@sSYNC FLUSH Z_FULL_FLUSH or Z_FINISH , defaulting toZ_FINISH .
Z_SYNCFLUSHandZ_FULL_FLUSHallow compressing further strings of data and are used to allow patrtial
error recovery on decompression, whileFINISH finishes the compressed stream and prevents compressing
any more data. After callinffush() with modeset toZ_FINISH , thecompress() method cannot be
called again; the only realistic action is to delete the object.

Decompression objects support the following methods, and a single attribute:

unused _data
A string which contains any unused data from the last string fed to this decompression object. If the whole string
turned out to contain compressed data, thl$ isthe empty string.

The only way to determine where a string of compressed data ends is by actually decompressing it. This means
that when compressed data is contained part of a larger file, you can only find the end of it by reading data and
feeding it into a decompression objeafscompress method until theunused _data attribute is no longer

the empty string.

decompress (string)
Decompressstring, returning a string containing the uncompressed data corresponding to at least part of
the data instring. This data should be concatenated to the output produced by any preceding calls to the
decompress() method. Some of the input data may be preserved in internal buffers for later processing.

flush ()
All pending input is processed, and a string containing the remaining uncompressed output is returned. After
callingflush() , thedecompress() method cannot be called again; the only realistic action is to delete the
object.

See Also:

Modulegzip (section 7.15):
reading and writingyzip-format files

7.14. zlib — Compression compatible with gzip 187

http://www.info-zip.org/publ/infozip/zlib/
The zlib library home page.

7.15 gzip — Support for gzip files

The data compression provided by tHd module is compatible with that used by the GNU compression program
gzip. Accordingly, thegzip module provides th&zipFile class to read and writgzip-format files, automatically
compressing or decompressing the data so it looks like an ordinary file object. Note that additional file formats which
can be decompressed by theip and gunzip programs, such as those produceddoynpressand pack, are not
supported by this module.

The module defines the following items:

GzipFile ([filename{, mode[, compresslevél fiIeobj]]]])
Constructor for the&szipFile class, which simulates most of the methods of a file object, with the exception
of theseek() andtell() methods. At least one difeobjandfilenamemust be given a non-trivial value.

The new class instance is basedfitleobj, which can be a regular file,8tringlO object, or any other object
which simulates a file. It defaults tdone, in which casdilenameis opened to provide a file object.

Whenfileobj is not None, the filenameargument is only used to be included in theip file header, which
may includes the original filename of the uncompressed file. It defaults to the filendit@®bj if discernible;
otherwise, it defaults to the empty string, and in this case the original filename is not included in the header.

Themodeargument can be any af ,’'rb’ ,’a’ ,’ab’ ,'w’ , or'wb’ , depending on whether the file will
be read or written. The default is the modefitdobj if discernible; otherwise, the defaultid’ . Be aware
that only therb’ ,’ab’ , and'wb’ values should be used for cross-platform portability.

The compresslevedrgument is an integer frorh to 9 controlling the level of compressior; is fastest and
produces the least compression, &nd slowest and produces the most compression. The deféult is

Calling aGzipFile object'sclose() method does not clodéeobj, since you might wish to append more
material after the compressed data. This also allows you to p&&snglO object opened for writing as
fileobj, and retrieve the resulting memory buffer using 8tenglO object’'sgetvalue() method.

open (filenamc{, mode{, compresslevél])
This is a shorthand foGzipFile(filename mode compresslevgl The filenameargument is required;
modedefaults tarb’ andcompresslevealefaults tad.

See Also:

Modulezlib (section 7.14):
the basic data compression module

7.16 zipfile — Work with ZIP archives

New in version 1.6.

The ZIP file format is a common archive and compression standard. This module provides tools to create, read, write,
append, and list a ZIP file. Any advanced use of this module will require an understanding of the format, as defined in
PKZIP Application Note

This module does not currently handle ZIP files which have appended comments, or multi-disk ZIP files.
The available attributes of this module are:

error
The error raised for bad ZIP files.

188 Chapter 7. Optional Operating System Services

ZipFile (..)
The class for reading and writing ZIP files. Se8gFile Objects (section 7.16.1) for constructor details.

PyZipFile (..)
Class for creating ZIP archives containing Python libraries.

Zipinfo ([filenam({, date_time]])
Class used the represent infomation about a member of an archive. Instances of this class are returned by the
getinfo() andinfolist() methods oZipFile objects. Most users of thapfile module will not
need to create these, but only use those created by this mditehameshould be the full name of the archive
member, andlate_time should be a tuple containing six fields which describe the time of the last modification
to the file; the fields are described in section 7.16.3, “ZipInfo Objects.”

is _zipfile (filenamé
Returns true ifilenameis a valid ZIP file based on its magic number, otherwise returns false. This module does
not currently handle ZIP files which have appended comments.

ZIP _STORED
The numeric constant for an uncompressed archive member.

ZIP _DEFLATED
The numeric constant for the usual ZIP compression method. This requires the zlib module. No other compres-
sion methods are currently supported.

See Also:

PKZIP Application Note
(http://www.pkware.com/appnote.html)
Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms used.

Info-ZIP Home Page
(http://www.info-zip.org/pub/infozip/)
Information about the Info-ZIP project’s ZIP archive programs and development libraries.

7.16.1 ZipFile Objects

ZipFile (filenamef, mode{, compressioﬂ|])
Open a ZIP file nametllename The modeparameter should b€ to read an existing filew’ to truncate
and write a new file, ola’ to append to an existing file. Fanodeis’a’ andfilenamerefers to an existing
ZIP file, then additional files are added to it.flEnamedoes not refer to a ZIP file, then a new ZIP archive is
appended to the file. This is meant for adding a ZIP archive to another file, sughtras‘exe’. Using

cat myzip.zip >> python.exe

also works, and at least/inZip can read such filescompressioris the ZIP compression method to use
when writing the archive, and should B&° _STOREDor ZIP _DEFLATED unrecognized values will cause
RuntimeError to be raised. IfZIP _DEFLATEDIs specified but thezlib module is not avaialble,
RuntimeError is also raised. The default &P _STORED

close ()
Close the archive file. You must callose() before exiting your program or essential records will not be
written.

getinfo (namg
Return aZipinfo object with information about the archive meminame

infolist 0
Return a list containing ZipInfo object for each member of the archive. The objects are in the same order
as their entries in the actual ZIP file on disk if an existing archive was opened.

7.16. zipfile — Work with ZIP archives 189

namelist ()
Return a list of archive members by name.

printdir ()
Print a table of contents for the archivesys.stdout

read (nameg
Return the bytes of the file in the archive. The archive must be open for read or append.

testzip ()
Read all the files in the archive and check their CRC’s. Return the name of the first bad file, or elsHoeatirn

write (filenam{, arcnamé, compresstype]])
Write the file namedilenameo the archive, giving it the archive naracnameby default, this will be the same
asfilenamg. If given, compresstypeoverrides the value given for tleempressioparameter to the constructor
for the new entry. The archive must be open with mvde or’a’

writestr (zinfo, bytep
Write the stringbytesto the archive; meta-information is given as @ipinfo instancezinfo. At least the
filename, date, and time must be givenaiyfa The archive must be opened with mdde or’a’

The following data attribute is also available:

debug
The level of debug output to use. This may be set fl@r{the default, no output) t8 (the most output).
Debugging information is written teys.stdout

7.16.2 PyZipFile Objects

ThePyZipFile constructor takes the same parameters aZiihieile constructor. Instances have one method in
addition to those oZipFile objects.

writepy (pathnamé, basenam]a)
Search for files*.py’ and add the corresponding file to the archive. The corresponding file*ipya'file if
available, else &!pyc’ file, compiling if necessary. If the pathname is a file, the flename must end with
and just the (correspondingpy[co]’) file is added at the top level (no path information). If it is a directory, and
the directory is not a package directory, then all the fitgg/[co]’ are added at the top level. If the directory is a
package directory, then al.py[oc]’ are added under the package name as a file path, and if any subdirectories
are package directories, all of these are added recursibglgenames intended for internal use only. The
writepy() method makes archives with file names like this:

string.pyc # Top level name
test/__init__.pyc # Package directory
test/testall.pyc # Module test.testall
test/bogus/__init__.pyc # Subpackage directory
test/bogus/myfile.pyc # Submodule test.bogus.myfile

7.16.3 Zipinfo Objects

Instances of th&ipinfo class are returned by thyetinfo() andinfolist() methods oZipFile objects.
Each object stores information about a single member of the ZIP archive.

Instances have the following attributes:

filename
Name of the file in the archive.

190 Chapter 7. Optional Operating System Services

date _time
The time and date of the last modification to to the archive member. This is a tuple of six values:

Index | Value

Year

Month (one-based)

Day of month (one-based)
Hours (zero-based)
Minutes (zero-based)
Seconds (zero-based)

ab~hwWwNEO

compress _type
Type of compression for the archive member.

comment
Comment for the individual archive member.

extra
Expansion field data. THRKZIP Application Noteontains some comments on the internal structure of the data
contained in this string.

create _system
System which created ZIP archive.

create _version
PKZIP version which created ZIP archive.

extract _version
PKZIP version needed to extract archive.

reserved
Must be zero.

flag _bits
ZIP flag bits.

volume
\olume number of file header.

internal _attr
Internal attributes.

external _attr
External file attributes.

header _offset
Byte offset to the file header.

file _offset
Byte offset to the start of the file data.

CRC
CRC-32 of the uncompressed file.

compress _size
Size of the compressed data.

file _size
Size of the uncompressed file.

7.17 readline — GNU readline interface

7.17. readline — GNU readline interface 191

Thereadline module defines a number of functions used either directly or fromltioenpleter module to
facilitate completion and history file read and write from the Python interpreter.

Thereadline module defines the following functions:

parse _and _bind (string)
Parse and execute single line of a readline init file.

get _line _buffer ()
Return the current contents of the line buffer.

insert _text (string)
Insert text into the command line.

read _init _file ([filenamd))
Parse a readline initialization file. The default filename is the last filename used.

read _history _file ([filenamd)
Load a readline history file. The default filenameishistory’.

write _history _file ([filenamei)
Save a readline history file. The default filenameiiistory’.

get _history _length ()
Return the desired length of the history file. Negative values imply unlimited history file size.

set _history _length (length
Set the number of lines to save in the history filgite _history _file() uses this value to truncate the
history file when saving. Negative values imply unlimited history file size.

set _completer ([function])
Set or remove the completer function. The completer function is callégnasior(text, state , for i in
[0, 1, 2, ..] until it returns a non-string. It should return the next possible completion starting with
text

get _begidx ()
Get the beginning index of the readline tab-completion scope.

get _endidx ()
Get the ending index of the readline tab-completion scope.

set _completer _delims (string)
Set the readline word delimiters for tab-completion.

get _completer _delims ()
Get the readline word delimiters for tab-completion.

See Also:

Modulerlcompleter (section 7.18):
Completion of Python identifiers at the interactive prompt.

7.17.1 Example

The following example demonstrates how to userémdline module’s history reading and writing functions to
automatically load and save a history file namggHist’ from the user's home directory. The code below would
normally be executed automatically during interactive sessions from the user’'s SPYTHONSTARTUP file.

192 Chapter 7. Optional Operating System Services

import 0s
histfile = os.path.join(os.environ["HOME"], ".pyhist")
try:
readline.read_history_file(histfile)
except IOError:
pass
import atexit
atexit.register(readline.write_history_file, histfile)
del os, histfile

7.18 rlcompleter — Completion function for GNU readline

Therlcompleter module defines a completion function for tteadline module by completing valid Python
identifiers and keywords.

This module is Wiix-specific due to it's dependence on tieadline module.
Therlcompleter module defines th€ompleter class.

Example:

>>> jmport rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete”)
>>> readline. <TAB PRESSED>

readline. _doc__ readline.get_line_buffer readline.read_init_file
readline._ file_ readline.insert_text readline.set_completer
readline.__name__ readline.parse_and_bind

>>> readline.

Therlcompleter module is designed for use with Python’s interactive mode. A user can add the following lines

to his or her initialization file (identified by the $PYTHONSTARTUP environment variable) to get autoifebic
completion:

try:
import readline
except ImportError:
print "Module readline not available."
else:
import rlcompleter
readline.parse_and_bind("tab: complete")

7.18.1 Completer Objects

Completer objects have the following method:

complete (text, statg
Return thestateh completion fortext

If called fortextthat doesn’t include a period character’}; it will complete from names currently defined in

7.18. rlcompleter — Completion function for GNU readline 193

__main __, __builtin __ and keywords (as defined by theyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (i.e., functions will not
be evaluated, but it can generate calls tqetattr __()) upto the last part, and find matches for the rest via
thedir() function.

194 Chapter 7. Optional Operating System Services

CHAPTER
EIGHT

Unix Specific Services

The modules described in this chapter provide interfaces to features that are unique toxhapbrating system, or
in some cases to some or many variants of it. Here’s an overview:

posix The most common POSIX system calls (normally used via moadti)e
pwd The password databasgetpwnam() and friends).

arp The group databasgdétgrnam() and friends).

crypt Thecrypt() function used to check Wix passwords.

dl Call C functions in shared objects.

dbm The standard “database” interface, based on ndbm.

gdbm GNU'’s reinterpretation of dbm.

termios POSIX style tty control.

TERMIOS Symbolic constants required to use teemios module.

tty Utility functions that perform common terminal control operations.
pty Pseudo-Terminal Handling for SGI and Linux.

fentl Thefentl() andioctl() system calls.

pipes A Python interface to tix shell pipelines.

posixfile A file-like object with support for locking.

resource An interface to provide resource usage information on the current process.
nis Interface to Sun’s NIS (a.k.a. Yellow Pages) library.

syslog An interface to the Wix syslog library routines.

commands Utility functions for running external commands.

8.1 posix — The most common POSIX system calls

This module provides access to operating system functionality that is standardized by the C Standard and the POSIX
standard (a thinly disguisedNuUX interface).

Do not import this module directly. Instead, import the modules, which provides gortable version of this
interface. On WX, theos module provides a superset of thesix interface. On non-Wix operating systems the
posix module is not available, but a subset is always available througbsthieterface. Onces is imported, there
is no performance penalty in using it insteadpafsix . In addition,os provides some additional functionality, such
as automatically callingutenv() when an entry iros.environ is changed.

The descriptions below are very terse; refer to the corresponding thanual (or POSIX documentation) entry for
more information. Arguments callggzhthrefer to a pathname given as a string.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported by the system
calls raiseerror (a synonym for the standard exceptiOSError), described below.

195

8.1.1 Large File Support

Several operating systems (including AlX, HPUX, Irix and Solaris) provide support for files that are larger than 2 Gb
from a C programming model wheir@ andlong are 32-bit values. This is typically accomplished by defining the
relevant size and offset types as 64-bit values. Such files are sometimes referridde fikes

Large file support is enabled in Python when the size affan_t is larger than dong and thelong long type

is available and is at least as large a#n _t . Python longs are then used to represent file sizes, offsets and other
values that can exceed the range of a Python int. It may be necessary to configure and compile Python with certain
compiler flags to enable this mode. For example, it is enabled by default with recent versions of Irix, but with Solaris
2.6 and 2.7 you need to do something like:

CFLAGS="getconf LFS_CFLAGS"™ OPT="-g -O2 $CFLAGS" \
configure

8.1.2 Module Contents

Moduleposix defines the following data item:

environ
A dictionary representing the string environment at the time the interpreter was started. For example,
environ[HOME’] is the pathname of your home directory, equivalergetenv("HOME") in C.

Maodifying this dictionary does not affect the string environment passed oexegv() , popen() or
system() ; if you need to change the environment, passiron to execve() or add variable assign-
ments and export statements to the command stringyfstem() or popen() .

Note: Theos module provides an alternate implementatioren¥iron which updates the environment on
modification. Note also that updating.environ will render this dictionary obsolete. Use of the for this
is recommended over direct access toghsix module.

Additional contents of this module should only be accessed viashmodule; refer to the documentation for that
module for further information.

8.2 pwd — The password database

This module provides access to thelid user account and password database. It is available ornaX ersions.

Password database entries are reported as 7-tuples containing the following items from the password database (see
<pwd.h>), in order:

Index | Field | Meaning
0 | pw_name Login name
1 | pw_passwd | Optional encrypted password
2 | pw_uid Numerical user ID
3 | pw_gid Numerical group ID
4 | pw_gecos User name or comment field
5| pw_dir User home directory
6 | pw_shell User command interpreter

The uid and gid items are integers, all others are strikggError s raised if the entry asked for cannot be found.

Note: In traditional UNIxX the fieldpw_passwd usually contains a password encrypted with a DES derived algorithm
(see modulesrypt). However most modern unices use a so-caflieddow passwordystem. On those unices the

196 Chapter 8. Unix Specific Services

field pw_passwd only contains a asterisk*{) or the letter X’ where the encrypted password is stored in a file
‘ letc/shadow’ which is not world readable.

It defines the following items:

getpwuid (uid)
Return the password database entry for the given numeric user ID.

getpwnam (namg
Return the password database entry for the given user name.

getpwall ()
Return a list of all available password database entries, in arbitrary order.

See Also:

Modulegrp (section 8.3):
An interface to the group database, similar to this.

8.3 grp — The group database

This module provides access to thelld group database. It is available on alklX versions.

Group database entries are reported as 4-tuples containing the following items from the group database (see
<grp.h>), in order:

Index | Field | Meaning

0 | gr_name | the name of the group

gr_passwd| the (encrypted) group password; often empty
gr_gid the numerical group 1D

gr_mem all the group member’s user names

wWN -

The gid is an integer, name and password are strings, and the member list is a list of strings. (Note that most users are
not explicitly listed as members of the group they are in according to the password database. Check both databases to
get complete membership information.)

It defines the following items:

getgrgid (gid)
Return the group database entry for the given numeric grougK&9Error is raised if the entry asked for
cannot be found.

getgrnam (name
Return the group database entry for the given group n&mgError s raised if the entry asked for cannot be
found.

getgrall ()
Return a list of all available group entries, in arbitrary order.

See Also:

Module pwd (section 8.2):
An interface to the user database, similar to this.

8.4 crypt — Function to check UNIX passwords

8.3. grp — The group database 197

This module implements an interface to trgpt(3) routine, which is a one-way hash function based upon a modified
DES algorithm; see the 1ux man page for further details. Possible uses include allowing Python scripts to accept
typed passwords from the user, or attempting to cragkxUpasswords with a dictionary.

crypt (word, sal)
word will usually be a user’s password as typed at a prompt or in a graphical intesftis. usually a random
two-character string which will be used to perturb the DES algorithm in one of 4096 ways. The characters in
salt must be in the sef./a-zA-Z0-9] .- Returns the hashed password as a string, which will be composed
of characters from the same alphabet as the salt (the first two characters represent the salt itself).

A simple example illustrating typical use:

import crypt, getpass, pwd

def login():
username = raw_input(’Python login:’)
cryptedpasswd = pwd.getpwnam(username)[1]
if cryptedpasswd:
if cryptedpasswd == 'X’ or cryptedpasswd == "*'
raise "Sorry, currently no support for shadow passwords"
cleartext = getpass.getpass()
return crypt.crypt(cleartext, cryptedpasswd[:2]) == cryptedpasswd
else:
return 1

8.5 dlI — Call C functions in shared objects

Thedl module defines an interface to tiwpen() function, which is the most common interface onid plat-
forms for handling dynamically linked libraries. It allows the program to call arbitrary functions in such a library.

Note: This module will not work unless
sizeof(int) == sizeof(long) == sizeof(char *)

If this is not the caseSystemError will be raised on import.
Thedl module defines the following function:

open (nam{, mode = RTLD_LAZY])
Open a shared object file, and return a handle. Mode signifies late birRITAdD(LAZY) or immediate binding
(RTLD_NOW Default isRTLD_LAZY. Note that some systems do not supfRFLD_NOW

Return value is a dlobject.
Thedl module defines the following constants:

RTLD_LAZY
Useful as an argument tipen() .

RTLD_NOW
Useful as an argument tipen() . Note that on systems which do not support immediate binding, this constant
will not appear in the module. For maximum portability, Usesattr() to determine if the system supports
immediate binding.

Thedl module defines the following exception:

198 Chapter 8. Unix Specific Services

error
Exception raised when an error has occurred inside the dynamic loading and linking routines.

Example:

>>> import dl, time

>>> a=dl.open(/lib/libc.s0.6")
>>> g.call('time’), time.time()
(929723914, 929723914.498)

This example was tried on a Debian GNU/Linux system, and is a good example of the fact that using this module is
usually a bad alternative.

8.5.1 DI Objects

Dl objects, as returned lgpen() above, have the following methods:

close ()
Free all resources, except the memory.

sym(name¢
Return the pointer for the function namedme as a number, if it exists in the referenced shared object, other-
wiseNone. This is useful in code like:
>>> if a.sym(time’):
a.call('time’)
. else:
time.time()

(Note that this function will return a non-zero number, as zero isNteL pointer)

call (name{, argl[, arg2..]])
Call the function namedamein the referenced shared object. The arguments must be either Python integers,
which will be passed as is, Python strings, to which a pointer will be passéthrag, which will be passed as
NULL Note that strings should only be passed to functionoast char* , as Python will not like its string
mutated.

There must be at most 10 arguments, and arguments not given will be trededesThe function’s return
value must be a @ng , which is a Python integer.

8.6 dbm— Simple “database” interface

Thedbmmodule provides an interface to thenlx (n)dbmlibrary. Dbm objects behave like mappings (dictionaries),
except that keys and values are always strings. Printing a dbm object doesn't print the keys and values, and the
items() andvalues() methods are not supported.

This module can be used with the “classic” ndbm interface, the BSD DB compatibility interface, or the GNU GDBM
compatibility interface. On WX, the configure script will attempt to locate the appropriate header file to simplify
building this module.

The module defines the following:

error
Raised on dbm-specific errors, such as I/O eridesiError is raised for general mapping errors like specify-
ing an incorrect key.

8.6. dbm— Simple “database” interface 199

library
Name of thendbm implementation library used.

open (filename[, ﬂag[, mode]])
Open a dbm database and return a dbm object fillr@ameargument is the name of the database file (without
the “.dir’ or ‘ .pag’ extensions; note that the BSD DB implementation of the interface will append the extension
‘.db’ and only create one file).

The optionallag argument must be one of these values:
Value | Meaning

r Open existing database for reading only (default)

w’ Open existing database for reading and writing

c Open database for reading and writing, creating it if it doesn't exist
n’ Always create a new, empty database, open for reading and writing
The optionalmodeargument is the Nix mode of the file, used only when the database has to be created. It
defaults to octaD666 .
See Also:

Moduleanydbm (section 7.9):
Generic interface tdbm-style databases.

Modulegdbm (section 8.7):
Similar interface to the GNU GDBM library.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

8.7 gdbm— GNU's reinterpretation of dbm

This module is quite similar to theébm module, but usegdbm instead to provide some additional functionality.
Please note that the file formats createdydipm anddbmare incompatible.

Thegdbm module provides an interface to the GNU DBM libragglbm objects behave like mappings (dictionaries),
except that keys and values are always strings. Printiggbem object doesn’t print the keys and values, and the
items() andvalues() methods are not supported.

The module defines the following constant and functions:

error
Raised orgdbm-specific errors, such as I/O erroiseyError is raised for general mapping errors like speci-
fying an incorrect key.

open (filename,[flag, [mode]])
Open agdbm database and returrgalbm object. Thefilenameargument is the name of the database file.

The optionaflagargument can b (to open an existing database for reading only — defauit), (to open
an existing database for reading and writig), (which creates the database if it doesn’t existjnor (which
always creates a new empty database).

Appending f ’ to the flag opens the database in fast mode; altered data will not automatically be written to the

disk after every change. This results in faster writes to the database, but may result in an inconsistent database

if the program crashes while the database is still open. Ussytig) method to force any unwritten data to
be written to the disk.

The optionalmodeargument is the Nix mode of the file, used only when the database has to be created. It
defaults to octaD666 .

In addition to the dictionary-like methodgdbm objects have the following methods:

200 Chapter 8. Unix Specific Services

firstkey ()
It's possible to loop over every key in the database using this method antegtkey() = method. The
traversal is ordered bydbm's internal hash values, and won't be sorted by the key values. This method returns
the starting key.

nextkey (key)
Returns the key that followleeyin the traversal. The following code prints every key in the datalbsevithout
having to create a list in memory that contains them all:

k = db.firstkey()
while k != None:
print k
k = db.nextkey(k)

reorganize ()
If you have carried out a lot of deletions and would like to shrink the space used ggtih&file, this routine will
reorganize the databasgdbmwill not shorten the length of a database file except by using this reorganization;
otherwise, deleted file space will be kept and reused as new (key, value) pairs are added.

sync ()
When the database has been opened in fast mode, this method forces any unwritten data to be written to the
disk.

See Also:

Moduleanydbm (section 7.9):
Generic interface tdbm-style databases.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

8.8 termios — POSIX style tty control

This module provides an interface to the POSIX calls for tty 1/0 control. For a complete description of these calls, see
the POSIX or Wix manual pages. It is only available for thoselld versions that support POSérmiosstyle tty
I/O control (and then only if configured at installation time).

All functions in this module take a file descriptfat as their first argument. This must be an integer file descriptor,
such as returned kgys.stdin.fileno()

This module should be used in conjunction with THeRMIOSmodule, which defines the relevant symbolic constants
(see the next section).

The module defines the following functions:

tcgetattr (fd)
Return a list containing the tty attributes for file descripfyr as follows: [iflag, oflag cflag Iflag, ispeed
ospeedcc whereccis a list of the tty special characters (each a string of length 1, except the items with indices
TERMIOS.VMINandTERMIOS.VTIME, which are integers when these fields are defined). The interpretation
of the flags and the speeds as well as the indexing irtt¢taray must be done using the symbolic constants
defined in theTERMIOSmodule.

tcsetattr (fd, when, attributes
Set the tty attributes for file descriptdd from the attributes which is a list like the one returned by
tcgetattr() . The whenargument determines when the attributes are chand&RMIOS.TCSANOW
to change immediately, TERMIOS. TCSADRAIN to change after transmitting all queued output, or
TERMIOS.TCSAFLUSHo change after transmitting all queued output and discarding all queued input.

tcsendbreak (fd, duration

8.8. termios — POSIX style tty control 201

Send a break on file descriptfat. A zerodurationsends a break for 0.25-0.5 seconds; a nonderation has
a system dependent meaning.

tcdrain (fd)
Wait until all output written to file descriptdd has been transmitted.

tcflush (fd, queug
Discard queued data on file descriptdr The queueselector specifies which queueERMIOS.TCIFLUSH
for the input queueTERMIOS.TCOFLUSHor the output queue, o0fFERMIOS.TCIOFLUSHfor both queues.

tcflow (fd, action
Suspend or resume input or output on file descrifito heactionargument can bEERMIOS.TCOOFHRo sus-
pend outputTERMIOS.TCOONo restart outpuffERMIOS.TCIOFF to suspend input, 6FERMIOS.TCION
to restart input.

See Also:

Module TERMIOS(section 8.9):
Constants for use wittermios

Moduletty (section 8.10):
Convenience functions for common terminal control operations.

8.8.1 Example

Here's a function that prompts for a password with echoing turned off. Note the technique using a separate
tcgetattr() call and atry ... finally statement to ensure that the old tty attributes are restored exactly
no matter what happens:

def getpass(prompt = "Password: "):
import termios, TERMIOS, sys
fd = sys.stdin.fileno()
old = termios.tcgetattr(fd)
new = termios.tcgetattr(fd)
new[3] = new[3] & "TERMIOS.ECHO # Iflags
try:
termios.tcsetattr(fd, TERMIOS. TCSADRAIN, new)
passwd = raw_input(prompt)
finally:
termios.tcsetattr(fd, TERMIOS.TCSADRAIN, old)
return passwd

8.9 TERMIOS— Constants used with the termios module
This module defines the symbolic constants required to useethréos module (see the previous section). See the

POSIX or INIX manual pages (or the source) for a list of those constants.

Note: this module resides in a system-dependent subdirectory of the Python library directory. You may have to
generate it for your particular system using the scfipbfs/scripts/h2py.py’.

8.10 tty — Terminal control functions

Thetty module defines functions for putting the tty into cbreak and raw modes.

202 Chapter 8. Unix Specific Services

Because it requires thermios module, it will work only on LNIX.
Thetty module defines the following functions:

setraw (fd[, when])
Change the mode of the file descripfdito raw. If whenis omitted, it defaults t& ERMIOS. TCAFLUSHand
is passed ttermios.tcsetattr()

setcbreak (fd[, when])
Change the mode of file descriptiorto cbreak. Ifwhenis omitted, it defaults t&f ERMIOS. TCAFLUSHand
is passed ttermios.tcsetattr()

See Also:

Moduletermios (section 8.8):
Low-level terminal control interface.

Module TERMIOS(section 8.9):
Constants useful for terminal control operations.

8.11 pty — Pseudo-terminal utilities

Thepty module defines operations for handling the pseudo-terminal concept: starting another process and being able
to write to and read from its controlling terminal programmatically.

Because pseudo-terminal handling is highly platform dependant, there is code to do it only for SGI and Linux. (The
Linux code is supposed to work on other platforms, but hasn't been tested yet.)

Thepty module defines the following functions:

fork ()
Fork. Connect the child’s controlling terminal to a pseudo-terminal. Return valugids fd) . Note that the
child getspid 0, and thdd is invalid. The parent’s return value is thpéd of the child, andd is a file descriptor
connected to the child’s controlling terminal (and also to the child’s standard input and output.

openpty ()
Open a new pseudo-terminal pair, usmgopenpty() if possible, or emulation code for SGI and generic
UNIX systems. Return a pair of file descriptéraaster slave , for the master and the slave end, respectively.

spawn (argv[, masteLread[, stdin_read]])
Spawn a process, and connect its controlling terminal with the current process’s standard io. This is often used
to baffle programs which insist on reading from the controlling terminal.

The functionamaster read andstdin_read should be functions which read from a file-descriptor. The defaults
try to read 1024 bytes each time they are called.

8.12 fcntl — The fentl() and ioctl() system calls

This module performs file control and 1/O control on file descriptors. Itis an interface foriti@ andioctl()
UNIX routines. File descriptors can be obtained withftleao() method of a file or socket object.

The module defines the following functions:

fentl (fd, op{, arg])
Perform the requested operation on file descrifdorThe operation is defined kgp and is operating system
dependent. Typically these codes can be retrieved from the library me@Ne&L The argumenrdrgis optional,
and defaults to the integer valOe When present, it can either be an integer value, or a string. With the argument
missing or an integer value, the return value of this function is the integer return value of¢chd(call.

8.11. pty — Pseudo-terminal utilities 203

When the argument is a string it represents a binary structure, e.g. creagddiypack() . The binary

data is copied to a buffer whose address is passed to theti() call. The return value after a successful

call is the contents of the buffer, converted to a string object. The length of the returned string will be the same
as the length of tharg argument. This is limited to 1024 bytes. If the information returned in the buffer by
the operating system is larger than 1024 bytes, this is most likely to result in a segmentation violation or a more
subtle data corruption.

If the fcntl() fails, anlOError is raised.

ioctl (fd, op, arg
This function is identical to théentl() function, except that the operations are typically defined in the library
modulelOCTL.

flock (fd, op
Perform the lock operatioop on file descriptofd. See the Wix manualflock(3) for details. (On some systems,
this function is emulated usirfigntl() .)

lockf (fd, code,[len, [start, [whencd]])
This is a wrapper around theCNTL.F_SETLK and FCNTL.F_SETLKW fcntl() calls. See the Wix
manual for details.

If the library modulesFCNTL or IOCTL are missing, you can find the opcodes in the C include files
<sys/fentl.h> and <sys/ioctl.h> . You can create the modules yourself with th2py script, found in
the ‘Tools/scripts/’ directory.

Examples (all on a SVR4 compliant system):
import struct, fcntl, FCNTL

file = open(...)
rv = fentl(file.fileno(), FCNTL.O_NDELAY, 1)

lockdata = struct.pack(hhllhh’, FCNTL.F_WRLCK, 0, 0, 0, 0, 0)
rv = fentl.fentl(file.fileno(), FCNTL.F_SETLKW, lockdata)

Note that in the first example the return value variaklewill hold an integer value; in the second example it will hold
a string value. The structure lay-out for tleekdatavariable is system dependent — therefore usingfithek()
call may be better.

8.13 pipes — Interface to shell pipelines

Thepipes module defines a class to abstract the conceptpipeline— a sequence of convertors from one file to
another.

Because the module uséén/sh command lines, a POSIX or compatible shelldstsystem() andos.popen()
is required.

Thepipes module defines the following class:

Template ()
An abstraction of a pipeline.

Example:

204 Chapter 8. Unix Specific Services

>>> import pipes

>>> t=pipes.Template()

>>> tappend(tr a-z A-Z', '--')
>>> f=t.open(/tmp/1’, 'w’)
>>> f.write(hello world’)

>>> f.close()

>>> open(’/tmp/1’).read()
'HELLO WORLD’

8.13.1 Template Objects

Template objects following methods:

reset ()
Restore a pipeline template to its initial state.

clone ()
Return a new, equivalent, pipeline template.

debug (flag)
If flag is true, turn debugging on. Otherwise, turn debugging off. When debugging is on, commands to be
executed are printed, and the shell is gigeh -x command to be more verbose.

append (cmd, kind
Append a new action at the end. Tomdvariable must be a valid bourne shell command. Kimel variable
consists of two letters.

The first letter can be either 6f (which means the command reads its standard ingut), (which means
the commands reads a given file on the command ling) or (which means the commands reads no input, and
hence must be first.)

Similarly, the second letter can be either¢f (which means the command writes to standard outpiut),
(which means the command writes a file on the command ling) or (which means the command does not
write anything, and hence must be last.)

prepend (cmd, kind
Add a new action at the beginning. Smgpend() for explanations of the arguments.

open (file, modé
Return a file-like object, open ftile, but read from or written to by the pipeline. Note that only onerof ,
‘W' may be given.

copy (infile, outfilg
Copyinfile to outfilethrough the pipe.

8.14 posixfile — File-like objects with locking support

Note: This module will become obsolete in a future release. The locking operation that it provides is done better and
more portably by thécntl.lockf() call.

This module implements some additional functionality over the built-in file objects. In particular, it implements file
locking, control over the file flags, and an easy interface to duplicate the file object. The module defines a new file
object, the posixfile object. It has all the standard file object methods and adds the methods described below. This
module only works for certain flavors ofNUXx, since it usescntl.fcntl() for file locking.

8.14. posixfile — File-like objects with locking support 205

To instantiate a posixfile object, use thygen() function in theposixfile module. The resulting object looks and
feels roughly the same as a standard file object.

Theposixfile module defines the following constants:

SEEK_SET
Offset is calculated from the start of the file.

SEEK_CUR
Offset is calculated from the current position in the file.

SEEK_END
Offset is calculated from the end of the file.

The posixfile module defines the following functions:

open (filenam({, mode[, bufsizd])
Create a new posixfile object with the given filename and mode fildmame modeandbufsizearguments are
interpreted the same way as by the builbpen() function.

fileopen (fileobjec)
Create a new posixfile object with the given standard file object. The resulting object has the same filename and
mode as the original file object.

The posixfile object defines the following additional methods:

lock (fmt, [Ien[, starl{, Whencd]])
Lock the specified section of the file that the file object is referring to. The format is explained below in a table.
Thelen argument specifies the length of the section that should be locked. The defautitést specifies the
starting offset of the section, where the defauld isThewhenceargument specifies where the offset is relative
to. It accepts one of the constarl8EEK SET, SEEK CURor SEEK_END The default iSSEEK_SET. For
more information about the arguments refer tofttrel(2) manual page on your system.

flags ([flags])
Set the specified flags for the file that the file object is referring to. The new flags are ORed with the old
flags, unless specified otherwise. The format is explained below in a table. Withdlaghargument a string
indicating the current flags is returned (this is the same ashenodifier). For more information about the
flags refer to thécntl(2) manual page on your system.

dup()
Duplicate the file object and the underlying file pointer and file descriptor. The resulting object behaves as if it

were newly opened.

dup2 (fd)
Duplicate the file object and the underlying file pointer and file d