
Python Library Reference
Release 2.0

Guido van Rossum
Fred L. Drake, Jr., editor

October 16, 2000

BeOpen PythonLabs
E-mail: python-docs@python.org

BEOPEN.COM TERMS AND CONDITIONS FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI OPEN SOURCE LICENSE AGREEMENT

Python 1.6 is made available subject to the terms and conditions in CNRI’s License Agreement. This Agreement
together with Python 1.6 may be located on the Internet using the following unique, persistent identifier (known as a
handle): 1895.22/1012. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1012.

CWI PERMISSIONS STATEMENT AND DISCLAIMER

Copyright c© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While thePython Reference Manualdescribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file I/O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which
may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutorial; the Python Reference Manualremains the highest authority on syntactic and semantic questions.
Finally, the manual entitledExtending and Embedding the Python Interpreterdescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-in Types . 3
2.2 Built-in Exceptions. 15
2.3 Built-in Functions . 18

3 Python Runtime Services 27
3.1 sys — System-specific parameters and functions. 27
3.2 gc — Garbage Collector interface. 31
3.3 atexit — Exit handlers . 33
3.4 types — Names for all built-in types . 33
3.5 UserDict — Class wrapper for dictionary objects. 35
3.6 UserList — Class wrapper for list objects. 35
3.7 UserString — Class wrapper for string objects. 36
3.8 operator — Standard operators as functions.. 37
3.9 traceback — Print or retrieve a stack traceback. 39
3.10 linecache — Random access to text lines. 41
3.11 pickle — Python object serialization. 42
3.12 cPickle — Alternate implementation ofpickle . 46
3.13 copy reg — Registerpickle support functions . 46
3.14 shelve — Python object persistence. 46
3.15 copy — Shallow and deep copy operations. 48
3.16 marshal — Alternate Python object serialization. 49
3.17 imp — Access theimport internals . 49
3.18 code — Interpreter base classes. 52
3.19 codeop — Compile Python code. 54
3.20 pprint — Data pretty printer . 54
3.21 repr — Alternaterepr() implementation . 56
3.22 new — Creation of runtime internal objects. 58
3.23 site — Site-specific configuration hook. 58
3.24 user — User-specific configuration hook. 59
3.25 builtin — Built-in functions . 60
3.26 main — Top-level script environment. 60

4 String Services 61
4.1 string — Common string operations. 61
4.2 re — Regular expression operations. 64
4.3 struct — Interpret strings as packed binary data. 72

i

4.4 fpformat — Floating point conversions. 74
4.5 StringIO — Read and write strings as files. 75
4.6 cStringIO — Faster version ofStringIO . 75
4.7 codecs — Codec registry and base classes. 75
4.8 unicodedata — Unicode Database. 80

5 Miscellaneous Services 81
5.1 math — Mathematical functions. 81
5.2 cmath — Mathematical functions for complex numbers. 83
5.3 random — Generate pseudo-random numbers. 84
5.4 whrandom — Pseudo-random number generator. 85
5.5 bisect — Array bisection algorithm . 86
5.6 array — Efficient arrays of numeric values. 87
5.7 ConfigParser — Configuration file parser . 89
5.8 fileinput — Iterate over lines from multiple input streams. 91
5.9 calendar — General calendar-related functions. 92
5.10 cmd — Support for line-oriented command interpreters. 93
5.11 shlex — Simple lexical analysis. 95

6 Generic Operating System Services 99
6.1 os — Miscellaneous OS interfaces. 99
6.2 os.path — Common pathname manipulations. 110
6.3 dircache — Cached directory listings. 112
6.4 stat — Interpretingstat() results. 113
6.5 statcache — An optimization ofos.stat() . 115
6.6 statvfs — Constants used withos.statvfs() . 115
6.7 filecmp — File and Directory Comparisons. 116
6.8 popen2 — Subprocesses with accessible I/O streams. 117
6.9 time — Time access and conversions. 118
6.10 sched — Event scheduler . 122
6.11 getpass — Portable password input. 123
6.12 curses — Terminal handling for character-cell displays. 123
6.13 curses.textpad — Text input widget for curses programs. 137
6.14 curses.wrapper — Terminal handler for curses programs. 138
6.15 curses.ascii — Utilities for ASCII characters. 139
6.16 getopt — Parser for command line options. 141
6.17 tempfile — Generate temporary file names. 143
6.18 errno — Standard errno system symbols. 143
6.19 glob — UNIX style pathname pattern expansion. 149
6.20 fnmatch — UNIX filename pattern matching. 150
6.21 shutil — High-level file operations. 150
6.22 locale — Internationalization services. 152
6.23 gettext — Multilingual internationalization services. 155

7 Optional Operating System Services 163
7.1 signal — Set handlers for asynchronous events. 163
7.2 socket — Low-level networking interface . 165
7.3 select — Waiting for I/O completion. 170
7.4 thread — Multiple threads of control. 171
7.5 threading — Higher-level threading interface. 173
7.6 mutex — Mutual exclusion support . 179
7.7 Queue — A synchronized queue class. 179
7.8 mmap— Memory-mapped file support. 180
7.9 anydbm — Generic access to DBM-style databases. 182

ii

7.10 dumbdbm— Portable DBM implementation. 182
7.11 dbhash — DBM-style interface to the BSD database library. 183
7.12 whichdb — Guess which DBM module created a database. 184
7.13 bsddb — Interface to Berkeley DB library. 184
7.14 zlib — Compression compatible withgzip . 186
7.15 gzip — Support forgzip files . 188
7.16 zipfile — Work with ZIP archives. 188
7.17 readline — GNU readline interface. 191
7.18 rlcompleter — Completion function for GNU readline. 193

8 Unix Specific Services 195
8.1 posix — The most common POSIX system calls. 195
8.2 pwd — The password database. 196
8.3 grp — The group database. 197
8.4 crypt — Function to check UNIX passwords . 197
8.5 dl — Call C functions in shared objects. 198
8.6 dbm— Simple “database” interface. 199
8.7 gdbm — GNU’s reinterpretation of dbm. 200
8.8 termios — POSIX style tty control. 201
8.9 TERMIOS— Constants used with thetermios module . 202
8.10 tty — Terminal control functions . 202
8.11 pty — Pseudo-terminal utilities. 203
8.12 fcntl — Thefcntl() andioctl() system calls. 203
8.13 pipes — Interface to shell pipelines. 204
8.14 posixfile — File-like objects with locking support. 205
8.15 resource — Resource usage information. 207
8.16 nis — Interface to Sun’s NIS (Yellow Pages). 210
8.17 syslog — UNIX syslog library routines. 210
8.18 commands — Utilities for running commands. 211

9 The Python Debugger 213
9.1 Debugger Commands. 214
9.2 How It Works. 216

10 The Python Profiler 219
10.1 Introduction to the profiler. 219
10.2 How Is This Profiler Different From The Old Profiler?. 219
10.3 Instant Users Manual. 220
10.4 What Is Deterministic Profiling?. 222
10.5 Reference Manual. 222
10.6 Limitations . 225
10.7 Calibration . 225
10.8 Extensions — Deriving Better Profilers. 226

11 Internet Protocols and Support 231
11.1 webbrowser — Convenient Web-browser controller. 231
11.2 cgi — Common Gateway Interface support.. 232
11.3 urllib — Open arbitrary resources by URL. 239
11.4 httplib — HTTP protocol client . 242
11.5 ftplib — FTP protocol client. 244
11.6 gopherlib — Gopher protocol client. 247
11.7 poplib — POP3 protocol client. 248
11.8 imaplib — IMAP4 protocol client . 249
11.9 nntplib — NNTP protocol client. 252
11.10smtplib — SMTP protocol client. 255

iii

11.11 telnetlib — Telnet client . 258
11.12urlparse — Parse URLs into components. 261
11.13SocketServer — A framework for network servers. 262
11.14BaseHTTPServer — Basic HTTP server. 264
11.15SimpleHTTPServer — Simple HTTP request handler. 266
11.16CGIHTTPServer — CGI-capable HTTP request handler. 267
11.17Cookie — HTTP state management. 268
11.18asyncore — Asynchronous socket handler. 272

12 Internet Data Handling 275
12.1 formatter — Generic output formatting. 275
12.2 rfc822 — Parse RFC 822 mail headers. 279
12.3 mimetools — Tools for parsing MIME messages. 282
12.4 MimeWriter — Generic MIME file writer . 283
12.5 multifile — Support for files containing distinct parts. 284
12.6 binhex — Encode and decode binhex4 files. 286
12.7 uu — Encode and decode uuencode files. 287
12.8 binascii — Convert between binary andASCII . 287
12.9 xdrlib — Encode and decode XDR data. 289
12.10mailcap — Mailcap file handling.. 291
12.11mimetypes — Map filenames to MIME types . 292
12.12base64 — Encode and decode MIME base64 data. 293
12.13quopri — Encode and decode MIME quoted-printable data. 294
12.14mailbox — Read various mailbox formats. 294
12.15mhlib — Access to MH mailboxes. 295
12.16mimify — MIME processing of mail messages. 297
12.17netrc — netrc file processing. 298
12.18robotparser — Parser for robots.txt. 298

13 Structured Markup Processing Tools 301
13.1 sgmllib — Simple SGML parser. 301
13.2 htmllib — A parser for HTML documents. 303
13.3 htmlentitydefs — Definitions of HTML general entities. 305
13.4 xml.parsers.expat — Fast XML parsing using the Expat library. 305
13.5 xml.sax — Support for SAX2 parsers. 309
13.6 xml.sax.handler — Base classes for SAX handlers. 310
13.7 xml.sax.saxutils — SAX Utilities . 314
13.8 xml.sax.xmlreader — Interface for XML parsers . 314
13.9 xmllib — A parser for XML documents . 318

14 Multimedia Services 323
14.1 audioop — Manipulate raw audio data. 323
14.2 imageop — Manipulate raw image data. 326
14.3 aifc — Read and write AIFF and AIFC files. 327
14.4 sunau — Read and write Sun AU files. 329
14.5 wave — Read and write WAV files. 331
14.6 chunk — Read IFF chunked data. 333
14.7 colorsys — Conversions between color systems. 335
14.8 rgbimg — Read and write “SGI RGB” files. 335
14.9 imghdr — Determine the type of an image. 336
14.10sndhdr — Determine type of sound file. 336

15 Cryptographic Services 339
15.1 md5— MD5 message digest algorithm. 339
15.2 sha — SHA message digest algorithm. 340

iv

15.3 mpz — GNU arbitrary magnitude integers. 341
15.4 rotor — Enigma-like encryption and decryption. 342

16 Restricted Execution 345
16.1 rexec — Restricted execution framework. 346
16.2 Bastion — Restricting access to objects. 348

17 Python Language Services 349
17.1 parser — Access Python parse trees. 349
17.2 symbol — Constants used with Python parse trees. 358
17.3 token — Constants used with Python parse trees. 359
17.4 keyword — Testing for Python keywords. 359
17.5 tokenize — Tokenizer for Python source. 359
17.6 tabnanny — Detection of ambiguous indentation. 360
17.7 pyclbr — Python class browser support. 360
17.8 py compile — Compile Python source files. 361
17.9 compileall — Byte-compile Python libraries. 361
17.10dis — Disassembler for Python byte code. 362

18 SGI IRIX Specific Services 371
18.1 al — Audio functions on the SGI. 371
18.2 AL — Constants used with theal module . 373
18.3 cd — CD-ROM access on SGI systems. 373
18.4 fl — FORMS library interface for GUI applications. 377
18.5 FL — Constants used with thefl module . 381
18.6 flp — Functions for loading stored FORMS designs. 382
18.7 fm — Font Managerinterface . 382
18.8 gl — Graphics Libraryinterface . 383
18.9 DEVICE— Constants used with thegl module . 385
18.10GL— Constants used with thegl module . 385
18.11 imgfile — Support for SGI imglib files . 385
18.12 jpeg — Read and write JPEG files. 386

19 SunOS Specific Services 389
19.1 sunaudiodev — Access to Sun audio hardware. 389
19.2 SUNAUDIODEV— Constants used withsunaudiodev . 390

20 MS Windows Specific Services 391
20.1 msvcrt – Useful routines from the MS VC++ runtime. 391
20.2 winreg – Windows registry access. 392
20.3 winsound — Sound-playing interface for Windows. 396

A Undocumented Modules 399
A.1 Frameworks . 399
A.2 Miscellaneous useful utilities. 399
A.3 Platform specific modules. 399
A.4 Multimedia . 400
A.5 Obsolete . 400
A.6 SGI-specific Extension modules. 401

B Reporting Bugs 403

Module Index 405

Index 409

v

vi

CHAPTER

ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of animport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World-Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’thaveto read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see modulerandom) and read a section or two. Regardless of
the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

1

2

CHAPTER

TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy reference.1

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter 5 of the
Python Reference Manualfor the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the‘ . . .‘ notation). The latter conversion is implicitly used when an object is written
by theprint statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use in anif or while condition or as operand of the Boolean operations
below. The following values are considered false:

• None

• zero of any numeric type, for example,0, 0L , 0.0 , 0j .

• any empty sequence, for example,’’ , () , [] .

• any empty mapping, for example,{} .

• instances of user-defined classes, if the class defines anonzero () or len () method, when that
method returns zero.2

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return0 for false and1 for true, unless otherwise
stated. (Important exception: the Boolean operations ‘or ’ and ‘and ’ always return one of their operands.)

1Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.
2Additional information on these special methods may be found in thePython Reference Manual.

3

2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes
x or y if x is false, theny, elsex (1)

x and y if x is false, thenx, elsey (1)
not x if x is false, then1, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ’ has a lower priority than non-Boolean operators, sonot a == b is interpreted asnot (a == b) , and
a == not b is a syntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example,x < y <= z is equivalent tox < y and
y <= z, except thaty is evaluated only once (but in both casesz is not evaluated at all whenx < y is found to be
false).

This table summarizes the comparison operations:

Operation Meaning Notes
< strictly less than

<= less than or equal
> strictly greater than

>= greater than or equal
== equal
!= not equal (1)
<> not equal (1)
is object identity

is not negated object identity

Notes:

(1) <> and!= are alternate spellings for the same operator. (I couldn’t choose betweenABC and C! :-) != is the
preferred spelling;<> is obsolescent.

Objects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (for example,
file objects) support only a degenerate notion of comparison where any two objects of that type are unequal. Again,
such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class defines thecmp () method. Refer to the
Python Reference Manualfor information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, ‘in ’ and ‘not in ’, are supported only by sequence types
(below).

4 Chapter 2. Built-in Types, Exceptions and Functions

2.1.4 Numeric Types

There are four numeric types:plain integers, long integers, floating point numbers, andcomplex numbers. Plain
integers (also just calledintegers) are implemented usinglong in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implemented usingdouble in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implemented usingdouble in C. To extract these
parts from a complex numberz, usez.real andz.imag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with an ‘L’ or ‘ l ’ suffix yield long integers (‘L’
is preferred because ‘1l ’ looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appending ‘j ’ or ‘ J ’ to a numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the same rule.3

The functionsint() , long() , float() , andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
x + y sum ofx andy
x - y difference ofx andy
x * y product ofx andy
x / y quotient ofx andy (1)
x % y remainder ofx / y

- x x negated
+x x unchanged

abs(x) absolute value or magnitude ofx
int(x) x converted to integer (2)

long(x) x converted to long integer (2)
float(x) x converted to floating point

complex(re, im) a complex number with real partre, imaginary partim. im defaults to zero.
c.conjugate() conjugate of the complex numberc
divmod(x, y) the pair(x / y, x % y) (3)

pow(x, y) x to the powery
x ** y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functionsfloor()
andceil() in themath module for well-defined conversions.

(3) See section 2.3, “Built-in Functions,” for a full description.

Bit-string Operations on Integer Types

3As a consequence, the list[1, 2] is considered equal to[1.0, 2.0] , and similar for tuples.

2.1. Built-in Types 5

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’s complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ‘˜ ’ has the same priority as the other unary numeric operations (‘+’ and ‘- ’).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation Result Notes
x | y bitwiseor of x andy
x ˆ y bitwiseexclusive orof x andy
x & y bitwiseandof x andy

x << n x shifted left byn bits (1), (2)
x >> n x shifted right byn bits (1), (3)

˜ x the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and cause aValueError to be raised.

(2) A left shift by n bits is equivalent to multiplication bypow(2, n) without overflow check.

(3) A right shift byn bits is equivalent to division bypow(2, n) without overflow check.

2.1.5 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

Strings literals are written in single or double quotes:’xyzzy’ , "frobozz" . See chapter 2 of thePython Reference
Manual for more about string literals. Unicode strings are much like strings, but are specified in the syntax using
a preceeding ‘u’ character:u’abc’ , u"def" . Lists are constructed with square brackets, separating items with
commas:[a, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parentheses, e.g.,a, b, c or () . A single item
tuple must have a trailing comma, e.g.,(d,) . Buffers are not directly supported by Python syntax, but can be created
by calling the builtin functionbuffer() . XRanges objects are similar to buffers in that there is no specific syntax to
create them, but they are created using thexrange() function.

Sequence types support the following operations. The ‘in ’ and ‘not in ’ operations have the same priorities as the
comparison operations. The ‘+’ and ‘* ’ operations have the same priority as the corresponding numeric operations.4

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the table,s andt are sequences of the same type;n, i andj are integers:

Operation Result Notes
x in s 1 if an item ofs is equal tox, else0

x not in s 0 if an item ofs is equal tox, else1
s + t the concatenation ofs andt

s * n, n * s n copies ofs concatenated (1)
s[i] i’th item of s, origin 0 (2)

s[i: j] slice ofs from i to j (2), (3)
len(s) length ofs
min(s) smallest item ofs
max(s) largest item ofs

4They must have since the parser can’t tell the type of the operands.

6 Chapter 2. Built-in Types, Exceptions and Functions

Notes:

(1) Values ofn less than0 are treated as0 (which yields an empty sequence of the same type ass).

(2) If i or j is negative, the index is relative to the end of the string, i.e.,len(s) + i or len(s) + j is substituted.
But note that-0 is still 0.

(3) The slice ofs from i to j is defined as the sequence of items with indexk such thati <= k < j. If i or j is greater
thanlen(s) , uselen(s) . If i is omitted, use0. If j is omitted, uselen(s) . If i is greater than or equal toj,
the slice is empty.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize ()
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of lengthwidth. Padding is done using spaces.

count (sub[, start[, end]])
Return the number of occurrences of substringsub in string S[start: end] . Optional argumentsstart andend
are interpreted as in slice notation.

encode ([encoding[,errors]])
Return an encoded version of the string. Default encoding is the current default string encoding.errors may
be given to set a different error handling scheme. The default forerrors is ’strict’ , meaning that encoding
errors raise aValueError . Other possible values are’ignore’ and’replace’ .

endswith (suffix[, start[, end]])
Return true if the string ends with the specifiedsuffix, otherwise return false. With optionalstart, test beginning
at that position. With optionalend, stop comparing at that position.

expandtabs ([tabsize])
Return a copy of the string where all tab characters are expanded using spaces. Iftabsizeis not given, a tab size
of 8 characters is assumed.

find (sub[, start[, end]])
Return the lowest index in the string where substringsubis found, such thatsubis contained in the range [start,
end). Optional argumentsstart andendare interpreted as in slice notation. Return-1 if subis not found.

index (sub[, start[, end]])
Like find() , but raiseValueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.

isdigit ()
Return true if there are only digit characters, false otherwise.

islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

isspace ()
Return true if there are only whitespace characters in the string and the string is not empty, false otherwise.

2.1. Built-in Types 7

istitle ()
Return true if the string is a titlecased string, i.e. uppercase characters may only follow uncased characters and
lowercase characters only cased ones. Return false otherwise.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

join (seq)
Return a string which is the concatenation of the strings in the sequenceseq. The separator between elements is
the string providing this method.

ljust (width)
Return the string left justified in a string of lengthwidth. Padding is done using spaces. The original string is
returned ifwidth is less thanlen(s) .

lower ()
Return a copy of the string converted to lowercase.

lstrip ()
Return a copy of the string with leading whitespace removed.

replace (old, new[, maxsplit])
Return a copy of the string with all occurrences of substringold replaced bynew. If the optional argument
maxsplitis given, only the firstmaxsplitoccurrences are replaced.

rfind (sub[,start [,end]])
Return the highest index in the string where substringsubis found, such thatsubis contained within s[start,end].
Optional argumentsstart andendare interpreted as in slice notation. Return-1 on failure.

rindex (sub[, start[, end]])
Like rfind() but raisesValueError when the substringsubis not found.

rjust (width)
Return the string right justified in a string of lengthwidth. Padding is done using spaces. The original string is
returned ifwidth is less thanlen(s) .

rstrip ()
Return a copy of the string with trailing whitespace removed.

split ([sep[,maxsplit]])
Return a list of the words in the string, usingsepas the delimiter string. Ifmaxsplitis given, at mostmaxsplit
splits are done. Ifsepis not specified orNone, any whitespace string is a separator.

splitlines ([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependsis given and true.

startswith (prefix[, start[, end]])
Return true if string starts with theprefix, otherwise return false. With optionalstart, test string beginning at
that position. With optionalend, stop comparing string at that position.

strip ()
Return a copy of the string with leading and trailing whitespace removed.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

title ()
Return a titlecased version of, i.e. words start with uppercase characters, all remaining cased characters are
lowercase.

translate (table[, deletechars])

8 Chapter 2. Built-in Types, Exceptions and Functions

Return a copy of the string where all characters occurring in the optional argumentdeletecharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

upper ()
Return a copy of the string converted to uppercase.

String Formatting Operations

String objects have one unique built-in operation: the%operator (modulo) with a string left argument interprets this
string as a Csprintf() format string to be applied to the right argument, and returns the string resulting from this
formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if the string
requires a single argument, the right argument may also be a single non-tuple object.5 The following format characters
are understood:%, c , s , i , d, u, o, x , X, e, E, f , g, G. Width and precision may be a* to specify that an integer
argument specifies the actual width or precision. The flag characters- , +, blank,# and0 are understood. The size
specifiersh, l or L may be present but are ignored. The%sconversion takes any Python object and converts it to a
string usingstr() before formatting it. The ANSI features%pand%nare not supported. Since Python strings have
an explicit length,%sconversions don’t assume that’\0’ is the end of the string.

For safety reasons, floating point precisions are clipped to 50;%f conversions for numbers whose absolute value is
over 1e25 are replaced by%gconversions.6 All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have a parenthesized
key into that dictionary inserted immediately after the ‘%’ character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2
>>> language = ’Python’
>>> print ’%(language)s has %(count)03d quote types.’ % vars()
Python has 002 quote types.

In this case no* specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard modulestring and in built-in modulere .

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type is
that an xrange object will always take the same amount of memory, no matter the size of the range it represents. There
are no consistent performance advantages.

XRange objects behave like tuples, and offer a single method:

tolist ()
Return a list object which represents the same values as the xrange object.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable

5A tuple object in this case should be a singleton.
6These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and

without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 9

sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (wherex is an arbitrary object):

Operation Result Notes
s[i] = x item i of s is replaced byx

s[i: j] = t slice ofs from i to j is replaced byt
del s[i: j] same ass[i: j] = []

s.append(x) same ass[len(s):len(s)] = [x] (1)
s.extend(x) same ass[len(s):len(s)] = x (2)
s.count(x) return number ofi’s for whichs[i] == x
s.index(x) return smallesti such thats[i] == x (3)

s.insert(i, x) same ass[i: i] = [x] if i >= 0

s.pop([i]) same asx = s[i]; del s[i]; return x (4)
s.remove(x) same asdel s[s.index(x)] (3)
s.reverse() reverses the items ofs in place (5)

s.sort([cmpfunc]) sort the items ofs in place (5), (6)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(2) Raises an exception whenx is not a list object. Theextend() method is experimental and not supported by
mutable sequence types other than lists.

(3) RaisesValueError whenx is not found ins.

(4) Thepop() method is only supported by the list and array types. The optional argumenti defaults to-1 , so that
by default the last item is removed and returned.

(5) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. They don’t return the sorted or reversed list to remind you of this side effect.

(6) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should return-1 , 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort a list
in reverse order it is much faster to use calls to the methodssort() andreverse() than to use the built-in
functionsort() with a comparison function that reverses the ordering of the elements.

2.1.6 Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thedictionary. A dictionary’s keys are almost arbitrary values. The
only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (e.g.1 and1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated list ofkey: value pairs within braces, for example:
{’jack’: 4098, ’sjoerd’: 4127} or {4098: ’jack’, 4127: ’sjoerd’} .

The following operations are defined on mappings (wherea andb are mappings,k is a key, andv andx are arbitrary
objects):

10 Chapter 2. Built-in Types, Exceptions and Functions

Operation Result Notes
len(a) the number of items ina

a[k] the item ofa with keyk (1)
a[k] = v seta[k] to v
del a[k] removea[k] from a (1)

a.clear() remove all items froma
a.copy() a (shallow) copy ofa

a.has key(k) 1 if a has a keyk, else0
a.items() a copy ofa’s list of (key, value) pairs (2)
a.keys() a copy ofa’s list of keys (2)

a.update(b) for k in b.keys(): a[k] = b[k] (3)
a.values() a copy ofa’s list of values (2)

a.get(k[, x]) a[k] if a.has key(k) , elsex (4)
a.setdefault(k[, x]) a[k] if a.has key(k) , elsex (also setting it) (5)

Notes:

(1) Raises aKeyError exception ifk is not in the map.

(2) Keys and values are listed in random order. Ifkeys() andvalues() are called with no intervening modifi-
cations to the dictionary, the two lists will directly correspond. This allows the creation of(value, key) pairs
usingmap() : ‘pairs = map(None, a.values(), a.keys()) ’.

(3) b must be of the same type asa.

(4) Never raises an exception ifk is not in the map, instead it returnsx. x is optional; whenx is not provided andk is
not in the map,None is returned.

(5) setdefault() is like get() , except that ifk is missing,x is both returned and inserted into the dictionary as
the value ofk.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute access:m. name, wherem is a module andnameaccesses a name
defined inm’s symbol table. Module attributes can be assigned to. (Note that theimport statement is not, strictly
speaking, an operation on a module object;import foo does not require a module object namedfoo to exist, rather
it requires an (external)definitionfor a module namedfoosomewhere.)

A special member of every module is dict . This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to thedict
attribute is not possible (i.e., you can writem. dict [’a’] = 1 , which definesm.a to be1, but you can’t
write m. dict = {} .

Modules built into the interpreter are written like this:<module ’sys’ (built-in)> . If loaded from a file,
they are written as<module ’os’ from ’/usr/local/lib/python2.0/os.pyc’> .

Classes and Class Instances

See chapters 3 and 7 of thePython Reference Manualfor these.

2.1. Built-in Types 11

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list) .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attributes:f .func code is a function’scode object(see below)
andf .func globals is the dictionary used as the function’s global namespace (this is the same asm. dict
wherem is the module in which the functionf was defined).

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methods:m.im self is the object on
which the method operates, andm.im func is the function implementing the method. Callingm(arg-1, arg-2,
. . ., arg-n) is completely equivalent to callingm.im func(m.im self, arg-1, arg-2, . . ., arg-n) .

See thePython Reference Manualfor more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the built-incompile() function and can be extracted from function objects
through theirfunc code attribute.

A code object can be executed or evaluated by passing it (instead of a source string) to theexec statement or the
built-in eval() function.

See thePython Reference Manualfor more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in functiontype() . There
are no special operations on types. The standard moduletypes defines names for all standard built-in types.

Types are written like this:<type ’int’> .

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedNone (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (see thePython Reference Manual). It supports no special operations.
There is exactly one ellipsis object, namedEllipsis (a built-in name).

It is written asEllipsis .

12 Chapter 2. Built-in Types, Exceptions and Functions

File Objects

File objects are implemented using C’sstdio package and can be created with the built-in functionopen() de-
scribed in section 2.3, “Built-in Functions.” They are also returned by some other built-in functions and methods, e.g.,
os.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/O-related reason, the exceptionIOError is raised. This includes situations where
the operation is not defined for some reason, likeseek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written anymore. Any operation which requires that the file be
open will raise anIOError after the file has been closed. Callingclose() more than once is allowed.

flush ()
Flush the internal buffer, likestdio ’s fflush() . This may be a no-op on some file-like objects.

isatty ()
Return true if the file is connected to a tty(-like) device, else false.Note: If a file-like object is not associated
with a real file, this method shouldnotbe implemented.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fcntl or os.read() and friends.Note: File-like objects which do not have a real file descriptor shouldnot
provide this method!

read ([size])
Read at mostsizebytes from the file (less if the read hitsEOF before obtainingsizebytes). If thesizeargument
is negative or omitted, read all data untilEOF is reached. The bytes are returned as a string object. An empty
string is returned whenEOF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after anEOF is hit.) Note that this method may call the underlying C functionfread() more than once
in an effort to acquire as close tosizebytes as possible.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string7 (but may be absent when a
file ends with an incomplete line). If thesizeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned whenEOF

is hit immediately. Note: Unlikestdio ’s fgets() , the returned string contains null characters (’\0’) if
they occurred in the input.

readlines ([sizehint])
Read untilEOF using readline() and return a list containing the lines thus read. If the optionalsizehint
argument is present, instead of reading up toEOF, whole lines totalling approximatelysizehintbytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

seek (offset[, whence])
Set the file’s current position, likestdio ’s fseek() . The whenceargument is optional and defaults to0
(absolute file positioning); other values are1 (seek relative to the current position) and2 (seek relative to the
file’s end). There is no return value.

tell ()
Return the file’s current position, likestdio ’s ftell() .

truncate ([size])
7The advantage of leaving the newline on is that an empty string can be returned to meanEOF without being ambiguous. Another advantage is

that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.1. Built-in Types 13

Truncate the file’s size. If the optionalsizeargument present, the file is truncated to (at most) that size. The
size defaults to the current position. Availability of this function depends on the operating system version (for
example, not all UNIX versions support this operation).

write (str)
Write a string to the file. There is no return value. Note: Due to buffering, the string may not actually show up
in the file until theflush() or close() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to matchreadlines() ;
writelines() does not add line separators.)

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
Boolean indicating the current state of the file object. This is a read-only attribute; theclose() method
changes the value. It may not be available on all file-like objects.

mode
The I/O mode for the file. If the file was created using theopen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usingopen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the form ‘<...> ’. This is a read-only attribute and may not be present on all
file-like objects.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using theprint
statement. Classes that are trying to simulate a file object should also have a writablesoftspace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute. Note: This attribute is not used to control theprint statement, but to allow the
implementation ofprint to keep track of its internal state.

Internal Objects

See thePython Reference Manualfor this information. It describes stack frame objects, traceback objects, and slice
objects.

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

dict
A dictionary of some sort used to store an object’s (writable) attributes.

methods
List of the methods of many built-in object types, e.g.,[]. methods yields[’append’, ’count’,
’index’, ’insert’, ’pop’, ’remove’, ’reverse’, ’sort’] .

members
Similar to methods , but lists data attributes.

class
The class to which a class instance belongs.

14 Chapter 2. Built-in Types, Exceptions and Functions

bases
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. Though most exceptions have been string objects in past versions of
Python, in Python 1.5 and newer versions, all standard exceptions have been converted to class objects, and users are
encouraged to do the same. The exceptions are defined in the moduleexceptions . This module never needs to be
imported explicitly: the exceptions are provided in the built-in namespace.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, in atry statement with anexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes from whichit is derived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theraise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument of theexcept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard root classException , the associated value is present as
the exception instance’sargs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions.

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforced. Thestr() function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’sargs attribute, as a tuple.

StandardError
The base class for all built-in exceptions exceptSystemExit . StandardError itself is derived from the
root classException .

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors:OverflowError ,
ZeroDivisionError , FloatingPointError .

LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError .

EnvironmentError
The base class for exceptions that can occur outside the Python system:IOError , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instance’serrno attribute (it is assumed
to be an error number), and the second item is available on thestrerror attribute (it is usually the associated
error message). The tuple itself is also available on theargs attribute. New in version 1.5.2.

2.2. Built-in Exceptions 15

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on thefilename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 arguments. Theerrno and
strerror attributes are alsoNone when the instance was created with other than 2 or 3 arguments. In this
last case,args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

AssertionError
Raised when anassert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at all,TypeError is raised.)

EOFError
Raised when one of the built-in functions (input() or raw input()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: theread() andreadline() methods of file objects return an empty string
when they hitEOF.)

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with the--with-fpectl option, or theWANTSIGFPE HANDLERsymbol is defined in the
‘config.h’ file.

IOError
Raised when an I/O operation (such as aprint statement, the built-inopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived fromEnvironmentError . See the discussion above for more information on exception
instance attributes.

ImportError
Raised when animport statement fails to find the module definition or when afrom . . . import fails to
find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integer,TypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

KeyboardInterrupt
Raised when the user hits the interrupt key (normallyControl-C or DEL). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in functioninput() or raw input()) is waiting
for input also raise this exception.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C’smalloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

NotImplementedError

16 Chapter 2. Built-in Types, Exceptions and Functions

This exception is derived fromRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

OSError
This class is derived fromEnvironmentError and is used primarily as theos module’sos.error excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
1.5.2.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiseMemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occur in animport statement, in anexec
statement, in a call to the built-in functioneval() or input() , or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttributesfilename , lineno , offset and
text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)) . For class exceptions,str() returns only the
message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version string
of the Python interpreter (sys.version ; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

SystemExit
This exception is raised by thesys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C’s exit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributecode which is set to the proposed exit status or error message (defaulting toNone).
Also, this exception derives directly fromException and notStandardError , since it is not technically
an error.

A call to sys.exit() is translated into an exception so that clean-up handlers (finally clauses oftry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. exit() function can be used if it is absolutely positively necessary to exit immediately
(e.g., after afork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass ofNameError . New in version 2.0.

2.2. Built-in Exceptions 17

UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass ofValueError . New in
version 2.0.

ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such asIndexError .

WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to anerrno
value. Theerrno andstrerror values are created from the return values of theGetLastError() and
FormatMessage() functions from the Windows Platform API. This is a subclass ofOSError . New in
version 2.0.

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

import (name[, globals[, locals[, fromlist]]])
This function is invoked by theimport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semantics of theimport statement. For examples
of why and how you would do this, see the standard library modulesihooks andrexec . See also the built-in
moduleimp , which defines some useful operations out of which you can build your ownimport ()
function.

For example, the statement ‘import spam ’ results in the following call: import (’spam’,
globals(), locals(), []) ; the statement from spam.ham import eggs results in

import (’spam.ham’, globals(), locals(), [’eggs’]) . Note that even thoughlo-
cals() and [’eggs’] are passed in as arguments, theimport () function does not set the local
variable namedeggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not use itslocalsargument at all, and uses itsglobalsonly to determine the
package context of theimport statement.)

When thenamevariable is of the formpackage.module , normally, the top-level package (the name up till the
first dot) is returned,notthe module named byname. However, when a non-emptyfromlistargument is given, the
module named bynameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when using ‘import spam.ham.eggs ’, the top-level packagespam must be
placed in the importing namespace, but when using ‘from spam.ham import eggs ’, the spam.ham
subpackage must be used to find theeggs variable. As a workaround for this behavior, usegetattr() to
extract the desired components. For example, you could define the following helper:

import string

def my_import(name):
mod = __import__(name)
components = string.split(name, ’.’)
for comp in components[1:]:

mod = getattr(mod, comp)
return mod

abs (x)

18 Chapter 2. Built-in Types, Exceptions and Functions

Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, args[, keywords])
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargsargument must be a sequence (if it is not a tuple, the sequence is first converted to a tuple). The
functionis called withargsas the argument list; the number of arguments is the the length of the tuple. (This is
different from just callingfunc(args) , since in that case there is always exactly one argument.) If the optional
keywordsargument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments to
be added to the end of the the argument list.

buffer (object[, offset[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which references theobjectargument. The buffer object will be a slice from
the beginning ofobject(or from the specifiedoffset). The slice will extend to the end ofobject(or will have a
length given by thesizeargument).

callable (object)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they have acall () method.

chr (i)
Return a string of one character whoseASCII code is the integeri, e.g.,chr(97) returns the string’a’ . This
is the inverse oford() . The argument must be in the range [0..255], inclusive;ValueError will be raised if
i is outside that range.

cmp(x, y)
Compare the two objectsx andy and return an integer according to the outcome. The return value is negative if
x < y, zero ifx == y and strictly positive ifx > y.

coerce (x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, kind)
Compile thestring into a code object. Code objects can be executed by anexec statement or evaluated by a call
to eval() . Thefilenameargument should give the file from which the code was read; pass e.g.’<string>’
if it wasn’t read from a file. Thekindargument specifies what kind of code must be compiled; it can be’exec’
if string consists of a sequence of statements,’eval’ if it consists of a single expression, or’single’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else thanNone will printed).

complex (real[, imag])
Create a complex number with the valuereal + imag*j or convert a string or number to a complex number. Each
argument may be any numeric type (including complex). Ifimag is omitted, it defaults to zero and the function
serves as a numeric conversion function likeint() , long() and float() ; in this case it also accepts a
string argument which should be a valid complex number.

delattr (object, name)
This is a relative ofsetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, ’ foobar’) is equivalent todel x. foobar.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attribute for that object. This information is gleaned from the object’sdict ,

methods and members attributes, if defined. The list is not necessarily complete; e.g., for classes,
attributes defined in base classes are not included, and for class instances, methods are not included. The

2.3. Built-in Functions 19

resulting list is sorted alphabetically. For example:

>>> import sys
>>> dir()
[’sys’]
>>> dir(sys)
[’argv’, ’exit’, ’modules’, ’path’, ’stderr’, ’stdin’, ’stdout’]

divmod (a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same as(a / b, a % b) . For floating point numbers the result is(q, a %
b) , whereq is usuallymath.floor(a / b) but may be 1 less than that. In any caseq * b + a % b is
very close toa, if a % b is non-zero it has the same sign asb, and0 <= abs(a % b) < abs(b) .

eval (expression[, globals[, locals]])
The arguments are a string and two optional dictionaries. Theexpressionargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) using theglobalsandlocalsdictionaries as global and
local name space. If thelocalsdictionary is omitted it defaults to theglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment whereeval is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval(’x+1’)
2

This function can also be used to execute arbitrary code objects (e.g. created bycompile()). In this case
pass a code object instead of a string. The code object must have been compiled passing’eval’ to thekind
argument.

Hints: dynamic execution of statements is supported by theexec statement. Execution of statements from
a file is supported by theexecfile() function. Theglobals() and locals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for use byeval() or
execfile() .

execfile (file[, globals[, locals]])
This function is similar to theexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new module.8

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using theglobalsandlocalsdictionaries as global and local names-
pace. If thelocalsdictionary is omitted it defaults to theglobalsdictionary. If both dictionaries are omitted, the
expression is executed in the environment whereexecfile() is called. The return value isNone.

filter (function, list)
Construct a list from those elements oflist for which functionreturns true. Iflist is a string or a tuple, the result
also has that type; otherwise it is always a list. Iffunction is None, the identity function is assumed, i.e. all
elements oflist that are false (zero or empty) are removed.

float (x)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves identical tostring.atof(x) .
Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

8It is used relatively rarely so does not warrant being made into a statement.

20 Chapter 2. Built-in Types, Exceptions and Functions

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr (object, name[, default])
Return the value of the named attributed ofobject. namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example,getattr(x, ’foobar’)
is equivalent tox.foobar . If the named attribute does not exist,default is returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is 1 if the string is the name of one of the object’s attributes,
0 if not. (This is implemented by callinggetattr(object, name) and seeing whether it raises an exception
or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, e.g. 1 and 1.0).

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit machine,hex(-1) yields ’0xffffffff’ . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raise anOverflowError exception.

id (object)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have the sameid()
value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw input(prompt)) . Warning: This function is not safe from user errors! It expects
a valid Python expression as input; if the input is not syntactically valid, aSyntaxError will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes this is exactly
what you need when writing a quick script for expert use.)

If the readline module was loaded, theninput() will use it to provide elaborate line editing and history
features.

Consider using theraw input() function for general input from users.

int (x[, radix])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical to
string.atoi(x[, radix]) . Theradix parameter gives the base for the conversion and may be any integer
in the range [2, 36]. Ifradix is specified andx is not a string,TypeError is raised. Otherwise, the argument
may be a plain or long integer or a floating point number. Conversion of floating point numbers to integers is
defined by the C semantics; normally the conversion truncates towards zero.9

intern (string)
Enterstring in the table of “interned” strings and return the interned string – which isstring itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup – if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare

9This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 21

instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

isinstance (object, class)
Return true if theobject argument is an instance of theclassargument, or of a (direct or indirect) subclass
thereof. Also return true ifclassis a type object andobject is an object of that type. Ifobject is not a class
instance or a object of the given type, the function always returns false. Ifclassis neither a class object nor a
type object, aTypeError exception is raised.

issubclass (class1, class2)
Return true ifclass1is a subclass (direct or indirect) ofclass2. A class is considered a subclass of itself. If either
argument is not a class object, aTypeError exception is raised.

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list (sequence)
Return a list whose items are the same and in the same order assequence’s items. Ifsequenceis already a list,
a copy is made and returned, similar tosequence[:] . For instance,list(’abc’) returns returns[’a’,
’b’, ’c’] andlist((1, 2, 3)) returns[1, 2, 3] .

locals ()
Return a dictionary representing the current local symbol table.Warning: The contents of this dictionary should
not be modified; changes may not affect the values of local variables used by the interpreter.

long (x)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed deci-
mal number of arbitrary size, possibly embedded in whitespace; this behaves identical tostring.atol(x) .
Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with the
same value is returned. Conversion of floating point numbers to integers is defined by the C semantics; see the
description ofint() .

map(function, list, ...)
Apply function to every item oflist and return a list of the results. If additionallist arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended withNone items. If functionis None, the identity function is assumed; if
there are multiple list arguments,map() returns a list consisting of tuples containing the corresponding items
from all lists (i.e. a kind of transpose operation). Thelist arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single arguments, return the largest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single arguments, return the smallest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the smallest of the arguments.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit machine,oct(-1) yields ’037777777777’ . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raise anOverflowError exception.

open (filename[, mode[, bufsize]])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio ’s fopen() : filenameis the file name to be opened,modeindicates how the file is to be opened:’r’
for reading,’w’ for writing (truncating an existing file), and’a’ opens it for appending (which onsomeUNIX

22 Chapter 2. Built-in Types, Exceptions and Functions

systems means thatall writes append to the end of the file, regardless of the current seek position).

Modes’r+’ , ’w+’ and’a+’ open the file for updating (note that’w+’ truncates the file). Append’b’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opened,IOError is raised.

If modeis omitted, it defaults to’r’ . When opening a binary file, you should append’b’ to themodevalue
for improved portability. (It’s useful even on systems which don’t treat binary and text files differently, where
it serves as documentation.) The optionalbufsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for for tty devices and fully
buffered for other files. If omitted, the system default is used.10

ord (c)
Return theASCII value of a string of one character or a Unicode character. E.g.,ord(’a’) returns the integer
97 , ord(u’
u2020’) returns8224 . This is the inverse ofchr() for strings and ofunichr() for Unicode characters.

pow(x, y[, z])
Returnx to the powery; if z is present, returnx to the powery, moduloz (computed more efficiently than
pow(x, y) % z). The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the type of the result; if the result is not expressible
in this type, the function raises an exception; e.g.,pow(2, -1) or pow(2, 35000) is not allowed.

range ([start,] stop[, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used infor loops.
The arguments must be plain integers. If thestepargument is omitted, it defaults to1. If the start argument
is omitted, it defaults to0. The full form returns a list of plain integers[start, start + step, start + 2
* step, ...] . If stepis positive, the last element is the largeststart + i * stepless thanstop; if stepis
negative, the last element is the largeststart + i * stepgreater thanstop. stepmust not be zero (or else
ValueError is raised). Example:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
[]

raw input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. WhenEOF is read,
EOFError is raised. Example:

10Specifying a buffer size currently has no effect on systems that don’t havesetvbuf() . The interface to specify the buffer size is not done
using a method that callssetvbuf() , because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.3. Built-in Functions 23

>>> s = raw_input(’--> ’)
--> Monty Python’s Flying Circus
>>> s
"Monty Python’s Flying Circus"

If the readline module was loaded, thenraw input() will use it to provide elaborate line editing and
history features.

reduce (function, sequence[, initializer])
Apply function of two arguments cumulatively to the items ofsequence, from left to right, so as to reduce
the sequence to a single value. For example,reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculates((((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is empty.

reload (module)
Re-parse and re-initialize an already importedmodule. The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (i.e. the same as themoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firstimport statement for it does not bind
its name locally, but does store a (partially initialized) module object insys.modules . To reload the module
you must firstimport it again (this will bind the name to the partially initialized module object) before you
canreload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — with atry statement it can test
for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except forsys ,
main and builtin . In many cases, however, extension modules are not designed to be initialized

more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usingfrom . . . import . . . , calling reload() for the
other module does not redefine the objects imported from it — one way around this is to re-execute thefrom
statement, another is to useimport and qualified names (module.name) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed toeval() .

round (x[, n])
Return the floating point valuex rounded ton digits after the decimal point. Ifn is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the power minusn; if
two multiples are equally close, rounding is done away from 0 (so e.g.round(0.5) is 1.0 andround(-
0.5) is -1.0).

setattr (object, name, value)
This is the counterpart ofgetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example,setattr(x, ’ foobar’, 123) is equivalent tox. foobar = 123 .

24 Chapter 2. Built-in Types, Exceptions and Functions

slice ([start,] stop[, step])
Return a slice object representing the set of indices specified byrange(start, stop, step) . Thestart and
steparguments default to None. Slice objects have read-only data attributesstart , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used, e.g. for ‘a[start:stop:step] ’ or ‘ a[start:stop, i] ’.

str (object)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference withrepr(object) is thatstr(object) does not always attempt to return a string that is
acceptable toeval() ; its goal is to return a printable string.

tuple (sequence)
Return a tuple whose items are the same and in the same order assequence’s items. If sequenceis already
a tuple, it is returned unchanged. For instance,tuple(’abc’) returns returns(’a’, ’b’, ’c’) and
tuple([1, 2, 3]) returns(1, 2, 3) .

type (object)
Return the type of anobject. The return value is a type object. The standard moduletypes defines names for
all built-in types. For instance:

>>> import types
>>> if type(x) == types.StringType: print "It’s a string"

unichr (i)
Return the Unicode string of one character whose Unicode code is the integeri, e.g.,unichr(97) returns the
stringu’a’ . This is the inverse oford() for Unicode strings. The argument must be in the range [0..65535],
inclusive.ValueError is raised otherwise. New in version 2.0.

unicode (string[, encoding[, errors]])
Decodesstring using the codec forencoding. Error handling is done according toerrors. The default behavior
is to decode UTF-8 in strict mode, meaning that encoding errors raiseValueError . See also thecodecs
module. New in version 2.0.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that has adict attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefined.11

xrange ([start,] stop[, step])
This function is very similar torange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantage ofxrange() over range() is minimal (sincexrange() still has to create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.
MS-DOS) or when all of the range’s elements are never used (e.g. when the loop is usually terminated with
break).

zip (seq1, ...)
This function returns a list of tuples, where each tuple contains thei-th element from each of the argument
sequences. At least one sequence is required, otherwise aTypeError is raised. The returned list is truncated
in length to the length of the shortest argument sequence. When there are multiple argument sequences which
are all of the same length,zip() is similar tomap() with an initial argument ofNone. With a single sequence
argument, it returns a list of 1-tuples. New in version 2.0.

11In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

2.3. Built-in Functions 25

26

CHAPTER

THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys Access system-specific parameters and functions.
gc Interface to the cycle-detecting garbage collector.
atexit Register and execute cleanup functions.
types Names for all built-in types.
UserDict Class wrapper for dictionary objects.
UserList Class wrapper for list objects.
UserString Class wrapper for string objects.
operator All Python’s standard operators as built-in functions.
traceback Print or retrieve a stack traceback.
linecache This module provides random access to individual lines from text files.
pickle Convert Python objects to streams of bytes and back.
cPickle Faster version ofpickle , but not subclassable.
copy reg Registerpickle support functions.
shelve Python object persistence.
copy Shallow and deep copy operations.
marshal Convert Python objects to streams of bytes and back (with different constraints).
imp Access the implementation of theimport statement.
code Base classes for interactive Python interpreters.
codeop Compile (possibly incomplete) Python code.
pprint Data pretty printer.
repr Alternaterepr() implementation with size limits.
new Interface to the creation of runtime implementation objects.
site A standard way to reference site-specific modules.
user A standard way to reference user-specific modules.

builtin The set of built-in functions.
main The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python script.argv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed using the-c command
line option to the interpreter,argv[0] is set to the string’-c’ . If no script name was passed to the Python
interpreter,argv has zero length.

27

byteorder
An indicator of the native byte order. This will have the value’big’ on big-endian (most-signigicant byte first)
platforms, and’little’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin module names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way —modules.keys() only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

dllhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

exc info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containing threeNone values is returned.
Otherwise, the values returned are(type, value, traceback) . Their meaning is:typegets the exception type
of the exception being handled (a string or class object);value gets the exception parameter (itsassociated
valueor the second argument toraise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning thetracebackreturn value to a local variable in a function that is handling an exception
will cause a circular reference. This will prevent anything referenced by a local variable in the same function or
by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the best
solution is to use something liketype, value = sys.exc info()[:2] to extract only the exception
type and value. If you do need the traceback, make sure to delete it after use (best done with atry ... finally
statement) or to callexc info() in a function that does not itself handle an exception.

exc type
exc value
exc traceback

Deprecated since release 1.5.Useexc info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handled,exc type is set toNone and the other two are
undefined.

exec prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is also’/usr/local’ . This can be set at build time with the--exec-prefixargument to the
configure script. Specifically, all configuration files (e.g. the ‘config.h’ header file) are installed in the di-
rectoryexec prefix + ’/lib/python version/config’ , and shared library modules are installed in
exec prefix + ’/lib/python version/lib-dynload’ , whereversionis equal toversion[:3] .

executable
A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ([arg])
Exit from Python. This is implemented by raising theSystemExit exception, so cleanup actions specified by
finally clauses oftry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argumentarg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal

28 Chapter 3. Python Runtime Services

termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is passed,None is equivalent to passing zero, and any other
object is printed tosys.stderr and results in an exit code of 1. In particular,sys.exit("some error
message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Only one function may be installed in this way; to allow multiple functions which will be
called at termination, use theatexit module. Note: the exit function is not called when the program is killed
by a signal, when a Python fatal internal error is detected, or whenos. exit() is called.

getrefcount (object)
Return the reference count of theobject. The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argument togetrefcount() .

getrecursionlimit ()
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit() .

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502F0:
use some advanced feature
...

else:
use an alternative implementation or warn the user
...

This is called ‘hexversion ’ since it only really looks meaningful when viewed as the result of passing it to
the built-inhex() function. Theversion info value may be used for a more human-friendly encoding of
the same information. New in version 1.5.2.

last type
last value
last traceback

These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use is ‘import pdb; pdb.pm() ’ to enter the post-mortem debugger; see the chapter
“The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return values fromexc info() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unlike forexc type etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer is-maxint-1 – the asymmetry results from the use of 2’s complement binary arithmetic.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionary isnot
the same as callingreload() on the corresponding module object.

3.1. sys — System-specific parameters and functions 29

path
A list of strings that specifies the search path for modules. Initialized from the environment variable $PYTHON-
PATH, or an installation-dependent default.

The first item of this list,path[0] , is the directory containing the script that was used to invoke the Python
interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script is
read from standard input),path[0] is the empty string, which directs Python to search modules in the current
directory first. Notice that the script directory is insertedbeforethe entries inserted as a result of $PYTHON-
PATH.

platform
This string contains a platform identifier, e.g.’sunos5’ or ’linux1’ . This can be used to append platform-
specific components topath , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the string’/usr/local’ . This can be set at build time with the--prefix argument to
the configure script. The main collection of Python library modules is installed in the directoryprefix
+ ’/lib/python version’ while the platform independent header files (all except ‘config.h’) are stored in
prefix + ’/include/python version’ , whereversionis equal toversion[:3] .

ps1
ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case are’>>> ’ and ’... ’ . If a non-string object is
assigned to either variable, itsstr() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The default is10 , meaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a value<= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setprofile (profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See the chapter on the Python Profiler. The system’s profile function is called similarly to the system’s trace
function (seesettrace()), but it isn’t called for each executed line of code (only on call and return and when
an exception occurs). Also, its return value is not used, so it can just returnNone.

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stack tolimit. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a program
that requires deep recursion and a platform that supports a higher limit. This should be done with care, because
a too-high limit can lead to a crash.

settrace (tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. See
section “How It Works” in the chapter on the Python Debugger.

stdin
stdout
stderr

File objects corresponding to the interpreter’s standard input, output and error streams.stdin is used for
all interpreter input except for scripts but including calls toinput() andraw input() . stdout is used
for the output ofprint and expression statements and for the prompts ofinput() and raw input() .
The interpreter’s own prompts and (almost all of) its error messages go tostderr . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it has awrite() method that takes a

30 Chapter 3. Python Runtime Services

string argument. (Changing these objects doesn’t affect the standard I/O streams of processes executed by
os.popen() , os.system() or theexec*() family of functions in theos module.)

stdin
stdout
stderr

These objects contain the original values ofstdin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The default is1000 . When set to 0 or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the build num-
ber and compiler used. It has a value of the form’ version (# build number, build date, build time)
[compiler]’ . The first three characters are used to identify the version in the installation directories (where
appropriate on each platform). An example:

>>> import sys
>>> sys.version
’1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

version info
A tuple containing the five components of the version number:major, minor, micro, releaselevel, andserial. All
values exceptreleaselevelare integers; the release level is’alpha’ , ’beta’ , ’candidate’ , or ’final’ .
Theversion info value corresponding to the Python version 2.0 is(2, 0, 0, ’final’, 0) . New
in version 2.0.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in
the Python DLL. The value is normally the first three characters ofversion . It is provided in thesys module
for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability:
Windows.

3.2 gc — Garbage Collector interface

The gc module is only available if the interpreter was built with the optional cyclic garbage detector (enabled by
default). If this was not enabled, anImportError is raised by attempts to import this module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector, tune
the collection frequency, and set debugging options. It also provides access to unreachable objects that the collector
found but cannot free. Since the collector supplements the reference counting already used in Python, you can disable
the collector if you are sure your program does not create reference cycles. Automatic collection can be disabled by
callinggc.disable() . To debug a leaking program callgc.set debug(gc.DEBUG LEAK) .

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

3.2. gc — Garbage Collector interface 31

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set debug (flags)
Set the garbage collection debugging flags. Debugging information will be written tosys.stderr . See below
for a list of debugging flags which can be combined using bit operations to control debugging.

get debug ()
Return the debugging flags currently set.

set threshold (threshold0[, threshold1[, threshold2]])
Set the garbage collection thresholds (the collection frequency). Settingthreshold0to zero disables collection.

The GC classifies objects into three generations depending on how many collection sweeps they have survived.
New objects are placed in the youngest generation (generation0). If an object survives a collection it is moved
into the next older generation. Since generation2 is the oldest generation, objects in that generation remain
there after a collection. In order to decide when to run, the collector keeps track of the number object allocations
and deallocations since the last collection. When the number of allocations minus the number of deallocations
exceedsthreshold0, collection starts. Initially only generation0 is examined. If generation0 has been examined
more thanthreshold1times since generation1 has been examined, then generation1 is examined as well.
Similarly, threshold2controls the number of collections of generation1 before collecting generation2.

get threshold ()
Return the current collection thresholds as a tuple of(threshold0, threshold1, threshold2) .

The following variable is provided for read-only access:

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
Objects that have del () methods and create part of a reference cycle cause the entire reference cycle to
be uncollectable. IfDEBUGSAVEALLis set, then all unreachable objects will be added to this list rather than
freed.

The following constants are provided for use withset debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to thegarbage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEor DEBUGUNCOLLECTABLEis set, print information about instance objects
found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLEor DEBUGUNCOLLECTABLEis set, print information about objects other than
instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appended togarbagerather than being freed. This can be useful
for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGINSTANCES | DEBUGOBJECTS
| DEBUG SAVEALL).

32 Chapter 3. Python Runtime Services

3.3 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are automati-
cally executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whenos. exit() is called.

This is an alternate interface to the functionality provided by thesys.exitfunc variable.

Note: This module is unlikely to work correctly when used with other code that setssys.exitfunc . In partic-
ular, other core Python modules are free to useatexit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to useatexit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit and register the function that had been bound tosys.exitfunc .

register (func[, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be passed tofunc
must be passed as arguments toregister() .

At normal program termination (for instance, ifsys.exit() is called or the main module’s execution com-
pletes), all functions registered are called in last in, first out order. The assumption is that lower level modules
will normally be imported before higher level modules and thus must be cleaned up later.

See Also:

Modulereadline (section 7.17):
Useful example ofatexit to read and writereadline history files.

3.3.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:
_count = int(open("/tmp/counter").read())

except IOError:
_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter", "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

3.4 types — Names for all built-in types

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to use ‘from types import * ’ — the module does not export

3.3. atexit — Exit handlers 33

any names besides the ones listed here. New names exported by future versions of this module will all end in ‘Type ’.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):

if type(item) is IntType:
del list[item]

else:
list.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returned bytype()).

IntType
The type of integers (e.g.1).

LongType
The type of long integers (e.g.1L).

FloatType
The type of floating point numbers (e.g.1.0).

ComplexType
The type of complex numbers (e.g.1.0j).

StringType
The type of character strings (e.g.’Spam’).

UnicodeType
The type of Unicode character strings (e.g.u’Spam’).

TupleType
The type of tuples (e.g.(1, 2, 3, ’Spam’)).

ListType
The type of lists (e.g.[0, 1, 2, 3]).

DictType
The type of dictionaries (e.g.{’Bacon’: 1, ’Ham’: 0}).

DictionaryType
An alternate name forDictType .

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name forFunctionType .

CodeType
The type for code objects such as returned bycompile() .

ClassType
The type of user-defined classes.

InstanceType

34 Chapter 3. Python Runtime Services

The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name forMethodType .

BuiltinFunctionType
The type of built-in functions likelen() or sys.exit() .

BuiltinMethodType
An alternate name forBuiltinFunction .

ModuleType
The type of modules.

FileType
The type of open file objects such assys.stdout .

XRangeType
The type of range objects returned byxrange() .

SliceType
The type of objects returned byslice() .

EllipsisType
The type ofEllipsis .

TracebackType
The type of traceback objects such as found insys.exc traceback .

FrameType
The type of frame objects such as found intb.tb frame if tb is a traceback object.

BufferType
The type of buffer objects created by thebuffer() function.

3.5 UserDict — Class wrapper for dictionary objects

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to dictionaries.

TheUserDict module defines theUserDict class:

UserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. Ifinitialdata is provided,data is initialized with its contents;
note that a reference toinitialdata will not be kept, allowing it be used used for other purposes.

In addition to supporting the methods and operations of mappings (see section 2.1.6),UserDict instances provide
the following attribute:

data
A real dictionary used to store the contents of theUserDict class.

3.6 UserList — Class wrapper for list objects

3.5. UserDict — Class wrapper for dictionary objects 35

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines theUserList class:

UserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via thedata
attribute ofUserList instances. The instance’s contents are initially set to a copy oflist, defaulting to the
empty list[] . list can be either a regular Python list, or an instance ofUserList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see section 2.1.5),UserList instances
provide the following attribute:

data
A real Python list object used to store the contents of theUserList class.

Subclassing requirements:Subclasses ofUserList are expect to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will
need to be overridden; please consult the sources for information about the methods which need to be provided in that
case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no parameters,
and offer a mutabledata attribute. Earlier versions of Python did not attempt to create instances of the derived class.

3.7 UserString — Class wrapper for string objects

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case forMutableString .

TheUserString module defines the following classes:

UserString ([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via thedata attribute ofUserString instances. The instance’s
contents are initially set to a copy ofsequence. sequencecan be either a regular Python string or Unicode string,
an instance ofUserString (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-instr() function.

MutableString ([sequence])
This class is derived from theUserString above and redefines strings to bemutable. Mutable strings can’t
be used as dictionary keys, because dictionaries requireimmutableobjects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (override) thehash ()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.1.5, “String Meth-
ods”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content of theUserString class.

36 Chapter 3. Python Runtime Services

3.8 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For example,operator.add(x, y) is equivalent to the expressionx+y . The function names are those used for
special class methods; variants without leading and trailing ‘’ are also provided for convenience.

Theoperator module defines the following functions:

add (a, b)
add (a, b)

Returna + b, for a andb numbers.

sub (a, b)
sub (a, b)

Returna - b.

mul (a, b)
mul (a, b)

Returna * b, for a andb numbers.

div (a, b)
div (a, b)

Returna / b.

mod(a, b)
mod (a, b)

Returna %b.

neg (o)
neg (o)

Returno negated.

pos (o)
pos (o)

Returno positive.

abs (o)
abs (o)

Return the absolute value ofo.

inv (o)
inv (o)
invert (o)

Return the inverse ofo. The namesinvert() and invert () were added in Python 2.0.

lshift (a, b)
lshift (a, b)

Returna shifted left byb.

rshift (a, b)
rshift (a, b)

Returna shifted right byb.

and (a, b)
and (a, b)

Return the bitwise and ofa andb.

or (a, b)
or (a, b)

Return the bitwise or ofa andb.

3.8. operator — Standard operators as functions. 37

xor (a, b)
xor (a, b)

Return the bitwise exclusive or ofa andb.

not (o)
not (o)

Return the outcome ofnot o. (Note that there is no not () method for object instances; only the inter-
preter core defines this operation.)

truth (o)
Return1 if o is true, and 0 otherwise.

concat (a, b)
concat (a, b)

Returna + b for a andb sequences.

repeat (a, b)
repeat (a, b)

Returna * b wherea is a sequence andb is an integer.

contains (a, b)
contains (a, b)

Return the outcome of the testb in a. Note the reversed operands. The namecontains () was added
in Python 2.0.

sequenceIncludes (...)
Deprecated since release 2.0.Usecontains() instead.

Alias for contains() .

countOf (a, b)
Return the number of occurrences ofb in a.

indexOf (a, b)
Return the index of the first of occurrence ofb in a.

getitem (a, b)
getitem (a, b)

Return the value ofa at indexb.

setitem (a, b, c)
setitem (a, b, c)

Set the value ofa at indexb to c.

delitem (a, b)
delitem (a, b)

Remove the value ofa at indexb.

getslice (a, b, c)
getslice (a, b, c)

Return the slice ofa from indexb to indexc-1 .

setslice (a, b, c, v)
setslice (a, b, c, v)

Set the slice ofa from indexb to indexc-1 to the sequencev.

delslice (a, b, c)
delslice (a, b, c)

Delete the slice ofa from indexb to indexc-1 .

The operator also defines a few predicates to test the type of objects.Note: Be careful not to misinterpret the
results of these functions; onlyisCallable() has any measure of reliability with instance objects. For example:

38 Chapter 3. Python Runtime Services

>>> class C:
... pass
...
>>> import operator
>>> o = C()
>>> operator.isMappingType(o)
1

isCallable (o)
Deprecated since release 2.0.Use thecallable() built-in function instead.

Returns true if the objecto can be called like a function, otherwise it returns false. True is returned for functions,
bound and unbound methods, class objects, and instance objects which support thecall () method.

isMappingType (o)
Returns true if the objecto supports the mapping interface. This is true for dictionaries and all instance objects.
Warning: There is no reliable way to test if an instance supports the complete mapping protocol since the
interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isNumberType (o)
Returns true if the objecto represents a number. This is true for all numeric types implemented in C, and for
all instance objects.Warning: There is no reliable way to test if an instance supports the complete numeric
interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (o)
Returns true if the objecto supports the sequence protocol. This returns true for all objects which define se-
quence methods in C, and for all instance objects.Warning: There is no reliable way to test if an instance
supports the complete sequence interface since the interface itself is ill-defined. This makes this test less useful
than it otherwise might be.

Example: Build a dictionary that maps the ordinals from0 to 256 to their character equivalents.

>>> import operator
>>> d = {}
>>> keys = range(256)
>>> vals = map(chr, keys)
>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.9 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the variablessys.exc traceback
andsys.last traceback and returned as the third item fromsys.exc info() .

The module defines the following functions:

print tb (traceback[, limit[, file]])
Print up tolimit stack trace entries fromtraceback. If limit is omitted orNone, all entries are printed. Iffile
is omitted orNone, the output goes tosys.stderr ; otherwise it should be an open file or file-like object to
receive the output.

3.9. traceback — Print or retrieve a stack traceback 39

print exception (type, value, traceback[, limit[, file]])
Print exception information and up tolimit stack trace entries fromtracebackto file. This differs from
print tb() in the following ways: (1) iftracebackis notNone, it prints a header ‘Traceback (inner-
most last): ’; (2) it prints the exceptiontypeandvalueafter the stack trace; (3) iftypeis SyntaxError
andvaluehas the appropriate format, it prints the line where the syntax error occurred with a caret indicating
the approximate position of the error.

print exc ([limit[, file]])
This is a shorthand for ‘print exception(sys.exc type, sys.exc value,
sys.exc traceback, limit, file) ’. (In fact, it usessys.exc info() to retrieve the same infor-
mation in a thread-safe way.)

print last ([limit[, file]])
This is a shorthand for ‘print exception(sys.last type, sys.last value,
sys.last traceback, limit, file) ’.

print stack ([f [, limit[, file]]])
This function prints a stack trace from its invocation point. The optionalf argument can be used to spec-
ify an alternate stack frame to start. The optionallimit and file arguments have the same meaning as for
print exception() .

extract tb (traceback[, limit])
Return a list of up tolimit “pre-processed” stack trace entries extracted from the traceback objecttraceback.
It is useful for alternate formatting of stack traces. Iflimit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadruple (filename, line number, function name, text) representing the
information that is usually printed for a stack trace. Thetext is a string with leading and trailing whitespace
stripped; if the source is not available it isNone.

extract stack ([f [, limit]])
Extract the raw traceback from the current stack frame. The return value has the same format as forex-
tract tb() . The optionalf andlimit arguments have the same meaning as forprint stack() .

format list (list)
Given a list of tuples as returned byextract tb() or extract stack() , return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format exception only (type, value)
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last type andsys.last value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, forSyntaxError exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format exception (type, value, tb[, limit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments toprint exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are concatenated and printed, exactly the same text is printed as
doesprint exception() .

format tb (tb[, limit])
A shorthand forformat list(extract tb(tb, limit)) .

format stack ([f [, limit]])
A shorthand forformat list(extract stack(f , limit)) .

tb lineno (tb)
This function returns the current line number set in the traceback object. This is normally the same as the
tb.tb lineno field of the object, but when optimization is used (the -O flag) this field is not updated correctly;

40 Chapter 3. Python Runtime Services

this function calculates the correct value.

3.9.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refer to thecode module.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")
try:

exec source in envdir
except:

print "Exception in user code:"
print ’-’*60
traceback.print_exc(file=sys.stdout)
print ’-’*60

envdir = {}
while 1:

run_user_code(envdir)

3.10 linecache — Random access to text lines

The linecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is used by thetraceback module to
retrieve source lines for inclusion in the formatted traceback.

The linecache module defines the following functions:

getline (filename, lineno)
Get line lineno from file namedfilename. This function will never throw an exception — it will return’’ on
errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search path,sys.path .

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously read usinggetline() .

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version.

Example:

>>> import linecache
>>> linecache.getline(’/etc/passwd’, 4)
’sys:x:3:3:sys:/dev:/bin/sh\012’

3.10. linecache — Random access to text lines 41

3.11 pickle — Python object serialization

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, marshalling or
flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream of bytes (and back:
“unpickling”). This is a more primitive notion than persistence — althoughpickle reads and writes file objects, it
does not handle the issue of naming persistent objects, nor the (even more complicated) area of concurrent access to
persistent objects. Thepickle module can transform a complex object into a byte stream and it can transform the
byte stream into an object with the same internal structure. The most obvious thing to do with these byte streams is to
write them onto a file, but it is also conceivable to send them across a network or store them in a database. The module
shelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: Thepickle module is rather slow. A reimplementation of the same algorithm in C, which is up to 1000 times
faster, is available as thecPickle module. This has the same interface except thatPickler andUnpickler are
factory functions, not classes (so they cannot be used as base classes for inheritance).

Although thepickle module can use the built-in modulemarshal internally, it differs frommarshal in the way
it handles certain kinds of data:

• Recursive objects (objects containing references to themselves):pickle keeps track of the objects it has
already serialized, so later references to the same object won’t be serialized again. (Themarshal module
breaks for this.)

• Object sharing (references to the same object in different places): This is similar to self-referencing objects;
pickle stores the object once, and ensures that all other references point to the master copy. Shared objects
remain shared, which can be very important for mutable objects.

• User-defined classes and their instances:marshal does not support these at all, butpickle can save and
restore class instances transparently. The class definition must be importable and live in the same module as
when the object was stored.

The data format used bypickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printableASCII representation. This is slightly more voluminous than a
binary representation. The big advantage of using printableASCII (and of some other characteristics ofpickle ’s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value for thebin
argument to thePickler constructor or thedump() anddumps() functions. The binary format is not the default
because of backwards compatibility with the Python 1.4 pickle module. In a future version, the default may change to
binary.

Thepickle module doesn’t handle code objects, which themarshal module does. I supposepickle could, and
maybe it should, but there’s probably no great need for it right now (as long asmarshal continues to be used for
reading and writing code objects), and at least this avoids the possibility of smuggling Trojan horses into a program.

For the benefit of persistence modules written usingpickle , it supports the notion of a reference to an object outside
the pickled data stream. Such objects are referenced by a name, which is an arbitrary string of printableASCII

characters. The resolution of such names is not defined by thepickle module — the persistent object module will
have to implement a methodpersistent load() . To write references to persistent objects, the persistent module
must define a methodpersistent id() which returns eitherNone or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables must be
picklable.

42 Chapter 3. Python Runtime Services

When a pickled class instance is unpickled, itsinit () method is normallynot invoked. Note: This is a
deviation from previous versions of this module; the change was introduced in Python 1.5b2. The reason for the
change is that in many cases it is desirable to have a constructor that requires arguments; it is a (minor) nuisance to
have to provide a getinitargs () method.

If it is desirable that the init () method be called on unpickling, a class can define a method
getinitargs () , which should return atuple containing the arguments to be passed to the class construc-

tor (init ()). This method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

Classes can further influence how their instances are pickled — if the class defines the methodgetstate () ,
it is called and the return state is pickled as the contents for the instance, and if the class defines the method

setstate () , it is called with the unpickled state. (Note that these methods can also be used to implement
copying class instances.) If there is nogetstate () method, the instance’s dict is pickled. If there
is no setstate () method, the pickled object must be a dictionary and its items are assigned to the new in-
stance’s dictionary. (If a class defines bothgetstate () and setstate () , the state object needn’t be
a dictionary — these methods can do what they want.) This protocol is also used by the shallow and deep copying
operations defined in thecopy module.

Note that when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods and still load objects
that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions
of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the
class’s setstate () method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-imported by the
unpickling process. Therefore, the restriction that the class must be defined at the top level in a module applies to
pickled classes as well.

The interface can be summarized as follows.

To pickle an objectx onto a filef , open for writing:

p = pickle.Pickler(f)
p.dump(x)

A shorthand for this is:

pickle.dump(x, f)

To unpickle an objectx from a filef , open for reading:

u = pickle.Unpickler(f)
x = u.load()

A shorthand is:

x = pickle.load(f)

ThePickler class only calls the methodf.write() with a string argument. TheUnpickler calls the meth-
ods f.read() (with an integer argument) andf.readline() (without argument), both returning a string. It is
explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for thePickler class has an optional second argument,bin. If this is present and true, the binary
pickle format is used; if it is absent or false, the (less efficient, but backwards compatible) text pickle format is used.
TheUnpickler class does not have an argument to distinguish between binary and text pickle formats; it accepts

3.11. pickle — Python object serialization 43

either format.

The following types can be pickled:

• None

• integers, long integers, floating point numbers

• normal and Unicode strings

• tuples, lists and dictionaries containing only picklable objects

• functions defined at the top level of a module (by name reference, not storage of the implementation)

• built-in functions

• classes that are defined at the top level in a module

• instances of such classes whosedict or setstate () is picklable

Attempts to pickle unpicklable objects will raise thePicklingError exception; when this happens, an unspecified
number of bytes may have been written to the file.

It is possible to make multiple calls to thedump() method of the samePickler instance. These must then be
matched to the same number of calls to theload() method of the correspondingUnpickler instance. If the same
object is pickled by multipledump() calls, theload() will all yield references to the same object.Warning: this
is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify
an object and then pickle it again using the samePickler instance, the object is not pickled again — a reference to
it is pickled and theUnpickler will return the old value, not the modified one. (There are two problems here: (a)
detecting changes, and (b) marshalling a minimal set of changes. I have no answers. Garbage Collection may also
become a problem here.)

Apart from thePickler andUnpickler classes, the module defines the following functions, and an exception:

dump(object, file[, bin])
Write a pickled representation ofobject to the open file objectfile. This is equivalent to ‘Pickler(file,
bin).dump(object) ’. If the optionalbin argument is present and nonzero, the binary pickle format is used; if
it is zero or absent, the (less efficient) text pickle format is used.

load (file)
Read a pickled object from the open file objectfile. This is equivalent to ‘Unpickler(file).load() ’.

dumps(object[, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the optionalbin
argument is present and nonzero, the binary pickle format is used; if it is zero or absent, the (less efficient) text
pickle format is used.

loads (string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled object’s represen-
tation are ignored.

PicklingError
This exception is raised when an unpicklable object is passed toPickler.dump() .

See Also:

Modulecopy reg (section 3.13):
pickle interface constructor registration

Moduleshelve (section 3.14):
indexed databases of objects; usespickle

44 Chapter 3. Python Runtime Services

Modulecopy (section 3.15):
shallow and deep object copying

Modulemarshal (section 3.16):
high-performance serialization of built-in types

3.11.1 Example

Here’s a simple example of how to modify pickling behavior for a class. TheTextReader class opens a text file, and
returns the line number and line contents each time itsreadline() method is called. If aTextReader instance
is pickled, all attributesexceptthe file object member are saved. When the instance is unpickled, the file is reopened,
and reading resumes from the last location. Thesetstate () and getstate () methods are used to
implement this behavior.

illustrate __setstate__ and __getstate__ methods
used in pickling.

class TextReader:
"Print and number lines in a text file."
def __init__(self,file):

self.file = file
self.fh = open(file,’r’)
self.lineno = 0

def readline(self):
self.lineno = self.lineno + 1
line = self.fh.readline()
if not line:

return None
return "%d: %s" % (self.lineno,line[:-1])

return data representation for pickled object
def __getstate__(self):

odict = self.__dict__ # get attribute dictionary
del odict[’fh’] # remove filehandle entry
return odict

restore object state from data representation generated
by __getstate__
def __setstate__(self,dict):

fh = open(dict[’file’]) # reopen file
count = dict[’lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1

dict[’fh’] = fh # create filehandle entry
self.__dict__ = dict # make dict our attribute dictionary

A sample usage might be something like this:

3.11. pickle — Python object serialization 45

>>> import TextReader
>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()
’1: #!/usr/local/bin/python’
>>> # (more invocations of obj.readline() here)
... obj.readline()
’7: class TextReader:’
>>> import pickle
>>> pickle.dump(obj,open(’save.p’,’w’))

(start another Python session)

>>> import pickle
>>> reader = pickle.load(open(’save.p’))
>>> reader.readline()
’8: "Print and number lines in a text file."’

3.12 cPickle — Alternate implementation of pickle

ThecPickle module provides a similar interface and identical functionality as thepickle module, but can be up
to 1000 times faster since it is implemented in C. The only other important difference to note is thatPickler() and
Unpickler() are functions and not classes, and so cannot be subclassed. This should not be an issue in most cases.

The format of the pickle data is identical to that produced using thepickle module, so it is possible to usepickle
andcPickle interchangeably with existing pickles.

(Since the pickle data format is actually a tiny stack-oriented programming language, and there are some freedoms in
the encodings of certain objects, it’s possible that the two modules produce different pickled data for the same input
objects; however they will always be able to read each other’s pickles back in.)

3.13 copy reg — Register pickle support functions

Thecopy reg module provides support for thepickle andcPickle modules. Thecopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (object)
Declaresobjectto be a valid constructor. Ifobject is not callable (and hence not valid as a constructor), raises
TypeError .

pickle (type, function[, constructor])
Declares thatfunctionshould be used as a “reduction” function for objects of typetype; typeshould not a class
object. functionshould return either a string or a tuple. The optionalconstructorparameter, if provided, is a
callable object which can be used to reconstruct the object when called with the tuple of arguments returned by
functionat pickling time.TypeError will be raised ifobjectis a class orconstructoris not callable.

3.14 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)
in a shelf can be essentially arbitrary Python objects — anything that thepickle module can handle. This includes

46 Chapter 3. Python Runtime Services

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interface (key is a string,data is an arbitrary object):

import shelve

d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

d[key] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists
list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

• The choice of which database package will be used (e.g.dbmor gdbm) depends on which interface is available.
Therefore it is not safe to open the database directly usingdbm. The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

• Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

• Theshelve module does not supportconcurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. UNIX file locking can be used to solve this, but this differs across UNIX versions and
requires knowledge about the database implementation used.

See Also:

Moduleanydbm (section 7.9):
Generic interface todbm-style databases.

Moduledbhash (section 7.11):
BSDdb database interface.

Moduledbm (section 8.6):
Standard UNIX database interface.

Moduledumbdbm(section 7.10):
Portable implementation of thedbm interface.

Modulegdbm (section 8.7):
GNU database interface, based on thedbm interface.

Modulepickle (section 3.11):
Object serialization used byshelve .

ModulecPickle (section 3.12):
High-performance version ofpickle .

3.14. shelve — Python object persistence 47

3.15 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

x = copy.copy(y) # make a shallow copy of y
x = copy.deepcopy(y) # make a deep copy of y

For module specific errors,copy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

• A shallow copyconstructs a new compound object and then (to the extent possible) insertsreferencesinto it to
the objects found in the original.

• A deep copyconstructs a new compound object and then, recursively, insertscopiesinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

• Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

• Because deep copy copieseverythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:

• keeping a “memo” dictionary of objects already copied during the current copying pass; and

• letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket, window,
array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods called
getinitargs () , getstate () and setstate () . See the description of modulepickle for

information on these methods. Thecopy module does not use thecopy reg registration module.

In order for a class to define its own copy implementation, it can define special methodscopy () and
deepcopy () . The former is called to implement the shallow copy operation; no additional arguments are

passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the deepcopy () implementation needs to make a deep copy of a component, it should call thedeepcopy()
function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.11):
Discussion of the special methods used to support object state retrieval and restoration.

48 Chapter 3. Python Runtime Services

3.16 marshal — Alternate Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely does).1

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC calls,
see the modulespickle andshelve . The marshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules of ‘.pyc’ files.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supported:None, integers,
long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where it
should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein are
themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where C’slong int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. Since the currentmarshal module uses 32 bits to transfer
plain Python integers, such values are silently truncated. This particularly affects the use of very long integer literals
in Python modules — these will be accepted by the parser on such machines, but will be silently be truncated when
the module is read from the ‘.pyc’ instead.2

There are functions that read/write files as well as functions operating on strings.

The module defines these functions:

dump(value, file)
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout or returned byopen() or posix.popen() . It must be opened in binary mode (’wb’ or
’w+b’).

If the value has (or contains an object that has) an unsupported type, aValueError exception is raised — but
garbage data will also be written to the file. The object will not be properly read back byload() .

load (file)
Read one value from the open file and return it. If no valid value is read, raiseEOFError , ValueError or
TypeError . The file must be an open file object opened in binary mode (’rb’ or ’r+b’).

Warning: If an object containing an unsupported type was marshalled withdump() , load() will substitute
None for the unmarshallable type.

dumps(value)
Return the string that would be written to a file bydump(value, file) . The value must be a supported type.
Raise aValueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, raiseEOFError , ValueError or TypeError .
Extra characters in the string are ignored.

3.17 imp — Access the import internals

This module provides an interface to the mechanisms used to implement theimport statement. It defines the follow-
ing constants and functions:

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution would be to let themarshal
module raise an exception when an integer value would be truncated. At least one of these solutions will be implemented in a future version.

3.16. marshal — Alternate Python object serialization 49

get magic ()
Return the magic string value used to recognize byte-compiled code files (‘.pyc’ files). (This value may be
different for each Python version.)

get suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has the form(suffix, mode,
type) , wheresuffix is a string to be appended to the module name to form the filename to search for,mode
is the mode string to pass to the built-inopen() function to open the file (this can be’r’ for text files or
’rb’ for binary files), andtypeis the file type, which has one of the valuesPY SOURCE, PY COMPILED, or
C EXTENSION, described below.

find module (name[, path])
Try to find the modulenameon the search pathpath. If path is a list of directory names, each directory is
searched for files with any of the suffixes returned byget suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings). Ifpath is omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name (C BUILTIN), then a frozen module (PY FROZEN), and on some systems some other places are
looked in as well (on the Mac, it looks for a resource (PY RESOURCE); on Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a triple(file, pathname, description) wherefile is an open file
object positioned at the beginning,pathnameis the pathname of the file found, anddescriptionis a triple as
contained in the list returned byget suffixes() describing the kind of module found. If the module does
not live in a file, the returnedfile is None, filenameis the empty string, and thedescriptiontuple contains empty
strings for its suffix and mode; the module type is as indicate in parentheses above. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In order to findP.M, i.e.,
submoduleM of packageP, usefind module() and load module() to find and load packageP, and
then usefind module() with the path argument set toP. path . WhenP itself has a dotted name,
apply this recipe recursively.

load module (name, file, filename, description)
Load a module that was previously found byfind module() (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported,
it is equivalent to areload() ! The nameargument indicates the full module name (including the package
name, if this is a submodule of a package). Thefile argument is an open file, andfilenameis the corresponding
file name; these can beNone and ’’ , respectively, when the module is not being loaded from a file. The
descriptionargument is a tuple, as would be returned byget suffixes() , describing what kind of module
must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usuallyImportError)
is raised.

Important: the caller is responsible for closing thefile argument, if it was notNone, even when an exception
is raised. This is best done using atry ... finally statement.

new module (name)
Return a new empty module object calledname. This object isnot inserted insys.modules .

The following constants with integer values, defined in this module, are used to indicate the search result of
find module() .

PY SOURCE
The module was found as a source file.

PY COMPILED
The module was found as a compiled code object file.

C EXTENSION
The module was found as dynamically loadable shared library.

50 Chapter 3. Python Runtime Services

PY RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG DIRECTORY
The module was found as a package directory.

C BUILTIN
The module was found as a built-in module.

PY FROZEN
The module was found as a frozen module (seeinit frozen()).

The following constant and functions are obsolete; their functionality is available throughfind module() or
load module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init builtin (name)
Initialize the built-in module callednameand return its module object. If the module was already initialized, it
will be initialized again. A few modules cannot be initialized twice — attempting to initialize these again will
raise anImportError exception. If there is no built-in module calledname, None is returned.

init frozen (name)
Initialize the frozen module callednameand return its module object. If the module was already initialized,
it will be initialized again. If there is no frozen module calledname, None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python’sfreezeutility. See ‘Tools/freeze/’ for now.)

is builtin (name)
Return1 if there is a built-in module callednamewhich can be initialized again. Return-1 if there is a built-in
module callednamewhich cannot be initialized again (seeinit builtin()). Return0 if there is no built-in
module calledname.

is frozen (name)
Return1 if there is a frozen module (seeinit frozen()) calledname, or 0 if there is no such module.

load compiled (name, pathname, file)
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializedagain. Thenameargument is used to create or access a
module object. Thepathnameargument points to the byte-compiled code file. Thefile argument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load dynamic (name, pathname[, file])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializedagain. Some modules don’t like that and may raise
an exception. Thepathnameargument must point to the shared library. Thenameargument is used to construct
the name of the initialization function: an external C function called ‘init name() ’ in the shared library is
called. The optionalfile argument is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load source (name, pathname, file)
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedagain. Thenameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thefile argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffix ‘.pyc’ or ‘ .pyo’) exists, it will be used instead of
parsing the given source file.

3.17. imp — Access the import internals 51

3.17.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no hierarchical mod-
ule names). (Thisimplementationwouldn’t work in that version, sincefind module() has been extended and
load module() has been added in 1.4.)

import imp import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:

return sys.modules[name]
except KeyError:

pass

If any of the following calls raises an exception,
there’s a problem we can’t handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)

finally:
Since we may exit via an exception, close fp explicitly.
if fp:

fp.close()

A more complete example that implements hierarchical module names and includes areload() function can be
found in the standard moduleknee (which is intended as an example only — don’t rely on any part of it being a
standard interface).

3.18 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

InteractiveInterpreter ([locals])
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with input buffering
or prompting or input file naming (the filename is always passed in explicitly). The optionallocals argument
specifies the dictionary in which code will be executed; it defaults to a newly created dictionary with key
’ name ’ set to’ console ’ and key’ doc ’ set toNone.

InteractiveConsole ([locals[, filename]])
Closely emulate the behavior of the interactive Python interpreter. This class builds onInteractiveIn-
terpreter and adds prompting using the familiarsys.ps1 andsys.ps2 , and input buffering.

interact ([banner[, readfunc[, local]]])
Convenience function to run a read-eval-print loop. This creates a new instance ofInteractiveConsole
and setsreadfuncto be used as theraw input() method, if provided. Iflocal is provided, it is passed
to the InteractiveConsole constructor for use as the default namespace for the interpreter loop. The
interact() method of the instance is then run withbannerpassed as the banner to use, if provided. The
console object is discarded after use.

compile command(source[, filename[, symbol]])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-

52 Chapter 3. Python Runtime Services

print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This functionalmost
always makes the same decision as the real interpreter main loop.

sourceis the source string;filenameis the optional filename from which source was read, defaulting to’<in-
put>’ ; andsymbolis the optional grammar start symbol, which should be either’single’ (the default) or
’eval’ .

Returns a code object (the same ascompile(source, filename, symbol)) if the command is complete and
valid; None if the command is incomplete; raisesSyntaxError if the command is complete and contains a
syntax error, or raisesOverflowError if the command includes a numeric constant which exceeds the range
of the appropriate numeric type.

3.18.1 Interactive Interpreter Objects

runsource (source[, filename[, symbol]])
Compile and run some source in the interpreter. Arguments are the same as forcompile command() ; the
default forfilenameis ’<input>’ , and forsymbolis ’single’ . One several things can happen:

•The input is incorrect;compile command() raised an exception (SyntaxError or Overflow-
Error). A syntax traceback will be printed by calling theshowsyntaxerror() method. run-
source() returns0.

•The input is incomplete, and more input is required;compile command() returnedNone. run-
source() returns1.

•The input is complete;compile command() returned a code object. The code is executed by calling
the runcode() (which also handles run-time exceptions, except forSystemExit). runsource()
returns0.

The return value can be used to decide whether to usesys.ps1 or sys.ps2 to prompt the next line.

runcode (code)
Execute a code object. When an exception occurs,showtraceback() is called to display a traceback. All
exceptions are caught exceptSystemExit , which is allowed to propagate.

A note aboutKeyboardInterrupt : this exception may occur elsewhere in this code, and may not always
be caught. The caller should be prepared to deal with it.

showsyntaxerror ([filename])
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for syntax
errors. Iffilenameis given, it is stuffed into the exception instead of the default filename provided by Python’s
parser, because it always uses’<string>’ when reading from a string. The output is written by thewrite()
method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter object
implementation. The output is written by thewrite() method.

write (data)
Write a string to the standard error stream (sys.stderr). Derived classes should override this to provide the
appropriate output handling as needed.

3.18.2 Interactive Console Objects

The InteractiveConsole class is a subclass ofInteractiveInterpreter , and so offers all the methods
of the interpreter objects as well as the following additions.

3.18. code — Interpreter base classes 53

interact ([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print before
the first interaction; by default it prints a banner similar to the one printed by the standard Python interpreter,
followed by the class name of the console object in parentheses (so as not to confuse this with the real interpreter
– since it’s so close!).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpreter’srunsource() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid,
the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was
appended. The return value is1 if more input is required,0 if the line was dealt with in some way (this is the
same asrunsource()).

resetbuffer ()
Remove any unhandled source text from the input buffer.

raw input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters the
EOF key sequence,EOFError is raised. The base implementation uses the built-in functionraw input() ;
a subclass may replace this with a different implementation.

3.19 codeop — Compile Python code

The codeop module provides a function to compile Python code with hints on whether it is certainly complete,
possibly complete or definitely incomplete. This is used by thecode module and should not normally be used
directly.

Thecodeop module defines the following function:

compile command(source[, filename[, symbol]])
Tries to compilesource, which should be a string of Python code and return a code object ifsourceis valid
Python code. In that case, the filename attribute of the code object will befilename, which defaults to’<in-
put>’ . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

If there is a problem withsource, an exception will be raised.SyntaxError is raised if there is invalid Python
syntax, andOverflowError if there is an invalid numeric constant.

Thesymbolargument determines whethersourceis compiled as a statement (’single’ , the default) or as an
expression (’eval’). Any other value will causeValueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API for
the parser is better.

3.20 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be
used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don’t
fit within the allowed width. ConstructPrettyPrinter objects explicitly if you need to adjust the width constraint.

Thepprint module defines one class:

54 Chapter 3. Python Runtime Services

PrettyPrinter (...)
Construct aPrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using thestreamkeyword; the only method used on the stream object is the file protocol’s
write() method. If not specified, thePrettyPrinter adoptssys.stdout . Three additional parameters
may be used to control the formatted representation. The keywords areindent, depth, andwidth. The amount
of indentation added for each recursive level is specified byindent; the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth; if the data structure being printed is too deep, the next contained level is replaced by
‘ ... ’. By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using thewidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

>>> import pprint, sys
>>> stuff = sys.path[:]
>>> stuff.insert(0, stuff[:])
>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)
[[’’,

’/usr/local/lib/python1.5’,
’/usr/local/lib/python1.5/test’,
’/usr/local/lib/python1.5/sunos5’,
’/usr/local/lib/python1.5/sharedmodules’,
’/usr/local/lib/python1.5/tkinter’],

’’,
’/usr/local/lib/python1.5’,
’/usr/local/lib/python1.5/test’,
’/usr/local/lib/python1.5/sunos5’,
’/usr/local/lib/python1.5/sharedmodules’,
’/usr/local/lib/python1.5/tkinter’]

>>>
>>> import parser
>>> tup = parser.ast2tuple(
... parser.suite(open(’pprint.py’).read()))[1][1][1]
>>> pp = pprint.PrettyPrinter(depth=6)
>>> pp.pprint(tup)
(266, (267, (307, (287, (288, (...))))))

ThePrettyPrinter class supports several derivative functions:

pformat (object)
Return the formatted representation ofobjectas a string. The default parameters for formatting are used.

pprint (object[, stream])
Prints the formatted representation ofobject on stream, followed by a newline. Ifstream is omitted,
sys.stdout is used. This may be used in the interactive interpreter instead of aprint statement for in-
specting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]
>>> stuff.insert(0, stuff)
>>> pprint.pprint(stuff)
[<Recursion on list with id=869440>,

’’,
’/usr/local/lib/python1.5’,
’/usr/local/lib/python1.5/test’,
’/usr/local/lib/python1.5/sunos5’,
’/usr/local/lib/python1.5/sharedmodules’,
’/usr/local/lib/python1.5/tkinter’]

3.20. pprint — Data pretty printer 55

isreadable (object)
Determine if the formatted representation ofobject is “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
0

isrecursive (object)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (object)
Return a string representation ofobject, protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be represented as ‘<Recursion on typename
with id= number>’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)
"[<Recursion on list with id=682968>, ’’, ’/usr/local/lib/python1.5’, ’/usr/loca
l/lib/python1.5/test’, ’/usr/local/lib/python1.5/sunos5’, ’/usr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/python1.5/tkinter’]"

3.20.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (object)
Return the formatted representation ofobject. This takes into Account the options passed to thePret-
tyPrinter constructor.

pprint (object)
Print the formatted representation ofobjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since newPrettyPrinter objects don’t need to be created.

isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. If thedepthparameter of thePrettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (object)
Determine if the object requires a recursive representation.

3.21 repr — Alternate repr() implementation

Therepr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

Repr ()
Class which provides formatting services useful in implementing functions similar to the built-inrepr() ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

56 Chapter 3. Python Runtime Services

aRepr
This is an instance ofRepr which is used to provide therepr() function described below. Changing the
attributes of this object will affect the size limits used byrepr() and the Python debugger.

repr (obj)
This is therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

3.21.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The default is6.

maxdict
maxlist
maxtuple

Limits on the number of entries represented for the named object type. The default formaxdict is 4, for the
others,6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40 .

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The default is30 .

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. It is applied in a similar manner asmaxstring . The default is20 .

repr (obj)
The equivalent to the built-inrepr() that uses the formatting imposed by the instance.

repr1 (obj, level)
Recursive implementation used byrepr() . This uses the type ofobj to determine which formatting method to
call, passing itobj andlevel. The type-specific methods should callrepr1() to perform recursive formatting,
with level - 1 for the value oflevel in the recursive call.

repr type(obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method name,typeis replaced bystring.join(string.split(type(obj). name , ’ ’) .
Dispatch to these methods is handled byrepr1() . Type-specific methods which need to recursively format a
value should call ‘self.repr1(subobj, level - 1) ’.

3.21.2 Subclassing Repr Objects

The use of dynamic dispatching byRepr.repr1() allows subclasses ofRepr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

3.21. repr — Alternate repr() implementation 57

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):

if obj.name in [’<stdin>’, ’<stdout>’, ’<stderr>’]:
return obj.name

else:
return ‘obj‘

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints ’<stdin>’

3.22 new — Creation of runtime internal objects

Thenew module allows an interface to the interpreter object creation functions. This is for use primarily in marshal-
type functions, when a new object needs to be created “magically” and not by using the regular creation functions.
This module provides a low-level interface to the interpreter, so care must be exercised when using this module.

Thenew module defines the following functions:

instance (class, dict)
This function creates an instance ofclasswith dictionarydict without calling the init () constructor.
Note that there are no guarantees that the object will be in a consistent state.

instancemethod (function, instance, class)
This function will return a method object, bound toinstance, or unbound ifinstanceis None. functionmust be
callable, andinstancemust be an instance object orNone.

function (code, globals[, name[, argdefs]])
Returns a (Python) function with the given code and globals. Ifnameis given, it must be a string orNone. If it is
a string, the function will have the given name, otherwise the function name will be taken fromcode.co name.
If argdefsis given, it must be a tuple and will be used to determine the default values of parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, lnotab)
This function is an interface to thePyCode New() C function.

module (name)
This function returns a new module object with namename. namemust be a string.

classobj (name, baseclasses, dict)
This function returns a new class object, with namename, derived frombaseclasses(which should be a tuple of
classes) and with namespacedict.

3.23 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific modules
would place ‘import site ’ somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head part, it usessys.prefix and

58 Chapter 3. Python Runtime Services

sys.exec prefix ; empty heads are skipped. For the tail part, it uses the empty string (on Macintosh or Windows)
or it uses first ‘lib/python2.0/site-packages’ and then ‘lib/site-python’ (on UNIX). For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, adds tosys.path , and also inspects the path for
configuration files.

A path configuration file is a file whose name has the form ‘package.pth’; its contents are additional items (one per
line) to be added tosys.path . Non-existing items are never added tosys.path , but no check is made that the
item refers to a directory (rather than a file). No item is added tosys.path more than once. Blank lines and lines
beginning with# are skipped.

For example, supposesys.prefix andsys.exec prefix are set to ‘/usr/local’. The Python 2.0 library is then
installed in ‘/usr/local/lib/python2.0’ (where only the first three characters ofsys.version are used to form the
installation path name). Suppose this has a subdirectory ‘/usr/local/lib/python2.0/site-packages’ with three subsubdi-
rectories, ‘foo’, ‘ bar’ and ‘spam’, and two path configuration files, ‘foo.pth’ and ‘bar.pth’. Assume ‘foo.pth’ contains
the following:

foo package configuration

foo
bar
bletch

and ‘bar.pth’ contains:

bar package configuration

bar

Then the following directories are added tosys.path , in this order:

/usr/local/lib/python1.5/site-packages/bar
/usr/local/lib/python1.5/site-packages/foo

Note that ‘bletch’ is omitted because it doesn’t exist; the ‘bar’ directory precedes the ‘foo’ directory because ‘bar.pth’
comes alphabetically before ‘foo.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration
file.

After these path manipulations, an attempt is made to import a module namedsitecustomize , which can perform
arbitrary site-specific customizations. If this import fails with anImportError exception, it is silently ignored.

Note that for some non-UNIX systems,sys.prefix andsys.exec prefix are empty, and the path manipula-
tions are skipped; however the import ofsitecustomize is still attempted.

3.24 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the $PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

3.24. user — User-specific configuration hook 59

import user

Theuser module looks for a file ‘.pythonrc.py’ in the user’s home directory and if it can be opened, executes it (using
execfile()) in its own (i.e. the moduleuser ’s) global namespace. Errors during this phase are not caught; that’s
up to the program that imports theuser module, if it wishes. The home directory is assumed to be named by the
$HOME environment variable; if this is not set, the current directory is used.

The user’s ‘.pythonrc.py’ could conceivably test forsys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in your ‘.pythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in their ‘.pythonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variableuser.spam verbose , as follows:

import user
try:

verbose = user.spam_verbose # user’s verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shouldnot import this module; a user can easily break into a program by
placing arbitrary code in the ‘.pythonrc.py’ file.

Modules for general use shouldnot import this module; it may interfere with the operation of the importing program.

See Also:

Modulesite (section 3.23):
site-wide customization mechanism

3.25 builtin — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.g.builtin .open is the full name
for the built-in functionopen() . See section 2.3, “Built-in Functions.”

3.26 main — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes — com-
mands read either from standard input, from a script file, or from an interactive prompt. It is this environment in which
the idiomatic “conditional script” stanza causes a script to run:

if __name__ == "__main__":
main()

60 Chapter 3. Python Runtime Services

CHAPTER

FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.
re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.
fpformat General floating point formatting functions.
StringIO Read and write strings as if they were files.
cStringIO Faster version ofStringIO , but not subclassable.
codecs Encode and decode data and streams.
unicodedata Access the Unicode Database.

4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions. See the
modulere for string functions based on regular expressions.

The constants defined in this module are are:

digits
The string’0123456789’ .

hexdigits
The string’0123456789abcdefABCDEF’ .

letters
The concatenation of the stringslowercase anduppercase described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
’abcdefghijklmnopqrstuvwxyz’ . Do not change its definition — the effect on the routinesupper()
andswapcase() is undefined.

octdigits
The string’01234567’ .

punctuation
String ofASCII characters which are considered punctuation characters in the ‘C’ locale.

printable
String of characters which are considered printable. This is a combination ofdigits , letters , punctua-
tion , andwhitespace .

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the string

61

’ABCDEFGHIJKLMNOPQRSTUVWXYZ’. Do not change its definition — the effect on the routineslower()
andswapcase() is undefined.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
strip() andsplit() is undefined.

Many of the functions provided by this module are also defined as methods of string and Unicode objects; see “String
Methods” (section 2.1.5) for more information on those. The functions defined in this module are:

atof (s)
Deprecated since release 2.0.Use thefloat() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sign (‘+’ or ‘ - ’). Note that this behaves identical to the built-in function
float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi (s[, base])
Deprecated since release 2.0.Use theint() built-in function.

Convert strings to an integer in the givenbase. The string must consist of one or more digits, optionally
preceded by a sign (‘+’ or ‘ - ’). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the sign): ‘0x ’ or ‘ 0X’ means 16, ‘0’ means 8, anything else
means 10. Ifbaseis 16, a leading ‘0x ’ or ‘ 0X’ is always accepted, though not required. This behaves identically
to the built-in functionint() when passed a string. (Also note: for a more flexible interpretation of numeric
literals, use the built-in functioneval() .)

atol (s[, base])
Deprecated since release 2.0.Use thelong() built-in function.

Convert strings to a long integer in the givenbase. The string must consist of one or more digits, optionally
preceded by a sign (‘+’ or ‘ - ’). The baseargument has the same meaning as foratoi() . A trailing ‘ l ’ or ‘ L’
is not allowed, except if the base is 0. Note that when invoked withoutbaseor with baseset to 10, this behaves
identical to the built-in functionlong() when passed a string.

capitalize (word)
Capitalize the first character of the argument.

capwords (s)
Split the argument into words usingsplit() , capitalize each word usingcapitalize() , and join the
capitalized words usingjoin() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

expandtabs (s[, tabsize])
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sub[, start[,end]])
Return the lowest index inswhere the substringsubis found such thatsubis wholly contained ins[start: end] .
Return-1 on failure. Defaults forstart andendand interpretation of negative values is the same as for slices.

rfind (s, sub[, start[, end]])
Like find() but find the highest index.

index (s, sub[, start[, end]])
Like find() but raiseValueError when the substring is not found.

62 Chapter 4. String Services

rindex (s, sub[, start[, end]])
Like rfind() but raiseValueError when the substring is not found.

count (s, sub[, start[, end]])
Return the number of (non-overlapping) occurrences of substringsubin strings[start: end] . Defaults forstart
andendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy ofs, but with upper case letters converted to lower case.

maketrans (from, to)
Return a translation table suitable for passing totranslate() or regex.compile() , that will map each
character infrom into the character at the same position into; from andto must have the same length.

Warning: don’t use strings derived fromlowercase anduppercase as arguments; in some locales, these
don’t have the same length. For case conversions, always uselower() andupper() .

split (s[, sep[, maxsplit]])
Return a list of the words of the strings. If the optional second argumentsepis absent orNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and notNone, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string.
The optional third argumentmaxsplitdefaults to 0. If it is nonzero, at mostmaxsplitnumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have at mostmaxsplit+1
elements).

splitfields (s[, sep[, maxsplit]])
This function behaves identically tosplit() . (In the past,split() was only used with one argument, while
splitfields() was only used with two arguments.)

join (words[, sep])
Concatenate a list or tuple of words with intervening occurrences ofsep. The default value forsepis a single
space character. It is always true that ‘string.join(string.split(s, sep), sep) ’ equalss.

joinfields (words[, sep])
This function behaves identical tojoin() . (In the past,join() was only used with one argument, while
joinfields() was only used with two arguments.)

lstrip (s)
Return a copy ofs but without leading whitespace characters.

rstrip (s)
Return a copy ofs but without trailing whitespace characters.

strip (s)
Return a copy ofs without leading or trailing whitespace.

swapcase (s)
Return a copy ofs, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechars])
Delete all characters froms that are indeletechars(if present), and then translate the characters usingtable,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (s)
Return a copy ofs, but with lower case letters converted to upper case.

ljust (s, width)
rjust (s, width)
center (s, width)

These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leastwidth characters wide, created by padding the strings with spaces until the given width on

4.1. string — Common string operations 63

the right, left or both sides. The string is never truncated.

zfill (s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, new[, maxsplit])
Return a copy of stringstr with all occurrences of substringold replaced bynew. If the optional argument
maxsplitis given, the firstmaxsplitoccurrences are replaced.

This module is implemented in Python. Much of its functionality has been reimplemented in the built-in module
strop . However, you shouldneverimport the latter module directly. Whenstring discovers thatstrop exists, it
transparently replaces parts of itself with the implementation fromstrop . After initialization, there isno overhead
in usingstring instead ofstrop .

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte using the\ numbernotation. Both patterns and
strings to be searched can be Unicode strings as well as 8-bit strings. There module is always available.

Regular expressions use the backslash character (‘\ ’) to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write’\\\\’ as the pattern
string, because the regular expression must be ‘\\ ’, and each backslash must be expressed as ‘\\ ’ inside a regular
Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with ‘r ’. So r"\n" is a two-character string containing ‘\ ’ and ‘n’, while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

Implementation note: The re module has two distinct implementations:sre is the default implementation and
includes Unicode support, but may run into stack limitations for some patterns. Though this will be fixed for a future
release of Python, the older implementation (without Unicode support) is still available as thepre module.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; ifA andB are both regular expressions,
thenAB is also an regular expression. If a stringp matches A and another stringq matches B, the stringpqwill match
AB. Thus, complex expressions can easily be constructed from simpler primitive expressions like the ones described
here. For details of the theory and implementation of regular expressions, consult the Friedl book referenced below,
or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fromhttp://www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like ‘A’, ‘ a’, or
‘0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so dlast cmatches the string’last’ . (In the rest of this section, we’ll write RE’s indthis special style c,
usually without quotes, and strings to be matched’in single quotes’ .)

Some characters, like ‘| ’ or ‘ (’, are special. Special characters either stand for classes of ordinary characters, or affect

64 Chapter 4. String Services

how the regular expressions around them are interpreted.

The special characters are:

‘ . ’ (Dot.) In the default mode, this matches any character except a newline. If theDOTALLflag has been
specified, this matches any character including a newline.

‘ ˆ ’ (Caret.) Matches the start of the string, and inMULTILINE mode also matches immediately after each
newline.

‘$’ Matches the end of the string, and inMULTILINE mode also matches before a newline.dfoo cmatches
both ’foo’ and ’foobar’, while the regular expressiondfoo$ cmatches only ’foo’.

‘* ’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible.dab* cwill match ’a’, ’ab’, or ’a’ followed by any number of ’b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE.dab+cwill match ’a’ followed
by any non-zero number of ’b’s; it will not match just ’a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the preceding RE.dab?cwill match either ’a’ or
’ab’.

? , +?, ?? The ‘ ’, ‘ +’, and ‘?’ qualifiers are allgreedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the REd<.*> c is matched against’<H1>title</H1>’ , it will match the
entire string, and not just’<H1>’ . Adding ‘?’ after the qualifier makes it perform the match innon-
greedyor minimal fashion; asfew characters as possible will be matched. Usingd.*? c in the previous
expression will match only’<H1>’ .

{ m, n} Causes the resulting RE to match fromm to n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For example,da{3,5} cwill match from 3 to 5 ‘a’ characters. Omittingn
specifies an infinite upper bound; you can’t omitm.

{ m, n}? Causes the resulting RE to match fromm to n repetitions of the preceding RE, attempting to match as
few repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character string’aaaaaa’ , da{3,5} cwill match 5 ‘a’ characters, whileda{3,5}? cwill only match
3 characters.

‘ \ ’ Either escapes special characters (permitting you to match characters like ‘* ’, ‘ ?’, and so forth), or signals
a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand,
so it’s highly recommended that you use raw strings for all but the simplest expressions.

[] Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them by a ‘- ’. Special characters are not active
inside sets. For example,d[akm$] cwill match any of the characters ‘a’, ‘ k ’, ‘ m’, or ‘$’; d[a-z] cwill
match any lowercase letter, and[a-zA-Z0-9] matches any letter or digit. Character classes such as\w
or \S (defined below) are also acceptable inside a range. If you want to include a ‘] ’ or a ‘- ’ inside a
set, precede it with a backslash, or place it as the first character. The patternd[]] cwill match ’]’ , for
example.

You can match the characters not within a range bycomplementingthe set. This is indicated by including
a ‘ˆ ’ as the first character of the set; ‘ˆ ’ elsewhere will simply match the ‘ˆ ’ character. For example,
d[ˆ5] cwill match any character except ‘5’.

4.2. re — Regular expression operations 65

‘ | ’ A|B , where A and B can be arbitrary REs, creates a regular expression that will match either A or B.
An arbitrary number of REs can be separated by the ‘| ’ in this way. This can be used inside groups (see
below) as well. REs separated by ‘| ’ are tried from left to right, and the first one that allows the complete
pattern to match is considered the accepted branch. This means that ifA matches,B will never be tested,
even if it would produce a longer overall match. In other words, the ‘| ’ operator is never greedy. To
match a literal ‘| ’, used\| c, or enclose it inside a character class, as ind[|] c.

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with thed\ numberc special sequence, described below. To match the literals ‘(’ or ‘) ’, used\(cor
d\) c, or enclose them inside a character class:d[(] [)] c.

(?...) This is an extension notation (a ‘?’ following a ‘ (’ is not meaningful otherwise). The first character after
the ‘?’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group;d(?P< name>...) c is the only exception to this rule. Following are the currently
supported extensions.

(?iLmsux) (One or more letters from the set ‘i ’, ‘ L’, ‘ m’, ‘ s ’, ‘ u’, ‘ x ’.) The group matches the empty string;
the letters set the corresponding flags (re.I , re.L , re.M , re.S , re.U , re.X) for the entire regular
expression. This is useful if you wish to include the flags as part of the regular expression, instead of
passing aflagargument to thecompile() function.

Note that thed(?x) c flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the groupcannotbe retrieved after performing a match or referenced
later in the pattern.

(?P< name>...) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-
bolic group namename. Group names must be valid Python identifiers. A symbolic group is also a
numbered group, just as if the group were not named. So the group named ’id’ in the example above can
also be referenced as the numbered group 1.

For example, if the pattern isd(?P<id>[a-zA-Z]\w*) c, the group can be referenced by its name
in arguments to methods of match objects, such asm.group(’id’) or m.end(’id’) , and also by
name in pattern text (e.g.d(?P=id) c) and replacement text (e.g.\g<id>).

(?P= name) Matches whatever text was matched by the earlier group namedname.

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches ifd... cmatches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example,dIsaac (?=Asimov) cwill match ’Isaac ’ only if it’s followed by ’Asimov’ .

(?!...) Matches if d... c doesn’t match next. This is a negative lookahead assertion. For example,dIsaac
(?!Asimov) cwill match ’Isaac ’ only if it’s not followed by ’Asimov’ .

(?<=...) Matches if the current position in the string is preceded by a match ford... c that ends at the current
position. This is called a positive lookbehind assertion.d(?<=abc)def cwill match ‘abcdef ’, since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern
must only match strings of some fixed length, meaning thatdabccor da|b care allowed, butda* c isn’t.

(?<!...) Matches if the current position in the string is not preceded by a match ford... c. This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match
strings of some fixed length.

The special sequences consist of ‘\ ’ and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example,d\$ cmatches the character ‘$’.

66 Chapter 4. String Services

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example,d(.+) \1 cmatches’the the’ or ’55 55’ , but not’the end’ (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit
of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as the
character with octal valuenumber. Inside the ‘[’ and ‘] ’ of a character class, all numeric escapes are
treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.
Inside a character range,d\b c represents the backspace character, for compatibility with Python’s string
literals.

\B Matches the empty string, but only when it isnotat the beginning or end of a word.

\d Matches any decimal digit; this is equivalent to the setd[0-9] c.

\D Matches any non-digit character; this is equivalent to the setd[ˆ0-9] c.

\s Matches any whitespace character; this is equivalent to the setd[\t\n\r\f\v] c.

\S Matches any non-whitespace character; this is equivalent to the setd[ˆ \t\n\r\f\v] c.

\w When theLOCALEandUNICODEflags are not specified, matches any alphanumeric character; this is
equivalent to the setd[a-zA-Z0-9] c. With LOCALE, it will match the setd[0-9] c plus whatever
characters are defined as letters for the current locale. IfUNICODEis set, this will match the characters
d[0-9] cplus whatever is classified as alphanumeric in the Unicode character properties database.

\W When theLOCALEandUNICODEflags are not specified, matches any non-alphanumeric character; this
is equivalent to the setd[ˆa-zA-Z0-9] c. With LOCALE, it will match any character not in the set
d[0-9] c, and not defined as a letter for the current locale. IfUNICODEis set, this will match anything
other thand[0-9] cand characters marked at alphanumeric in the Unicode character properties database.

\Z Matches only at the end of the string.

\\ Matches a literal backslash.

4.2.2 Matching vs. Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are accustomed
to Perl’s semantics, the search operation is what you’re looking for. See thesearch() function and corresponding
method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning with ‘ˆ ’: ‘ ˆ ’ matches only at the start
of the string, or inMULTILINE mode also immediately following a newline. The “match” operation succeeds only
if the pattern matches at the start of the string regardless of mode, or at the starting position given by the optionalpos
argument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile("ˆa").search("ba", 1) # fails; ’a’ not at start
re.compile("ˆa").search("\na", 1) # fails; ’a’ not at start
re.compile("ˆa", re.M).search("\na", 1) # succeeds
re.compile("ˆa", re.M).search("ba", 1) # fails; no preceding \n

4.2. re — Regular expression operations 67

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile (pattern[, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifying aflagsvalue. Values can be any of the following
variables, combined using bitwise OR (the| operator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version usingcompile() is more efficient when the expression will be used several times in a single
program.

I
IGNORECASE

Perform case-insensitive matching; expressions liked[A-Z] c will match lowercase letters, too. This is not
affected by the current locale.

L
LOCALE

Maked\wc, d\Wc, d\b c, andd\B cdependent on the current locale.

M
MULTILINE

When specified, the pattern character ‘ˆ ’ matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ‘$’ matches at the end of the string and at
the end of each line (immediately preceding each newline). By default, ‘ˆ ’ matches only at the beginning of the
string, and ‘$’ only at the end of the string and immediately before the newline (if any) at the end of the string.

S
DOTALL

Make the ‘. ’ special character match any character at all, including a newline; without this flag, ‘. ’ will match
anythingexcepta newline.

U
UNICODE

Maked\wc, d\Wc, d\b c, andd\B cdependent on the Unicode character properties database. New in version 2.0.

X
VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line contains a ‘#’ neither
in a character class or preceded by an unescaped backslash, all characters from the leftmost such ‘#’ through
the end of the line are ignored.

search (pattern, string[, flags])
Scan throughstring looking for a location where the regular expressionpatternproduces a match, and return a
correspondingMatchObject instance. ReturnNone if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

68 Chapter 4. String Services

match (pattern, string[, flags])
If zero or more characters at the beginning ofstringmatch the regular expressionpattern, return a corresponding
MatchObject instance. ReturnNone if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywhere instring, usesearch() instead.

split (pattern, string[, maxsplit = 0])
Split stringby the occurrences ofpattern. If capturing parentheses are used inpattern, then the text of all groups
in the pattern are also returned as part of the resulting list. Ifmaxsplitis nonzero, at mostmaxsplitsplits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 release,maxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(’\W+’, ’Words, words, words.’)
[’Words’, ’words’, ’words’, ’’]
>>> re.split(’(\W+)’, ’Words, words, words.’)
[’Words’, ’, ’, ’words’, ’, ’, ’words’, ’.’, ’’]
>>> re.split(’\W+’, ’Words, words, words.’, 1)
[’Words’, ’words, words.’]

This function combines and extends the functionality of the oldregsub.split() andregsub.splitx() .

findall (pattern, string)
Return a list of all non-overlapping matches ofpatternin string. If one or more groups are present in the pattern,
return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are
included in the result. New in version 1.5.2.

sub (pattern, repl, string[, count = 0])
Return the string obtained by replacing the leftmost non-overlapping occurrences ofpattern in string by the
replacementrepl. If the pattern isn’t found,string is returned unchanged.repl can be a string or a function; if a
function, it is called for every non-overlapping occurrence ofpattern. The function takes a single match object
argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
.... if matchobj.group(0) == ’-’: return ’ ’
.... else: return ’-’
>>> re.sub(’-{1,2}’, dashrepl, ’pro----gram-files’)
’pro--gram files’

The pattern may be a string or a regex object; if you need to specify regular expression flags, you must use
a regex object, or use embedded modifiers in a pattern; e.g. ‘sub("(?i)b+", "x", "bbbb BBBB") ’
returns’x x’ .

The optional argumentcount is the maximum number of pattern occurrences to be replaced;countmust be a
non-negative integer, and the default value of 0 means to replace all occurrences.

Empty matches for the pattern are replaced only when not adjacent to a previous match, so ‘sub(’x*’, ’-’,
’abc’) ’ returns’-a-b-c-’ .

If repl is a string, any backslash escapes in it are processed. That is, ‘\n ’ is converted to a single newline charac-
ter, ‘\r ’ is converted to a linefeed, and so forth. Unknown escapes such as ‘\j ’ are left alone. Backreferences,
such as ‘\6 ’, are replaced with the substring matched by group 6 in the pattern.

In addition to character escapes and backreferences as described above, ‘\g<name> ’ will use the substring
matched by the group named ‘name’, as defined by thed(?P<name>...) c syntax. ‘\g<number> ’ uses the
corresponding group number; ‘\g<2> ’ is therefore equivalent to ‘\2 ’, but isn’t ambiguous in a replacement
such as ‘\g<2>0 ’. ‘ \20 ’ would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal character ‘0’.

subn (pattern, repl, string[, count = 0])
Perform the same operation assub() , but return a tuple(new string, number of subs made) .

4.2. re — Regular expression operations 69

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. It is never an error if a
string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

search (string[, pos[, endpos]])
Scan throughstring looking for a location where this regular expression produces a match, and return a corre-
spondingMatchObject instance. ReturnNone if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optionalposandendposparameters have the same meaning as for thematch() method.

match (string[, pos[, endpos]])
If zero or more characters at the beginning ofstring match this regular expression, return a corresponding
MatchObject instance. ReturnNone if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywhere instring, usesearch() instead.

The optional second parameterposgives an index in the string where the search is to start; it defaults to0. This
is not completely equivalent to slicing the string; the’ˆ’ pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameterendposlimits how far the string will be searched; it will be as if the string isendpos
characters long, so only the characters fromposto endposwill be searched for a match.

split (string[, maxsplit = 0])
Identical to thesplit() function, using the compiled pattern.

findall (string)
Identical to thefindall() function, using the compiled pattern.

sub (repl, string[, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string[, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the regex object was compiled, or0 if no flags were provided.

groupindex
A dictionary mapping any symbolic group names defined byd(?P< id>) c to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the regex object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

70 Chapter 4. String Services

expand (template)
Return the string obtained by doing backslash substitution on the template stringtemplate, as done by thesub()
method. Escapes such as ‘\n ’ are converted to the appropriate characters, and numeric backreferences (‘\1 ’,
‘ \2 ’) and named backreferences (‘\g<1> ’, ‘ \g<name> ’) are replaced by the contents of the corresponding
group.

group ([group1, ...])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if there
are multiple arguments, the result is a tuple with one item per argument. Without arguments,group1defaults
to zero (i.e. the whole match is returned). If agroupN argument is zero, the corresponding return value is
the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
an IndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result is-1 . If a group is contained in a part of the pattern that matched multiple times, the last
match is returned.

If the regular expression uses thed(?P< name>...) csyntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattern, anIndexError
exception is raised.

A moderately complicated example:

m = re.match(r"(?P<int>\d+)\.(\d*)", ’3.14’)

After performing this match,m.group(1) is ’3’ , as ism.group(’int’) , andm.group(2) is ’14’ .

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
Thedefaultargument is used for groups that did not participate in the match; it defaults toNone. (Incompat-
ibility note: in the original Python 1.5 release, if the tuple was one element long, a string would be returned
instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

groupdict ([default])
Return a dictionary containing all thenamedsubgroups of the match, keyed by the subgroup name. Thedefault
argument is used for groups that did not participate in the match; it defaults toNone.

start ([group])
end ([group])

Return the indices of the start and end of the substring matched bygroup; groupdefaults to zero (meaning the
whole matched substring). Return-1 if groupexists but did not contribute to the match. For a match objectm,
and a groupg that did contribute to the match, the substring matched by groupg (equivalent tom.group(g))
is

m.string[m.start(g):m.end(g)]

Note thatm.start(group) will equalm.end(group) if groupmatched a null string. For example, afterm =
re.search(’b(c?)’, ’cba’) , m.start(0) is 1, m.end(0) is 2, m.start(1) andm.end(1)
are both 2, andm.start(2) raises anIndexError exception.

span ([group])
ForMatchObject m, return the 2-tuple(m.start(group), m.end(group)) . Note that ifgroupdid not
contribute to the match, this is(-1, -1) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to thesearch() or match() function. This is the index into the string at
which the regex engine started looking for a match.

endpos
The value ofendposwhich was passed to thesearch() or match() function. This is the index into the

4.2. re — Regular expression operations 71

string beyond which the regex engine will not go.

re
The regular expression object whosematch() or search() method produced thisMatchObject instance.

string
The string passed tomatch() or search() .

See Also:

Jeffrey Friedl,Mastering Regular Expressions, O’Reilly. The Python material in this book dates from before there
module, but it covers writing good regular expression patterns in great detail.

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings. It usesformat
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values. This can be used in handling binary data stored in files or from network connections, among other
sources.

The module defines the following exception and functions:

error
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2, . . .)
Return a string containing the valuesv1, v2, . . . packed according to the given format. The arguments must
match the values required by the format exactly.

unpack (fmt, string)
Unpack the string (presumably packed bypack(fmt, . . .)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (i.e.len(string) must equalcalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

Format C Type Python Notes
‘x ’ pad byte no value
‘c ’ char string of length 1
‘b’ signed char integer
‘B’ unsigned char integer
‘h’ short integer
‘H’ unsigned short integer
‘ i ’ int integer
‘ I ’ unsigned int long (1)
‘ l ’ long integer
‘L’ unsigned long long
‘ f ’ float float
‘d’ double float
‘s ’ char[] string
‘p’ char[] string
‘P’ void * integer

Notes:

72 Chapter 4. String Services

(1) The ‘I ’ conversion code will convert to a Python long if the Cint is the same size as a Clong , which is typical
on most modern systems. If a Cint is smaller than a Clong , an Python integer will be created instead.

A format character may be preceded by an integral repeat count; e.g. the format string’4h’ means exactly the same
as’hhhh’ .

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ‘s ’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; e.g.’10s’ means a single 10-byte string, while’10c’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special case,’0s’ means a single, empty string (while’0c’ means
0 characters).

The ‘p’ format character can be used to encode a Pascal string. The first byte is the length of the stored string, with the
bytes of the string following. If count is given, it is used as the total number of bytes used, including the length byte.
If the string passed in topack() is too long, the stored representation is truncated. If the string is too short, padding
is used to ensure that exactly enough bytes are used to satisfy the count.

For the ‘I ’ and ‘L’ format characters, the return value is a Python long integer.

For the ‘P’ format character, the return value is a Python integer or long integer, depending on the size needed to hold
a pointer when it has been cast to an integer type. ANULL pointer will always be returned as the Python integer0.
When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha and
Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character Byte order Size and alignment
‘@’ native native
‘=’ native standard
‘<’ little-endian standard
‘>’ big-endian standard
‘ ! ’ network (= big-endian) standard

If the first character is not one of these, ‘@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system (e.g. Motorola and Sun are big-endian;
Intel and DEC are little-endian).

Native size and alignment are determined using the C compiler’ssizeof expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is 2 bytes; int and long are 4 bytes. float and double are 32-bit and 64-bit IEEE floating point
numbers, respectively.

Note the difference between ‘@’ and ‘=’: both use native byte order, but the size and alignment of the latter is stan-
dardized.

The form ‘! ’ is available for those poor souls who claim they can’t remember whether network byte order is big-endian
or little-endian.

There is no way to indicate non-native byte order (i.e. force byte-swapping); use the appropriate choice of ‘<’ or ‘ >’.

The ‘P’ format character is only available for the native byte ordering (selected as the default or with the ‘@’ byte order

4.3. struct — Interpret strings as packed binary data 73

character). The byte order character ‘=’ chooses to use little- or big-endian ordering based on the host system. The
struct module does not interpret this as native ordering, so the ‘P’ format is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *
>>> pack(’hhl’, 1, 2, 3)
’\000\001\000\002\000\000\000\003’
>>> unpack(’hhl’, ’\000\001\000\002\000\000\000\003’)
(1, 2, 3)
>>> calcsize(’hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero, e.g. the format’llh0l’ specifies two pad bytes at the end, assuming longs
are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size and
alignment does not enforce any alignment.

See Also:

Modulearray (section 5.6):
Packed binary storage of homogeneous data.

Modulexdrlib (section 12.9):
Packing and unpacking of XDR data.

4.4 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python.Note: This module is unneeded: everything here could be done via the%string interpolation operator.

Thefpformat module defines the following functions and an exception:

fix (x, digs)
Formatx as [-]ddd.ddd with digs digits after the point and at least one digit before. Ifdigs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like one.digs is an integer.

Return value is a string.

sci (x, digs)
Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit before. Ifdigs <= 0,
one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like one.digs is an integer.

Return value is a string.

NotANumber
Exception raised when a string passed tofix() or sci() as thex parameter does not look like a number. This
is a subclass ofValueError when the standard exceptions are strings. The exception value is the improperly
formatted string that caused the exception to be raised.

Example:

74 Chapter 4. String Services

>>> import fpformat
>>> fpformat.fix(1.23, 1)
’1.2’

4.5 StringIO — Read and write strings as files

This module implements a file-like class,StringIO , that reads and writes a string buffer (also known asmemory
files). See the description on file objects for operations (section 2.1.7).

StringIO ([buffer])
When aStringIO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, theStringIO will start empty.

The following methods ofStringIO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time before theStringIO object’sclose() method is called.

close ()
Free the memory buffer.

4.6 cStringIO — Faster version of StringIO

The modulecStringIO provides an interface similar to that of theStringIO module. Heavy use ofStrin-
gIO.StringIO objects can be made more efficient by using the functionStringIO() from this module instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. Use the originalStringIO module in that case.

The following data objects are provided as well:

InputType
The type object of the objects created by callingStringIO with a string parameter.

OutputType
The type object of the objects returned by callingStringIO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

4.7 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec lookup process.

It defines the following functions:

register (search function)
Register a codec search function. Search functions are expected to take one argument, the encoding name in
all lower case letters, and return a tuple of functions(encoder, decoder, stream reader, stream writer)
taking the following arguments:

encoderand decoder: These must be functions or methods which have the same interface as theen-
code() /decode() methods of Codec instances (see Codec Interface). The functions/methods are expected

4.5. StringIO — Read and write strings as files 75

to work in a stateless mode.

stream readerandstream writer: These have to be factory functions providing the following interface:

factory(stream, errors=’strict’)

The factory functions must return objects providing the interfaces defined by the base classesStreamWriter
andStreamReader , respectively. Stream codecs can maintain state.

Possible values for errors are’strict’ (raise an exception in case of an encoding error),’replace’ (re-
place malformed data with a suitable replacement marker, such as ‘?’) and ’ignore’ (ignore malformed data
and continue without further notice).

In case a search function cannot find a given encoding, it should returnNone.

lookup (encoding)
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no codecs tuple is found, aLookupError is raised. Otherwise, the codecs tuple is stored in the
cache and returned to the caller.

To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, mode[, encoding[, errors[, buffering]]])
Open an encoded file using the givenmode and return a wrapped version providing transparent encod-
ing/decoding.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects for
most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

encodingspecifies the encoding which is to be used for the the file.

errorsmay be given to define the error handling. It defaults to’strict’ which causes aValueError to be
raised in case an encoding error occurs.

bufferinghas the same meaning as for the built-inopen() function. It defaults to line buffered.

EncodedFile (file, input[, output[, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the giveninput encoding and then written to
the original file as strings using theoutputencoding. The intermediate encoding will usually be Unicode but
depends on the specified codecs.

If outputis not given, it defaults toinput.

errors may be given to define the error handling. It defaults to’strict’ , which causesValueError to be
raised in case an encoding error occurs.

The module also provides the following constants which are useful for reading and writing to platform dependent files:

BOM
BOMBE
BOMLE
BOM32 BE
BOM32 LE
BOM64 BE
BOM64 LE

These constants define the byte order marks (BOM) used in data streams to indicate the byte order used in the
stream or file.BOMis eitherBOMBEor BOMLE depending on the platform’s native byte order, while the others
represent big endian (‘BE’ suffix) and little endian (‘ LE’ suffix) byte order using 32-bit and 64-bit encodings.

76 Chapter 4. String Services

4.7.1 Codec Base Classes

The codecs defines a set of base classes which define the interface and can also be used to easily write you own
codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to imple-
ment the file protocols.

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, theencode() anddecode() methods may implement different error
handling schemes by providing theerrors string argument. The following string values are defined and implemented
by all standard Python codecs:

• ’strict’ RaiseValueError (or a subclass); this is the default.

• ’ignore’ Ignore the character and continue with the next.

• ’replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPLACE-
MENT CHARACTER for the builtin Unicode codecs.

Codec Objects

TheCodec class defines these methods which also define the function interfaces of the stateless encoder and decoder:

encode (input[, errors])
Encodes the objectinput and returns a tuple (output object, length consumed).

errorsdefines the error handling to apply. It defaults to’strict’ handling.

The method may not store state in theCodec instance. UseStreamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

decode (input[, errors])
Decodes the objectinput and returns a tuple (output object, length consumed).

input must be an object which provides thebf getreadbuf buffer slot. Python strings, buffer objects and
memory mapped files are examples of objects providing this slot.

errorsdefines the error handling to apply. It defaults to’strict’ handling.

The method may not store state in theCodec instance. UseStreamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

TheStreamWriter andStreamReader classes provide generic working interfaces which can be used to imple-
ment new encodings submodules very easily. Seeencodings.utf 8 for an example on how this is done.

StreamWriter Objects

TheStreamWriter class is a subclass ofCodec and defines the following methods which every stream writer must
define in order to be compatible to the Python codec registry.

StreamWriter (stream[, errors])
Constructor for aStreamWriter instance.

4.7. codecs — Codec registry and base classes 77

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for writing (binary) data.

TheStreamWriter may implement different error handling schemes by providing theerrors keyword argu-
ment. These parameters are defined:

•’strict’ RaiseValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing thewrite() method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows appending of
new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, theStreamWriter must also inherit all other methods and attribute from the
underlying stream.

StreamReader Objects

The StreamReader class is a subclass ofCodec and defines the following methods which every stream reader
must define in order to be compatible to the Python codec registry.

StreamReader (stream[, errors])
Constructor for aStreamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

TheStreamReader may implement different error handling schemes by providing theerrors keyword argu-
ment. These parameters are defined:

•’strict’ RaiseValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character.

read ([size])
Decodes data from the stream and returns the resulting object.

sizeindicates the approximate maximum number of bytes to read from the stream for decoding purposes. The
decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as much as
possible.sizeis intended to prevent having to decode huge files in one step.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within the
definition of the encoding and the given size, e.g. if optional encoding endings or state markers are available on
the stream, these should be read too.

78 Chapter 4. String Services

readline ([size])
Read one line from the input stream and return the decoded data.

Note: Unlike thereadlines() method, this method inherits the line breaking knowledge from the underlying
stream’sreadline() method – there is currently no support for line breaking using the codec decoder due
to lack of line buffering. Sublcasses should however, if possible, try to implement this method using their own
knowledge of line breaking.

size, if given, is passed as size argument to the stream’sreadline() method.

readlines ([sizehint])
Read all lines available on the input stream and return them as list of lines.

Line breaks are implemented using the codec’s decoder method and are included in the list entries.

sizehint, if given, is passed assizeargument to the stream’sread() method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, theStreamReader must also inherit all other methods and attribute from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may provide
useful in practice.

StreamReaderWriter Objects

TheStreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned by thelookup() function to construct the instance.

StreamReaderWriter (stream, Reader, Writer, errors)
Creates aStreamReaderWriter instance.streammust be a file-like object.ReaderandWriter must be fac-
tory functions or classes providing theStreamReader andStreamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces ofStreamReader and StreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects

TheStreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned by thelookup() function to construct the instance.

StreamRecoder (stream, encode, decode, Reader, Writer, errors)
Creates aStreamRecoder instance which implements a two-way conversion:encodeanddecodework on
the frontend (the input toread() and output ofwrite()) while ReaderandWriter work on the backend
(reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.

streammust be a file-like object.

encode, decodemust adhere to theCodec interface,Reader, Writer must be factory functions or classes pro-
viding objects of the theStreamReader andStreamWriter interface respectively.

4.7. codecs — Codec registry and base classes 79

encodeanddecodeare needed for the frontend translation,ReaderandWriter for the backend translation. The
intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use Unicode as
intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces ofStreamReader andStreamWriter classes. They
inherit all other methods and attribute from the underlying stream.

4.8 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based on the ‘UnicodeData.txt’ file version 3.0.0 which is publically available
from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.0.0 (see
http://www.unicode.org/Public/UNIDATA/UnicodeData.html). It defines the following functions:

decimal (unichr[, default])
Returns the decimal value assigned to the Unicode characterunichr as integer. If no such value is defined,
defaultis returned, or, if not given,ValueError is raised.

digit (unichr[, default])
Returns the digit value assigned to the Unicode characterunichr as integer. If no such value is defined,default
is returned, or, if not given,ValueError is raised.

numeric (unichr[, default])
Returns the numeric value assigned to the Unicode characterunichr as float. If no such value is defined,default
is returned, or, if not given,ValueError is raised.

category (unichr)
Returns the general category assigned to the Unicode characterunichr as string.

bidirectional (unichr)
Returns the bidirectional category assigned to the Unicode characterunichras string. If no such value is defined,
an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode characterunichr as integer. Returns0 if no
combining class is defined.

mirrored (unichr)
Returns the mirrored property of assigned to the Unicode characterunichr as integer. Returns1 if the character
has been identified as a “mirrored” character in bidirectional text,0 otherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode characterunichr as string. An empty
string is returned in case no such mapping is defined.

80 Chapter 4. String Services

CHAPTER

FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions. Here’s
an overview:

math Mathematical functions (sin() etc.).
cmath Mathematical functions for complex numbers.
random Generate pseudo-random numbers with various common distributions.
whrandom Floating point pseudo-random number generator.
bisect Array bisection algorithms for binary searching.
array Efficient arrays of uniformly typed numeric values.
ConfigParser Configuration file parser.
fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
calendar General functions for working with the calendar, including some emulation of the UNIX cal program.
cmd Build line-oriented command interpreters.
shlex Simple lexical analysis for UNIX shell-like languages.

5.1 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from thecmath module
if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the first
place.

The following functions provided by this module:

acos (x)
Return the arc cosine ofx.

asin (x)
Return the arc sine ofx.

atan (x)
Return the arc tangent ofx.

atan2 (y, x)
Returnatan(y / x) .

ceil (x)
Return the ceiling ofx as a real.

81

cos (x)
Return the cosine ofx.

cosh (x)
Return the hyperbolic cosine ofx.

exp (x)
Returne** x.

fabs (x)
Return the absolute value of the realx.

floor (x)
Return the floor ofx as a real.

fmod (x, y)
Returnfmod(x, y) , as defined by the platform C library. Note that the Python expressionx % y may not
return the same result.

frexp (x)
Return the mantissa and exponent ofx as the pair(m, e) . m is a float ande is an integer such thatx == m *
2** e. If x is zero, returns(0.0, 0) , otherwise0.5 <= abs(m) < 1 .

hypot (x, y)
Return the Euclidean distance,sqrt(x* x + y* y) .

ldexp (x, i)
Returnx * (2** i) .

log (x)
Return the natural logarithm ofx.

log10 (x)
Return the base-10 logarithm ofx.

modf (x)
Return the fractional and integer parts ofx. Both results carry the sign ofx. The integer part is returned as a real.

pow(x, y)
Returnx** y.

sin (x)
Return the sine ofx.

sinh (x)
Return the hyperbolic sine ofx.

sqrt (x)
Return the square root ofx.

tan (x)
Return the tangent ofx.

tanh (x)
Return the hyperbolic tangent ofx.

Note thatfrexp() and modf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

The module also defines two mathematical constants:

pi
The mathematical constantpi.

82 Chapter 5. Miscellaneous Services

e
The mathematical constante.

See Also:

Modulecmath (section 5.2):
Complex number versions of many of these functions.

5.2 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

acos (x)
Return the arc cosine ofx.

acosh (x)
Return the hyperbolic arc cosine ofx.

asin (x)
Return the arc sine ofx.

asinh (x)
Return the hyperbolic arc sine ofx.

atan (x)
Return the arc tangent ofx.

atanh (x)
Return the hyperbolic arc tangent ofx.

cos (x)
Return the cosine ofx.

cosh (x)
Return the hyperbolic cosine ofx.

exp (x)
Return the exponential valuee** x.

log (x)
Return the natural logarithm ofx.

log10 (x)
Return the base-10 logarithm ofx.

sin (x)
Return the sine ofx.

sinh (x)
Return the hyperbolic sine ofx.

sqrt (x)
Return the square root ofx.

tan (x)
Return the tangent ofx.

tanh (x)
Return the hyperbolic tangent ofx.

The module also defines two mathematical constants:

5.2. cmath — Mathematical functions for complex numbers 83

pi
The mathematical constantpi, as a real.

e
The mathematical constante, as a real.

Note that the selection of functions is similar, but not identical, to that in modulemath . The reason for having two
modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather havemath.sqrt(-1) raise an exception than return a complex number. Also note that the functions
defined incmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

5.3 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions: on the real line, there are func-
tions to compute normal or Gaussian, lognormal, negative exponential, gamma, and beta distributions. For generating
distribution of angles, the circular uniform and von Mises distributions are available.

The random module supports theRandom Number Generatorinterface, described in section 5.3.1. This interface
of the module, as well as the distribution-specific functions described below, all use the pseudo-random generator
provided by thewhrandom module.

The following functions are defined to support specific distributions, and all return real values. Function parameters
are named after the corresponding variables in the distribution’s equation, as used in common mathematical practice;
most of these equations can be found in any statistics text. These are expected to become part of the Random Number
Generator interface in a future release.

betavariate (alpha, beta)
Beta distribution. Conditions on the parameters arealpha > -1 and beta > -1 . Returned values range
between 0 and 1.

cunifvariate (mean, arc)
Circular uniform distribution.meanis the mean angle, andarc is the range of the distribution, centered around
the mean angle. Both values must be expressed in radians, and can range between 0 andpi. Returned values
will range betweenmean - arc/2 andmean + arc/2 .

expovariate (lambd)
Exponential distribution.lambdis 1.0 divided by the desired mean. (The parameter would be called “lambda”,
but that is a reserved word in Python.) Returned values will range from 0 to positive infinity.

gamma(alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters arealpha > -1 andbeta > 0.

gauss (mu, sigma)
Gaussian distribution.mu is the mean, andsigma is the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with meanmuand standard deviationsigma. mucan have any value, andsigmamust be greater than zero.

normalvariate (mu, sigma)
Normal distribution.mu is the mean, andsigmais the standard deviation.

vonmisesvariate (mu, kappa)
muis the mean angle, expressed in radians between 0 and 2*pi, andkappais the concentration parameter, which
must be greater than or equal to zero. Ifkappais equal to zero, this distribution reduces to a uniform random
angle over the range 0 to 2*pi.

84 Chapter 5. Miscellaneous Services

paretovariate (alpha)
Pareto distribution.alpha is the shape parameter.

weibullvariate (alpha, beta)
Weibull distribution.alpha is the scale parameter andbetais the shape parameter.

See Also:

Modulewhrandom (section 5.4):
The standard Python random number generator.

5.3.1 The Random Number Generator Interface

TheRandom Number Generatorinterface describes the methods which are available for all random number generators.
This will be enhanced in future releases of Python.

In this release of Python, the modulesrandom , whrandom , and instances of thewhrandom.whrandom class all
conform to this interface.

choice (seq)
Chooses a random element from the non-empty sequenceseqand returns it.

randint (a, b)
Deprecated since release 2.0.Userandrange() instead.

Returns a random integerN such thata <= N <= b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

randrange ([start,] stop[, step])
Return a randomly selected element fromrange(start, stop, step) . This is equivalent to
choice(range(start, stop, step)) . New in version 1.5.2.

uniform (a, b)
Returns a random real numberN such thata <= N < b.

5.4 whrandom — Pseudo-random number generator

This module implements a Wichmann-Hill pseudo-random number generator class that is also namedwhrandom .
Instances of thewhrandom class conform to the Random Number Generator interface described in section 5.3.1.
They also offer the following method, specific to the Wichmann-Hill algorithm:

seed ([x, y, z])
Initializes the random number generator from the integersx, y andz. When the module is first imported, the
random number is initialized using values derived from the current time. Ifx, y, andz are either omitted or
0, the seed will be computed from the current system time. If one or two of the parameters are0, but not all
three, the zero values are replaced by ones. This causes some apparently different seeds to be equal, with the
corresponding result on the pseudo-random series produced by the generator.

choice (seq)
Chooses a random element from the non-empty sequenceseqand returns it.

randint (a, b)
Returns a random integerN such thata<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

5.4. whrandom — Pseudo-random number generator 85

seed (x, y, z)
Initializes the random number generator from the integersx, y andz. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (a, b)
Returns a random real numberN such thata<=N<b.

When imported, thewhrandom module also creates an instance of thewhrandom class, and makes the methods of
that instance available at the module level. Therefore one can write eitherN = whrandom.random() or:

generator = whrandom.whrandom()
N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random numbers.

See Also:

Modulerandom (section 5.3):
Generators for various random distributions and documentation for the Random Number Generator interface.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistics31 (1982) 188-190.

5.5 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is calledbisect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (i.e., the boundary conditions are already right!).

The following functions are provided:

bisect (list, item[, lo[, hi]])
Locate the proper insertion point foritem in list to maintain sorted order. The parameterslo andhi may be
used to specify a subset of the list which should be considered. The return value is suitable for use as the first
parameter tolist.insert() .

insort (list, item[, lo[, hi]])
Insert item in list in sorted order. This is equivalent tolist.insert(bisect.bisect(list, item, lo,
hi), item) .

5.5.1 Example

Thebisect() function is generally useful for categorizing numeric data. This example usesbisect() to look up
a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A’, 75..84 is a
‘B’, etc.

86 Chapter 5. Miscellaneous Services

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
... return grades[bisect(breakpoints, total)]
...
>>> grade(66)
’C’
>>> map(grade, [33, 99, 77, 44, 12, 88])
[’E’, ’A’, ’B’, ’D’, ’F’, ’A’]

5.6 array — Efficient arrays of numeric values

This module defines a new object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using atype code, which is a single
character. The following type codes are defined:

Type code C Type Minimum size in bytes
’c’ character 1
’b’ signed int 1
’B’ unsigned int 1
’h’ signed int 2
’H’ unsigned int 2
’i’ signed int 2
’I’ unsigned int 2
’l’ signed int 4
’L’ unsigned int 4
’f’ float 4
’d’ double 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed through theitemsize attribute. The values stored for’L’ and’I’ items
will be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the
full range of C’s unsigned (long) integers.

The module defines the following function and type object:

array (typecode[, initializer])
Return a new array whose items are restricted bytypecode, and initialized from the optionalinitializer value,
which must be a list or a string. The list or string is passed to the new array’sfromlist() or fromstring()
method (see below) to add initial items to the array.

ArrayType
Type object corresponding to the objects returned byarray() .

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

5.6. array — Efficient arrays of numeric values 87

append (x)
Append a new item with valuex to the end of the array.

buffer info ()
Return a tuple(address, length) giving the current memory address and the length in bytes of the buffer used
to hold array’s contents. This is occasionally useful when working with low-level (and inherently unsafe) I/O
interfaces that require memory addresses, such as certainioctl() operations. The returned numbers are valid
as long as the array exists and no length-changing operations are applied to it.

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other
types of values,RuntimeError is raised. It is useful when reading data from a file written on a machine with
a different byte order.

count (x)
Return the number of occurences ofx in the array.

extend (a)
Append array items froma to the end of the array.

fromfile (f, n)
Readn items (as machine values) from the file objectf and append them to the end of the array. If less than
n items are available,EOFError is raised, but the items that were available are still inserted into the array.f
must be a real built-in file object; something else with aread() method won’t do.

fromlist (list)
Append items from the list. This is equivalent to ‘for x in list: a.append(x) ’ except that if there is a
type error, the array is unchanged.

fromstring (s)
Appends items from the string, interpreting the string as an array of machine values (i.e. as if it had been read
from a file using thefromfile() method).

index (x)
Return the smallesti such thati is the index of the first occurence ofx in the array.

insert (i, x)
Insert a new item with valuex in the array before positioni.

pop ([i])
Removes the item with the indexi from the array and returns it. The optional argument defaults to-1 , so that
by default the last item is removed and returned.

read (f, n)
Deprecated since release 1.5.1.Use thefromfile() method.

Readn items (as machine values) from the file objectf and append them to the end of the array. If less than
n items are available,EOFError is raised, but the items that were available are still inserted into the array.f
must be a real built-in file object; something else with aread() method won’t do.

remove (x)
Remove the first occurence ofx from the array.

reverse ()
Reverse the order of the items in the array.

tofile (f)
Write all items (as machine values) to the file objectf .

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()

88 Chapter 5. Miscellaneous Services

Convert the array to an array of machine values and return the string representation (the same sequence of bytes
that would be written to a file by thetofile() method.)

write (f)
Deprecated since release 1.5.1.Use thetofile() method.

Write all items (as machine values) to the file objectf .

When an array object is printed or converted to a string, it is represented asarray(typecode, initializer) . The
initializer is omitted if the array is empty, otherwise it is a string if thetypecodeis ’c’ , otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
reverse quotes (‘‘), so long as thearray() function has been imported using ‘from array import array ’.
Examples:

array(’l’)
array(’c’, ’hello world’)
array(’l’, [1, 2, 3, 4, 5])
array(’d’, [1.0, 2.0, 3.14])

See Also:

Modulestruct (section 4.3):
packing and unpacking of heterogeneous binary data

Modulexdrlib (section 12.9):
packing and unpacking of XDR data

The Numeric Python extension (NumPy) defines another array type; seeThe Numerical Python Manualfor additional
information (available online atftp://ftp-icf.llnl.gov/pub/python/numericalpython.pdf). Further information about NumPy
is available athttp://www.python.org/topics/scicomp/numpy.html.

5.7 ConfigParser — Configuration file parser

This module defines the classConfigParser . TheConfigParser class implements a basic configuration file
parser language which provides a structure similar to what you would find on Microsoft Windows INI files. You can
use this to write Python programs which can be customized by end users easily.

The configuration file consists of sections, lead by a ‘[section] ’ header and followed by ‘name: value ’ en-
tries, with continuations in the style of RFC 822; ‘name=value ’ is also accepted. Note that leading whitespace is
removed from values. The optional values can contain format strings which refer to other values in the same section,
or values in a specialDEFAULTsection. Additional defaults can be provided upon initialization and retrieval. Lines
beginning with ‘#’ or ‘ ; ’ are ignored and may be used to provide comments.

For example:

foodir: %(dir)s/whatever
dir=frob

would resolve the ‘%(dir)s ’ to the value of ‘dir ’ (‘ frob ’ in this case). All reference expansions are done on
demand.

Default values can be specified by passing them into theConfigParser constructor as a dictionary. Additional
defaults may be passed into theget() method which will override all others.

ConfigParser ([defaults])
Return a new instance of theConfigParser class. Whendefaultsis given, it is initialized into the dictionary

5.7. ConfigParser — Configuration file parser 89

of intrinsic defaults. They keys must be strings, and the values must be appropriate for the ‘%()s ’ string
interpolation. Note that name is an intrinsic default; its value is the section name, and will override any
value provided indefaults.

NoSectionError
Exception raised when a specified section is not found.

DuplicateSectionError
Exception raised when multiple sections with the same name are found, or ifadd section() is called with
the name of a section that is already present.

NoOptionError
Exception raised when a specified option is not found in the specified section.

InterpolationError
Exception raised when problems occur performing string interpolation.

InterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations exceeds
MAX INTERPOLATION DEPTH.

MissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

ParsingError
Exception raised when errors occur attempting to parse a file.

MAX INTERPOLATION DEPTH
The maximum depth for recursive interpolation forget() when theraw parameter is false. Setting this does
not change the allowed recursion depth.

See Also:

Moduleshlex (section 5.11):
Support for a creating UNIX shell-like minilanguages which can be used as an alternate format for application
configuration files.

5.7.1 ConfigParser Objects

ConfigParser instances have the following methods:

defaults ()
Return a dictionary containing the instance-wide defaults.

sections ()
Return a list of the sections available;DEFAULTis not included in the list.

add section (section)
Add a section namedsectionto the instance. If a section by the given name already exists,DuplicateSec-
tionError is raised.

has section (section)
Indicates whether the named section is present in the configuration. TheDEFAULTsection is not acknowledged.

options (section)
Returns a list of options available in the specifiedsection.

has option (section, option)
If the given section exists, and contains the given option. return 1; otherwise return 0. (New in 1.6)

read (filenames)
Read and parse a list of filenames. Iffilenamesis a string or Unicode string, it is treated as a single filename.

90 Chapter 5. Miscellaneous Services

readfp (fp[, filename])
Read and parse configuration data from the file or file-like object infp (only thereadline() method is used).
If filenameis omitted andfp has aname attribute, that is used forfilename; the default is ‘<???> ’.

get (section, option[, raw[, vars]])
Get anoptionvalue for the providedsection. All the ‘%’ interpolations are expanded in the return values, based
on the defaults passed into the constructor, as well as the optionsvarsprovided, unless theraw argument is true.

getint (section, option)
A convenience method which coerces theoption in the specifiedsectionto an integer.

getfloat (section, option)
A convenience method which coerces theoption in the specifiedsectionto a floating point number.

getboolean (section, option)
A convenience method which coerces theoption in the specifiedsectionto a boolean value. Note that the only
accepted values for the option are ‘0’ and ‘1’, any others will raiseValueError .

set (section, option, value)
If the given section exists, set the given option to the specified value; otherwise raiseNoSectionError . (New
in 1.6)

write (fileobject)
Write a representation of the configuration to the specified file object. This representation can be parsed by a
futureread() call. (New in 1.6)

remove option (section, option)
Remove the specifiedoptionfrom the specifiedsection. If the section does not exist, raiseNoSectionError .
If the option existed to be removed, return 1; otherwise return 0. (New in 1.6)

remove section (section)
Remove the specifiedsectionfrom the configuration. If the section in fact existed, return 1. Otherwise return 0.

5.8 fileinput — Iterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.

The typical use is:

import fileinput
for line in fileinput.input():

process(line)

This iterates over the lines of all files listed insys.argv[1:] , defaulting tosys.stdin if the list is empty. If
a filename is’-’ , it is also replaced bysys.stdin . To specify an alternative list of filenames, pass it as the first
argument toinput() . A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading a file,IOError is raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for interactive
use, or if it has been explicitly reset (e.g. usingsys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable at all
is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including the trailing
newline when it is present.

The following function is the primary interface of this module:

5.8. fileinput — Iterate over lines from multiple input streams 91

input ([files[, inplace[, backup]]])
Create an instance of theFileInput class. The instance will be used as global state for the functions of this
module, and is also returned to use during iteration.

The following functions use the global state created byinput() ; if there is no active state,RuntimeError is
raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, returnsNone.

lineno ()
Return the cumulative line number of the line that has just been read. Before the first line has been read, returns
0. After the last line of the last file has been read, returns the line number of that line.

filelineno ()
Return the line number in the current file. Before the first line has been read, returns0. After the last line of the
last file has been read, returns the line number of that line within the file.

isfirstline ()
Returns true the line just read is the first line of its file, otherwise returns false.

isstdin ()
Returns true if the last line was read fromsys.stdin , otherwise returns false.

nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not read
from the file will not count towards the cumulative line count. The filename is not changed until after the first
line of the next file has been read. Before the first line has been read, this function has no effect; it cannot be
used to skip the first file. After the last line of the last file has been read, this function has no effect.

close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

FileInput ([files[, inplace[, backup]]])
ClassFileInput is the implementation; its methodsfilename() , lineno() , fileline() , is-
firstline() , isstdin() , nextfile() and close() correspond to the functions of the same
name in the module. In addition it has areadline() method which returns the next input line, and a

getitem () method which implements the sequence behavior. The sequence must be accessed in strictly
sequential order; random access andreadline() cannot be mixed.

Optional in-place filtering: if the keyword argumentinplace=1 is passed toinput() or to theFileInput con-
structor, the file is moved to a backup file and standard output is directed to the input file. This makes it possible to
write a filter that rewrites its input file in place. If the keyword argumentbackup=’.<some extension>’ is also
given, it specifies the extension for the backup file, and the backup file remains around; by default, the extension is
’.bak’ and it is deleted when the output file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

5.9 calendar — General calendar-related functions

This module allows you to output calendars like the UNIX cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Usesetfirstweekday() to set the first day of the week to Sunday (6) or to any other
weekday.

setfirstweekday (weekday)
Sets the weekday (0 is Monday,6 is Sunday) to start each week. The valuesMONDAY, TUESDAY, WEDNESDAY,

92 Chapter 5. Miscellaneous Services

THURSDAY, FRIDAY, SATURDAY, andSUNDAYare provided for convenience. For example, to set the first
weekday to Sunday:

import calendar
calendar.setfirstweekday(calendar.SUNDAY)

firstweekday ()
Returns the current setting for the weekday to start each week.

isleap (year)
Returns true ifyear is a leap year.

leapdays (y1, y2)
Returns the number of leap years in the range [y1. . .y2).

weekday (year, month, day)
Returns the day of the week (0 is Monday) foryear (1970 –. . .),month(1–12), day(1–31).

monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specifiedyearandmonth.

monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless set bysetfirstweekday() .

prmonth (theyear, themonth[, w[, l]])
Prints a month’s calendar as returned bymonth() .

month (theyear, themonth[, w[, l]])
Returns a month’s calendar in a multi-line string. Ifw is provided, it specifies the width of the date columns,
which are centered. Ifl is given, it specifies the number of lines that each week will use. Depends on the first
weekday as set bysetfirstweekday() .

prcal (year[, w[, l[c]]])
Prints the calendar for an entire year as returned bycalendar() .

calendar (year[, w[, l[c]]])
Returns a 3-column calendar for an entire year as a multi-line string. Optional parametersw, l, andc are for
date column width, lines per week, and number of spaces between month columns, respectively. Depends on
the first weekday as set bysetfirstweekday() .

timegm (tuple)
An unrelated but handy function that takes a time tuple such as returned by thegmtime() function in the
time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the POSIX
encoding. In fact,time.gmtime() andtimegm() are each others’ inverse.

See Also:

Moduletime (section 6.9):
Low-level time related functions.

5.10 cmd — Support for line-oriented command interpreters

TheCmdclass provides a simple framework for writing line-oriented command interpreters. These are often useful
for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated interface.

Cmd()
A Cmdinstance or subclass instance is a line-oriented interpreter framework. There is no good reason to instan-
tiateCmditself; rather, it’s useful as a superclass of an interpreter class you define yourself in order to inherit

5.10. cmd — Support for line-oriented command interpreters 93

Cmd’s methods and encapsulate action methods.

5.10.1 Cmd Objects

A Cmdinstance has the following methods:

cmdloop ([intro])
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrides theintro
class member).

If the readline module is loaded, input will automatically inheritbash-like history-list editing (e.g.Ctrl-P
scrolls back to the last command,Ctrl-N forward to the next one,Ctrl-F moves the cursor to the right
non-destructively,Ctrl-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the string’EOF’ .

An interpreter instance will recognize a command name ‘foo ’ if and only if it has a methoddo foo() . As
a special case, a line beginning with the character ‘?’ is dispatched to the methoddo help() . As another
special case, a line beginning with the character ‘! ’ is dispatched to the methoddo shell (if such a method
is defined).

All subclasses ofCmdinherit a predefineddo help . This method, called with an argumentbar , invokes the
corresponding methodhelp bar() . With no argument,do help() lists all available help topics (that is,
all commands with correspondinghelp *() methods), and also lists any undocumented commands.

onecmd(str)
Interpret the argument as though it had been typed in in response to the prompt.

emptyline ()
Method called when an empty line is entered in response to the prompt. If this method is not overridden, it
repeats the last nonempty command entered.

default (line)
Method called on an input line when the command prefix is not recognized. If this method is not overridden, it
prints an error message and returns.

precmd ()
Hook method executed just before the input prompt is issued. This method is a stub inCmd; it exists to be
overridden by subclasses.

postcmd ()
Hook method executed just after a command dispatch is finished. This method is a stub inCmd; it exists to be
overridden by subclasses.

preloop ()
Hook method executed once whencmdloop() is called. This method is a stub inCmd; it exists to be overrid-
den by subclasses.

postloop ()
Hook method executed once whencmdloop() is about to return. This method is a stub inCmd; it exists to be
overridden by subclasses.

Instances ofCmdsubclasses have some public instance variables:

prompt
The prompt issued to solicit input.

identchars
The string of characters accepted for the command prefix.

94 Chapter 5. Miscellaneous Services

lastcmd
The last nonempty command prefix seen.

intro
A string to issue as an intro or banner. May be overridden by giving thecmdloop() method an argument.

doc header
The header to issue if the help output has a section for documented commands.

misc header
The header to issue if the help output has a section for miscellaneous help topics (that is, there arehelp *()
methods without correspondingdo *() methods).

undoc header
The header to issue if the help output has a section for undocumented commands (that is, there aredo *()
methods without correspondinghelp *() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line is drawn. It
defaults to ‘=’.

5.11 shlex — Simple lexical analysis

New in version 1.5.2.

Theshlex class makes it easy to write lexical analyzers for simple syntaxes resembling that of the UNIX shell. This
will often be useful for writing minilanguages, e.g. in run control files for Python applications.

shlex ([stream[, file]])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if present,
specifies where to read characters from. It must be a file- or stream-like object withread() andreadline()
methods. If no argument is given, input will be taken fromsys.stdin . The second optional argument is a
filename string, which sets the initial value of theinfile member. If the stream argument is omitted or equal
to sys.stdin , this second argument defaults to “stdin”.

See Also:

ModuleConfigParser (section 5.7):
Parser for configuration files similar to the Windows ‘.ini’ files.

5.11.1 shlex Objects

A shlex instance has the following methods:

get token ()
Return a token. If tokens have been stacked usingpush token() , pop a token off the stack. Otherwise, read
one from the input stream. If reading encounters an immediate end-of-file, an empty string is returned.

push token (str)
Push the argument onto the token stack.

read token ()
Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not ordinarily a
useful entry point, and is documented here only for the sake of completeness.)

sourcehook (filename)
Whenshlex detects a source request (seesource below) this method is given the following token as argu-
ment, and expected to return a tuple consisting of a filename and an open file-like object.

5.11. shlex — Simple lexical analysis 95

Normally, this method first strips any quotes off the argument. If the result is an absolute pathname, or there
was no previous source request in effect, or the previous source was a stream (e.g.sys.stdin), the result is
left alone. Otherwise, if the result is a relative pathname, the directory part of the name of the file immediately
before it on the source inclusion stack is prepended (this behavior is like the way the C preprocessor handles
#include "file.h"). The result of the manipulations is treated as a filename, and returned as the first
component of the tuple, withopen() called on it to yield the second component.

This hook is exposed so that you can use it to implement directory search paths, addition of file extensions, and
other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance will call theclose()
method of the sourced input stream when it returnsEOF.

error leader ([file[, line]])
This method generates an error message leader in the format of a UNIX C compiler error label; the format is
’”%s”, line %d: ’, where the ‘%s’ is replaced with the name of the current source file and the ‘%d’ with the
current input line number (the optional arguments can be used to override these).

This convenience is provided to encourageshlex users to generate error messages in the standard, parseable
format understood by Emacs and other UNIX tools.

Instances ofshlex subclasses have some public instance variables which either control lexical analysis or can be
used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the comment beginner
to end of line are ignored. Includes just ‘#’ by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includes allASCII alphanu-
merics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default, includes
space, tab, linefeed and carriage-return.

quotes
Characters that will be considered string quotes. The token accumulates until the same quote is encountered
again (thus, different quote types protect each other as in the shell.) By default, includesASCII single and
double quotes.

infile
The name of the current input file, as initially set at class instantiation time or stacked by later source requests.
It may be useful to examine this when constructing error messages.

instream
The input stream from which thisshlex instance is reading characters.

source
This member isNone by default. If you assign a string to it, that string will be recognized as a lexical-level
inclusion request similar to the ‘source ’ keyword in various shells. That is, the immediately following token
will opened as a filename and input taken from that stream untilEOF, at which point theclose() method of
that stream will be called and the input source will again become the original input stream. Source requests may
be stacked any number of levels deep.

debug
If this member is numeric and1 or more, ashlex instance will print verbose progress output on its behavior.
If you need to use this, you can read the module source code to learn the details.

Note that any character not declared to be a word character, whitespace, or a quote will be returned as a single-character
token.

Quote and comment characters are not recognized within words. Thus, the bare words ‘ain’t ’ and ‘ain#t ’ would
be returned as single tokens by the default parser.

96 Chapter 5. Miscellaneous Services

lineno
Source line number (count of newlines seen so far plus one).

token
The token buffer. It may be useful to examine this when catching exceptions.

5.11. shlex — Simple lexical analysis 97

98

CHAPTER

SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on (almost) all
operating systems, such as files and a clock. The interfaces are generally modeled after the UNIX or C interfaces, but
they are available on most other systems as well. Here’s an overview:

os Miscellaneous OS interfaces.
os.path Common pathname manipulations.
dircache Return directory listing, with cache mechanism.
stat Utilities for interpreting the results ofos.stat() , os.lstat() andos.fstat() .
statcache Stat files, and remember results.
statvfs Constants for interpreting the result ofos.statvfs() .
filecmp Compare files efficiently.
popen2 Subprocesses with accessible standard I/O streams.
time Time access and conversions.
sched General purpose event scheduler.
getpass Portable reading of passwords and retrieval of the userid.
curses An interface to the curses library, providing portable terminal handling.
curses.textpad Emacs-like input editing in a curses window.
curses.wrapper Terminal configuration wrapper for curses programs.
curses.ascii Constants and set-membership functions forASCII characters.
getopt Portable parser for command line options; support both short and long option names.
tempfile Generate temporary file names.
errno Standard errno system symbols.
glob UNIX shell style pathname pattern expansion.
fnmatch UNIX shell style filename pattern matching.
shutil High-level file operations, including copying.
locale Internationalization services.
gettext Multilingual internationalization services.

6.1 os — Miscellaneous OS interfaces

This module provides a more portable way of using operating system (OS) dependent functionality than importing an
OS dependent built-in module likeposix or nt .

This module searches for an OS dependent built-in module likemacor posix and exports the same functions and data
as found there. The design of all Python’s built-in OS dependent modules is such that as long as the same functionality
is available, it uses the same interface; e.g., the functionos.stat(path) returns stat information aboutpath in the
same format (which happens to have originated with the POSIX interface).

Extensions peculiar to a particular OS are also available through theos module, but using them is of course a threat
to portability!

99

Note that after the first timeos is imported, there isno performance penalty in using functions fromos instead of
directly from the OS dependent built-in module, so there should beno reason not to useos !

error
This exception is raised when a function returns a system-related error (e.g., not for illegal argument types). This
is also known as the built-in exceptionOSError . The accompanying value is a pair containing the numeric
error code fromerrno and the corresponding string, as would be printed by the C functionperror() . See
the moduleerrno , which contains names for the error codes defined by the underlying operating system.

When exceptions are classes, this exception carries two attributes,errno andstrerror . The first holds the
value of the Cerrno variable, and the latter holds the corresponding error message fromstrerror() . For
exceptions that involve a file system path (e.g.chdir() or unlink()), the exception instance will contain a
third attribute,filename , which is the file name passed to the function.

When exceptions are strings, the string for the exception is’OSError’ .

name
The name of the OS dependent module imported. The following names have currently been registered:
’posix’ , ’nt’ , ’dos’ , ’mac’ , ’os2’ , ’ce’ , ’java’ .

path
The corresponding OS dependent standard module for pathname operations, e.g.,posixpath or macpath .
Thus, given the proper imports,os.path.split(file) is equivalent to but more portable thanposix-
path.split(file) . Note that this is also a valid module: it may be imported directly asos.path .

6.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

environ
A mapping object representing the string environment. For example,environ[’HOME’] is the pathname of
your home directory (on some platforms), and is equivalent togetenv("HOME") in C.

If the platform supports theputenv() function, this mapping may be used to modify the environment as well
as query the environment.putenv() will be called automatically when the mapping is modified.

If putenv() is not provided, this mapping may be passed to the appropriate process-creation functions to
cause child processes to use a modified environment.

chdir (path)
getcwd ()

These functions are described in “Files and Directories” (section 6.1.4).

ctermid ()
Return the filename corresponding to the controlling terminal of the process. Availability: UNIX .

getegid ()
Return the current process’ effective group id. Availability: UNIX .

geteuid ()
Return the current process’ effective user id. Availability: UNIX .

getgid ()
Return the current process’ group id. Availability: UNIX .

getgroups ()
Return list of supplemental group ids associated with the current process. Availability: UNIX .

getlogin ()
Return the actual login name for the current process, even if there are multiple login names which map to the
same user id. Availability: UNIX .

100 Chapter 6. Generic Operating System Services

getpgrp ()
Return the current process group id. Availability: UNIX .

getpid ()
Return the current process id. Availability: UNIX , Windows.

getppid ()
Return the parent’s process id. Availability: UNIX .

getuid ()
Return the current process’ user id. Availability: UNIX .

putenv (varname, value)
Set the environment variable namedvarnameto the stringvalue. Such changes to the environment affect sub-
processes started withos.system() , popen() or fork() andexecv() . Availability: most flavors of
UNIX , Windows.

Whenputenv() is supported, assignments to items inos.environ are automatically translated into cor-
responding calls toputenv() ; however, calls toputenv() don’t updateos.environ , so it is actually
preferable to assign to items ofos.environ .

setegid (egid)
Set the current process’s effective group id. Availability: UNIX .

seteuid (euid)
Set the current process’s effective user id. Availability: UNIX .

setgid (gid)
Set the current process’ group id. Availability: UNIX .

setpgrp ()
Calls the system callsetpgrp() or setpgrp(0, 0) depending on which version is implemented (if any).
See the UNIX manual for the semantics. Availability: UNIX .

setpgid (pid, pgrp)
Calls the system callsetpgid() . See the UNIX manual for the semantics. Availability: UNIX .

setreuid (ruid, euid)
Set the current process’s real and effective user ids. Availability: UNIX .

setregid (rgid, egid)
Set the current process’s real and effective group ids. Availability: UNIX .

setsid ()
Calls the system callsetsid() . See the UNIX manual for the semantics. Availability: UNIX .

setuid (uid)
Set the current process’ user id. Availability: UNIX .

strerror (code)
Return the error message corresponding to the error code incode. Availability: UNIX , Windows.

umask(mask)
Set the current numeric umask and returns the previous umask. Availability: UNIX , Windows.

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple contains 5 strings:
(sysname, nodename, release, version, machine) . Some systems truncate the nodename to 8 charac-
ters or to the leading component; a better way to get the hostname issocket.gethostname() or even
socket.gethostbyaddr(socket.gethostname()) . Availability: recent flavors of UNIX .

6.1. os — Miscellaneous OS interfaces 101

6.1.2 File Object Creation

These functions create new file objects.

fdopen (fd[, mode[, bufsize]])
Return an open file object connected to the file descriptorfd. Themodeandbufsizearguments have the same
meaning as the corresponding arguments to the built-inopen() function. Availability: Macintosh, UNIX ,
Windows.

popen (command[, mode[, bufsize]])
Open a pipe to or fromcommand. The return value is an open file object connected to the pipe, which can be read
or written depending on whethermodeis ’r’ (default) or’w’ . Thebufsizeargument has the same meaning as
the corresponding argument to the built-inopen() function. The exit status of the command (encoded in the
format specified forwait()) is available as the return value of theclose() method of the file object, except
that when the exit status is zero (termination without errors),None is returned. Availability: UNIX , Windows.

Changed in version 2.0: This function worked unreliably under Windows in earlier versions of Python. This was
due to the use of thepopen() function from the libraries provided with Windows. Newer versions of Python
do not use the broken implementation from the Windows libraries.

tmpfile ()
Return a new file object opened in update mode (‘w+’). The file has no directory entries associated with it and
will be automatically deleted once there are no file descriptors for the file. Availability: UNIX .

For each of thesepopen() variants, ifbufsizeis specified, it specifies the buffer size for the I/O pipes.mode, if
provided, should be the string’b’ or ’t’ ; on Windows this is needed to determine whether the file objects should be
opened in binary or text mode. The default value formodeis ’t’ .

popen2 (cmd[, bufsize[, mode]])
Executescmdas a sub-process. Returns the file objects(child stdin, child stdout) . New in version 2.0.

popen3 (cmd[, bufsize[, mode]])
Executescmdas a sub-process. Returns the file objects(child stdin, child stdout, child stderr) . New in
version 2.0.

popen4 (cmd[, bufsize[, mode]])
Executescmdas a sub-process. Returns the file objects(child stdin, child stdout and stderr) . New in
version 2.0.

This functionality is also available in thepopen2 module using functions of the same names, but the return values of
those functions have a different order.

6.1.3 File Descriptor Operations

These functions operate on I/O streams referred to using file descriptors.

close (fd)
Close file descriptorfd. Availability: Macintosh, UNIX , Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned byopen()
or pipe() . To close a “file object” returned by the built-in functionopen() or bypopen() or fdopen() ,
use itsclose() method.

dup (fd)
Return a duplicate of file descriptorfd. Availability: Macintosh, UNIX , Windows.

dup2 (fd, fd2)
Duplicate file descriptorfd to fd2, closing the latter first if necessary. Availability: UNIX , Windows.

fpathconf (fd, name)
Return system configuration information relevant to an open file.namespecifies the configuration value to

102 Chapter 6. Generic Operating System Services

retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, Unix95, Unix98, and others). Some platforms define additional names as well. The
names known to the host operating system are given in thepathconf names dictionary. For configuration
variables not included in that mapping, passing an integer fornameis also accepted. Availability: UNIX .

If nameis a string and is not known,ValueError is raised. If a specific value fornameis not supported by
the host system, even if it is included inpathconf names, anOSError is raised witherrno.EINVAL for
the error number.

fstat (fd)
Return status for file descriptorfd, like stat() . Availability: UNIX , Windows.

fstatvfs (fd)
Return information about the filesystem containing the file associated with file descriptorfd, like statvfs() .
Availability: UNIX .

ftruncate (fd, length)
Truncate the file corresponding to file descriptorfd, so that it is at mostlengthbytes in size. Availability: UNIX .

isatty (fd)
Return1 if the file descriptorfd is open and connected to a tty(-like) device, else0. Availability: UNIX

lseek (fd, pos, how)
Set the current position of file descriptorfd to positionpos, modified byhow: 0 to set the position relative to
the beginning of the file;1 to set it relative to the current position;2 to set it relative to the end of the file.
Availability: Macintosh, UNIX , Windows.

open (file, flags[, mode])
Open the filefile and set various flags according toflagsand possibly its mode according tomode. The default
modeis 0777 (octal), and the current umask value is first masked out. Return the file descriptor for the newly
opened file. Availability: Macintosh, UNIX , Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constants (likeO RDONLY
andO WRONLY) are defined in this module too (see below).

Note: this function is intended for low-level I/O. For normal usage, use the built-in functionopen() , which
returns a “file object” withread() andwrite() methods (and many more).

openpty ()
Open a new pseudo-terminal pair. Return a pair of file descriptors(master, slave) for the pty and the tty,
respectively. For a (slightly) more portable approach, use thepty module. Availability: Some flavors of UNIX

pipe ()
Create a pipe. Return a pair of file descriptors(r, w) usable for reading and writing, respectively. Availability:
UNIX , Windows.

read (fd, n)
Read at mostn bytes from file descriptorfd. Return a string containing the bytes read. Availability: Macintosh,
UNIX , Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned byopen()
or pipe() . To read a “file object” returned by the built-in functionopen() or by popen() or fdopen() ,
or sys.stdin , use itsread() or readline() methods.

tcgetpgrp (fd)
Return the process group associated with the terminal given byfd (an open file descriptor as returned by
open()). Availability: UNIX .

tcsetpgrp (fd, pg)
Set the process group associated with the terminal given byfd (an open file descriptor as returned byopen())
to pg. Availability: UNIX .

ttyname (fd)

6.1. os — Miscellaneous OS interfaces 103

Return a string which specifies the terminal device associated with file-descriptorfd. If fd is not associated with
a terminal device, an exception is raised. Availability: UNIX .

write (fd, str)
Write the stringstr to file descriptorfd. Return the number of bytes actually written. Availability: Macintosh,
UNIX , Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned byopen()
or pipe() . To write a “file object” returned by the built-in functionopen() or bypopen() or fdopen() ,
or sys.stdout or sys.stderr , use itswrite() method.

The following data items are available for use in constructing theflagsparameter to theopen() function.

O RDONLY
O WRONLY
O RDWR
O NDELAY
O NONBLOCK
O APPEND
O DSYNC
O RSYNC
O SYNC
O NOCTTY
O CREAT
O EXCL
O TRUNC

Options for theflag argument to theopen() function. These can be bit-wise OR’d together. Availability:
Macintosh, UNIX , Windows.

O BINARY
Option for theflag argument to theopen() function. This can be bit-wise OR’d together with those listed
above. Availability: Macintosh, Windows.

6.1.4 Files and Directories

access (path, mode)
Check read/write/execute permissions for this process or existence of filepath. modeshould beF OKto test the
existence ofpath, or it can be the inclusive OR of one or more ofR OK, W OK, andX OKto test permissions.
Return1 if access is allowed,0 if not. See the UNIX man pageaccess(2) for more information. Availability:
UNIX , Windows.

F OK
Value to pass as themodeparameter ofaccess() to test the existence ofpath.

R OK
Value to include in themodeparameter ofaccess() to test the readability ofpath.

W OK
Value to include in themodeparameter ofaccess() to test the writability ofpath.

X OK
Value to include in themodeparameter ofaccess() to determine ifpathcan be executed.

chdir (path)
Change the current working directory topath. Availability: Macintosh, UNIX , Windows.

getcwd ()
Return a string representing the current working directory. Availability: Macintosh, UNIX , Windows.

chmod(path, mode)

104 Chapter 6. Generic Operating System Services

Change the mode ofpathto the numericmode. Availability: UNIX , Windows.

chown (path, uid, gid)
Change the owner and group id ofpathto the numericuid andgid. Availability: UNIX .

link (src, dst)
Create a hard link pointing tosrcnameddst. Availability: UNIX .

listdir (path)
Return a list containing the names of the entries in the directory. The list is in arbitrary order. It does not include
the special entries’.’ and ’..’ even if they are present in the directory. Availability: Macintosh, UNIX ,
Windows.

lstat (path)
Like stat() , but do not follow symbolic links. Availability: UNIX .

mkfifo (path[, mode])
Create a FIFO (a named pipe) namedpathwith numeric modemode. The defaultmodeis 0666 (octal). The
current umask value is first masked out from the mode. Availability: UNIX .

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes: the
server opens the FIFO for reading, and the client opens it for writing. Note thatmkfifo() doesn’t open the
FIFO — it just creates the rendezvous point.

mkdir (path[, mode])
Create a directory namedpathwith numeric modemode. The defaultmodeis 0777 (octal). On some systems,
modeis ignored. Where it is used, the current umask value is first masked out. Availability: Macintosh, UNIX ,
Windows.

makedirs (path[, mode])
Recursive directory creation function. Likemkdir() , but makes all intermediate-level directories needed to
contain the leaf directory. Throws anerror exception if the leaf directory already exists or cannot be created.
The defaultmodeis 0777 (octal). New in version 1.5.2.

pathconf (path, name)
Return system configuration information relevant to a named file.namespecifies the configuration value to
retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, Unix95, Unix98, and others). Some platforms define additional names as well. The
names known to the host operating system are given in thepathconf names dictionary. For configuration
variables not included in that mapping, passing an integer fornameis also accepted. Availability: UNIX .

If nameis a string and is not known,ValueError is raised. If a specific value fornameis not supported by
the host system, even if it is included inpathconf names, anOSError is raised witherrno.EINVAL for
the error number.

pathconf names
Dictionary mapping names accepted bypathconf() and fpathconf() to the integer values defined for
those names by the host operating system. This can be used to determine the set of names known to the system.
Availability: UNIX .

readlink (path)
Return a string representing the path to which the symbolic link points. Availability: UNIX .

remove (path)
Remove the filepath. Seermdir() below to remove a directory. This is identical to theunlink() function
documented below. Availability: Macintosh, UNIX , Windows.

removedirs (path)
Recursive directory removal function. Works likermdir() except that, if the leaf directory is successfully
removed, directories corresponding to rightmost path segments will be pruned way until either the whole path
is consumed or an error is raised (which is ignored, because it generally means that a parent directory is not

6.1. os — Miscellaneous OS interfaces 105

empty). Throws anerror exception if the leaf directory could not be successfully removed. New in version
1.5.2.

rename (src, dst)
Rename the file or directorysrc to dst. Availability: Macintosh, UNIX , Windows.

renames (old, new)
Recursive directory or file renaming function. Works likerename() , except creation of any intermediate di-
rectories needed to make the new pathname good is attempted first. After the rename, directories corresponding
to rightmost path segments of the old name will be pruned away usingremovedirs() .

Note: this function can fail with the new directory structure made if you lack permissions needed to remove the
leaf directory or file. New in version 1.5.2.

rmdir (path)
Remove the directorypath. Availability: Macintosh, UNIX , Windows.

stat (path)
Perform astat() system call on the given path. The return value is a tuple of at least 10 integers giving
the most important (and portable) members of thestat structure, in the orderst mode, st ino , st dev ,
st nlink , st uid , st gid , st size , st atime , st mtime , st ctime . More items may be added
at the end by some implementations. Note that on the Macintosh, the time values are floating point values, like
all time values on the Macintosh. (On MS Windows, some items are filled with dummy values.) Availability:
Macintosh, UNIX , Windows.

Note: The standard modulestat defines functions and constants that are useful for extracting information from
astat structure.

statvfs (path)
Perform astatvfs() system call on the given path. The return value is a tuple of 10 integers giving the most
common members of thestatvfs structure, in the orderf bsize , f frsize , f blocks , f bfree ,
f bavail , f files , f ffree , f favail , f flag , f namemax. Availability: UNIX .

Note: The standard modulestatvfs defines constants that are useful for extracting information from a
statvfs structure.

symlink (src, dst)
Create a symbolic link pointing tosrcnameddst. Availability: UNIX .

tempnam([dir[, prefix]])
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in the directorydir or a common location for temporary files ifdir is omitted
or None. If given and notNone, prefix is used to provide a short prefix to the filename. Applications are
responsible for properly creating and managing files created using paths returned bytempnam() ; no automatic
cleanup is provided.

tmpnam()
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in a common location for temporary files. Applications are responsible for
properly creating and managing files created using paths returned bytmpnam() ; no automatic cleanup is
provided.

TMP MAX
The maximum number of unique names thattmpnam() will generate before reusing names.

unlink (path)
Remove the filepath. This is the same function asremove() ; the unlink() name is its traditional UNIX

name. Availability: Macintosh, UNIX , Windows.

utime (path, times)
Set the access and modified times of the file specified bypath. If times is None, then the file’s access and
modified times are set to the current time. Otherwise,timesmust be a 2-tuple of numbers, of the form(atime,

106 Chapter 6. Generic Operating System Services

mtime) which is used to set the access and modified times, respectively. Changed in version 2.0: added support
for None for times. Availability: Macintosh, UNIX , Windows.

6.1.5 Process Management

These functions may be used to create and manage processes.

The variousexec*() functions take a list of arguments for the new program loaded into the process. In each case,
the first of these arguments is passed to the new program as its own name rather than as an argument a user may have
typed on a command line. For the C programmer, this is theargv[0] passed to a program’smain() . For example,
‘os.execv(’/bin/echo’, [’foo’, ’bar’]) ’ will only print ‘ bar ’ on standard output; ‘foo ’ will seem
to be ignored.

abort ()
Generate aSIGABRTsignal to the current process. On UNIX , the default behavior is to produce a core dump;
on Windows, the process immediately returns an exit code of3. Be aware that programs which usesig-
nal.signal() to register a handler forSIGABRTwill behave differently. Availability: UNIX , Windows.

execl (path, arg0, arg1, ...)
This is equivalent to ‘execv(path, (arg0, arg1, ...)) ’. Availability: U NIX , Windows.

execle (path, arg0, arg1, ..., env)
This is equivalent to ‘execve(path, (arg0, arg1, ...), env) ’. Availability: U NIX , Windows.

execlp (path, arg0, arg1, ...)
This is equivalent to ‘execvp(path, (arg0, arg1, ...)) ’. Availability: U NIX , Windows.

execv (path, args)
Execute the executablepathwith argument listargs, replacing the current process (i.e., the Python interpreter).
The argument list may be a tuple or list of strings. Availability: UNIX , Windows.

execve (path, args, env)
Execute the executablepathwith argument listargs, and environmentenv, replacing the current process (i.e.,
the Python interpreter). The argument list may be a tuple or list of strings. The environment must be a dictionary
mapping strings to strings. Availability: UNIX , Windows.

execvp (path, args)
This is like ‘execv(path, args) ’ but duplicates the shell’s actions in searching for an executable file in a list
of directories. The directory list is obtained fromenviron[’PATH’] . Availability: UNIX , Windows.

execvpe (path, args, env)
This is a cross betweenexecve() andexecvp() . The directory list is obtained fromenv[’PATH’] . Avail-
ability: UNIX , Windows.

exit (n)
Exit to the system with statusn, without calling cleanup handlers, flushing stdio buffers, etc. Availability: UNIX ,
Windows.

Note: the standard way to exit issys.exit(n) . exit() should normally only be used in the child process
after afork() .

fork ()
Fork a child process. Return0 in the child, the child’s process id in the parent. Availability: UNIX .

forkpty ()
Fork a child process, using a new pseudo-terminal as the child’s controlling terminal. Return a pair of(pid,
fd) , wherepid is 0 in the child, the new child’s process id in the parent, andfd is the file descriptor of the
master end of the pseudo-terminal. For a more portable approach, use thepty module. Availability: Some
flavors of UNIX

kill (pid, sig)

6.1. os — Miscellaneous OS interfaces 107

Kill the processpid with signalsig. Availability: UNIX .

nice (increment)
Add incrementto the process’s “niceness”. Return the new niceness. Availability: UNIX .

plock (op)
Lock program segments into memory. The value ofop (defined in<sys/lock.h>) determines which seg-
ments are locked. Availability: UNIX .

spawnv (mode, path, args)
Execute the programpathin a new process, passing the arguments specified inargsas command-line parameters.
args may be a list or a tuple.modeis a magic operational constant. See the Visual C++ Runtime Library
documentation for further information; the constants are exposed to the Python programmer as listed below.
Availability: UNIX , Windows. New in version 1.5.2.

spawnve (mode, path, args, env)
Execute the programpathin a new process, passing the arguments specified inargsas command-line parameters
and the contents of the mappingenvas the environment.argsmay be a list or a tuple.modeis a magic operational
constant. See the Visual C++ Runtime Library documentation for further information; the constants are exposed
to the Python programmer as listed below. Availability: UNIX , Windows. New in version 1.5.2.

P WAIT
P NOWAIT
P NOWAITO

Possible values for themodeparameter tospawnv() andspawnve() . Availability: UNIX , Windows. New
in version 1.5.2.

P OVERLAY
P DETACH

Possible values for themodeparameter tospawnv() andspawnve() . These are less portable than those
listed above. Availability: Windows. New in version 1.5.2.

startfile (path)
Start a file with its associated application. This acts like double-clicking the file in Windows Explorer, or giving
the file name as an argument to the DOSstart command: the file is opened with whatever application (if any)
its extension is associated.

startfile() returns as soon as the associated application is launched. There is no option to wait for the
application to close, and no way to retrieve the application’s exit status. Thepath parameter is relative to
the current directory. If you want to use an absolute path, make sure the first character is not a slash (‘/ ’); the
underlying Win32ShellExecute() function doesn’t work it is. Use theos.path.normpath() function
to ensure that the path is properly encoded for Win32. Availability: Windows. New in version 2.0.

system (command)
Execute the command (a string) in a subshell. This is implemented by calling the Standard C functionsys-
tem() , and has the same limitations. Changes toposix.environ , sys.stdin , etc. are not reflected in
the environment of the executed command. The return value is the exit status of the process encoded in the
format specified forwait() , except on Windows 95 and 98, where it is always0. Note that POSIX does not
specify the meaning of the return value of the Csystem() function, so the return value of the Python function
is system-dependent. Availability: UNIX , Windows.

times ()
Return a 5-tuple of floating point numbers indicating accumulated (CPU or other) times, in seconds. The items
are: user time, system time, children’s user time, children’s system time, and elapsed real time since a fixed
point in the past, in that order. See the UNIX manual pagetimes(2) or the corresponding Windows Platform API
documentation. Availability: UNIX , Windows.

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a 16-bit
number, whose low byte is the signal number that killed the process, and whose high byte is the exit status (if

108 Chapter 6. Generic Operating System Services

the signal number is zero); the high bit of the low byte is set if a core file was produced. Availability: UNIX .

waitpid (pid, options)
Wait for completion of a child process given by process idpid, and return a tuple containing its process id and
exit status indication (encoded as forwait()). The semantics of the call are affected by the value of the integer
options, which should be0 for normal operation. Availability: UNIX .

If pid is greater than0, waitpid() requests status information for that specific process. Ifpid is 0, the request
is for the status of any child in the process group of the current process. Ifpid is -1 , the request pertains to any
child of the current process. Ifpid is less than-1 , status is requested for any process in the process group- pid
(the absolute value ofpid).

WNOHANG
The option forwaitpid() to avoid hanging if no child process status is available immediately. Availability:
UNIX .

The following functions take a process status code as returned bysystem() , wait() , or waitpid() as a param-
eter. They may be used to determine the disposition of a process.

WIFSTOPPED(status)
Return true if the process has been stopped. Availability: UNIX .

WIFSIGNALED(status)
Return true if the process exited due to a signal. Availability: UNIX .

WIFEXITED(status)
Return true if the process exited using theexit(2) system call. Availability: UNIX .

WEXITSTATUS(status)
If WIFEXITED(status) is true, return the integer parameter to theexit(2) system call. Otherwise, the return
value is meaningless. Availability: UNIX .

WSTOPSIG(status)
Return the signal which caused the process to stop. Availability: UNIX .

WTERMSIG(status)
Return the signal which caused the process to exit. Availability: UNIX .

6.1.6 Miscellaneous System Information

confstr (name)
Return string-valued system configuration values.namespecifies the configuration value to retrieve; it may be a
string which is the name of a defined system value; these names are specified in a number of standards (POSIX,
Unix95, Unix98, and others). Some platforms define additional names as well. The names known to the host
operating system are given in theconfstr names dictionary. For configuration variables not included in that
mapping, passing an integer fornameis also accepted. Availability: UNIX .

If the configuration value specified bynameisn’t defined, the empty string is returned.

If nameis a string and is not known,ValueError is raised. If a specific value fornameis not supported by
the host system, even if it is included inconfstr names, anOSError is raised witherrno.EINVAL for
the error number.

confstr names
Dictionary mapping names accepted byconfstr() to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system. Availability: UNIX .

sysconf (name)
Return integer-valued system configuration values. If the configuration value specified bynameisn’t defined,
-1 is returned. The comments regarding thenameparameter forconfstr() apply here as well; the dictionary
that provides information on the known names is given bysysconf names. Availability: UNIX .

6.1. os — Miscellaneous OS interfaces 109

sysconf names
Dictionary mapping names accepted bysysconf() to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system. Availability: UNIX .

The follow data values are used to support path manipulation operations. These are defined for all platforms.

Higher-level operations on pathnames are defined in theos.path module.

curdir
The constant string used by the OS to refer to the current directory, e.g.’.’ for POSIX or ’:’ for the
Macintosh.

pardir
The constant string used by the OS to refer to the parent directory, e.g.’..’ for POSIX or ’::’ for the
Macintosh.

sep
The character used by the OS to separate pathname components, e.g. ‘/ ’ for POSIX or ‘: ’ for the Mac-
intosh. Note that knowing this is not sufficient to be able to parse or concatenate pathnames — use
os.path.split() andos.path.join() — but it is occasionally useful.

altsep
An alternative character used by the OS to separate pathname components, orNone if only one separator
character exists. This is set to ‘/ ’ on DOS and Windows systems wheresep is a backslash.

pathsep
The character conventionally used by the OS to separate search patch components (as in $PATH), e.g. ‘: ’ for
POSIX or ‘; ’ for DOS and Windows.

defpath
The default search path used byexec*p*() if the environment doesn’t have a’PATH’ key.

linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a single character,
e.g.’\n’ for POSIX or’\r’ for MacOS, or multiple characters, e.g.’\r\n’ for MS-DOS and MS Windows.

6.2 os.path — Common pathname manipulations

This module implements some useful functions on pathnames.

abspath (path)
Return a normalized absolutized version of the pathnamepath. On most platforms, this is equivalent tonorm-
path(join(os.getcwd(), path)) . New in version 1.5.2.

basename (path)
Return the base name of pathnamepath. This is the second half of the pair returned bysplit(path) .

commonprefix (list)
Return the longest path prefix (taken character-by-character) that is a prefix of all paths inlist. If list is empty,
return the empty string (’’). Note that this may return invalid paths because it works a character at a time.

dirname (path)
Return the directory name of pathnamepath. This is the first half of the pair returned bysplit(path) .

exists (path)
Return true ifpathrefers to an existing path.

expanduser (path)
Return the argument with an initial component of ‘˜ ’ or ‘ ˜ user’ replaced by thatuser’s home directory. An
initial ‘ ˜ ’ is replaced by the environment variable $HOME; an initial ‘˜ user’ is looked up in the password

110 Chapter 6. Generic Operating System Services

directory through the built-in modulepwd. If the expansion fails, or if the path does not begin with a tilde, the
path is returned unchanged. On the Macintosh, this always returnspathunchanged.

expandvars (path)
Return the argument with environment variables expanded. Substrings of the form ‘$name’ or ‘ ${ name} ’ are
replaced by the value of environment variablename. Malformed variable names and references to non-existing
variables are left unchanged. On the Macintosh, this always returnspathunchanged.

getatime (path)
Return the time of last access offilename. The return value is integer giving the number of seconds since the
epoch (see thetime module). Raiseos.error if the file does not exist or is inaccessible. New in version
1.5.2.

getmtime (path)
Return the time of last modification offilename. The return value is integer giving the number of seconds since
the epoch (see thetime module). Raiseos.error if the file does not exist or is inaccessible. New in version
1.5.2.

getsize (path)
Return the size, in bytes, offilename. Raiseos.error if the file does not exist or is inaccessible. New in
version 1.5.2.

isabs (path)
Return true ifpath is an absolute pathname (begins with a slash).

isfile (path)
Return true ifpath is an existing regular file. This follows symbolic links, so bothislink() andisfile()
can be true for the same path.

isdir (path)
Return true ifpath is an existing directory. This follows symbolic links, so bothislink() andisdir() can
be true for the same path.

islink (path)
Return true ifpath refers to a directory entry that is a symbolic link. Always false if symbolic links are not
supported.

ismount (path)
Return true if pathnamepath is a mount point: a point in a file system where a different file system has been
mounted. The function checks whetherpath’s parent, ‘path/..’, is on a different device thanpath, or whether
‘path/..’ and pathpoint to the same i-node on the same device — this should detect mount points for all UNIX

and POSIX variants.

join (path1[, path2[, ...]])
Joins one or more path components intelligently. If any component is an absolute path, all previous components
are thrown away, and joining continues. The return value is the concatenation ofpath1, and optionallypath2,
etc., with exactly one slash (’/’) inserted between components, unlesspath is empty.

normcase (path)
Normalize the case of a pathname. On UNIX , this returns the path unchanged; on case-insensitive filesystems,
it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath (path)
Normalize a pathname. This collapses redundant separators and up-level references, e.g.A//B , A/./B and
A/foo/../B all becomeA/B . It does not normalize the case (usenormcase() for that). On Windows, it
converts forward slashes to backward slashes.

samefile (path1, path2)
Return true if both pathname arguments refer to the same file or directory (as indicated by device number and
i-node number). Raise an exception if aos.stat() call on either pathname fails. Availability: Macintosh,
UNIX .

6.2. os.path — Common pathname manipulations 111

sameopenfile (fp1, fp2)
Return true if the file objectsfp1 andfp2 refer to the same file. The two file objects may represent different file
descriptors. Availability: Macintosh, UNIX .

samestat (stat1, stat2)
Return true if the stat tuplesstat1andstat2 refer to the same file. These structures may have been returned
by fstat() , lstat() , or stat() . This function implements the underlying comparison used bysame-
file() andsameopenfile() . Availability: Macintosh, UNIX .

split (path)
Split the pathnamepath into a pair, (head, tail) where tail is the last pathname component andhead is
everything leading up to that. Thetail part will never contain a slash; ifpathends in a slash,tail will be empty.
If there is no slash inpath, headwill be empty. Ifpath is empty, bothheadandtail are empty. Trailing slashes
are stripped fromheadunless it is the root (one or more slashes only). In nearly all cases,join(head, tail)
equalspath(the only exception being when there were multiple slashes separatingheadfrom tail).

splitdrive (path)
Split the pathnamepath into a pair(drive, tail) wheredrive is either a drive specification or the empty string.
On systems which do not use drive specifications,drive will always be the empty string. In all cases,drive +
tail will be the same aspath.

splitext (path)
Split the pathnamepath into a pair(root, ext) such thatroot + ext == path, andext is empty or begins
with a period and contains at most one period.

walk (path, visit, arg)
Calls the functionvisit with arguments(arg, dirname, names) for each directory in the directory tree rooted
at path (including path itself, if it is a directory). The argumentdirnamespecifies the visited directory, the
argumentnameslists the files in the directory (gotten fromos.listdir(dirname)). Thevisit function may
modify namesto influence the set of directories visited belowdirname, e.g., to avoid visiting certain parts of the
tree. (The object referred to bynamesmust be modified in place, usingdel or slice assignment.)

6.3 dircache — Cached directory listings

The dircache module defines a function for reading directory listing using a cache, and cache invalidation using
themtimeof the directory. Additionally, it defines a function to annotate directories by appending a slash.

Thedircache module defines the following functions:

listdir (path)
Return a directory listing ofpath, as gotten fromos.listdir() . Note that unlesspathchanges, further call
to listdir() will not re-read the directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future version should change it to return
a tuple?)

opendir (path)
Same aslistdir() . Defined for backwards compatibility.

annotate (head, list)
Assumelist is a list of paths relative tohead, and append, in place, a ‘/ ’ to each path which points to a directory.

112 Chapter 6. Generic Operating System Services

>>> import dircache
>>> a=dircache.listdir(’/’)
>>> a=a[:] # Copy the return value so we can change ’a’
>>> a
[’bin’, ’boot’, ’cdrom’, ’dev’, ’etc’, ’floppy’, ’home’, ’initrd’, ’lib’, ’lost+
found’, ’mnt’, ’proc’, ’root’, ’sbin’, ’tmp’, ’usr’, ’var’, ’vmlinuz’]
>>> dircache.annotate(’/’, a)
>>> a
[’bin/’, ’boot/’, ’cdrom/’, ’dev/’, ’etc/’, ’floppy/’, ’home/’, ’initrd/’, ’lib/
’, ’lost+found/’, ’mnt/’, ’proc/’, ’root/’, ’sbin/’, ’tmp/’, ’usr/’, ’var/’, ’vm
linuz’]

6.4 stat — Interpreting stat() results

The stat module defines constants and functions for interpreting the results ofos.stat() , os.fstat() and
os.lstat() (if they exist). For complete details about thestat() , fstat() and lstat() calls, consult the
documentation for your system.

Thestat module defines the following functions to test for specific file types:

S ISDIR (mode)
Return non-zero if the mode is from a directory.

S ISCHR(mode)
Return non-zero if the mode is from a character special device file.

S ISBLK (mode)
Return non-zero if the mode is from a block special device file.

S ISREG(mode)
Return non-zero if the mode is from a regular file.

S ISFIFO (mode)
Return non-zero if the mode is from a FIFO (named pipe).

S ISLNK (mode)
Return non-zero if the mode is from a symbolic link.

S ISSOCK(mode)
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

S IMODE(mode)
Return the portion of the file’s mode that can be set byos.chmod() —that is, the file’s permission bits, plus
the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S IFMT(mode)
Return the portion of the file’s mode that describes the file type (used by theS IS*() functions above).

Normally, you would use theos.path.is*() functions for testing the type of a file; the functions here are useful
when you are doing multiple tests of the same file and wish to avoid the overhead of thestat() system call for each
test. These are also useful when checking for information about a file that isn’t handled byos.path , like the tests
for block and character devices.

All the variables below are simply symbolic indexes into the 10-tuple returned byos.stat() , os.fstat() or
os.lstat() .

6.4. stat — Interpreting stat() results 113

ST MODE
Inode protection mode.

ST INO
Inode number.

ST DEV
Device inode resides on.

ST NLINK
Number of links to the inode.

ST UID
User id of the owner.

ST GID
Group id of the owner.

ST SIZE
File size in bytes.

ST ATIME
Time of last access.

ST MTIME
Time of last modification.

ST CTIME
Time of last status change (see manual pages for details).

Example:

import os, sys
from stat import *

def walktree(dir, callback):
’’’recursively descend the directory rooted at dir,

calling the callback function for each regular file’’’

for f in os.listdir(dir):
pathname = ’%s/%s’ % (dir, f)
mode = os.stat(pathname)[ST_MODE]
if S_ISDIR(mode):

It’s a directory, recurse into it
walktree(pathname, callback)

elif S_ISREG(mode):
It’s a file, call the callback function
callback(pathname)

else:
Unknown file type, print a message
print ’Skipping %s’ % pathname

def visitfile(file):
print ’visiting’, file

if __name__ == ’__main__’:
walktree(sys.argv[1], visitfile)

114 Chapter 6. Generic Operating System Services

6.5 statcache — An optimization of os.stat()

Thestatcache module provides a simple optimization toos.stat() : remembering the values of previous invo-
cations.

Thestatcache module defines the following functions:

stat (path)
This is the main module entry-point. Identical foros.stat() , except for remembering the result for future
invocations of the function.

The rest of the functions are used to clear the cache, or parts of it.

reset ()
Clear the cache: forget all results of previousstat() calls.

forget (path)
Forget the result ofstat(path) , if any.

forget prefix (prefix)
Forget all results ofstat(path) for pathstarting withprefix.

forget dir (prefix)
Forget all results ofstat(path) for patha file in the directoryprefix, includingstat(prefix) .

forget except prefix (prefix)
Similar toforget prefix() , but for allpathvaluesnotstarting withprefix.

Example:

>>> import os, statcache
>>> statcache.stat(’.’)
(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)
>>> os.stat(’.’)
(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

6.6 statvfs — Constants used with os.statvfs()

Thestatvfs module defines constants so interpreting the result ifos.statvfs() , which returns a tuple, can be
made without remembering “magic numbers.” Each of the constants defined in this module is theindexof the entry in
the tuple returned byos.statvfs() that contains the specified information.

F BSIZE
Preferred file system block size.

F FRSIZE
Fundamental file system block size.

F BLOCKS
Total number of blocks in the filesystem.

F BFREE
Total number of free blocks.

F BAVAIL
Free blocks available to non-super user.

F FILES

6.5. statcache — An optimization of os.stat() 115

Total number of file nodes.

F FFREE
Total number of free file nodes.

F FAVAIL
Free nodes available to non-super user.

F FLAG
Flags. System dependent: seestatvfs() man page.

F NAMEMAX
Maximum file name length.

6.7 filecmp — File and Directory Comparisons

Thefilecmp module defines functions to compare files and directories, with various optional time/correctness trade-
offs.

Thefilecmp module defines the following function:

cmp(f1, f2[, shallow[, use statcache]])
Compare the files namedf1 andf2, returning1 if they seem equal,0 otherwise.

Unlessshallow is given and is false, files with identicalos.stat() signatures are taken to be equal. If
use statcacheis given and is true,statcache.stat() will be called rather thenos.stat() ; the default
is to useos.stat() .

Files that were compared using this function will not be compared again unless theiros.stat() signature
changes. Note that usinguse statcachetrue will cause the cache invalidation mechanism to fail — the stale stat
value will be used fromstatcache ’s cache.

Note that no external programs are called from this function, giving it portability and efficiency.

cmpfiles (dir1, dir2, common[, shallow[, use statcache]])
Returns three lists of file names:match, mismatch, errors. matchcontains the list of files match in both di-
rectories,mismatchincludes the names of those that don’t, anderrros lists the names of files which could not
be compared. Files may be listed inerrors because the user may lack permission to read them or many other
reasons, but always that the comparison could not be done for some reason.

The shallow and use statcache parameters have the same meanings and default values as for
filecmp.cmp() .

Example:

>>> import filecmp
>>> filecmp.cmp(’libundoc.tex’, ’libundoc.tex’)
1
>>> filecmp.cmp(’libundoc.tex’, ’lib.tex’)
0

6.7.1 The dircmp class

dircmp (a, b[, ignore[, hide]])
Construct a new directory comparison object, to compare the directoriesa and b. ignore is a list of names
to ignore, and defaults to[’RCS’, ’CVS’, ’tags’] . hide is a list of names to hid, and defaults to
[os.curdir, os.pardir] .

116 Chapter 6. Generic Operating System Services

report ()
Print (tosys.stdout) a comparison betweena andb.

report partial closure ()
Print a comparison betweena andb and common immediate subdirctories.

report full closure ()
Print a comparison betweena andb and common subdirctories (recursively).

left list
Files and subdirectories ina, filtered byhideandignore.

right list
Files and subdirectories inb, filtered byhideandignore.

common
Files and subdirectories in botha andb.

left only
Files and subdirectories only ina.

right only
Files and subdirectories only inb.

common dirs
Subdirectories in botha andb.

common files
Files in botha andb

common funny
Names in botha andb, such that the type differs between the directories, or names for whichos.stat()
reports an error.

same files
Files which are identical in botha andb.

diff files
Files which are in botha andb, whose contents differ.

funny files
Files which are in botha andb, but could not be compared.

subdirs
A dictionary mapping names incommon dirs to dircmp objects.

Note that via getattr () hooks, all attributes are computed lazilly, so there is no speed penalty if only those
attributes which are lightweight to compute are used.

6.8 popen2 — Subprocesses with accessible I/O streams

This module allows you to spawn processes and connect to their input/output/error pipes and obtain their return codes
under UNIX and Windows.

Note that starting with Python 2.0, this functionality is available using functions from theos module which have the
same names as the factory functions here, but the order of the return values is more intuitive in theos module variants.

The primary interface offered by this module is a trio of factory functions. For each of these, ifbufsizeis specified,
it specifies the buffer size for the I/O pipes.mode, if provided, should be the string’b’ or ’t’ ; on Windows this is
needed to determine whether the file objects should be opened in binary or text mode. The default value formodeis
’t’ .

6.8. popen2 — Subprocesses with accessible I/O streams 117

popen2 (cmd[, bufsize[, mode]])
Executescmdas a sub-process. Returns the file objects(child stdout, child stdin) .

popen3 (cmd[, bufsize[, mode]])
Executescmdas a sub-process. Returns the file objects(child stdout, child stdin, child stderr) .

popen4 (cmd[, bufsize[, mode]])
Executescmdas a sub-process. Returns the file objects(child stdout and stderr, child stdin) . New in
version 2.0.

On UNIX , a class defining the objects returned by the factory functions is also available. These are not used for the
Windows implementation, and are not available on that platform.

Popen3 (cmd[, capturestderr[, bufsize]])
This class represents a child process. Normally,Popen3 instances are created using thepopen2() and
popen3() factory functions described above.

If not using one off the helper functions to createPopen3 objects, the parametercmd is the shell command to
execute in a sub-process. Thecapturestderrflag, if true, specifies that the object should capture standard error
output of the child process. The default is false. If thebufsizeparameter is specified, it specifies the size of the
I/O buffers to/from the child process.

Popen4 (cmd[, bufsize])
Similar toPopen3 , but always captures standard error into the same file object as standard output. These are
typically created usingpopen4() . New in version 2.0.

6.8.1 Popen3 and Popen4 Objects

Instances of thePopen3 andPopen4 classes have the following methods:

poll ()
Returns-1 if child process hasn’t completed yet, or its return code otherwise.

wait ()
Waits for and returns the return code of the child process.

The following attributes are also available:

fromchild
A file object that provides output from the child process. ForPopen4 instances, this will provide both the
standard output and standard error streams.

tochild
A file object that provides input to the child process.

childerr
Where the standard error from the child process goes iscapturestderrwas true for the constructor, orNone.
This will always beNone for Popen4 instances.

pid
The process ID of the child process.

6.9 time — Time access and conversions

This module provides various time-related functions. It is always available, but not all functions are available on all
platforms.

An explanation of some terminology and conventions is in order.

118 Chapter 6. Generic Operating System Services

• Theepochis the point where the time starts. On January 1st of that year, at 0 hours, the “time since the epoch”
is zero. For UNIX , the epoch is 1970. To find out what the epoch is, look atgmtime(0) .

• The functions in this module do not handle dates and times before the epoch or far in the future. The cut-off
point in the future is determined by the C library; for UNIX , it is typically in 2038.

• Year 2000 (Y2K) issues: Python depends on the platform’s C library, which generally doesn’t have year 2000
issues, since all dates and times are represented internally as seconds since the epoch. Functions accepting a time
tuple (see below) generally require a 4-digit year. For backward compatibility, 2-digit years are supported if the
module variableaccept2dyear is a non-zero integer; this variable is initialized to1 unless the environment
variable $PYTHONY2K is set to a non-empty string, in which case it is initialized to0. Thus, you can set
$PYTHONY2K to a non-empty string in the environment to require 4-digit years for all year input. When
2-digit years are accepted, they are converted according to the POSIX or X/Open standard: values 69-99 are
mapped to 1969-1999, and values 0–68 are mapped to 2000–2068. Values 100–1899 are always illegal. Note
that this is new as of Python 1.5.2(a2); earlier versions, up to Python 1.5.1 and 1.5.2a1, would add 1900 to year
values below 1900.

• UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The acronym UTC
is not a mistake but a compromise between English and French.

• DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year. DST
rules are magic (determined by local law) and can change from year to year. The C library has a table containing
the local rules (often it is read from a system file for flexibility) and is the only source of True Wisdom in this
respect.

• The precision of the various real-time functions may be less than suggested by the units in which their value or
argument is expressed. E.g. on most UNIX systems, the clock “ticks” only 50 or 100 times a second, and on the
Mac, times are only accurate to whole seconds.

• On the other hand, the precision oftime() andsleep() is better than their UNIX equivalents: times are
expressed as floating point numbers,time() returns the most accurate time available (using UNIX get-
timeofday() where available), andsleep() will accept a time with a nonzero fraction (UNIX select()
is used to implement this, where available).

• The time tuple as returned bygmtime() , localtime() , andstrptime() , and accepted byasctime() ,
mktime() andstrftime() , is a tuple of 9 integers:

Index Field Values
0 year (e.g. 1993)
1 month range [1,12]
2 day range [1,31]
3 hour range [0,23]
4 minute range [0,59]
5 second range [0,61]; see(1) in strftime() description
6 weekday range [0,6], Monday is 0
7 Julian day range [1,366]
8 daylight savings flag 0, 1 or -1; see below

Note that unlike the C structure, the month value is a range of 1-12, not 0-11. A year value will be handled as
described under “Year 2000 (Y2K) issues” above. A-1 argument as daylight savings flag, passed tomktime()
will usually result in the correct daylight savings state to be filled in.

The module defines the following functions and data items:

accept2dyear
Boolean value indicating whether two-digit year values will be accepted. This is true by default, but will be set
to false if the environment variable $PYTHONY2K has been set to a non-empty string. It may also be modified
at run time.

6.9. time — Time access and conversions 119

altzone
The offset of the local DST timezone, in seconds west of UTC, if one is defined. This is negative if the local
DST timezone is east of UTC (as in Western Europe, including the UK). Only use this ifdaylight is nonzero.

asctime (tuple)
Convert a tuple representing a time as returned bygmtime() or localtime() to a 24-character string of the
following form: ’Sun Jun 20 23:21:05 1993’ . Note: unlike the C function of the same name, there is
no trailing newline.

clock ()
Return the current CPU time as a floating point number expressed in seconds. The precision, and in fact the
very definition of the meaning of “CPU time”, depends on that of the C function of the same name, but in any
case, this is the function to use for benchmarking Python or timing algorithms.

ctime (secs)
Convert a time expressed in seconds since the epoch to a string representing local time.ctime(secs) is
equivalent toasctime(localtime(secs)) .

daylight
Nonzero if a DST timezone is defined.

gmtime (secs)
Convert a time expressed in seconds since the epoch to a time tuple in UTC in which the dst flag is always zero.
Fractions of a second are ignored. See above for a description of the tuple lay-out.

localtime (secs)
Like gmtime() but converts to local time. The dst flag is set to1 when DST applies to the given time.

mktime (tuple)
This is the inverse function oflocaltime() . Its argument is the full 9-tuple (since the dst flag is needed;
use-1 as the dst flag if it is unknown) which expresses the time inlocal time, not UTC. It returns a float-
ing point number, for compatibility withtime() . If the input value cannot be represented as a valid time,
OverflowError is raised.

sleep (secs)
Suspend execution for the given number of seconds. The argument may be a floating point number to indicate a
more precise sleep time. The actual suspension time may be less than that requested because any caught signal
will terminate thesleep() following execution of that signal’s catching routine. Also, the suspension time
may be longer than requested by an arbitrary amount because of the scheduling of other activity in the system.

strftime (format, tuple)
Convert a tuple representing a time as returned bygmtime() or localtime() to a string as specified by the
formatargument.formatmust be a string.

The following directives can be embedded in theformatstring. They are shown without the optional field width
and precision specification, and are replaced by the indicated characters in thestrftime() result:

120 Chapter 6. Generic Operating System Services

Directive Meaning Notes
%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM.
%S Second as a decimal number [00,61]. (1)
%U Week number of the year (Sunday as the first day of the

week) as a decimal number [00,53]. All days in a new year
preceding the first Sunday are considered to be in week 0.

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the

week) as a decimal number [00,53]. All days in a new year
preceding the first Sunday are considered to be in week 0.

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%Z Time zone name (or by no characters if no time zone exists).
%% A literal ‘%’ character.

Notes:

(1)The range really is0 to 61 ; this accounts for leap seconds and the (very rare) double leap seconds.

Additional directives may be supported on certain platforms, but only the ones listed here have a meaning
standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the initial ‘%’ of
a directive in the following order; this is also not portable. The field width is normally 2 except for%j where it
is 3.

strptime (string[, format])
Parse a string representing a time according to a format. The return value is a tuple as returned bygmtime()
or localtime() . Theformatparameter uses the same directives as those used bystrftime() ; it defaults
to "%a %b %d %H:%M:%S %Y"which matches the formatting returned byctime() . The same platform
caveats apply; see the local UNIX documentation for restrictions or additional supported directives. Ifstring
cannot be parsed according toformat, ValueError is raised. Values which are not provided as part of the
input string are filled in with default values; the specific values are platform-dependent as the XPG standard
does not provide sufficient information to constrain the result.

Note: This function relies entirely on the underlying platform’s C library for the date parsing, and some of
these libraries are buggy. There’s nothing to be done about this short of a new, portable implementation of
strptime() .

Availability: Most modern UNIX systems.

time ()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note that even though
the time is always returned as a floating point number, not all systems provide time with a better precision than
1 second.

6.9. time — Time access and conversions 121

timezone
The offset of the local (non-DST) timezone, in seconds west of UTC (i.e. negative in most of Western Europe,
positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the local
DST timezone. If no DST timezone is defined, the second string should not be used.

See Also:

Module locale (section 6.22):
Internationalization services. The locale settings can affect the return values for some of the functions in the
time module.

6.10 sched — Event scheduler

Thesched module defines a class which implements a general purpose event scheduler:

scheduler (timefunc, delayfunc)
Thescheduler class defines a generic interface to scheduling events. It needs two functions to actually deal
with the “outside world” —timefuncshould be callable without arguments, and return a number (the “time”,
in any units whatsoever). Thedelayfuncfunction should be callable with one argument, compatible with the
output oftimefunc, and should delay that many time units.delayfuncwill also be called with the argument0
after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time
>>> s=sched.scheduler(time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time()
...
>>> def print_some_times():
... print time.time()
... s.enter(5, 1, print_time, ())
... s.enter(10, 1, print_time, ())
... s.run()
... print time.time()
...
>>> print_some_times()
930343690.257
From print_time 930343695.274
From print_time 930343700.273
930343700.276

6.10.1 Scheduler Objects

scheduler instances have the following methods:

enterabs (time, priority, action, argument)
Schedule a new event. Thetime argument should be a numeric type compatible with the return value of the
timefuncfunction passed to the constructor. Events scheduled for the sametimewill be executed in the order of
theirpriority.

Executing the event means executingapply(action, argument) . argumentmust be a tuple holding the pa-
rameters foraction.

122 Chapter 6. Generic Operating System Services

Return value is an event which may be used for later cancellation of the event (seecancel()).

enter (delay, priority, action, argument)
Schedule an event fordelaymore time units. Other then the relative time, the other arguments, the effect and
the return value are the same as those forenterabs() .

cancel (event)
Remove the event from the queue. Ifeventis not an event currently in the queue, this method will raise a
RuntimeError .

empty ()
Return true if the event queue is empty.

run ()
Run all scheduled events. This function will wait (using thedelayfunc function passed to the constructor)
for the next event, then execute it and so on until there are no more scheduled events.

Eitheractionor delayfunccan raise an exception. In either case, the scheduler will maintain a consistent state
and propagate the exception. If an exception is raised byaction, the event will not be attempted in future calls
to run() .

If a sequence of events takes longer to run than the time available before the next event, the scheduler will simply
fall behind. No events will be dropped; the calling code is responsible for canceling events which are no longer
pertinent.

6.11 getpass — Portable password input

Thegetpass module provides two functions:

getpass ([prompt])
Prompt the user for a password without echoing. The user is prompted using the stringprompt, which defaults
to ’Password: ’ . Availability: Macintosh, UNIX , Windows.

getuser ()
Return the “login name” of the user. Availability: UNIX , Windows.

This function checks the environment variables $LOGNAME, $USER, $LNAME and $USERNAME, in order,
and returns the value of the first one which is set to a non-empty string. If none are set, the login name from the
password database is returned on systems which support thepwd module, otherwise, an exception is raised.

6.12 curses — Terminal handling for character-cell displays

Changed in version 1.6: Added support for thencurses library and converted to a package.

Thecurses module provides an interface to the curses library, the de-facto standard for portable advanced terminal
handling.

While curses is most widely used in the UNIX environment, versions are available for DOS, OS/2, and possibly other
systems as well. This extension module is designed to match the API of ncurses, an open-source curses library hosted
on Linux and the BSD variants of UNIX .

See Also:

Modulecurses.ascii (section 6.15):
Utilities for working with ASCII characters, regardless of your locale settings.

Modulecurses.textpad (section 6.13):
Editable text widget for curses supportingEmacs-like bindings.

6.11. getpass — Portable password input 123

Modulecurses.wrapper (section 6.14):
Convenience function to ensure proper terminal setup and resetting on application entry and exit.

Curses Programming with Python
(http://www.python.org/doc/howto/curses/curses.html)

Tutorial material on using curses with Python, by Andrew Kuchling, is available on the Python Web site.

6.12.1 Functions

The modulecurses defines the following exception:

error
Exception raised when a curses library function returns an error.

Note: Wheneverx or y arguments to a function or a method are optional, they default to the current cursor location.
Wheneverattr is optional, it defaults toA NORMAL.

The modulecurses defines the following functions:

baudrate ()
Returns the output speed of the terminal in bits per second. On software terminal emulators it will have a fixed
high value. Included for historical reasons; in former times, it was used to write output loops for time delays
and occasionally to change interfaces depending on the line speed.

beep ()
Emit a short attention sound.

can change color ()
Returns true or false, depending on whether the programmer can change the colors displayed by the terminal.

cbreak ()
Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line buffering is turned off and
characters are available to be read one by one. However, unlike raw mode, special characters (interrupt, quit,
suspend, and flow control) retain their effects on the tty driver and calling program. Calling firstraw() then
cbreak() leaves the terminal in cbreak mode.

color content (color number)
Returns the intensity of the red, green, and blue (RGB) components in the colorcolor number, which must be
between 0 and COLORS. A 3-tuple is returned, containing the R,G,B values for the given color, which will be
between 0 (no component) and 1000 (maximum amount of component).

color pair (color number)
Returns the attribute value for displaying text in the specified color. This attribute value can be combined
with A STANDOUT, A REVERSE, and the otherA * attributes.pair number() is the counterpart to this
function.

curs set (visibility)
Sets the cursor state.visibility can be set to 0, 1, or 2, for invisible, normal, or very visible. If the terminal
supports the visibility requested, the previous cursor state is returned; otherwise, an exception is raised. On
many terminals, the “visible” mode is an underline cursor and the “very visible” mode is a block cursor.

def prog mode()
Saves the current terminal mode as the “program” mode, the mode when the running program is using
curses. (Its counterpart is the “shell” mode, for when the program is not in curses.) Subsequent calls tore-
set prog mode() will restore this mode.

def shell mode()
Saves the current terminal mode as the “shell” mode, the mode when the running program is not using curses.
(Its counterpart is the “program” mode, when the program is using curses capabilities.) Subsequent calls to
reset shell mode() will restore this mode.

124 Chapter 6. Generic Operating System Services

delay output (ms)
Inserts anmsmillisecond pause in output.

doupdate ()
Update the physical screen. The curses library keeps two data structures, one representing the current physical
screen contents and a virtual screen representing the desired next state. Thedoupdate() ground updates the
physical screen to match the virtual screen.

The virtual screen may be updated by anoutrefresh() call after write operations such asaddstr()
have been performed on a window. The normalrefresh() call is simplynoutrefresh() followed by
doupdate() ; if you have to update multiple windows, you can speed performance and perhaps reduce screen
flicker by issuingnoutrefresh() calls on all windows, followed by a singledoupdate() .

echo ()
Enter echo mode. In echo mode, each character input is echoed to the screen as it is entered.

endwin ()
De-initialize the library, and return terminal to normal status.

erasechar ()
Returns the user’s current erase character. Under Unix operating systems this is a property of the controlling tty
of the curses program, and is not set by the curses library itself.

filter ()
The filter() routine, if used, must be called beforeinitscr() is called. The effect is that, during those
calls, LINES is set to 1; the capabilities clear, cup, cud, cud1, cuu1, cuu, vpa are disabled; and the home string
is set to the value of cr. The effect is that the cursor is confined to the current line, and so are screen updates.
This may be used for enabling cgaracter-at-a-time line editing without touching the rest of the screen.

flash ()
Flash the screen. That is, change it to reverse-video and then change it back in a short interval. Some people
prefer such as ‘visible bell’ to the audible attention signal produced bybeep() .

flushinp ()
Flush all input buffers. This throws away any typeahead that has been typed by the user and has not yet been
processed by the program.

getmouse ()
After getch() returnsKEY MOUSEto signal a mouse event, this method should be call to retrieve the queued
mouse event, represented as a 5-tuple(id, x, y, z, bstate) . id is an ID value used to distinguish multiple
devices, andx, y, zare the event’s coordinates. (z is currently unused.).bstateis an integer value whose bits will
be set to indicate the type of event, and will be the bitwise OR of one or more of the following constants, where
n is the button number from 1 to 4:BUTTONn PRESSED, BUTTONn RELEASED, BUTTONn CLICKED,
BUTTONn DOUBLECLICKED, BUTTONn TRIPLE CLICKED, BUTTONSHIFT , BUTTONCTRL, BUT-
TON ALT.

getsyx ()
Returns the current coordinates of the virtual screen cursor in y and x. If leaveok is currently true, then -1,-1 is
returned.

getwin (file)
Reads window related data stored in the file by an earlierputwin() call. The routine then creates and initial-
izes a new window using that data, returning the new window object.

has colors ()
Returns true if the terminal can display colors; otherwise, it returns false.

has ic ()
Returns true if the terminal has insert- and delete- character capabilities. This function is included for historical
reasons only, as all modern software terminal emulators have such capabilities.

6.12. curses — Terminal handling for character-cell displays 125

has il ()
Returns true if the terminal has insert- and delete-line capabilities, or can simulate them using scrolling re-
gions. This function is included for historical reasons only, as all modern software terminal emulators have such
capabilities.

has key (ch)
Takes a key valuech, and returns true if the current terminal type recognizes a key with that value.

halfdelay (tenths)
Used for half-delay mode, which is similar to cbreak mode in that characters typed by the user are immediately
available to the program. However, after blocking fortenthstenths of seconds, an exception is raised if nothing
has been typed. The value oftenthsmust be a number between 1 and 255. Usenocbreak() to leave half-delay
mode.

init color (color number, r, g, b)
Changes the definition of a color, taking the number of the color to be changed followed by three RGB values (for
the amounts of red, green, and blue components). The value ofcolor numbermust be between 0 and COLORS.
Each ofr, g, b, must be a value between 0 and 1000. Wheninit color() is used, all occurrences of that
color on the screen immediately change to the new definition. This function is a no-op on most terminals; it is
active only ifcan change color() returns 1.

init pair (pair number, fg, bg)
Changes the definition of a color-pair. It takes three arguments: the number of the color-pair to be changed, the
foreground color number, and the background color number. The value ofpair numbermust be between 1 and
COLOR PAIRS-1 (the 0 color pair is wired to white on black and cannot be changed). The value offg andbg
arguments must be between 0 and COLORS. If the color-pair was previously initialized, the screen is refreshed
and all occurrences of that color-pair are changed to the new definition.

initscr ()
Initialize the library. Returns aWindowObject which represents the whole screen.

isendwin ()
Returns true ifendwin() has been called (that is, the curses library has been deinitialized).

keyname (k)
Return the name of the key numberedk. The name of a key generating printable ASCII character is the key’s
character. The name of a control-key combination is a two-character string consisting of a caret followed by the
corresponding printable ASCII character. The name of an alt-key combination (128-255) is a string consisting
of the prefix ‘M-’ followed by the name of the corresponding ASCII character.

killchar ()
Returns the user’s current line kill character. Under Unix operating systems this is a property of the controlling
tty of the curses program, and is not set by the curses library itself.

longname ()
Returns a string containing the terminfo long name field describing the current terminal. The maximum length
of a verbose description is 128 characters. It is defined only after the call toinitscr() .

meta (yes)
If yesis 1, allow 8-bit characters to be input. Ifyesis 0, allow only 7-bit chars.

mouseinterval (interval)
Sets the maximum time in milliseconds that can elapse between press and release events in order for them to be
recognized as a click, and returns the previous interval value. The default value is 200 msec, or one fifth of a
second.

mousemask(mousemask)
Sets the mouse events to be reported, and returns a tuple(availmask, oldmask) . availmaskindicates which
of the specified mouse events can be reported; on complete failure it returns 0.oldmaskis the previous value of
the given window’s mouse event mask. If this function is never called, no mouse events are ever reported.

126 Chapter 6. Generic Operating System Services

newpad(nlines, ncols)
Creates and returns a pointer to a new pad data structure with the given number of lines and columns. A pad is
returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not necessarily associated with
a particular part of the screen. Pads can be used when a large window is needed, and only a part of the window
will be on the screen at one time. Automatic refreshes of pads (e.g., from scrolling or echoing of input) do not
occur. Therefresh() andnoutrefresh() methods of a pad require 6 arguments to specify the part of
the pad to be displayed and the location on the screen to be used for the display. The arguments are pminrow,
pmincol, sminrow, smincol, smaxrow, smaxcol; the p arguments refer to the upper left corner of the the pad
region to be displayed and the s arguments define a clipping box on the screen within which the pad region is to
be displayed.

newwin ([nlines, ncols,] begin y, begin x)
Return a new window, whose left-upper corner is at(begin y, begin x) , and whose height/width is
nlines/ncols.

By default, the window will extend from the specified position to the lower right corner of the screen.

nl ()
Enter newline mode. This mode translates the return key into newline on input, and translates newline into
return and line-feed on output. Newline mode is initially on.

nocbreak ()
Leave cbreak mode. Return to normal “cooked” mode with line buffering.

noecho ()
Leave echo mode. Echoing of input characters is turned off,

nonl ()
Leave newline mode. Disable translation of return into newline on input, and disable low-level translation of
newline into newline/return on output (but this does not change the behavior ofaddch(’\n’) , which always
does the equivalent of return and line feed on the virtual screen). With translation off, curses can sometimes
speed up vertical motion a little; also, it will be able to detect the return key on input.

noqiflush ()
When the noqiflush routine is used, normal flush of input and output queues associated with the INTR, QUIT
and SUSP characters will not be done. You may want to callnoqiflush() in a signal handler if you want
output to continue as though the interrupt had not occurred, after the handler exits.

noraw ()
Leave raw mode. Return to normal “cooked” mode with line buffering.

pair content (pair number)
Returns a tuple(fg,bg)containing the colors for the requested color pair. The value ofpair numbermust be
between 0 and COLORPAIRS-1.

pair number (attr)
Returns the number of the color-pair set by the attribute valueattr. color pair() is the counterpart to this
function.

putp (string)
Equivalent totputs(str, 1, putchar) ; emits the value of a specified terminfo capability for the current
terminal. Note that the output of putp always goes to standard output.

qiflush ([flag])
If flag is false, the effect is the same as callingnoqiflush() . If flag is true, or no argument is provided, the
queues will be flushed when these control characters are read.

raw ()
Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit, suspend, and flow control
keys are turned off; characters are presented to curses input functions one by one.

6.12. curses — Terminal handling for character-cell displays 127

reset prog mode()
Restores the terminal to “program” mode, as previously saved bydef prog mode() .

reset shell mode()
Restores the terminal to “shell” mode, as previously saved bydef shell mode() .

setsyx (y, x)
Sets the virtual screen cursor toy, x. If y andx are both -1, then leaveok is set.

start color ()
Must be called if the programmer wants to use colors, and before any other color manipulation routine is called.
It is good practice to call this routine right afterinitscr() .

start color() initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white), and
two global variables in thecurses module, COLORS and COLORPAIRS, containing the maximum number
of colors and color-pairs the terminal can support. It also restores the colors on the terminal to the values they
had when the terminal was just turned on.

termattrs ()
Returns a logical OR of all video attributes supported by the terminal. This information is useful when a curses
program needs complete control over the appearance of the screen.

termname ()
Returns the value of the environment variable TERM, truncated to 14 characters.

tigetflag (capname)
Returns the value of the Boolean capability corresponding to the terminfo capability namecapname. The value
-1 is returned ifcapnameis not a Boolean capability, or 0 if it is canceled or absent from the terminal description.

tigetnum (capname)
Returns the value of the numeric capability corresponding to the terminfo capability namecapname. The value
-2 is returned ifcapnameis not a numeric capability, or -1 if it is canceled or absent from the terminal description.

tigetstr (capname)
Returns the value of the string capability corresponding to the terminfo capability namecapname. None is
returned ifcapnameis not a string capability, or is canceled or absent from the terminal description.

typeahead (fd)
Specifies that the file descriptorfd be used for typeahead checking. Iffd is -1, then no typeahead checking is
done.

The curses library does “line-breakout optimization” by looking for typeahead periodically while updating the
screen. If input is found, and it is coming from a tty, the current update is postponed until refresh or doupdate is
called again, allowing faster response to commands typed in advance. This function allows specifying a different
file descriptor for typeahead checking.

unctrl (ch)
Returns a string which is a printable representation of the characterch. Control characters are displayed as a
caret followed by the character, for example asˆC . Printing characters are left as they are.

ungetch (ch)
Pushchso the nextgetch() will return it. Note: only onechcan be pushed beforegetch() is called.

ungetmouse (id, x, y, z, bstate)
Push aKEY MOUSEevent onto the input queue, associating the given state data with it.

use env (flag)
If used, this function should be called beforeinitscr or newterm are called. Whenflag is false, the values
of lines and columns specified in the terminfo database will be used, even if environment variables LINES and
COLUMNS (used by default) are set, or if curses is running in a window (in which case default behavior would
be to use the window size if LINES and COLUMNS are not set).

128 Chapter 6. Generic Operating System Services

6.12.2 Window Objects

Window objects, as returned byinitscr() andnewwin() above, have the following methods:

addch ([y, x,] ch[, attr])
Note: A charactermeans a C character (i.e., anASCII code), rather then a Python character (a string of length 1).
(This note is true whenever the documentation mentions a character.) The builtinord() is handy for conveying
strings to codes.

Paint characterch at (y, x) with attributesattr, overwriting any character previously painter at that location.
By default, the character position and attributes are the current settings for the window object.

addnstr ([y, x,] str, n[, attr])
Paint at mostn characters of the stringstr at (y, x) with attributesattr, overwriting anything previously on
the display.

addstr ([y, x,] str[, attr])
Paint the stringstr at (y, x) with attributesattr, overwriting anything previously on the display.

attroff (attr)
Remove attributeattr from the “background” set applied to all writes to the current window.

attron (attr)
Add attributeattr from the “background” set applied to all writes to the current window.

attrset (attr)
Set the “background” set of attributes toattr. This set is initially 0 (no attributes).

bkgd (ch[, attr])
Sets the background property of the window to the characterch, with attributesattr. The change is then applied
to every character position in that window:

•The attribute of every character in the window is changed to the new background attribute.

•Wherever the former background character appears, it is changed to the new background character.

bkgdset (ch[, attr])
Sets the window’s background. A window’s background consists of a character and any combination of at-
tributes. The attribute part of the background is combined (OR’ed) with all non-blank characters that are written
into the window. Both the character and attribute parts of the background are combined with the blank charac-
ters. The background becomes a property of the character and moves with the character through any scrolling
and insert/delete line/character operations.

border ([ls[, rs[, ts[, bs[, tl[, tr[, bl[, br]]]]]]]])
Draw a border around the edges of the window. Each parameter specifies the character to use for a specific
part of the border; see the table below for more details. The characters must be specified as integers; using
one-character strings will causeTypeError to be raised.

Note: A 0 value for any parameter will cause the default character to be used for that parameter. Keyword
parameters cannotbe used. The defaults are listed in this table:

Parameter Description Default value
ls Left side ACS VLINE
rs Right side ACS VLINE
ts Top ACS HLINE
bs Bottom ACS HLINE
tl Upper-left corner ACS ULCORNER
tr Upper-right corner ACS URCORNER
bl Bottom-left corner ACS BLCORNER
br Bottom-right corner ACS BRCORNER

box ([vertch, horch])

6.12. curses — Terminal handling for character-cell displays 129

Similar toborder() , but bothls andrs arevertchand bothts and bs arehorch. The default corner characters
are always used by this function.

clear ()
Like erase() , but also causes the whole window to be repainted upon next call torefresh() .

clearok (yes)
If yesis 1, the next call torefresh() will clear the window completely.

clrtobot ()
Erase from cursor to the end of the window: all lines below the cursor are deleted, and then the equivalent of
clrtoeol() is performed.

clrtoeol ()
Erase from cursor to the end of the line.

cursyncup ()
Updates the current cursor position of all the ancestors of the window to reflect the current cursor position of
the window.

delch ([x, y])
Delete any character at(y, x) .

deleteln ()
Delete the line under the cursor. All following lines are moved up by 1 line.

derwin ([nlines, ncols,] begin y, begin y)
An abbreviation for “derive window”,derwin() is the same as callingsubwin() , except thatbegin y and
begin x are relative to the origin of the window, rather than relative to the entire screen. Returns a window
object for the derived window.

echochar (ch[, attr])
Add characterchwith attributeattr, and immediately callrefresh on the window.

enclose (y, x)
Tests whether the given pair of screen-relative character-cell coordinates are enclosed by the given window,
returning true or false. It is useful for determining what subset of the screen windows enclose the location of a
mouse event.

erase ()
Clear the window.

getbegyx ()
Return a tuple(y, x) of co-ordinates of upper-left corner.

getch ([x, y])
Get a character. Note that the integer returned doesnot have to be inASCII range: function keys, keypad keys
and so on return numbers higher then 256. In no-delay mode, an exception is raised if there is no input.

getkey ([x, y])
Get a character, returning a string instead of an integer, asgetch() does. Function keys, keypad keys and so
on return a multibyte string containing the key name. In no-delay mode, an exception is raised if there is no
input.

getmaxyx ()
Return a tuple(y, x) of the height and width of the window.

getparyx ()
Returns the beginning coordinates of this window relative to its parent window into two integer variables y and
x. Returns-1,-1 if this window has no parent.

getstr ([x, y])
Read a string from the user, with primitive line editing capacity.

130 Chapter 6. Generic Operating System Services

getyx ()
Return a tuple(y, x) of current cursor position relative to the window’s upper-left corner.

hline ([y, x,] ch, n)
Display a horizontal line starting at(y, x) with lengthn consisting of the characterch.

idcok (flag)
If flag is false, curses no longer considers using the hardware insert/delete character feature of the terminal; if
flag is true, use of character insertion and deletion is enabled. When curses is first initialized, use of character
insert/delete is enabled by default.

idlok (yes)
If called with yesequal to 1,curses will try and use hardware line editing facilities. Otherwise, line inser-
tion/deletion are disabled.

immedok (flag)
If flag is true, any change in the window image automatically causes the window to be refreshed; you no longer
have to callrefresh() yourself. However, it may degrade performance considerably, due to repeated calls to
wrefresh. This option is disabled by default.

inch ([x, y])
Return the character at the given position in the window. The bottom 8 bits are the character proper, and upper
bits are the attributes.

insch ([y, x,] ch[, attr])
Paint characterchat (y, x) with attributesattr, moving the line from positionx right by one character.

insdelln (nlines)
Insertsnlines lines into the specified window above the current line. Thenlines bottom lines are lost. For
negativenlines, deletenlineslines starting with the one under the cursor, and move the remaining lines up. The
bottomnlineslines are cleared. The current cursor position remains the same.

insertln ()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

insnstr ([y, x,] str, n[, attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor, up to
n characters. Ifn is zero or negative, the entire string is inserted. All characters to the right of the cursor are
shifted right, with the the rightmost characters on the line being lost. The cursor position does not change (after
moving toy, x, if specified).

insstr ([y, x,] str [, attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor. All
characters to the right of the cursor are shifted right, with the the rightmost characters on the line being lost. The
cursor position does not change (after moving toy, x, if specified).

instr ([y, x] [, n])
Returns a string of characters, extracted from the window starting at the current cursor position, or aty, x if
specified. Attributes are stripped from the characters. Ifn is specified,instr() returns return a string at most
n characters long (exclusive of the trailing NUL).

is linetouched (line)
Returns true if the specified line was modified since the last call torefresh() ; otherwise returns false. Raises
acurses.error exception ifline is not valid for the given window.

is wintouched ()
Returns true if the specified window was modified since the last call torefresh() ; otherwise returns false.

keypad (yes)
If yesis 1, escape sequences generated by some keys (keypad, function keys) will be interpreted bycurses . If
yesis 0, escape sequences will be left as is in the input stream.

6.12. curses — Terminal handling for character-cell displays 131

leaveok (yes)
If yes is 1, cursor is left where it is on update, instead of being at “cursor position.” This reduces cursor
movement where possible. If possible the cursor will be made invisible.

If yesis 0, cursor will always be at “cursor position” after an update.

move(new y, new x)
Move cursor to(new y, new x) .

mvderwin (y, x)
Moves the window inside its parent window. The screen-relative parameters of the window are not changed.
This routine is used to display different parts of the parent window at the same physical position on the screen.

mvwin (new y, new x)
Move the window so its upper-left corner is at(new y, new x) .

nodelay (yes)
If yesis 1,getch() will be non-blocking.

notimeout (yes)
If yesis 1, escape sequences will not be timed out.

If yesis 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in the input
stream as is.

noutrefresh ()
Mark for refresh but wait. This function updates the data structure representing the desired state of the window,
but does not force an update of the physical screen.

putwin (file)
Writes all data associated with the window into the provided file object. This information can be later retrieved
using thegetwin() function.

redrawln (beg, num)
Indicates that thenumscreen lines, starting at linebeg, are corrupted and should be completely redrawn on the
nextrefresh() call.

redrawwin ()
Touches the entire window, causing it to be completely redrawn on the nextrefresh() call.

refresh ([pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol])
Update the display immediately (sync actual screen with previous drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad created withnewpad() . The
additional parameters are needed to indicate what part of the pad and screen are involved.pminrowandpmincol
specify the upper left-hand corner of the rectangle to be displayed in the pad.sminrow, smincol, smaxrow, and
smaxcolspecify the edges of the rectangle to be displayed on the screen. The lower right-hand corner of the
rectangle to be displayed in the pad is calculated from the screen coordinates, since the rectangles must be the
same size. Both rectangles must be entirely contained within their respective structures. Negative values of
pminrow, pmincol, sminrow, or smincolare treated as if they were zero.

scroll ([lines = 1])
Scroll the screen upward bylines lines.

scrollok (flag)
Controls what happens when the cursor of a window is moved off the edge of the window or scrolling region,
either as a result of a newline action on the bottom line, or typing the last character of the last line. Ifflag is
false, the cursor is left on the bottom line. Ifflag is true, the window is scrolled up one line. Note that in order
to get the physical scrolling effect on the terminal, it is also necessary to callidlok() .

setscrreg (top, bottom)
Set the scrolling region from linetop to linebottom. All scrolling actions will take place in this region.

132 Chapter 6. Generic Operating System Services

standend ()
Turn off the standout attribute. On some terminals this has the side effect of turning off all attributes.

standout ()
Turn on attributeA STANDOUT.

subpad ([nlines, ncols,] begin y, begin y)
Return a sub-window, whose upper-left corner is at(begin y, begin x) , and whose width/height is
ncols/nlines.

subwin ([nlines, ncols,] begin y, begin y)
Return a sub-window, whose upper-left corner is at(begin y, begin x) , and whose width/height is
ncols/nlines.

By default, the sub-window will extend from the specified position to the lower right corner of the window.

syncdown ()
Touches each location in the window that has been touched in any of its ancestor windows. This routine is called
by refresh() , so it should almost never be necessary to call it manually.

syncok (flag)
If called withflagset to true, thensyncup() is called automatically whenever there is a change in the window.

syncup ()
Touches all locations in ancestors of the window that have been changed in the window.

timeout (delay)
Sets blocking or non-blocking read behavior for the window. Ifdelayis negative, blocking read is used, which
will wait indefinitely for input). If delay is zero, then non-blocking read is used, and -1 will be returned by
getch() if no input is waiting. If delay is positive, thengetch() will block for delaymilliseconds, and
return -1 if there is still no input at the end of that time.

touchline (start, count)
Pretendcountlines have been changed, starting with linestart.

touchwin ()
Pretend the whole window has been changed, for purposes of drawing optimizations.

untouchwin ()
Marks all lines in the window as unchanged since the last call torefresh() .

vline ([y, x,] ch, n)
Display a vertical line starting at(y, x) with lengthn consisting of the characterch.

6.12.3 Constants

Thecurses module defines the following data members:

version
A string representing the current version of the module. Also available asversion .

Several constants are available to specify character cell attributes:

Attribute Meaning
A ALTCHARSET Alternate character set mode.
A BLINK Blink mode.
A BOLD Bold mode.
A DIM Dim mode.
A NORMAL Normal attribute.
A STANDOUT Standout mode.
A UNDERLINE Underline mode.

6.12. curses — Terminal handling for character-cell displays 133

Keys are referred to by integer constants with names starting with ‘KEY ’. The exact keycaps available are system
dependent.

Key constant Key

KEY MIN Minimum key value
KEY BREAK Break key (unreliable)
KEY DOWN Down-arrow
KEY UP Up-arrow
KEY LEFT Left-arrow
KEY RIGHT Right-arrow
KEY HOME Home key (upward+left arrow)
KEY BACKSPACE Backspace (unreliable)
KEY F0 Function keys. Up to 64 function keys are supported.
KEY Fn Value of function keyn
KEY DL Delete line
KEY IL Insert line
KEY DC Delete character
KEY IC Insert char or enter insert mode
KEY EIC Exit insert char mode
KEY CLEAR Clear screen
KEY EOS Clear to end of screen
KEY EOL Clear to end of line
KEY SF Scroll 1 line forward
KEY SR Scroll 1 line backward (reverse)
KEY NPAGE Next page
KEY PPAGE Previous page
KEY STAB Set tab
KEY CTAB Clear tab
KEY CATAB Clear all tabs
KEY ENTER Enter or send (unreliable)
KEY SRESET Soft (partial) reset (unreliable)
KEY RESET Reset or hard reset (unreliable)
KEY PRINT Print
KEY LL Home down or bottom (lower left)
KEY A1 Upper left of keypad
KEY A3 Upper right of keypad
KEY B2 Center of keypad
KEY C1 Lower left of keypad
KEY C3 Lower right of keypad
KEY BTAB Back tab
KEY BEG Beg (beginning)
KEY CANCEL Cancel
KEY CLOSE Close
KEY COMMAND Cmd (command)
KEY COPY Copy
KEY CREATE Create
KEY END End
KEY EXIT Exit
KEY FIND Find
KEY HELP Help
KEY MARK Mark
KEY MESSAGE Message
KEY MOVE Move

134 Chapter 6. Generic Operating System Services

Key constant Key

KEY NEXT Next
KEY OPEN Open
KEY OPTIONS Options
KEY PREVIOUS Prev (previous)
KEY REDO Redo
KEY REFERENCE Ref (reference)
KEY REFRESH Refresh
KEY REPLACE Replace
KEY RESTART Restart
KEY RESUME Resume
KEY SAVE Save
KEY SBEG Shifted Beg (beginning)
KEY SCANCEL Shifted Cancel
KEY SCOMMAND Shifted Command
KEY SCOPY Shifted Copy
KEY SCREATE Shifted Create
KEY SDC Shifted Delete char
KEY SDL Shifted Delete line
KEY SELECT Select
KEY SEND Shifted End
KEY SEOL Shifted Clear line
KEY SEXIT Shifted Dxit
KEY SFIND Shifted Find
KEY SHELP Shifted Help
KEY SHOME Shifted Home
KEY SIC Shifted Input
KEY SLEFT Shifted Left arrow
KEY SMESSAGE Shifted Message
KEY SMOVE Shifted Move
KEY SNEXT Shifted Next
KEY SOPTIONS Shifted Options
KEY SPREVIOUS Shifted Prev
KEY SPRINT Shifted Print
KEY SREDO Shifted Redo
KEY SREPLACE Shifted Replace
KEY SRIGHT Shifted Right arrow
KEY SRSUME Shifted Resume
KEY SSAVE Shifted Save
KEY SSUSPEND Shifted Suspend
KEY SUNDO Shifted Undo
KEY SUSPEND Suspend
KEY UNDO Undo
KEY MOUSE Mouse event has occurred
KEY RESIZE Terminal resize event
KEY MAX Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are normally at least four function keys
(KEY F1, KEY F2, KEY F3, KEY F4) available, and the arrow keys mapped toKEY UP, KEY DOWN, KEY LEFT
and KEY RIGHT in the obvious way. If your machine has a PC keybboard, it is safe to expect arrow keys and
twelve function keys (older PC keyboards may have only ten function keys); also, the following keypad mappings are

6.12. curses — Terminal handling for character-cell displays 135

standard:

Keycap Constant
Insert KEY IC
Delete KEY DC
Home KEY HOME
End KEY END
Page Up KEY NPAGE
Page Down KEY PPAGE

The following table lists characters from the alternate character set. These are inherited from the VT100 terminal, and
will generally be available on software emulations such as X terminals. When there is no graphic available, curses falls
back on a crude printable ASCII approximation.Note: These are available only afterinitscr() has been called.

ACS code Meaning

ACS BBSS alternate name for upper right corner
ACS BLOCK solid square block
ACS BOARD board of squares
ACS BSBS alternate name for horizontal line
ACS BSSB alternate name for upper left corner
ACS BSSS alternate name for top tee
ACS BTEE bottom tee
ACS BULLET bullet
ACS CKBOARD checker board (stipple)
ACS DARROW arrow pointing down
ACS DEGREE degree symbol
ACS DIAMOND diamond
ACS GEQUAL greater-than-or-equal-to
ACS HLINE horizontal line
ACS LANTERN lantern symbol
ACS LARROW left arrow
ACS LEQUAL less-than-or-equal-to
ACS LLCORNER lower left-hand corner
ACS LRCORNER lower right-hand corner
ACS LTEE left tee
ACS NEQUAL not-equal sign
ACS PI letter pi
ACS PLMINUS plus-or-minus sign
ACS PLUS big plus sign
ACS RARROW right arrow
ACS RTEE right tee
ACS S1 scan line 1
ACS S3 scan line 3
ACS S7 scan line 7
ACS S9 scan line 9
ACS SBBS alternate name for lower right corner
ACS SBSB alternate name for vertical line
ACS SBSS alternate name for right tee
ACS SSBB alternate name for lower left corner
ACS SSBS alternate name for bottom tee
ACS SSSB alternate name for left tee
ACS SSSS alternate name for crossover or big plus
ACS STERLING pound sterling

136 Chapter 6. Generic Operating System Services

ACS code Meaning

ACS TTEE top tee
ACS UARROW up arrow
ACS ULCORNER upper left corner
ACS URCORNER upper right corner
ACS VLINE vertical line

The following table lists the predefined colors:

Constant Color
COLORBLACK Black
COLORBLUE Blue
COLORCYAN Cyan (light greenish blue)
COLORGREEN Green
COLORMAGENTA Magenta (purplish red)
COLORRED Red
COLORWHITE White
COLORYELLOW Yellow

6.13 curses.textpad — Text input widget for curses programs

New in version 1.6.

Thecurses.textpad module provides aTextbox class that handles elementary text editing in a curses window,
supporting a set of keybindings resembling those of Emacs (thus, also of Netscape Navigator, BBedit 6.x, FrameMaker,
and many other programs). The module also provides a rectangle-drawing function useful for framing text boxes or
for other purposes.

The modulecurses.textpad defines the following function:

rectangle (win, uly, ulx, lry, lrx)
Draw a rectangle. The first argument must be a window object; the remaining arguments are coordinates relative
to that window. The second and third arguments are the y and x coordinates of the upper left hand corner of
the rectangle To be drawn; the fourth and fifth arguments are the y and x coordinates of the lower right hand
corner. The rectangle will be drawn using VT100/IBM PC forms characters on terminals that make this possible
(including xterm and most other software terminal emulators). Otherwise it will be drawn with ASCII dashes,
vertical bars, and plus signs.

6.13.1 Textbox objects

You can instantiate aTextbox object as follows:

Textbox (win)
Return a textbox widget object. Thewin argument should be a cursesWindowObject in which the textbox is
to be contained. The edit cursor of the textbox is initially located at the upper left hand corner of the containin
window, with coordinates(0, 0) . The instance’sstripspaces flag is initially on.

Textbox objects have the following methods:

edit ([validator])
This is the entry point you will normally use. It accepts editing keystrokes until one of the termination keystrokes

6.13. curses.textpad — Text input widget for curses programs 137

is entered. Ifvalidator is supplied, it must be a function. It will be called for each keystroke entered with the
keystroke as a parameter; command dispatch is done on the result. This method returns the window contents as
a string; whether blanks in the window are included is affected by thestripspaces member.

do command(ch)
Process a single command keystroke. Here are the supported special keystrokes:

Keystroke Action
Ctrl-A Go to left edge of window.
Ctrl-B Cursor left, wrapping to previous line if appropriate.
Ctrl-D Delete character under cursor.
Ctrl-E Go to right edge (stripspaces off) or end of line (stripspaces on).
Ctrl-F Cursor right, wrapping to next line when appropriate.
Ctrl-G Terminate, returning the window contents.
Ctrl-H Delete character backward.
Ctrl-J Terminate if the window is 1 line, otherwise insert newline.
Ctrl-K If line is blank, delete it, otherwise clear to end of line.
Ctrl-L Refresh screen.
Ctrl-N Cursor down; move down one line.
Ctrl-O Insert a blank line at cursor location.
Ctrl-P Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is not possible. The following
synonyms are supported where possible:

Constant Keystroke
KEY LEFT Ctrl-B
KEY RIGHT Ctrl-F
KEY UP Ctrl-P
KEY DOWN Ctrl-N
KEY BACKSPACE Ctrl-h

All other keystrokes are treated as a command to insert the given character and move right (with line wrapping).

gather ()
This method returns the window contents as a string; whether blanks in the window are included is affected by
thestripspaces member.

stripspaces
This data member is a flag which controls the interpretation of blanks in the window. When it is on, trailing
blanks on each line are ignored; any cursor motion that would land the cursor on a trailing blank goes to the end
of that line instead, and trailing blanks are stripped when the window contents is gathered.

6.14 curses.wrapper — Terminal handler for curses programs

New in version 1.6.

This module supplies one function,wrapper() , which runs another function which should be the rest of your curses-
using application. If the application raises an exception,wrapper() will restore the terminal to a sane state before
passing it further up the stack and generating a traceback.

wrapper (func, ...)
Wrapper function that initializes curses and calls another function,func, restoring normal keyboard/screen be-
havior on error. The callable objectfunc is then passed the main window ’stdscr’ as its first argument, followed
by any other arguments passed towrapper() .

Before calling the hook function,wrapper() turns on cbreak mode, turns off echo, enables the terminal keypad,
and initializes colors if the terminal has color support. On exit (whether normally or by exception) it restores cooked

138 Chapter 6. Generic Operating System Services

mode, turns on echo, and disables the terminal keypad.

6.15 curses.ascii — Utilities for ASCII characters

New in version 1.6.

The curses.ascii module supplies name constants forASCII characters and functions to test membership in
variousASCII character classes. The constants supplied are names for control characters as follows:

Name Meaning
NUL
SOH Start of heading, console interrupt
STX Start of text
ETX End of text
EOT End of transmission
ENQ Enquiry, goes withACKflow control
ACK Acknowledgement
BEL Bell
BS Backspace
TAB Tab
HT Alias for TAB: “Horizontal tab”
LF Line feed
NL Alias for LF: “New line”
VT Vertical tab
FF Form feed
CR Carriage return
SO Shift-out, begin alternate character set
SI Shift-in, resume default character set
DLE Data-link escape
DC1 XON, for flow control
DC2 Device control 2, block-mode flow control
DC3 XOFF, for flow control
DC4 Device control 4
NAK Negative acknowledgement
SYN Synchronous idle
ETB End transmission block
CAN Cancel
EM End of medium
SUB Substitute
ESC Escape
FS File separator
GS Group separator
RS Record separator, block-mode terminator
US Unit separator
SP Space
DEL Delete

Note that many of these have little practical use in modern usage.

The module supplies the following functions, patterned on those in the standard C library:

isalnum (c)
Checks for anASCII alphanumeric character; it is equivalent to ‘isalpha(c) or isdigit(c) ’.

6.15. curses.ascii — Utilities for ASCII characters 139

isalpha (c)
Checks for anASCII alphabetic character; it is equivalent to ‘isupper(c) or islower(c) ’.

isascii (c)
Checks for a character value that fits in the 7-bitASCII set.

isblank (c)
Checks for anASCII whitespace character.

iscntrl (c)
Checks for anASCII control character (in the range 0x00 to 0x1f).

isdigit (c)
Checks for anASCII decimal digit, ‘0’ through ‘9’. This is equivalent to ‘c in string.digits ’.

isgraph (c)
Checks forASCII any printable character except space.

islower (c)
Checks for anASCII lower-case character.

isprint (c)
Checks for anyASCII printable character including space.

ispunct (c)
Checks for any printableASCII character which is not a space or an alphanumeric character.

isspace (c)
Checks forASCII white-space characters; space, tab, line feed, carriage return, form feed, horizontal tab, vertical
tab.

isupper (c)
Checks for anASCII uppercase letter.

isxdigit (c)
Checks for anASCII hexadecimal digit. This is equivalent to ‘c in string.hexdigits ’.

isctrl (c)
Checks for anASCII control character (ordinal values 0 to 31).

ismeta (c)
Checks for a non-ASCII character (ordinal values 0x80 and above).

These functions accept either integers or strings; when the argument is a string, it is first converted using the built-in
functionord() .

Note that all these functions check ordinal bit values derived from the first character of the string you pass in; they do
not actually know anything about the host machine’s character encoding. For functions that know about the character
encoding (and handle internationalization properly) see thestring module.

The following two functions take either a single-character string or integer byte value; they return a value of the same
type.

ascii (c)
Return the ASCII value corresponding to the low 7 bits ofc.

ctrl (c)
Return the control character corresponding to the given character (the character bit value is bitwise-anded with
0x1f).

alt (c)
Return the 8-bit character corresponding to the given ASCII character (the character bit value is bitwise-ored
with 0x80).

140 Chapter 6. Generic Operating System Services

The following function takes either a single-character string or integer value; it returns a string.

unctrl (c)
Return a string representation of theASCII characterc. If c is printable, this string is the character itself. If the
character is a control character (0x00-0x1f) the string consists of a caret (‘ˆ ’) followed by the corresponding
uppercase letter. If the character is anASCII delete (0x7f) the string is’ˆ?’ . If the character has its meta bit
(0x80) set, the meta bit is stripped, the preceding rules applied, and ‘! ’ prepended to the result.

controlnames
A 33-element string array that contains theASCII mnemonics for the thirty-twoASCII control characters from 0
(NUL) to 0x1f (US), in order, plus the mnemonic ‘SP’ for the space character.

6.16 getopt — Parser for command line options

This module helps scripts to parse the command line arguments insys.argv . It supports the same conventions as
the UNIX getopt() function (including the special meanings of arguments of the form ‘- ’ and ‘-- ’). Long options
similar to those supported by GNU software may be used as well via an optional third argument. This module provides
a single function and an exception:

getopt (args, options[, long options])
Parses command line options and parameter list.args is the argument list to be parsed, without the leading
reference to the running program. Typically, this means ‘sys.argv[1:] ’. options is the string of option
letters that the script wants to recognize, with options that require an argument followed by a colon (‘: ’; i.e.,
the same format that UNIX getopt() uses).

long options, if specified, must be a list of strings with the names of the long options which should be sup-
ported. The leading’--’ characters should not be included in the option name. Long options which require an
argument should be followed by an equal sign (‘=’).

The return value consists of two elements: the first is a list of(option, value) pairs; the second is the list of
program arguments left after the option list was stripped (this is a trailing slice ofargs). Each option-and-value
pair returned has the option as its first element, prefixed with a hyphen for short options (e.g.,’-x’) or two
hyphens for long options (e.g.,’--long-option’), and the option argument as its second element, or an
empty string if the option has no argument. The options occur in the list in the same order in which they were
found, thus allowing multiple occurrences. Long and short options may be mixed.

GetoptError
This is raised when an unrecognized option is found in the argument list or when an option requiring an argument
is given none. The argument to the exception is a string indicating the cause of the error. For long options, an
argument given to an option which does not require one will also cause this exception to be raised. The attributes
msg andopt give the error message and related option; if there is no specific option to which the exception
relates,opt is an empty string.

error
Alias for GetoptError ; for backward compatibility.

An example using only UNIX style options:

6.16. getopt — Parser for command line options 141

>>> import getopt
>>> args = ’-a -b -cfoo -d bar a1 a2’.split()
>>> args
[’-a’, ’-b’, ’-cfoo’, ’-d’, ’bar’, ’a1’, ’a2’]
>>> optlist, args = getopt.getopt(args, ’abc:d:’)
>>> optlist
[(’-a’, ’’), (’-b’, ’’), (’-c’, ’foo’), (’-d’, ’bar’)]
>>> args
[’a1’, ’a2’]

Using long option names is equally easy:

>>> s = ’--condition=foo --testing --output-file abc.def -x a1 a2’
>>> args = s.split()
>>> args
[’--condition=foo’, ’--testing’, ’--output-file’, ’abc.def’, ’-x’, ’a1’, ’a2’]
>>> optlist, args = getopt.getopt(args, ’x’, [
... ’condition=’, ’output-file=’, ’testing’])
>>> optlist
[(’--condition’, ’foo’), (’--testing’, ’’), (’--output-file’, ’abc.def’), (’-x’,

’’)]
>>> args
[’a1’, ’a2’]

In a script, typical usage is something like this:

import getopt, sys

def main():
try:

opts, args = getopt.getopt(sys.argv[1:], "ho:", ["help", "output="])
except getopt.GetoptError:

print help information and exit:
usage()
sys.exit(2)

output = None
for o, a in opts:

if o in ("-h", "--help"):
usage()
sys.exit()

if o in ("-o", "--output"):
output = a

...

if __name__ == "__main__":
main()

142 Chapter 6. Generic Operating System Services

6.17 tempfile — Generate temporary file names

This module generates temporary file names. It is not UNIX specific, but it may require some help on non-UNIX

systems.

The module defines the following user-callable functions:

mktemp([suffix])
Return a unique temporary filename. This is an absolute pathname of a file that does not exist at the time the call
is made. No two calls will return the same filename.suffix, if provided, is used as the last part of the generated
file name. This can be used to provide a filename extension or other identifying information that may be useful
on some platforms.

TemporaryFile ([mode[, bufsize[, suffix]]])
Return a file (or file-like) object that can be used as a temporary storage area. The file is created in the most
secure manner available in the appropriate temporary directory for the host platform. Under UNIX , the directory
entry to the file is removed so that it is secure against attacks which involve creating symbolic links to the file
or replacing the file with a symbolic link to some other file. For other platforms, which don’t allow removing
the directory entry while the file is in use, the file is automatically deleted as soon as it is closed (including an
implicit close when it is garbage-collected).

The modeparameter defaults to’w+b’ so that the file created can be read and written without being closed.
Binary mode is used so that it behaves consistently on all platforms without regard for the data that is stored.
bufsizedefaults to-1 , meaning that the operating system default is used.suffixis passed tomktemp() .

The module uses two global variables that tell it how to construct a temporary name. The caller may assign values to
them; by default they are initialized at the first call tomktemp() .

tempdir
When set to a value other thanNone, this variable defines the directory in which filenames returned by
mktemp() reside. The default is taken from the environment variable $TMPDIR; if this is not set, either
‘ /usr/tmp’ is used (on UNIX), or the current working directory (all other systems). No check is made to see
whether its value is valid.

gettempprefix ()
Return the filename prefix used to create temporary files. This does not contain the directory component. Using
this function is preferred over using thetemplate variable directly. New in version 1.5.2.

template
Deprecated since release 2.0.Usegettempprefix() instead.

When set to a value other thanNone, this variable defines the prefix of the final component of the filenames
returned bymktemp() . A string of decimal digits is added to generate unique filenames. The default is either
‘@pid.’ wherepid is the current process ID (on UNIX), ‘˜pid-’ on Windows NT, ‘Python-Tmp-’ on MacOS, or
‘ tmp’ (all other systems).

Older versions of this module used to require thattemplate be set toNone after a call toos.fork() ; this
has not been necessary since version 1.5.2.

6.18 errno — Standard errno system symbols

This module makes available standarderrno system symbols. The value of each symbol is the corresponding integer
value. The names and descriptions are borrowed from ‘linux/include/errno.h’, which should be pretty all-inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system. For instance,
errno.errorcode[errno.EPERM] maps to’EPERM’ .

To translate a numeric error code to an error message, useos.strerror() .

6.17. tempfile — Generate temporary file names 143

Of the following list, symbols that are not used on the current platform are not defined by the module. The specific list
of defined symbols is available aserrno.errorcode.keys() . Symbols available can include:

EPERM
Operation not permitted

ENOENT
No such file or directory

ESRCH
No such process

EINTR
Interrupted system call

EIO
I/O error

ENXIO
No such device or address

E2BIG
Arg list too long

ENOEXEC
Exec format error

EBADF
Bad file number

ECHILD
No child processes

EAGAIN
Try again

ENOMEM
Out of memory

EACCES
Permission denied

EFAULT
Bad address

ENOTBLK
Block device required

EBUSY
Device or resource busy

EEXIST
File exists

EXDEV
Cross-device link

ENODEV
No such device

ENOTDIR
Not a directory

EISDIR
Is a directory

144 Chapter 6. Generic Operating System Services

EINVAL
Invalid argument

ENFILE
File table overflow

EMFILE
Too many open files

ENOTTY
Not a typewriter

ETXTBSY
Text file busy

EFBIG
File too large

ENOSPC
No space left on device

ESPIPE
Illegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE
Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

6.18. errno — Standard errno system symbols 145

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

ELNRNG
Link number out of range

EUNATCH
Protocol driver not attached

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO
No anode

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired

ENOSR
Out of streams resources

ENONET
Machine is not on the network

ENOPKG
Package not installed

146 Chapter 6. Generic Operating System Services

EREMOTE
Object is remote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

ECOMM
Communication error on send

EPROTO
Protocol error

EMULTIHOP
Multihop attempted

EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Value too large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

EREMCHG
Remote address changed

ELIBACC
Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
.lib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec a shared library directly

EILSEQ
Illegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS
Too many users

6.18. errno — Standard errno system symbols 147

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

ENOPROTOOPT
Protocol not available

EPROTONOSUPPORT
Protocol not supported

ESOCKTNOSUPPORT
Socket type not supported

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT
Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Cannot assign requested address

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

ECONNABORTED
Software caused connection abort

ECONNRESET
Connection reset by peer

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references: cannot splice

148 Chapter 6. Generic Operating System Services

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

ESTALE
Stale NFS file handle

EUCLEAN
Structure needs cleaning

ENOTNAM
Not a XENIX named type file

ENAVAIL
No XENIX semaphores available

EISNAM
Is a named type file

EREMOTEIO
Remote I/O error

EDQUOT
Quota exceeded

6.19 glob — UNIX style pathname pattern expansion

Theglob module finds all the pathnames matching a specified pattern according to the rules used by the UNIX shell.
No tilde expansion is done, but* , ?, and character ranges expressed with[] will be correctly matched. This is done by
using theos.listdir() andfnmatch.fnmatch() functions in concert, and not by actually invoking a subshell.
(For tilde and shell variable expansion, useos.path.expanduser() andos.path.expandvars() .)

glob (pathname)
Returns a possibly-empty list of path names that matchpathname, which must be a string containing a path spec-
ification. pathnamecan be either absolute (like ‘/usr/src/Python-1.5/Makefile’) or relative (like ‘../../Tools/*/*.gif’),
and can contain shell-style wildcards.

For example, consider a directory containing only the following files: ‘1.gif’, ‘ 2.txt’, and ‘card.gif’. glob() will
produce the following results. Notice how any leading components of the path are preserved.

6.19. glob — UNIX style pathname pattern expansion 149

>>> import glob
>>> glob.glob(’./[0-9].*’)
[’./1.gif’, ’./2.txt’]
>>> glob.glob(’*.gif’)
[’1.gif’, ’card.gif’]
>>> glob.glob(’?.gif’)
[’1.gif’]

See Also:

Modulefnmatch (section 6.20):
Shell-style filename (not path) expansion

6.20 fnmatch — UNIX filename pattern matching

This module provides support for UNIX shell-style wildcards, which arenot the same as regular expressions (which
are documented in there module). The special characters used in shell-style wildcards are:

Pattern Meaning
* matches everything
? matches any single character

[seq] matches any character inseq
[! seq] matches any character not inseq

Note that the filename separator (’/’ on UNIX) is not special to this module. See moduleglob for pathname
expansion (glob usesfnmatch() to match pathname segments). Similarly, filenames starting with a period are not
special for this module, and are matched by the* and? patterns.

fnmatch (filename, pattern)
Test whether thefilenamestring matches thepatternstring, returning true or false. If the operating system is
case-insensitive, then both parameters will be normalized to all lower- or upper-case before the comparison is
performed. If you require a case-sensitive comparison regardless of whether that’s standard for your operating
system, usefnmatchcase() instead.

fnmatchcase (filename, pattern)
Test whetherfilenamematchespattern, returning true or false; the comparison is case-sensitive.

See Also:

Moduleglob (section 6.19):
UNIX shell-style path expansion.

6.21 shutil — High-level file operations

Theshutil module offers a number of high-level operations on files and collections of files. In particular, functions
are provided which support file copying and removal.

Caveat: On MacOS, the resource fork and other metadata are not used. For file copies, this means that resources will
be lost and file type and creator codes will not be correct.

copyfile (src, dst)
Copy the contents ofsrc to dst. If dstexists, it will be replaced, otherwise it will be created.

150 Chapter 6. Generic Operating System Services

copyfileobj (fsrc, fdst[, length])
Copy the contents of the file-like objectfsrc to the file-like objectfdst. The integerlength, if given, is the buffer
size. In particular, a negativelengthvalue means to copy the data without looping over the source data in chunks;
by default the data is read in chunks to avoid uncontrolled memory consumption.

copymode (src, dst)
Copy the permission bits fromsrc to dst. The file contents, owner, and group are unaffected.

copystat (src, dst)
Copy the permission bits, last access time, and last modification time fromsrc to dst. The file contents, owner,
and group are unaffected.

copy (src, dst)
Copy the filesrc to the file or directorydst. If dst is a directory, a file with the same basename assrc is created
(or overwritten) in the directory specified. Permission bits are copied.

copy2 (src, dst)
Similar to copy() , but last access time and last modification time are copied as well. This is similar to the
UNIX commandcp -p.

copytree (src, dst[, symlinks])
Recursively copy an entire directory tree rooted atsrc. The destination directory, named bydst, must not already
exist; it will be created. Individual files are copied usingcopy2() . If symlinksis true, symbolic links in the
source tree are represented as symbolic links in the new tree; if false or omitted, the contents of the linked files
are copied to the new tree. Errors are reported to standard output.

The source code for this should be considered an example rather than a tool.

rmtree (path[, ignore errors[, onerror]])
Delete an entire directory tree. Ifignore errors is true, errors will be ignored; if false or omitted, errors are
handled by calling a handler specified byonerror or raise an exception.

If onerror is provided, it must be a callable that accepts three parameters:function, path, andexcinfo. The first
parameter,function, is the function which raised the exception; it will beos.remove() or os.rmdir() .
The second parameter,path, will be the path name passed tofunction. The third parameter,excinfo, will be the
exception information return bysys.exc info() . Exceptions raised byonerror will not be caught.

6.21.1 Example

This example is the implementation of thecopytree() function, described above, with the docstring omitted. It
demonstrates many of the other functions provided by this module.

6.21. shutil — High-level file operations 151

def copytree(src, dst, symlinks=0):
names = os.listdir(src)
os.mkdir(dst)
for name in names:

srcname = os.path.join(src, name)
dstname = os.path.join(dst, name)
try:

if symlinks and os.path.islink(srcname):
linkto = os.readlink(srcname)
os.symlink(linkto, dstname)

elif os.path.isdir(srcname):
copytree(srcname, dstname)

else:
copy2(srcname, dstname)

XXX What about devices, sockets etc.?
except (IOError, os.error), why:

print "Can’t copy %s to %s: %s" % (‘srcname‘, ‘dstname‘, str(why))

6.22 locale — Internationalization services

The locale module opens access to the POSIX locale database and functionality. The POSIX locale mechanism
allows programmers to deal with certain cultural issues in an application, without requiring the programmer to know
all the specifics of each country where the software is executed.

The locale module is implemented on top of thelocale module, which in turn uses an ANSI C locale imple-
mentation if available.

The locale module defines the following exception and functions:

setlocale (category[, value])
If valueis specified, modifies the locale setting for thecategory. The available categories are listed in the data
description below. The value is the name of a locale. An empty string specifies the user’s default settings. If the
modification of the locale fails, the exceptionError is raised. If successful, the new locale setting is returned.

If no valueis specified, the current setting for thecategoryis returned.

setlocale() is not thread safe on most systems. Applications typically start with a call of

import locale
locale.setlocale(locale.LC_ALL,"")

This sets the locale for all categories to the user’s default setting (typically specified in the $LANG environment
variable). If the locale is not changed thereafter, using multithreading should not cause problems.

Error
Exception raised whensetlocale() fails.

localeconv ()
Returns the database of of the local conventions as a dictionary. This dictionary has the following strings as
keys:

•decimal point specifies the decimal point used in floating point number representations for the
LC NUMERICcategory.

•grouping is a sequence of numbers specifying at which relative positions thethousands sep is
expected. If the sequence is terminated withCHAR MAX, no further grouping is performed. If the sequence
terminates with a0, the last group size is repeatedly used.

152 Chapter 6. Generic Operating System Services

•thousands sep is the character used between groups.

•int curr symbol specifies the international currency symbol from theLC MONETARYcategory.

•currency symbol is the local currency symbol.

•mon decimal point is the decimal point used in monetary values.

•mon thousands sep is the separator for grouping of monetary values.

•mon grouping has the same format as thegrouping key; it is used for monetary values.

•positive sign andnegative sign gives the sign used for positive and negative monetary quan-
tities.

•int frac digits and frac digits specify the number of fractional digits used in the interna-
tional and local formatting of monetary values.

•p cs precedes andn cs precedes specifies whether the currency symbol precedes the value for
positive or negative values.

•p sep by space andn sep by space specifies whether there is a space between the positive or
negative value and the currency symbol.

•p sign posn andn sign posn indicate how the sign should be placed for positive and negative
monetary values.

The possible values forp sign posn andn sign posn are given below.

Value Explanation
0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.

LC MAX Nothing is specified in this locale.

strcoll (string1,string2)
Compares two strings according to the currentLC COLLATEsetting. As any other compare function, returns a
negative, or a positive value, or0, depending on whetherstring1collates before or afterstring2or is equal to it.

strxfrm (string)
Transforms a string to one that can be used for the built-in functioncmp() , and still returns locale-aware
results. This function can be used when the same string is compared repeatedly, e.g. when collating a sequence
of strings.

format (format, val,[grouping = 0])
Formats a numberval according to the currentLC NUMERICsetting. The format follows the conventions of
the%operator. For floating point values, the decimal point is modified if appropriate. Ifgroupingis true, also
takes the grouping into account.

str (float)
Formats a floating point number using the same format as the built-in functionstr(float) , but takes the decimal
point into account.

atof (string)
Converts a string to a floating point number, following theLC NUMERICsettings.

atoi (string)
Converts a string to an integer, following theLC NUMERICconventions.

LC CTYPE
Locale category for the character type functions. Depending on the settings of this category, the functions of
modulestring dealing with case change their behaviour.

6.22. locale — Internationalization services 153

LC COLLATE
Locale category for sorting strings. The functionsstrcoll() andstrxfrm() of the locale module are
affected.

LC TIME
Locale category for the formatting of time. The functiontime.strftime() follows these conventions.

LC MONETARY
Locale category for formatting of monetary values. The available options are available from the
localeconv() function.

LC MESSAGES
Locale category for message display. Python currently does not support application specific locale-aware mes-
sages. Messages displayed by the operating system, like those returned byos.strerror() might be affected
by this category.

LC NUMERIC
Locale category for formatting numbers. The functionsformat() , atoi() , atof() andstr() of the
locale module are affected by that category. All other numeric formatting operations are not affected.

LC ALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale for all
categories is attempted. If that fails for any category, no category is changed at all. When the locale is retrieved
using this flag, a string indicating the setting for all categories is returned. This string can be later used to restore
the settings.

CHAR MAX
This is a symbolic constant used for different values returned bylocaleconv() .

Example:

>>> import locale
>>> loc = locale.setlocale(locale.LC_ALL) # get current locale
>>> locale.setlocale(locale.LC_ALL, "de") # use German locale
>>> locale.strcoll("f\344n", "foo") # compare a string containing an umlaut
>>> locale.setlocale(locale.LC_ALL, "") # use user’s preferred locale
>>> locale.setlocale(locale.LC_ALL, "C") # use default (C) locale
>>> locale.setlocale(locale.LC_ALL, loc) # restore saved locale

6.22.1 Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change. On top of
that, some implementation are broken in such a way that frequent locale changes may cause core dumps. This makes
the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is the ‘C’ locale, no matter what the user’s preferred locale is. The
program must explicitly say that it wants the user’s preferred locale settings by callingsetlocale(LC ALL,
"") .

It is generally a bad idea to callsetlocale() in some library routine, since as a side effect it affects the entire
program. Saving and restoring it is almost as bad: it is expensive and affects other threads that happen to run before
the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that is affected by the
locale (e.g.string.lower() , or certain formats used withtime.strftime())), you will have to find a way to
do it without using the standard library routine. Even better is convincing yourself that using locale settings is okay.
Only as a last resort should you document that your module is not compatible with non-‘C’ locale settings.

154 Chapter 6. Generic Operating System Services

The case conversion functions in thestring and strop modules are affected by the locale settings. When
a call to thesetlocale() function changes theLC CTYPE settings, the variablesstring.lowercase ,
string.uppercase andstring.letters (and their counterparts instrop) are recalculated. Note that this
code that uses these variable through ‘from ... import ...’, e.g. from string import letters , is not af-
fected by subsequentsetlocale() calls.

The only way to perform numeric operations according to the locale is to use the special functions defined by this
module:atof() , atoi() , format() , str() .

6.22.2 For extension writers and programs that embed Python

Extension modules should never callsetlocale() , except to find out what the current locale is. But since the
return value can only be used portably to restore it, that is not very useful (except perhaps to find out whether or not
the locale is ‘C’).

When Python is embedded in an application, if the application sets the locale to something specific before initializing
Python, that is generally okay, and Python will use whatever locale is set,exceptthat theLC NUMERIClocale should
always be ‘C’.

The setlocale() function in thelocale module gives the Python programmer the impression that you can
manipulate theLC NUMERIClocale setting, but this not the case at the C level: C code will always find that the
LC NUMERIClocale setting is ‘C’. This is because too much would break when the decimal point character is set to
something else than a period (e.g. the Python parser would break). Caveat: threads that run without holding Python’s
global interpreter lock may occasionally find that the numeric locale setting differs; this is because the only portable
way to implement this feature is to set the numeric locale settings to what the user requests, extract the relevant
characteristics, and then restore the ‘C’ numeric locale.

When Python code uses thelocale module to change the locale, this also affects the embedding application. If the
embedding application doesn’t want this to happen, it should remove thelocale extension module (which does
all the work) from the table of built-in modules in the ‘config.c’ file, and make sure that thelocale module is not
accessible as a shared library.

6.23 gettext — Multilingual internationalization services

Thegettext module provides internationalization (I18N) and localization (L10N) services for your Python modules
and applications. It supports both the GNUgettext message catalog API and a higher level, class-based API
that may be more appropriate for Python files. The interface described below allows you to write your module and
application messages in one natural language, and provide a catalog of translated messages for running under different
natural languages.

Some hints on localizing your Python modules and applications are also given.

6.23.1 GNU gettext API

Thegettext module defines the following API, which is very similar to the GNUgettext API. If you use this API
you will affect the translation of your entire application globally. Often this is what you want if your application is
monolingual, with the choice of language dependent on the locale of your user. If you are localizing a Python module,
or if your application needs to switch languages on the fly, you probably want to use the class-based API instead.

bindtextdomain (domain[, localedir])
Bind thedomainto the locale directorylocaledir. More concretely,gettext will look for binary ‘.mo’ files
for the given domain using the path (on UNIX): ‘ localedir/language/LC MESSAGES/domain.mo’, where
languagesis searched for in the environment variables $LANGUAGE, $LCALL, $LC MESSAGES, and
$LANG respectively.

6.23. gettext — Multilingual internationalization services 155

If localedir is omitted orNone, then the current binding fordomainis returned.1

textdomain ([domain])
Change or query the current global domain. Ifdomainis None, then the current global domain is returned,
otherwise the global domain is set todomain, which is returned.

gettext (message)
Return the localized translation ofmessage, based on the current global domain, language, and locale directory.
This function is usually aliased asin the local namespace (see examples below).

dgettext (domain, message)
Like gettext() , but look the message up in the specifieddomain.

Note that GNUgettext also defines adcgettext() method, but this was deemed not useful and so it is currently
unimplemented.

Here’s an example of typical usage for this API:

import gettext
gettext.bindtextdomain(’myapplication’, ’/path/to/my/language/directory’)
gettext.textdomain(’myapplication’)
_ = gettext.gettext
...
print _(’This is a translatable string.’)

6.23.2 Class-based API

The class-based API of thegettext module gives you more flexibility and greater convenience than the GNU
gettext API. It is the recommended way of localizing your Python applications and modules.gettext defines a
“translations” class which implements the parsing of GNU ‘.mo’ format files, and has methods for returning either
standard 8-bit strings or Unicode strings. Translations instances can also install themselves in the built-in namespace
as the function () .

find (domain[, localedir[, languages]])
This function implements the standard ‘.mo’ file search algorithm. It takes adomain, identical to what
textdomain() takes, and optionally alocaledir (as in bindtextdomain()), and a list of languages.
All arguments are strings.

If localedir is not given, then the default system locale directory is used.2 If languagesis not given, then the
following environment variables are searched: $LANGUAGE, $LCALL, $LC MESSAGES, and $LANG.
The first one returning a non-empty value is used for thelanguagesvariable. The environment variables can
contain a colon separated list of languages, which will be split.

find() then expands and normalizes the languages, and then iterates through them, searching for an existing
file built of these components:

‘ localedir/language/LC MESSAGES/domain.mo’

The first such file name that exists is returned byfind() . If no such file is found, thenNone is returned.

translation (domain[, localedir[, languages[, class]]])
Return aTranslations instance based on thedomain, localedir, andlanguages, which are first passed to
find() to get the associated ‘.mo’ file path. Instances with identical ‘.mo’ file names are cached. The actual
class instantiated is eitherclass if provided, otherwiseGNUTranslations . The class’s constructor must
take a single file object argument. If no ‘.mo’ file is found, this function raisesIOError .

1The default locale directory is system dependent; e.g. on RedHat Linux it is ‘/usr/share/locale’, but on Solaris it is ‘/usr/lib/locale’. The
gettext module does not try to support these system dependent defaults; instead its default is ‘sys.prefix /share/locale’. For this reason,
it is always best to callbindtextdomain() with an explicit absolute path at the start of your application.

2See the footnote forbindtextdomain() above.

156 Chapter 6. Generic Operating System Services

install (domain[, localedir[, unicode]])
This installs the function in Python’s builtin namespace, based ondomain, and localedir which are passed
to the functiontranslation() . Theunicodeflag is passed to the resulting translation object’sinstall
method.

As seen below, you usually mark the strings in your application that are candidates for translation, by wrapping
them in a call to the function() , e.g.

print _(’This string will be translated.’)

For convenience, you want the() function to be installed in Python’s builtin namespace, so it is easily acces-
sible in all modules of your application.

The NullTranslations class

Translation classes are what actually implement the translation of original source file message strings to translated
message strings. The base class used by all translation classes isNullTranslations ; this provides the basic inter-
face you can use to write your own specialized translation classes. Here are the methods ofNullTranslations :

init ([fp])
Takes an optional file objectfp, which is ignored by the base class. Initializes “protected” instance variables
info and charsetwhich are set by derived classes. It then callsself. parse(fp) if fp is notNone.

parse (fp)
No-op’d in the base class, this method takes file objectfp, and reads the data from the file, initializing its message
catalog. If you have an unsupported message catalog file format, you should override this method to parse your
format.

gettext (message)
Return the translated message. Overridden in derived classes.

ugettext (message)
Return the translated message as a Unicode string. Overridden in derived classes.

info ()
Return the “protected” info variable.

charset ()
Return the “protected” charset variable.

install ([unicode])
If the unicodeflag is false, this method installsself.gettext() into the built-in namespace, binding it to
‘ ’. If unicodeis true, it bindsself.ugettext() instead. By default,unicodeis false.

Note that this is only one way, albeit the most convenient way, to make thefunction available to your ap-
plication. Because it affects the entire application globally, and specifically the built-in namespace, localized
modules should never install. Instead, they should use this code to makeavailable to their module:

import gettext
t = gettext.translation(’mymodule’, ...)
_ = t.gettext

This puts only in the module’s global namespace and so only affects calls within this module.

The GNUTranslations class

The gettext module provides one additional class derived fromNullTranslations : GNUTranslations .
This class overridesparse() to enable reading GNUgettext format ‘.mo’ files in both big-endian and little-endian
format.

6.23. gettext — Multilingual internationalization services 157

It also parses optional meta-data out of the translation catalog. It is convention with GNUgettext to include meta-
data as the translation for the empty string. This meta-data is in RFC 822-stylekey: value pairs. If the key
Content-Type is found, then thecharset property is used to initialize the “protected”charset instance
variable. The entire set of key/value pairs are placed into a dictionary and set as the “protected”info instance
variable.

If the ‘.mo’ file’s magic number is invalid, or if other problems occur while reading the file, instantiating a
GNUTranslations class can raiseIOError .

The other usefully overridden method isugettext() , which returns a Unicode string by passing both the translated
message string and the value of the “protected”charset variable to the builtinunicode() function.

Solaris message catalog support

The Solaris operating system defines its own binary ‘.mo’ file format, but since no documentation can be found on this
format, it is not supported at this time.

The Catalog constructor

GNOME uses a version of thegettext module by James Henstridge, but this version has a slightly different API.
Its documented usage was:

import gettext
cat = gettext.Catalog(domain, localedir)
_ = cat.gettext
print _(’hello world’)

For compatibility with this older module, the functionCatalog() is an alias for the thetranslation() function
described above.

One difference between this module and Henstridge’s: his catalog objects supported access through a mapping API,
but this appears to be unused and so is not currently supported.

6.23.3 Internationalizing your programs and modules

Internationalization (I18N) refers to the operation by which a program is made aware of multiple languages. Localiza-
tion (L10N) refers to the adaptation of your program, once internationalized, to the local language and cultural habits.
In order to provide multilingual messages for your Python programs, you need to take the following steps:

1. prepare your program or module by specially marking translatable strings

2. run a suite of tools over your marked files to generate raw messages catalogs

3. create language specific translations of the message catalogs

4. use thegettext module so that message strings are properly translated

In order to prepare your code for I18N, you need to look at all the strings in your files. Any string that needs to be
translated should be marked by wrapping it in(’...’) – i.e. a call to the function () . For example:

158 Chapter 6. Generic Operating System Services

filename = ’mylog.txt’
message = _(’writing a log message’)
fp = open(filename, ’w’)
fp.write(message)
fp.close()

In this example, the string’writing a log message’ is marked as a candidate for translation, while the strings
’mylog.txt’ and’w’ are not.

The GNUgettext package provides a tool, calledxgettext, that scans C and C++ source code looking for these spe-
cially marked strings.xgettextgenerates what are called ‘.pot’ files, essentially structured human readable files which
contain every marked string in the source code. These ‘.pot’ files are copied and handed over to human translators
who write language-specific versions for every supported natural language.

For I18N Python programs however,xgettextwon’t work; it doesn’t understand the myriad of string types support by
Python. The standard Python distribution provides a tool calledpygettext that does though (found in the ‘Tools/i18n/’
directory).3 This is a command line script that supports a similar interface asxgettext; see its documentation for
details. Once you’ve usedpygettext to create your ‘.pot’ files, you can use the standard GNUgettext tools to generate
your machine-readable ‘.mo’ files, which are readable by theGNUTranslations class.

How you use thegettext module in your code depends on whether you are internationalizing your entire application
or a single module.

Localizing your module

If you are localizing your module, you must take care not to make global changes, e.g. to the built-in namespace. You
should not use the GNUgettext API but instead the class-based API.

Let’s say your module is called “spam” and the module’s various natural language translation ‘.mo’ files reside in
‘ /usr/share/locale’ in GNU gettext format. Here’s what you would put at the top of your module:

import gettext
t = gettext.translation(’spam’, ’/usr/share/locale’)
_ = t.gettext

If your translators were providing you with Unicode strings in their ‘.po’ files, you’d instead do:

import gettext
t = gettext.translation(’spam’, ’/usr/share/locale’)
_ = t.ugettext

Localizing your application

If you are localizing your application, you can install the() function globally into the built-in namespace, usually
in the main driver file of your application. This will let all your application-specific files just use(’...’) without
having to explicitly install it in each file.

In the simple case then, you need only add the following bit of code to the main driver file of your application:
3François Pinard has written a program calledxpot which does a similar job. It is available as part of hispo-utils package at

http://www.iro.umontreal.ca/contrib/po-utils/HTML.

6.23. gettext — Multilingual internationalization services 159

import gettext
gettext.install(’myapplication’)

If you need to set the locale directory or theunicodeflag, you can pass these into theinstall() function:

import gettext
gettext.install(’myapplication’, ’/usr/share/locale’, unicode=1)

Changing languages on the fly

If your program needs to support many languages at the same time, you may want to create multiple translation
instances and then switch between them explicitly, like so:

import gettext

lang1 = gettext.translation(languages=[’en’])
lang2 = gettext.translation(languages=[’fr’])
lang3 = gettext.translation(languages=[’de’])

start by using language1
lang1.install()

... time goes by, user selects language 2
lang2.install()

... more time goes by, user selects language 3
lang3.install()

Deferred translations

In most coding situations, strings are translated were they are coded. Occasionally however, you need to mark strings
for translation, but defer actual translation until later. A classic example is:

animals = [’mollusk’,
’albatross’,

’rat’,
’penguin’,
’python’,
]

...
for a in animals:

print a

Here, you want to mark the strings in theanimals list as being translatable, but you don’t actually want to translate
them until they are printed.

Here is one way you can handle this situation:

160 Chapter 6. Generic Operating System Services

def _(message): return message

animals = [_(’mollusk’),
_(’albatross’),

_(’rat’),
_(’penguin’),
_(’python’),
]

del _

...
for a in animals:

print _(a)

This works because the dummy definition of() simply returns the string unchanged. And this dummy definition
will temporarily override any definition of () in the built-in namespace (until thedel command). Take care, though
if you have a previous definition of in the local namespace.

Note that the second use of() will not identify “a” as being translatable to thepygettext program, since it is not a
string.

Another way to handle this is with the following example:

def N_(message): return message

animals = [N_(’mollusk’),
N_(’albatross’),

N_(’rat’),
N_(’penguin’),
N_(’python’),
]

...
for a in animals:

print _(a)

In this case, you are marking translatable strings with the functionN () ,4 which won’t conflict with any definition of
() . However, you will need to teach your message extraction program to look for translatable strings marked with

N () . pygettextandxpot both support this through the use of command line switches.

6.23.4 Acknowledgements

The following people contributed code, feedback, design suggestions, previous implementations, and valuable experi-
ence to the creation of this module:

• Peter Funk

• James Henstridge

• Marc-Andŕe Lemburg

• Martin von Löwis
4The choice ofN () here is totally arbitrary; it could have just as easily beenMarkThisStringForTranslation() .

6.23. gettext — Multilingual internationalization services 161

• François Pinard

• Barry Warsaw

162 Chapter 6. Generic Operating System Services

CHAPTER

SEVEN

Optional Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on selected
operating systems only. The interfaces are generally modeled after the UNIX or C interfaces but they are available on
some other systems as well (e.g. Windows or NT). Here’s an overview:

signal Set handlers for asynchronous events.
socket Low-level networking interface.
select Wait for I/O completion on multiple streams.
thread Create multiple threads of control within one interpreter.
threading Higher-level threading interface.
mutex Lock and queue for mutual exclusion.
Queue A synchronized queue class.
mmap Interface to memory-mapped files for Unix and Windows.
anydbm Generic interface to DBM-style database modules.
dumbdbm Portable implementation of the simple DBM interface.
dbhash DBM-style interface to the BSD database library.
whichdb Guess which DBM-style module created a given database.
bsddb Interface to Berkeley DB database library
zlib Low-level interface to compression and decompression routines compatible withgzip.
gzip Interfaces forgzip compression and decompression using file objects.
zipfile Read and write ZIP-format archive files.
readline GNU readline support for Python.
rlcompleter Python identifier completion for the GNU readline library.

7.1 signal — Set handlers for asynchronous events

This module provides mechanisms to use signal handlers in Python. Some general rules for working with signals and
their handlers:

• A handler for a particular signal, once set, remains installed until it is explicitly reset (i.e. Python emulates
the BSD style interface regardless of the underlying implementation), with the exception of the handler for
SIGCHLD, which follows the underlying implementation.

• There is no way to “block” signals temporarily from critical sections (since this is not supported by all UNIX

flavors).

• Although Python signal handlers are called asynchronously as far as the Python user is concerned, they can only
occur between the “atomic” instructions of the Python interpreter. This means that signals arriving during long
calculations implemented purely in C (e.g. regular expression matches on large bodies of text) may be delayed
for an arbitrary amount of time.

163

• When a signal arrives during an I/O operation, it is possible that the I/O operation raises an exception after
the signal handler returns. This is dependent on the underlying UNIX system’s semantics regarding interrupted
system calls.

• Because the C signal handler always returns, it makes little sense to catch synchronous errors likeSIGFPE or
SIGSEGV.

• Python installs a small number of signal handlers by default:SIGPIPE is ignored (so write errors
on pipes and sockets can be reported as ordinary Python exceptions) andSIGINT is translated into a
KeyboardInterrupt exception. All of these can be overridden.

• Some care must be taken if both signals and threads are used in the same program. The fundamental thing to
remember in using signals and threads simultaneously is: always performsignal() operations in the main
thread of execution. Any thread can perform analarm() , getsignal() , orpause() ; only the main thread
can set a new signal handler, and the main thread will be the only one to receive signals (this is enforced by the
Pythonsignal module, even if the underlying thread implementation supports sending signals to individual
threads). This means that signals can’t be used as a means of inter-thread communication. Use locks instead.

The variables defined in thesignal module are:

SIG DFL
This is one of two standard signal handling options; it will simply perform the default function for the signal.
For example, on most systems the default action forSIGQUIT is to dump core and exit, while the default action
for SIGCLD is to simply ignore it.

SIG IGN
This is another standard signal handler, which will simply ignore the given signal.

SIG*
All the signal numbers are defined symbolically. For example, the hangup signal is defined as
signal.SIGHUP ; the variable names are identical to the names used in C programs, as found in
<signal.h> . The UNIX man page for ‘signal() ’ lists the existing signals (on some systems this issig-
nal(2), on others the list is insignal(7)). Note that not all systems define the same set of signal names; only
those names defined by the system are defined by this module.

NSIG
One more than the number of the highest signal number.

Thesignal module defines the following functions:

alarm (time)
If time is non-zero, this function requests that aSIGALRMsignal be sent to the process intimeseconds. Any
previously scheduled alarm is canceled (i.e. only one alarm can be scheduled at any time). The returned value
is then the number of seconds before any previously set alarm was to have been delivered. Iftime is zero, no
alarm id scheduled, and any scheduled alarm is canceled. The return value is the number of seconds remaining
before a previously scheduled alarm. If the return value is zero, no alarm is currently scheduled. (See the UNIX

man pagealarm(2).)

getsignal (signalnum)
Return the current signal handler for the signalsignalnum. The returned value may be a callable Python object,
or one of the special valuessignal.SIG IGN, signal.SIG DFL or None. Here,signal.SIG IGN
means that the signal was previously ignored,signal.SIG DFL means that the default way of handling the
signal was previously in use, andNone means that the previous signal handler was not installed from Python.

pause ()
Cause the process to sleep until a signal is received; the appropriate handler will then be called. Returns nothing.
(See the UNIX man pagesignal(2).)

signal (signalnum, handler)
Set the handler for signalsignalnumto the functionhandler. handlercan be a callable Python object taking

164 Chapter 7. Optional Operating System Services

two arguments (see below), or one of the special valuessignal.SIG IGN or signal.SIG DFL. The
previous signal handler will be returned (see the description ofgetsignal() above). (See the UNIX man
pagesignal(2).)

When threads are enabled, this function can only be called from the main thread; attempting to call it from other
threads will cause aValueError exception to be raised.

The handler is called with two arguments: the signal number and the current stack frame (None or a frame
object; see the reference manual for a description of frame objects).

7.1.1 Example

Here is a minimal example program. It uses thealarm() function to limit the time spent waiting to open a file; this
is useful if the file is for a serial device that may not be turned on, which would normally cause theos.open() to
hang indefinitely. The solution is to set a 5-second alarm before opening the file; if the operation takes too long, the
alarm signal will be sent, and the handler raises an exception.

import signal, os, FCNTL

def handler(signum, frame):
print ’Signal handler called with signal’, signum
raise IOError, "Couldn’t open device!"

Set the signal handler and a 5-second alarm
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)

This open() may hang indefinitely
fd = os.open(’/dev/ttyS0’, FCNTL.O_RDWR)

signal.alarm(0) # Disable the alarm

7.2 socket — Low-level networking interface

This module provides access to the BSDsocketinterface. It is available on all modern UNIX systems, Windows,
MacOS, BeOS, OS/2, and probably additional platforms.

For an introduction to socket programming (in C), see the following papers:An Introductory 4.3BSD Interprocess
Communication Tutorial, by Stuart Sechrest andAn Advanced 4.3BSD Interprocess Communication Tutorial, by
Samuel J. Leffler et al, both in the UNIX Programmer’s Manual, Supplementary Documents 1(sections PS1:7 and
PS1:8). The platform-specific reference material for the various socket-related system calls are also a valuable source
of information on the details of socket semantics. For UNIX , refer to the manual pages; for Windows, see the WinSock
(or Winsock 2) specification.

The Python interface is a straightforward transliteration of the UNIX system call and library interface for sockets
to Python’s object-oriented style: thesocket() function returns asocket objectwhose methods implement the
various socket system calls. Parameter types are somewhat higher-level than in the C interface: as withread() and
write() operations on Python files, buffer allocation on receive operations is automatic, and buffer length is implicit
on send operations.

Socket addresses are represented as a single string for theAF UNIX address family and as a pair(host, port) for
theAF INET address family, wherehost is a string representing either a hostname in Internet domain notation like
’daring.cwi.nl’ or an IP address like’100.50.200.5’ , andport is an integral port number. Other address

7.2. socket — Low-level networking interface 165

families are currently not supported. The address format required by a particular socket object is automatically selected
based on the address family specified when the socket object was created.

For IP addresses, two special forms are accepted instead of a host address: the empty string representsINADDR ANY,
and the string’<broadcast>’ representsINADDR BROADCAST.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can be
raised; errors related to socket or address semantics raise the errorsocket.error .

Non-blocking mode is supported through thesetblocking() method.

The modulesocket exports the following constants and functions:

error
This exception is raised for socket- or address-related errors. The accompanying value is either a string telling
what went wrong or a pair(errno, string) representing an error returned by a system call, similar to the value
accompanyingos.error . See the moduleerrno , which contains names for the error codes defined by the
underlying operating system.

AF UNIX
AF INET

These constants represent the address (and protocol) families, used for the first argument tosocket() . If the
AF UNIX constant is not defined then this protocol is unsupported.

SOCK STREAM
SOCK DGRAM
SOCK RAW
SOCK RDM
SOCK SEQPACKET

These constants represent the socket types, used for the second argument tosocket() . (OnlySOCK STREAM
andSOCK DGRAMappear to be generally useful.)

SO *
SOMAXCONN
MSG*
SOL *
IPPROTO *
IPPORT *
INADDR *
IP *

Many constants of these forms, documented in the UNIX documentation on sockets and/or the IP protocol,
are also defined in the socket module. They are generally used in arguments to thesetsockopt() and
getsockopt() methods of socket objects. In most cases, only those symbols that are defined in the UNIX

header files are defined; for a few symbols, default values are provided.

getfqdn ([name])
Return a fully qualified domain name forname. If nameis omitted or empty, it is interpreted as the local host.
To find the fully qualified name, the hostname returned bygethostbyaddr() is checked, then aliases for
the host, if available. The first name which includes a period is selected. In case no fully qualified domain name
is available, the hostname is returned. New in version 2.0.

gethostbyname (hostname)
Translate a host name to IP address format. The IP address is returned as a string, e.g.,’100.50.200.5’ .
If the host name is an IP address itself it is returned unchanged. Seegethostbyname ex() for a more
complete interface.

gethostbyname ex (hostname)
Translate a host name to IP address format, extended interface. Return a triple(hostname, aliaslist,
ipaddrlist) wherehostname is the primary host name responding to the givenip address, aliaslist
is a (possibly empty) list of alternative host names for the same address, andipaddrlist is a list of IP

166 Chapter 7. Optional Operating System Services

addresses for the same interface on the same host (often but not always a single address).

gethostname ()
Return a string containing the hostname of the machine where the Python interpreter is currently executing.
If you want to know the current machine’s IP address, usegethostbyname(gethostname()) .
Note: gethostname() doesn’t always return the fully qualified domain name; use
gethostbyaddr(gethostname()) (see below).

gethostbyaddr (ip address)
Return a triple(hostname, aliaslist, ipaddrlist) wherehostnameis the primary host name responding to
the givenip address, aliaslist is a (possibly empty) list of alternative host names for the same address, and
ipaddrlist is a list of IP addresses for the same interface on the same host (most likely containing only a single
address). To find the fully qualified domain name, use the functiongetfqdn() .

getprotobyname (protocolname)
Translate an Internet protocol name (e.g.’icmp’) to a constant suitable for passing as the (optional) third argu-
ment to thesocket() function. This is usually only needed for sockets opened in “raw” mode (SOCK RAW);
for the normal socket modes, the correct protocol is chosen automatically if the protocol is omitted or zero.

getservbyname (servicename, protocolname)
Translate an Internet service name and protocol name to a port number for that service. The protocol name
should be’tcp’ or ’udp’ .

socket (family, type[, proto])
Create a new socket using the given address family, socket type and protocol number. The address family should
beAF INET or AF UNIX. The socket type should beSOCK STREAM, SOCK DGRAMor perhaps one of the
other ‘SOCK ’ constants. The protocol number is usually zero and may be omitted in that case.

fromfd (fd, family, type[, proto])
Build a socket object from an existing file descriptor (an integer as returned by a file object’sfileno()
method). Address family, socket type and protocol number are as for thesocket() function above. The file
descriptor should refer to a socket, but this is not checked — subsequent operations on the object may fail if the
file descriptor is invalid. This function is rarely needed, but can be used to get or set socket options on a socket
passed to a program as standard input or output (e.g. a server started by the UNIX inet daemon).

ntohl (x)
Convert 32-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

ntohs (x)
Convert 16-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

htonl (x)
Convert 32-bit integers from host to network byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

htons (x)
Convert 16-bit integers from host to network byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

inet aton (ip string)
Convert an IP address from dotted-quad string format (e.g. ’123.45.67.89’) to 32-bit packed binary format, as a
string four characters in length.

Useful when conversing with a program that uses the standard C library and needs objects of typestruct
in addr , which is the C type for the 32-bit packed binary this function returns.

If the IP address string passed to this function is invalid,socket.error will be raised. Note that exactly
what is valid depends on the underlying C implementation ofinet aton() .

inet ntoa (packed ip)

7.2. socket — Low-level networking interface 167

Convert a 32-bit packed IP address (a string four characters in length) to its standard dotted-quad string repre-
sentation (e.g. ’123.45.67.89’).

Useful when conversing with a program that uses the standard C library and needs objects of typestruct
in addr , which is the C type for the 32-bit packed binary this function takes as an argument.

If the string passed to this function is not exactly 4 bytes in length,socket.error will be raised.

SocketType
This is a Python type object that represents the socket object type. It is the same astype(socket(...)) .

See Also:

ModuleSocketServer (section 11.13):
Classes that simplify writing network servers.

7.2.1 Socket Objects

Socket objects have the following methods. Except formakefile() these correspond to UNIX system calls appli-
cable to sockets.

accept ()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair(conn, address) whereconnis anewsocket object usable to send and receive data on the connection,
andaddressis the address bound to the socket on the other end of the connection.

bind (address)
Bind the socket toaddress. The socket must not already be bound. (The format ofaddressdepends on the
address family — see above.)Note: This method has historically accepted a pair of parameters forAF INET
addresses instead of only a tuple. This was never intentional and will no longer be available in Python 1.7.

close ()
Close the socket. All future operations on the socket object will fail. The remote end will receive no more data
(after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

connect (address)
Connect to a remote socket ataddress. (The format ofaddressdepends on the address family — see above.)
Note: This method has historically accepted a pair of parameters forAF INET addresses instead of only a
tuple. This was never intentional and will no longer be available in Python 1.7.

connect ex (address)
Like connect(address) , but return an error indicator instead of raising an exception for errors returned by
the C-levelconnect() call (other problems, such as “host not found,” can still raise exceptions). The error
indicator is0 if the operation succeeded, otherwise the value of theerrno variable. This is useful, e.g.,
for asynchronous connects.Note: This method has historically accepted a pair of parameters forAF INET
addresses instead of only a tuple. This was never intentional and will no longer be available in Python 1.7.

fileno ()
Return the socket’s file descriptor (a small integer). This is useful withselect.select() .

getpeername ()
Return the remote address to which the socket is connected. This is useful to find out the port number of a
remote IP socket, for instance. (The format of the address returned depends on the address family — see above.)
On some systems this function is not supported.

getsockname ()
Return the socket’s own address. This is useful to find out the port number of an IP socket, for instance. (The
format of the address returned depends on the address family — see above.)

getsockopt (level, optname[, buflen])
Return the value of the given socket option (see the UNIX man pagegetsockopt(2)). The needed symbolic

168 Chapter 7. Optional Operating System Services

constants (SO * etc.) are defined in this module. Ifbuflenis absent, an integer option is assumed and its integer
value is returned by the function. Ifbuflenis present, it specifies the maximum length of the buffer used to
receive the option in, and this buffer is returned as a string. It is up to the caller to decode the contents of the
buffer (see the optional built-in modulestruct for a way to decode C structures encoded as strings).

listen (backlog)
Listen for connections made to the socket. Thebacklogargument specifies the maximum number of queued
connections and should be at least 1; the maximum value is system-dependent (usually 5).

makefile ([mode[, bufsize]])
Return afile objectassociated with the socket. (File objects are described in 2.1.7, “File Objects.”) The file
object references adup() ped version of the socket file descriptor, so the file object and socket object may be
closed or garbage-collected independently. The optionalmodeandbufsizearguments are interpreted the same
way as by the built-inopen() function.

recv (bufsize[, flags])
Receive data from the socket. The return value is a string representing the data received. The maximum amount
of data to be received at once is specified bybufsize. See the UNIX manual pagerecv(2) for the meaning of the
optional argumentflags; it defaults to zero.

recvfrom (bufsize[, flags])
Receive data from the socket. The return value is a pair(string, address) wherestring is a string representing
the data received andaddressis the address of the socket sending the data. The optionalflagsargument has the
same meaning as forrecv() above. (The format ofaddressdepends on the address family — see above.)

send (string[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optionalflagsargument has the
same meaning as forrecv() above. Returns the number of bytes sent.

sendto (string[, flags], address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket
is specified byaddress. The optionalflagsargument has the same meaning as forrecv() above. Return the
number of bytes sent. (The format ofaddressdepends on the address family — see above.)

setblocking (flag)
Set blocking or non-blocking mode of the socket: ifflag is 0, the socket is set to non-blocking, else to blocking
mode. Initially all sockets are in blocking mode. In non-blocking mode, if arecv() call doesn’t find any data,
or if a send() call can’t immediately dispose of the data, aerror exception is raised; in blocking mode, the
calls block until they can proceed.

setsockopt (level, optname, value)
Set the value of the given socket option (see the UNIX manual pagesetsockopt(2)). The needed symbolic
constants are defined in thesocket module (SO * etc.). The value can be an integer or a string representing
a buffer. In the latter case it is up to the caller to ensure that the string contains the proper bits (see the optional
built-in modulestruct for a way to encode C structures as strings).

shutdown (how)
Shut down one or both halves of the connection. Ifhowis 0, further receives are disallowed. Ifhowis 1, further
sends are disallowed. Ifhow is 2, further sends and receives are disallowed.

Note that there are no methodsread() or write() ; userecv() andsend() withoutflagsargument instead.

7.2.2 Example

Here are two minimal example programs using the TCP/IP protocol: a server that echoes all data that it receives back
(servicing only one client), and a client using it. Note that a server must perform the sequencesocket() , bind() ,
listen() , accept() (possibly repeating theaccept() to service more than one client), while a client only
needs the sequencesocket() , connect() . Also note that the server does notsend() /recv() on the socket it

7.2. socket — Low-level networking interface 169

is listening on but on the new socket returned byaccept() .

Echo server program
import socket

HOST = ’’ # Symbolic name meaning the local host
PORT = 50007 # Arbitrary non-privileged port
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
print ’Connected by’, addr
while 1:

data = conn.recv(1024)
if not data: break
conn.send(data)

conn.close()

Echo client program
import socket

HOST = ’daring.cwi.nl’ # The remote host
PORT = 50007 # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send(’Hello, world’)
data = s.recv(1024)
s.close()
print ’Received’, ‘data‘

7.3 select — Waiting for I/O completion

This module provides access to theselect() andpoll() functions available in most operating systems. Note that
on Windows, it only works for sockets; on other operating systems, it also works for other file types (in particular, on
UNIX , it works on pipes). It cannot be used on regular files to determine whether a file has grown since it was last
read.

The module defines the following:

error
The exception raised when an error occurs. The accompanying value is a pair containing the numeric error code
from errno and the corresponding string, as would be printed by the C functionperror() .

poll ()
(Not supported by all operating systems.) Returns a polling object, which supports registering and unregistering
file descriptors, and then polling them for I/O events; see section 7.3.1 below for the methods supported by
polling objects.

select (iwtd, owtd, ewtd[, timeout])
This is a straightforward interface to the UNIX select() system call. The first three arguments are lists of
‘waitable objects’: either integers representing UNIX file descriptors or objects with a parameterless method
namedfileno() returning such an integer. The three lists of waitable objects are for input, output and
‘exceptional conditions’, respectively. Empty lists are allowed. The optionaltimeoutargument specifies a time-
out as a floating point number in seconds. When thetimeoutargument is omitted the function blocks until at

170 Chapter 7. Optional Operating System Services

least one file descriptor is ready. A time-out value of zero specifies a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments. When the
time-out is reached without a file descriptor becoming ready, three empty lists are returned.

Amongst the acceptable object types in the lists are Python file objects (e.g.sys.stdin , or objects returned
by open() or os.popen()), socket objects returned bysocket.socket() , and the modulestdwin
which happens to define a functionfileno() for just this purpose. You may also define awrapperclass
yourself, as long as it has an appropriatefileno() method (that really returns a UNIX file descriptor, not just
a random integer).

7.3.1 Polling Objects

Thepoll() system call, supported on most Unix systems, provides better scalability for network servers that service
many, many clients at the same time.poll() scales better because the system call only requires listing the file
descriptors of interest, whileselect() builds a bitmap, turns on bits for the fds of interest, and then afterward the
whole bitmap has to be linearly scanned again.select() is O(highest file descriptor), whilepoll() is O(number
of file descriptors).

register (fd[, eventmask])
Register a file descriptor with the polling object. Future calls to thepoll() method will then check whether
the file descriptor has any pending I/O events.fd can be either an integer, or an object with afileno() method
that returns an integer. File objects implementfileno() , so they can also be used as the argument.

eventmaskis an optional bitmask describing the type of events you want to check for, and can be a combination
of the constantsPOLLIN, POLLPRI, andPOLLOUT, described in the table below. If not specified, the default
value used will check for all 3 types of events.

Constant Meaning
POLLIN There is data to read
POLLPRI There is urgent data to read
POLLOUT Ready for output: writing will not block
POLLERR Error condition of some sort
POLLHUP Hung up
POLLNVAL Invalid request: descriptor not open

Registering a file descriptor that’s already registered is not an error, and has the same effect as registering the
descriptor exactly once.

unregister (fd)
Remove a file descriptor being tracked by a polling object. Just like theregister() method,fd can be an
integer or an object with afileno() method that returns an integer.

Attempting to remove a file descriptor that was never registered causes aKeyError exception to be raised.

poll ([timeout])
Polls the set of registered file descriptors, and returns a possibly-empty list containing(fd, event) 2-tuples for
the descriptors that have events or errors to report.fd is the file descriptor, andeventis a bitmask with bits set for
the reported events for that descriptor —POLLIN for waiting input,POLLOUTto indicate that the descriptor
can be written to, and so forth. An empty list indicates that the call timed out and no file descriptors had any
events to report.

7.4 thread — Multiple threads of control

This module provides low-level primitives for working with multiple threads (a.k.a.light-weight processesor tasks)
— multiple threads of control sharing their global data space. For synchronization, simple locks (a.k.a.mutexesor
binary semaphores) are provided.

7.4. thread — Multiple threads of control 171

The module is optional. It is supported on Windows NT and ’95, SGI IRIX, Solaris 2.x, as well as on systems that
have a POSIX thread (a.k.a. “pthread”) implementation.

It defines the following constant and functions:

error
Raised on thread-specific errors.

LockType
This is the type of lock objects.

start new thread (function, args[, kwargs])
Start a new thread. The thread executes the functionfunctionwith the argument listargs (which must be a
tuple). The optionalkwargsargument specifies a dictionary of keyword arguments. When the function returns,
the thread silently exits. When the function terminates with an unhandled exception, a stack trace is printed and
then the thread exits (but other threads continue to run).

exit ()
Raise theSystemExit exception. When not caught, this will cause the thread to exit silently.

exit thread ()
Deprecated since release 1.5.2.Useexit() .

This is an obsolete synonym forexit() .

allocate lock ()
Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

get ident ()
Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct meaning;
it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread identifiers
may be recycled when a thread exits and another thread is created.

Lock objects have the following methods:

acquire ([waitflag])
Without the optional argument, this method acquires the lock unconditionally, if necessary waiting until it is
released by another thread (only one thread at a time can acquire a lock — that’s their reason for existence), and
returnsNone. If the integerwaitflagargument is present, the action depends on its value: if it is zero, the lock
is only acquired if it can be acquired immediately without waiting, while if it is nonzero, the lock is acquired
unconditionally as before. If an argument is present, the return value is1 if the lock is acquired successfully,0
if not.

release ()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.

locked ()
Return the status of the lock:1 if it has been acquired by some thread,0 if not.

Caveats:

• Threads interact strangely with interrupts: theKeyboardInterrupt exception will be received by an arbi-
trary thread. (When thesignal module is available, interrupts always go to the main thread.)

• Callingsys.exit() or raising theSystemExit exception is equivalent to callingexit() .

• Not all built-in functions that may block waiting for I/O allow other threads to run. (The most popular ones
(time.sleep() , file.read() , select.select()) work as expected.)

• It is not possible to interrupt theacquire() method on a lock — theKeyboardInterrupt exception will
happen after the lock has been acquired.

172 Chapter 7. Optional Operating System Services

• When the main thread exits, it is system defined whether the other threads survive. On SGI IRIX using the
native thread implementation, they survive. On most other systems, they are killed without executingtry ...
finally clauses or executing object destructors.

• When the main thread exits, it does not do any of its usual cleanup (except thattry ... finally clauses are
honored), and the standard I/O files are not flushed.

7.5 threading — Higher-level threading interface

This module constructs higher-level threading interfaces on top of the lower levelthread module.

This module is safe for use with ‘from threading import * ’. It defines the following functions and objects:

activeCount ()
Return the number of currently activeThread objects. The returned count is equal to the length of the list
returned byenumerate() . A function that returns the number of currently active threads.

Condition ()
A factory function that returns a new condition variable object. A condition variable allows one or more threads
to wait until they are notified by another thread.

currentThread ()
Return the currentThread object, corresponding to the caller’s thread of control. If the caller’s thread of
control was not created through thethreading module, a dummy thread object with limited functionality is
returned.

enumerate ()
Return a list of all currently activeThread objects. The list includes daemonic threads, dummy thread objects
created bycurrentThread() , and the main thread. It excludes terminated threads and threads that have not
yet been started.

Event ()
A factory function that returns a new event object. An event manages a flag that can be set to true with the
set() method and reset to false with theclear() method. Thewait() method blocks until the flag is true.

Lock ()
A factory function that returns a new primitive lock object. Once a thread has acquired it, subsequent attempts
to acquire it block, until it is released; any thread may release it.

RLock ()
A factory function that returns a new reentrant lock object. A reentrant lock must be released by the thread that
acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking;
the thread must release it once for each time it has acquired it.

Semaphore ()
A factory function that returns a new semaphore object. A semaphore manages a counter representing the
number ofrelease() calls minus the number ofacquire() calls, plus an initial value. Theacquire()
method blocks if necessary until it can return without making the counter negative.

Thread ()
A class that represents a thread of control. This class can be safely subclassed in a limited fashion.

Detailed interfaces for the objects are documented below.

The design of this module is loosely based on Java’s threading model. However, where Java makes locks and condition
variables basic behavior of every object, they are separate objects in Python. Python’sThread class supports a subset
of the behavior of Java’s Thread class; currently, there are no priorities, no thread groups, and threads cannot be
destroyed, stopped, suspended, resumed, or interrupted. The static methods of Java’s Thread class, when implemented,
are mapped to module-level functions.

7.5. threading — Higher-level threading interface 173

All of the methods described below are executed atomically.

7.5.1 Lock Objects

A primitive lock is a synchronization primitive that is not owned by a particular thread when locked. In Python, it is
currently the lowest level synchronization primitive available, implemented directly by thethread extension module.

A primitive lock is in one of two states, “locked” or “unlocked”. It is created in the unlocked state. It has two basic
methods,acquire() andrelease() . When the state is unlocked,acquire() changes the state to locked and
returns immediately. When the state is locked,acquire() blocks until a call torelease() in another thread
changes it to unlocked, then theacquire() call resets it to locked and returns. Therelease() method should
only be called in the locked state; it changes the state to unlocked and returns immediately. When more than one thread
is blocked inacquire() waiting for the state to turn to unlocked, only one thread proceeds when arelease()
call resets the state to unlocked; which one of the waiting threads proceeds is not defined, and may vary across
implementations.

All methods are executed atomically.

acquire ([blocking = 1])
Acquire a lock, blocking or non-blocking.

When invoked without arguments, block until the lock is unlocked, then set it to locked, and return. There is no
return value in this case.

When invoked with theblockingargument set to true, do the same thing as when called without arguments, and
return true.

When invoked with theblockingargument set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and return true.

release ()
Release a lock.

When the lock is locked, reset it to unlocked, and return. If any other threads are blocked waiting for the lock to
become unlocked, allow exactly one of them to proceed.

Do not call this method when the lock is unlocked.

There is no return value.

7.5.2 RLock Objects

A reentrant lock is a synchronization primitive that may be acquired multiple times by the same thread. Internally, it
uses the concepts of “owning thread” and “recursion level” in addition to the locked/unlocked state used by primitive
locks. In the locked state, some thread owns the lock; in the unlocked state, no thread owns it.

To lock the lock, a thread calls itsacquire() method; this returns once the thread owns the lock. To unlock the
lock, a thread calls itsrelease() method. acquire() /release() call pairs may be nested; only the final
release() (i.e. therelease() of the outermost pair) resets the lock to unlocked and allows another thread
blocked inacquire() to proceed.

acquire ([blocking = 1])
Acquire a lock, blocking or non-blocking.

When invoked without arguments: if this thread already owns the lock, increment the recursion level by one, and
return immediately. Otherwise, if another thread owns the lock, block until the lock is unlocked. Once the lock
is unlocked (not owned by any thread), then grab ownership, set the recursion level to one, and return. If more
than one thread is blocked waiting until the lock is unlocked, only one at a time will be able to grab ownership
of the lock. There is no return value in this case.

174 Chapter 7. Optional Operating System Services

When invoked with theblockingargument set to true, do the same thing as when called without arguments, and
return true.

When invoked with theblockingargument set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and return true.

release ()
Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock to unlocked
(not owned by any thread), and if any other threads are blocked waiting for the lock to become unlocked, allow
exactly one of them to proceed. If after the decrement the recursion level is still nonzero, the lock remains
locked and owned by the calling thread.

Only call this method when the calling thread owns the lock. Do not call this method when the lock is unlocked.

There is no return value.

7.5.3 Condition Objects

A condition variable is always associated with some kind of lock; this can be passed in or one will be created by
default. (Passing one in is useful when several condition variables must share the same lock.)

A condition variable hasacquire() andrelease() methods that call the corresponding methods of the associated
lock. It also has await() method, andnotify() andnotifyAll() methods. These three must only be called
when the calling thread has acquired the lock.

The wait() method releases the lock, and then blocks until it is awakened by anotify() or notifyAll()
call for the same condition variable in another thread. Once awakened, it re-acquires the lock and returns. It is also
possible to specify a timeout.

The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting. The
notifyAll() method wakes up all threads waiting for the condition variable.

Note: thenotify() and notifyAll() methods don’t release the lock; this means that the thread or threads
awakened will not return from theirwait() call immediately, but only when the thread that callednotify() or
notifyAll() finally relinquishes ownership of the lock.

Tip: the typical programming style using condition variables uses the lock to synchronize access to some shared state;
threads that are interested in a particular change of state callwait() repeatedly until they see the desired state, while
threads that modify the state callnotify() or notifyAll() when they change the state in such a way that it could
possibly be a desired state for one of the waiters. For example, the following code is a generic producer-consumer
situation with unlimited buffer capacity:

Consume one item
cv.acquire()
while not an_item_is_available():

cv.wait()
get_an_available_item()
cv.release()

Produce one item
cv.acquire()
make_an_item_available()
cv.notify()
cv.release()

To choose betweennotify() andnotifyAll() , consider whether one state change can be interesting for only
one or several waiting threads. E.g. in a typical producer-consumer situation, adding one item to the buffer only needs
to wake up one consumer thread.

7.5. threading — Higher-level threading interface 175

Condition ([lock])
If the lockargument is given and notNone, it must be aLock or RLock object, and it is used as the underlying
lock. Otherwise, a newRLock object is created and used as the underlying lock.

acquire (*args)
Acquire the underlying lock. This method calls the corresponding method on the underlying lock; the return
value is whatever that method returns.

release ()
Release the underlying lock. This method calls the corresponding method on the underlying lock; there is no
return value.

wait ([timeout])
Wait until notified or until a timeout occurs. This must only be called when the calling thread has acquired the
lock.

This method releases the underlying lock, and then blocks until it is awakened by anotify() or
notifyAll() call for the same condition variable in another thread, or until the optional timeout occurs.
Once awakened or timed out, it re-acquires the lock and returns.

When thetimeoutargument is present and notNone, it should be a floating point number specifying a timeout
for the operation in seconds (or fractions thereof).

When the underlying lock is anRLock , it is not released using itsrelease() method, since this may not
actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface of the
RLock class is used, which really unlocks it even when it has been recursively acquired several times. Another
internal interface is then used to restore the recursion level when the lock is reacquired.

notify ()
Wake up a thread waiting on this condition, if any. This must only be called when the calling thread has acquired
the lock.

This method wakes up one of the threads waiting for the condition variable, if any are waiting; it is a no-op if
no threads are waiting.

The current implementation wakes up exactly one thread, if any are waiting. However, it’s not safe to rely on
this behavior. A future, optimized implementation may occasionally wake up more than one thread.

Note: the awakened thread does not actually return from itswait() call until it can reacquire the lock. Since
notify() does not release the lock, its caller should.

notifyAll ()
Wake up all threads waiting on this condition. This method acts likenotify() , but wakes up all waiting
threads instead of one.

7.5.4 Semaphore Objects

This is one of the oldest synchronization primitives in the history of computer science, invented by the early Dutch
computer scientist Edsger W. Dijkstra (he usedP() andV() instead ofacquire() andrelease()).

A semaphore manages an internal counter which is decremented by eachacquire() call and incremented by each
release() call. The counter can never go below zero; whenacquire() finds that it is zero, it blocks, waiting
until some other thread callsrelease() .

Semaphore ([value])
The optional argument gives the initial value for the internal counter; it defaults to1.

acquire ([blocking])
Acquire a semaphore.

When invoked without arguments: if the internal counter is larger than zero on entry, decrement it by one
and return immediately. If it is zero on entry, block, waiting until some other thread has calledrelease() to

176 Chapter 7. Optional Operating System Services

make it larger than zero. This is done with proper interlocking so that if multipleacquire() calls are blocked,
release() will wake exactly one of them up. The implementation may pick one at random, so the order in
which blocked threads are awakened should not be relied on. There is no return value in this case.

When invoked withblockingset to true, do the same thing as when called without arguments, and return true.

When invoked withblockingset to false, do not block. If a call without an argument would block, return false
immediately; otherwise, do the same thing as when called without arguments, and return true.

release ()
Release a semaphore, incrementing the internal counter by one. When it was zero on entry and another thread
is waiting for it to become larger than zero again, wake up that thread.

7.5.5 Event Objects

This is one of the simplest mechanisms for communication between threads: one thread signals an event and one or
more other threads are waiting for it.

An event object manages an internal flag that can be set to true with theset() method and reset to false with the
clear() method. Thewait() method blocks until the flag is true.

Event ()
The internal flag is initially false.

isSet ()
Return true if and only if the internal flag is true.

set ()
Set the internal flag to true. All threads waiting for it to become true are awakened. Threads that callwait()
once the flag is true will not block at all.

clear ()
Reset the internal flag to false. Subsequently, threads callingwait() will block until set() is called to set
the internal flag to true again.

wait ([timeout])
Block until the internal flag is true. If the internal flag is true on entry, return immediately. Otherwise, block
until another thread callsset() to set the flag to true, or until the optional timeout occurs.

When the timeout argument is present and notNone, it should be a floating point number specifying a timeout
for the operation in seconds (or fractions thereof).

7.5.6 Thread Objects

This class represents an activity that is run in a separate thread of control. There are two ways to specify the activity:
by passing a callable object to the constructor, or by overriding therun() method in a subclass. No other methods
(except for the constructor) should be overridden in a subclass. In other words,only override the init () and
run() methods of this class.

Once a thread object is created, its activity must be started by calling the thread’sstart() method. This invokes the
run() method in a separate thread of control.

Once the thread’s activity is started, the thread is considered ’alive’ and ’active’ (these concepts are almost, but not
quite exactly, the same; their definition is intentionally somewhat vague). It stops being alive and active when its
run() method terminates – either normally, or by raising an unhandled exception. TheisAlive() method tests
whether the thread is alive.

Other threads can call a thread’sjoin() method. This blocks the calling thread until the thread whosejoin()
method is called is terminated.

7.5. threading — Higher-level threading interface 177

A thread has a name. The name can be passed to the constructor, set with thesetName() method, and retrieved with
thegetName() method.

A thread can be flagged as a “daemon thread”. The significance of this flag is that the entire Python program exits
when only daemon threads are left. The initial value is inherited from the creating thread. The flag can be set with the
setDaemon() method and retrieved with thegetDaemon() method.

There is a “main thread” object; this corresponds to the initial thread of control in the Python program. It is not a
daemon thread.

There is the possibility that “dummy thread objects” are created. These are thread objects corresponding to “alien
threads”. These are threads of control started outside the threading module, e.g. directly from C code. Dummy thread
objects have limited functionality; they are always considered alive, active, and daemonic, and cannot bejoin() ed.
They are never deleted, since it is impossible to detect the termination of alien threads.

Thread (group=None, target=None, name=None, args=(), kwargs=–˝)
This constructor should always be called with keyword arguments. Arguments are:

groupShould beNone; reserved for future extension when aThreadGroup class is implemented.

targetCallable object to be invoked by therun() method. Defaults toNone, meaning nothing is called.

nameThe thread name. By default, a unique name is constructed of the form “Thread-N” whereN is a small
decimal number.

argsArgument tuple for the target invocation. Defaults to() .

kwargsKeyword argument dictionary for the target invocation. Defaults to{} .

If the subclass overrides the constructor, it must make sure to invoke the base class constructor
(Thread. init ()) before doing anything else to the thread.

start ()
Start the thread’s activity.

This must be called at most once per thread object. It arranges for the object’srun() method to be invoked in
a separate thread of control.

run ()
Method representing the thread’s activity.

You may override this method in a subclass. The standardrun() method invokes the callable object passed to
the object’s constructor as thetarget argument, if any, with sequential and keyword arguments taken from the
argsandkwargsarguments, respectively.

join ([timeout])
Wait until the thread terminates. This blocks the calling thread until the thread whosejoin() method is called
terminates – either normally or through an unhandled exception – or until the optional timeout occurs.

When thetimeoutargument is present and notNone, it should be a floating point number specifying a timeout
for the operation in seconds (or fractions thereof).

A thread can bejoin() ed many times.

A thread cannot join itself because this would cause a deadlock.

It is an error to attempt tojoin() a thread before it has been started.

getName ()
Return the thread’s name.

setName (name)
Set the thread’s name.

The name is a string used for identification purposes only. It has no semantics. Multiple threads may be given
the same name. The initial name is set by the constructor.

178 Chapter 7. Optional Operating System Services

isAlive ()
Return whether the thread is alive.

Roughly, a thread is alive from the moment thestart() method returns until itsrun() method terminates.

isDaemon ()
Return the thread’s daemon flag.

setDaemon (daemonic)
Set the thread’s daemon flag to the Boolean valuedaemonic. This must be called beforestart() is called.

The initial value is inherited from the creating thread.

The entire Python program exits when no active non-daemon threads are left.

7.6 mutex — Mutual exclusion support

The mutex defines a class that allows mutual-exclusion via acquiring and releasing locks. It does not require (or
imply) threading or multi-tasking, though it could be useful for those purposes.

Themutex module defines the following class:

mutex ()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue
is empty. Otherwise, the queue contains 0 or more(function, argument) pairs representing functions (or
methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not empty, the first queue
entry is removed and itsfunction(argument) pair called, implying it now has the lock.

Of course, no multi-threading is implied – hence the funny interface for lock, where a function is called once
the lock is acquired.

7.6.1 Mutex Objects

mutex objects have following methods:

test ()
Check whether the mutex is locked.

testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and return true, otherwise, return false.

lock (function, argument)
Executefunction(argument) , unless the mutex is locked. In the case it is locked, place the function and argu-
ment on the queue. Seeunlock for explanation of whenfunction(argument) is executed in that case.

unlock ()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

7.7 Queue — A synchronized queue class

The Queue module implements a multi-producer, multi-consumer FIFO queue. It is especially useful in threads
programming when information must be exchanged safely between multiple threads. TheQueue class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python.

TheQueue module defines the following class and exception:

7.6. mutex — Mutual exclusion support 179

Queue(maxsize)
Constructor for the class.maxsizeis an integer that sets the upperbound limit on the number of items that can
be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed. If
maxsizeis less than or equal to zero, the queue size is infinite.

Empty
Exception raised when non-blockingget() (or get nowait()) is called on aQueue object which is empty
or locked.

Full
Exception raised when non-blockingput() (or put nowait()) is called on aQueue object which is full
or locked.

7.7.1 Queue Objects

ClassQueue implements queue objects and has the methods described below. This class can be derived from in order
to implement other queue organizations (e.g. stack) but the inheritable interface is not described here. See the source
code for details. The public methods are:

qsize ()
Return the approximate size of the queue. Because of multithreading semantics, this number is not reliable.

empty ()
Return1 if the queue is empty,0 otherwise. Because of multithreading semantics, this is not reliable.

full ()
Return1 if the queue is full,0 otherwise. Because of multithreading semantics, this is not reliable.

put (item[, block])
Put item into the queue. If optional argumentblock is 1 (the default), block if necessary until a free slot is
available. Otherwise (block is 0), put item on the queue if a free slot is immediately available, else raise the
Full exception.

put nowait (item)
Equivalent toput(item, 0) .

get ([block])
Remove and return an item from the queue. If optional argumentblock is 1 (the default), block if necessary until
an item is available. Otherwise (block is 0), return an item if one is immediately available, else raise theEmpty
exception.

get nowait ()
Equivalent toget(0) .

7.8 mmap— Memory-mapped file support

Memory-mapped file objects behave like both mutable strings and like file objects. You can use mmap objects in most
places where strings are expected; for example, you can use there module to search through a memory-mapped file.
Since they’re mutable, you can change a single character by doingobj[index] = ’a’ , or change a substring by
assigning to a slice:obj[i1: i2] = ’...’ . You can also read and write data starting at the current file position,
andseek() through the file to different positions.

A memory-mapped file is created by the following function, which is different on Unix and on Windows.

mmap(fileno, length[, tagname])
(Windows version) Maps lengthbytes from the file specified by the file handlefileno, and returns a mmap
object. If you wish to map an existing Python file object, use itsfileno() method to obtain the correct value

180 Chapter 7. Optional Operating System Services

for thefilenoparameter.

tagname, if specified, is a string giving a tag name for the mapping. Windows allows you to have many different
mappings against the same file. If you specify the name of an existing tag, that tag is opened, otherwise a new
tag of this name is created. If this parameter is None, the mapping is created without a name. Avoiding the use
of the tag parameter will assist in keeping your code portable between Unix and Windows.

mmap(fileno, size[, flags, prot])
(Unix version) Maps lengthbytes from the file specified by the file handlefileno, and returns a mmap object.
If you wish to map an existing Python file object, use itsfileno() method to obtain the correct value for the
filenoparameter.

flagsspecifies the nature of the mapping.MAP PRIVATE creates a private copy-on-write mapping, so changes
to the contents of the mmap object will be private to this process, andMAP SHAREDcreates a mapping that’s
shared with all other processes mapping the same areas of the file. The default value isMAP SHARED.

prot, if specified, gives the desired memory protection; the two most useful values arePROT READ
and PROT WRITE, to specify that the pages may be read or written.prot defaults toPROT READ |
PROT WRITE.

Memory-mapped file objects support the following methods:

close ()
Close the file. Subsequent calls to other methods of the object will result in an exception being raised.

find (string[, start])
Returns the lowest index in the object where the substringstring is found. Returns-1 on failure. start is the
index at which the search begins, and defaults to zero.

flush ([offset, size])
Flushes changes made to the in-memory copy of a file back to disk. Without use of this call there is no guarantee
that changes are written back before the object is destroyed. Ifoffsetandsizeare specified, only changes to the
given range of bytes will be flushed to disk; otherwise, the whole extent of the mapping is flushed.

move(dest, src, count)
Copy thecountbytes starting at offsetsrc to the destination indexdest.

read (num)
Return a string containing up tonumbytes starting from the current file position; the file position is updated to
point after the bytes that were returned.

read byte ()
Returns a string of length 1 containing the character at the current file position, and advances the file position
by 1.

readline ()
Returns a single line, starting at the current file position and up to the next newline.

resize (newsize)

seek (pos[, whence])
Set the file’s current position.whenceargument is optional and defaults to0 (absolute file positioning); other
values are1 (seek relative to the current position) and2 (seek relative to the file’s end).

size ()
Return the length of the file, which can be larger than the size of the memory-mapped area.

tell ()
Returns the current position of the file pointer.

write (string)
Write the bytes instring into memory at the current position of the file pointer; the file position is updated to
point after the bytes that were written.

7.8. mmap— Memory-mapped file support 181

write byte (byte)
Write the single-character stringbyteinto memory at the current position of the file pointer; the file position is
advanced by1.

7.9 anydbm — Generic access to DBM-style databases

anydbm is a generic interface to variants of the DBM database —dbhash (requiresbsddb), gdbm, ordbm. If none
of these modules is installed, the slow-but-simple implementation in moduledumbdbmwill be used.

open (filename[, flag[, mode]])
Open the database filefilenameand return a corresponding object.

If the database file already exists, thewhichdb module is used to determine its type and the appropriate module
is used; if it does not exist, the first module listed above that can be imported is used.

The optionalflag argument can be’r’ to open an existing database for reading only,’w’ to open an existing
database for reading and writing,’c’ to create the database if it doesn’t exist, or’n’ , which will always create
a new empty database. If not specified, the default value is’r’ .

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created. It
defaults to octal0666 (and will be modified by the prevailing umask).

error
A tuple containing the exceptions that can be raised by each of the supported modules, with a unique exception
anydbm.error as the first item — the latter is used whenanydbm.error is raised.

The object returned byopen() supports most of the same functionality as dictionaries; keys and their corresponding
values can be stored, retrieved, and deleted, and thehas key() andkeys() methods are available. Keys and
values must always be strings.

See Also:

Moduleanydbm (section 7.9):
Generic interface todbm-style databases.

Moduledbhash (section 7.11):
BSDdb database interface.

Moduledbm (section 8.6):
Standard UNIX database interface.

Moduledumbdbm(section 7.10):
Portable implementation of thedbm interface.

Modulegdbm (section 8.7):
GNU database interface, based on thedbm interface.

Moduleshelve (section 3.14):
General object persistence built on top of the Pythondbm interface.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

7.10 dumbdbm— Portable DBM implementation

A simple and slow database implemented entirely in Python. This should only be used when no other DBM-style
database is available.

open (filename[, flag[, mode]])

182 Chapter 7. Optional Operating System Services

Open the database filefilenameand return a corresponding object. The optionalflag argument can be’r’ to
open an existing database for reading only,’w’ to open an existing database for reading and writing,’c’ to
create the database if it doesn’t exist, or’n’ , which will always create a new empty database. If not specified,
the default value is’r’ .

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created. It
defaults to octal0666 (and will be modified by the prevailing umask).

error
Raised for errors not reported asKeyError errors.

See Also:

Moduleanydbm (section 7.9):
Generic interface todbm-style databases.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

7.11 dbhash — DBM-style interface to the BSD database library

The dbhash module provides a function to open databases using the BSDdb library. This module mirrors the
interface of the other Python database modules that provide access to DBM-style databases. Thebsddb module is
required to usedbhash .

This module provides an exception and a function:

error
Exception raised on database errors other thanKeyError . It is a synonym forbsddb.error .

open (path, flag[, mode])
Open adb database and return the database object. Thepathargument is the name of the database file.

Theflag argument can be’r’ (the default),’w’ , ’c’ (which creates the database if it doesn’t exist), or’n’
(which always creates a new empty database). For platforms on which the BSDdb library supports locking, an
‘ l ’ can be appended to indicate that locking should be used.

The optionalmodeparameter is used to indicate the UNIX permission bits that should be set if a new database
must be created; this will be masked by the current umask value for the process.

See Also:

Moduleanydbm (section 7.9):
Generic interface todbm-style databases.

Modulebsddb (section 7.13):
Lower-level interface to the BSDdb library.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

7.11.1 Database Objects

The database objects returned byopen() provide the methods common to all the DBM-style databases. The follow-
ing methods are available in addition to the standard methods.

first ()
It’s possible to loop over every key in the database using this method and thenext() method. The traversal is
ordered by the databases internal hash values, and won’t be sorted by the key values. This method returns the
starting key.

7.11. dbhash — DBM-style interface to the BSD database library 183

last ()
Return the last key in a database traversal. This may be used to begin a reverse-order traversal; see
previous() .

next (key)
Returns the key that followskeyin the traversal. The following code prints every key in the databasedb , without
having to create a list in memory that contains them all:

k = db.first()
while k != None:

print k
k = db.next(k)

previous (key)
Return the key that comes beforekeyin a forward-traversal of the database. In conjunction withlast() , this
may be used to implement a reverse-order traversal.

sync ()
This method forces any unwritten data to be written to the disk.

7.12 whichdb — Guess which DBM module created a database

The single function in this module attempts to guess which of the several simple database modules available–dbm,
gdbm, or dbhash –should be used to open a given file.

whichdb (filename)
Returns one of the following values:None if the file can’t be opened because it’s unreadable or doesn’t exist;
the empty string (’’) if the file’s format can’t be guessed; or a string containing the required module name, such
as’dbm’ or ’gdbm’ .

7.13 bsddb — Interface to Berkeley DB library

The bsddb module provides an interface to the Berkeley DB library. Users can create hash, btree or record based
library files using the appropriate open call. Bsddb objects behave generally like dictionaries. Keys and values must
be strings, however, so to use other objects as keys or to store other kinds of objects the user must serialize them
somehow, typically using marshal.dumps or pickle.dumps.

There are two incompatible versions of the underlying library. Version 1.85 is widely available, but has some known
bugs. Version 2 is not quite as widely used, but does offer some improvements. Thebsddb module uses the 1.85
interface. Starting with Python 2.0, theconfigurescript can usually determine the version of the library which is avail-
able and build it correctly. If you have difficulty gettingconfigure to do the right thing, run it with the--help option to
get information about additional options that can help. On Windows, you will need to define theHAVE DB 185 H
macro if you are building Python from source and using version 2 of the DB library.

The bsddb module defines the following functions that create objects that access the appropriate type of Berkeley
DB file. The first two arguments of each function are the same. For ease of portability, only the first two arguments
should be used in most instances.

hashopen (filename[, flag[, mode[, bsize[, ffactor[, nelem[, cachesize[, hash[, lorder]]]]]]]])
Open the hash format file namedfilename. The optionalflag identifies the mode used to open the file. It may
be ‘r ’ (read only), ‘w’ (read-write), ‘c ’ (read-write - create if necessary) or ‘n’ (read-write - truncate to zero
length). The other arguments are rarely used and are just passed to the low-leveldbopen() function. Consult
the Berkeley DB documentation for their use and interpretation.

btopen (filename[, flag[, mode[, btflags[, cachesize[, maxkeypage[, minkeypage[, psize[, lorder]]]]]]]])

184 Chapter 7. Optional Operating System Services

Open the btree format file namedfilename. The optionalflag identifies the mode used to open the file. It may
be ‘r ’ (read only), ‘w’ (read-write), ‘c ’ (read-write - create if necessary) or ‘n’ (read-write - truncate to zero
length). The other arguments are rarely used and are just passed to the low-level dbopen function. Consult the
Berkeley DB documentation for their use and interpretation.

rnopen (filename[, flag[, mode[, rnflags[, cachesize[, psize[, lorder[, reclen[, bval[, bfname]]]]]]]]])
Open a DB record format file namedfilename. The optionalflag identifies the mode used to open the file. It
may be ‘r ’ (read only), ‘w’ (read-write), ‘c ’ (read-write - create if necessary) or ‘n’ (read-write - truncate to
zero length). The other arguments are rarely used and are just passed to the low-level dbopen function. Consult
the Berkeley DB documentation for their use and interpretation.

See Also:

Moduledbhash (section 7.11):
DBM-style interface to thebsddb

7.13.1 Hash, BTree and Record Objects

Once instantiated, hash, btree and record objects support the following methods:

close ()
Close the underlying file. The object can no longer be accessed. Since there is no openopen method for these
objects, to open the file again a newbsddb module open function must be called.

keys ()
Return the list of keys contained in the DB file. The order of the list is unspecified and should not be relied on.
In particular, the order of the list returned is different for different file formats.

has key (key)
Return1 if the DB file contains the argument as a key.

set location (key)
Set the cursor to the item indicated by the key and return it.

first ()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases.

next ()
Set the cursor to the next item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases.

previous ()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases. This is not supported on hashtable databases (those opened withhashopen()).

last ()
Set the cursor to the last item in the DB file and return it. The order of keys in the file is unspecified. This is not
supported on hashtable databases (those opened withhashopen()).

sync ()
Synchronize the database on disk.

Example:

7.13. bsddb — Interface to Berkeley DB library 185

>>> import bsddb
>>> db = bsddb.btopen(’/tmp/spam.db’, ’c’)
>>> for i in range(10): db[’%d’%i] = ’%d’% (i*i)
...
>>> db[’3’]
’9’
>>> db.keys()
[’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’]
>>> db.first()
(’0’, ’0’)
>>> db.next()
(’1’, ’1’)
>>> db.last()
(’9’, ’81’)
>>> db.set_location(’2’)
(’2’, ’4’)
>>> db.previous()
(’1’, ’1’)
>>> db.sync()
0

7.14 zlib — Compression compatible with gzip

For applications that require data compression, the functions in this module allow compression and decompression,
using the zlib library. The zlib library has its own home page athttp://www.info-zip.org/pub/infozip/zlib/. Version 1.1.3 is
the most recent version as of September 2000; use a later version if one is available. There are known incompatibilities
between the Python module and earlier versions of the zlib library.

The available exception and functions in this module are:

error
Exception raised on compression and decompression errors.

adler32 (string[, value])
Computes a Adler-32 checksum ofstring. (An Adler-32 checksum is almost as reliable as a CRC32 but can be
computed much more quickly.) Ifvalueis present, it is used as the starting value of the checksum; otherwise,
a fixed default value is used. This allows computing a running checksum over the concatenation of several
input strings. The algorithm is not cryptographically strong, and should not be used for authentication or digital
signatures.

compress (string[, level])
Compresses the data instring, returning a string contained compressed data.level is an integer from1 to 9
controlling the level of compression;1 is fastest and produces the least compression,9 is slowest and produces
the most. The default value is6. Raises theerror exception if any error occurs.

compressobj ([level])
Returns a compression object, to be used for compressing data streams that won’t fit into memory at once.level
is an integer from1 to 9 controlling the level of compression;1 is fastest and produces the least compression,
9 is slowest and produces the most. The default value is6.

crc32 (string[, value])
Computes a CRC (Cyclic Redundancy Check) checksum ofstring. If valueis present, it is used as the starting
value of the checksum; otherwise, a fixed default value is used. This allows computing a running checksum over
the concatenation of several input strings. The algorithm is not cryptographically strong, and should not be used

186 Chapter 7. Optional Operating System Services

for authentication or digital signatures.

decompress (string[, wbits[, bufsize]])
Decompresses the data instring, returning a string containing the uncompressed data. Thewbits parameter
controls the size of the window buffer. Ifbufsizeis given, it is used as the initial size of the output buffer. Raises
theerror exception if any error occurs.

The absolute value ofwbits is the base two logarithm of the size of the history buffer (the “window size”) used
when compressing data. Its absolute value should be between 8 and 15 for the most recent versions of the zlib
library, larger values resulting in better compression at the expense of greater memory usage. The default value
is 15. Whenwbits is negative, the standardgzip header is suppressed; this is an undocumented feature of the
zlib library, used for compatibility withunzip’s compression file format.

bufsizeis the initial size of the buffer used to hold decompressed data. If more space is required, the buffer size
will be increased as needed, so you don’t have to get this value exactly right; tuning it will only save a few calls
to malloc() . The default size is 16384.

decompressobj ([wbits])
Returns a compression object, to be used for decompressing data streams that won’t fit into memory at once.
Thewbitsparameter controls the size of the window buffer.

Compression objects support the following methods:

compress (string)
Compressstring, returning a string containing compressed data for at least part of the data instring. This data
should be concatenated to the output produced by any preceding calls to thecompress() method. Some input
may be kept in internal buffers for later processing.

flush ([mode])
All pending input is processed, and a string containing the remaining compressed output is returned.modecan
be selected from the constantsZ SYNC FLUSH, Z FULL FLUSH, or Z FINISH , defaulting toZ FINISH .
Z SYNC FLUSHandZ FULL FLUSHallow compressing further strings of data and are used to allow partial
error recovery on decompression, whileZ FINISH finishes the compressed stream and prevents compressing
any more data. After callingflush() with modeset toZ FINISH , the compress() method cannot be
called again; the only realistic action is to delete the object.

Decompression objects support the following methods, and a single attribute:

unused data
A string which contains any unused data from the last string fed to this decompression object. If the whole string
turned out to contain compressed data, this is"" , the empty string.

The only way to determine where a string of compressed data ends is by actually decompressing it. This means
that when compressed data is contained part of a larger file, you can only find the end of it by reading data and
feeding it into a decompression object’sdecompress method until theunused data attribute is no longer
the empty string.

decompress (string)
Decompressstring, returning a string containing the uncompressed data corresponding to at least part of
the data instring. This data should be concatenated to the output produced by any preceding calls to the
decompress() method. Some of the input data may be preserved in internal buffers for later processing.

flush ()
All pending input is processed, and a string containing the remaining uncompressed output is returned. After
calling flush() , thedecompress() method cannot be called again; the only realistic action is to delete the
object.

See Also:

Modulegzip (section 7.15):
reading and writinggzip-format files

7.14. zlib — Compression compatible with gzip 187

http://www.info-zip.org/pub/infozip/zlib/
The zlib library home page.

7.15 gzip — Support for gzip files

The data compression provided by thezlib module is compatible with that used by the GNU compression program
gzip. Accordingly, thegzip module provides theGzipFile class to read and writegzip-format files, automatically
compressing or decompressing the data so it looks like an ordinary file object. Note that additional file formats which
can be decompressed by thegzip and gunzip programs, such as those produced bycompressand pack, are not
supported by this module.

The module defines the following items:

GzipFile ([filename[, mode[, compresslevel[, fileobj]]]])
Constructor for theGzipFile class, which simulates most of the methods of a file object, with the exception
of theseek() andtell() methods. At least one offileobjandfilenamemust be given a non-trivial value.

The new class instance is based onfileobj, which can be a regular file, aStringIO object, or any other object
which simulates a file. It defaults toNone, in which casefilenameis opened to provide a file object.

Whenfileobj is not None, the filenameargument is only used to be included in thegzip file header, which
may includes the original filename of the uncompressed file. It defaults to the filename offileobj, if discernible;
otherwise, it defaults to the empty string, and in this case the original filename is not included in the header.

Themodeargument can be any of’r’ , ’rb’ , ’a’ , ’ab’ , ’w’ , or ’wb’ , depending on whether the file will
be read or written. The default is the mode offileobj if discernible; otherwise, the default is’rb’ . Be aware
that only the’rb’ , ’ab’ , and’wb’ values should be used for cross-platform portability.

The compresslevelargument is an integer from1 to 9 controlling the level of compression;1 is fastest and
produces the least compression, and9 is slowest and produces the most compression. The default is9.

Calling aGzipFile object’sclose() method does not closefileobj, since you might wish to append more
material after the compressed data. This also allows you to pass aStringIO object opened for writing as
fileobj, and retrieve the resulting memory buffer using theStringIO object’sgetvalue() method.

open (filename[, mode[, compresslevel]])
This is a shorthand forGzipFile(filename, mode, compresslevel) . The filenameargument is required;
modedefaults to’rb’ andcompressleveldefaults to9.

See Also:

Modulezlib (section 7.14):
the basic data compression module

7.16 zipfile — Work with ZIP archives

New in version 1.6.

The ZIP file format is a common archive and compression standard. This module provides tools to create, read, write,
append, and list a ZIP file. Any advanced use of this module will require an understanding of the format, as defined in
PKZIP Application Note.

This module does not currently handle ZIP files which have appended comments, or multi-disk ZIP files.

The available attributes of this module are:

error
The error raised for bad ZIP files.

188 Chapter 7. Optional Operating System Services

ZipFile (...)
The class for reading and writing ZIP files. See “ZipFile Objects” (section 7.16.1) for constructor details.

PyZipFile (...)
Class for creating ZIP archives containing Python libraries.

ZipInfo ([filename[, date time]])
Class used the represent infomation about a member of an archive. Instances of this class are returned by the
getinfo() andinfolist() methods ofZipFile objects. Most users of thezipfile module will not
need to create these, but only use those created by this module.filenameshould be the full name of the archive
member, anddate timeshould be a tuple containing six fields which describe the time of the last modification
to the file; the fields are described in section 7.16.3, “ZipInfo Objects.”

is zipfile (filename)
Returns true iffilenameis a valid ZIP file based on its magic number, otherwise returns false. This module does
not currently handle ZIP files which have appended comments.

ZIP STORED
The numeric constant for an uncompressed archive member.

ZIP DEFLATED
The numeric constant for the usual ZIP compression method. This requires the zlib module. No other compres-
sion methods are currently supported.

See Also:

PKZIP Application Note
(http://www.pkware.com/appnote.html)

Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms used.

Info-ZIP Home Page
(http://www.info-zip.org/pub/infozip/)

Information about the Info-ZIP project’s ZIP archive programs and development libraries.

7.16.1 ZipFile Objects

ZipFile (filename[, mode[, compression]])
Open a ZIP file namedfilename. Themodeparameter should be’r’ to read an existing file,’w’ to truncate
and write a new file, or’a’ to append to an existing file. Formodeis ’a’ andfilenamerefers to an existing
ZIP file, then additional files are added to it. Iffilenamedoes not refer to a ZIP file, then a new ZIP archive is
appended to the file. This is meant for adding a ZIP archive to another file, such as ‘python.exe’. Using

cat myzip.zip >> python.exe

also works, and at leastWinZip can read such files.compressionis the ZIP compression method to use
when writing the archive, and should beZIP STOREDor ZIP DEFLATED; unrecognized values will cause
RuntimeError to be raised. IfZIP DEFLATEDis specified but thezlib module is not avaialble,
RuntimeError is also raised. The default isZIP STORED.

close ()
Close the archive file. You must callclose() before exiting your program or essential records will not be
written.

getinfo (name)
Return aZipInfo object with information about the archive membername.

infolist ()
Return a list containing aZipInfo object for each member of the archive. The objects are in the same order
as their entries in the actual ZIP file on disk if an existing archive was opened.

7.16. zipfile — Work with ZIP archives 189

namelist ()
Return a list of archive members by name.

printdir ()
Print a table of contents for the archive tosys.stdout .

read (name)
Return the bytes of the file in the archive. The archive must be open for read or append.

testzip ()
Read all the files in the archive and check their CRC’s. Return the name of the first bad file, or else returnNone.

write (filename[, arcname[, compresstype]])
Write the file namedfilenameto the archive, giving it the archive namearcname(by default, this will be the same
asfilename). If given,compresstypeoverrides the value given for thecompressionparameter to the constructor
for the new entry. The archive must be open with mode’w’ or ’a’ .

writestr (zinfo, bytes)
Write the stringbytesto the archive; meta-information is given as theZipInfo instancezinfo. At least the
filename, date, and time must be given byzinfo. The archive must be opened with mode’w’ or ’a’ .

The following data attribute is also available:

debug
The level of debug output to use. This may be set from0 (the default, no output) to3 (the most output).
Debugging information is written tosys.stdout .

7.16.2 PyZipFile Objects

ThePyZipFile constructor takes the same parameters as theZipFile constructor. Instances have one method in
addition to those ofZipFile objects.

writepy (pathname[, basename])
Search for files ‘*.py’ and add the corresponding file to the archive. The corresponding file is a ‘*.pyo’ file if
available, else a ‘*.pyc’ file, compiling if necessary. If the pathname is a file, the filename must end with ‘.py’,
and just the (corresponding ‘*.py[co]’) file is added at the top level (no path information). If it is a directory, and
the directory is not a package directory, then all the files ‘*.py[co]’ are added at the top level. If the directory is a
package directory, then all ‘*.py[oc]’ are added under the package name as a file path, and if any subdirectories
are package directories, all of these are added recursively.basenameis intended for internal use only. The
writepy() method makes archives with file names like this:

string.pyc # Top level name
test/__init__.pyc # Package directory
test/testall.pyc # Module test.testall
test/bogus/__init__.pyc # Subpackage directory
test/bogus/myfile.pyc # Submodule test.bogus.myfile

7.16.3 ZipInfo Objects

Instances of theZipInfo class are returned by thegetinfo() andinfolist() methods ofZipFile objects.
Each object stores information about a single member of the ZIP archive.

Instances have the following attributes:

filename
Name of the file in the archive.

190 Chapter 7. Optional Operating System Services

date time
The time and date of the last modification to to the archive member. This is a tuple of six values:

Index Value
0 Year
1 Month (one-based)
2 Day of month (one-based)
3 Hours (zero-based)
4 Minutes (zero-based)
5 Seconds (zero-based)

compress type
Type of compression for the archive member.

comment
Comment for the individual archive member.

extra
Expansion field data. ThePKZIP Application Notecontains some comments on the internal structure of the data
contained in this string.

create system
System which created ZIP archive.

create version
PKZIP version which created ZIP archive.

extract version
PKZIP version needed to extract archive.

reserved
Must be zero.

flag bits
ZIP flag bits.

volume
Volume number of file header.

internal attr
Internal attributes.

external attr
External file attributes.

header offset
Byte offset to the file header.

file offset
Byte offset to the start of the file data.

CRC
CRC-32 of the uncompressed file.

compress size
Size of the compressed data.

file size
Size of the uncompressed file.

7.17 readline — GNU readline interface

7.17. readline — GNU readline interface 191

The readline module defines a number of functions used either directly or from therlcompleter module to
facilitate completion and history file read and write from the Python interpreter.

Thereadline module defines the following functions:

parse and bind (string)
Parse and execute single line of a readline init file.

get line buffer ()
Return the current contents of the line buffer.

insert text (string)
Insert text into the command line.

read init file ([filename])
Parse a readline initialization file. The default filename is the last filename used.

read history file ([filename])
Load a readline history file. The default filename is ‘˜/.history’.

write history file ([filename])
Save a readline history file. The default filename is ‘˜/.history’.

get history length ()
Return the desired length of the history file. Negative values imply unlimited history file size.

set history length (length)
Set the number of lines to save in the history file.write history file() uses this value to truncate the
history file when saving. Negative values imply unlimited history file size.

set completer ([function])
Set or remove the completer function. The completer function is called asfunction(text, state) , for i in
[0, 1, 2, ...] until it returns a non-string. It should return the next possible completion starting with
text.

get begidx ()
Get the beginning index of the readline tab-completion scope.

get endidx ()
Get the ending index of the readline tab-completion scope.

set completer delims (string)
Set the readline word delimiters for tab-completion.

get completer delims ()
Get the readline word delimiters for tab-completion.

See Also:

Modulerlcompleter (section 7.18):
Completion of Python identifiers at the interactive prompt.

7.17.1 Example

The following example demonstrates how to use thereadline module’s history reading and writing functions to
automatically load and save a history file named ‘.pyhist’ from the user’s home directory. The code below would
normally be executed automatically during interactive sessions from the user’s $PYTHONSTARTUP file.

192 Chapter 7. Optional Operating System Services

import os
histfile = os.path.join(os.environ["HOME"], ".pyhist")
try:

readline.read_history_file(histfile)
except IOError:

pass
import atexit
atexit.register(readline.write_history_file, histfile)
del os, histfile

7.18 rlcompleter — Completion function for GNU readline

The rlcompleter module defines a completion function for thereadline module by completing valid Python
identifiers and keywords.

This module is UNIX -specific due to it’s dependence on thereadline module.

Therlcompleter module defines theCompleter class.

Example:

>>> import rlcompleter
>>> import readline
>>> readline.parse_and_bind("tab: complete")
>>> readline. <TAB PRESSED>
readline.__doc__ readline.get_line_buffer readline.read_init_file
readline.__file__ readline.insert_text readline.set_completer
readline.__name__ readline.parse_and_bind
>>> readline.

The rlcompleter module is designed for use with Python’s interactive mode. A user can add the following lines
to his or her initialization file (identified by the $PYTHONSTARTUP environment variable) to get automaticTab
completion:

try:
import readline

except ImportError:
print "Module readline not available."

else:
import rlcompleter
readline.parse_and_bind("tab: complete")

7.18.1 Completer Objects

Completer objects have the following method:

complete (text, state)
Return thestateth completion fortext.

If called for text that doesn’t include a period character (‘. ’), it will complete from names currently defined in

7.18. rlcompleter — Completion function for GNU readline 193

main , builtin and keywords (as defined by thekeyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (i.e., functions will not
be evaluated, but it can generate calls togetattr ()) upto the last part, and find matches for the rest via
thedir() function.

194 Chapter 7. Optional Operating System Services

CHAPTER

EIGHT

Unix Specific Services

The modules described in this chapter provide interfaces to features that are unique to the UNIX operating system, or
in some cases to some or many variants of it. Here’s an overview:

posix The most common POSIX system calls (normally used via moduleos).
pwd The password database (getpwnam() and friends).
grp The group database (getgrnam() and friends).
crypt Thecrypt() function used to check UNIX passwords.
dl Call C functions in shared objects.
dbm The standard “database” interface, based on ndbm.
gdbm GNU’s reinterpretation of dbm.
termios POSIX style tty control.
TERMIOS Symbolic constants required to use thetermios module.
tty Utility functions that perform common terminal control operations.
pty Pseudo-Terminal Handling for SGI and Linux.
fcntl Thefcntl() andioctl() system calls.
pipes A Python interface to UNIX shell pipelines.
posixfile A file-like object with support for locking.
resource An interface to provide resource usage information on the current process.
nis Interface to Sun’s NIS (a.k.a. Yellow Pages) library.
syslog An interface to the UNIX syslog library routines.
commands Utility functions for running external commands.

8.1 posix — The most common POSIX system calls

This module provides access to operating system functionality that is standardized by the C Standard and the POSIX
standard (a thinly disguised UNIX interface).

Do not import this module directly. Instead, import the moduleos , which provides aportable version of this
interface. On UNIX , theos module provides a superset of theposix interface. On non-UNIX operating systems the
posix module is not available, but a subset is always available through theos interface. Onceos is imported, there
is no performance penalty in using it instead ofposix . In addition,os provides some additional functionality, such
as automatically callingputenv() when an entry inos.environ is changed.

The descriptions below are very terse; refer to the corresponding UNIX manual (or POSIX documentation) entry for
more information. Arguments calledpathrefer to a pathname given as a string.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported by the system
calls raiseerror (a synonym for the standard exceptionOSError), described below.

195

8.1.1 Large File Support

Several operating systems (including AIX, HPUX, Irix and Solaris) provide support for files that are larger than 2 Gb
from a C programming model whereint andlong are 32-bit values. This is typically accomplished by defining the
relevant size and offset types as 64-bit values. Such files are sometimes referred to aslarge files.

Large file support is enabled in Python when the size of anoff t is larger than along and thelong long type
is available and is at least as large as anoff t . Python longs are then used to represent file sizes, offsets and other
values that can exceed the range of a Python int. It may be necessary to configure and compile Python with certain
compiler flags to enable this mode. For example, it is enabled by default with recent versions of Irix, but with Solaris
2.6 and 2.7 you need to do something like:

CFLAGS="‘getconf LFS_CFLAGS‘" OPT="-g -O2 $CFLAGS" \
configure

8.1.2 Module Contents

Moduleposix defines the following data item:

environ
A dictionary representing the string environment at the time the interpreter was started. For example,
environ[’HOME’] is the pathname of your home directory, equivalent togetenv("HOME") in C.

Modifying this dictionary does not affect the string environment passed on byexecv() , popen() or
system() ; if you need to change the environment, passenviron to execve() or add variable assign-
ments and export statements to the command string forsystem() or popen() .

Note: The os module provides an alternate implementation ofenviron which updates the environment on
modification. Note also that updatingos.environ will render this dictionary obsolete. Use of theos for this
is recommended over direct access to theposix module.

Additional contents of this module should only be accessed via theos module; refer to the documentation for that
module for further information.

8.2 pwd — The password database

This module provides access to the UNIX user account and password database. It is available on all UNIX versions.

Password database entries are reported as 7-tuples containing the following items from the password database (see
<pwd.h>), in order:

Index Field Meaning
0 pw name Login name
1 pw passwd Optional encrypted password
2 pw uid Numerical user ID
3 pw gid Numerical group ID
4 pw gecos User name or comment field
5 pw dir User home directory
6 pw shell User command interpreter

The uid and gid items are integers, all others are strings.KeyError is raised if the entry asked for cannot be found.

Note: In traditional UNIX the fieldpw passwd usually contains a password encrypted with a DES derived algorithm
(see modulecrypt). However most modern unices use a so-calledshadow passwordsystem. On those unices the

196 Chapter 8. Unix Specific Services

field pw passwd only contains a asterisk (’*’) or the letter ‘x ’ where the encrypted password is stored in a file
‘ /etc/shadow’ which is not world readable.

It defines the following items:

getpwuid (uid)
Return the password database entry for the given numeric user ID.

getpwnam (name)
Return the password database entry for the given user name.

getpwall ()
Return a list of all available password database entries, in arbitrary order.

See Also:

Modulegrp (section 8.3):
An interface to the group database, similar to this.

8.3 grp — The group database

This module provides access to the UNIX group database. It is available on all UNIX versions.

Group database entries are reported as 4-tuples containing the following items from the group database (see
<grp.h>), in order:

Index Field Meaning
0 gr name the name of the group
1 gr passwd the (encrypted) group password; often empty
2 gr gid the numerical group ID
3 gr mem all the group member’s user names

The gid is an integer, name and password are strings, and the member list is a list of strings. (Note that most users are
not explicitly listed as members of the group they are in according to the password database. Check both databases to
get complete membership information.)

It defines the following items:

getgrgid (gid)
Return the group database entry for the given numeric group ID.KeyError is raised if the entry asked for
cannot be found.

getgrnam (name)
Return the group database entry for the given group name.KeyError is raised if the entry asked for cannot be
found.

getgrall ()
Return a list of all available group entries, in arbitrary order.

See Also:

Modulepwd (section 8.2):
An interface to the user database, similar to this.

8.4 crypt — Function to check UNIX passwords

8.3. grp — The group database 197

This module implements an interface to thecrypt(3) routine, which is a one-way hash function based upon a modified
DES algorithm; see the UNIX man page for further details. Possible uses include allowing Python scripts to accept
typed passwords from the user, or attempting to crack UNIX passwords with a dictionary.

crypt (word, salt)
word will usually be a user’s password as typed at a prompt or in a graphical interface.salt is usually a random
two-character string which will be used to perturb the DES algorithm in one of 4096 ways. The characters in
salt must be in the setd[./a-zA-Z0-9] c. Returns the hashed password as a string, which will be composed
of characters from the same alphabet as the salt (the first two characters represent the salt itself).

A simple example illustrating typical use:

import crypt, getpass, pwd

def login():
username = raw_input(’Python login:’)
cryptedpasswd = pwd.getpwnam(username)[1]
if cryptedpasswd:

if cryptedpasswd == ’x’ or cryptedpasswd == ’*’:
raise "Sorry, currently no support for shadow passwords"

cleartext = getpass.getpass()
return crypt.crypt(cleartext, cryptedpasswd[:2]) == cryptedpasswd

else:
return 1

8.5 dl — Call C functions in shared objects

Thedl module defines an interface to thedlopen() function, which is the most common interface on UNIX plat-
forms for handling dynamically linked libraries. It allows the program to call arbitrary functions in such a library.

Note: This module will not work unless

sizeof(int) == sizeof(long) == sizeof(char *)

If this is not the case,SystemError will be raised on import.

Thedl module defines the following function:

open (name[, mode = RTLD LAZY])
Open a shared object file, and return a handle. Mode signifies late binding (RTLD LAZY) or immediate binding
(RTLD NOW). Default isRTLD LAZY. Note that some systems do not supportRTLD NOW.

Return value is a dlobject.

Thedl module defines the following constants:

RTLD LAZY
Useful as an argument toopen() .

RTLD NOW
Useful as an argument toopen() . Note that on systems which do not support immediate binding, this constant
will not appear in the module. For maximum portability, usehasattr() to determine if the system supports
immediate binding.

Thedl module defines the following exception:

198 Chapter 8. Unix Specific Services

error
Exception raised when an error has occurred inside the dynamic loading and linking routines.

Example:

>>> import dl, time
>>> a=dl.open(’/lib/libc.so.6’)
>>> a.call(’time’), time.time()
(929723914, 929723914.498)

This example was tried on a Debian GNU/Linux system, and is a good example of the fact that using this module is
usually a bad alternative.

8.5.1 Dl Objects

Dl objects, as returned byopen() above, have the following methods:

close ()
Free all resources, except the memory.

sym(name)
Return the pointer for the function namedname, as a number, if it exists in the referenced shared object, other-
wiseNone. This is useful in code like:

>>> if a.sym(’time’):
... a.call(’time’)
... else:
... time.time()

(Note that this function will return a non-zero number, as zero is theNULLpointer)

call (name[, arg1[, arg2. . .]])
Call the function namednamein the referenced shared object. The arguments must be either Python integers,
which will be passed as is, Python strings, to which a pointer will be passed, orNone, which will be passed as
NULL. Note that strings should only be passed to functions asconst char* , as Python will not like its string
mutated.

There must be at most 10 arguments, and arguments not given will be treated asNone. The function’s return
value must be a Clong , which is a Python integer.

8.6 dbm— Simple “database” interface

Thedbmmodule provides an interface to the UNIX (n)dbm library. Dbm objects behave like mappings (dictionaries),
except that keys and values are always strings. Printing a dbm object doesn’t print the keys and values, and the
items() andvalues() methods are not supported.

This module can be used with the “classic” ndbm interface, the BSD DB compatibility interface, or the GNU GDBM
compatibility interface. On UNIX , theconfigure script will attempt to locate the appropriate header file to simplify
building this module.

The module defines the following:

error
Raised on dbm-specific errors, such as I/O errors.KeyError is raised for general mapping errors like specify-
ing an incorrect key.

8.6. dbm— Simple “database” interface 199

library
Name of thendbm implementation library used.

open (filename[, flag[, mode]])
Open a dbm database and return a dbm object. Thefilenameargument is the name of the database file (without
the ‘.dir’ or ‘ .pag’ extensions; note that the BSD DB implementation of the interface will append the extension
‘ .db’ and only create one file).

The optionalflagargument must be one of these values:

Value Meaning
’r’ Open existing database for reading only (default)
’w’ Open existing database for reading and writing
’c’ Open database for reading and writing, creating it if it doesn’t exist
’n’ Always create a new, empty database, open for reading and writing

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created. It
defaults to octal0666 .

See Also:

Moduleanydbm (section 7.9):
Generic interface todbm-style databases.

Modulegdbm (section 8.7):
Similar interface to the GNU GDBM library.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

8.7 gdbm — GNU’s reinterpretation of dbm

This module is quite similar to thedbm module, but usesgdbm instead to provide some additional functionality.
Please note that the file formats created bygdbm anddbmare incompatible.

Thegdbmmodule provides an interface to the GNU DBM library.gdbmobjects behave like mappings (dictionaries),
except that keys and values are always strings. Printing agdbm object doesn’t print the keys and values, and the
items() andvalues() methods are not supported.

The module defines the following constant and functions:

error
Raised ongdbm-specific errors, such as I/O errors.KeyError is raised for general mapping errors like speci-
fying an incorrect key.

open (filename,[flag,[mode]])
Open agdbm database and return agdbm object. Thefilenameargument is the name of the database file.

The optionalflagargument can be’r’ (to open an existing database for reading only — default),’w’ (to open
an existing database for reading and writing),’c’ (which creates the database if it doesn’t exist), or’n’ (which
always creates a new empty database).

Appending ‘f ’ to the flag opens the database in fast mode; altered data will not automatically be written to the
disk after every change. This results in faster writes to the database, but may result in an inconsistent database
if the program crashes while the database is still open. Use thesync() method to force any unwritten data to
be written to the disk.

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created. It
defaults to octal0666 .

In addition to the dictionary-like methods,gdbm objects have the following methods:

200 Chapter 8. Unix Specific Services

firstkey ()
It’s possible to loop over every key in the database using this method and thenextkey() method. The
traversal is ordered bygdbm’s internal hash values, and won’t be sorted by the key values. This method returns
the starting key.

nextkey (key)
Returns the key that followskeyin the traversal. The following code prints every key in the databasedb , without
having to create a list in memory that contains them all:

k = db.firstkey()
while k != None:

print k
k = db.nextkey(k)

reorganize ()
If you have carried out a lot of deletions and would like to shrink the space used by thegdbmfile, this routine will
reorganize the database.gdbm will not shorten the length of a database file except by using this reorganization;
otherwise, deleted file space will be kept and reused as new (key, value) pairs are added.

sync ()
When the database has been opened in fast mode, this method forces any unwritten data to be written to the
disk.

See Also:

Moduleanydbm (section 7.9):
Generic interface todbm-style databases.

Modulewhichdb (section 7.12):
Utility module used to determine the type of an existing database.

8.8 termios — POSIX style tty control

This module provides an interface to the POSIX calls for tty I/O control. For a complete description of these calls, see
the POSIX or UNIX manual pages. It is only available for those UNIX versions that support POSIXtermiosstyle tty
I/O control (and then only if configured at installation time).

All functions in this module take a file descriptorfd as their first argument. This must be an integer file descriptor,
such as returned bysys.stdin.fileno() .

This module should be used in conjunction with theTERMIOSmodule, which defines the relevant symbolic constants
(see the next section).

The module defines the following functions:

tcgetattr (fd)
Return a list containing the tty attributes for file descriptorfd, as follows: [iflag, oflag, cflag, lflag, ispeed,
ospeed, cc] wherecc is a list of the tty special characters (each a string of length 1, except the items with indices
TERMIOS.VMINandTERMIOS.VTIME, which are integers when these fields are defined). The interpretation
of the flags and the speeds as well as the indexing in thecc array must be done using the symbolic constants
defined in theTERMIOSmodule.

tcsetattr (fd, when, attributes)
Set the tty attributes for file descriptorfd from the attributes, which is a list like the one returned by
tcgetattr() . The when argument determines when the attributes are changed:TERMIOS.TCSANOW
to change immediately,TERMIOS.TCSADRAIN to change after transmitting all queued output, or
TERMIOS.TCSAFLUSHto change after transmitting all queued output and discarding all queued input.

tcsendbreak (fd, duration)

8.8. termios — POSIX style tty control 201

Send a break on file descriptorfd. A zerodurationsends a break for 0.25–0.5 seconds; a nonzerodurationhas
a system dependent meaning.

tcdrain (fd)
Wait until all output written to file descriptorfd has been transmitted.

tcflush (fd, queue)
Discard queued data on file descriptorfd. Thequeueselector specifies which queue:TERMIOS.TCIFLUSH
for the input queue,TERMIOS.TCOFLUSHfor the output queue, orTERMIOS.TCIOFLUSHfor both queues.

tcflow (fd, action)
Suspend or resume input or output on file descriptorfd. Theactionargument can beTERMIOS.TCOOFFto sus-
pend output,TERMIOS.TCOONto restart output,TERMIOS.TCIOFF to suspend input, orTERMIOS.TCION
to restart input.

See Also:

ModuleTERMIOS(section 8.9):
Constants for use withtermios .

Moduletty (section 8.10):
Convenience functions for common terminal control operations.

8.8.1 Example

Here’s a function that prompts for a password with echoing turned off. Note the technique using a separate
tcgetattr() call and atry ... finally statement to ensure that the old tty attributes are restored exactly
no matter what happens:

def getpass(prompt = "Password: "):
import termios, TERMIOS, sys
fd = sys.stdin.fileno()
old = termios.tcgetattr(fd)
new = termios.tcgetattr(fd)
new[3] = new[3] & ˜TERMIOS.ECHO # lflags
try:

termios.tcsetattr(fd, TERMIOS.TCSADRAIN, new)
passwd = raw_input(prompt)

finally:
termios.tcsetattr(fd, TERMIOS.TCSADRAIN, old)

return passwd

8.9 TERMIOS— Constants used with the termios module

This module defines the symbolic constants required to use thetermios module (see the previous section). See the
POSIX or UNIX manual pages (or the source) for a list of those constants.

Note: this module resides in a system-dependent subdirectory of the Python library directory. You may have to
generate it for your particular system using the script ‘Tools/scripts/h2py.py’.

8.10 tty — Terminal control functions

Thetty module defines functions for putting the tty into cbreak and raw modes.

202 Chapter 8. Unix Specific Services

Because it requires thetermios module, it will work only on UNIX .

Thetty module defines the following functions:

setraw (fd[, when])
Change the mode of the file descriptorfd to raw. If whenis omitted, it defaults toTERMIOS.TCAFLUSH, and
is passed totermios.tcsetattr() .

setcbreak (fd[, when])
Change the mode of file descriptorfd to cbreak. Ifwhenis omitted, it defaults toTERMIOS.TCAFLUSH, and
is passed totermios.tcsetattr() .

See Also:

Moduletermios (section 8.8):
Low-level terminal control interface.

ModuleTERMIOS(section 8.9):
Constants useful for terminal control operations.

8.11 pty — Pseudo-terminal utilities

Thepty module defines operations for handling the pseudo-terminal concept: starting another process and being able
to write to and read from its controlling terminal programmatically.

Because pseudo-terminal handling is highly platform dependant, there is code to do it only for SGI and Linux. (The
Linux code is supposed to work on other platforms, but hasn’t been tested yet.)

Thepty module defines the following functions:

fork ()
Fork. Connect the child’s controlling terminal to a pseudo-terminal. Return value is(pid, fd) . Note that the
child getspid 0, and thefd is invalid. The parent’s return value is thepid of the child, andfd is a file descriptor
connected to the child’s controlling terminal (and also to the child’s standard input and output.

openpty ()
Open a new pseudo-terminal pair, usingos.openpty() if possible, or emulation code for SGI and generic
UNIX systems. Return a pair of file descriptors(master, slave) , for the master and the slave end, respectively.

spawn (argv[, master read[, stdin read]])
Spawn a process, and connect its controlling terminal with the current process’s standard io. This is often used
to baffle programs which insist on reading from the controlling terminal.

The functionsmaster readandstdin readshould be functions which read from a file-descriptor. The defaults
try to read 1024 bytes each time they are called.

8.12 fcntl — The fcntl() and ioctl() system calls

This module performs file control and I/O control on file descriptors. It is an interface to thefcntl() andioctl()
UNIX routines. File descriptors can be obtained with thefileno() method of a file or socket object.

The module defines the following functions:

fcntl (fd, op[, arg])
Perform the requested operation on file descriptorfd. The operation is defined byop and is operating system
dependent. Typically these codes can be retrieved from the library moduleFCNTL. The argumentarg is optional,
and defaults to the integer value0. When present, it can either be an integer value, or a string. With the argument
missing or an integer value, the return value of this function is the integer return value of the Cfcntl() call.

8.11. pty — Pseudo-terminal utilities 203

When the argument is a string it represents a binary structure, e.g. created bystruct.pack() . The binary
data is copied to a buffer whose address is passed to the Cfcntl() call. The return value after a successful
call is the contents of the buffer, converted to a string object. The length of the returned string will be the same
as the length of thearg argument. This is limited to 1024 bytes. If the information returned in the buffer by
the operating system is larger than 1024 bytes, this is most likely to result in a segmentation violation or a more
subtle data corruption.

If the fcntl() fails, anIOError is raised.

ioctl (fd, op, arg)
This function is identical to thefcntl() function, except that the operations are typically defined in the library
moduleIOCTL.

flock (fd, op)
Perform the lock operationopon file descriptorfd. See the UNIX manualflock(3) for details. (On some systems,
this function is emulated usingfcntl() .)

lockf (fd, code,[len,[start,[whence]]])
This is a wrapper around theFCNTL.F SETLK and FCNTL.F SETLKW fcntl() calls. See the UNIX

manual for details.

If the library modulesFCNTL or IOCTL are missing, you can find the opcodes in the C include files
<sys/fcntl.h> and <sys/ioctl.h> . You can create the modules yourself with theh2py script, found in
the ‘Tools/scripts/’ directory.

Examples (all on a SVR4 compliant system):

import struct, fcntl, FCNTL

file = open(...)
rv = fcntl(file.fileno(), FCNTL.O_NDELAY, 1)

lockdata = struct.pack(’hhllhh’, FCNTL.F_WRLCK, 0, 0, 0, 0, 0)
rv = fcntl.fcntl(file.fileno(), FCNTL.F_SETLKW, lockdata)

Note that in the first example the return value variablerv will hold an integer value; in the second example it will hold
a string value. The structure lay-out for thelockdatavariable is system dependent — therefore using theflock()
call may be better.

8.13 pipes — Interface to shell pipelines

Thepipes module defines a class to abstract the concept of apipeline— a sequence of convertors from one file to
another.

Because the module uses/bin/sh command lines, a POSIX or compatible shell foros.system() andos.popen()
is required.

Thepipes module defines the following class:

Template ()
An abstraction of a pipeline.

Example:

204 Chapter 8. Unix Specific Services

>>> import pipes
>>> t=pipes.Template()
>>> t.append(’tr a-z A-Z’, ’--’)
>>> f=t.open(’/tmp/1’, ’w’)
>>> f.write(’hello world’)
>>> f.close()
>>> open(’/tmp/1’).read()
’HELLO WORLD’

8.13.1 Template Objects

Template objects following methods:

reset ()
Restore a pipeline template to its initial state.

clone ()
Return a new, equivalent, pipeline template.

debug (flag)
If flag is true, turn debugging on. Otherwise, turn debugging off. When debugging is on, commands to be
executed are printed, and the shell is givenset -x command to be more verbose.

append (cmd, kind)
Append a new action at the end. Thecmdvariable must be a valid bourne shell command. Thekind variable
consists of two letters.

The first letter can be either of’-’ (which means the command reads its standard input),’f’ (which means
the commands reads a given file on the command line) or’.’ (which means the commands reads no input, and
hence must be first.)

Similarly, the second letter can be either of’-’ (which means the command writes to standard output),’f’
(which means the command writes a file on the command line) or’.’ (which means the command does not
write anything, and hence must be last.)

prepend (cmd, kind)
Add a new action at the beginning. Seeappend() for explanations of the arguments.

open (file, mode)
Return a file-like object, open tofile, but read from or written to by the pipeline. Note that only one of’r’ ,
’w’ may be given.

copy (infile, outfile)
Copy infile to outfilethrough the pipe.

8.14 posixfile — File-like objects with locking support

Note: This module will become obsolete in a future release. The locking operation that it provides is done better and
more portably by thefcntl.lockf() call.

This module implements some additional functionality over the built-in file objects. In particular, it implements file
locking, control over the file flags, and an easy interface to duplicate the file object. The module defines a new file
object, the posixfile object. It has all the standard file object methods and adds the methods described below. This
module only works for certain flavors of UNIX , since it usesfcntl.fcntl() for file locking.

8.14. posixfile — File-like objects with locking support 205

To instantiate a posixfile object, use theopen() function in theposixfile module. The resulting object looks and
feels roughly the same as a standard file object.

Theposixfile module defines the following constants:

SEEK SET
Offset is calculated from the start of the file.

SEEK CUR
Offset is calculated from the current position in the file.

SEEK END
Offset is calculated from the end of the file.

Theposixfile module defines the following functions:

open (filename[, mode[, bufsize]])
Create a new posixfile object with the given filename and mode. Thefilename, modeandbufsizearguments are
interpreted the same way as by the built-inopen() function.

fileopen (fileobject)
Create a new posixfile object with the given standard file object. The resulting object has the same filename and
mode as the original file object.

The posixfile object defines the following additional methods:

lock (fmt,[len[, start[, whence]]])
Lock the specified section of the file that the file object is referring to. The format is explained below in a table.
The len argument specifies the length of the section that should be locked. The default is0. start specifies the
starting offset of the section, where the default is0. Thewhenceargument specifies where the offset is relative
to. It accepts one of the constantsSEEK SET, SEEK CURor SEEK END. The default isSEEK SET. For
more information about the arguments refer to thefcntl(2) manual page on your system.

flags ([flags])
Set the specified flags for the file that the file object is referring to. The new flags are ORed with the old
flags, unless specified otherwise. The format is explained below in a table. Without theflagsargument a string
indicating the current flags is returned (this is the same as the ‘?’ modifier). For more information about the
flags refer to thefcntl(2) manual page on your system.

dup ()
Duplicate the file object and the underlying file pointer and file descriptor. The resulting object behaves as if it
were newly opened.

dup2 (fd)
Duplicate the file object and the underlying file pointer and file descriptor. The new object will have the given
file descriptor. Otherwise the resulting object behaves as if it were newly opened.

file ()
Return the standard file object that the posixfile object is based on. This is sometimes necessary for functions
that insist on a standard file object.

All methods raiseIOError when the request fails.

Format characters for thelock() method have the following meaning:

Format Meaning
‘u’ unlock the specified region
‘ r ’ request a read lock for the specified section
‘w’ request a write lock for the specified section

In addition the following modifiers can be added to the format:

206 Chapter 8. Unix Specific Services

Modifier Meaning Notes
‘ | ’ wait until the lock has been granted
‘?’ return the first lock conflicting with the requested lock, orNone if there is no conflict. (1)

Note:

(1) The lock returned is in the format(mode, len, start, whence, pid) wheremodeis a character representing
the type of lock (’r’ or ’w’). This modifier prevents a request from being granted; it is for query purposes only.

Format characters for theflags() method have the following meanings:

Format Meaning
‘a’ append only flag
‘c ’ close on exec flag
‘n’ no delay flag (also called non-blocking flag)
‘s ’ synchronization flag

In addition the following modifiers can be added to the format:

Modifier Meaning Notes
‘ ! ’ turn the specified flags ’off’, instead of the default ’on’ (1)
‘=’ replace the flags, instead of the default ’OR’ operation (1)
‘?’ return a string in which the characters represent the flags that are set.(2)

Notes:

(1) The ‘! ’ and ‘=’ modifiers are mutually exclusive.

(2) This string represents the flags after they may have been altered by the same call.

Examples:

import posixfile

file = posixfile.open(’/tmp/test’, ’w’)
file.lock(’w|’)
...
file.lock(’u’)
file.close()

8.15 resource — Resource usage information

This module provides basic mechanisms for measuring and controlling system resources utilized by a program.

Symbolic constants are used to specify particular system resources and to request usage information about either the
current process or its children.

A single exception is defined for errors:

error
The functions described below may raise this error if the underlying system call failures unexpectedly.

8.15. resource — Resource usage information 207

8.15.1 Resource Limits

Resources usage can be limited using thesetrlimit() function described below. Each resource is controlled by
a pair of limits: a soft limit and a hard limit. The soft limit is the current limit, and may be lowered or raised by a
process over time. The soft limit can never exceed the hard limit. The hard limit can be lowered to any value greater
than the soft limit, but not raised. (Only processes with the effective UID of the super-user can raise a hard limit.)

The specific resources that can be limited are system dependent. They are described in thegetrlimit(2) man page. The
resources listed below are supported when the underlying operating system supports them; resources which cannot be
checked or controlled by the operating system are not defined in this module for those platforms.

getrlimit (resource)
Returns a tuple(soft, hard) with the current soft and hard limits ofresource. RaisesValueError if an
invalid resource is specified, orerror if the underyling system call fails unexpectedly.

setrlimit (resource, limits)
Sets new limits of consumption ofresource. Thelimits argument must be a tuple(soft, hard) of two integers
describing the new limits. A value of-1 can be used to specify the maximum possible upper limit.

RaisesValueError if an invalid resource is specified, if the new soft limit exceeds the hard limit, or if a
process tries to raise its hard limit (unless the process has an effective UID of super-user). Can also raiseerror
if the underyling system call fails.

These symbols define resources whose consumption can be controlled using thesetrlimit() andgetrlimit()
functions described below. The values of these symbols are exactly the constants used by C programs.

The UNIX man page forgetrlimit(2) lists the available resources. Note that not all systems use the same symbol or
same value to denote the same resource.

RLIMIT CORE
The maximum size (in bytes) of a core file that the current process can create. This may result in the creation of
a partial core file if a larger core would be required to contain the entire process image.

RLIMIT CPU
The maximum amount of CPU time (in seconds) that a process can use. If this limit is exceeded, aSIGXCPU
signal is sent to the process. (See thesignal module documentation for information about how to catch this
signal and do something useful, e.g. flush open files to disk.)

RLIMIT FSIZE
The maximum size of a file which the process may create. This only affects the stack of the main thread in a
multi-threaded process.

RLIMIT DATA
The maximum size (in bytes) of the process’s heap.

RLIMIT STACK
The maximum size (in bytes) of the call stack for the current process.

RLIMIT RSS
The maximum resident set size that should be made available to the process.

RLIMIT NPROC
The maximum number of processes the current process may create.

RLIMIT NOFILE
The maximum number of open file descriptors for the current process.

RLIMIT OFILE
The BSD name forRLIMIT NOFILE.

RLIMIT MEMLOC
The maximm address space which may be locked in memory.

208 Chapter 8. Unix Specific Services

RLIMIT VMEM
The largest area of mapped memory which the process may occupy.

RLIMIT AS
The maximum area (in bytes) of address space which may be taken by the process.

8.15.2 Resource Usage

These functiona are used to retrieve resource usage information:

getrusage (who)
This function returns a large tuple that describes the resources consumed by either the current process or its
children, as specified by thewhoparameter. Thewhoparameter should be specified using one of theRUSAGE*
constants described below.

The elements of the return value each describe how a particular system resource has been used, e.g. amount of
time spent running is user mode or number of times the process was swapped out of main memory. Some values
are dependent on the clock tick internal, e.g. the amount of memory the process is using.

The first two elements of the return value are floating point values representing the amount of time spent execut-
ing in user mode and the amount of time spent executing in system mode, respectively. The remaining values
are integers. Consult thegetrusage(2) man page for detailed information about these values. A brief summary
is presented here:

Offset Resource
0 time in user mode (float)
1 time in system mode (float)
2 maximum resident set size
3 shared memory size
4 unshared memory size
5 unshared stack size
6 page faults not requiring I/O
7 page faults requiring I/O
8 number of swap outs
9 block input operations

10 block output operations
11 messages sent
12 messages received
13 signals received
14 voluntary context switches
15 involuntary context switches

This function will raise aValueError if an invalid who parameter is specified. It may also raiseerror
exception in unusual circumstances.

getpagesize ()
Returns the number of bytes in a system page. (This need not be the same as the hardware page size.) This
function is useful for determining the number of bytes of memory a process is using. The third element of the
tuple returned bygetrusage() describes memory usage in pages; multiplying by page size produces number
of bytes.

The followingRUSAGE* symbols are passed to thegetrusage() function to specify which processes information
should be provided for.

RUSAGESELF
RUSAGESELF should be used to request information pertaining only to the process itself.

RUSAGECHILDREN
Pass togetrusage() to request resource information for child processes of the calling process.

8.15. resource — Resource usage information 209

RUSAGEBOTH
Pass togetrusage() to request resources consumed by both the current process and child processes. May
not be available on all systems.

8.16 nis — Interface to Sun’s NIS (Yellow Pages)

Thenis module gives a thin wrapper around the NIS library, useful for central administration of several hosts.

Because NIS exists only on UNIX systems, this module is only available for UNIX .

Thenis module defines the following functions:

match (key, mapname)
Return the match forkey in mapmapname, or raise an error (nis.error) if there is none. Both should be
strings,keyis 8-bit clean. Return value is an arbitrary array of bytes (i.e., may containNULLand other joys).

Note thatmapnameis first checked if it is an alias to another name.

cat (mapname)
Return a dictionary mappingkeyto valuesuch thatmatch(key, mapname)== value. Note that both keys and
values of the dictionary are arbitrary arrays of bytes.

Note thatmapnameis first checked if it is an alias to another name.

maps()
Return a list of all valid maps.

Thenis module defines the following exception:

error
An error raised when a NIS function returns an error code.

8.17 syslog — UNIX syslog library routines

This module provides an interface to the UNIX syslog library routines. Refer to the UNIX manual pages for a
detailed description of thesyslog facility.

The module defines the following functions:

syslog ([priority,] message)
Send the stringmessageto the system logger. A trailing newline is added if necessary. Each message is tagged
with a priority composed of afacility and alevel. The optionalpriority argument, which defaults toLOG INFO,
determines the message priority. If the facility is not encoded inpriority using logical-or (LOG INFO |
LOG USER), the value given in theopenlog() call is used.

openlog (ident[, logopt[, facility]])
Logging options other than the defaults can be set by explicitly opening the log file withopenlog() prior
to callingsyslog() . The defaults are (usually)ident = ’syslog’ , logopt = 0, facility = LOG USER. The
ident argument is a string which is prepended to every message. The optionallogopt argument is a bit field -
see below for possible values to combine. The optionalfacility argument sets the default facility for messages
which do not have a facility explicitly encoded.

closelog ()
Close the log file.

setlogmask (maskpri)
Set the priority mask tomaskpriand return the previous mask value. Calls tosyslog() with a priority level
not set inmaskpriare ignored. The default is to log all priorities. The functionLOG MASK(pri) calculates the

210 Chapter 8. Unix Specific Services

mask for the individual prioritypri. The functionLOG UPTO(pri) calculates the mask for all priorities up to
and includingpri.

The module defines the following constants:

Priority levels (high to low): LOG EMERG, LOG ALERT, LOG CRIT, LOG ERR, LOG WARNING,
LOG NOTICE, LOG INFO, LOG DEBUG.

Facilities: LOG KERN, LOG USER, LOG MAIL, LOG DAEMON, LOG AUTH, LOG LPR, LOG NEWS,
LOG UUCP, LOG CRONandLOG LOCAL0to LOG LOCAL7.

Log options: LOG PID , LOG CONS, LOG NDELAY, LOG NOWAIT and LOG PERROR if defined in
<syslog.h> .

8.18 commands — Utilities for running commands

Thecommands module contains wrapper functions foros.popen() which take a system command as a string and
return any output generated by the command and, optionally, the exit status.

Thecommands module defines the following functions:

getstatusoutput (cmd)
Execute the stringcmd in a shell withos.popen() and return a 2-tuple(status, output) . cmd is actually
run as{ cmd ; }2>&1 , so that the returned output will contain output or error messages. A trailing newline
is stripped from the output. The exit status for the command can be interpreted according to the rules for the C
functionwait() .

getoutput (cmd)
Like getstatusoutput() , except the exit status is ignored and the return value is a string containing the
command’s output.

getstatus (file)
Return the output of ‘ls -ld file’ as a string. This function uses thegetoutput() function, and properly
escapes backslashes and dollar signs in the argument.

Example:

>>> import commands
>>> commands.getstatusoutput(’ls /bin/ls’)
(0, ’/bin/ls’)
>>> commands.getstatusoutput(’cat /bin/junk’)
(256, ’cat: /bin/junk: No such file or directory’)
>>> commands.getstatusoutput(’/bin/junk’)
(256, ’sh: /bin/junk: not found’)
>>> commands.getoutput(’ls /bin/ls’)
’/bin/ls’
>>> commands.getstatus(’/bin/ls’)
’-rwxr-xr-x 1 root 13352 Oct 14 1994 /bin/ls’

8.18. commands — Utilities for running commands 211

212

CHAPTER

NINE

The Python Debugger

The modulepdb defines an interactive source code debugger for Python programs. It supports setting (conditional)
breakpoints and single stepping at the source line level, inspection of stack frames, source code listing, and evaluation
of arbitrary Python code in the context of any stack frame. It also supports post-mortem debugging and can be called
under program control.

The debugger is extensible — it is actually defined as the classPdb. This is currently undocumented but easily
understood by reading the source. The extension interface uses the modulesbdb (undocumented) andcmd.

The debugger’s prompt is ‘(Pdb) ’. Typical usage to run a program under control of the debugger is:

>>> import pdb
>>> import mymodule
>>> pdb.run(’mymodule.test()’)
> <string>(0)?()
(Pdb) continue
> <string>(1)?()
(Pdb) continue
NameError: ’spam’
> <string>(1)?()
(Pdb)

‘pdb.py’ can also be invoked as a script to debug other scripts. For example:

python /usr/local/lib/python1.5/pdb.py myscript.py

Typical usage to inspect a crashed program is:

213

>>> import pdb
>>> import mymodule
>>> mymodule.test()
Traceback (innermost last):

File "<stdin>", line 1, in ?
File "./mymodule.py", line 4, in test

test2()
File "./mymodule.py", line 3, in test2

print spam
NameError: spam
>>> pdb.pm()
> ./mymodule.py(3)test2()
-> print spam
(Pdb)

The module defines the following functions; each enters the debugger in a slightly different way:

run (statement[, globals[, locals]])
Execute thestatement(given as a string) under debugger control. The debugger prompt appears before any code
is executed; you can set breakpoints and type ‘continue ’, or you can step through the statement using ‘step ’
or ‘next ’ (all these commands are explained below). The optionalglobalsand locals arguments specify the
environment in which the code is executed; by default the dictionary of the modulemain is used. (See
the explanation of theexec statement or theeval() built-in function.)

runeval (expression[, globals[, locals]])
Evaluate theexpression(given as a a string) under debugger control. Whenruneval() returns, it returns the
value of the expression. Otherwise this function is similar torun() .

runcall (function[, argument, ...])
Call the function (a function or method object, not a string) with the given arguments. Whenruncall()
returns, it returns whatever the function call returned. The debugger prompt appears as soon as the function is
entered.

set trace ()
Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given point in a
program, even if the code is not otherwise being debugged (e.g. when an assertion fails).

post mortem (traceback)
Enter post-mortem debugging of the giventracebackobject.

pm()
Enter post-mortem debugging of the traceback found insys.last traceback .

9.1 Debugger Commands

The debugger recognizes the following commands. Most commands can be abbreviated to one or two letters; e.g.
‘h(elp) ’ means that either ‘h’ or ‘ help ’ can be used to enter the help command (but not ‘he ’ or ‘ hel ’, nor ‘H’ or
‘Help ’ or ‘ HELP’). Arguments to commands must be separated by whitespace (spaces or tabs). Optional arguments
are enclosed in square brackets (‘[] ’) in the command syntax; the square brackets must not be typed. Alternatives in
the command syntax are separated by a vertical bar (‘| ’).

Entering a blank line repeats the last command entered. Exception: if the last command was a ‘list ’ command, the
next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python statements and are executed in the context
of the program being debugged. Python statements can also be prefixed with an exclamation point (‘! ’). This is a

214 Chapter 9. The Python Debugger

powerful way to inspect the program being debugged; it is even possible to change a variable or call a function. When
an exception occurs in such a statement, the exception name is printed but the debugger’s state is not changed.

Multiple commands may be entered on a single line, separated by ‘;; ’. (A single ‘; ’ is not used as it is the separator
for multiple commands in a line that is passed to the Python parser.) No intelligence is applied to separating the
commands; the input is split at the first ‘;; ’ pair, even if it is in the middle of a quoted string.

The debugger supports aliases. Aliases can have parameters which allows one a certain level of adaptability to the
context under examination.

If a file ‘ .pdbrc’ exists in the user’s home directory or in the current directory, it is read in and executed as if it had
been typed at the debugger prompt. This is particularly useful for aliases. If both files exist, the one in the home
directory is read first and aliases defined there can be overridden by the local file.

h(elp) [command] Without argument, print the list of available commands. With acommandas argument, print help
about that command. ‘help pdb ’ displays the full documentation file; if the environment variable $PAGER
is defined, the file is piped through that command instead. Since thecommandargument must be an identifier,
‘help exec ’ must be entered to get help on the ‘! ’ command.

w(here) Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current frame, which
determines the context of most commands.

d(own) Move the current frame one level down in the stack trace (to an newer frame).

u(p) Move the current frame one level up in the stack trace (to a older frame).

b(reak) [[filename:] lineno| function[, condition]] With a lineno argument, set a break there in the current file.
With a functionargument, set a break at the first executable statement within that function. The line number
may be prefixed with a filename and a colon, to specify a breakpoint in another file (probably one that hasn’t
been loaded yet). The file is searched onsys.path . Note that each breakpoint is assigned a number to which
all the other breakpoint commands refer.

If a second argument is present, it is an expression which must evaluate to true before the breakpoint is honored.

Without argument, list all breaks, including for each breakpoint, the number of times that breakpoint has been
hit, the current ignore count, and the associated condition if any.

tbreak [[filename:] lineno| function[, condition]] Temporary breakpoint, which is removed automatically when
it is first hit. The arguments are the same as break.

cl(ear) [bpnumber[bpnumber ...]] With a space separated list of breakpoint numbers, clear those breakpoints.
Without argument, clear all breaks (but first ask confirmation).

disable[bpnumber[bpnumber ...]] Disables the breakpoints given as a space separated list of breakpoint numbers.
Disabling a breakpoint means it cannot cause the program to stop execution, but unlike clearing a breakpoint, it
remains in the list of breakpoints and can be (re-)enabled.

enable[bpnumber[bpnumber ...]] Enables the breakpoints specified.

ignore bpnumber[count] Sets the ignore count for the given breakpoint number. If count is omitted, the ignore count
is set to 0. A breakpoint becomes active when the ignore count is zero. When non-zero, the count is decremented
each time the breakpoint is reached and the breakpoint is not disabled and any associated condition evaluates to
true.

condition bpnumber[condition] Condition is an expression which must evaluate to true before the breakpoint is
honored. If condition is absent, any existing condition is removed; i.e., the breakpoint is made unconditional.

s(tep) Execute the current line, stop at the first possible occasion (either in a function that is called or on the next line
in the current function).

9.1. Debugger Commands 215

n(ext) Continue execution until the next line in the current function is reached or it returns. (The difference between
‘next ’ and ‘step ’ is that ‘step ’ stops inside a called function, while ‘next ’ executes called functions at
(nearly) full speed, only stopping at the next line in the current function.)

r(eturn) Continue execution until the current function returns.

c(ont(inue)) Continue execution, only stop when a breakpoint is encountered.

l(ist) [first[, last]] List source code for the current file. Without arguments, list 11 lines around the current line or
continue the previous listing. With one argument, list 11 lines around at that line. With two arguments, list the
given range; if the second argument is less than the first, it is interpreted as a count.

a(rgs) Print the argument list of the current function.

p expressionEvaluate theexpressionin the current context and print its value. (Note: ‘print ’ can also be used, but
is not a debugger command — this executes the Pythonprint statement.)

alias [name[command]] Creates an alias callednamethat executescommand. The command mustnotbe enclosed
in quotes. Replaceable parameters can be indicated by ‘%1’, ‘ %2’, and so on, while ‘%*’ is replaced by all the
parameters. If no command is given, the current alias fornameis shown. If no arguments are given, all aliases
are listed.

Aliases may be nested and can contain anything that can be legally typed at the pdb prompt. Note that internal
pdb commandscanbe overridden by aliases. Such a command is then hidden until the alias is removed. Aliasing
is recursively applied to the first word of the command line; all other words in the line are left alone.

As an example, here are two useful aliases (especially when placed in the ‘.pdbrc’ file):

#Print instance variables (usage "pi classInst")
alias pi for k in %1.__dict__.keys(): print "%1.",k,"=",%1.__dict__[k]
#Print instance variables in self
alias ps pi self

unaliasname Deletes the specified alias.

[!]statementExecute the (one-line)statementin the context of the current stack frame. The exclamation point can
be omitted unless the first word of the statement resembles a debugger command. To set a global variable, you
can prefix the assignment command with a ‘global ’ command on the same line, e.g.:

(Pdb) global list_options; list_options = [’-l’]
(Pdb)

q(uit) Quit from the debugger. The program being executed is aborted.

9.2 How It Works

Some changes were made to the interpreter:

• sys.settrace(func) sets the global trace function

• there can also a local trace function (see later)

216 Chapter 9. The Python Debugger

Trace functions have three arguments:frame, event, andarg. frame is the current stack frame.eventis a string:
’call’ , ’line’ , ’return’ or ’exception’ . arg depends on the event type.

The global trace function is invoked (witheventset to’call’) whenever a new local scope is entered; it should
return a reference to the local trace function to be used that scope, orNone if the scope shouldn’t be traced.

The local trace function should return a reference to itself (or to another function for further tracing in that scope), or
None to turn off tracing in that scope.

Instance methods are accepted (and very useful!) as trace functions.

The events have the following meaning:

’call’ A function is called (or some other code block entered). The global trace function is called; arg is the
argument list to the function; the return value specifies the local trace function.

’line’ The interpreter is about to execute a new line of code (sometimes multiple line events on one line exist).
The local trace function is called; arg in None; the return value specifies the new local trace function.

’return’ A function (or other code block) is about to return. The local trace function is called; arg is the value that
will be returned. The trace function’s return value is ignored.

’exception’ An exception has occurred. The local trace function is called; arg is a triple (exception, value,
traceback); the return value specifies the new local trace function

Note that as an exception is propagated down the chain of callers, an’exception’ event is generated at each level.

For more information on code and frame objects, refer to thePython Reference Manual.

9.2. How It Works 217

218

CHAPTER

TEN

The Python Profiler

Copyright c© 1994, by InfoSeek Corporation, all rights reserved.

Written by James Roskind.1

Permission to use, copy, modify, and distribute this Python software and its associated documentation for any purpose
(subject to the restriction in the following sentence) without fee is hereby granted, provided that the above copyright
notice appears in all copies, and that both that copyright notice and this permission notice appear in supporting doc-
umentation, and that the name of InfoSeek not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission. This permission is explicitly restricted to the copying and modifi-
cation of the software to remain in Python, compiled Python, or other languages (such as C) wherein the modified or
derived code is exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, IN-
CLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The profiler was written after only programming in Python for 3 weeks. As a result, it is probably clumsy code, but I
don’t know for sure yet ’cause I’m a beginner :-). I did work hard to make the code run fast, so that profiling would
be a reasonable thing to do. I tried not to repeat code fragments, but I’m sure I did some stuff in really awkward ways
at times. Please send suggestions for improvements to:jar@netscape.com. I won’t promiseany support. ...but I’d
appreciate the feedback.

10.1 Introduction to the profiler

A profiler is a program that describes the run time performance of a program, providing a variety of statistics. This
documentation describes the profiler functionality provided in the modulesprofile andpstats . This profiler
providesdeterministic profilingof any Python programs. It also provides a series of report generation tools to allow
users to rapidly examine the results of a profile operation.

10.2 How Is This Profiler Different From The Old Profiler?

(This section is of historical importance only; the old profiler discussed here was last seen in Python 1.1.)

The big changes from old profiling module are that you get more information, and you pay less CPU time. It’s not a
trade-off, it’s a trade-up.

1Updated and converted to LATEX by Guido van Rossum. The references to the old profiler are left in the text, although it no longer exists.

219

To be specific:

Bugs removed: Local stack frame is no longer molested, execution time is now charged to correct functions.

Accuracy increased: Profiler execution time is no longer charged to user’s code, calibration for platform is supported,
file reads are not donebyprofilerduringprofiling (and charged to user’s code!).

Speed increased:Overhead CPU cost was reduced by more than a factor of two (perhaps a factor of five), lightweight
profiler module is all that must be loaded, and the report generating module (pstats) is not needed during
profiling.

Recursive functions support: Cumulative times in recursive functions are correctly calculated; recursive entries are
counted.

Large growth in report generating UI: Distinct profiles runs can be added together forming a comprehensive re-
port; functions that import statistics take arbitrary lists of files; sorting criteria is now based on keywords (in-
stead of 4 integer options); reports shows what functions were profiled as well as what profile file was referenced;
output format has been improved.

10.3 Instant Users Manual

This section is provided for users that “don’t want to read the manual.” It provides a very brief overview, and allows a
user to rapidly perform profiling on an existing application.

To profile an application with a main entry point of ‘foo() ’, you would add the following to your module:

import profile
profile.run(’foo()’)

The above action would cause ‘foo() ’ to be run, and a series of informative lines (the profile) to be printed. The
above approach is most useful when working with the interpreter. If you would like to save the results of a profile into
a file for later examination, you can supply a file name as the second argument to therun() function:

import profile
profile.run(’foo()’, ’fooprof’)

The file ‘profile.py’ can also be invoked as a script to profile another script. For example:

python /usr/local/lib/python1.5/profile.py myscript.py

When you wish to review the profile, you should use the methods in thepstats module. Typically you would load
the statistics data as follows:

import pstats
p = pstats.Stats(’fooprof’)

The classStats (the above code just created an instance of this class) has a variety of methods for manipulating and
printing the data that was just read into ‘p’. When you ranprofile.run() above, what was printed was the result
of three method calls:

220 Chapter 10. The Python Profiler

p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names. The second method sorted all the entries
according to the standard module/line/name string that is printed (this is to comply with the semantics of the old
profiler). The third method printed out all the statistics. You might try the following sort calls:

p.sort_stats(’name’)
p.print_stats()

The first call will actually sort the list by function name, and the second call will print out the statistics. The following
are some interesting calls to experiment with:

p.sort_stats(’cumulative’).print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines. If you want
to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:

p.sort_stats(’time’).print_stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:

p.sort_stats(’file’).print_stats(’__init__’)

This will sort all the statistics by file name, and then print out statistics for only the class init methods (’cause they are
spelled with ‘ init ’ in them). As one final example, you could try:

p.sort_stats(’time’, ’cum’).print_stats(.5, ’init’)

This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then prints out some
of the statistics. To be specific, the list is first culled down to 50% (re: ‘.5 ’) of its original size, then only lines
containinginit are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (‘p’ is still sorted according to the last
criteria) do:

p.print_callers(.5, ’init’)

and you would get a list of callers for each of the listed functions.

If you want more functionality, you’re going to have to read the manual, or guess what the following functions do:

10.3. Instant Users Manual 221

p.print_callees()
p.add(’fooprof’)

10.4 What Is Deterministic Profiling?

Deterministic profilingis meant to reflect the fact that allfunction call, function return, andexceptionevents are
monitored, and precise timings are made for the intervals between these events (during which time the user’s code
is executing). In contrast,statistical profiling(which is not done by this module) randomly samples the effective
instruction pointer, and deduces where time is being spent. The latter technique traditionally involves less overhead
(as the code does not need to be instrumented), but provides only relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not required to
do deterministic profiling. Python automatically provides ahook(optional callback) for each event. In addition, the
interpreted nature of Python tends to add so much overhead to execution, that deterministic profiling tends to only add
small processing overhead in typical applications. The result is that deterministic profiling is not that expensive, yet
provides extensive run time statistics about the execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible inline-expansion
points (high call counts). Internal time statistics can be used to identify “hot loops” that should be carefully optimized.
Cumulative time statistics should be used to identify high level errors in the selection of algorithms. Note that the
unusual handling of cumulative times in this profiler allows statistics for recursive implementations of algorithms to
be directly compared to iterative implementations.

10.5 Reference Manual

The primary entry point for the profiler is the global functionprofile.run() . It is typically used to create any
profile information. The reports are formatted and printed using methods of the classpstats.Stats . The following
is a description of all of these standard entry points and functions. For a more in-depth view of some of the code,
consider reading the later section on Profiler Extensions, which includes discussion of how to derive “better” profilers
from the classes presented, or reading the source code for these modules.

run (string[, filename[, ...]])
This function takes a single argument that has can be passed to theexec statement, and an optional file name.
In all cases this routine attempts toexec its first argument, and gather profiling statistics from the execution. If
no file name is present, then this function automatically prints a simple profiling report, sorted by the standard
name string (file/line/function-name) that is presented in each line. The following is a typical output from such
a call:

main()
2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)

43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)
...

The first line indicates that this profile was generated by the call:
profile.run(’main()’) , and hence the exec’ed string is’main()’ . The second line indicates that
2706 calls were monitored. Of those calls, 2004 wereprimitive. We defineprimitive to mean that the call was

222 Chapter 10. The Python Profiler

not induced via recursion. The next line:Ordered by: standard name , indicates that the text string in
the far right column was used to sort the output. The column headings include:

ncalls for the number of calls,

tottime for the total time spent in the given function (and excluding time made in calls to sub-functions),

percall is the quotient oftottime divided byncalls

cumtime is the total time spent in this and all subfunctions (i.e., from invocation till exit). This figure is accurate
evenfor recursive functions.

percall is the quotient ofcumtime divided by primitive calls

filename:lineno(function)provides the respective data of each function

When there are two numbers in the first column (e.g.: ‘43/3 ’), then the latter is the number of primitive calls,
and the former is the actual number of calls. Note that when the function does not recurse, these two values are
the same, and only the single figure is printed.

Analysis of the profiler data is done using this class from thepstats module:

Stats (filename[, ...])
This class constructor creates an instance of a “statistics object” from afilename(or set of filenames).Stats
objects are manipulated by methods, in order to print useful reports.

The file selected by the above constructor must have been created by the corresponding version ofprofile .
To be specific, there isno file compatibility guaranteed with future versions of this profiler, and there is no
compatibility with files produced by other profilers (e.g., the old system profiler).

If several files are provided, all the statistics for identical functions will be coalesced, so that an overall view of
several processes can be considered in a single report. If additional files need to be combined with data in an
existingStats object, theadd() method can be used.

10.5.1 The Stats Class

Stats objects have the following methods:

strip dirs ()
This method for theStats class removes all leading path information from file names. It is very useful in
reducing the size of the printout to fit within (close to) 80 columns. This method modifies the object, and the
stripped information is lost. After performing a strip operation, the object is considered to have its entries in a
“random” order, as it was just after object initialization and loading. Ifstrip dirs() causes two function
names to be indistinguishable (i.e., they are on the same line of the same filename, and have the same function
name), then the statistics for these two entries are accumulated into a single entry.

add (filename[, ...])
This method of theStats class accumulates additional profiling information into the current profiling object.
Its arguments should refer to filenames created by the corresponding version ofprofile.run() . Statistics
for identically named (re: file, line, name) functions are automatically accumulated into single function statistics.

sort stats (key[, ...])
This method modifies theStats object by sorting it according to the supplied criteria. The argument is typically
a string identifying the basis of a sort (example:’time’ or ’name’).

When more than one key is provided, then additional keys are used as secondary criteria when the there is
equality in all keys selected before them. For example, ‘sort stats(’name’, ’file’) ’ will sort all the
entries according to their function name, and resolve all ties (identical function names) by sorting by file name.

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following are
the keys currently defined:

10.5. Reference Manual 223

Valid Arg Meaning
’calls’ call count
’cumulative’ cumulative time
’file’ file name
’module’ file name
’pcalls’ primitive call count
’line’ line number
’name’ function name
’nfl’ name/file/line
’stdname’ standard name
’time’ internal time

Note that all sorts on statistics are in descending order (placing most time consuming items first), where as name,
file, and line number searches are in ascending order (i.e., alphabetical). The subtle distinction between’nfl’
and’stdname’ is that the standard name is a sort of the name as printed, which means that the embedded line
numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the file names were the same)
appear in the string order 20, 3 and 40. In contrast,’nfl’ does a numeric compare of the line numbers. In fact,
sort stats(’nfl’) is the same assort stats(’name’, ’file’, ’line’) .

For compatibility with the old profiler, the numeric arguments-1 , 0, 1, and2 are permitted. They are interpreted
as’stdname’ , ’calls’ , ’time’ , and’cumulative’ respectively. If this old style format (numeric) is
used, only one sort key (the numeric key) will be used, and additional arguments will be silently ignored.

reverse order ()
This method for theStats class reverses the ordering of the basic list within the object. This method is
provided primarily for compatibility with the old profiler. Its utility is questionable now that ascending vs
descending order is properly selected based on the sort key of choice.

print stats (restriction[, ...])
This method for theStats class prints out a report as described in theprofile.run() definition.

The order of the printing is based on the lastsort stats() operation done on the object (subject to caveats
in add() andstrip dirs() .

The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the list is
taken to be the complete set of profiled functions. Each restriction is either an integer (to select a count of lines),
or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or a regular expression (to
pattern match the standard name that is printed; as of Python 1.5b1, this uses the Perl-style regular expression
syntax defined by there module). If several restrictions are provided, then they are applied sequentially. For
example:

print_stats(.1, ’foo:’)

would first limit the printing to first 10% of list, and then only print functions that were part of filename
‘ .*foo: ’. In contrast, the command:

print_stats(’foo:’, .1)

would limit the list to all functions having file names ‘.*foo: ’, and then proceed to only print the first 10% of
them.

print callers (restrictions[, ...])
This method for theStats class prints a list of all functions that called each function in the profiled database.
The ordering is identical to that provided byprint stats() , and the definition of the restricting argument
is also identical. For convenience, a number is shown in parentheses after each caller to show how many times
this specific call was made. A second non-parenthesized number is the cumulative time spent in the function at
the right.

224 Chapter 10. The Python Profiler

print callees (restrictions[, ...])
This method for theStats class prints a list of all function that were called by the indicated function. Aside
from this reversal of direction of calls (re: called vs was called by), the arguments and ordering are identical to
theprint callers() method.

ignore ()
Deprecated since release 1.5.1.This is not needed in modern versions of Python.2

10.6 Limitations

There are two fundamental limitations on this profiler. The first is that it relies on the Python interpreter to dispatch
call, return, andexceptionevents. Compiled C code does not get interpreted, and hence is “invisible” to the profiler.
All time spent in C code (including built-in functions) will be charged to the Python function that invoked the C code.
If the C code calls out to some native Python code, then those calls will be profiled properly.

The second limitation has to do with accuracy of timing information. There is a fundamental problem with determin-
istic profilers involving accuracy. The most obvious restriction is that the underlying “clock” is only ticking at a rate
(typically) of about .001 seconds. Hence no measurements will be more accurate that that underlying clock. If enough
measurements are taken, then the “error” will tend to average out. Unfortunately, removing this first error induces a
second source of error...

The second problem is that it “takes a while” from when an event is dispatched until the profiler’s call to get the time
actuallygetsthe state of the clock. Similarly, there is a certain lag when exiting the profiler event handler from the
time that the clock’s value was obtained (and then squirreled away), until the user’s code is once again executing. As
a result, functions that are called many times, or call many functions, will typically accumulate this error. The error
that accumulates in this fashion is typically less than the accuracy of the clock (i.e., less than one clock tick), but it
canaccumulate and become very significant. This profiler provides a means of calibrating itself for a given platform
so that this error can be probabilistically (i.e., on the average) removed. After the profiler is calibrated, it will be more
accurate (in a least square sense), but it will sometimes produce negative numbers (when call counts are exceptionally
low, and the gods of probability work against you :-).) Donot be alarmed by negative numbers in the profile. They
shouldonlyappear if you have calibrated your profiler, and the results are actually better than without calibration.

10.7 Calibration

The profiler class has a hard coded constant that is added to each event handling time to compensate for the overhead
of calling the time function, and socking away the results. The following procedure can be used to obtain this constant
for a given platform (see discussion in section Limitations above).

import profile
pr = profile.Profile()
print pr.calibrate(100)
print pr.calibrate(100)
print pr.calibrate(100)

The argument tocalibrate() is the number of times to try to do the sample calls to get the CPU times. If your
computer isveryfast, you might have to do:

pr.calibrate(1000)

2This was once necessary, when Python would print any unused expression result that was notNone. The method is still defined for backward
compatibility.

10.6. Limitations 225

or even:

pr.calibrate(10000)

The object of this exercise is to get a fairly consistent result. When you have a consistent answer, you are ready to use
that number in the source code. For a Sun Sparcstation 1000 running Solaris 2.3, the magical number is about .00053.
If you have a choice, you are better off with a smaller constant, and your results will “less often” show up as negative
in profile statistics.

The following shows how the tracedispatch() method in the Profile class should be modified to install the calibration
constant on a Sun Sparcstation 1000:

def trace_dispatch(self, frame, event, arg):
t = self.timer()
t = t[0] + t[1] - self.t - .00053 # Calibration constant

if self.dispatch[event](frame,t):
t = self.timer()
self.t = t[0] + t[1]

else:
r = self.timer()
self.t = r[0] + r[1] - t # put back unrecorded delta

return

Note that if there is no calibration constant, then the line containing the callibration constant should simply say:

t = t[0] + t[1] - self.t # no calibration constant

You can also achieve the same results using a derived class (and the profiler will actually run equally fast!!), but the
above method is the simplest to use. I could have made the profiler “self calibrating”, but it would have made the
initialization of the profiler class slower, and would have required someveryfancy coding, or else the use of a variable
where the constant ‘.00053 ’ was placed in the code shown. This is aVERY critical performance section, and there
is no reason to use a variable lookup at this point, when a constant can be used.

10.8 Extensions — Deriving Better Profilers

TheProfile class of moduleprofile was written so that derived classes could be developed to extend the profiler.
Rather than describing all the details of such an effort, I’ll just present the following two examples of derived classes
that can be used to do profiling. If the reader is an avid Python programmer, then it should be possible to use these as
a model and create similar (and perchance better) profile classes.

If all you want to do is change how the timer is called, or which timer function is used, then the basic class has an
option for that in the constructor for the class. Consider passing the name of a function to call into the constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will callyour time func() instead ofos.times() . The function should return either a
single number or a list of numbers (like whatos.times() returns). If the function returns a single time number, or
the list of returned numbers has length 2, then you will get an especially fast version of the dispatch routine.

226 Chapter 10. The Python Profiler

Be warned that youshouldcalibrate the profiler class for the timer function that you choose. For most machines, a timer
that returns a lone integer value will provide the best results in terms of low overhead during profiling. (os.times()
is prettybad, ’cause it returns a tuple of floating point values, so all arithmetic is floating point in the profiler!). If you
want to substitute a better timer in the cleanest fashion, you should derive a class, and simply put in the replacement
dispatch method that better handles your timer call, along with the appropriate calibration constant :-).

10.8.1 OldProfile Class

The following derived profiler simulates the old style profiler, providing errant results on recursive functions. The
reason for the usefulness of this profiler is that it runs faster (i.e., less overhead) than the old profiler. It still creates all
the caller stats, and is quite useful when there isno recursion in the user’s code. It is also a lot more accurate than the
old profiler, as it does not charge all its overhead time to the user’s code.

10.8. Extensions — Deriving Better Profilers 227

class OldProfile(Profile):

def trace_dispatch_exception(self, frame, t):
rt, rtt, rct, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:

return self.trace_dispatch_return(rframe, t)
return 0

def trace_dispatch_call(self, frame, t):
fn = ‘frame.f_code‘

self.cur = (t, 0, 0, fn, frame, self.cur)
if self.timings.has_key(fn):

tt, ct, callers = self.timings[fn]
self.timings[fn] = tt, ct, callers

else:
self.timings[fn] = 0, 0, {}

return 1

def trace_dispatch_return(self, frame, t):
rt, rtt, rct, rfn, frame, rcur = self.cur
rtt = rtt + t
sft = rtt + rct

pt, ptt, pct, pfn, pframe, pcur = rcur
self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur

tt, ct, callers = self.timings[rfn]
if callers.has_key(pfn):

callers[pfn] = callers[pfn] + 1
else:

callers[pfn] = 1
self.timings[rfn] = tt+rtt, ct + sft, callers

return 1

def snapshot_stats(self):
self.stats = {}
for func in self.timings.keys():

tt, ct, callers = self.timings[func]
nor_func = self.func_normalize(func)
nor_callers = {}
nc = 0
for func_caller in callers.keys():

nor_callers[self.func_normalize(func_caller)] = \
callers[func_caller]

nc = nc + callers[func_caller]
self.stats[nor_func] = nc, nc, tt, ct, nor_callers

10.8.2 HotProfile Class

This profiler is the fastest derived profile example. It does not calculate caller-callee relationships, and does not
calculate cumulative time under a function. It only calculates time spent in a function, so it runs very quickly (re: very
low overhead). In truth, the basic profiler is so fast, that is probably not worth the savings to give up the data, but this

228 Chapter 10. The Python Profiler

class still provides a nice example.

class HotProfile(Profile):

def trace_dispatch_exception(self, frame, t):
rt, rtt, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:

return self.trace_dispatch_return(rframe, t)
return 0

def trace_dispatch_call(self, frame, t):
self.cur = (t, 0, frame, self.cur)
return 1

def trace_dispatch_return(self, frame, t):
rt, rtt, frame, rcur = self.cur

rfn = ‘frame.f_code‘

pt, ptt, pframe, pcur = rcur
self.cur = pt, ptt+rt, pframe, pcur

if self.timings.has_key(rfn):
nc, tt = self.timings[rfn]
self.timings[rfn] = nc + 1, rt + rtt + tt

else:
self.timings[rfn] = 1, rt + rtt

return 1

def snapshot_stats(self):
self.stats = {}
for func in self.timings.keys():

nc, tt = self.timings[func]
nor_func = self.func_normalize(func)
self.stats[nor_func] = nc, nc, tt, 0, {}

10.8. Extensions — Deriving Better Profilers 229

230

CHAPTER

ELEVEN

Internet Protocols and Support

The modules described in this chapter implement Internet protocols and support for related technology. They are all
implemented in Python. Most of these modules require the presence of the system-dependent modulesocket , which
is currently supported on most popular platforms. Here is an overview:

webbrowser Easy-to-use controller for Web browsers.
cgi Common Gateway Interface support, used to interpret forms in server-side scripts.
urllib Open an arbitrary network resource by URL (requires sockets).
httplib HTTP protocol client (requires sockets).
ftplib FTP protocol client (requires sockets).
gopherlib Gopher protocol client (requires sockets).
poplib POP3 protocol client (requires sockets).
imaplib IMAP4 protocol client (requires sockets).
nntplib NNTP protocol client (requires sockets).
smtplib SMTP protocol client (requires sockets).
telnetlib Telnet client class.
urlparse Parse URLs into components.
SocketServer A framework for network servers.
BaseHTTPServer Basic HTTP server (base class forSimpleHTTPServer andCGIHTTPServer).
SimpleHTTPServer This module provides a basic request handler for HTTP servers.
CGIHTTPServer This module provides a request handler for HTTP servers which can run CGI scripts.
Cookie Support for HTTP state management (cookies).
asyncore A base class for developing asynchronous socket handling services.

11.1 webbrowser — Convenient Web-browser controller

The webbrowser module provides a very high-level interface to allow displaying Web-based documents to users.
The controller objects are easy to use and are platform independent.

Under UNIX , graphical browsers are preferred under X11, but text-mode browsers will be used if graphical browsers
are not available or an X11 display isn’t available. If text-mode browsers are used, the calling process will block until
the user exits the browser.

For non-UNIX platforms, or when X11 browsers are available on UNIX , the controlling process will not wait for the
user to finish with the browser, but allow the browser to maintain its own window on the display.

The following exception is defined:

Error
Exception raised when a browser control error occurs.

The following functions are defined:

231

open (url[, new])
Displayurl using the default browser. Ifnewis true, a new browser window is opened if possible.

open new(url)
Openurl in a new window of the default browser, if possible, otherwise, openurl in the only browser window.

get ([name])
Return a controller object for the browser typename.

register (name, constructor[, controller])
Register the browser typename. Once a browser type is registered, theget() function can return a controller
for that browser type. Ifinstanceis not provided, or isNone, constructorwill be called without parameters to
create an instance when needed. Ifinstanceis provided,constructorwill never be called, and may beNone.

Several browser types are defined. This table gives the type names that may be passed to theget() function and the
names of the implementation classes, all defined in this module.

Type Name Class Name Notes
’netscape’ Netscape
’kfm’ Konquerer (1)
’grail’ Grail
’windows-default’ WindowsDefault (2)
’internet-config’ InternetConfig (3)
’command-line’ CommandLineBrowser

Notes:

(1) “Konquerer” is the file manager for the KDE desktop environment for UNIX, and only makes sense to use if KDE
is running. Some way of reliably detecting KDE would be nice; the $KDEDIR variable is not sufficient.

(2) Only on Windows platforms; requires the common extension moduleswin32api andwin32con .

(3) Only on MacOS platforms; requires the standard MacPythonic module, described in theMacintosh Library
Modulesmanual.

11.1.1 Browser Controller Objects

Browser controllers provide two methods which parallel two of the module-level convenience functions:

open (url[, new])
Display url using the browser handled by this controller. Ifnew is true, a new browser window is opened if
possible.

open new(url)
Openurl in a new window of the browser handled by this controller, if possible, otherwise, openurl in the only
browser window.

11.2 cgi — Common Gateway Interface support.

Support module for CGI (Common Gateway Interface) scripts.

This module defines a number of utilities for use by CGI scripts written in Python.

232 Chapter 11. Internet Protocols and Support

11.2.1 Introduction

A CGI script is invoked by an HTTP server, usually to process user input submitted through an HTML<FORM>or
<ISINDEX> element.

Most often, CGI scripts live in the server’s special ‘cgi-bin’ directory. The HTTP server places all sorts of information
about the request (such as the client’s hostname, the requested URL, the query string, and lots of other goodies) in the
script’s shell environment, executes the script, and sends the script’s output back to the client.

The script’s input is connected to the client too, and sometimes the form data is read this way; at other times the form
data is passed via the “query string” part of the URL. This module is intended to take care of the different cases and
provide a simpler interface to the Python script. It also provides a number of utilities that help in debugging scripts,
and the latest addition is support for file uploads from a form (if your browser supports it — Grail 0.3 and Netscape
2.0 do).

The output of a CGI script should consist of two sections, separated by a blank line. The first section contains a number
of headers, telling the client what kind of data is following. Python code to generate a minimal header section looks
like this:

print "Content-Type: text/html" # HTML is following
print # blank line, end of headers

The second section is usually HTML, which allows the client software to display nicely formatted text with header,
in-line images, etc. Here’s Python code that prints a simple piece of HTML:

print "<TITLE>CGI script output</TITLE>"
print "<H1>This is my first CGI script</H1>"
print "Hello, world!"

11.2.2 Using the cgi module

Begin by writing ‘import cgi ’. Do not use ‘from cgi import * ’ — the module defines all sorts of names
for its own use or for backward compatibility that you don’t want in your namespace.

It’s best to use theFieldStorage class. The other classes defined in this module are provided mostly for backward
compatibility. Instantiate it exactly once, without arguments. This reads the form contents from standard input or the
environment (depending on the value of various environment variables set according to the CGI standard). Since it
may consume standard input, it should be instantiated only once.

The FieldStorage instance can be indexed like a Python dictionary, and also supports the standard dictio-
nary methodshas key() andkeys() . Form fields containing empty strings are ignored and do not appear in
the dictionary; to keep such values, provide the optional ‘keep blank values ’ argument when creating the
FieldStorage instance.

For instance, the following code (which assumes that theContent-Type header and blank line have already been
printed) checks that the fieldsname andaddr are both set to a non-empty string:

11.2. cgi — Common Gateway Interface support. 233

form = cgi.FieldStorage()
form_ok = 0
if form.has_key("name") and form.has_key("addr"):

form_ok = 1
if not form_ok:

print "<H1>Error</H1>"
print "Please fill in the name and addr fields."
return

print "<p>name:", form["name"].value
print "<p>addr:", form["addr"].value
...further form processing here...

Here the fields, accessed through ‘form[key] ’, are themselves instances ofFieldStorage (or
MiniFieldStorage , depending on the form encoding). Thevalue attribute of the instance yields the
string value of the field. Thegetvalue() method returns this string value directly; it also accepts an optional
second argument as a default to return if the requested key is not present.

If the submitted form data contains more than one field with the same name, the object retrieved by ‘form[key] ’ is
not aFieldStorage or MiniFieldStorage instance but a list of such instances. Similarly, in this situation,
‘ form.getvalue(key) ’ would return a list of strings. If you expect this possibility (i.e., when your HTML form
contains multiple fields with the same name), use thetype() function to determine whether you have a single
instance or a list of instances. For example, here’s code that concatenates any number of username fields, separated by
commas:

value = form.getvalue("username", "")
if type(value) is type([]):

Multiple username fields specified
usernames = ",".join(value)

else:
Single or no username field specified
usernames = value

If a field represents an uploaded file, accessing the value via thevalue attribute or thegetvalue() method reads
the entire file in memory as a string. This may not be what you want. You can test for an uploaded file by testing either
thefilename attribute or thefile attribute. You can then read the data at leisure from thefile attribute:

fileitem = form["userfile"]
if fileitem.file:

It’s an uploaded file; count lines
linecount = 0
while 1:

line = fileitem.file.readline()
if not line: break
linecount = linecount + 1

The file upload draft standard entertains the possibility of uploading multiple files from one field (using a recursive
multipart/* encoding). When this occurs, the item will be a dictionary-likeFieldStorage item. This can be deter-
mined by testing itstype attribute, which should bemultipart/form-data (or perhaps another MIME type matching
multipart/*). In this case, it can be iterated over recursively just like the top-level form object.

When a form is submitted in the “old” format (as the query string or as a single data part of typeapplication/x-www-
form-urlencoded), the items will actually be instances of the classMiniFieldStorage . In this case, thelist ,
file , andfilename attributes are alwaysNone.

234 Chapter 11. Internet Protocols and Support

11.2.3 Old classes

These classes, present in earlier versions of thecgi module, are still supported for backward compatibility. New
applications should use theFieldStorage class.

SvFormContentDict stores single value form content as dictionary; it assumes each field name occurs in the form
only once.

FormContentDict stores multiple value form content as a dictionary (the form items are lists of values). Useful if
your form contains multiple fields with the same name.

Other classes (FormContent , InterpFormContentDict) are present for backwards compatibility with really
old applications only. If you still use these and would be inconvenienced when they disappeared from a next version
of this module, drop me a note.

11.2.4 Functions

These are useful if you want more control, or if you want to employ some of the algorithms implemented in this
module in other circumstances.

parse (fp)
Parse a query in the environment or from a file (defaultsys.stdin).

parse qs (qs[, keep blank values, strict parsing])
Parse a query string given as a string argument (data of typeapplication/x-www-form-urlencoded). Data are
returned as a dictionary. The dictionary keys are the unique query variable names and the values are lists of
values for each name.

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

The optional argumentstrict parsing is a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

parse qsl (qs[, keep blank values, strict parsing])
Parse a query string given as a string argument (data of typeapplication/x-www-form-urlencoded). Data are
returned as a list of name, value pairs.

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

The optional argumentstrict parsing is a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

parse multipart (fp, pdict)
Parse input of typemultipart/form-data (for file uploads). Arguments arefp for the input file andpdict for a
dictionary containing other parameters in theContent-Type header.

Returns a dictionary just likeparse qs() keys are the field names, each value is a list of values for that field.
This is easy to use but not much good if you are expecting megabytes to be uploaded — in that case, use the
FieldStorage class instead which is much more flexible.

Note that this does not parse nested multipart parts — useFieldStorage for that.

parse header (string)
Parse a MIME header (such asContent-Type) into a main value and a dictionary of parameters.

test ()
Robust test CGI script, usable as main program. Writes minimal HTTP headers and formats all information
provided to the script in HTML form.

11.2. cgi — Common Gateway Interface support. 235

print environ ()
Format the shell environment in HTML.

print form (form)
Format a form in HTML.

print directory ()
Format the current directory in HTML.

print environ usage ()
Print a list of useful (used by CGI) environment variables in HTML.

escape (s[, quote])
Convert the characters ‘&’, ‘ <’ and ‘>’ in string s to HTML-safe sequences. Use this if you need to display text
that might contain such characters in HTML. If the optional flagquoteis true, the double quote character (‘" ’)
is also translated; this helps for inclusion in an HTML attribute value, e.g. in .

11.2.5 Caring about security

There’s one important rule: if you invoke an external program (e.g. via theos.system() or os.popen() func-
tions), make very sure you don’t pass arbitrary strings received from the client to the shell. This is a well-known
security hole whereby clever hackers anywhere on the web can exploit a gullible CGI script to invoke arbitrary shell
commands. Even parts of the URL or field names cannot be trusted, since the request doesn’t have to come from your
form!

To be on the safe side, if you must pass a string gotten from a form to a shell command, you should make sure the
string contains only alphanumeric characters, dashes, underscores, and periods.

11.2.6 Installing your CGI script on a Unix system

Read the documentation for your HTTP server and check with your local system administrator to find the directory
where CGI scripts should be installed; usually this is in a directory ‘cgi-bin’ in the server tree.

Make sure that your script is readable and executable by “others”; the UNIX file mode should be0755 octal (use
‘chmod 0755 filename’). Make sure that the first line of the script contains#! starting in column 1 followed by
the pathname of the Python interpreter, for instance:

#!/usr/local/bin/python

Make sure the Python interpreter exists and is executable by “others”.

Make sure that any files your script needs to read or write are readable or writable, respectively, by “others” — their
mode should be0644 for readable and0666 for writable. This is because, for security reasons, the HTTP server
executes your script as user “nobody”, without any special privileges. It can only read (write, execute) files that
everybody can read (write, execute). The current directory at execution time is also different (it is usually the server’s
cgi-bin directory) and the set of environment variables is also different from what you get at login. In particular, don’t
count on the shell’s search path for executables ($PATH) or the Python module search path ($PYTHONPATH) to be
set to anything interesting.

If you need to load modules from a directory which is not on Python’s default module search path, you can change the
path in your script, before importing other modules, e.g.:

236 Chapter 11. Internet Protocols and Support

import sys
sys.path.insert(0, "/usr/home/joe/lib/python")
sys.path.insert(0, "/usr/local/lib/python")

(This way, the directory inserted last will be searched first!)

Instructions for non-UNIX systems will vary; check your HTTP server’s documentation (it will usually have a section
on CGI scripts).

11.2.7 Testing your CGI script

Unfortunately, a CGI script will generally not run when you try it from the command line, and a script that works
perfectly from the command line may fail mysteriously when run from the server. There’s one reason why you should
still test your script from the command line: if it contains a syntax error, the Python interpreter won’t execute it at all,
and the HTTP server will most likely send a cryptic error to the client.

Assuming your script has no syntax errors, yet it does not work, you have no choice but to read the next section.

11.2.8 Debugging CGI scripts

First of all, check for trivial installation errors — reading the section above on installing your CGI script carefully can
save you a lot of time. If you wonder whether you have understood the installation procedure correctly, try installing a
copy of this module file (‘cgi.py’) as a CGI script. When invoked as a script, the file will dump its environment and the
contents of the form in HTML form. Give it the right mode etc, and send it a request. If it’s installed in the standard
‘cgi-bin’ directory, it should be possible to send it a request by entering a URL into your browser of the form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If this gives an error of type 404, the server cannot find the script – perhaps you need to install it in a different directory.
If it gives another error (e.g. 500), there’s an installation problem that you should fix before trying to go any further.
If you get a nicely formatted listing of the environment and form content (in this example, the fields should be listed
as “addr” with value “At Home” and “name” with value “Joe Blow”), the ‘cgi.py’ script has been installed correctly.
If you follow the same procedure for your own script, you should now be able to debug it.

The next step could be to call thecgi module’stest() function from your script: replace its main code with the
single statement

cgi.test()

This should produce the same results as those gotten from installing the ‘cgi.py’ file itself.

When an ordinary Python script raises an unhandled exception (e.g. because of a typo in a module name, a file that
can’t be opened, etc.), the Python interpreter prints a nice traceback and exits. While the Python interpreter will still
do this when your CGI script raises an exception, most likely the traceback will end up in one of the HTTP server’s
log file, or be discarded altogether.

Fortunately, once you have managed to get your script to executesomecode, it is easy to catch exceptions and cause
a traceback to be printed. Thetest() function below in this module is an example. Here are the rules:

1. Import the traceback module before entering thetry ... except statement

11.2. cgi — Common Gateway Interface support. 237

2. Assignsys.stderr to besys.stdout

3. Make sure you finish printing the headers and the blank line early

4. Wrap all remaining code in atry ... except statement

5. In the except clause, calltraceback.print exc()

For example:

import sys
import traceback
print "Content-Type: text/html"
print
sys.stderr = sys.stdout
try:

...your code here...
except:

print "\n\n<PRE>"
traceback.print_exc()

Notes: The assignment tosys.stderr is needed because the traceback prints tosys.stderr . The print
"\n\n<PRE>" statement is necessary to disable the word wrapping in HTML.

If you suspect that there may be a problem in importing the traceback module, you can use an even more robust
approach (which only uses built-in modules):

import sys
sys.stderr = sys.stdout
print "Content-Type: text/plain"
print
...your code here...

This relies on the Python interpreter to print the traceback. The content type of the output is set to plain text, which
disables all HTML processing. If your script works, the raw HTML will be displayed by your client. If it raises an
exception, most likely after the first two lines have been printed, a traceback will be displayed. Because no HTML
interpretation is going on, the traceback will readable.

11.2.9 Common problems and solutions

• Most HTTP servers buffer the output from CGI scripts until the script is completed. This means that it is not
possible to display a progress report on the client’s display while the script is running.

• Check the installation instructions above.

• Check the HTTP server’s log files. (‘tail -f logfile ’ in a separate window may be useful!)

• Always check a script for syntax errors first, by doing something like ‘python script.py ’.

• When using any of the debugging techniques, don’t forget to add ‘import sys ’ to the top of the script.

• When invoking external programs, make sure they can be found. Usually, this means using absolute path names
— $PATH is usually not set to a very useful value in a CGI script.

• When reading or writing external files, make sure they can be read or written by every user on the system.

238 Chapter 11. Internet Protocols and Support

• Don’t try to give a CGI script a set-uid mode. This doesn’t work on most systems, and is a security liability as
well.

11.3 urllib — Open arbitrary resources by URL

This module provides a high-level interface for fetching data across the World-Wide Web. In particular, the
urlopen() function is similar to the built-in functionopen() , but accepts Universal Resource Locators (URLs)
instead of filenames. Some restrictions apply — it can only open URLs for reading, and no seek operations are
available.

It defines the following public functions:

urlopen (url[, data])
Open a network object denoted by a URL for reading. If the URL does not have a scheme identifier, or if it
has ‘file:’ as its scheme identifier, this opens a local file; otherwise it opens a socket to a server somewhere on
the network. If the connection cannot be made, or if the server returns an error code, theIOError excep-
tion is raised. If all went well, a file-like object is returned. This supports the following methods:read() ,
readline() , readlines() , fileno() , close() , info() andgeturl() .

Except for theinfo() andgeturl() methods, these methods have the same interface as for file objects —
see section 2.1.7 in this manual. (It is not a built-in file object, however, so it can’t be used at those few places
where a true built-in file object is required.)

The info() method returns an instance of the classmimetools.Message containing meta-information
associated with the URL. When the method is HTTP, these headers are those returned by the server at the
head of the retrieved HTML page (including Content-Length and Content-Type). When the method is FTP, a
Content-Length header will be present if (as is now usual) the server passed back a file length in response to the
FTP retrieval request. When the method is local-file, returned headers will include a Date representing the file’s
last-modified time, a Content-Length giving file size, and a Content-Type containing a guess at the file’s type.
See also the description of themimetools module.

Thegeturl() method returns the real URL of the page. In some cases, the HTTP server redirects a client to
another URL. Theurlopen() function handles this transparently, but in some cases the caller needs to know
which URL the client was redirected to. Thegeturl() method can be used to get at this redirected URL.

If the url uses the ‘http:’ scheme identifier, the optionaldataargument may be given to specify aPOSTrequest
(normally the request type isGET). Thedataargument must in standard ‘application/x-www-form-urlencoded’
format; see theurlencode() function below.

Theurlopen() function works transparently with proxies which do not require authentication. In a UNIX or
Windows environment, set the $httpproxy, $ftp proxy or $gopherproxy environment variables to a URL that
identifies the proxy server before starting the Python interpreter. For example (the ‘%’ is the command prompt):

% http_proxy="http://www.someproxy.com:3128"
% export http_proxy
% python
...

In a Macintosh environment,urlopen() will retrieve proxy information from Internet Config.

Proxies which require authentication for use are not currently supported; this is considered an implementation
limitation.

urlretrieve (url[, filename[, hook]])
Copy a network object denoted by a URL to a local file, if necessary. If the URL points to a local file, or a valid
cached copy of the object exists, the object is not copied. Return a tuple(filename, headers) wherefilename
is the local file name under which the object can be found, andheadersis eitherNone (for a local object) or

11.3. urllib — Open arbitrary resources by URL 239

whatever theinfo() method of the object returned byurlopen() returned (for a remote object, possibly
cached). Exceptions are the same as forurlopen() .

The second argument, if present, specifies the file location to copy to (if absent, the location will be a tempfile
with a generated name). The third argument, if present, is a hook function that will be called once on estab-
lishment of the network connection and once after each block read thereafter. The hook will be passed three
arguments; a count of blocks transferred so far, a block size in bytes, and the total size of the file. The third
argument may be-1 on older FTP servers which do not return a file size in response to a retrieval request.

If the url uses the ‘http:’ scheme identifier, the optionaldataargument may be given to specify aPOSTrequest
(normally the request type isGET). Thedataargument must in standard ‘application/x-www-form-urlencoded’
format; see theurlencode() function below.

urlcleanup ()
Clear the cache that may have been built up by previous calls tourlretrieve() .

quote (string[, safe])
Replace special characters instringusing the ‘%xx’ escape. Letters, digits, and the characters ‘,.- ’ are never
quoted. The optionalsafeparameter specifies additional characters that should not be quoted — its default value
is ’/’ .

Example:quote(’/˜connolly/’) yields ’/%7econnolly/’ .

quote plus (string[, safe])
Like quote() , but also replaces spaces by plus signs, as required for quoting HTML form values. Plus signs
in the original string are escaped unless they are included insafe.

unquote (string)
Replace ‘%xx’ escapes by their single-character equivalent.

Example:unquote(’/%7Econnolly/’) yields ’/˜connolly/’ .

unquote plus (string)
Like unquote() , but also replaces plus signs by spaces, as required for unquoting HTML form values.

urlencode (dict)
Convert a dictionary to a “url-encoded” string, suitable to pass tourlopen() above as the optionaldata
argument. This is useful to pass a dictionary of form fields to aPOSTrequest. The resulting string is a series
of key=valuepairs separated by ‘&’ characters, where bothkeyandvalueare quoted usingquote plus()
above.

The public functionsurlopen() andurlretrieve() create an instance of theFancyURLopener class and use
it to perform their requested actions. To override this functionality, programmers can create a subclass ofURLopener
or FancyURLopener , then assign that an instance of that class to theurllib. urlopener variable before
calling the desired function. For example, applications may want to specify a differentuser-agent header than
URLopener defines. This can be accomplished with the following code:

class AppURLopener(urllib.FancyURLopener):
def __init__(self, *args):

self.version = "App/1.7"
apply(urllib.FancyURLopener.__init__, (self,) + args)

urllib._urlopener = AppURLopener()

URLopener ([proxies[, **x509]])
Base class for opening and reading URLs. Unless you need to support opening objects using schemes other than
‘http:’, ‘ ftp:’, ‘ gopher:’ or ‘ file:’, you probably want to useFancyURLopener .

By default, theURLopener class sends auser-agent header of ‘urllib/ VVV’, where VVV is the
urllib version number. Applications can define their ownuser-agent header by subclassingURLopener

240 Chapter 11. Internet Protocols and Support

or FancyURLopener and setting the instance attributeversion to an appropriate string value before the
open() method is called.

Additional keyword parameters, collected inx509, are used for authentication with the ‘https:’ scheme. The
keywordskey file and cert file are supported; both are needed to actually retrieve a resource at an ‘https:’
URL.

FancyURLopener (...)
FancyURLopener subclassesURLopener providing default handling for the following HTTP response
codes: 301, 302 or 401. For 301 and 302 response codes, thelocation header is used to fetch the actual
URL. For 401 response codes (authentication required), basic HTTP authentication is performed.

The parameters to the constructor are the same as those forURLopener .

Restrictions:

• Currently, only the following protocols are supported: HTTP, (versions 0.9 and 1.0), Gopher (but not Gopher-+),
FTP, and local files.

• The caching feature ofurlretrieve() has been disabled until I find the time to hack proper processing of
Expiration time headers.

• There should be a function to query whether a particular URL is in the cache.

• For backward compatibility, if a URL appears to point to a local file but the file can’t be opened, the URL is
re-interpreted using the FTP protocol. This can sometimes cause confusing error messages.

• Theurlopen() andurlretrieve() functions can cause arbitrarily long delays while waiting for a net-
work connection to be set up. This means that it is difficult to build an interactive web client using these functions
without using threads.

• The data returned byurlopen() or urlretrieve() is the raw data returned by the server. This may be
binary data (e.g. an image), plain text or (for example) HTML. The HTTP protocol provides type information in
the reply header, which can be inspected by looking at thecontent-type header. For the Gopher protocol,
type information is encoded in the URL; there is currently no easy way to extract it. If the returned data is
HTML, you can use the modulehtmllib to parse it.

• This module does not support the use of proxies which require authentication. This may be implemented in the
future.

• Although theurllib module contains (undocumented) routines to parse and unparse URL strings, the recom-
mended interface for URL manipulation is in moduleurlparse .

11.3.1 URLopener Objects

URLopener andFancyURLopener objects have the following attributes.

open (fullurl[, data])
Openfullurl using the appropriate protocol. This method sets up cache and proxy information, then calls the
appropriate open method with its input arguments. If the scheme is not recognized,open unknown() is
called. Thedataargument has the same meaning as thedataargument ofurlopen() .

open unknown (fullurl[, data])
Overridable interface to open unknown URL types.

retrieve (url[, filename[, reporthook[, data]]])
Retrieves the contents ofurl and places it infilename. The return value is a tuple consisting of a local filename
and either amimetools.Message object containing the response headers (for remote URLs) or None (for
local URLs). The caller must then open and read the contents offilename. If filenameis not given and the URL

11.3. urllib — Open arbitrary resources by URL 241

refers to a local file, the input filename is returned. If the URL is non-local andfilenameis not given, the filename
is the output oftempfile.mktemp() with a suffix that matches the suffix of the last path component of the
input URL. If reporthookis given, it must be a function accepting three numeric parameters. It will be called
after each chunk of data is read from the network.reporthookis ignored for local URLs.

If the url uses the ‘http:’ scheme identifier, the optionaldataargument may be given to specify aPOSTrequest
(normally the request type isGET). Thedataargument must in standard ‘application/x-www-form-urlencoded’
format; see theurlencode() function below.

version
Variable that specifies the user agent of the opener object. To geturllib to tell servers that it is a particular
user agent, set this in a subclass as a class variable or in the constructor before calling the base constructor.

11.3.2 Examples

Here is an example session that uses the ‘GET’ method to retrieve a URL containing parameters:

>>> import urllib
>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query?%s" % params)
>>> print f.read()

The following example uses the ‘POST’ method instead:

>>> import urllib
>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query", params)
>>> print f.read()

11.4 httplib — HTTP protocol client

This module defines a class which implements the client side of the HTTP protocol. It is normally not used directly
— the moduleurllib uses it to handle URLs that use HTTP.

The module defines one class,HTTP:

HTTP([host[, port]])
An HTTP instance represents one transaction with an HTTP server. It should be instantiated passing it a host
and optional port number. If no port number is passed, the port is extracted from the host string if it has the
form host: port, else the default HTTP port (80) is used. If no host is passed, no connection is made, and the
connect() method should be used to connect to a server. For example, the following calls all create instances
that connect to the server at the same host and port:

>>> h1 = httplib.HTTP(’www.cwi.nl’)
>>> h2 = httplib.HTTP(’www.cwi.nl:80’)
>>> h3 = httplib.HTTP(’www.cwi.nl’, 80)

Once anHTTPinstance has been connected to an HTTP server, it should be used as follows:

1.Make exactly one call to theputrequest() method.

2.Make zero or more calls to theputheader() method.

242 Chapter 11. Internet Protocols and Support

3.Call theendheaders() method (this can be omitted if step 4 makes no calls).

4.Optional calls to thesend() method.

5.Call thegetreply() method.

6.Call thegetfile() method and read the data off the file object that it returns.

11.4.1 HTTP Objects

HTTPinstances have the following methods:

set debuglevel (level)
Set the debugging level (the amount of debugging output printed). The default debug level is0, meaning no
debugging output is printed.

connect (host[, port])
Connect to the server given byhostandport. See the intro for the default port. This should be called directly
only if the instance was instantiated without passing a host.

send (data)
Send data to the server. This should be used directly only after theendheaders() method has been called
and beforegetreply() has been called.

putrequest (request, selector)
This should be the first call after the connection to the server has been made. It sends a line to the server
consisting of therequeststring, theselectorstring, and the HTTP version (HTTP/1.0).

putheader (header, argument[, ...])
Send an RFC 822 style header to the server. It sends a line to the server consisting of the header, a colon and a
space, and the first argument. If more arguments are given, continuation lines are sent, each consisting of a tab
and an argument.

endheaders ()
Send a blank line to the server, signalling the end of the headers.

getreply ()
Complete the request by shutting down the sending end of the socket, read the reply from the server, and return
a triple (replycode, message, headers) . Here,replycodeis the integer reply code from the request (e.g.,
200 if the request was handled properly);messageis the message string corresponding to the reply code; and
headersis an instance of the classmimetools.Message containing the headers received from the server.
See the description of themimetools module.

getfile ()
Return a file object from which the data returned by the server can be read, using theread() , readline()
or readlines() methods.

11.4.2 Examples

Here is an example session that uses the ‘GET’ method:

11.4. httplib — HTTP protocol client 243

>>> import httplib
>>> h = httplib.HTTP(’www.cwi.nl’)
>>> h.putrequest(’GET’, ’/index.html’)
>>> h.putheader(’Accept’, ’text/html’)
>>> h.putheader(’Accept’, ’text/plain’)
>>> h.endheaders()
>>> errcode, errmsg, headers = h.getreply()
>>> print errcode # Should be 200
>>> f = h.getfile()
>>> data = f.read() # Get the raw HTML
>>> f.close()

Here is an example session that shows how to ‘POST’ requests:

>>> import httplib, urllib
>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> h = httplib.HTTP("www.musi-cal.com:80")
>>> h.putrequest("POST", "/cgi-bin/query")
>>> h.putheader("Content-length", "%d" % len(params))
>>> h.putheader(’Accept’, ’text/plain’)
>>> h.putheader(’Host’, ’www.musi-cal.com’)
>>> h.endheaders()
>>> h.send(paramstring)
>>> reply, msg, hdrs = h.getreply()
>>> print errcode # should be 200
>>> data = h.getfile().read() # get the raw HTML

11.5 ftplib — FTP protocol client

This module defines the classFTP and a few related items. TheFTP class implements the client side of the FTP
protocol. You can use this to write Python programs that perform a variety of automated FTP jobs, such as mirroring
other ftp servers. It is also used by the moduleurllib to handle URLs that use FTP. For more information on FTP
(File Transfer Protocol), see Internet RFC 959.

Here’s a sample session using theftplib module:

>>> from ftplib import FTP
>>> ftp = FTP(’ftp.cwi.nl’) # connect to host, default port
>>> ftp.login() # user anonymous, passwd user@hostname
>>> ftp.retrlines(’LIST’) # list directory contents
total 24418
drwxrwsr-x 5 ftp-usr pdmaint 1536 Mar 20 09:48 .
dr-xr-srwt 105 ftp-usr pdmaint 1536 Mar 21 14:32 ..
-rw-r--r-- 1 ftp-usr pdmaint 5305 Mar 20 09:48 INDEX

.

.

.
>>> ftp.retrbinary(’RETR README’, open(’README’, ’wb’).write)
’226 Transfer complete.’
>>> ftp.quit()

244 Chapter 11. Internet Protocols and Support

The module defines the following items:

FTP([host[, user[, passwd[, acct]]]])
Return a new instance of theFTP class. Whenhostis given, the method callconnect(host) is made. When
user is given, additionally the method calllogin(user, passwd, acct) is made (wherepasswdandacct
default to the empty string when not given).

all errors
The set of all exceptions (as a tuple) that methods ofFTP instances may raise as a result of problems with the
FTP connection (as opposed to programming errors made by the caller). This set includes the four exceptions
listed below as well assocket.error andIOError .

error reply
Exception raised when an unexpected reply is received from the server.

error temp
Exception raised when an error code in the range 400–499 is received.

error perm
Exception raised when an error code in the range 500–599 is received.

error proto
Exception raised when a reply is received from the server that does not begin with a digit in the range 1–5.

See Also:

Modulenetrc (section 12.17):
Parser for the ‘.netrc’ file format. The file ‘.netrc’ is typically used by FTP clients to load user authentication
information before prompting the user.

The file ‘Tools/scripts/ftpmirror.py’ in the Python source distribution is a script that can mirror FTP sites, or portions
thereof, using theftplib module. It can be used as an extended example that applies this module.

11.5.1 FTP Objects

Several methods are available in two flavors: one for handling text files and another for binary files. These are named
for the command which is used followed by ‘lines ’ for the text version or ‘binary ’ for the binary version.

FTP instances have the following methods:

set debuglevel (level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default,0,
produces no debugging output. A value of1 produces a moderate amount of debugging output, generally a
single line per request. A value of2 or higher produces the maximum amount of debugging output, logging
each line sent and received on the control connection.

connect (host[, port])
Connect to the given host and port. The default port number is21 , as specified by the FTP protocol specification.
It is rarely needed to specify a different port number. This function should be called only once for each instance;
it should not be called at all if a host was given when the instance was created. All other methods can only be
used after a connection has been made.

getwelcome ()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

login ([user[, passwd[, acct]]])
Log in as the givenuser. Thepasswdandacct parameters are optional and default to the empty string. If no
useris specified, it defaults to’anonymous’ . If useris ’anonymous’ , the defaultpasswdis ‘realuser@host’
whererealuseris the real user name (glanced from the $LOGNAME or $USER environment variable) andhost

11.5. ftplib — FTP protocol client 245

is the hostname as returned bysocket.gethostname() . This function should be called only once for each
instance, after a connection has been established; it should not be called at all if a host and user were given when
the instance was created. Most FTP commands are only allowed after the client has logged in.

abort ()
Abort a file transfer that is in progress. Using this does not always work, but it’s worth a try.

sendcmd (command)
Send a simple command string to the server and return the response string.

voidcmd (command)
Send a simple command string to the server and handle the response. Return nothing if a response code in the
range 200–299 is received. Raise an exception otherwise.

retrbinary (command, callback[, maxblocksize[, rest]])
Retrieve a file in binary transfer mode.commandshould be an appropriate ‘RETR’ command, i.e.’RETR
filename’ . Thecallbackfunction is called for each block of data received, with a single string argument giving
the data block. The optionalmaxblocksizeargument specifies the maximum chunk size to read on the low-level
socket object created to do the actual transfer (which will also be the largest size of the data blocks passed to
callback). A reasonable default is chosen.restmeans the same thing as in thetransfercmd() method.

retrlines (command[, callback])
Retrieve a file or directory listing inASCII transfer mode.commandshould be an appropriate ‘RETR’ command
(seeretrbinary() or a ‘LIST ’ command (usually just the string’LIST’). Thecallbackfunction is called
for each line, with the trailing CRLF stripped. The defaultcallbackprints the line tosys.stdout .

set pasv (boolean)
Enable “passive” mode ifbooleanis true, other disable passive mode.

storbinary (command, file, blocksize)
Store a file in binary transfer mode.commandshould be an appropriate ‘STOR’ command, i.e."STOR file-
name" . file is an open file object which is read untilEOF using itsread() method in blocks of sizeblocksize
to provide the data to be stored.

storlines (command, file)
Store a file in ASCII transfer mode. command should be an appropriate ‘STOR’ command (see
storbinary()). Lines are read untilEOF from the open file objectfile using itsreadline() method
to provide the data to be stored.

transfercmd (cmd[, rest])
Initiate a transfer over the data connection. If the transfer is active, send a ‘PORT’ command and the transfer
command specified bycmd, and accept the connection. If the server is passive, send a ‘PASV’ command,
connect to it, and start the transfer command. Either way, return the socket for the connection.

If optional rest is given, a ‘REST’ command is sent to the server, passingrest as an argument.rest is usually
a byte offset into the requested file, telling the server to restart sending the file’s bytes at the requested offset,
skipping over the initial bytes. Note however that RFC 959 requires only thatrestbe a string containing charac-
ters in the printable range from ASCII code 33 to ASCII code 126. Thetransfercmd() method, therefore,
convertsrest to a string, but no check is performed on the string’s contents. If the server does not recognize the
‘REST’ command, anerror reply exception will be raised. If this happens, simply calltransfercmd()
without arestargument.

ntransfercmd (cmd[, rest])
Like transfercmd() , but returns a tuple of the data connection and the expected size of the data. If the
expected size could not be computed,None will be returned as the expected size.cmdandrestmeans the same
thing as intransfercmd() .

nlst (argument[, . . .])
Return a list of files as returned by the ‘NLST’ command. The optionalargumentis a directory to list (default
is the current server directory). Multiple arguments can be used to pass non-standard options to the ‘NLST’

246 Chapter 11. Internet Protocols and Support

command.

dir (argument[, . . .])
Produce a directory listing as returned by the ‘LIST ’ command, printing it to standard output. The optional
argumentis a directory to list (default is the current server directory). Multiple arguments can be used to pass
non-standard options to the ‘LIST ’ command. If the last argument is a function, it is used as acallbackfunction
as forretrlines() ; the default prints tosys.stdout . This method returnsNone.

rename (fromname, toname)
Rename filefromnameon the server totoname.

delete (filename)
Remove the file namedfilenamefrom the server. If successful, returns the text of the response, otherwise raises
error perm on permission errors orerror reply on other errors.

cwd(pathname)
Set the current directory on the server.

mkd(pathname)
Create a new directory on the server.

pwd()
Return the pathname of the current directory on the server.

rmd(dirname)
Remove the directory nameddirnameon the server.

size (filename)
Request the size of the file namedfilenameon the server. On success, the size of the file is returned as an
integer, otherwiseNone is returned. Note that the ‘SIZE ’ command is not standardized, but is supported by
many common server implementations.

quit ()
Send a ‘QUIT’ command to the server and close the connection. This is the “polite” way to close a connection,
but it may raise an exception of the server reponds with an error to the ‘QUIT’ command. This implies a call to
theclose() method which renders theFTP instance useless for subsequent calls (see below).

close ()
Close the connection unilaterally. This should not be applied to an already closed connection (e.g. after a
successful call toquit() . After this call theFTP instance should not be used any more (i.e., after a call to
close() or quit() you cannot reopen the connection by issuing anotherlogin() method).

11.6 gopherlib — Gopher protocol client

This module provides a minimal implementation of client side of the the Gopher protocol. It is used by the module
urllib to handle URLs that use the Gopher protocol.

The module defines the following functions:

send selector (selector, host[, port])
Send aselectorstring to the gopher server athostandport (default70). Returns an open file object from which
the returned document can be read.

send query (selector, query, host[, port])
Send aselectorstring and aquerystring to a gopher server athostandport (default70). Returns an open file
object from which the returned document can be read.

Note that the data returned by the Gopher server can be of any type, depending on the first character of the selector
string. If the data is text (first character of the selector is ‘0’), lines are terminated by CRLF, and the data is terminated
by a line consisting of a single ‘. ’, and a leading ‘. ’ should be stripped from lines that begin with ‘.. ’. Directory

11.6. gopherlib — Gopher protocol client 247

listings (first character of the selector is ‘1’) are transferred using the same protocol.

11.7 poplib — POP3 protocol client

This module defines a class,POP3, which encapsulates a connection to an POP3 server and implements protocol as
defined in RFC 1725. ThePOP3class supports both the minimal and optional command sets.

A single class is provided by thepoplib module:

POP3(host[, port])
This class implements the actual POP3 protocol. The connection is created when the instance is initialized. If
port is omitted, the standard POP3 port (110) is used.

One exception is defined as an attribute of thepoplib module:

error proto
Exception raised on any errors. The reason for the exception is passed to the constructor as a string.

11.7.1 POP3 Objects

All POP3 commands are represented by methods of the same name, in lower-case; most return the response text sent
by the server.

An POP3instance has the following methods:

getwelcome ()
Returns the greeting string sent by the POP3 server.

user (username)
Send user command, response should indicate that a password is required.

pass (password)
Send password, response includes message count and mailbox size. Note: the mailbox on the server is locked
until quit() is called.

apop (user, secret)
Use the more secure APOP authentication to log into the POP3 server.

rpop (user)
Use RPOP authentication (similar to UNIX r-commands) to log into POP3 server.

stat ()
Get mailbox status. The result is a tuple of 2 integers:(message count, mailbox size) .

list ([which])
Request message list, result is in the form(response, [’mesg num octets’, ...]) . If which is set, it
is the message to list.

retr (which)
Retrieve whole message numberwhich. Result is in form(response, [’line’, ...], octets) .

dele (which)
Delete message numberwhich.

rset ()
Remove any deletion marks for the mailbox.

noop ()
Do nothing. Might be used as a keep-alive.

248 Chapter 11. Internet Protocols and Support

quit ()
Signoff: commit changes, unlock mailbox, drop connection.

top (which, howmuch)
Retrieves the message header plushowmuchlines of the message after the header of message numberwhich.
Result is in form(response, [’line’, ...], octets) .

uidl ([which])
Return message digest (unique id) list. Ifwhichis specified, result contains the unique id for that message in the
form ’ response mesgnum uid, otherwise result is list(response, [’mesgnum uid’, ...], octets) .

11.7.2 POP3 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

import getpass, poplib

M = poplib.POP3(’localhost’)
M.user(getpass.getuser())
M.pass_(getpass.getpass())
numMessages = len(M.list()[1])
for i in range(numMessages):

for j in M.retr(i+1)[1]:
print j

At the end of the module, there is a test section that contains a more extensive example of usage.

11.8 imaplib — IMAP4 protocol client

This module defines a class,IMAP4, which encapsulates a connection to an IMAP4 server and implements the
IMAP4rev1 client protocol as defined in RFC 2060. It is backward compatible with IMAP4 (RFC 1730) servers,
but note that the ‘STATUS’ command is not supported in IMAP4.

A single class is provided by theimaplib module:

IMAP4([host[, port]])
This class implements the actual IMAP4 protocol. The connection is created and protocol version (IMAP4 or
IMAP4rev1) is determined when the instance is initialized. Ifhost is not specified,’’ (the local host) is used.
If port is omitted, the standard IMAP4 port (143) is used.

Two exceptions are defined as attributes of theIMAP4 class:

IMAP4.error
Exception raised on any errors. The reason for the exception is passed to the constructor as a string.

IMAP4.abort
IMAP4 server errors cause this exception to be raised. This is a sub-class ofIMAP4.error . Note that closing
the instance and instantiating a new one will usually allow recovery from this exception.

IMAP4.readonly
This exception is raised when a writable mailbox has its status changed by the server. This is a sub-class of
IMAP4.error . Some other client now has write permission, and the mailbox will need to be re-opened to
re-obtain write permission.

The following utility functions are defined:

11.8. imaplib — IMAP4 protocol client 249

Internaldate2tuple (datestr)
Converts an IMAP4 INTERNALDATE string to Coordinated Universal Time. Returns atime module tuple.

Int2AP (num)
Converts an integer into a string representation using characters from the set [A .. P].

ParseFlags (flagstr)
Converts an IMAP4 ‘FLAGS’ response to a tuple of individual flags.

Time2Internaldate (date time)
Converts atime module tuple to an IMAP4 ‘INTERNALDATE’ representation. Returns a string in the form:
"DD-Mmm-YYYY HH:MM:SS +HHMM"(including double-quotes).

Note that IMAP4 message numbers change as the mailbox changes, so it is highly advisable to use UIDs instead, with
the UID command.

At the end of the module, there is a test section that contains a more extensive example of usage.

See Also:

Documents describing the protocol, and sources and binaries for servers implementing it, can all be found at the
University of Washington’sIMAP Information Center(http://www.cac.washington.edu/imap/).

11.8.1 IMAP4 Objects

All IMAP4rev1 commands are represented by methods of the same name, either upper-case or lower-case.

All arguments to commands are converted to strings, except for ‘AUTHENTICATE’, and the last argument to
‘APPEND’ which is passed as an IMAP4 literal. If necessary (the string contains IMAP4 protocol-sensitive char-
acters and isn’t enclosed with either parentheses or double quotes) each string is quoted. However, thepassword
argument to the ‘LOGIN’ command is always quoted. If you want to avoid having an argument string quoted (eg: the
flagsargument to ‘STORE’) then enclose the string in parentheses (eg:r’(\Deleted)’).

Each command returns a tuple:(type, [data, ...]) wheretypeis usually’OK’ or ’NO’ , anddata is either the
text from the command response, or mandated results from the command.

An IMAP4 instance has the following methods:

append (mailbox, flags, datetime, message)
Append message to named mailbox.

authenticate (func)
Authenticate command — requires response processing. This is currently unimplemented, and raises an excep-
tion.

check ()
Checkpoint mailbox on server.

close ()
Close currently selected mailbox. Deleted messages are removed from writable mailbox. This is the recom-
mended command before ‘LOGOUT’.

copy (messageset, newmailbox)
Copymessagesetmessages onto end ofnew mailbox.

create (mailbox)
Create new mailbox namedmailbox.

delete (mailbox)
Delete old mailbox namedmailbox.

expunge ()
Permanently remove deleted items from selected mailbox. Generates an ‘EXPUNGE’ response for each deleted

250 Chapter 11. Internet Protocols and Support

message. Returned data contains a list of ‘EXPUNGE’ message numbers in order received.

fetch (messageset, messageparts)
Fetch (parts of) messages.messagepartsshould be a string of message part names enclosed within parentheses,
eg: ‘"(UID BODY[TEXT])" ’. Returned data are tuples of message part envelope and data.

list ([directory[, pattern]])
List mailbox names indirectory matchingpattern. directory defaults to the top-level mail folder, andpattern
defaults to match anything. Returned data contains a list of ‘LIST ’ responses.

login (user, password)
Identify the client using a plaintext password. Thepasswordwill be quoted.

logout ()
Shutdown connection to server. Returns server ‘BYE’ response.

lsub ([directory[, pattern]])
List subscribed mailbox names in directory matching pattern.directorydefaults to the top level directory and
patterndefaults to match any mailbox. Returned data are tuples of message part envelope and data.

noop ()
Send ‘NOOP’ to server.

open (host, port)
Opens socket toport athost. You may override this method.

partial (messagenum, messagepart, start, length)
Fetch truncated part of a message. Returned data is a tuple of message part envelope and data.

recent ()
Prompt server for an update. Returned data isNone if no new messages, else value of ‘RECENT’ response.

rename (oldmailbox, newmailbox)
Rename mailbox namedoldmailboxto newmailbox.

response (code)
Return data for responsecodeif received, orNone. Returns the given code, instead of the usual type.

search (charset, criterium[, ...])
Search mailbox for matching messages. Returned data contains a space separated list of matching message
numbers.charsetmay beNone, in which case no ‘CHARSET’ will be specified in the request to the server.
The IMAP protocol requires that at least one criterium be specified; an exception will be raised when the server
returns an error.

Example:

M is a connected IMAP4 instance...
msgnums = M.search(None, ’FROM’, ’"LDJ"’)

or:
msgnums = M.search(None, ’(FROM "LDJ")’)

select ([mailbox[, readonly]])
Select a mailbox. Returned data is the count of messages inmailbox(‘EXISTS’ response). The defaultmailbox
is ’INBOX’ . If the readonlyflag is set, modifications to the mailbox are not allowed.

socket ()
Returns socket instance used to connect to server.

status (mailbox, names)
Request named status conditions formailbox.

11.8. imaplib — IMAP4 protocol client 251

store (messageset, command, flaglist)
Alters flag dispositions for messages in mailbox.

subscribe (mailbox)
Subscribe to new mailbox.

uid (command, arg[, ...])
Execute command args with messages identified by UID, rather than message number. Returns response appro-
priate to command. At least one argument must be supplied; if none are provided, the server will return an error
and an exception will be raised.

unsubscribe (mailbox)
Unsubscribe from old mailbox.

xatom (name[, arg[, ...]])
Allow simple extension commands notified by server in ‘CAPABILITY ’ response.

The following attributes are defined on instances ofIMAP4:

PROTOCOLVERSION
The most recent supported protocol in the ‘CAPABILITY ’ response from the server.

debug
Integer value to control debugging output. The initialize value is taken from the module variableDebug. Values
greater than three trace each command.

11.8.2 IMAP4 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

import getpass, imaplib, string

M = imaplib.IMAP4()
M.login(getpass.getuser(), getpass.getpass())
M.select()
typ, data = M.search(None, ’ALL’)
for num in string.split(data[0]):

typ, data = M.fetch(num, ’(RFC822)’)
print ’Message %s\n%s\n’ % (num, data[0][1])

M.logout()

11.9 nntplib — NNTP protocol client

This module defines the classNNTPwhich implements the client side of the NNTP protocol. It can be used to
implement a news reader or poster, or automated news processors. For more information on NNTP (Network News
Transfer Protocol), see Internet RFC 977.

Here are two small examples of how it can be used. To list some statistics about a newsgroup and print the subjects of
the last 10 articles:

252 Chapter 11. Internet Protocols and Support

>>> s = NNTP(’news.cwi.nl’)
>>> resp, count, first, last, name = s.group(’comp.lang.python’)
>>> print ’Group’, name, ’has’, count, ’articles, range’, first, ’to’, last
Group comp.lang.python has 59 articles, range 3742 to 3803
>>> resp, subs = s.xhdr(’subject’, first + ’-’ + last)
>>> for id, sub in subs[-10:]: print id, sub
...
3792 Re: Removing elements from a list while iterating...
3793 Re: Who likes Info files?
3794 Emacs and doc strings
3795 a few questions about the Mac implementation
3796 Re: executable python scripts
3797 Re: executable python scripts
3798 Re: a few questions about the Mac implementation
3799 Re: PROPOSAL: A Generic Python Object Interface for Python C Modules
3802 Re: executable python scripts
3803 Re: \POSIX{} wait and SIGCHLD
>>> s.quit()
’205 news.cwi.nl closing connection. Goodbye.’

To post an article from a file (this assumes that the article has valid headers):

>>> s = NNTP(’news.cwi.nl’)
>>> f = open(’/tmp/article’)
>>> s.post(f)
’240 Article posted successfully.’
>>> s.quit()
’205 news.cwi.nl closing connection. Goodbye.’

The module itself defines the following items:

NNTP(host[, port [, user[, password[, readermode]]]])
Return a new instance of theNNTPclass, representing a connection to the NNTP server running on hosthost,
listening at portport. The defaultport is 119. If the optionaluserandpasswordare provided, the ‘AUTHINFO
USER’ and ‘AUTHINFO PASS’ commands are used to identify and authenticate the user to the server. If the
optional flagreadermodeis true, then a ‘mode reader ’ command is sent before authentication is performed.
Reader mode is sometimes necessary if you are connecting to an NNTP server on the local machine and intend
to call reader-specific commands, such as ‘group ’. If you get unexpectedNNTPPermanentError s, you
might need to setreadermode. readermodedefaults toNone.

NNTPError ()
Derived from the standard exceptionException , this is the base class for all exceptions raised by the
nntplib module.

NNTPReplyError ()
Exception raised when an unexpected reply is received from the server. For backwards compatibility, the excep-
tion error reply is equivalent to this class.

NNTPTemporaryError ()
Exception raised when an error code in the range 400–499 is received. For backwards compatibility, the excep-
tion error temp is equivalent to this class.

NNTPPermanentError ()
Exception raised when an error code in the range 500–599 is received. For backwards compatibility, the excep-
tion error perm is equivalent to this class.

11.9. nntplib — NNTP protocol client 253

NNTPProtocolError ()
Exception raised when a reply is received from the server that does not begin with a digit in the range 1–5. For
backwards compatibility, the exceptionerror proto is equivalent to this class.

NNTPDataError ()
Exception raised when there is some error in the response data. For backwards compatibility, the exception
error data is equivalent to this class.

11.9.1 NNTP Objects

NNTP instances have the following methods. Theresponsethat is returned as the first item in the return tuple of almost
all methods is the server’s response: a string beginning with a three-digit code. If the server’s response indicates an
error, the method raises one of the above exceptions.

getwelcome ()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

set debuglevel (level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default,0,
produces no debugging output. A value of1 produces a moderate amount of debugging output, generally a
single line per request or response. A value of2 or higher produces the maximum amount of debugging output,
logging each line sent and received on the connection (including message text).

newgroups (date, time)
Send a ‘NEWGROUPS’ command. Thedateargument should be a string of the form’ yymmdd’ indicating the
date, andtimeshould be a string of the form’ hhmmss’ indicating the time. Return a pair(response, groups)
wheregroupsis a list of group names that are new since the given date and time.

newnews(group, date, time)
Send a ‘NEWNEWS’ command. Here,group is a group name or’*’ , anddateandtimehave the same meaning
as fornewgroups() . Return a pair(response, articles) wherearticles is a list of article ids.

list ()
Send a ‘LIST ’ command. Return a pair(response, list) wherelist is a list of tuples. Each tuple has the form
(group, last, first, flag) , wheregroup is a group name,last andfirst are the last and first article numbers
(as strings), andflag is ’y’ if posting is allowed,’n’ if not, and’m’ if the newsgroup is moderated. (Note the
ordering:last, first.)

group (name)
Send a ‘GROUP’ command, wherenameis the group name. Return a tuple(response, count, first, last,
name) wherecount is the (estimated) number of articles in the group,first is the first article number in the
group, last is the last article number in the group, andnameis the group name. The numbers are returned as
strings.

help ()
Send a ‘HELP’ command. Return a pair(response, list) wherelist is a list of help strings.

stat (id)
Send a ‘STAT’ command, whereid is the message id (enclosed in ‘<’ and ‘>’) or an article number (as a string).
Return a triple(response, number, id) wherenumberis the article number (as a string) andid is the article
id (enclosed in ‘<’ and ‘>’).

next ()
Send a ‘NEXT’ command. Return as forstat() .

last ()
Send a ‘LAST’ command. Return as forstat() .

254 Chapter 11. Internet Protocols and Support

head (id)
Send a ‘HEAD’ command, whereid has the same meaning as forstat() . Return a tuple(response, num-
ber, id, list) where the first three are the same as forstat() , andlist is a list of the article’s headers (an
uninterpreted list of lines, without trailing newlines).

body (id)
Send a ‘BODY’ command, whereid has the same meaning as forstat() . Return as forhead() .

article (id)
Send an ‘ARTICLE’ command, whereid has the same meaning as forstat() . Return as forhead() .

slave ()
Send a ‘SLAVE’ command. Return the server’sresponse.

xhdr (header, string)
Send an ‘XHDR’ command. This command is not defined in the RFC but is a common extension. Theheader
argument is a header keyword, e.g.’subject’ . Thestringargument should have the form’ first- last’ where
first andlast are the first and last article numbers to search. Return a pair(response, list) , wherelist is a list
of pairs(id, text) , whereid is an article id (as a string) andtext is the text of the requested header for that
article.

post (file)
Post an article using the ‘POST’ command. Thefile argument is an open file object which is read until EOF
using itsreadline() method. It should be a well-formed news article, including the required headers. The
post() method automatically escapes lines beginning with ‘. ’.

ihave (id, file)
Send an ‘IHAVE’ command. If the response is not an error, treatfile exactly as for thepost() method.

date ()
Return a triple(response, date, time) , containing the current date and time in a form suitable for the
newnews() andnewgroups() methods. This is an optional NNTP extension, and may not be supported by
all servers.

xgtitle (name)
Process an ‘XGTITLE’ command, returning a pair(response, list) , wherelist is a list of tuples containing
(name, title) . This is an optional NNTP extension, and may not be supported by all servers.

xover (start, end)
Return a pair(resp, list) . list is a list of tuples, one for each article in the range delimited by thestart and
endarticle numbers. Each tuple is of the form(article number, subject, poster, date, id, references,
size, lines) . This is an optional NNTP extension, and may not be supported by all servers.

xpath (id)
Return a pair(resp, path) , wherepath is the directory path to the article with message IDid. This is an
optional NNTP extension, and may not be supported by all servers.

quit ()
Send a ‘QUIT’ command and close the connection. Once this method has been called, no other methods of the
NNTP object should be called.

11.10 smtplib — SMTP protocol client

Thesmtplib module defines an SMTP client session object that can be used to send mail to any Internet machine
with an SMTP or ESMTP listener daemon. For details of SMTP and ESMTP operation, consult RFC 821 (Simple
Mail Transfer Protocol) and RFC 1869 (SMTP Service Extensions).

SMTP([host[, port]])
A SMTPinstance encapsulates an SMTP connection. It has methods that support a full repertoire of SMTP and

11.10. smtplib — SMTP protocol client 255

ESMTP operations. If the optional host and port parameters are given, the SMTPconnect() method is called
with those parameters during initialization. AnSMTPConnectError is raised if the specified host doesn’t
respond correctly.

For normal use, you should only require the initialization/connect,sendmail() , andquit() methods. An
example is included below.

A nice selection of exceptions is defined as well:

SMTPException
Base exception class for all exceptions raised by this module.

SMTPServerDisconnected
This exception is raised when the server unexpectedly disconnects, or when an attempt is made to use theSMTP
instance before connecting it to a server.

SMTPResponseException
Base class for all exceptions that include an SMTP error code. These exceptions are generated in some instances
when the SMTP server returns an error code. The error code is stored in thesmtp code attribute of the error,
and thesmtp error attribute is set to the error message.

SMTPSenderRefused
Sender address refused. In addition to the attributes set by on allSMTPResponseException exceptions,
this sets ‘sender’ to the string that the SMTP server refused.

SMTPRecipientsRefused
All recipient addresses refused. The errors for each recipient are accessible through the attributerecipients ,
which is a dictionary of exactly the same sort asSMTP.sendmail() returns.

SMTPDataError
The SMTP server refused to accept the message data.

SMTPConnectError
Error occurred during establishment of a connection with the server.

SMTPHeloError
The server refused our ‘HELO’ message.

See Also:

RFC 821, “Simple Mail Transfer Protocol”
Protocol definition for SMTP. This document covers the model, operating procedure, and protocol details for
SMTP.

RFC 1869, “SMTP Service Extensions”
Definition of the ESMTP extensions for SMTP. This describes a framework for extending SMTP with new
commands, supporting dynamic discovery of the commands provided by the server, and defines a few additional
commands.

11.10.1 SMTP Objects

An SMTPinstance has the following methods:

set debuglevel (level)
Set the debug output level. A true value forlevelresults in debug messages for connection and for all messages
sent to and received from the server.

connect ([host[, port]])
Connect to a host on a given port. The defaults are to connect to the local host at the standard SMTP port (25).

If the hostname ends with a colon (‘: ’) followed by a number, that suffix will be stripped off and the number
interpreted as the port number to use.

256 Chapter 11. Internet Protocols and Support

Note: This method is automatically invoked by the constructor if a host is specified during instantiation.

docmd(cmd,[, argstring])
Send a commandcmd to the server. The optional argumentargstring is simply concatenated to the command,
separated by a space.

This returns a 2-tuple composed of a numeric response code and the actual response line (multiline responses
are joined into one long line.)

In normal operation it should not be necessary to call this method explicitly. It is used to implement other
methods and may be useful for testing private extensions.

If the connection to the server is lost while waiting for the reply,SMTPServerDisconnected will be raised.

helo ([hostname])
Identify yourself to the SMTP server using ‘HELO’. The hostname argument defaults to the fully qualified
domain name of the local host.

In normal operation it should not be necessary to call this method explicitly. It will be implicitly called by the
sendmail() when necessary.

ehlo ([hostname])
Identify yourself to an ESMTP server using ‘EHLO’. The hostname argument defaults to the fully quali-
fied domain name of the local host. Examine the response for ESMTP option and store them for use by
has option() .

Unless you wish to usehas option() before sending mail, it should not be necessary to call this method
explicitly. It will be implicitly called bysendmail() when necessary.

has extn (name)
Return1 if nameis in the set of SMTP service extensions returned by the server,0 otherwise. Case is ignored.

verify (address)
Check the validity of an address on this server using SMTP ‘VRFY’. Returns a tuple consisting of code 250 and
a full RFC 822 address (including human name) if the user address is valid. Otherwise returns an SMTP error
code of 400 or greater and an error string.

Note: many sites disable SMTP ‘VRFY’ in order to foil spammers.

sendmail (from addr, to addrs, msg[, mail options, rcpt options])
Send mail. The required arguments are an RFC 822 from-address string, a list of RFC 822 to-address strings,
and a message string. The caller may pass a list of ESMTP options (such as ‘8bitmime ’) to be used in ‘MAIL
FROM’ commands asmail options. ESMTP options (such as ‘DSN’ commands) that should be used with all
‘RCPT’ commands can be passed asrcpt options. (If you need to use different ESMTP options to different
recipients you have to use the low-level methods such asmail , rcpt anddata to send the message.)

Note: Thefrom addrandto addrsparameters are used to construct the message envelope used by the transport
agents. TheSMTPdoes not modify the message headers in any way.

If there has been no previous ‘EHLO’ or ‘ HELO’ command this session, this method tries ESMTP ‘EHLO’ first.
If the server does ESMTP, message size and each of the specified options will be passed to it (if the option is in
the feature set the server advertises). If ‘EHLO’ fails, ‘HELO’ will be tried and ESMTP options suppressed.

This method will return normally if the mail is accepted for at least one recipient. Otherwise it will throw an
exception. That is, if this method does not throw an exception, then someone should get your mail. If this
method does not throw an exception, it returns a dictionary, with one entry for each recipient that was refused.
Each entry contains a tuple of the SMTP error code and the accompanying error message sent by the server.

This method may raise the following exceptions:

SMTPRecipientsRefused All recipients were refused. Nobody got the mail. Therecipients attribute
of the exception object is a dictionary with information about the refused recipients (like the one returned
when at least one recipient was accepted).

SMTPHeloError The server didn’t reply properly to the ‘HELO’ greeting.

11.10. smtplib — SMTP protocol client 257

SMTPSenderRefused The server didn’t accept thefrom addr.

SMTPDataError The server replied with an unexpected error code (other than a refusal of a recipient).

Unless otherwise noted, the connection will be open even after an exception is raised.

quit ()
Terminate the SMTP session and close the connection.

Low-level methods corresponding to the standard SMTP/ESMTP commands ‘HELP’, ‘ RSET’, ‘ NOOP’, ‘ MAIL’,
‘RCPT’, and ‘DATA’ are also supported. Normally these do not need to be called directly, so they are not documented
here. For details, consult the module code.

11.10.2 SMTP Example

This example prompts the user for addresses needed in the message envelope (‘To’ and ‘From’ addresses), and the
message to be delivered. Note that the headers to be included with the message must be included in the message as
entered; this example doesn’t do any processing of the RFC 822 headers. In particular, the ‘To’ and ‘From’ addresses
must be included in the message headers explicitly.

import smtplib
import string

def prompt(prompt):
return string.strip(raw_input(prompt))

fromaddr = prompt("From: ")
toaddrs = string.split(prompt("To: "))
print "Enter message, end with ˆD:"

Add the From: and To: headers at the start!
msg = ("From: %s\r\nTo: %s\r\n\r\n"

% (fromaddr, string.join(toaddrs, ", ")))
while 1:

line = raw_input()
if not line:

break
msg = msg + line

print "Message length is " + ‘len(msg)‘

server = smtplib.SMTP(’localhost’)
server.set_debuglevel(1)
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

11.11 telnetlib — Telnet client

The telnetlib module provides aTelnet class that implements the Telnet protocol. See RFC 854 for details
about the protocol.

Telnet ([host[, port]])
Telnet represents a connection to a telnet server. The instance is initially not connected by default; the

258 Chapter 11. Internet Protocols and Support

open() method must be used to establish a connection. Alternatively, the host name and optional port number
can be passed to the constructor, to, in which case the connection to the server will be established before the
constructor returns.

Do not reopen an already connected instance.

This class has manyread *() methods. Note that some of them raiseEOFError when the end of the
connection is read, because they can return an empty string for other reasons. See the individual descriptions
below.

See Also:

RFC 854, “Telnet Protocol Specification”
Definition of the Telnet protocol.

11.11.1 Telnet Objects

Telnet instances have the following methods:

read until (expected[, timeout])
Read until a given string is encountered or until timeout.

When no match is found, return whatever is available instead, possibly the empty string. RaiseEOFError if
the connection is closed and no cooked data is available.

read all ()
Read all data untilEOF; block until connection closed.

read some()
Read at least one byte of cooked data unlessEOF is hit. Return’’ if EOF is hit. Block if no data is immediately
available.

read very eager ()
Read everything that can be without blocking in I/O (eager).

RaiseEOFError if connection closed and no cooked data available. Return’’ if no cooked data available
otherwise. Do not block unless in the midst of an IAC sequence.

read eager ()
Read readily available data.

RaiseEOFError if connection closed and no cooked data available. Return’’ if no cooked data available
otherwise. Do not block unless in the midst of an IAC sequence.

read lazy ()
Process and return data already in the queues (lazy).

RaiseEOFError if connection closed and no data available. Return’’ if no cooked data available otherwise.
Do not block unless in the midst of an IAC sequence.

read very lazy ()
Return any data available in the cooked queue (very lazy).

RaiseEOFError if connection closed and no data available. Return’’ if no cooked data available otherwise.
This method never blocks.

open (host[, port])
Connect to a host. The optional second argument is the port number, which defaults to the standard telnet port
(23).

Do not try to reopen an already connected instance.

msg(msg[, *args])
Print a debug message when the debug level is> 0. If extra arguments are present, they are substituted in the
message using the standard string formatting operator.

11.11. telnetlib — Telnet client 259

set debuglevel (debuglevel)
Set the debug level. The higher the value ofdebuglevel, the more debug output you get (onsys.stdout).

close ()
Close the connection.

get socket ()
Return the socket object used internally.

fileno ()
Return the file descriptor of the socket object used internally.

write (buffer)
Write a string to the socket, doubling any IAC characters. This can block if the connection is blocked. May
raisesocket.error if the connection is closed.

interact ()
Interaction function, emulates a very dumb telnet client.

mt interact ()
Multithreaded version ofinteract() .

expect (list[, timeout])
Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either compiled (re.RegexObject instances) or uncom-
piled (strings). The optional second argument is a timeout, in seconds; the default is to block indefinitely.

Return a tuple of three items: the index in the list of the first regular expression that matches; the match object
returned; and the text read up till and including the match.

If end of file is found and no text was read, raiseEOFError . Otherwise, when nothing matches, return(-1,
None, text) wheretext is the text received so far (may be the empty string if a timeout happened).

If a regular expression ends with a greedy match (e.g.d.* c) or if more than one expression can match the same
input, the results are indeterministic, and may depend on the I/O timing.

11.11.2 Telnet Example

A simple example illustrating typical use:

260 Chapter 11. Internet Protocols and Support

import getpass
import sys
import telnetlib

HOST = "localhost"
user = raw_input("Enter your remote account: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until("login: ")
tn.write(user + "\n")
if password:

tn.read_until("Password: ")
tn.write(password + "\n")

tn.write("ls\n")
tn.write("exit\n")

print tn.read_all()

11.12 urlparse — Parse URLs into components

This module defines a standard interface to break Uniform Resource Locator (URL) strings up in components (ad-
dressing scheme, network location, path etc.), to combine the components back into a URL string, and to convert a
“relative URL” to an absolute URL given a “base URL.”

The module has been designed to match the Internet RFC on Relative Uniform Resource Locators (and discovered a
bug in an earlier draft!).

It defines the following functions:

urlparse (urlstring[, default scheme[, allow fragments]])
Parse a URL into 6 components, returning a 6-tuple: (addressing scheme, network location, path,
parameters, query, fragment identifier). This corresponds to the general structure of a URL:
scheme:// netloc/ path; parameters?query#fragment. Each tuple item is a string, possibly empty. The com-
ponents are not broken up in smaller parts (e.g. the network location is a single string), and % escapes are not
expanded. The delimiters as shown above are not part of the tuple items, except for a leading slash in thepath
component, which is retained if present.

Example:

urlparse(’http://www.cwi.nl:80/%7Eguido/Python.html’)

yields the tuple

(’http’, ’www.cwi.nl:80’, ’/%7Eguido/Python.html’, ’’, ’’, ’’)

If the default schemeargument is specified, it gives the default addressing scheme, to be used only if the URL
string does not specify one. The default value for this argument is the empty string.

If the allow fragmentsargument is zero, fragment identifiers are not allowed, even if the URL’s addressing
scheme normally does support them. The default value for this argument is1.

11.12. urlparse — Parse URLs into components 261

urlunparse (tuple)
Construct a URL string from a tuple as returned byurlparse() . This may result in a slightly different, but
equivalent URL, if the URL that was parsed originally had redundant delimiters, e.g. a ? with an empty query
(the draft states that these are equivalent).

urljoin (base, url[, allow fragments])
Construct a full (“absolute”) URL by combining a “base URL” (base) with a “relative URL” (url). Informally,
this uses components of the base URL, in particular the addressing scheme, the network location and (part of)
the path, to provide missing components in the relative URL.

Example:

urljoin(’http://www.cwi.nl/%7Eguido/Python.html’, ’FAQ.html’)

yields the string

’http://www.cwi.nl/%7Eguido/FAQ.html’

Theallow fragmentsargument has the same meaning as forurlparse() .

See Also:

RFC 1738, “Uniform Resource Locators (URL)”
This specifies the formal syntax and semantics of absolute URLs.

RFC 1808, “Relative Uniform Resource Locators”
This Request For Comments includes the rules for joining an absolute and a relative URL, including a fair
normal of “Abnormal Examples” which govern the treatment of border cases.

RFC 2396, “Uniform Resource Identifiers (URI): Generic Syntax”
Document describing the generic syntactic requirements for both Uniform Resource Names (URNs) and Uni-
form Resource Locators (URLs).

11.13 SocketServer — A framework for network servers

TheSocketServer module simplifies the task of writing network servers.

There are four basic server classes:TCPServer uses the Internet TCP protocol, which provides for continuous
streams of data between the client and server.UDPServer uses datagrams, which are discrete packets of information
that may arrive out of order or be lost while in transit. The more infrequently usedUnixStreamServer and
UnixDatagramServer classes are similar, but use UNIX domain sockets; they’re not available on non-UNIX

platforms. For more details on network programming, consult a book such as W. Richard Steven’sUNIX Network
Programmingor Ralph Davis’sWin32 Network Programming.

These four classes process requestssynchronously; each request must be completed before the next request can be
started. This isn’t suitable if each request takes a long time to complete, because it requires a lot of computation,
or because it returns a lot of data which the client is slow to process. The solution is to create a separate process or
thread to handle each request; theForkingMixIn andThreadingMixIn mix-in classes can be used to support
asynchronous behaviour.

Creating a server requires several steps. First, you must create a request handler class by subclassing the
BaseRequestHandler class and overriding itshandle() method; this method will process incoming requests.
Second, you must instantiate one of the server classes, passing it the server’s address and the request handler class.
Finally, call thehandle request() or serve forever() method of the server object to process one or many
requests.

Server classes have the same external methods and attributes, no matter what network protocol they use:

262 Chapter 11. Internet Protocols and Support

fileno ()
Return an integer file descriptor for the socket on which the server is listening. This function is most commonly
passed toselect.select() , to allow monitoring multiple servers in the same process.

handle request ()
Process a single request. This function calls the following methods in order:get request() ,
verify request() , andprocess request() . If the user-providedhandle() method of the han-
dler class raises an exception, the server’shandle error() method will be called.

serve forever ()
Handle an infinite number of requests. This simply callshandle request() inside an infinite loop.

address family
The family of protocols to which the server’s socket belongs.socket.AF INET andsocket.AF UNIX
are two possible values.

RequestHandlerClass
The user-provided request handler class; an instance of this class is created for each request.

server address
The address on which the server is listening. The format of addresses varies depending on the protocol family;
see the documentation for the socket module for details. For Internet protocols, this is a tuple containing a string
giving the address, and an integer port number:(’127.0.0.1’, 80) , for example.

socket
The socket object on which the server will listen for incoming requests.

The server classes support the following class variables:

request queue size
The size of the request queue. If it takes a long time to process a single request, any requests that arrive while
the server is busy are placed into a queue, up torequest queue size requests. Once the queue is full,
further requests from clients will get a “Connection denied” error. The default value is usually 5, but this can be
overridden by subclasses.

socket type
The type of socket used by the server;socket.SOCK STREAMandsocket.SOCK DGRAMare two possible
values.

There are various server methods that can be overridden by subclasses of base server classes likeTCPServer ; these
methods aren’t useful to external users of the server object.

finish request ()
Actually processes the request by instantiatingRequestHandlerClass and calling itshandle() method.

get request ()
Must accept a request from the socket, and return a 2-tuple containing thenew socket object to be used to
communicate with the client, and the client’s address.

handle error (request, clientaddress)
This function is called if theRequestHandlerClass ’s handle() method raises an exception. The default
action is to print the traceback to standard output and continue handling further requests.

process request (request, clientaddress)
Calls finish request() to create an instance of theRequestHandlerClass . If desired, this function
can create a new process or thread to handle the request; theForkingMixIn andThreadingMixIn classes
do this.

server activate ()
Called by the server’s constructor to activate the server. May be overridden.

server bind ()

11.13. SocketServer — A framework for network servers 263

Called by the server’s constructor to bind the socket to the desired address. May be overridden.

verify request (request, clientaddress)
Must return a Boolean value; if the value is true, the request will be processed, and if it’s false, the request will be
denied. This function can be overridden to implement access controls for a server. The default implementation
always return true.

The request handler class must define a newhandle() method, and can override any of the following methods. A
new instance is created for each request.

finish ()
Called after thehandle() method to perform any clean-up actions required. The default implementation does
nothing. Ifsetup() or handle() raise an exception, this function will not be called.

handle ()
This function must do all the work required to service a request. Several instance attributes are available to it;
the request is available asself.request ; the client address asself.client address ; and the server
instance asself.server , in case it needs access to per-server information.

The type of self.request is different for datagram or stream services. For stream services,
self.request is a socket object; for datagram services,self.request is a string. How-
ever, this can be hidden by using the mix-in request handler classesStreamRequestHandler or
DatagramRequestHandler , which override thesetup() and finish() methods, and provides
self.rfile andself.wfile attributes. self.rfile andself.wfile can be read or written, re-
spectively, to get the request data or return data to the client.

setup ()
Called before thehandle() method to perform any initialization actions required. The default implementation
does nothing.

11.14 BaseHTTPServer — Basic HTTP server

This module defines two classes for implementing HTTP servers (web servers). Usually, this module isn’t
used directly, but is used as a basis for building functioning web servers. See theSimpleHTTPServer and
CGIHTTPServer modules.

The first class,HTTPServer , is aSocketServer.TCPServer subclass. It creates and listens at the web socket,
dispatching the requests to a handler. Code to create and run the server looks like this:

def run(server_class=BaseHTTPServer.HTTPServer,
handler_class=BaseHTTPServer.BaseHTTPRequestHandler):

server_address = (’’, 8000)
httpd = server_class(server_address, handler_class)
httpd.serve_forever()

HTTPServer (server address, RequestHandlerClass)
This class builds on theTCPServer class by storing the server address as instance variables named
server name andserver port . The server is accessible by the handler, typically through the handler’s
server instance variable.

BaseHTTPRequestHandler (request, clientaddress, server)
This class is used to handle the HTTP requests that arrive at the server. By itself, it cannot respond to
any actual HTTP requests; it must be subclassed to handle each request method (e.g. GET or POST).
BaseHTTPRequestHandler provides a number of class and instance variables, and methods for use by
subclasses.

The handler will parse the request and the headers, then call a method specific to the request type. The method

264 Chapter 11. Internet Protocols and Support

name is constructed from the request. For example, for the request method ‘SPAM’, the do SPAM() method
will be called with no arguments. All of the relevant information is stored in instance variables of the handler.
Subclasses should not need to override or extend theinit () method.

BaseHTTPRequestHandler has the following instance variables:

client address
Contains a tuple of the form(host, port) referring to the client’s address.

command
Contains the command (request type). For example,’GET’ .

path
Contains the request path.

request version
Contains the version string from the request. For example,’HTTP/1.0’ .

headers
Holds an instance of the class specified by theMessageClass class variable. This instance parses and man-
ages the headers in the HTTP request.

rfile
Contains an input stream, positioned at the start of the optional input data.

wfile
Contains the output stream for writing a response back to the client. Proper adherence to the HTTP protocol
must be used when writing to this stream.

BaseHTTPRequestHandler has the following class variables:

server version
Specifies the server software version. You may want to override this. The format is multiple whitespace-
separated strings, where each string is of the form name[/version]. For example,’BaseHTTP/0.2’ .

sys version
Contains the Python system version, in a form usable by theversion string method and the
server version class variable. For example,’Python/1.4’ .

error message format
Specifies a format string for building an error response to the client. It uses parenthesized, keyed format spec-
ifiers, so the format operand must be a dictionary. Thecodekey should be an integer, specifying the numeric
HTTP error code value.messageshould be a string containing a (detailed) error message of what occurred, and
explainshould be an explanation of the error code number. Defaultmessageandexplainvalues can found in the
responsesclass variable.

protocol version
This specifies the HTTP protocol version used in responses. Typically, this should not be overridden. Defaults
to ’HTTP/1.0’ .

MessageClass
Specifies arfc822.Message -like class to parse HTTP headers. Typically, this is not overridden, and it
defaults tomimetools.Message .

responses
This variable contains a mapping of error code integers to two-element tuples containing a short and long
message. For example,{ code: (shortmessage, longmessage)} . Theshortmessageis usually used as the
messagekey in an error response, andlongmessageas theexplainkey (see theerror message format
class variable).

A BaseHTTPRequestHandler instance has the following methods:

handle ()

11.14. BaseHTTPServer — Basic HTTP server 265

Overrides the superclass’handle() method to provide the specific handler behavior. This method will parse
and dispatch the request to the appropriatedo *() method.

send error (code[, message])
Sends and logs a complete error reply to the client. The numericcodespecifies the HTTP error code, with
messageas optional, more specific text. A complete set of headers is sent, followed by text composed using the
error message format class variable.

send response (code[, message])
Sends a response header and logs the accepted request. The HTTP response line is sent, followed byServer
and Date headers. The values for these two headers are picked up from theversion string() and
date time string() methods, respectively.

send header (keyword, value)
Writes a specific MIME header to the output stream.keywordshould specify the header keyword, withvalue
specifying its value.

end headers ()
Sends a blank line, indicating the end of the MIME headers in the response.

log request ([code[, size]])
Logs an accepted (successful) request.codeshould specify the numeric HTTP code associated with the re-
sponse. If a size of the response is available, then it should be passed as thesizeparameter.

log error (...)
Logs an error when a request cannot be fulfilled. By default, it passes the message tolog message() , so it
takes the same arguments (formatand additional values).

log message (format, ...)
Logs an arbitrary message tosys.stderr . This is typically overridden to create custom error logging
mechanisms. Theformat argument is a standard printf-style format string, where the additional arguments
to log message() are applied as inputs to the formatting. The client address and current date and time are
prefixed to every message logged.

version string ()
Returns the server software’s version string. This is a combination of theserver version and
sys version class variables.

date time string ()
Returns the current date and time, formatted for a message header.

log data time string ()
Returns the current date and time, formatted for logging.

address string ()
Returns the client address, formatted for logging. A name lookup is performed on the client’s IP address.

See Also:

ModuleCGIHTTPServer (section 11.16):
Extended request handler that supports CGI scripts.

ModuleSimpleHTTPServer (section 11.15):
Basic request handler that limits response to files actually under the document root.

11.15 SimpleHTTPServer — Simple HTTP request handler

The SimpleHTTPServer module defines a request-handler class, interface compatible with
BaseHTTPServer.BaseHTTPRequestHandler which serves files only from a base directory.

266 Chapter 11. Internet Protocols and Support

TheSimpleHTTPServer module defines the following class:

SimpleHTTPRequestHandler (request, clientaddress, server)
This class is used, to serve files from current directory and below, directly mapping the directory structure to
HTTP requests.

A lot of the work is done by the base classBaseHTTPServer.BaseHTTPRequestHandler , such as
parsing the request. This class implements thedo GET() anddo HEAD() functions.

TheSimpleHTTPRequestHandler defines the following member variables:

server version
This will be "SimpleHTTP/" + version , where version is defined in the module.

extensions map
A dictionary mapping suffixes into MIME types. Default is signified by an empty string, and is considered to be
text/plain . The mapping is used case-insensitively, and so should contain only lower-cased keys.

TheSimpleHTTPRequestHandler defines the following methods:

do HEAD()
This method serves the’HEAD’ request type: it sends the headers it would send for the equivalentGETrequest.
See thedo GET() method for more complete explanation of the possible headers.

do GET()
The request is mapped to a local file by interpreting the request as a path relative to the current working directory.

If the request was mapped to a directory, a403 respond is output, followed by the explanation’Directory
listing not supported’ . Any IOError exception in opening the requested file, is mapped to a404 ,
’File not found’ error. Otherwise, the content type is guessed using theextensionsmapvariable.

A ’Content-type:’ with the guessed content type is output, and then a blank line, signifying end of
headers, and then the contents of the file. The file is always opened in binary mode.

For example usage, see the implementation of thetest() function.

See Also:

ModuleBaseHTTPServer (section 11.14):
Base class implementation for Web server and request handler.

11.16 CGIHTTPServer — CGI-capable HTTP request handler

The CGIHTTPServer module defines a request-handler class, interface compati-
ble with BaseHTTPServer.BaseHTTPRequestHandler and inherits behavior from
SimpleHTTPServer.SimpleHTTPRequestHandler but can also run CGI scripts.

Note: This module is UNIX dependent since it creates the CGI process usingos.fork() andos.exec() .

TheCGIHTTPServer module defines the following class:

CGIHTTPRequestHandler (request, clientaddress, server)
This class is used to serve either files or output of CGI scripts from the current directory and be-
low. Note that mapping HTTP hierarchic structure to local directory structure is exactly as in
SimpleHTTPServer.SimpleHTTPRequestHandler .

The class will however, run the CGI script, instead of serving it as a file, if it guesses it to be a CGI script. Only
directory-based CGI are used — the other common server configuration is to treat special extensions as denoting
CGI scripts.

The do GET() anddo HEAD() functions are modified to run CGI scripts and serve the output, instead of
serving files, if the request leads to somewhere below thecgi directories path.

TheCGIHTTPRequestHandler defines the following data member:

11.16. CGIHTTPServer — CGI-capable HTTP request handler 267

cgi directories
This defaults to[’/cgi-bin’, ’/htbin’] and describes directories to treat as containing CGI scripts.

TheCGIHTTPRequestHandler defines the following methods:

do POST()
This method serves the’POST’ request type, only allowed for CGI scripts. Error 501, ”Can only POST to CGI
scripts”, is output when trying to POST to a non-CGI url.

Note that CGI scripts will be run with UID of user nobody, for security reasons. Problems with the CGI script will be
translated to error 403.

For example usage, see the implementation of thetest() function.

See Also:

ModuleBaseHTTPServer (section 11.14):
Base class implementation for Web server and request handler.

11.17 Cookie — HTTP state management

TheCookie module defines classes for abstracting the concept of cookies, an HTTP state management mechanism.
It supports both simplistic string-only cookies, and provides an abstraction for having any serializable data-type as
cookie value.

The module formerly strictly applied the parsing rules described in in the RFC 2109 and RFC 2068 specifications. It
has since been discovered that MSIE 3.0x doesn’t follow the character rules outlined in those specs. As a result, the
parsing rules used are a bit less strict.

CookieError
Exception failing because of RFC 2109 invalidity: incorrect attributes, incorrectSet-Cookie header, etc.

BaseCookie ([input])
This class is a dictionary-like object whose keys are strings and whose values areMorsel s. Note that upon
setting a key to a value, the value is first converted to aMorsel containing the key and the value.

If input is given, it is passed to theload method.

SimpleCookie ([input])
This class derives fromBaseCookie and overridesvalue decode andvalue encode to be the identity
andstr() respectively.

SerialCookie ([input])
This class derives fromBaseCookie and overridesvalue decode and value encode to be the
pickle.loads() andpickle.dumps .

Do not use this class. Reading pickled values from a cookie is a security hole, as arbitrary client-code can be
run onpickle.loads() . It is supported for backwards compatibility.

SmartCookie ([input])
This class derives fromBaseCookie . It overridesvalue decode to bepickle.loads() if it is a valid
pickle, and otherwise the value itself. It overridesvalue encode to bepickle.dumps() unless it is a
string, in which case it returns the value itself.

The same security warning fromSerialCookie applies here.

See Also:

RFC 2109, “HTTP State Management Mechanism”
This is the state management specification implemented by this module.

268 Chapter 11. Internet Protocols and Support

11.17.1 Cookie Objects

value decode (val)
Return a decoded value from a string representation. Return value can be any type. This method does nothing
in BaseCookie — it exists so it can be overridden.

value encode (val)
Return an encoded value.val can be any type, but return value must be a string. This method does nothing in
BaseCookie — it exists so it can be overridden

In general, it should be the case thatvalue encode and value decode are inverses on the range of
value decode.

.

output ([attrs[, header[, sep]]])
Return a string representation suitable to be sent as HTTP headers.attrsandheaderare sent to eachMorsel ’s
output method.sepis used to join the headers together, and is by default a newline.

js output ([attrs])
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will act the
same as if the HTTP headers was sent.

The meaning forattrs is the same as inoutput() .

load (rawdata)
If rawdata is a string, parse it as anHTTP COOKIEand add the values found there asMorsel s. If it is a
dictionary, it is equivalent to:

for k, v in rawdata.items():
cookie[k] = v

11.17.2 Morsel Objects

Morsel ()
Abstract a key/value pair, which has some RFC 2109 attributes.

Morsels are dictionary-like objects, whose set of keys is constant — the valid RFC 2109 attributes, which are

•expires

•path

•comment

•domain

•max-age

•secure

•version

The keys are case-insensitive.

value
The value of the cookie.

coded value
The encoded value of the cookie — this is what should be sent.

key
The name of the cookie.

11.17. Cookie — HTTP state management 269

set (key, value, codedvalue)
Set thekey, valueandcoded valuemembers.

isReservedKey (K)
WhetherK is a member of the set of keys of aMorsel .

output ([attrs[, header]])
Return a string representation of the Morsel, suitable to be sent as an HTTP header. By default, all the attributes
are included, unlessattrs is given, in which case it should be a list of attributes to use.headeris by default
"Set-Cookie:" .

js output ([attrs])
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will act the
same as if the HTTP header was sent.

The meaning forattrs is the same as inoutput() .

.

OutputString ([attrs])
Return a string representing the Morsel, without any surrounding HTTP or JavaScript.

The meaning forattrs is the same as inoutput() .

11.17.3 Example

The following example demonstrates how to open a can of spam using thespam module.

270 Chapter 11. Internet Protocols and Support

>>> import Cookie
>>> C = Cookie.SimpleCookie()
>>> C = Cookie.SerialCookie()
>>> C = Cookie.SmartCookie()
>>> C = Cookie.Cookie() # backwards compatible alias for SmartCookie
>>> C = Cookie.SmartCookie()
>>> C["fig"] = "newton"
>>> C["sugar"] = "wafer"
>>> C # generate HTTP headers
Set-Cookie: sugar=wafer;
Set-Cookie: fig=newton;
>>> C = Cookie.SmartCookie()
>>> C["rocky"] = "road"
>>> C["rocky"]["path"] = "/cookie"
>>> print C.output(header="Cookie:")
Cookie: rocky=road; Path=/cookie;
>>> print C.output(attrs=[], header="Cookie:")
Cookie: rocky=road;
>>> C = Cookie.SmartCookie()
>>> C.load("chips=ahoy; vienna=finger") # load from a string (HTTP header)
>>> C
Set-Cookie: vienna=finger;
Set-Cookie: chips=ahoy;
>>> C = Cookie.SmartCookie()
>>> C.load(’keebler="E=everybody; L=\"Loves\"; fudge=\012;";’)
>>> C
Set-Cookie: keebler="E=everybody; L=\"Loves\"; fudge=\012;";
>>> C = Cookie.SmartCookie()
>>> C["oreo"] = "doublestuff"
>>> C["oreo"]["path"] = "/"
>>> C
Set-Cookie: oreo="doublestuff"; Path=/;
>>> C = Cookie.SmartCookie()
>>> C["twix"] = "none for you"
>>> C["twix"].value
’none for you’
>>> C = Cookie.SimpleCookie()
>>> C["number"] = 7 # equivalent to C["number"] = str(7)
>>> C["string"] = "seven"
>>> C["number"].value
’7’
>>> C["string"].value
’seven’
>>> C
Set-Cookie: number=7;
Set-Cookie: string=seven;
>>> C = Cookie.SerialCookie()
>>> C["number"] = 7
>>> C["string"] = "seven"
>>> C["number"].value
7
>>> C["string"].value
’seven’
>>> C
Set-Cookie: number="I7\012.";
Set-Cookie: string="S’seven’\012p1\012.";
>>> C = Cookie.SmartCookie()
>>> C["number"] = 7
>>> C["string"] = "seven"
>>> C["number"].value
7
>>> C["string"].value
’seven’
>>> C
Set-Cookie: number="I7\012.";
Set-Cookie: string=seven;

11.17. Cookie — HTTP state management 271

11.18 asyncore — Asynchronous socket handler

This module provides the basic infrastructure for writing asynchronous socket service clients and servers.

There are only two ways to have a program on a single processor do “more than one thing at a time.” Multi-threaded
programming is the simplest and most popular way to do it, but there is another very different technique, that lets you
have nearly all the advantages of multi-threading, without actually using multiple threads. It’s really only practical if
your program is largely I/O bound. If your program is CPU bound, then pre-emptive scheduled threads are probably
what you really need. Network servers are rarely CPU-bound, however.

If your operating system supports theselect() system call in its I/O library (and nearly all do), then you can use it to
juggle multiple communication channels at once; doing other work while your I/O is taking place in the “background.”
Although this strategy can seem strange and complex, especially at first, it is in many ways easier to understand and
control than multi-threaded programming. The module documented here solves many of the difficult problems for
you, making the task of building sophisticated high-performance network servers and clients a snap.

dispatcher ()
The first class we will introduce is thedispatcher class. This is a thin wrapper around a low-level socket
object. To make it more useful, it has a few methods for event-handling on it. Otherwise, it can be treated as a
normal non-blocking socket object.

The direct interface between the select loop and the socket object are thehandle read event() and
handle write event() methods. These are called whenever an object ‘fires’ that event.

The firing of these low-level events can tell us whether certain higher-level events have taken place, depending
on the timing and the state of the connection. For example, if we have asked for a socket to connect to another
host, we know that the connection has been made when the socket fires a write event (at this point you know
that you may write to it with the expectation of success). The implied higher-level events are:

Event Description
handle connect() Implied by a write event
handle close() Implied by a read event with no data available
handle accept() Implied by a read event on a listening socket

This set of user-level events is larger than the basics. The full set of methods that can be overridden in your subclass
are:

handle read ()
Called when there is new data to be read from a socket.

handle write ()
Called when there is an attempt to write data to the object. Often this method will implement the necessary
buffering for performance. For example:

def handle_write(self):
sent = self.send(self.buffer)
self.buffer = self.buffer[sent:]

handle expt ()
Called when there is out of band (OOB) data for a socket connection. This will almost never happen, as OOB is
tenuously supported and rarely used.

handle connect ()
Called when the socket actually makes a connection. This might be used to send a “welcome” banner, or
something similar.

handle close ()
Called when the socket is closed.

handle accept ()

272 Chapter 11. Internet Protocols and Support

Called on listening sockets when they actually accept a new connection.

readable ()
Each time through theselect() loop, the set of sockets is scanned, and this method is called to see if there
is any interest in reading. The default method simply returns1, indicating that by default, all channels will be
interested.

writeable ()
Each time through theselect() loop, the set of sockets is scanned, and this method is called to see if there
is any interest in writing. The default method simply returns1, indicating that by default, all channels will be
interested.

In addition, there are the basic methods needed to construct and manipulate “channels,” which are what we will call
the socket connections in this context. Note that most of these are nearly identical to their socket partners.

create socket (family, type)
This is identical to the creation of a normal socket, and will use the same options for creation. Refer to the
socket documentation for information on creating sockets.

connect (address)
As with the normal socket object,addressis a tuple with the first element the host to connect to, and the second
the port.

send (data)
Senddataout the socket.

recv (buffer size)
Read at mostbuffer sizebytes from the socket.

listen ([backlog])
Listen for connections made to the socket. Thebacklogargument specifies the maximum number of queued
connections and should be at least 1; the maximum value is system-dependent (usually 5).

bind (address)
Bind the socket toaddress. The socket must not already be bound. (The format ofaddressdepends on the
address family — see above.)

accept ()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair(conn, address) whereconnis anewsocket object usable to send and receive data on the connection,
andaddressis the address bound to the socket on the other end of the connection.

close ()
Close the socket. All future operations on the socket object will fail. The remote end will receive no more data
(after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

11.18.1 Example basic HTTP client

As a basic example, below is a very basic HTTP client that uses thedispatcher class to implement its socket
handling:

11.18. asyncore — Asynchronous socket handler 273

class http_client(asyncore.dispatcher):
def __init__(self, host,path):

asyncore.dispatcher.__init__(self)
self.path = path
self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
self.connect((host, 80))
self.buffer = ’GET %s HTTP/1.0\r\b\r\n’ % self.path

def handle_connect(self):
pass

def handle_read(self):
data = self.recv(8192)
print data

def writeable(self):
return (len(self.buffer) > 0)

def handle_write(self):
sent = self.send(self.buffer)
self.buffer = self.buffer[sent:]

274 Chapter 11. Internet Protocols and Support

CHAPTER

TWELVE

Internet Data Handling

This chapter describes modules which support handling data formats commonly used on the internet. Some, like
SGML and XML, may be useful for other applications as well.

formatter Generic output formatter and device interface.
rfc822 Parse RFC 822 style mail headers.
mimetools Tools for parsing MIME-style message bodies.
MimeWriter Generic MIME file writer.
multifile Support for reading files which contain distinct parts, such as some MIME data.
binhex Encode and decode files in binhex4 format.
uu Encode and decode files in uuencode format.
binascii Tools for converting between binary and variousASCII-encoded binary representations.
xdrlib Encoders and decoders for the External Data Representation (XDR).
mailcap Mailcap file handling.
mimetypes Mapping of filename extensions to MIME types.
base64 Encode and decode files using the MIME base64 data.
quopri Encode and decode files using the MIME quoted-printable encoding.
mailbox Read various mailbox formats.
mhlib Manipulate MH mailboxes from Python.
mimify Mimification and unmimification of mail messages.
netrc Loading of ‘.netrc’ files.
robotparser Accepts as input a list of lines or URL that refers to a robots.txt file, parses the file, then builds a set of rules from that list and answers questions about fetchability of other URLs.

12.1 formatter — Generic output formatting

This module supports two interface definitions, each with multiple implementations. Theformatterinterface is used
by theHTMLParser class of thehtmllib module, and thewriter interface is required by the formatter interface.

Formatter objects transform an abstract flow of formatting events into specific output events on writer objects. Format-
ters manage several stack structures to allow various properties of a writer object to be changed and restored; writers
need not be able to handle relative changes nor any sort of “change back” operation. Specific writer properties which
may be controlled via formatter objects are horizontal alignment, font, and left margin indentations. A mechanism
is provided which supports providing arbitrary, non-exclusive style settings to a writer as well. Additional interfaces
facilitate formatting events which are not reversible, such as paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are supported as well as physical
devices. The provided implementations all work with abstract devices. The interface makes available mechanisms for
setting the properties which formatter objects manage and inserting data into the output.

275

12.1.1 The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class being instantiated. The interfaces described
below are the required interfaces which all formatters must support once initialized.

One data element is defined at the module level:

AS IS
Value which can be used in the font specification passed to thepush font() method described below, or
as the new value to any otherpush property() method. Pushing theAS IS value allows the corresponding
pop property() method to be called without having to track whether the property was changed.

The following attributes are defined for formatter instance objects:

writer
The writer instance with which the formatter interacts.

end paragraph (blanklines)
Close any open paragraphs and insert at leastblanklinesbefore the next paragraph.

add line break ()
Add a hard line break if one does not already exist. This does not break the logical paragraph.

add hor rule (*args, **kw)
Insert a horizontal rule in the output. A hard break is inserted if there is data in the current paragraph, but the logi-
cal paragraph is not broken. The arguments and keywords are passed on to the writer’ssend line break()
method.

add flowing data (data)
Provide data which should be formatted with collapsed whitespace. Whitespace from preceding and successive
calls toadd flowing data() is considered as well when the whitespace collapse is performed. The data
which is passed to this method is expected to be word-wrapped by the output device. Note that any word-
wrapping still must be performed by the writer object due to the need to rely on device and font information.

add literal data (data)
Provide data which should be passed to the writer unchanged. Whitespace, including newline and tab characters,
are considered legal in the value ofdata.

add label data (format, counter)
Insert a label which should be placed to the left of the current left margin. This should be used for constructing
bulleted or numbered lists. If theformatvalue is a string, it is interpreted as a format specification forcounter,
which should be an integer. The result of this formatting becomes the value of the label; ifformat is not a
string it is used as the label value directly. The label value is passed as the only argument to the writer’s
send label data() method. Interpretation of non-string label values is dependent on the associated writer.

Format specifications are strings which, in combination with a counter value, are used to compute label values.
Each character in the format string is copied to the label value, with some characters recognized to indicate
a transform on the counter value. Specifically, the character ‘1’ represents the counter value formatter as an
Arabic number, the characters ‘A’ and ‘a’ represent alphabetic representations of the counter value in upper and
lower case, respectively, and ‘I ’ and ‘i ’ represent the counter value in Roman numerals, in upper and lower
case. Note that the alphabetic and roman transforms require that the counter value be greater than zero.

flush softspace ()
Send any pending whitespace buffered from a previous call toadd flowing data() to the associated
writer object. This should be called before any direct manipulation of the writer object.

push alignment (align)
Push a new alignment setting onto the alignment stack. This may beAS IS if no change is desired. If the
alignment value is changed from the previous setting, the writer’snew alignment() method is called with
thealign value.

276 Chapter 12. Internet Data Handling

pop alignment ()
Restore the previous alignment.

push font ((size, italic, bold, teletype))
Change some or all font properties of the writer object. Properties which are not set toAS IS are set to the
values passed in while others are maintained at their current settings. The writer’snew font() method is
called with the fully resolved font specification.

pop font ()
Restore the previous font.

push margin (margin)
Increase the number of left margin indentations by one, associating the logical tagmarginwith the new indenta-
tion. The initial margin level is0. Changed values of the logical tag must be true values; false values other than
AS IS are not sufficient to change the margin.

pop margin ()
Restore the previous margin.

push style (*styles)
Push any number of arbitrary style specifications. All styles are pushed onto the styles stack in order. A tuple
representing the entire stack, includingAS IS values, is passed to the writer’snew styles() method.

pop style ([n = 1])
Pop the lastn style specifications passed topush style() . A tuple representing the revised stack, including
AS IS values, is passed to the writer’snew styles() method.

set spacing (spacing)
Set the spacing style for the writer.

assert line data ([flag = 1])
Inform the formatter that data has been added to the current paragraph out-of-band. This should be used when the
writer has been manipulated directly. The optionalflag argument can be set to false if the writer manipulations
produced a hard line break at the end of the output.

12.1.2 Formatter Implementations

Two implementations of formatter objects are provided by this module. Most applications may use one of these classes
without modification or subclassing.

NullFormatter ([writer])
A formatter which does nothing. Ifwriter is omitted, aNullWriter instance is created. No methods of the
writer are called byNullFormatter instances. Implementations should inherit from this class if implement-
ing a writer interface but don’t need to inherit any implementation.

AbstractFormatter (writer)
The standard formatter. This implementation has demonstrated wide applicability to many writers, and may be
used directly in most circumstances. It has been used to implement a full-featured world-wide web browser.

12.1.3 The Writer Interface

Interfaces to create writers are dependent on the specific writer class being instantiated. The interfaces described below
are the required interfaces which all writers must support once initialized. Note that while most applications can use
theAbstractFormatter class as a formatter, the writer must typically be provided by the application.

flush ()
Flush any buffered output or device control events.

12.1. formatter — Generic output formatting 277

new alignment (align)
Set the alignment style. Thealign value can be any object, but by convention is a string orNone, where
None indicates that the writer’s “preferred” alignment should be used. Conventionalalign values are’left’ ,
’center’ , ’right’ , and’justify’ .

new font (font)
Set the font style. The value offont will be None, indicating that the device’s default font should be used, or
a tuple of the form(size, italic, bold, teletype) . Size will be a string indicating the size of font that should be
used; specific strings and their interpretation must be defined by the application. Theitalic, bold, andteletype
values are boolean indicators specifying which of those font attributes should be used.

new margin (margin, level)
Set the margin level to the integerleveland the logical tag tomargin. Interpretation of the logical tag is at the
writer’s discretion; the only restriction on the value of the logical tag is that it not be a false value for non-zero
values oflevel.

new spacing (spacing)
Set the spacing style tospacing.

new styles (styles)
Set additional styles. Thestylesvalue is a tuple of arbitrary values; the valueAS IS should be ignored. The
stylestuple may be interpreted either as a set or as a stack depending on the requirements of the application and
writer implementation.

send line break ()
Break the current line.

send paragraph (blankline)
Produce a paragraph separation of at leastblanklineblank lines, or the equivalent. Theblanklinevalue will be
an integer. Note that the implementation will receive a call tosend line break() before this call if a line
break is needed; this method should not include ending the last line of the paragraph. It is only responsible for
vertical spacing between paragraphs.

send hor rule (*args, **kw)
Display a horizontal rule on the output device. The arguments to this method are entirely application- and
writer-specific, and should be interpreted with care. The method implementation may assume that a line break
has already been issued viasend line break() .

send flowing data (data)
Output character data which may be word-wrapped and re-flowed as needed. Within any sequence of calls to
this method, the writer may assume that spans of multiple whitespace characters have been collapsed to single
space characters.

send literal data (data)
Output character data which has already been formatted for display. Generally, this should be interpreted to
mean that line breaks indicated by newline characters should be preserved and no new line breaks should
be introduced. The data may contain embedded newline and tab characters, unlike data provided to the
send formatted data() interface.

send label data (data)
Setdata to the left of the current left margin, if possible. The value ofdata is not restricted; treatment of non-
string values is entirely application- and writer-dependent. This method will only be called at the beginning of
a line.

12.1.4 Writer Implementations

Three implementations of the writer object interface are provided as examples by this module. Most applications will
need to derive new writer classes from theNullWriter class.

278 Chapter 12. Internet Data Handling

NullWriter ()
A writer which only provides the interface definition; no actions are taken on any methods. This should be the
base class for all writers which do not need to inherit any implementation methods.

AbstractWriter ()
A writer which can be used in debugging formatters, but not much else. Each method simply announces itself
by printing its name and arguments on standard output.

DumbWriter ([file[, maxcol = 72]])
Simple writer class which writes output on the file object passed in asfile or, if file is omitted, on standard output.
The output is simply word-wrapped to the number of columns specified bymaxcol. This class is suitable for
reflowing a sequence of paragraphs.

12.2 rfc822 — Parse RFC 822 mail headers

This module defines a class,Message , which represents a collection of “email headers” as defined by the Internet
standard RFC 822. It is used in various contexts, usually to read such headers from a file. This module also defines a
helper classAddressList for parsing RFC 822 addresses. Please refer to the RFC for information on the specific
syntax of RFC 822 headers.

Themailbox module provides classes to read mailboxes produced by various end-user mail programs.

Message (file[, seekable])
A Message instance is instantiated with an input object as parameter. Message relies only on the input object
having areadline() method; in particular, ordinary file objects qualify. Instantiation reads headers from the
input object up to a delimiter line (normally a blank line) and stores them in the instance.

This class can work with any input object that supports areadline() method. If the input object has seek
and tell capability, therewindbody() method will work; also, illegal lines will be pushed back onto the
input stream. If the input object lacks seek but has anunread() method that can push back a line of input,
Message will use that to push back illegal lines. Thus this class can be used to parse messages coming from a
buffered stream.

The optionalseekableargument is provided as a workaround for certain stdio libraries in whichtell() dis-
cards buffered data before discovering that thelseek() system call doesn’t work. For maximum portability,
you should set the seekable argument to zero to prevent that initialtell() when passing in an unseekable
object such as a a file object created from a socket object.

Input lines as read from the file may either be terminated by CR-LF or by a single linefeed; a terminating CR-LF
is replaced by a single linefeed before the line is stored.

All header matching is done independent of upper or lower case; e.g.m[’From’] , m[’from’] and
m[’FROM’] all yield the same result.

AddressList (field)
You may instantiate theAddressList helper class using a single string parameter, a comma-separated list of
RFC 822 addresses to be parsed. (The parameterNone yields an empty list.)

parsedate (date)
Attempts to parse a date according to the rules in RFC 822. however, some mailers don’t follow that format as
specified, soparsedate() tries to guess correctly in such cases.dateis a string containing an RFC 822 date,
such as’Mon, 20 Nov 1995 19:12:08 -0500’ . If it succeeds in parsing the date,parsedate()
returns a 9-tuple that can be passed directly totime.mktime() ; otherwiseNone will be returned. Note that
fields 6, 7, and 8 of the result tuple are not usable.

parsedate tz (date)
Performs the same function asparsedate() , but returns eitherNone or a 10-tuple; the first 9 elements make
up a tuple that can be passed directly totime.mktime() , and the tenth is the offset of the date’s timezone
from UTC (which is the official term for Greenwich Mean Time). (Note that the sign of the timezone offset is

12.2. rfc822 — Parse RFC 822 mail headers 279

the opposite of the sign of thetime.timezone variable for the same timezone; the latter variable follows the
POSIX standard while this module follows RFC 822.) If the input string has no timezone, the last element of
the tuple returned isNone. Note that fields 6, 7, and 8 of the result tuple are not usable.

mktime tz (tuple)
Turn a 10-tuple as returned byparsedate tz() into a UTC timestamp. It the timezone item in the tuple
is None, assume local time. Minor deficiency: this first interprets the first 8 elements as a local time and then
compensates for the timezone difference; this may yield a slight error around daylight savings time switch dates.
Not enough to worry about for common use.

See Also:

Modulemailbox (section 12.14):
Classes to read various mailbox formats produced by end-user mail programs.

Modulemimetools (section 12.3):
Subclass of rfc.Message that handles MIME encoded messages.

12.2.1 Message Objects

A Message instance has the following methods:

rewindbody ()
Seek to the start of the message body. This only works if the file object is seekable.

isheader (line)
Returns a line’s canonicalized fieldname (the dictionary key that will be used to index it) if the line is a legal
RFC 822 header; otherwise returns None (implying that parsing should stop here and the line be pushed back
on the input stream). It is sometimes useful to override this method in a subclass.

islast (line)
Return true if the given line is a delimiter on which Message should stop. The delimiter line is consumed, and
the file object’s read location positioned immediately after it. By default this method just checks that the line is
blank, but you can override it in a subclass.

iscomment (line)
Return true if the given line should be ignored entirely, just skipped. By default this is a stub that always returns
false, but you can override it in a subclass.

getallmatchingheaders (name)
Return a list of lines consisting of all headers matchingname, if any. Each physical line, whether it is a contin-
uation line or not, is a separate list item. Return the empty list if no header matchesname.

getfirstmatchingheader (name)
Return a list of lines comprising the first header matchingname, and its continuation line(s), if any. Return
None if there is no header matchingname.

getrawheader (name)
Return a single string consisting of the text after the colon in the first header matchingname. This includes
leading whitespace, the trailing linefeed, and internal linefeeds and whitespace if there any continuation line(s)
were present. ReturnNone if there is no header matchingname.

getheader (name[, default])
Like getrawheader(name) , but strip leading and trailing whitespace. Internal whitespace is not stripped.
The optionaldefaultargument can be used to specify a different default to be returned when there is no header
matchingname.

get (name[, default])
An alias forgetheader() , to make the interface more compatible with regular dictionaries.

280 Chapter 12. Internet Data Handling

getaddr (name)
Return a pair(full name, email address) parsed from the string returned bygetheader(name) . If no
header matchingnameexists, return(None, None) ; otherwise both the full name and the address are (pos-
sibly empty) strings.

Example: If m’s first From header contains the string’jack@cwi.nl (Jack Jansen)’ , then
m.getaddr(’From’) will yield the pair (’Jack Jansen’, ’jack@cwi.nl’) . If the header con-
tained’Jack Jansen <jack@cwi.nl>’ instead, it would yield the exact same result.

getaddrlist (name)
This is similar togetaddr(list) , but parses a header containing a list of email addresses (e.g. aTo header)
and returns a list of(full name, email address) pairs (even if there was only one address in the header). If
there is no header matchingname, return an empty list.

If multiple headers exist that match the named header (e.g. if there are severalCc headers), all are parsed for
addresses. Any continuation lines the named headers contain are also parsed.

getdate (name)
Retrieve a header usinggetheader() and parse it into a 9-tuple compatible withtime.mktime() ; note
that fields 6, 7, and 8 are not usable. If there is no header matchingname, or it is unparsable, returnNone.

Date parsing appears to be a black art, and not all mailers adhere to the standard. While it has been tested
and found correct on a large collection of email from many sources, it is still possible that this function may
occasionally yield an incorrect result.

getdate tz (name)
Retrieve a header usinggetheader() and parse it into a 10-tuple; the first 9 elements will make a tuple
compatible withtime.mktime() , and the 10th is a number giving the offset of the date’s timezone from
UTC. Note that fields 6, 7, and 8 are not usable. Similarly togetdate() , if there is no header matchingname,
or it is unparsable, returnNone.

Message instances also support a read-only mapping interface. In particular:m[name] is like
m.getheader(name) but raisesKeyError if there is no matching header; andlen(m) , m.has key(name) ,
m.keys() , m.values() andm.items() act as expected (and consistently).

Finally, Message instances have two public instance variables:

headers
A list containing the entire set of header lines, in the order in which they were read (except that setitem calls
may disturb this order). Each line contains a trailing newline. The blank line terminating the headers is not
contained in the list.

fp
The file or file-like object passed at instantiation time. This can be used to read the message content.

12.2.2 AddressList Objects

An AddressList instance has the following methods:

len (name)
Return the number of addresses in the address list.

str (name)
Return a canonicalized string representation of the address list. Addresses are rendered in ”name”
¡host@domain¿ form, comma-separated.

add (name)
Return anAddressList instance that contains all addresses in bothAddressList operands, with dupli-
cates removed (set union).

sub (name)

12.2. rfc822 — Parse RFC 822 mail headers 281

Return anAddressList instance that contains every address in the left-handAddressList operand that is
not present in the right-hand address operand (set difference).

Finally, AddressList instances have one public instance variable:

addresslist
A list of tuple string pairs, one per address. In each member, the first is the canonicalized name part of the
address, the second is the route-address (@-separated host-domain pair).

12.3 mimetools — Tools for parsing MIME messages

This module defines a subclass of therfc822 module’sMessage class and a number of utility functions that are
useful for the manipulation for MIME multipart or encoded message.

It defines the following items:

Message (fp[, seekable])
Return a new instance of theMessage class. This is a subclass of therfc822.Message class, with some
additional methods (see below). Theseekableargument has the same meaning as forrfc822.Message .

choose boundary ()
Return a unique string that has a high likelihood of being usable as a part boundary. The string has the form
’ hostipaddr. uid. pid. timestamp. random’ .

decode (input, output, encoding)
Read data encoded using the allowed MIMEencodingfrom open file objectinput and write the decoded data
to open file objectoutput. Valid values forencodinginclude ’base64’ , ’quoted-printable’ and
’uuencode’ .

encode (input, output, encoding)
Read data from open file objectinputand write it encoded using the allowed MIMEencodingto open file object
output. Valid values forencodingare the same as fordecode() .

copyliteral (input, output)
Read lines from open fileinput until EOF and write them to open fileoutput.

copybinary (input, output)
Read blocks untilEOF from open fileinput and write them to open fileoutput. The block size is currently fixed
at 8192.

See Also:

Modulerfc822 (section 12.2):
Provides the base class formimetools.Message .

Modulemultifile (section 12.5):
Support for reading files which contain distinct parts, such as MIME data.

http://www.cs.uu.nl/wais/html/na-dir/mail/mime-faq/.html
The MIME Frequently Asked Questions document. For an overview of MIME, see the answer to question 1.1
in Part 1 of this document.

12.3.1 Additional Methods of Message Objects

TheMessage class defines the following methods in addition to therfc822.Message methods:

getplist ()
Return the parameter list of thecontent-type header. This is a list of strings. For parameters of the
form ‘key=value’, key is converted to lower case butvalue is not. For example, if the message contains the

282 Chapter 12. Internet Data Handling

header ‘Content-type: text/html; spam=1; Spam=2; Spam ’ then getplist() will return
the Python list[’spam=1’, ’spam=2’, ’Spam’] .

getparam (name)
Return thevalueof the first parameter (as returned bygetplist() of the form ‘name=value’ for the given
name. If valueis surrounded by quotes of the form ‘<...>’ or ‘ " ..." ’, these are removed.

getencoding ()
Return the encoding specified in thecontent-transfer-encoding message header. If no such header
exists, return’7bit’ . The encoding is converted to lower case.

gettype ()
Return the message type (of the form ‘type/ subtype’) as specified in thecontent-type header. If no such
header exists, return’text/plain’ . The type is converted to lower case.

getmaintype ()
Return the main type as specified in thecontent-type header. If no such header exists, return’text’ .
The main type is converted to lower case.

getsubtype ()
Return the subtype as specified in thecontent-type header. If no such header exists, return’plain’ . The
subtype is converted to lower case.

12.4 MimeWriter — Generic MIME file writer

This module defines the classMimeWriter . The MimeWriter class implements a basic formatter for creating
MIME multi-part files. It doesn’t seek around the output file nor does it use large amounts of buffer space. You must
write the parts out in the order that they should occur in the final file.MimeWriter does buffer the headers you add,
allowing you to rearrange their order.

MimeWriter (fp)
Return a new instance of theMimeWriter class. The only argument passed,fp, is a file object to be used for
writing. Note that aStringIO object could also be used.

12.4.1 MimeWriter Objects

MimeWriter instances have the following methods:

addheader (key, value[, prefix])
Add a header line to the MIME message. Thekeyis the name of the header, where thevalueobviously provides
the value of the header. The optional argumentprefixdetermines where the header is inserted; ‘0’ means append
at the end, ‘1’ is insert at the start. The default is to append.

flushheaders ()
Causes all headers accumulated so far to be written out (and forgotten). This is useful if you don’t need a body
part at all, e.g. for a subpart of typemessage/rfc822 that’s (mis)used to store some header-like information.

startbody (ctype[, plist[, prefix]])
Returns a file-like object which can be used to write to the body of the message. The content-type is set to the
providedctype, and the optional parameterplist provides additional parameters for the content-type declaration.
prefix functions as inaddheader() except that the default is to insert at the start.

startmultipartbody (subtype[, boundary[, plist[, prefix]]])
Returns a file-like object which can be used to write to the body of the message. Additionally, this method
initializes the multi-part code, wheresubtypeprovides the multipart subtype,boundarymay provide a user-
defined boundary specification, andplist provides optional parameters for the subtype.prefix functions as in
startbody() . Subparts should be created usingnextpart() .

12.4. MimeWriter — Generic MIME file writer 283

nextpart ()
Returns a new instance ofMimeWriter which represents an individual part in a multipart message. This may
be used to write the part as well as used for creating recursively complex multipart messages. The message must
first be initialized withstartmultipartbody() before usingnextpart() .

lastpart ()
This is used to designate the last part of a multipart message, and shouldalwaysbe used when writing multipart
messages.

12.5 multifile — Support for files containing distinct parts

TheMultiFile object enables you to treat sections of a text file as file-like input objects, with’’ being returned by
readline() when a given delimiter pattern is encountered. The defaults of this class are designed to make it useful
for parsing MIME multipart messages, but by subclassing it and overriding methods it can be easily adapted for more
general use.

MultiFile (fp[, seekable])
Create a multi-file. You must instantiate this class with an input object argument for theMultiFile instance
to get lines from, such as as a file object returned byopen() .

MultiFile only ever looks at the input object’sreadline() , seek() and tell() methods, and the
latter two are only needed if you want random access to the individual MIME parts. To useMultiFile on a
non-seekable stream object, set the optionalseekableargument to false; this will prevent using the input object’s
seek() andtell() methods.

It will be useful to know that inMultiFile ’s view of the world, text is composed of three kinds of lines: data,
section-dividers, and end-markers. MultiFile is designed to support parsing of messages that may have multiple
nested message parts, each with its own pattern for section-divider and end-marker lines.

12.5.1 MultiFile Objects

A MultiFile instance has the following methods:

push (str)
Push a boundary string. When an appropriately decorated version of this boundary is found as an input line,
it will be interpreted as a section-divider or end-marker. All subsequent reads will return the empty string to
indicate end-of-file, until a call topop() removes the boundary a ornext() call reenables it.

It is possible to push more than one boundary. Encountering the most-recently-pushed boundary will return
EOF; encountering any other boundary will raise an error.

readline (str)
Read a line. If the line is data (not a section-divider or end-marker or real EOF) return it. If the line matches the
most-recently-stacked boundary, return’’ and setself.last to 1 or 0 according as the match is or is not an
end-marker. If the line matches any other stacked boundary, raise an error. On encountering end-of-file on the
underlying stream object, the method raisesError unless all boundaries have been popped.

readlines (str)
Return all lines remaining in this part as a list of strings.

read ()
Read all lines, up to the next section. Return them as a single (multiline) string. Note that this doesn’t take a
size argument!

next ()
Skip lines to the next section (that is, read lines until a section-divider or end-marker has been consumed). Return
true if there is such a section, false if an end-marker is seen. Re-enable the most-recently-pushed boundary.

284 Chapter 12. Internet Data Handling

pop ()
Pop a section boundary. This boundary will no longer be interpreted as EOF.

seek (pos[, whence])
Seek. Seek indices are relative to the start of the current section. Theposandwhencearguments are interpreted
as for a file seek.

tell ()
Return the file position relative to the start of the current section.

is data (str)
Return true ifstr is data and false if it might be a section boundary. As written, it tests for a prefix other than
’--’ at start of line (which all MIME boundaries have) but it is declared so it can be overridden in derived
classes.

Note that this test is used intended as a fast guard for the real boundary tests; if it always returns false it will
merely slow processing, not cause it to fail.

section divider (str)
Turn a boundary into a section-divider line. By default, this method prepends’--’ (which MIME section
boundaries have) but it is declared so it can be overridden in derived classes. This method need not append LF
or CR-LF, as comparison with the result ignores trailing whitespace.

end marker (str)
Turn a boundary string into an end-marker line. By default, this method prepends’--’ and appends’--’
(like a MIME-multipart end-of-message marker) but it is declared so it can be be overridden in derived classes.
This method need not append LF or CR-LF, as comparison with the result ignores trailing whitespace.

Finally, MultiFile instances have two public instance variables:

level
Nesting depth of the current part.

last
True if the last end-of-file was for an end-of-message marker.

12.5. multifile — Support for files containing distinct parts 285

12.5.2 MultiFile Example

import mimetools
import multifile
import StringIO

def extract_mime_part_matching(stream, mimetype):
"""Return the first element in a multipart MIME message on stream
matching mimetype."""

msg = mimetools.Message(stream)
msgtype = msg.gettype()
params = msg.getplist()

data = StringIO.StringIO()
if msgtype[:10] == "multipart/":

file = multifile.MultiFile(stream)
file.push(msg.getparam("boundary"))
while file.next():

submsg = mimetools.Message(file)
try:

data = StringIO.StringIO()
mimetools.decode(file, data, submsg.getencoding())

except ValueError:
continue

if submsg.gettype() == mimetype:
break

file.pop()
return data.getvalue()

12.6 binhex — Encode and decode binhex4 files

This module encodes and decodes files in binhex4 format, a format allowing representation of Macintosh files in
ASCII. On the Macintosh, both forks of a file and the finder information are encoded (or decoded), on other platforms
only the data fork is handled.

Thebinhex module defines the following functions:

binhex (input, output)
Convert a binary file with filenameinput to binhex fileoutput. Theoutputparameter can either be a filename or
a file-like object (any object supporting awrite() andclose() method).

hexbin (input[, output])
Decode a binhex fileinput. input may be a filename or a file-like object supportingread() andclose()
methods. The resulting file is written to a file namedoutput, unless the argument is omitted in which case the
output filename is read from the binhex file.

See Also:

Modulebinascii (section 12.8):
support module containingASCII-to-binary and binary-to-ASCII conversions

286 Chapter 12. Internet Data Handling

12.6.1 Notes

There is an alternative, more powerful interface to the coder and decoder, see the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still use the Macintosh newline convention
(carriage-return as end of line).

As of this writing,hexbin() appears to not work in all cases.

12.7 uu — Encode and decode uuencode files

This module encodes and decodes files in uuencode format, allowing arbitrary binary data to be transferred over
ascii-only connections. Wherever a file argument is expected, the methods accept a file-like object. For backwards
compatibility, a string containing a pathname is also accepted, and the corresponding file will be opened for reading and
writing; the pathname’-’ is understood to mean the standard input or output. However, this interface is deprecated;
it’s better for the caller to open the file itself, and be sure that, when required, the mode is’rb’ or ’wb’ on Windows
or DOS.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.

Theuu module defines the following functions:

encode (in file, out file[, name[, mode]])
Uuencode filein file into file out file. The uuencoded file will have the header specifyingnameandmodeas
the defaults for the results of decoding the file. The default defaults are taken fromin file, or ’-’ and0666
respectively.

decode (in file[, out file[, mode]])
This call decodes uuencoded filein file placing the result on fileout file. If out file is a pathname,modeis
used to set the permission bits if the file must be created. Defaults forout file andmodeare taken from the
uuencode header.

See Also:

Modulebinascii (section 12.8):
support module containingASCII-to-binary and binary-to-ASCII conversions

12.8 binascii — Convert between binary and ASCII

Thebinascii module contains a number of methods to convert between binary and variousASCII-encoded binary
representations. Normally, you will not use these functions directly but use wrapper modules likeuu or binhex
instead, this module solely exists because bit-manipulation of large amounts of data is slow in Python.

Thebinascii module defines the following functions:

a2b uu(string)
Convert a single line of uuencoded data back to binary and return the binary data. Lines normally contain 45
(binary) bytes, except for the last line. Line data may be followed by whitespace.

b2a uu(data)
Convert binary data to a line ofASCII characters, the return value is the converted line, including a newline char.
The length ofdatashould be at most 45.

a2b base64 (string)
Convert a block of base64 data back to binary and return the binary data. More than one line may be passed at
a time.

b2a base64 (data)

12.7. uu — Encode and decode uuencode files 287

Convert binary data to a line ofASCII characters in base64 coding. The return value is the converted line,
including a newline char. The length ofdatashould be at most 57 to adhere to the base64 standard.

a2b hqx (string)
Convert binhex4 formattedASCII data to binary, without doing RLE-decompression. The string should contain
a complete number of binary bytes, or (in case of the last portion of the binhex4 data) have the remaining bits
zero.

rledecode hqx (data)
Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses0x90 after a byte as
a repeat indicator, followed by a count. A count of0 specifies a byte value of0x90 . The routine returns the
decompressed data, unless data input data ends in an orphaned repeat indicator, in which case theIncomplete
exception is raised.

rlecode hqx (data)
Perform binhex4 style RLE-compression ondataand return the result.

b2a hqx (data)
Perform hexbin4 binary-to-ASCII translation and return the resulting string. The argument should already be
RLE-coded, and have a length divisible by 3 (except possibly the last fragment).

crc hqx (data, crc)
Compute the binhex4 crc value ofdata, starting with an initialcrc and returning the result.

crc32 (data[, crc])
Compute CRC-32, the 32-bit checksum of data, starting with an initial crc. This is consistent with the ZIP file
checksum. Use as follows:

print binascii.crc32("hello world")
Or, in two pieces:
crc = binascii.crc32("hello")
crc = binascii.crc32(" world", crc)
print crc

b2a hex (data)
hexlify (data)

Return the hexadecimal representation of the binarydata. Every byte ofdatais converted into the corresponding
2-digit hex representation. The resulting string is therefore twice as long as the length ofdata.

a2b hex (hexstr)
unhexlify (hexstr)

Return the binary data represented by the hexadecimal stringhexstr. This function is the inverse of
b2a hex() . hexstrmust contain an even number of hexadecimal digits (which can be upper or lower case),
otherwise aTypeError is raised.

Error
Exception raised on errors. These are usually programming errors.

Incomplete
Exception raised on incomplete data. These are usually not programming errors, but may be handled by reading
a little more data and trying again.

See Also:

Modulebase64 (section 12.12):
Support for base64 encoding used in MIME email messages.

Modulebinhex (section 12.6):
Support for the binhex format used on the Macintosh.

Moduleuu (section 12.7):

288 Chapter 12. Internet Data Handling

Support for UU encoding used on UNIX .

12.9 xdrlib — Encode and decode XDR data

Thexdrlib module supports the External Data Representation Standard as described in RFC 1014, written by Sun
Microsystems, Inc. June 1987. It supports most of the data types described in the RFC.

Thexdrlib module defines two classes, one for packing variables into XDR representation, and another for unpack-
ing from XDR representation. There are also two exception classes.

Packer ()
Packer is the class for packing data into XDR representation. ThePacker class is instantiated with no
arguments.

Unpacker (data)
Unpacker is the complementary class which unpacks XDR data values from a string buffer. The input buffer
is given asdata.

See Also:

RFC 1014, “XDR: External Data Representation Standard”
This RFC defined the encoding of data which was XDR at the time this module was originally written. It has
appearantly been obsoleted by RFC 1832.

RFC 1832, “XDR: External Data Representation Standard”
Newer RFC that provides a revised definition of XDR.

12.9.1 Packer Objects

Packer instances have the following methods:

get buffer ()
Returns the current pack buffer as a string.

reset ()
Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the appropriatepack type()
method. Each method takes a single argument, the value to pack. The following simple data type packing meth-
ods are supported:pack uint() , pack int() , pack enum() , pack bool() , pack uhyper() , and
pack hyper() .

pack float (value)
Packs the single-precision floating point numbervalue.

pack double (value)
Packs the double-precision floating point numbervalue.

The following methods support packing strings, bytes, and opaque data:

pack fstring (n, s)
Packs a fixed length string,s. n is the length of the string but it isnot packed into the data buffer. The string is
padded with null bytes if necessary to guaranteed 4 byte alignment.

pack fopaque (n, data)
Packs a fixed length opaque data stream, similarly topack fstring() .

pack string (s)
Packs a variable length string,s. The length of the string is first packed as an unsigned integer, then the string

12.9. xdrlib — Encode and decode XDR data 289

data is packed withpack fstring() .

pack opaque (data)
Packs a variable length opaque data string, similarly topack string() .

pack bytes (bytes)
Packs a variable length byte stream, similarly topack string() .

The following methods support packing arrays and lists:

pack list (list, pack item)
Packs alist of homogeneous items. This method is useful for lists with an indeterminate size; i.e. the size is not
available until the entire list has been walked. For each item in the list, an unsigned integer1 is packed first,
followed by the data value from the list.pack item is the function that is called to pack the individual item. At
the end of the list, an unsigned integer0 is packed.

For example, to pack a list of integers, the code might appear like this:

import xdrlib
p = xdrlib.Packer()
p.pack_list([1, 2, 3], p.pack_int)

pack farray (n, array, pack item)
Packs a fixed length list (array) of homogeneous items.n is the length of the list; it isnotpacked into the buffer,
but aValueError exception is raised iflen(array) is not equal ton. As above,pack item is the function
used to pack each element.

pack array (list, pack item)
Packs a variable lengthlist of homogeneous items. First, the length of the list is packed as an unsigned integer,
then each element is packed as inpack farray() above.

12.9.2 Unpacker Objects

TheUnpacker class offers the following methods:

reset (data)
Resets the string buffer with the givendata.

get position ()
Returns the current unpack position in the data buffer.

set position (position)
Sets the data buffer unpack position toposition. You should be careful about usingget position() and
set position() .

get buffer ()
Returns the current unpack data buffer as a string.

done ()
Indicates unpack completion. Raises anError exception if all of the data has not been unpacked.

In addition, every data type that can be packed with aPacker , can be unpacked with anUnpacker . Unpacking
methods are of the formunpack type() , and take no arguments. They return the unpacked object.

unpack float ()
Unpacks a single-precision floating point number.

unpack double ()
Unpacks a double-precision floating point number, similarly tounpack float() .

In addition, the following methods unpack strings, bytes, and opaque data:

290 Chapter 12. Internet Data Handling

unpack fstring (n)
Unpacks and returns a fixed length string.n is the number of characters expected. Padding with null bytes to
guaranteed 4 byte alignment is assumed.

unpack fopaque (n)
Unpacks and returns a fixed length opaque data stream, similarly tounpack fstring() .

unpack string ()
Unpacks and returns a variable length string. The length of the string is first unpacked as an unsigned integer,
then the string data is unpacked withunpack fstring() .

unpack opaque ()
Unpacks and returns a variable length opaque data string, similarly tounpack string() .

unpack bytes ()
Unpacks and returns a variable length byte stream, similarly tounpack string() .

The following methods support unpacking arrays and lists:

unpack list (unpack item)
Unpacks and returns a list of homogeneous items. The list is unpacked one element at a time by first unpacking
an unsigned integer flag. If the flag is1, then the item is unpacked and appended to the list. A flag of0 indicates
the end of the list.unpack item is the function that is called to unpack the items.

unpack farray (n, unpack item)
Unpacks and returns (as a list) a fixed length array of homogeneous items.n is number of list elements to expect
in the buffer. As above,unpack item is the function used to unpack each element.

unpack array (unpack item)
Unpacks and returns a variable lengthlist of homogeneous items. First, the length of the list is unpacked as an
unsigned integer, then each element is unpacked as inunpack farray() above.

12.9.3 Exceptions

Exceptions in this module are coded as class instances:

Error
The base exception class.Error has a single public data membermsg containing the description of the error.

ConversionError
Class derived fromError . Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

import xdrlib
p = xdrlib.Packer()
try:

p.pack_double(8.01)
except xdrlib.ConversionError, instance:

print ’packing the double failed:’, instance.msg

12.10 mailcap — Mailcap file handling.

Mailcap files are used to configure how MIME-aware applications such as mail readers and Web browsers react to
files with different MIME types. (The name “mailcap” is derived from the phrase “mail capability”.) For example, a
mailcap file might contain a line like ‘video/mpeg; xmpeg %s ’. Then, if the user encounters an email message

12.10. mailcap — Mailcap file handling. 291

or Web document with the MIME typevideo/mpeg, ‘%s’ will be replaced by a filename (usually one belonging to a
temporary file) and thexmpegprogram can be automatically started to view the file.

The mailcap format is documented in RFC 1524, “A User Agent Configuration Mechanism For Multimedia Mail
Format Information,” but is not an Internet standard. However, mailcap files are supported on most UNIX systems.

findmatch (caps, MIMEtype[, key[, filename[, plist]]])
Return a 2-tuple; the first element is a string containing the command line to be executed (which can be passed
to os.system()), and the second element is the mailcap entry for a given MIME type. If no matching MIME
type can be found,(None, None) is returned.

key is the name of the field desired, which represents the type of activity to be performed; the default value
is ’view’, since in the most common case you simply want to view the body of the MIME-typed data. Other
possible values might be ’compose’ and ’edit’, if you wanted to create a new body of the given MIME type or
alter the existing body data. See RFC 1524 for a complete list of these fields.

filenameis the filename to be substituted for ‘%s’ in the command line; the default value is’/dev/null’
which is almost certainly not what you want, so usually you’ll override it by specifying a filename.

plist can be a list containing named parameters; the default value is simply an empty list. Each entry in the list
must be a string containing the parameter name, an equals sign (=), and the parameter’s value. Mailcap entries
can contain named parameters like%{foo} , which will be replaced by the value of the parameter named ’foo’.
For example, if the command line ‘showpartial %{id} %{number} %{total} ’ was in a mailcap
file, andplist was set to[’id=1’, ’number=2’, ’total=3’] , the resulting command line would be
"showpartial 1 2 3" .

In a mailcap file, the ”test” field can optionally be specified to test some external condition (e.g., the machine
architecture, or the window system in use) to determine whether or not the mailcap line applies.findmatch()
will automatically check such conditions and skip the entry if the check fails.

getcaps ()
Returns a dictionary mapping MIME types to a list of mailcap file entries. This dictionary must be passed to the
findmatch() function. An entry is stored as a list of dictionaries, but it shouldn’t be necessary to know the
details of this representation.

The information is derived from all of the mailcap files found on the system. Settings in the user’s mailcap
file ‘$HOME/.mailcap’ will override settings in the system mailcap files ‘/etc/mailcap’, ‘ /usr/etc/mailcap’, and
‘ /usr/local/etc/mailcap’.

An example usage:

>>> import mailcap
>>> d=mailcap.getcaps()
>>> mailcap.findmatch(d, ’video/mpeg’, filename=’/tmp/tmp1223’)
(’xmpeg /tmp/tmp1223’, {’view’: ’xmpeg %s’})

12.11 mimetypes — Map filenames to MIME types

Themimetypes converts between a filename or URL and the MIME type associated with the filename extension.
Conversions are provided from filename to MIME type and from MIME type to filename extension; encodings are not
supported for the later conversion.

The functions described below provide the primary interface for this module. If the module has not been initialized,
they will call init() .

guess type (filename)
Guess the type of a file based on its filename or URL, given byfilename. The return value is a tuple(type,

292 Chapter 12. Internet Data Handling

encoding) where type is None if the type can’t be guessed (no or unknown suffix) or a string of the form
’ type/ subtype’ , usable for a MIMEcontent-type header; and encoding isNone for no encoding or
the name of the program used to encode (e.g.compressor gzip). The encoding is suitable for use as a
content-encoding header,not as acontent-transfer-encoding header. The mappings are ta-
ble driven. Encoding suffixes are case sensitive; type suffixes are first tried case sensitive, then case insensitive.

guess extension (type)
Guess the extension for a file based on its MIME type, given bytype. The return value is a string giving a
filename extension, including the leading dot (‘. ’). The extension is not guaranteed to have been associated
with any particular data stream, but would be mapped to the MIME typetype by guess type() . If no
extension can be guessed fortype, None is returned.

Some additional functions and data items are available for controlling the behavior of the module.

init ([files])
Initialize the internal data structures. If given,filesmust be a sequence of file names which should be used to
augment the default type map. If omitted, the file names to use are taken fromknownfiles . Each file named
in filesor knownfiles takes precedence over those named before it. Callinginit() repeatedly is allowed.

read mime types (filename)
Load the type map given in the filefilename, if it exists. The type map is returned as a dictionary mapping
filename extensions, including the leading dot (‘. ’), to strings of the form’ type/ subtype’ . If the file filename
does not exist or cannot be read,None is returned.

inited
Flag indicating whether or not the global data structures have been initialized. This is set to true byinit() .

knownfiles
List of type map file names commonly installed. These files are typically named ‘mime.types’ and are installed
in different locations by different packages.

suffix map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which the encoding
and the type are indicated by the same extension. For example, the ‘.tgz’ extension is mapped to ‘.tar.gz’ to allow
the encoding and type to be recognized separately.

encodings map
Dictionary mapping filename extensions to encoding types.

types map
Dictionary mapping filename extensions to MIME types.

12.12 base64 — Encode and decode MIME base64 data

This module performs base64 encoding and decoding of arbitrary binary strings into text strings that can be safely
emailed or posted. The encoding scheme is defined in RFC 1521 (MIME (Multipurpose Internet Mail Extensions)
Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies, section 5.2, “Base64
Content-Transfer-Encoding”) and is used for MIME email and various other Internet-related applications; it is not the
same as the output produced by theuuencodeprogram. For example, the string’www.python.org’ is encoded
as the string’d3d3LnB5dGhvbi5vcmc=\n’ .

decode (input, output)
Decode the contents of theinput file and write the resulting binary data to theoutput file. input andoutput
must either be file objects or objects that mimic the file object interface.input will be read untilinput.read()
returns an empty string.

decodestring (s)
Decode the strings, which must contain one or more lines of base64 encoded data, and return a string containing

12.12. base64 — Encode and decode MIME base64 data 293

the resulting binary data.

encode (input, output)
Encode the contents of theinput file and write the resulting base64 encoded data to theoutput file. input
andoutputmust either be file objects or objects that mimic the file object interface.input will be read until
input.read() returns an empty string.

encodestring (s)
Encode the strings, which can contain arbitrary binary data, and return a string containing one or more lines of
base64 encoded data.

See Also:

Modulebinascii (section 12.8):
support module containingASCII-to-binary and binary-to-ASCII conversions

Internet RFC 1521,MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and De-
scribing the Format of Internet Message Bodies, section 5.2, “Base64 Content-Transfer-Encoding,” provides the defi-
nition of the base64 encoding.

12.13 quopri — Encode and decode MIME quoted-printable data

This module performs quoted-printable transport encoding and decoding, as defined in RFC 1521: “MIME (Mul-
tipurpose Internet Mail Extensions) Part One”. The quoted-printable encoding is designed for data where there are
relatively few nonprintable characters; the base64 encoding scheme available via thebase64 module is more compact
if there are many such characters, as when sending a graphics file.

decode (input, output)
Decode the contents of theinput file and write the resulting decoded binary data to theoutput file. input
andoutputmust either be file objects or objects that mimic the file object interface.input will be read until
input.read() returns an empty string.

encode (input, output, quotetabs)
Encode the contents of theinput file and write the resulting quoted-printable data to theoutput file. input
andoutputmust either be file objects or objects that mimic the file object interface.input will be read until
input.read() returns an empty string.

See Also:

Modulemimify (section 12.16):
General utilities for processing of MIME messages.

12.14 mailbox — Read various mailbox formats

This module defines a number of classes that allow easy and uniform access to mail messages in a (UNIX) mailbox.

UnixMailbox (fp)
Access a classic UNIX -style mailbox, where all messages are contained in a single file and separated by “From
name time” lines. The file objectfp points to the mailbox file.

MmdfMailbox (fp)
Access an MMDF-style mailbox, where all messages are contained in a single file and separated by lines con-
sisting of 4 control-A characters. The file objectfp points to the mailbox file.

MHMailbox (dirname)
Access an MH mailbox, a directory with each message in a separate file with a numeric name. The name of the
mailbox directory is passed indirname.

294 Chapter 12. Internet Data Handling

Maildir (dirname)
Access a Qmail mail directory. All new and current mail for the mailbox specified bydirnameis made available.

BabylMailbox (fp)
Access a Babyl mailbox, which is similar to an MMDF mailbox. Mail messages start with a line containing
only ’*** EOOH ***’ and end with a line containing only’\037\014’ .

12.14.1 Mailbox Objects

All implementations of Mailbox objects have one externally visible method:

next ()
Return the next message in the mailbox, as arfc822.Message object (see therfc822 module). Depend-
ing on the mailbox implementation thefp attribute of this object may be a true file object or a class instance
simulating a file object, taking care of things like message boundaries if multiple mail messages are contained
in a single file, etc. If no more messages are available, this method returnsNone.

12.15 mhlib — Access to MH mailboxes

Themhlib module provides a Python interface to MH folders and their contents.

The module contains three basic classes,MH, which represents a particular collection of folders,Folder , which
represents a single folder, andMessage , which represents a single message.

MH([path[, profile]])
MHrepresents a collection of MH folders.

Folder (mh, name)
TheFolder class represents a single folder and its messages.

Message (folder, number[, name])
Message objects represent individual messages in a folder. The Message class is derived from
mimetools.Message .

12.15.1 MH Objects

MHinstances have the following methods:

error (format[, ...])
Print an error message – can be overridden.

getprofile (key)
Return a profile entry (None if not set).

getpath ()
Return the mailbox pathname.

getcontext ()
Return the current folder name.

setcontext (name)
Set the current folder name.

listfolders ()
Return a list of top-level folders.

listallfolders ()
Return a list of all folders.

12.15. mhlib — Access to MH mailboxes 295

listsubfolders (name)
Return a list of direct subfolders of the given folder.

listallsubfolders (name)
Return a list of all subfolders of the given folder.

makefolder (name)
Create a new folder.

deletefolder (name)
Delete a folder – must have no subfolders.

openfolder (name)
Return a new open folder object.

12.15.2 Folder Objects

Folder instances represent open folders and have the following methods:

error (format[, ...])
Print an error message – can be overridden.

getfullname ()
Return the folder’s full pathname.

getsequencesfilename ()
Return the full pathname of the folder’s sequences file.

getmessagefilename (n)
Return the full pathname of messagen of the folder.

listmessages ()
Return a list of messages in the folder (as numbers).

getcurrent ()
Return the current message number.

setcurrent (n)
Set the current message number ton.

parsesequence (seq)
Parse msgs syntax into list of messages.

getlast ()
Get last message, or0 if no messages are in the folder.

setlast (n)
Set last message (internal use only).

getsequences ()
Return dictionary of sequences in folder. The sequence names are used as keys, and the values are the lists of
message numbers in the sequences.

putsequences (dict)
Return dictionary of sequences in folder name: list.

removemessages (list)
Remove messages in list from folder.

refilemessages (list, tofolder)
Move messages in list to other folder.

movemessage(n, tofolder, ton)

296 Chapter 12. Internet Data Handling

Move one message to a given destination in another folder.

copymessage (n, tofolder, ton)
Copy one message to a given destination in another folder.

12.15.3 Message Objects

TheMessage class adds one method to those ofmimetools.Message :

openmessage (n)
Return a new open message object (costs a file descriptor).

12.16 mimify — MIME processing of mail messages

The mimify module defines two functions to convert mail messages to and from MIME format. The mail message
can be either a simple message or a so-called multipart message. Each part is treated separately. Mimifying (a part
of) a message entails encoding the message as quoted-printable if it contains any characters that cannot be represented
using 7-bitASCII. Unmimifying (a part of) a message entails undoing the quoted-printable encoding. Mimify and
unmimify are especially useful when a message has to be edited before being sent. Typical use would be:

unmimify message
edit message
mimify message
send message

The modules defines the following user-callable functions and user-settable variables:

mimify (infile, outfile)
Copy the message ininfile to outfile, converting parts to quoted-printable and adding MIME mail headers when
necessary.infile andoutfilecan be file objects (actually, any object that has areadline() method (forinfile)
or awrite() method (foroutfile)) or strings naming the files. Ifinfile andoutfileare both strings, they may
have the same value.

unmimify (infile, outfile[, decodebase64])
Copy the message ininfile to outfile, decoding all quoted-printable parts.infile andoutfile can be file objects
(actually, any object that has areadline() method (forinfile) or awrite() method (foroutfile)) or strings
naming the files. Ifinfile andoutfile are both strings, they may have the same value. If thedecode base64
argument is provided and tests true, any parts that are coded in the base64 encoding are decoded as well.

mime decode header (line)
Return a decoded version of the encoded header line inline.

mime encode header (line)
Return a MIME-encoded version of the header line inline.

MAXLEN
By default, a part will be encoded as quoted-printable when it contains any non-ASCII characters (i.e., characters
with the 8th bit set), or if there are any lines longer thanMAXLENcharacters (default value 200).

CHARSET
When not specified in the mail headers, a character set must be filled in. The string used is stored inCHARSET,
and the default value is ISO-8859-1 (also known as Latin1 (latin-one)).

This module can also be used from the command line. Usage is as follows:

12.16. mimify — MIME processing of mail messages 297

mimify.py -e [-l length] [infile [outfile]]
mimify.py -d [-b] [infile [outfile]]

to encode (mimify) and decode (unmimify) respectively.infile defaults to standard input,outfiledefaults to standard
output. The same file can be specified for input and output.

If the -l option is given when encoding, if there are any lines longer than the specifiedlength, the containing part will
be encoded.

If the -b option is given when decoding, any base64 parts will be decoded as well.

See Also:

Modulequopri (section 12.13):
Encode and decode MIME quoted-printable files.

12.17 netrc — netrc file processing

New in version 1.5.2.

Thenetrc class parses and encapsulates the netrc file format used by the UNIX ftp program and other FTP clients.

netrc ([file])
A netrc instance or subclass instance encapsulates data from a netrc file. The initialization argument, if
present, specifies the file to parse. If no argument is given, the file ‘.netrc’ in the user’s home directory will be
read. Parse errors will raiseSyntaxError with diagnostic information including the file name, line number,
and terminating token.

12.17.1 netrc Objects

A netrc instance has the following methods:

authenticators (host)
Return a 3-tuple(login, account, password) of authenticators forhost. If the netrc file did not contain an
entry for the given host, return the tuple associated with the ‘default’ entry. If neither matching host nor default
entry is available, returnNone.

repr ()
Dump the class data as a string in the format of a netrc file. (This discards comments and may reorder the
entries.)

Instances ofnetrc have public instance variables:

hosts
Dictionary mapping host names to(login, account, password) tuples. The ‘default’ entry, if any, is repre-
sented as a pseudo-host by that name.

macros
Dictionary mapping macro names to string lists.

12.18 robotparser — Parser for robots.txt

This module provides a single class,RobotFileParser , which answers questions about whether or not a particular
user agent can fetch a URL on the web site that published the ‘robots.txt’ file. For more details on the structure of

298 Chapter 12. Internet Data Handling

‘ robots.txt’ files, seehttp://info.webcrawler.com/mak/projects/robots/norobots.html.

RobotFileParser ()
This class provides a set of methods to read, parse and answer questions about a single ‘robots.txt’ file.

set url (url)
Sets the URL referring to a ‘robots.txt’ file.

read ()
Reads the ‘robots.txt’ URL and feeds it to the parser.

parse (lines)
Parses the lines argument.

can fetch (useragent, url)
Returns true if theuseragentis allowed to fetch theurl according to the rules contained in the parsed
‘ robots.txt’ file.

mtime ()
Returns the time therobots.txt file was last fetched. This is useful for long-running web spiders that
need to check for newrobots.txt files periodically.

modified ()
Sets the time therobots.txt file was last fetched to the current time.

The following example demonstrates basic use of the RobotFileParser class.

>>> import robotparser
>>> rp = robotparser.RobotFileParser()
>>> rp.set_url("http://www.musi-cal.com/robots.txt")
>>> rp.read()
>>> rp.can_fetch("*", "http://www.musi-cal.com/cgi-bin/search?city=San+Francisco")
0
>>> rp.can_fetch("*", "http://www.musi-cal.com/")
1

12.18. robotparser — Parser for robots.txt 299

300

CHAPTER

THIRTEEN

Structured Markup Processing Tools

Python supports a variety of modules to work with various forms of structured data markup. This includes modules to
work with the Standard Generalized Markup Language (SGML) and the Hypertext Markup Language (HTML), and
several interfaces for working with the Extensible Markup Language (XML).

sgmllib Only as much of an SGML parser as needed to parse HTML.
htmllib A parser for HTML documents.
htmlentitydefs Definitions of HTML general entities.
xml.parsers.expat An interface to the Expat non-validating XML parser.
xml.sax Package containing SAX2 base classes and convenience functions.
xml.sax.handler Base classes for SAX event handlers.
xml.sax.saxutils Convenience functions and classes for use with SAX.
xml.sax.xmlreader Interface which SAX-compliant XML parsers must implement.
xmllib A parser for XML documents.

13.1 sgmllib — Simple SGML parser

This module defines a classSGMLParser which serves as the basis for parsing text files formatted in SGML (Stan-
dard Generalized Mark-up Language). In fact, it does not provide a full SGML parser — it only parses SGML insofar
as it is used by HTML, and the module only exists as a base for thehtmllib module.

SGMLParser ()
TheSGMLParser class is instantiated without arguments. The parser is hardcoded to recognize the following
constructs:

•Opening and closing tags of the form ‘<tag attr=" value" ...> ’ and ‘</ tag>’, respectively.

•Numeric character references of the form ‘&#name; ’.

•Entity references of the form ‘&name; ’.

•SGML comments of the form ‘<!-- text--> ’. Note that spaces, tabs, and newlines are allowed between
the trailing ‘>’ and the immediately preceding ‘-- ’.

SGMLParser instances have the following interface methods:

reset ()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

setnomoretags ()
Stop processing tags. Treat all following input as literal input (CDATA). (This is only provided so the HTML
tag<PLAINTEXT> can be implemented.)

setliteral ()
Enter literal mode (CDATA mode).

301

feed (data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed orclose() is called.

close ()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be redefined
by a derived class to define additional processing at the end of the input, but the redefined version should always
call close() .

get starttag text ()
Return the text of the most recently opened start tag. This should not normally be needed for structured process-
ing, but may be useful in dealing with HTML “as deployed” or for re-generating input with minimal changes
(whitespace between attributes can be preserved, etc.).

handle starttag (tag, method, attributes)
This method is called to handle start tags for which either astart tag() or do tag() method has been
defined. Thetag argument is the name of the tag converted to lower case, and themethodargument is the
bound method which should be used to support semantic interpretation of the start tag. Theattributesar-
gument is a list of(name, value) pairs containing the attributes found inside the tag’s<> brackets. The
namehas been translated to lower case and double quotes and backslashes in thevalue have been inter-
preted. For instance, for the tag , this method would be called as
‘unknown starttag(’a’, [(’href’, ’http://www.cwi.nl/’)]) ’. The base implementation
simply callsmethodwith attributesas the only argument.

handle endtag (tag, method)
This method is called to handle endtags for which anend tag() method has been defined. Thetag argument
is the name of the tag converted to lower case, and themethodargument is the bound method which should
be used to support semantic interpretation of the end tag. If noend tag() method is defined for the closing
element, this handler is not called. The base implementation simply callsmethod.

handle data (data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base class
implementation does nothing.

handle charref (ref)
This method is called to process a character reference of the form ‘&#ref ; ’. In the base implementa-
tion, ref must be a decimal number in the range 0-255. It translates the character toASCII and calls the
methodhandle data() with the character as argument. Ifref is invalid or out of range, the method
unknown charref(ref) is called to handle the error. A subclass must override this method to provide
support for named character entities.

handle entityref (ref)
This method is called to process a general entity reference of the form ‘&ref ; ’ where ref is an general entity
reference. It looks forref in the instance (or class) variableentitydefs which should be a mapping from
entity names to corresponding translations. If a translation is found, it calls the methodhandle data()
with the translation; otherwise, it calls the methodunknown entityref(ref) . The defaultentitydefs
defines translations for& , &apos , > , < , and" .

handle comment(comment)
This method is called when a comment is encountered. Thecommentargument is a string containing the
text between the ‘<!-- ’ and ‘--> ’ delimiters, but not the delimiters themselves. For example, the comment
‘<!--text--> ’ will cause this method to be called with the argument’text’ . The default method does
nothing.

report unbalanced (tag)
This method is called when an end tag is found which does not correspond to any open element.

unknown starttag (tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the

302 Chapter 13. Structured Markup Processing Tools

base class implementation does nothing.

unknown endtag (tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived class; the base
class implementation does nothing.

unknown charref (ref)
This method is called to process unresolvable numeric character references. Refer tohandle charref()
to determine what is handled by default. It is intended to be overridden by a derived class; the base class
implementation does nothing.

unknown entityref (ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived class;
the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may also define methods of the following
form to define processing of specific tags. Tag names in the input stream are case independent; thetag occurring in
method names must be in lower case:

start tag(attributes)
This method is called to process an opening tagtag. It has preference overdo tag() . Theattributesargument
has the same meaning as described forhandle starttag() above.

do tag(attributes)
This method is called to process an opening tagtag that does not come with a matching closing tag. The
attributesargument has the same meaning as described forhandle starttag() above.

end tag()
This method is called to process a closing tagtag.

Note that the parser maintains a stack of open elements for which no end tag has been found yet. Only tags processed
by start tag() are pushed on this stack. Definition of anend tag() method is optional for these tags. For tags
processed bydo tag() or by unknown tag() , noend tag() method must be defined; if defined, it will not be
used. If bothstart tag() anddo tag() methods exist for a tag, thestart tag() method takes precedence.

13.2 htmllib — A parser for HTML documents

This module defines a class which can serve as a base for parsing text files formatted in the HyperText Mark-up
Language (HTML). The class is not directly concerned with I/O — it must be provided with input in string form via
a method, and makes calls to methods of a “formatter” object in order to produce output. TheHTMLParser class is
designed to be used as a base class for other classes in order to add functionality, and allows most of its methods to
be extended or overridden. In turn, this class is derived from and extends theSGMLParser class defined in module
sgmllib . TheHTMLParser implementation supports the HTML 2.0 language as described in RFC 1866. Two
implementations of formatter objects are provided in theformatter module; refer to the documentation for that
module for information on the formatter interface.

The following is a summary of the interface defined bysgmllib.SGMLParser :

• The interface to feed data to an instance is through thefeed() method, which takes a string argument. This can
be called with as little or as much text at a time as desired; ‘p.feed(a); p.feed(b) ’ has the same effect as
‘p.feed(a+b) ’. When the data contains complete HTML tags, these are processed immediately; incomplete
elements are saved in a buffer. To force processing of all unprocessed data, call theclose() method.

For example, to parse the entire contents of a file, use:

13.2. htmllib — A parser for HTML documents 303

parser.feed(open(’myfile.html’).read())
parser.close()

• The interface to define semantics for HTML tags is very simple: derive a class and define methods called
start tag() , end tag() , or do tag() . The parser will call these at appropriate moments:start tag or
do tag() is called when an opening tag of the form<tag ...> is encountered;end tag() is called when a
closing tag of the form<tag> is encountered. If an opening tag requires a corresponding closing tag, like<H1>
... </H1> , the class should define thestart tag() method; if a tag requires no closing tag, like<P>, the
class should define thedo tag() method.

The module defines a single class:

HTMLParser (formatter)
This is the basic HTML parser class. It supports all entity names required by the HTML 2.0 specification (RFC
1866). It also defines handlers for all HTML 2.0 and many HTML 3.0 and 3.2 elements.

See Also:

Modulehtmlentitydefs (section 13.3):
Definition of replacement text for HTML 2.0 entities.

Modulesgmllib (section 13.1):
Base class forHTMLParser .

13.2.1 HTMLParser Objects

In addition to tag methods, theHTMLParser class provides some additional methods and instance variables for use
within tag methods.

formatter
This is the formatter instance associated with the parser.

nofill
Boolean flag which should be true when whitespace should not be collapsed, or false when it should be. In
general, this should only be true when character data is to be treated as “preformatted” text, as within a<PRE>
element. The default value is false. This affects the operation ofhandle data() andsave end() .

anchor bgn (href, name, type)
This method is called at the start of an anchor region. The arguments correspond to the attributes of the<A> tag
with the same names. The default implementation maintains a list of hyperlinks (defined by theHREFattribute
for <A> tags) within the document. The list of hyperlinks is available as the data attributeanchorlist .

anchor end ()
This method is called at the end of an anchor region. The default implementation adds a textual footnote marker
using an index into the list of hyperlinks created byanchor bgn() .

handle image (source, alt[, ismap[, align[, width[, height]]]])
This method is called to handle images. The default implementation simply passes thealt value to the
handle data() method.

save bgn ()
Begins saving character data in a buffer instead of sending it to the formatter object. Retrieve the stored data via
save end() . Use of thesave bgn() / save end() pair may not be nested.

save end ()
Ends buffering character data and returns all data saved since the preceding call tosave bgn() . If the

304 Chapter 13. Structured Markup Processing Tools

nofill flag is false, whitespace is collapsed to single spaces. A call to this method without a preceding call to
save bgn() will raise aTypeError exception.

13.3 htmlentitydefs — Definitions of HTML general entities

This module defines a single dictionary,entitydefs , which is used by thehtmllib module to provide the
entitydefs member of theHTMLParser class. The definition provided here contains all the entities defined
by HTML 2.0 that can be handled using simple textual substitution in the Latin-1 character set (ISO-8859-1).

entitydefs
A dictionary mapping HTML 2.0 entity definitions to their replacement text in ISO Latin-1.

13.4 xml.parsers.expat — Fast XML parsing using the Expat library

New in version 2.0.

Thexml.parsers.expat module is a Python interface to the Expat non-validating XML parser. The module pro-
vides a single extension type,xmlparser , that represents the current state of an XML parser. After anxmlparser
object has been created, various attributes of the object can be set to handler functions. When an XML document is
then fed to the parser, the handler functions are called for the character data and markup in the XML document.

This module uses thepyexpat module to provide access to the Expat parser. Direct use of thepyexpat module is
deprecated.

Thexml.parsers.expat module contains two functions:

ErrorString (errno)
Returns an explanatory string for a given error numbererrno.

ParserCreate ([encoding, namespaceseparator])
Creates and returns a newxmlparser object. encoding, if specified, must be a string naming the encoding
used by the XML data. Expat doesn’t support as many encodings as Python does, and its repertoire of encodings
can’t be extended; it supports UTF-8, UTF-16, ISO-8859-1 (Latin1), and ASCII.

Expat can optionally do XML namespace processing for you, enabled by providing a value fornames-
pace separator. When namespace processing is enabled, element type names and attribute names
that belong to a namespace will be expanded. The element name passed to the element handlers
StartElementHandler() and EndElementHandler() will be the concatenation of the namespace
URI, the namespace separator character, and the local part of the name. If the namespace separator is a zero
byte (chr(0)) then the namespace URI and the local part will be concatenated without any separator.

For example, ifnamespaceseparatoris set to ‘ ’, and the following document is parsed:

<?xml version="1.0"?>
<root xmlns = "http://default-namespace.org/"

xmlns:py = "http://www.python.org/ns/">
<py:elem1 />
<elem2 xmlns="" />

</root>

StartElementHandler() will receive the following strings for each element:

http://default-namespace.org/ root
http://www.python.org/ns/ elem1
elem2

13.3. htmlentitydefs — Definitions of HTML general entities 305

xmlparser objects have the following methods:

Parse (data[, isfinal])
Parses the contents of the stringdata, calling the appropriate handler functions to process the parsed data.isfinal
must be true on the final call to this method.datacan be the empty string at any time.

ParseFile (file)
Parse XML data reading from the objectfile. file only needs to provide theread(nbytes) method, returning
the empty string when there’s no more data.

SetBase (base)
Sets the base to be used for resolving relative URIs in system identifiers in declarations. Resolving rel-
ative identifiers is left to the application: this value will be passed through as the base argument to the
ExternalEntityRefHandler , NotationDeclHandler , and UnparsedEntityDeclHandler
functions.

GetBase ()
Returns a string containing the base set by a previous call toSetBase() , or None if SetBase() hasn’t been
called.

xmlparser objects have the following attributes:

returns unicode
If this attribute is set to 1, the handler functions will be passed Unicode strings. Ifreturns unicode is 0,
8-bit strings containing UTF-8 encoded data will be passed to the handlers.

The following attributes contain values relating to the most recent error encountered by anxmlparser
object, and will only have correct values once a call toParse() or ParseFile() has raised a
xml.parsers.expat.error exception.

ErrorByteIndex
Byte index at which an error occurred.

ErrorCode
Numeric code specifying the problem. This value can be passed to theErrorString() function, or compared
to one of the constants defined in theerrors object.

ErrorColumnNumber
Column number at which an error occurred.

ErrorLineNumber
Line number at which an error occurred.

Here is the list of handlers that can be set. To set a handler on anxmlparser objecto, useo. handlername= func.
handlernamemust be taken from the following list, andfuncmust be a callable object accepting the correct number
of arguments. The arguments are all strings, unless otherwise stated.

StartElementHandler (name, attributes)
Called for the start of every element.nameis a string containing the element name, andattributesis a dictionary
mapping attribute names to their values.

EndElementHandler (name)
Called for the end of every element.

ProcessingInstructionHandler (target, data)
Called for every processing instruction.

CharacterDataHandler (data)
Called for character data.

UnparsedEntityDeclHandler (entityName, base, systemId, publicId, notationName)
Called for unparsed (NDATA) entity declarations.

306 Chapter 13. Structured Markup Processing Tools

NotationDeclHandler (notationName, base, systemId, publicId)
Called for notation declarations.

StartNamespaceDeclHandler (prefix, uri)
Called when an element contains a namespace declaration.

EndNamespaceDeclHandler (prefix)
Called when the closing tag is reached for an element that contained a namespace declaration.

CommentHandler (data)
Called for comments.

StartCdataSectionHandler ()
Called at the start of a CDATA section.

EndCdataSectionHandler ()
Called at the end of a CDATA section.

DefaultHandler (data)
Called for any characters in the XML document for which no applicable handler has been specified. This means
characters that are part of a construct which could be reported, but for which no handler has been supplied.

DefaultHandlerExpand (data)
This is the same as theDefaultHandler , but doesn’t inhibit expansion of internal entities. The entity
reference will not be passed to the default handler.

NotStandaloneHandler ()
Called if the XML document hasn’t been declared as being a standalone document.

ExternalEntityRefHandler (context, base, systemId, publicId)
Called for references to external entities.

13.4.1 Example

The following program defines three handlers that just print out their arguments.

import xml.parsers.expat

3 handler functions
def start_element(name, attrs):

print ’Start element:’, name, attrs
def end_element(name):

print ’End element:’, name
def char_data(data):

print ’Character data:’, repr(data)

p = xml.parsers.expat.ParserCreate()

p.StartElementHandler = start_element
p.EndElementHandler = end_element
p.CharacterDataHandler = char_data

p.Parse("""<?xml version="1.0"?>
<parent id="top"><child1 name="paul">Text goes here</child1>
<child2 name="fred">More text</child2>
</parent>""")

The output from this program is:

13.4. xml.parsers.expat — Fast XML parsing using the Expat library 307

Start element: parent {’id’: ’top’}
Start element: child1 {’name’: ’paul’}
Character data: ’Text goes here’
End element: child1
Character data: ’\012’
Start element: child2 {’name’: ’fred’}
Character data: ’More text’
End element: child2
Character data: ’\012’
End element: parent

13.4.2 Expat error constants

The following table lists the error constants in theerrors object of thexml.parsers.expat module. These
constants are useful in interpreting some of the attributes of the parser object after an error has occurred.

Theerrors object has the following attributes:

XML ERRORASYNC ENTITY

XML ERRORATTRIBUTE EXTERNALENTITY REF

XML ERRORBAD CHAR REF

XML ERRORBINARY ENTITY REF

XML ERRORDUPLICATE ATTRIBUTE
An attribute was used more than once in a start tag.

XML ERRORINCORRECTENCODING

XML ERRORINVALID TOKEN

XML ERRORJUNK AFTER DOC ELEMENT
Something other than whitespace occurred after the document element.

XML ERRORMISPLACED XML PI

XML ERRORNO ELEMENTS

XML ERRORNO MEMORY
Expat was not able to allocate memory internally.

XML ERRORPARAMENTITY REF

XML ERRORPARTIAL CHAR

XML ERRORRECURSIVE ENTITY REF

XML ERRORSYNTAX
Some unspecified syntax error was encountered.

XML ERRORTAG MISMATCH
An end tag did not match the innermost open start tag.

XML ERRORUNCLOSEDTOKEN

XML ERRORUNDEFINED ENTITY
A reference was made to a entity which was not defined.

XML ERRORUNKNOWNENCODING
The document encoding is not supported by Expat.

308 Chapter 13. Structured Markup Processing Tools

13.5 xml.sax — Support for SAX2 parsers

New in version 2.0.

Thexml.sax package provides a number of modules which implement the Simple API for XML (SAX) interface
for Python. The package itself provides the SAX exceptions and the convenience functions which will be most used
by users of the SAX API.

The convenience functions are:

make parser ([parser list])
Create and return a SAXXMLReader object. The first parser found will be used. Ifparser list is provided, it
must be a sequence of strings which name modules that have a function namedcreate parser() . Modules
listed inparser list will be used before modules in the default list of parsers.

parse (filename or stream, handler[, error handler])
Create a SAX parser and use it to parse a document. The document, passed in asfilename or stream, can
be a filename or a file object. Thehandler parameter needs to be a SAXContentHandler instance. If
error handleris given, it must be a SAXErrorHandler instance; if omitted,SAXParseException will
be raised on all errors. There is no return value; all work must be done by thehandlerpassed in.

parseString (string, handler[, error handler])
Similar toparse() , but parses from a bufferstring received as a parameter.

A typical SAX application uses three kinds of objects: readers, handlers and input sources. “Reader” in this context is
another term for parser, ie. some piece of code that reads the bytes or characters from the input source, and produces
a sequence of events. The events then get distributed to the handler objects, ie. the reader invokes a method on
the handler. A SAX application must therefore obtain a handler object, create or open the input sources, create the
handlers, and connect these objects all together. As the final step, parsing is invoked. During parsing

For these objects, only the interfaces are relevant; they are normally not instantiated by the application itself. Since
Python does not have an explicit notion of interface, they are formally introduced as classes. TheInputSource ,
Locator , AttributesImpl , andXMLReader interfaces are defined in the modulexml.sax.xmlreader .
The handler interfaces are defined inxml.sax.handler . For convenience,InputSource (which is often instan-
tiated directly) and the handler classes are also available fromxml.sax . These classes are described below.

In addition to these classes,xml.sax provides the following exception classes.

SAXException (msg[, exception])
Encapsulate an XML error or warning. This class can contain basic error or warning information from either the
XML parser or the application: it can be subclassed to provide additional functionality or to add localization.
Note that although the handlers defined in theErrorHandler interface receive instances of this exception, it
is not required to actually raise the exception — it is also useful as a container for information.

When instantiated,msgshould be a human-readable description of the error. The optionalexceptionparameter,
if given, should beNone or an exception that was caught by the parsing code and is being passed along as
information.

This is the base class for the other SAX exception classes.

SAXParseException (msg, exception, locator)
Subclass ofSAXException raised on parse errors. Instances of this class are passed to the methods of the
SAX ErrorHandler interface to provide information about the parse error. This class supports the SAX
Locator interface as well as theSAXException interface.

SAXNotRecognizedException (msg[, exception])
Subclass ofSAXException raised when a SAXXMLReader is confronted with an unrecognized feature or
property. SAX applications and extensions may use this class for similar purposes.

SAXNotSupportedException (msg[, exception])
Subclass ofSAXException raised when a SAXXMLReader is asked to enable a feature that is not supported,

13.5. xml.sax — Support for SAX2 parsers 309

or to set a property to a value that the implementation does not support. SAX applications and extensions may
use this class for similar purposes.

See Also:

SAX: The Simple API for XML
(http://www.megginson.com/SAX/)

This site is the focal point for the definition of the SAX API. It provides a Java implementation and online
documentation. Links to implementations and historical information are also available.

13.5.1 SAXException Objects

TheSAXException exception class supports the following methods:

getMessage ()
Return a human-readable message describing the error condition.

getException ()
Return an encapsulated exception object, orNone.

13.6 xml.sax.handler — Base classes for SAX handlers

New in version 2.0.

The SAX API defines four kinds of handlers: content handlers, DTD handlers, error handlers, and entity resolvers.
Applications normally only need to implement those interfaces whose events they are interested in; they can implement
the interfaces in a single object or in multiple objects. Handler implementations should inherit from the base classes
provided in the modulexml.sax , so that all methods get default implementations.

ContentHandler ()
This is the main callback interface in SAX, and the one most important to applications. The order of events in
this interface mirrors the order of the information in the document.

DTDHandler ()
Handle DTD events.

This interface specifies only those DTD events required for basic parsing (unparsed entities and attributes).

EntityResolver ()
Basic interface for resolving entities. If you create an object implementing this interface, then register the object
with your Parser, the parser will call the method in your object to resolve all external entities.

In addition to these classes,xml.sax.handler provides symbolic constants for the feature and property names.

feature namespaces
Value: "http://xml.org/sax/features/namespaces"
true: Perform Namespace processing (default).
false: Optionally do not perform Namespace processing (implies namespace-prefixes).
access: (parsing) read-only; (not parsing) read/write

feature namespace prefixes
Value: "http://xml.org/sax/features/namespace-prefixes"
true: Report the original prefixed names and attributes used for Namespace declarations.
false: Do not report attributes used for Namespace declarations, and optionally do not report original prefixed
names (default).
access: (parsing) read-only; (not parsing) read/write

310 Chapter 13. Structured Markup Processing Tools

feature string interning
Value: "http://xml.org/sax/features/string-interning" true: All element names, prefixes,
attribute names, Namespace URIs, and local names are interned using the built-in intern function.
false: Names are not necessarily interned, although they may be (default).
access: (parsing) read-only; (not parsing) read/write

feature validation
Value: "http://xml.org/sax/features/validation"
true: Report all validation errors (implies external-general-entities and external-parameter-entities).
false: Do not report validation errors.
access: (parsing) read-only; (not parsing) read/write

feature external ges
Value: "http://xml.org/sax/features/external-general-entities"
true: Include all external general (text) entities.
false: Do not include external general entities.
access: (parsing) read-only; (not parsing) read/write

feature external pes
Value: "http://xml.org/sax/features/external-parameter-entities"
true: Include all external parameter entities, including the external DTD subset.
false: Do not include any external parameter entities, even the external DTD subset.
access: (parsing) read-only; (not parsing) read/write

all features
List of all features.

property lexical handler
Value: "http://xml.org/sax/properties/lexical-handler"
data type: xml.sax.sax2lib.LexicalHandler (not supported in Python 2)
description: An optional extension handler for lexical events like comments.
access: read/write

property declaration handler
Value: "http://xml.org/sax/properties/declaration-handler"
data type: xml.sax.sax2lib.DeclHandler (not supported in Python 2)
description: An optional extension handler for DTD-related events other than notations and unparsed entities.
access: read/write

property dom node
Value: "http://xml.org/sax/properties/dom-node"
data type: org.w3c.dom.Node (not supported in Python 2)
description: When parsing, the current DOM node being visited if this is a DOM iterator; when not parsing, the
root DOM node for iteration.
access: (parsing) read-only; (not parsing) read/write

property xml string
Value: "http://xml.org/sax/properties/xml-string"
data type: String
description: The literal string of characters that was the source for the current event.
access: read-only

all properties
List of all known property names.

13.6. xml.sax.handler — Base classes for SAX handlers 311

13.6.1 ContentHandler Objects

Users are expected to subclassContentHandler to support their application. The following methods are called by
the parser on the appropriate events in the input document:

setDocumentLocator (locator)
Called by the parser to give the application a locator for locating the origin of document events.

SAX parsers are strongly encouraged (though not absolutely required) to supply a locator: if it does so, it must
supply the locator to the application by invoking this method before invoking any of the other methods in the
DocumentHandler interface.

The locator allows the application to determine the end position of any document-related event, even if the parser
is not reporting an error. Typically, the application will use this information for reporting its own errors (such as
character content that does not match an application’s business rules). The information returned by the locator
is probably not sufficient for use with a search engine.

Note that the locator will return correct information only during the invocation of the events in this interface.
The application should not attempt to use it at any other time.

startDocument ()
Receive notification of the beginning of a document.

The SAX parser will invoke this method only once, before any other methods in this interface or in DTDHandler
(except forsetDocumentLocator()).

endDocument ()
Receive notification of the end of a document.

The SAX parser will invoke this method only once, and it will be the last method invoked during the parse. The
parser shall not invoke this method until it has either abandoned parsing (because of an unrecoverable error) or
reached the end of input.

startPrefixMapping (prefix, uri)
Begin the scope of a prefix-URI Namespace mapping.

The information from this event is not necessary for normal Namespace processing: the SAX
XML reader will automatically replace prefixes for element and attribute names when the
http://xml.org/sax/features/namespaces feature is true (the default).

There are cases, however, when applications need to use prefixes in character data or in attribute values, where
they cannot safely be expanded automatically; the start/endPrefixMapping event supplies the information to the
application to expand prefixes in those contexts itself, if necessary.

Note that start/endPrefixMapping events are not guaranteed to be properly nested relative to each-other:
all startPrefixMapping() events will occur before the corresponding startElement event, and all
endPrefixMapping() events will occur after the correspondingendElement() event, but their order
is not guaranteed.

endPrefixMapping (prefix)
End the scope of a prefix-URI mapping.

SeestartPrefixMapping() for details. This event will always occur after the corresponding endElement
event, but the order of endPrefixMapping events is not otherwise guaranteed.

startElement (name, attrs)
Signals the start of an element in non-namespace mode.

The nameparameter contains the raw XML 1.0 name of the element type as a string and theattrs parameter
holds an instance of theAttributes class containing the attributes of the element.

endElement (name)
Signals the end of an element in non-namespace mode.

Thenameparameter contains the name of the element type, just as with the startElement event.

312 Chapter 13. Structured Markup Processing Tools

startElementNS (name, qname, attrs)
Signals the start of an element in namespace mode.

The nameparameter contains the name of the element type as a (uri, localname) tuple, theqnameparam-
eter the raw XML 1.0 name used in the source document, and theattrs parameter holds an instance of the
AttributesNS class containing the attributes of the element.

Parsers may set theqnameparameter toNone, unless thehttp://xml.org/sax/features/namespace-prefixes
feature is activated.

endElementNS (name, qname)
Signals the end of an element in namespace mode.

Thenameparameter contains the name of the element type, just as with the startElementNS event, likewise the
qnameparameter.

characters (content)
Receive notification of character data.

The Parser will call this method to report each chunk of character data. SAX parsers may return all contiguous
character data in a single chunk, or they may split it into several chunks; however, all of the characters in any
single event must come from the same external entity so that the Locator provides useful information.

contentmay be a Unicode string or a byte string; theexpat reader module produces always Unicode strings.

ignorableWhitespace ()
Receive notification of ignorable whitespace in element content.

Validating Parsers must use this method to report each chunk of ignorable whitespace (see the W3C XML 1.0
recommendation, section 2.10): non-validating parsers may also use this method if they are capable of parsing
and using content models.

SAX parsers may return all contiguous whitespace in a single chunk, or they may split it into several chunks;
however, all of the characters in any single event must come from the same external entity, so that the Locator
provides useful information.

processingInstruction (target, data)
Receive notification of a processing instruction.

The Parser will invoke this method once for each processing instruction found: note that processing instructions
may occur before or after the main document element.

A SAX parser should never report an XML declaration (XML 1.0, section 2.8) or a text declaration (XML 1.0,
section 4.3.1) using this method.

skippedEntity (name)
Receive notification of a skipped entity.

The Parser will invoke this method once for each entity skipped. Non-validating processors may
skip entities if they have not seen the declarations (because, for example, the entity was de-
clared in an external DTD subset). All processors may skip external entities, depending on
the values of thehttp://xml.org/sax/features/external-general-entities and the
http://xml.org/sax/features/external-parameter-entities properties.

13.6.2 DTDHandler Objects

DTDHandler instances provide the following methods:

notationDecl (name, publicId, systemId)
Handle a notation declaration event.

unparsedEntityDecl (name, publicId, systemId, ndata)
Handle an unparsed entity declaration event.

13.6. xml.sax.handler — Base classes for SAX handlers 313

13.6.3 EntityResolver Objects

resolveEntity (publicId, systemId)
Resolve the system identifier of an entity and return either the system identifier to read from as a string, or an
InputSource to read from. The default implementation returnssystemId.

13.7 xml.sax.saxutils — SAX Utilities

New in version 2.0.

The modulexml.sax.saxutils contains a number of classes and functions that are commonly useful when
creating SAX applications, either in direct use, or as base classes.

escape (data[, entities])
Escape &, ¡, and ¿ in a string of data.

You can escape other strings of data by passing a dictionary as the optional entities parameter. The keys and
values must all be strings; each key will be replaced with its corresponding value.

XMLGenerator ([out[, encoding]])
This class implements theContentHandler interface by writing SAX events back into an XML document.
In other words, using anXMLGenerator as the content handler will reproduce the original document being
parsed.out should be a file-like object which will default tosys.stdout. encodingis the encoding of the output
stream which defaults to’iso-8859-1’ .

XMLFilterBase (base)
This class is designed to sit between anXMLReader and the client application’s event handlers. By default,
it does nothing but pass requests up to the reader and events on to the handlers unmodified, but subclasses can
override specific methods to modify the event stream or the configuration requests as they pass through.

prepare input source (source[, base])
This function takes an input source and an optional base URL and returns a fully resolvedInputSource
object ready for reading. The input source can be given as a string, a file-like object, or anInputSource
object; parsers will use this function to implement the polymorphicsourceargument to theirparse() method.

13.8 xml.sax.xmlreader — Interface for XML parsers

New in version 2.0.

SAX parsers implement theXMLReader interface. They are implemented in a Python module, which must provide
a functioncreate parser() . This function is invoked byxml.sax.make parser() with no arguments to
create a new parser object.

XMLReader()
Base class which can be inherited by SAX parsers.

IncrementalParser ()
In some cases, it is desirable not to parse an input source at once, but to feed chunks of the document as they get
available. Note that the reader will normally not read the entire file, but read it in chunks as well; stillparse()
won’t return until the entire document is processed. So these interfaces should be used if the blocking behaviour
of parse() is not desirable.

When the parser is instantiated it is ready to begin accepting data from the feed method immediately. After
parsing has been finished with a call to close the reset method must be called to make the parser ready to accept
new data, either from feed or using the parse method.

314 Chapter 13. Structured Markup Processing Tools

Note that these methods mustnot be called during parsing, that is, after parse has been called and before it
returns.

By default, the class also implements the parse method of the XMLReader interface using the feed, close and
reset methods of the IncrementalParser interface as a convenience to SAX 2.0 driver writers.

Locator ()
Interface for associating a SAX event with a document location. A locator object will return valid results only
during calls to DocumentHandler methods; at any other time, the results are unpredictable. If information is not
available, methods may returnNone.

InputSource ([systemId])
Encapsulation of the information needed by theXMLReader to read entities.

This class may include information about the public identifier, system identifier, byte stream (possibly with
character encoding information) and/or the character stream of an entity.

Applications will create objects of this class for use in theXMLReader.parse() method and for returning
from EntityResolver.resolveEntity.

An InputSource belongs to the application, theXMLReader is not allowed to modifyInputSource
objects passed to it from the application, although it may make copies and modify those.

AttributesImpl (attrs)
This is a dictionary-like object which represents the element attributes in astartElement() call. In addition
to the most useful dictionary operations, it supports a number of other methods as described below. Objects of
this class should be instantiated by readers;attrs must be a dictionary-like object.

AttributesNSImpl (attrs, qnames)
Namespace-aware variant of attributes, which will be passed tostartElementNS() . It is derived from
AttributesImpl , but understands attribute names as two-tuples ofnamespaceURIandlocalname. In addi-
tion, it provides a number of methods expecting qualified names as they appear in the original document.

13.8.1 XMLReader Objects

TheXMLReader interface supports the following methods:

parse (source)
Process an input source, producing SAX events. Thesourceobject can be a system identifier (i.e. a string
identifying the input source – typically a file name or an URL), a file-like object, or anInputSource object.
Whenparse() returns, the input is completely processed, and the parser object can be discarded or reset. As
a limitation, the current implementation only accepts byte streams; processing of character streams is for further
study.

getContentHandler ()
Return the currentContentHandler .

setContentHandler (handler)
Set the currentContentHandler . If no ContentHandler is set, content events will be discarded.

getDTDHandler ()
Return the currentDTDHandler .

setDTDHandler (handler)
Set the currentDTDHandler . If no DTDHandler is set, DTD events will be discarded.

getEntityResolver ()
Return the currentEntityResolver .

setEntityResolver (handler)
Set the currentEntityResolver . If no EntityResolver is set, attempts to resolve an external entity will
result in opening the system identifier for the entity, and fail if it is not available.

13.8. xml.sax.xmlreader — Interface for XML parsers 315

getErrorHandler ()
Return the currentErrorHandler .

setErrorHandler (handler)
Set the current error handler. If noErrorHandler is set, errors will be raised as exceptions, and warnings
will be printed.

setLocale (locale)
Allow an application to set the locale for errors and warnings.

SAX parsers are not required to provide localization for errors and warnings; if they cannot support the requested
locale, however, they must throw a SAX exception. Applications may request a locale change in the middle of
a parse.

getFeature (featurename)
Return the current setting for featurefeaturename. If the feature is not recognized,
SAXNotRecognizedException is raised. The well-known featurenames are listed in the module
xml.sax.handler .

setFeature (featurename, value)
Set thefeaturenameto value. If the feature is not recognized,SAXNotRecognizedException is raised. If
the feature or its setting is not supported by the parser,SAXNotSupportedExceptionis raised.

getProperty (propertyname)
Return the current setting for propertypropertyname. If the property is not recognized, a
SAXNotRecognizedException is raised. The well-known propertynames are listed in the module
xml.sax.handler .

setProperty (propertyname, value)
Set thepropertynameto value. If the property is not recognized,SAXNotRecognizedException is raised.
If the property or its setting is not supported by the parser,SAXNotSupportedExceptionis raised.

13.8.2 IncrementalParser Objects

Instances ofIncrementalParser offer the following additional methods:

feed (data)
Process a chunk ofdata.

close ()
Assume the end of the document. That will check well-formedness conditions that can be checked only at the
end, invoke handlers, and may clean up resources allocated during parsing.

reset ()
This method is called after close has been called to reset the parser so that it is ready to parse new documents.
The results of calling parse or feed after close without calling reset are undefined.”””

13.8.3 Locator Objects

Instances ofLocator provide these methods:

getColumnNumber ()
Return the column number where the current event ends.

getLineNumber ()
Return the line number where the current event ends.

getPublicId ()
Return the public identifier for the current event.

316 Chapter 13. Structured Markup Processing Tools

getSystemId ()
Return the system identifier for the current event.

13.8.4 InputSource Objects

setPublicId (id)
Sets the public identifier of thisInputSource .

getPublicId ()
Returns the public identifier of thisInputSource .

setSystemId (id)
Sets the system identifier of thisInputSource .

getSystemId ()
Returns the system identifier of thisInputSource .

setEncoding (encoding)
Sets the character encoding of thisInputSource .

The encoding must be a string acceptable for an XML encoding declaration (see section 4.3.3 of the XML
recommendation).

The encoding attribute of theInputSource is ignored if theInputSource also contains a character stream.

getEncoding ()
Get the character encoding of this InputSource.

setByteStream (bytefile)
Set the byte stream (a Python file-like object which does not perform byte-to-character conversion) for this input
source.

The SAX parser will ignore this if there is also a character stream specified, but it will use a byte stream in
preference to opening a URI connection itself.

If the application knows the character encoding of the byte stream, it should set it with the setEncoding method.

getByteStream ()
Get the byte stream for this input source.

The getEncoding method will return the character encoding for this byte stream, or None if unknown.

setCharacterStream (charfile)
Set the character stream for this input source. (The stream must be a Python 1.6 Unicode-wrapped file-like that
performs conversion to Unicode strings.)

If there is a character stream specified, the SAX parser will ignore any byte stream and will not attempt to open
a URI connection to the system identifier.

getCharacterStream ()
Get the character stream for this input source.

13.8.5 AttributesImpl Objects

AttributesImpl objects implement a portion of the mapping protocol, and the methodscopy() , get() ,
has key() , items() , keys() , andvalues() . The following methods are also provided:

getLength ()
Return the number of attributes.

getNames ()
Return the names of the attributes.

13.8. xml.sax.xmlreader — Interface for XML parsers 317

getType (name)
Returns the type of the attributename, which is normally’CDATA’ .

getValue (name)
Return the value of attributename.

13.8.6 AttributesNSImpl Objects

getValueByQName (name)
Return the value for a qualified name.

getNameByQName(name)
Return the(namespace, localname) pair for a qualifiedname.

getQNameByName(name)
Return the qualified name for a(namespace, localname) pair.

getQNames()
Return the qualified names of all attributes.

13.9 xmllib — A parser for XML documents

Deprecated since release 2.0.Usexml.sax instead. The newer XML package includes full support for XML 1.0.

Changed in version 1.5.2.

This module defines a classXMLParser which serves as the basis for parsing text files formatted in XML (Extensible
Markup Language).

XMLParser ()
TheXMLParser class must be instantiated without arguments.1

This class provides the following interface methods and instance variables:

attributes
A mapping of element names to mappings. The latter mapping maps attribute names that are valid for the
element to the default value of the attribute, or if there is no default toNone. The default value is the empty
dictionary. This variable is meant to be overridden, not extended since the default is shared by all instances of
XMLParser .

elements
A mapping of element names to tuples. The tuples contain a function for handling the start and end tag re-
spectively of the element, orNone if the methodunknown starttag() or unknown endtag() is to be
called. The default value is the empty dictionary. This variable is meant to be overridden, not extended since
the default is shared by all instances ofXMLParser .

entitydefs
A mapping of entitynames to their values. The default value contains definitions for’lt’ , ’gt’ , ’amp’ ,
’quot’ , and’apos’ .

1Actually, a number of keyword arguments are recognized which influence the parser to accept certain non-standard constructs. The following

keyword arguments are currently recognized. The defaults for all of these is0 (false) except for the last one for which the default is1 (true).

accept unquoted attributes(accept certain attribute values without requiring quotes),accept missing endtag name
(accept end tags that look like</>), map case(map upper case to lower case in tags and attributes),accept utf8
(allow UTF-8 characters in input; this is required according to the XML standard, but Python does not as yet deal
properly with these characters, so this is not the default),translate attribute references(don’t attempt to translate
character and entity references in attribute values).

318 Chapter 13. Structured Markup Processing Tools

reset ()
Reset the instance. Loses all unprocessed data. This is called implicitly at the instantiation time.

setnomoretags ()
Stop processing tags. Treat all following input as literal input (CDATA).

setliteral ()
Enter literal mode (CDATA mode). This mode is automatically exited when the close tag matching the last
unclosed open tag is encountered.

feed (data)
Feed some text to the parser. It is processed insofar as it consists of complete tags; incomplete data is buffered
until more data is fed orclose() is called.

close ()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be redefined
by a derived class to define additional processing at the end of the input, but the redefined version should always
call close() .

translate references (data)
Translate all entity and character references indataand return the translated string.

getnamespace ()
Return a mapping of namespace abbreviations to namespace URIs that are currently in effect.

handle xml (encoding, standalone)
This method is called when the ‘<?xml ...?> ’ tag is processed. The arguments are the values of the en-
coding and standalone attributes in the tag. Both encoding and standalone are optional. The values passed to
handle xml() default toNone and the string’no’ respectively.

handle doctype (tag, pubid, syslit, data)
This method is called when the ‘<!DOCTYPE...> ’ declaration is processed. The arguments are the tag name
of the root element, the Formal Public Identifier (orNone if not specified), the system identifier, and the unin-
terpreted contents of the internal DTD subset as a string (orNone if not present).

handle starttag (tag, method, attributes)
This method is called to handle start tags for which a start tag handler is defined in the instance variable
elements . The tag argument is the name of the tag, and themethodargument is the function (method)
which should be used to support semantic interpretation of the start tag. Theattributesargument is a dictio-
nary of attributes, the key being thenameand the value being thevalueof the attribute found inside the tag’s
<> brackets. Character and entity references in thevalue have been interpreted. For instance, for the start
tag , this method would be called ashandle starttag(’A’,
self.elements[’A’][0], {’HREF’: ’http://www.cwi.nl/’}) . The base implementation
simply callsmethodwith attributesas the only argument.

handle endtag (tag, method)
This method is called to handle endtags for which an end tag handler is defined in the instance variable
elements . The tag argument is the name of the tag, and themethodargument is the function (method)
which should be used to support semantic interpretation of the end tag. For instance, for the endtag , this
method would be called ashandle endtag(’A’, self.elements[’A’][1]) . The base implemen-
tation simply callsmethod.

handle data (data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base class
implementation does nothing.

handle charref (ref)
This method is called to process a character reference of the form ‘&#ref ; ’. ref can either be a decimal number,
or a hexadecimal number when preceded by an ‘x ’. In the base implementation,ref must be a number in the
range 0-255. It translates the character toASCII and calls the methodhandle data() with the character as

13.9. xmllib — A parser for XML documents 319

argument. Ifref is invalid or out of range, the methodunknown charref(ref) is called to handle the error.
A subclass must override this method to provide support for character references outside of theASCII range.

handle comment(comment)
This method is called when a comment is encountered. Thecommentargument is a string containing the
text between the ‘<!-- ’ and ‘--> ’ delimiters, but not the delimiters themselves. For example, the comment
‘<!--text--> ’ will cause this method to be called with the argument’text’ . The default method does
nothing.

handle cdata (data)
This method is called when a CDATA element is encountered. Thedataargument is a string containing the text
between the ‘<![CDATA[’ and ‘]]> ’ delimiters, but not the delimiters themselves. For example, the entity
‘<![CDATA[text]]> ’ will cause this method to be called with the argument’text’ . The default method
does nothing, and is intended to be overridden.

handle proc (name, data)
This method is called when a processing instruction (PI) is encountered. Thenameis the PI target, and thedata
argument is a string containing the text between the PI target and the closing delimiter, but not the delimiter
itself. For example, the instruction ‘<?XML text?> ’ will cause this method to be called with the arguments
’XML’ and’text’ . The default method does nothing. Note that if a document starts with ‘<?xml ..?> ’,
handle xml() is called to handle it.

handle special (data)
This method is called when a declaration is encountered. Thedata argument is a string containing the text
between the ‘<! ’ and ‘>’ delimiters, but not the delimiters themselves. For example, the entity declaration
‘<!ENTITY text> ’ will cause this method to be called with the argument’ENTITY text’ . The default
method does nothing. Note that ‘<!DOCTYPE ...> ’ is handled separately if it is located at the start of the
document.

syntax error (message)
This method is called when a syntax error is encountered. Themessageis a description of what was wrong.
The default method raises aRuntimeError exception. If this method is overridden, it is permissible for
it to return. This method is only called when the error can be recovered from. Unrecoverable errors raise a
RuntimeError without first callingsyntax error() .

unknown starttag (tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown endtag (tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived class; the base
class implementation does nothing.

unknown charref (ref)
This method is called to process unresolvable numeric character references. It is intended to be overridden by a
derived class; the base class implementation does nothing.

unknown entityref (ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived class;
the base class implementation callssyntax error() to signal an error.

See Also:

Extensible Markup Language (XML) 1.0
(http://www.w3.org/TR/REC-xml)

The XML specification, published by the World Wide Web Consortium (W3C), defines the syntax and processor
requirements for XML. References to additional material on XML, including translations of the specification,
are available athttp://www.w3.org/XML/.

Python and XML Processing

320 Chapter 13. Structured Markup Processing Tools

(http://www.python.org/topics/xml/)
The Python XML Topic Guide provides a great deal of information on using XML from Python and links to
other sources of information on XML.

SIG for XML Processing in Python
(http://www.python.org/sigs/xml-sig/)

The Python XML Special Interest Group is developing substantial support for processing XML from Python.

13.9.1 XML Namespaces

This module has support for XML namespaces as defined in the XML Namespaces proposed recommendation.

Tag and attribute names that are defined in an XML namespace are handled as if the name of the tag or ele-
ment consisted of the namespace (i.e. the URL that defines the namespace) followed by a space and the name
of the tag or attribute. For instance, the tag<html xmlns=’http://www.w3.org/TR/REC-html40’>
is treated as if the tag name was’http://www.w3.org/TR/REC-html40 html’ , and the tag
<html:a href=’http://frob.com’> inside the above mentioned element is treated as if the
tag name were’http://www.w3.org/TR/REC-html40 a’ and the attribute name as if it were
’http://www.w3.org/TR/REC-html40 href’ .

An older draft of the XML Namespaces proposal is also recognized, but triggers a warning.

See Also:

Namespaces in XML
(http://www.w3.org/TR/REC-xml-names/)

This World-Wide Web Consortium recommendation describes the proper syntax and processing requirements
for namespaces in XML.

13.9. xmllib — A parser for XML documents 321

322

CHAPTER

FOURTEEN

Multimedia Services

The modules described in this chapter implement various algorithms or interfaces that are mainly useful for multimedia
applications. They are available at the discretion of the installation. Here’s an overview:

audioop Manipulate raw audio data.
imageop Manipulate raw image data.
aifc Read and write audio files in AIFF or AIFC format.
sunau Provide an interface to the Sun AU sound format.
wave Provide an interface to the WAV sound format.
chunk Module to read IFF chunks.
colorsys Conversion functions between RGB and other color systems.
rgbimg Read and write image files in “SGI RGB” format (the module isnotSGI specific though!).
imghdr Determine the type of image contained in a file or byte stream.
sndhdr Determine type of a sound file.

14.1 audioop — Manipulate raw audio data

Theaudioop module contains some useful operations on sound fragments. It operates on sound fragments consisting
of signed integer samples 8, 16 or 32 bits wide, stored in Python strings. This is the same format as used by theal
andsunaudiodev modules. All scalar items are integers, unless specified otherwise.

This module provides support for u-LAW and Intel/DVI ADPCM encodings.

A few of the more complicated operations only take 16-bit samples, otherwise the sample size (in bytes) is always a
parameter of the operation.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unknown number of bytes per sample, etc.

add (fragment1, fragment2, width)
Return a fragment which is the addition of the two samples passed as parameters.width is the sample width in
bytes, either1, 2 or 4. Both fragments should have the same length.

adpcm2lin (adpcmfragment, width, state)
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the description oflin2adpcm() for
details on ADPCM coding. Return a tuple(sample, newstate) where the sample has the width specified in
width.

adpcm32lin (adpcmfragment, width, state)
Decode an alternative 3-bit ADPCM code. Seelin2adpcm3() for details.

avg (fragment, width)
Return the average over all samples in the fragment.

323

avgpp (fragment, width)
Return the average peak-peak value over all samples in the fragment. No filtering is done, so the usefulness of
this routine is questionable.

bias (fragment, width, bias)
Return a fragment that is the original fragment with a bias added to each sample.

cross (fragment, width)
Return the number of zero crossings in the fragment passed as an argument.

findfactor (fragment, reference)
Return a factorF such thatrms(add(fragment, mul(reference, - F))) is minimal, i.e., return the factor
with which you should multiplyreferenceto make it match as well as possible tofragment. The fragments
should both contain 2-byte samples.

The time taken by this routine is proportional tolen(fragment) .

findfit (fragment, reference)
Try to matchreferenceas well as possible to a portion offragment(which should be the longer fragment). This
is (conceptually) done by taking slices out offragment, using findfactor() to compute the best match,
and minimizing the result. The fragments should both contain 2-byte samples. Return a tuple(offset, factor)
whereoffsetis the (integer) offset intofragmentwhere the optimal match started andfactor is the (floating-point)
factor as perfindfactor() .

findmax (fragment, length)
Searchfragmentfor a slice of lengthlengthsamples (not bytes!) with maximum energy, i.e., returni for which
rms(fragment[i*2:(i+length)*2]) is maximal. The fragments should both contain 2-byte samples.

The routine takes time proportional tolen(fragment) .

getsample (fragment, width, index)
Return the value of sampleindexfrom the fragment.

lin2lin (fragment, width, newwidth)
Convert samples between 1-, 2- and 4-byte formats.

lin2adpcm (fragment, width, state)
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adaptive coding scheme, whereby
each 4 bit number is the difference between one sample and the next, divided by a (varying) step. The Intel/DVI
ADPCM algorithm has been selected for use by the IMA, so it may well become a standard.

stateis a tuple containing the state of the coder. The coder returns a tuple(adpcmfrag, newstate) , and the
newstateshould be passed to the next call oflin2adpcm() . In the initial call,None can be passed as the
state.adpcmfragis the ADPCM coded fragment packed 2 4-bit values per byte.

lin2adpcm3 (fragment, width, state)
This is an alternative ADPCM coder that uses only 3 bits per sample. It is not compatible with the Intel/DVI
ADPCM coder and its output is not packed (due to laziness on the side of the author). Its use is discouraged.

lin2ulaw (fragment, width)
Convert samples in the audio fragment to u-LAW encoding and return this as a Python string. u-LAW is an
audio encoding format whereby you get a dynamic range of about 14 bits using only 8 bit samples. It is used by
the Sun audio hardware, among others.

minmax(fragment, width)
Return a tuple consisting of the minimum and maximum values of all samples in the sound fragment.

max(fragment, width)
Return the maximum of theabsolute valueof all samples in a fragment.

maxpp(fragment, width)
Return the maximum peak-peak value in the sound fragment.

324 Chapter 14. Multimedia Services

mul (fragment, width, factor)
Return a fragment that has all samples in the original fragment multiplied by the floating-point valuefactor.
Overflow is silently ignored.

ratecv (fragment, width, nchannels, inrate, outrate, state[, weightA[, weightB]])
Convert the frame rate of the input fragment.

stateis a tuple containing the state of the converter. The converter returns a tuple(newfragment, newstate) ,
andnewstateshould be passed to the next call ofratecv() .

TheweightAandweightBarguments are parameters for a simple digital filter and default to1 and0 respectively.

reverse (fragment, width)
Reverse the samples in a fragment and returns the modified fragment.

rms (fragment, width)
Return the root-mean-square of the fragment, i.e.√∑

Si
2

n

This is a measure of the power in an audio signal.

tomono (fragment, width, lfactor, rfactor)
Convert a stereo fragment to a mono fragment. The left channel is multiplied bylfactor and the right channel
by rfactor before adding the two channels to give a mono signal.

tostereo (fragment, width, lfactor, rfactor)
Generate a stereo fragment from a mono fragment. Each pair of samples in the stereo fragment are computed
from the mono sample, whereby left channel samples are multiplied bylfactor and right channel samples by
rfactor.

ulaw2lin (fragment, width)
Convert sound fragments in u-LAW encoding to linearly encoded sound fragments. u-LAW encoding always
uses 8 bits samples, sowidth refers only to the sample width of the output fragment here.

Note that operations such asmul() or max() make no distinction between mono and stereo fragments, i.e. all
samples are treated equal. If this is a problem the stereo fragment should be split into two mono fragments first and
recombined later. Here is an example of how to do that:

def mul_stereo(sample, width, lfactor, rfactor):
lsample = audioop.tomono(sample, width, 1, 0)
rsample = audioop.tomono(sample, width, 0, 1)
lsample = audioop.mul(sample, width, lfactor)
rsample = audioop.mul(sample, width, rfactor)
lsample = audioop.tostereo(lsample, width, 1, 0)
rsample = audioop.tostereo(rsample, width, 0, 1)
return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to be stateless (i.e. to be able to
tolerate packet loss) you should not only transmit the data but also the state. Note that you should send theinitial state
(the one you passed tolin2adpcm()) along to the decoder, not the final state (as returned by the coder). If you want
to usestruct.struct() to store the state in binary you can code the first element (the predicted value) in 16 bits
and the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against themselves. It could well be
that I misinterpreted the standards in which case they will not be interoperable with the respective standards.

The find*() routines might look a bit funny at first sight. They are primarily meant to do echo cancellation. A
reasonably fast way to do this is to pick the most energetic piece of the output sample, locate that in the input sample

14.1. audioop — Manipulate raw audio data 325

and subtract the whole output sample from the input sample:

def echocancel(outputdata, inputdata):
pos = audioop.findmax(outputdata, 800) # one tenth second
out_test = outputdata[pos*2:]
in_test = inputdata[pos*2:]
ipos, factor = audioop.findfit(in_test, out_test)
Optional (for better cancellation):
factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],
out_test)
prefill = ’\0’*(pos+ipos)*2
postfill = ’\0’*(len(inputdata)-len(prefill)-len(outputdata))
outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill
return audioop.add(inputdata, outputdata, 2)

14.2 imageop — Manipulate raw image data

The imageop module contains some useful operations on images. It operates on images consisting of 8 or 32 bit
pixels stored in Python strings. This is the same format as used bygl.lrectwrite() and theimgfile module.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unknown number of bits per pixel, etc.

crop (image, psize, width, height, x0, y0, x1, y1)
Return the selected part ofimage, which should bywidth by heightin size and consist of pixels ofpsizebytes.
x0, y0, x1 andy1 are like thegl.lrectread() parameters, i.e. the boundary is included in the new image.
The new boundaries need not be inside the picture. Pixels that fall outside the old image will have their value
set to zero. Ifx0 is bigger thanx1 the new image is mirrored. The same holds for the y coordinates.

scale (image, psize, width, height, newwidth, newheight)
Returnimagescaled to sizenewwidthby newheight. No interpolation is done, scaling is done by simple-minded
pixel duplication or removal. Therefore, computer-generated images or dithered images will not look nice after
scaling.

tovideo (image, psize, width, height)
Run a vertical low-pass filter over an image. It does so by computing each destination pixel as the average of
two vertically-aligned source pixels. The main use of this routine is to forestall excessive flicker if the image is
displayed on a video device that uses interlacing, hence the name.

grey2mono (image, width, height, threshold)
Convert a 8-bit deep greyscale image to a 1-bit deep image by thresholding all the pixels. The resulting image
is tightly packed and is probably only useful as an argument tomono2grey() .

dither2mono (image, width, height)
Convert an 8-bit greyscale image to a 1-bit monochrome image using a (simple-minded) dithering algorithm.

mono2grey (image, width, height, p0, p1)
Convert a 1-bit monochrome image to an 8 bit greyscale or color image. All pixels that are zero-valued on
input get valuep0 on output and all one-value input pixels get valuep1 on output. To convert a monochrome
black-and-white image to greyscale pass the values0 and255 respectively.

grey2grey4 (image, width, height)
Convert an 8-bit greyscale image to a 4-bit greyscale image without dithering.

326 Chapter 14. Multimedia Services

grey2grey2 (image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image without dithering.

dither2grey2 (image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image with dithering. As fordither2mono() , the
dithering algorithm is currently very simple.

grey42grey (image, width, height)
Convert a 4-bit greyscale image to an 8-bit greyscale image.

grey22grey (image, width, height)
Convert a 2-bit greyscale image to an 8-bit greyscale image.

14.3 aifc — Read and write AIFF and AIFC files

This module provides support for reading and writing AIFF and AIFF-C files. AIFF is Audio Interchange File Format,
a format for storing digital audio samples in a file. AIFF-C is a newer version of the format that includes the ability to
compress the audio data.

Caveat: Some operations may only work under IRIX; these will raiseImportError when attempting to import the
cl module, which is only available on IRIX.

Audio files have a number of parameters that describe the audio data. The sampling rate or frame rate is the number of
times per second the sound is sampled. The number of channels indicate if the audio is mono, stereo, or quadro. Each
frame consists of one sample per channel. The sample size is the size in bytes of each sample. Thus a frame consists
of nchannels*samplesizebytes, and a second’s worth of audio consists ofnchannels*samplesize* frameratebytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels (stereo) and has a frame rate
of 44,100 frames/second. This gives a frame size of 4 bytes (2*2), and a second’s worth occupies 2*2*44100 bytes,
i.e. 176,400 bytes.

Moduleaifc defines the following function:

open (file[, mode])
Open an AIFF or AIFF-C file and return an object instance with methods that are described below. The argument
file is either a string naming a file or a file object.modemust be’r’ or ’rb’ when the file must be opened for
reading, or’w’ or ’wb’ when the file must be opened for writing. If omitted,file.mode is used if it exists,
otherwise’rb’ is used. When used for writing, the file object should be seekable, unless you know ahead of
time how many samples you are going to write in total and usewriteframesraw() andsetnframes() .

Objects returned byopen() when a file is opened for reading have the following methods:

getnchannels ()
Return the number of audio channels (1 for mono, 2 for stereo).

getsampwidth ()
Return the size in bytes of individual samples.

getframerate ()
Return the sampling rate (number of audio frames per second).

getnframes ()
Return the number of audio frames in the file.

getcomptype ()
Return a four-character string describing the type of compression used in the audio file. For AIFF files, the
returned value is’NONE’ .

getcompname ()
Return a human-readable description of the type of compression used in the audio file. For AIFF files, the

14.3. aifc — Read and write AIFF and AIFC files 327

returned value is’not compressed’ .

getparams ()
Return a tuple consisting of all of the above values in the above order.

getmarkers ()
Return a list of markers in the audio file. A marker consists of a tuple of three elements. The first is the mark
ID (an integer), the second is the mark position in frames from the beginning of the data (an integer), the third
is the name of the mark (a string).

getmark (id)
Return the tuple as described ingetmarkers() for the mark with the givenid.

readframes (nframes)
Read and return the nextnframesframes from the audio file. The returned data is a string containing for each
frame the uncompressed samples of all channels.

rewind ()
Rewind the read pointer. The nextreadframes() will start from the beginning.

setpos (pos)
Seek to the specified frame number.

tell ()
Return the current frame number.

close ()
Close the AIFF file. After calling this method, the object can no longer be used.

Objects returned byopen() when a file is opened for writing have all the above methods, except forreadframes()
andsetpos() . In addition the following methods exist. Theget*() methods can only be called after the corre-
spondingset*() methods have been called. Before the firstwriteframes() or writeframesraw() , all
parameters except for the number of frames must be filled in.

aiff ()
Create an AIFF file. The default is that an AIFF-C file is created, unless the name of the file ends in’.aiff’
in which case the default is an AIFF file.

aifc ()
Create an AIFF-C file. The default is that an AIFF-C file is created, unless the name of the file ends in’.aiff’
in which case the default is an AIFF file.

setnchannels (nchannels)
Specify the number of channels in the audio file.

setsampwidth (width)
Specify the size in bytes of audio samples.

setframerate (rate)
Specify the sampling frequency in frames per second.

setnframes (nframes)
Specify the number of frames that are to be written to the audio file. If this parameter is not set, or not set
correctly, the file needs to support seeking.

setcomptype (type, name)
Specify the compression type. If not specified, the audio data will not be compressed. In AIFF files, compression
is not possible. The name parameter should be a human-readable description of the compression type, the type
parameter should be a four-character string. Currently the following compression types are supported: NONE,
ULAW, ALAW, G722.

setparams (nchannels, sampwidth, framerate, comptype, compname)
Set all the above parameters at once. The argument is a tuple consisting of the various parameters. This means

328 Chapter 14. Multimedia Services

that it is possible to use the result of agetparams() call as argument tosetparams() .

setmark (id, pos, name)
Add a mark with the given id (larger than 0), and the given name at the given position. This method can be
called at any time beforeclose() .

tell ()
Return the current write position in the output file. Useful in combination withsetmark() .

writeframes (data)
Write data to the output file. This method can only be called after the audio file parameters have been set.

writeframesraw (data)
Like writeframes() , except that the header of the audio file is not updated.

close ()
Close the AIFF file. The header of the file is updated to reflect the actual size of the audio data. After calling
this method, the object can no longer be used.

14.4 sunau — Read and write Sun AU files

Thesunau module provides a convenient interface to the Sun AU sound format. Note that this module is interface-
compatible with the modulesaifc andwave.

An audio file consists of a header followed by the data. The fields of the header are:

Field Contents
magic word The four bytes ‘.snd ’.
header size Size of the header, including info, in bytes.
data size Physical size of the data, in bytes.
encoding Indicates how the audio samples are encoded.
sample rate The sampling rate.
of channels The number of channels in the samples.
info ASCII string giving a description of the audio file (padded with null bytes).

Apart from the info field, all header fields are 4 bytes in size. They are all 32-bit unsigned integers encoded in
big-endian byte order.

Thesunau module defines the following functions:

open (file, mode)
If file is a string, open the file by that name, otherwise treat it as a seekable file-like object.modecan be any of

’r’ Read only mode.

’w’ Write only mode.

Note that it does not allow read/write files.

A modeof ’r’ returns aAU read object, while amodeof ’w’ or ’wb’ returns aAU write object.

openfp (file, mode)
A synonym foropen , maintained for backwards compatibility.

Thesunau module defines the following exception:

Error
An error raised when something is impossible because of Sun AU specs or implementation deficiency.

Thesunau module defines the following data items:

14.4. sunau — Read and write Sun AU files 329

AUDIO FILE MAGIC
An integer every valid Sun AU file begins with, stored in big-endian form. This is the string ‘.snd ’ interpreted
as an integer.

AUDIO FILE ENCODINGMULAW8
AUDIO FILE ENCODINGLINEAR 8
AUDIO FILE ENCODINGLINEAR 16
AUDIO FILE ENCODINGLINEAR 24
AUDIO FILE ENCODINGLINEAR 32
AUDIO FILE ENCODINGALAW 8

Values of the encoding field from the AU header which are supported by this module.

AUDIO FILE ENCODINGFLOAT
AUDIO FILE ENCODINGDOUBLE
AUDIO FILE ENCODINGADPCMG721
AUDIO FILE ENCODINGADPCMG722
AUDIO FILE ENCODINGADPCMG723 3
AUDIO FILE ENCODINGADPCMG723 5

Additional known values of the encoding field from the AU header, but which are not supported by this module.

14.4.1 AU read Objects

AU read objects, as returned byopen() above, have the following methods:

close ()
Close the stream, and make the instance unusable. (This is called automatically on deletion.)

getnchannels ()
Returns number of audio channels (1 for mone, 2 for stereo).

getsampwidth ()
Returns sample width in bytes.

getframerate ()
Returns sampling frequency.

getnframes ()
Returns number of audio frames.

getcomptype ()
Returns compression type. Supported compression types are’ULAW’ , ’ALAW’ and’NONE’ .

getcompname ()
Human-readable version ofgetcomptype() . The supported types have the respective names’CCITT
G.711 u-law’ , ’CCITT G.711 A-law’ and’not compressed’ .

getparams ()
Returns a tuple(nchannels, sampwidth, framerate, nframes, comptype, compname) , equivalent to out-
put of theget*() methods.

readframes (n)
Reads and returns at mostn frames of audio, as a string of bytes.

rewind ()
Rewind the file pointer to the beginning of the audio stream.

The following two methods define a term “position” which is compatible between them, and is otherwise implemen-
tation dependent.

setpos (pos)

330 Chapter 14. Multimedia Services

Set the file pointer to the specified position. Only values returned fromtell() should be used forpos.

tell ()
Return current file pointer position. Note that the returned value has nothing to do with the actual position in the
file.

The following two functions are defined for compatibility with theaifc , and don’t do anything interesting.

getmarkers ()
ReturnsNone.

getmark (id)
Raise an error.

14.4.2 AU write Objects

AU write objects, as returned byopen() above, have the following methods:

setnchannels (n)
Set the number of channels.

setsampwidth (n)
Set the sample width (in bytes.)

setframerate (n)
Set the frame rate.

setnframes (n)
Set the number of frames. This can be later changed, when and if more frames are written.

setcomptype (type, name)
Set the compression type and description. Only’NONE’ and’ULAW’ are supported on output.

setparams (tuple)
The tuple should be(nchannels, sampwidth, framerate, nframes, comptype, compname) , with values
valid for theset*() methods. Set all parameters.

tell ()
Return current position in the file, with the same disclaimer for theAU read.tell() and
AU read.setpos() methods.

writeframesraw (data)
Write audio frames, without correctingnframes.

writeframes (data)
Write audio frames and make surenframesis correct.

close ()
Make surenframesis correct, and close the file.

This method is called upon deletion.

Note that it is invalid to set any parameters after callingwriteframes() or writeframesraw() .

14.5 wave — Read and write WAV files

The wave module provides a convenient interface to the WAV sound format. It does not support compres-
sion/decompression, but it does support mono/stereo.

Thewave module defines the following function and exception:

14.5. wave — Read and write WAV files 331

open (file[, mode])
If file is a string, open the file by that name, other treat it as a seekable file-like object.modecan be any of

’r’ , ’rb’ Read only mode.

’w’ , ’wb’ Write only mode.

Note that it does not allow read/write WAV files.

A modeof ’r’ or ’rb’ returns aWave read object, while amodeof ’w’ or ’wb’ returns aWave write
object. Ifmodeis omitted and a file-like object is passed asfile, file.mode is used as the default value formode
(the ‘b’ flag is still added if necessary).

openfp (file, mode)
A synonym foropen() , maintained for backwards compatibility.

Error
An error raised when something is impossible because it violates the WAV specification or hits an implementa-
tion deficiency.

14.5.1 Wave read Objects

Wave read objects, as returned byopen() , have the following methods:

close ()
Close the stream, and make the instance unusable. This is called automatically on object collection.

getnchannels ()
Returns number of audio channels (1 for mono,2 for stereo).

getsampwidth ()
Returns sample width in bytes.

getframerate ()
Returns sampling frequency.

getnframes ()
Returns number of audio frames.

getcomptype ()
Returns compression type (’NONE’ is the only supported type).

getcompname ()
Human-readable version ofgetcomptype() . Usually’not compressed’ parallels’NONE’ .

getparams ()
Returns a tuple(nchannels, sampwidth, framerate, nframes, comptype, compname) , equivalent to out-
put of theget*() methods.

readframes (n)
Reads and returns at mostn frames of audio, as a string of bytes.

rewind ()
Rewind the file pointer to the beginning of the audio stream.

The following two methods are defined for compatibility with theaifc module, and don’t do anything interesting.

getmarkers ()
ReturnsNone.

getmark (id)
Raise an error.

332 Chapter 14. Multimedia Services

The following two methods define a term “position” which is compatible between them, and is otherwise implemen-
tation dependent.

setpos (pos)
Set the file pointer to the specified position.

tell ()
Return current file pointer position.

14.5.2 Wave write Objects

Wave write objects, as returned byopen() , have the following methods:

close ()
Make surenframesis correct, and close the file. This method is called upon deletion.

setnchannels (n)
Set the number of channels.

setsampwidth (n)
Set the sample width ton bytes.

setframerate (n)
Set the frame rate ton.

setnframes (n)
Set the number of frames ton. This will be changed later if more frames are written.

setcomptype (type, name)
Set the compression type and description.

setparams (tuple)
The tuple should be(nchannels, sampwidth, framerate, nframes, comptype, compname) , with values
valid for theset*() methods. Sets all parameters.

tell ()
Return current position in the file, with the same disclaimer for theWave read.tell() and
Wave read.setpos() methods.

writeframesraw (data)
Write audio frames, without correctingnframes.

writeframes (data)
Write audio frames and make surenframesis correct.

Note that it is invalid to set any parameters after callingwriteframes() or writeframesraw() , and any
attempt to do so will raisewave.Error .

14.6 chunk — Read IFF chunked data

This module provides an interface for reading files that use EA IFF 85 chunks.1 This format is used in at least the
Audio Interchange File Format (AIFF/AIFF-C) and the Real Media File Format (RMFF). The WAVE audio file format
is closely related and can also be read using this module.

A chunk has the following structure:
1“EA IFF 85” Standard for Interchange Format Files, Jerry Morrison, Electronic Arts, January 1985.

14.6. chunk — Read IFF chunked data 333

Offset Length Contents
0 4 Chunk ID
4 4 Size of chunk in big-endian byte order, not including the header
8 n Data bytes, wheren is the size given in the preceding field

8 + n 0 or 1 Pad byte needed ifn is odd and chunk alignment is used

The ID is a 4-byte string which identifies the type of chunk.

The size field (a 32-bit value, encoded using big-endian byte order) gives the size of the chunk data, not including the
8-byte header.

Usually an IFF-type file consists of one or more chunks. The proposed usage of theChunk class defined here is to
instantiate an instance at the start of each chunk and read from the instance until it reaches the end, after which a new
instance can be instantiated. At the end of the file, creating a new instance will fail with aEOFError exception.

Chunk (file[, align, bigendian, inclheader])
Class which represents a chunk. Thefile argument is expected to be a file-like object. An instance of this class
is specifically allowed. The only method that is needed isread() . If the methodsseek() andtell() are
present and don’t raise an exception, they are also used. If these methods are present and raise an exception,
they are expected to not have altered the object. If the optional argumentalign is true, chunks are assumed to
be aligned on 2-byte boundaries. Ifalign is false, no alignment is assumed. The default value is true. If the
optional argumentbigendianis false, the chunk size is assumed to be in little-endian order. This is needed for
WAVE audio files. The default value is true. If the optional argumentinclheaderis true, the size given in the
chunk header includes the size of the header. The default value is false.

A Chunk object supports the following methods:

getname ()
Returns the name (ID) of the chunk. This is the first 4 bytes of the chunk.

getsize ()
Returns the size of the chunk.

close ()
Close and skip to the end of the chunk. This does not close the underlying file.

The remaining methods will raiseIOError if called after theclose() method has been called.

isatty ()
Returns0.

seek (pos[, whence])
Set the chunk’s current position. Thewhenceargument is optional and defaults to0 (absolute file positioning);
other values are1 (seek relative to the current position) and2 (seek relative to the file’s end). There is no return
value. If the underlying file does not allow seek, only forward seeks are allowed.

tell ()
Return the current position into the chunk.

read ([size])
Read at mostsizebytes from the chunk (less if the read hits the end of the chunk before obtainingsizebytes).
If the sizeargument is negative or omitted, read all data until the end of the chunk. The bytes are returned as a
string object. An empty string is returned when the end of the chunk is encountered immediately.

skip ()
Skip to the end of the chunk. All further calls toread() for the chunk will return’’ . If you are not interested
in the contents of the chunk, this method should be called so that the file points to the start of the next chunk.

334 Chapter 14. Multimedia Services

14.7 colorsys — Conversions between color systems

Thecolorsys module defines bidirectional conversions of color values between colors expressed in the RGB (Red
Green Blue) color space used in computer monitors and three other coordinate systems: YIQ, HLS (Hue Lightness
Saturation) and HSV (Hue Saturation Value). Coordinates in all of these color spaces are floating point values. In the
YIQ space, the Y coordinate is between 0 and 1, but the I and Q coordinates can be positive or negative. In all other
spaces, the coordinates are all between 0 and 1.

More information about color spaces can be found athttp://www.inforamp.net/%7epoynton/ColorFAQ.html.

Thecolorsys module defines the following functions:

rgb to yiq (r, g, b)
Convert the color from RGB coordinates to YIQ coordinates.

yiq to rgb (y, i, q)
Convert the color from YIQ coordinates to RGB coordinates.

rgb to hls (r, g, b)
Convert the color from RGB coordinates to HLS coordinates.

hls to rgb (h, l, s)
Convert the color from HLS coordinates to RGB coordinates.

rgb to hsv (r, g, b)
Convert the color from RGB coordinates to HSV coordinates.

hsv to rgb (h, s, v)
Convert the color from HSV coordinates to RGB coordinates.

Example:

>>> import colorsys
>>> colorsys.rgb_to_hsv(.3, .4, .2)
(0.25, 0.5, 0.4)
>>> colorsys.hsv_to_rgb(0.25, 0.5, 0.4)
(0.3, 0.4, 0.2)

14.8 rgbimg — Read and write “SGI RGB” files

The rgbimg module allows Python programs to access SGI imglib image files (also known as ‘.rgb’ files). The
module is far from complete, but is provided anyway since the functionality that there is enough in some cases.
Currently, colormap files are not supported.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unsupported file type, etc.

sizeofimage (file)
This function returns a tuple(x, y) wherex andy are the size of the image in pixels. Only 4 byte RGBA
pixels, 3 byte RGB pixels, and 1 byte greyscale pixels are currently supported.

longimagedata (file)
This function reads and decodes the image on the specified file, and returns it as a Python string. The string
has 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format is suitable to pass to
gl.lrectwrite() , for instance.

14.7. colorsys — Conversions between color systems 335

longstoimage (data, x, y, z, file)
This function writes the RGBA data indata to image filefile. x andy give the size of the image.z is 1 if the
saved image should be 1 byte greyscale, 3 if the saved image should be 3 byte RGB data, or 4 if the saved images
should be 4 byte RGBA data. The input data always contains 4 bytes per pixel. These are the formats returned
by gl.lrectread() .

ttob (flag)
This function sets a global flag which defines whether the scan lines of the image are read or written from bottom
to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is one, compatible with X). The default
is zero.

14.9 imghdr — Determine the type of an image

The imghdr module determines the type of image contained in a file or byte stream.

The imghdr module defines the following function:

what (filename[, h])
Tests the image data contained in the file named byfilename, and returns a string describing the image type. If
optionalh is provided, thefilenameis ignored andh is assumed to contain the byte stream to test.

The following image types are recognized, as listed below with the return value fromwhat() :

Value Image format
’rgb’ SGI ImgLib Files
’gif’ GIF 87a and 89a Files
’pbm’ Portable Bitmap Files
’pgm’ Portable Graymap Files
’ppm’ Portable Pixmap Files
’tiff’ TIFF Files
’rast’ Sun Raster Files
’xbm’ X Bitmap Files
’jpeg’ JPEG data in JFIF format
’bmp’ BMP files
’png’ Portable Network Graphics

You can extend the list of file typesimghdr can recognize by appending to this variable:

tests
A list of functions performing the individual tests. Each function takes two arguments: the byte-stream and an
open file-like object. Whenwhat() is called with a byte-stream, the file-like object will beNone.

The test function should return a string describing the image type if the test succeeded, orNone if it failed.

Example:

>>> import imghdr
>>> imghdr.what(’/tmp/bass.gif’)
’gif’

14.10 sndhdr — Determine type of sound file

336 Chapter 14. Multimedia Services

Thesndhdr provides utility functions which attempt to determine the type of sound data which is in a file. When these
functions are able to determine what type of sound data is stored in a file, they return a tuple(type, sampling rate,
channels, frames, bits per sample) . The value fortype indicates the data type and will be one of the strings
’aifc’ , ’aiff’ , ’au’ , ’hcom’ , ’sndr’ , ’sndt’ , ’voc’ , ’wav’ , ’8svx’ , ’sb’ , ’ub’ , or ’ul’ . The
sampling ratewill be either the actual value or0 if unknown or difficult to decode. Similarly,channelswill be either
the number of channels or0 if it cannot be determined or if the value is difficult to decode. The value forframeswill
be either the number of frames or-1 . The last item in the tuple,bits per sample, will either be the sample size in
bits or ’A’ for A-LAW or ’U’ for u-LAW.

what (filename)
Determines the type of sound data stored in the filefilenameusingwhathdr() . If it succeeds, returns a tuple
as described above, otherwiseNone is returned.

whathdr (filename)
Determines the type of sound data stored in a file based on the file header. The name of the file is given by
filename. This function returns a tuple as described above on success, orNone.

14.10. sndhdr — Determine type of sound file 337

338

CHAPTER

FIFTEEN

Cryptographic Services

The modules described in this chapter implement various algorithms of a cryptographic nature. They are available at
the discretion of the installation. Here’s an overview:

md5 RSA’s MD5 message digest algorithm.
sha NIST’s secure hash algorithm, SHA.
mpz Interface to the GNU MP library for arbitrary precision arithmetic.
rotor Enigma-like encryption and decryption.

Hardcore cypherpunks will probably find the cryptographic modules written by Andrew Kuchling of further interest;
the package adds built-in modules for DES and IDEA encryption, provides a Python module for reading and decrypting
PGP files, and then some. These modules are not distributed with Python but available separately. See the URL
http://starship.python.net/crew/amk/python/code/crypto.html or send email toamk1@bigfoot.com for more information.

15.1 md5— MD5 message digest algorithm

This module implements the interface to RSA’s MD5 message digest algorithm (see also Internet RFC 1321). Its
use is quite straightforward: usenew() to create an md5 object. You can now feed this object with arbitrary strings
using theupdate() method, and at any point you can ask it for thedigest(a strong kind of 128-bit checksum, a.k.a.
“fingerprint”) of the concatenation of the strings fed to it so far using thedigest() method.

For example, to obtain the digest of the string’Nobody inspects the spammish repetition’ :

>>> import md5
>>> m = md5.new()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
’\273d\234\203\335\036\245\311\331\336\311\241\215\360\377\351’

More condensed:

>>> md5.new("Nobody inspects the spammish repetition").digest()
’\273d\234\203\335\036\245\311\331\336\311\241\215\360\377\351’

new([arg])
Return a new md5 object. Ifarg is present, the method callupdate(arg) is made.

md5([arg])

339

For backward compatibility reasons, this is an alternative name for thenew() function.

An md5 object has the following methods:

update (arg)
Update the md5 object with the stringarg. Repeated calls are equivalent to a single call with the concatenation
of all the arguments, i.e.m.update(a); m.update(b) is equivalent tom.update(a+b) .

digest ()
Return the digest of the strings passed to theupdate() method so far. This is a 16-byte string which may
contain non-ASCII characters, including null bytes.

hexdigest ()
Like digest() except the digest is returned as a string of length 32, containing only hexadecimal digits. This
may be used to exchange the value safely in email or other non-binary environments.

copy ()
Return a copy (“clone”) of the md5 object. This can be used to efficiently compute the digests of strings that
share a common initial substring.

See Also:

Modulesha (section 15.2):
Similar module implementing the Secure Hash Algorithm (SHA). The SHA algorithm is considered a more
secure hash.

15.2 sha — SHA message digest algorithm

This module implements the interface to NIST’s secure hash algorithm, known as SHA. It is used in the same way as
themd5module: usenew() to create an sha object, then feed this object with arbitrary strings using theupdate()
method, and at any point you can ask it for thedigestof the concatenation of the strings fed to it so far. SHA digests
are 160 bits instead of MD5’s 128 bits.

new([string])
Return a new sha object. Ifstring is present, the method callupdate(string) is made.

The following values are provided as constants in the module and as attributes of the sha objects returned bynew() :

blocksize
Size of the blocks fed into the hash function; this is always1. This size is used to allow an arbitrary string to be
hashed.

digestsize
The size of the resulting digest in bytes. This is always20 .

An sha object has the same methods as md5 objects:

update (arg)
Update the sha object with the stringarg. Repeated calls are equivalent to a single call with the concatenation
of all the arguments, i.e.m.update(a); m.update(b) is equivalent tom.update(a+b) .

digest ()
Return the digest of the strings passed to theupdate() method so far. This is a 20-byte string which may
contain non-ASCII characters, including null bytes.

hexdigest ()
Like digest() except the digest is returned as a string of length 40, containing only hexadecimal digits. This
may be used to exchange the value safely in email or other non-binary environments.

copy ()
Return a copy (“clone”) of the sha object. This can be used to efficiently compute the digests of strings that

340 Chapter 15. Cryptographic Services

share a common initial substring.

See Also:

Secure Hash Standard
(http://csrc.nist.gov/fips/fip180-1.txt)

The Secure Hash Algorithm is defined by NIST document FIPS PUB 180-1:Secure Hash Standard, pub-
lished in April of 1995. It is available online as plain text (at least one diagram was omitted) and as PDF at
http://csrc.nist.gov/fips/fip180-1.pdf.

15.3 mpz — GNU arbitrary magnitude integers

This is an optional module. It is only available when Python is configured to include it, which requires that the GNU
MP software is installed.

This module implements the interface to part of the GNU MP library, which defines arbitrary precision integer and
rational number arithmetic routines. Only the interfaces to theinteger(mpz *()) routines are provided. If not stated
otherwise, the description in the GNU MP documentation can be applied.

Support for rational numbers can be implemented in Python. For an example, see theRat module, provided as
‘Demos/classes/Rat.py’ in the Python source distribution.

In general,mpz-numbers can be used just like other standard Python numbers, e.g., you can use the built-in operators
like +, * , etc., as well as the standard built-in functions likeabs() , int() , . . . ,divmod() , pow() . Please note:
the bitwise-xoroperation has been implemented as a bunch ofands, inverts andors, because the library lacks an
mpz xor() function, and I didn’t need one.

You create an mpz-number by calling the functionmpz() (see below for an exact description). An mpz-number is
printed like this:mpz(value) .

mpz(value)
Create a new mpz-number.valuecan be an integer, a long, another mpz-number, or even a string. If it is a string,
it is interpreted as an array of radix-256 digits, least significant digit first, resulting in a positive number. See
also thebinary() method, described below.

MPZType
The type of the objects returned bympz() and most other functions in this module.

A number ofextra functions are defined in this module. Non mpz-arguments are converted to mpz-values first, and
the functions return mpz-numbers.

powm(base, exponent, modulus)
Returnpow(base, exponent) % modulus. If exponent== 0, returnmpz(1) . In contrast to the C library
function, this version can handle negative exponents.

gcd (op1, op2)
Return the greatest common divisor ofop1andop2.

gcdext (a, b)
Return a tuple(g, s, t) , such thata* s + b* t == g == gcd(a, b) .

sqrt (op)
Return the square root ofop. The result is rounded towards zero.

sqrtrem (op)
Return a tuple(root, remainder) , such thatroot* root + remainder == op.

divm (numerator, denominator, modulus)
Returns a numberq such thatq * denominator % modulus == numerator. One could also implement this
function in Python, usinggcdext() .

15.3. mpz — GNU arbitrary magnitude integers 341

An mpz-number has one method:

binary ()
Convert this mpz-number to a binary string, where the number has been stored as an array of radix-256 digits,
least significant digit first.

The mpz-number must have a value greater than or equal to zero, otherwiseValueError will be raised.

15.4 rotor — Enigma-like encryption and decryption

This module implements a rotor-based encryption algorithm, contributed by Lance Ellinghouse. The design is derived
from the Enigma device, a machine used during World War II to encipher messages. A rotor is simply a permutation.
For example, if the character ‘A’ is the origin of the rotor, then a given rotor might map ‘A’ to ‘L’, ‘B’ to ‘Z’, ‘C’ to ‘G’,
and so on. To encrypt, we choose several different rotors, and set the origins of the rotors to known positions; their
initial position is the ciphering key. To encipher a character, we permute the original character by the first rotor, and
then apply the second rotor’s permutation to the result. We continue until we’ve applied all the rotors; the resulting
character is our ciphertext. We then change the origin of the final rotor by one position, from ‘A’ to ‘B’; if the final rotor
has made a complete revolution, then we rotate the next-to-last rotor by one position, and apply the same procedure
recursively. In other words, after enciphering one character, we advance the rotors in the same fashion as a car’s
odometer. Decoding works in the same way, except we reverse the permutations and apply them in the opposite order.

The available functions in this module are:

newrotor (key[, numrotors])
Return a rotor object.keyis a string containing the encryption key for the object; it can contain arbitrary binary
data. The key will be used to randomly generate the rotor permutations and their initial positions.numrotorsis
the number of rotor permutations in the returned object; if it is omitted, a default value of 6 will be used.

Rotor objects have the following methods:

setkey (key)
Sets the rotor’s key tokey.

encrypt (plaintext)
Reset the rotor object to its initial state and encryptplaintext, returning a string containing the ciphertext. The
ciphertext is always the same length as the original plaintext.

encryptmore (plaintext)
Encryptplaintextwithout resetting the rotor object, and return a string containing the ciphertext.

decrypt (ciphertext)
Reset the rotor object to its initial state and decryptciphertext, returning a string containing the ciphertext. The
plaintext string will always be the same length as the ciphertext.

decryptmore (ciphertext)
Decryptciphertextwithout resetting the rotor object, and return a string containing the ciphertext.

An example usage:

342 Chapter 15. Cryptographic Services

>>> import rotor
>>> rt = rotor.newrotor(’key’, 12)
>>> rt.encrypt(’bar’)
’\2534\363’
>>> rt.encryptmore(’bar’)
’\357\375$’
>>> rt.encrypt(’bar’)
’\2534\363’
>>> rt.decrypt(’\2534\363’)
’bar’
>>> rt.decryptmore(’\357\375$’)
’bar’
>>> rt.decrypt(’\357\375$’)
’l(\315’
>>> del rt

The module’s code is not an exact simulation of the original Enigma device; it implements the rotor encryption
scheme differently from the original. The most important difference is that in the original Enigma, there were only 5
or 6 different rotors in existence, and they were applied twice to each character; the cipher key was the order in which
they were placed in the machine. The Pythonrotor module uses the supplied key to initialize a random number
generator; the rotor permutations and their initial positions are then randomly generated. The original device only
enciphered the letters of the alphabet, while this module can handle any 8-bit binary data; it also produces binary
output. This module can also operate with an arbitrary number of rotors.

The original Enigma cipher was broken in 1944. The version implemented here is probably a good deal more difficult
to crack (especially if you use many rotors), but it won’t be impossible for a truly skillful and determined attacker
to break the cipher. So if you want to keep the NSA out of your files, this rotor cipher may well be unsafe, but for
discouraging casual snooping through your files, it will probably be just fine, and may be somewhat safer than using
the UNIX crypt command.

15.4. rotor — Enigma-like encryption and decryption 343

344

CHAPTER

SIXTEEN

Restricted Execution

In general, Python programs have complete access to the underlying operating system throug the various functions
and classes, For example, a Python program can open any file for reading and writing by using theopen() built-in
function (provided the underlying OS gives you permission!). This is exactly what you want for most applications.

There exists a class of applications for which this “openness” is inappropriate. Take Grail: a web browser that accepts
“applets,” snippets of Python code, from anywhere on the Internet for execution on the local system. This can be used
to improve the user interface of forms, for instance. Since the originator of the code is unknown, it is obvious that it
cannot be trusted with the full resources of the local machine.

Restricted executionis the basic framework in Python that allows for the segregation of trusted and untrusted code. It
is based on the notion that trusted Python code (asupervisor) can create a “padded cell’ (or environment) with limited
permissions, and run the untrusted code within this cell. The untrusted code cannot break out of its cell, and can
only interact with sensitive system resources through interfaces defined and managed by the trusted code. The term
“restricted execution” is favored over “safe-Python” since true safety is hard to define, and is determined by the way
the restricted environment is created. Note that the restricted environments can be nested, with inner cells creating
subcells of lesser, but never greater, privilege.

An interesting aspect of Python’s restricted execution model is that the interfaces presented to untrusted code usually
have the same names as those presented to trusted code. Therefore no special interfaces need to be learned to write
code designed to run in a restricted environment. And because the exact nature of the padded cell is determined by
the supervisor, different restrictions can be imposed, depending on the application. For example, it might be deemed
“safe” for untrusted code to read any file within a specified directory, but never to write a file. In this case, the
supervisor may redefine the built-inopen() function so that it raises an exception whenever themodeparameter is
’w’ . It might also perform achroot() -like operation on thefilenameparameter, such that root is always relative
to some safe “sandbox” area of the filesystem. In this case, the untrusted code would still see an built-inopen()
function in its environment, with the same calling interface. The semantics would be identical too, withIOError s
being raised when the supervisor determined that an unallowable parameter is being used.

The Python run-time determines whether a particular code block is executing in restricted execution mode based on the
identity of the builtins object in its global variables: if this is (the dictionary of) the standardbuiltin
module, the code is deemed to be unrestricted, else it is deemed to be restricted.

Python code executing in restricted mode faces a number of limitations that are designed to prevent it from escaping
from the padded cell. For instance, the function object attributefunc globals and the class and instance object
attribute dict are unavailable.

Two modules provide the framework for setting up restricted execution environments:

rexec Basic restricted execution framework.
Bastion Providing restricted access to objects.

See Also:

Andrew Kuchling, “Restricted Execution HOWTO.” Available online athttp://www.python.org/doc/howto/rexec/.

345

Grail, an Internet browser written in Python, is available athttp://grail.cnri.reston.va.us/grail/. More information on the
use of Python’s restricted execution mode in Grail is available on the Web site.

16.1 rexec — Restricted execution framework

This module contains theRExec class, which supportsr eval() , r execfile() , r exec() , and
r import() methods, which are restricted versions of the standard Python functionseval() , execfile()
and theexec andimport statements. Code executed in this restricted environment will only have access to modules
and functions that are deemed safe; you can subclassRExec to add or remove capabilities as desired.

Note:TheRExec class can prevent code from performing unsafe operations like reading or writing disk files, or using
TCP/IP sockets. However, it does not protect against code using extremely large amounts of memory or CPU time.

RExec([hooks[, verbose]])
Returns an instance of theRExec class.

hooksis an instance of theRHooks class or a subclass of it. If it is omitted orNone, the defaultRHooks class
is instantiated. Whenever therexec module searches for a module (even a built-in one) or reads a module’s
code, it doesn’t actually go out to the file system itself. Rather, it calls methods of anRHooks instance that was
passed to or created by its constructor. (Actually, theRExec object doesn’t make these calls — they are made
by a module loader object that’s part of theRExec object. This allows another level of flexibility, e.g. using
packages.)

By providing an alternateRHooks object, we can control the file system accesses made to import a module,
without changing the actual algorithm that controls the order in which those accesses are made. For instance, we
could substitute anRHooks object that passes all filesystem requests to a file server elsewhere, via some RPC
mechanism such as ILU. Grail’s applet loader uses this to support importing applets from a URL for a directory.

If verboseis true, additional debugging output may be sent to standard output.

The RExec class has the following class attributes, which are used by theinit () method. Changing them
on an existing instance won’t have any effect; instead, create a subclass ofRExec and assign them new values in the
class definition. Instances of the new class will then use those new values. All these attributes are tuples of strings.

nok builtin names
Contains the names of built-in functions which willnot be available to programs running in the restricted en-
vironment. The value forRExec is (’open’, ’reload’, ’ import ’) . (This gives the exceptions,
because by far the majority of built-in functions are harmless. A subclass that wants to override this variable
should probably start with the value from the base class and concatenate additional forbidden functions — when
new dangerous built-in functions are added to Python, they will also be added to this module.)

ok builtin modules
Contains the names of built-in modules which can be safely imported. The value forRExec is (’audioop’,
’array’, ’binascii’, ’cmath’, ’errno’, ’imageop’, ’marshal’, ’math’, ’md5’,
’operator’, ’parser’, ’regex’, ’rotor’, ’select’, ’strop’, ’struct’, ’time’) .
A similar remark about overriding this variable applies — use the value from the base class as a starting point.

ok path
Contains the directories which will be searched when animport is performed in the restricted environment.
The value forRExec is the same assys.path (at the time the module is loaded) for unrestricted code.

ok posix names
Contains the names of the functions in theos module which will be available to programs running in
the restricted environment. The value forRExec is (’error’, ’fstat’, ’listdir’, ’lstat’,
’readlink’, ’stat’, ’times’, ’uname’, ’getpid’, ’getppid’, ’getcwd’, ’getuid’,
’getgid’, ’geteuid’, ’getegid’) .

ok sys names
Contains the names of the functions and variables in thesys module which will be available to pro-

346 Chapter 16. Restricted Execution

grams running in the restricted environment. The value forRExec is (’ps1’, ’ps2’, ’copyright’,
’version’, ’platform’, ’exit’, ’maxint’) .

RExec instances support the following methods:

r eval (code)
codemust either be a string containing a Python expression, or a compiled code object, which will be evaluated
in the restricted environment’s main module. The value of the expression or code object will be returned.

r exec (code)
codemust either be a string containing one or more lines of Python code, or a compiled code object, which will
be executed in the restricted environment’smain module.

r execfile (filename)
Execute the Python code contained in the filefilenamein the restricted environment’s main module.

Methods whose names begin with ‘s ’ are similar to the functions beginning with ‘r ’, but the code will be granted
access to restricted versions of the standard I/O streamssys.stdin , sys.stderr , andsys.stdout .

s eval (code)
codemust be a string containing a Python expression, which will be evaluated in the restricted environment.

s exec (code)
codemust be a string containing one or more lines of Python code, which will be executed in the restricted
environment.

s execfile (code)
Execute the Python code contained in the filefilenamein the restricted environment.

RExec objects must also support various methods which will be implicitly called by code executing in the restricted
environment. Overriding these methods in a subclass is used to change the policies enforced by a restricted environ-
ment.

r import (modulename[, globals[, locals[, fromlist]]])
Import the modulemodulename, raising anImportError exception if the module is considered unsafe.

r open (filename[, mode[, bufsize]])
Method called whenopen() is called in the restricted environment. The arguments are identical to those of
open() , and a file object (or a class instance compatible with file objects) should be returned.RExec’s default
behaviour is allow opening any file for reading, but forbidding any attempt to write a file. See the example below
for an implementation of a less restrictiver open() .

r reload (module)
Reload the module objectmodule, re-parsing and re-initializing it.

r unload (module)
Unload the module objectmodule(i.e., remove it from the restricted environment’ssys.modules dictionary).

And their equivalents with access to restricted standard I/O streams:

s import (modulename[, globals[, locals[, fromlist]]])
Import the modulemodulename, raising anImportError exception if the module is considered unsafe.

s reload (module)
Reload the module objectmodule, re-parsing and re-initializing it.

s unload (module)
Unload the module objectmodule.

16.1. rexec — Restricted execution framework 347

16.1.1 An example

Let us say that we want a slightly more relaxed policy than the standardRExec class. For example, if we’re willing
to allow files in ‘/tmp’ to be written, we can subclass theRExec class:

class TmpWriterRExec(rexec.RExec):
def r_open(self, file, mode=’r’, buf=-1):

if mode in (’r’, ’rb’):
pass

elif mode in (’w’, ’wb’, ’a’, ’ab’):
check filename : must begin with /tmp/
if file[:5]!=’/tmp/’:

raise IOError, "can’t write outside /tmp"
elif (string.find(file, ’/../’) >= 0 or

file[:3] == ’../’ or file[-3:] == ’/..’):
raise IOError, "’..’ in filename forbidden"

else: raise IOError, "Illegal open() mode"
return open(file, mode, buf)

Notice that the above code will occasionally forbid a perfectly valid filename; for example, code in the restricted
environment won’t be able to open a file called ‘/tmp/foo/../bar’. To fix this, ther open() method would have to
simplify the filename to ‘/tmp/bar’, which would require splitting apart the filename and performing various operations
on it. In cases where security is at stake, it may be preferable to write simple code which is sometimes overly restrictive,
instead of more general code that is also more complex and may harbor a subtle security hole.

16.2 Bastion — Restricting access to objects

According to the dictionary, a bastion is “a fortified area or position”, or “something that is considered a stronghold.”
It’s a suitable name for this module, which provides a way to forbid access to certain attributes of an object. It must
always be used with therexec module, in order to allow restricted-mode programs access to certain safe attributes
of an object, while denying access to other, unsafe attributes.

Bastion (object[, filter[, name[, class]]])
Protect the objectobject, returning a bastion for the object. Any attempt to access one of the object’s attributes
will have to be approved by thefilter function; if the access is denied anAttributeError exception will be
raised.

If present,filter must be a function that accepts a string containing an attribute name, and returns true if access
to that attribute will be permitted; iffilter returns false, the access is denied. The default filter denies access to
any function beginning with an underscore (‘’). The bastion’s string representation will be ‘<Bastion for
name>’ if a value fornameis provided; otherwise, ‘repr(object) ’ will be used.

class, if present, should be a subclass ofBastionClass ; see the code in ‘bastion.py’ for the details. Overrid-
ing the defaultBastionClass will rarely be required.

BastionClass (getfunc, name)
Class which actually implements bastion objects. This is the default class used byBastion() . Thegetfunc
parameter is a function which returns the value of an attribute which should be exposed to the restricted execution
environment when called with the name of the attribute as the only parameter.nameis used to construct the
repr() of theBastionClass instance.

348 Chapter 16. Restricted Execution

CHAPTER

SEVENTEEN

Python Language Services

Python provides a number of modules to assist in working with the Python language. These module support tokenizing,
parsing, syntax analysis, bytecode disassembly, and various other facilities.

These modules include:

parser Access parse trees for Python source code.
symbol Constants representing internal nodes of the parse tree.
token Constants representing terminal nodes of the parse tree.
keyword Test whether a string is a keyword in Python.
tokenize Lexical scanner for Python source code.
tabnanny Tool for detecting white space related problems in Python source files in a directory tree.
pyclbr Supports information extraction for a Python class browser.
py compile Compile Python source files to byte-code files.
compileall Tools for byte-compiling all Python source files in a directory tree.
dis Disassembler for Python byte code.

17.1 parser — Access Python parse trees

Theparser module provides an interface to Python’s internal parser and byte-code compiler. The primary purpose
for this interface is to allow Python code to edit the parse tree of a Python expression and create executable code from
this. This is better than trying to parse and modify an arbitrary Python code fragment as a string because parsing is
performed in a manner identical to the code forming the application. It is also faster.

There are a few things to note about this module which are important to making use of the data structures created.
This is not a tutorial on editing the parse trees for Python code, but some examples of using theparser module are
presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is required. For
full information on the language syntax, refer to thePython Language Reference. The parser itself is created from
a grammar specification defined in the file ‘Grammar/Grammar’ in the standard Python distribution. The parse trees
stored in the AST objects created by this module are the actual output from the internal parser when created by
the expr() or suite() functions, described below. The AST objects created bysequence2ast() faithfully
simulate those structures. Be aware that the values of the sequences which are considered “correct” will vary from one
version of Python to another as the formal grammar for the language is revised. However, transporting code from one
Python version to another as source text will always allow correct parse trees to be created in the target version, with
the only restriction being that migrating to an older version of the interpreter will not support more recent language
constructs. The parse trees are not typically compatible from one version to another, whereas source code has always
been forward-compatible.

Each element of the sequences returned byast2list() or ast2tuple() has a simple form. Sequences rep-
resenting non-terminal elements in the grammar always have a length greater than one. The first element is an in-
teger which identifies a production in the grammar. These integers are given symbolic names in the C header file

349

‘ Include/graminit.h’ and the Python modulesymbol . Each additional element of the sequence represents a compo-
nent of the production as recognized in the input string: these are always sequences which have the same form as the
parent. An important aspect of this structure which should be noted is that keywords used to identify the parent node
type, such as the keywordif in an if stmt , are included in the node tree without any special treatment. For exam-
ple, theif keyword is represented by the tuple(1, ’if’) , where1 is the numeric value associated with allNAME
tokens, including variable and function names defined by the user. In an alternate form returned when line number
information is requested, the same token might be represented as(1, ’if’, 12) , where the12 represents the line
number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition of the
source text which was identified. The example of theif keyword above is representative. The various types of
terminal symbols are defined in the C header file ‘Include/token.h’ and the Python moduletoken .

The AST objects are not required to support the functionality of this module, but are provided for three purposes:
to allow an application to amortize the cost of processing complex parse trees, to provide a parse tree representation
which conserves memory space when compared to the Python list or tuple representation, and to ease the creation of
additional modules in C which manipulate parse trees. A simple “wrapper” class may be created in Python to hide the
use of AST objects.

Theparser module defines functions for a few distinct purposes. The most important purposes are to create AST
objects and to convert AST objects to other representations such as parse trees and compiled code objects, but there
are also functions which serve to query the type of parse tree represented by an AST object.

See Also:

Modulesymbol (section 17.2):
Useful constants representing internal nodes of the parse tree.

Moduletoken (section 17.3):
Useful constants representing leaf nodes of the parse tree and functions for testing node values.

17.1.1 Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating an AST object from source,
different functions are used to create the’eval’ and’exec’ forms.

expr (source)
Theexpr() function parses the parametersourceas if it were an input to ‘compile(source, ’file.py’,
’eval’) ’. If the parse succeeds, an AST object is created to hold the internal parse tree representation,
otherwise an appropriate exception is thrown.

suite (source)
The suite() function parses the parametersource as if it were an input to ‘compile(source,
’file.py’, ’exec’) ’. If the parse succeeds, an AST object is created to hold the internal parse tree
representation, otherwise an appropriate exception is thrown.

sequence2ast (sequence)
This function accepts a parse tree represented as a sequence and builds an internal representation if possible.
If it can validate that the tree conforms to the Python grammar and all nodes are valid node types in the host
version of Python, an AST object is created from the internal representation and returned to the called. If there is
a problem creating the internal representation, or if the tree cannot be validated, aParserError exception is
thrown. An AST object created this way should not be assumed to compile correctly; normal exceptions thrown
by compilation may still be initiated when the AST object is passed tocompileast() . This may indicate
problems not related to syntax (such as aMemoryError exception), but may also be due to constructs such as
the result of parsingdel f(0) , which escapes the Python parser but is checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of the form(1,
’name’) or as three-element lists of the form(1, ’name’, 56) . If the third element is present, it is
assumed to be a valid line number. The line number may be specified for any subset of the terminal symbols in

350 Chapter 17. Python Language Services

the input tree.

tuple2ast (sequence)
This is the same function assequence2ast() . This entry point is maintained for backward compatibility.

17.1.2 Converting AST Objects

AST objects, regardless of the input used to create them, may be converted to parse trees represented as list- or tuple-
trees, or may be compiled into executable code objects. Parse trees may be extracted with or without line numbering
information.

ast2list (ast[, line info])
This function accepts an AST object from the caller inastand returns a Python list representing the equivalent
parse tree. The resulting list representation can be used for inspection or the creation of a new parse tree in list
form. This function does not fail so long as memory is available to build the list representation. If the parse
tree will only be used for inspection,ast2tuple() should be used instead to reduce memory consumption
and fragmentation. When the list representation is required, this function is significantly faster than retrieving a
tuple representation and converting that to nested lists.

If line info is true, line number information will be included for all terminal tokens as a third element of the
list representing the token. Note that the line number provided specifies the line on which the tokenends. This
information is omitted if the flag is false or omitted.

ast2tuple (ast[, line info])
This function accepts an AST object from the caller inastand returns a Python tuple representing the equivalent
parse tree. Other than returning a tuple instead of a list, this function is identical toast2list() .

If line info is true, line number information will be included for all terminal tokens as a third element of the list
representing the token. This information is omitted if the flag is false or omitted.

compileast (ast[, filename = ’<ast>’])
The Python byte compiler can be invoked on an AST object to produce code objects which can be used as
part of anexec statement or a call to the built-ineval() function. This function provides the interface to
the compiler, passing the internal parse tree fromast to the parser, using the source file name specified by the
filenameparameter. The default value supplied forfilenameindicates that the source was an AST object.

Compiling an AST object may result in exceptions related to compilation; an example would be a
SyntaxError caused by the parse tree fordel f(0) : this statement is considered legal within the for-
mal grammar for Python but is not a legal language construct. TheSyntaxError raised for this condition
is actually generated by the Python byte-compiler normally, which is why it can be raised at this point by the
parser module. Most causes of compilation failure can be diagnosed programmatically by inspection of the
parse tree.

17.1.3 Queries on AST Objects

Two functions are provided which allow an application to determine if an AST was created as an expression or a suite.
Neither of these functions can be used to determine if an AST was created from source code viaexpr() or suite()
or from a parse tree viasequence2ast() .

isexpr (ast)
Whenastrepresents an’eval’ form, this function returns true, otherwise it returns false. This is useful, since
code objects normally cannot be queried for this information using existing built-in functions. Note that the
code objects created bycompileast() cannot be queried like this either, and are identical to those created
by the built-incompile() function.

issuite (ast)
This function mirrorsisexpr() in that it reports whether an AST object represents an’exec’ form, com-

17.1. parser — Access Python parse trees 351

monly known as a “suite.” It is not safe to assume that this function is equivalent to ‘not isexpr(ast) ’, as
additional syntactic fragments may be supported in the future.

17.1.4 Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other portions of the
Python runtime environment. See each function for information about the exceptions it can raise.

ParserError
Exception raised when a failure occurs within the parser module. This is generally produced for validation
failures rather than the built inSyntaxError thrown during normal parsing. The exception argument is either
a string describing the reason of the failure or a tuple containing a sequence causing the failure from a parse
tree passed tosequence2ast() and an explanatory string. Calls tosequence2ast() need to be able to
handle either type of exception, while calls to other functions in the module will only need to be aware of the
simple string values.

Note that the functionscompileast() , expr() , andsuite() may throw exceptions which are normally thrown
by the parsing and compilation process. These include the built in exceptionsMemoryError , OverflowError ,
SyntaxError , andSystemError . In these cases, these exceptions carry all the meaning normally associated
with them. Refer to the descriptions of each function for detailed information.

17.1.5 AST Objects

Ordered and equality comparisons are supported between AST objects. Pickling of AST objects (using thepickle
module) is also supported.

ASTType
The type of the objects returned byexpr() , suite() andsequence2ast() .

AST objects have the following methods:

compile ([filename])
Same ascompileast(ast, filename) .

isexpr ()
Same asisexpr(ast) .

issuite ()
Same asissuite(ast) .

tolist ([line info])
Same asast2list(ast, line info) .

totuple ([line info])
Same asast2tuple(ast, line info) .

17.1.6 Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the bytecode
is generated, and provides for inspection of the parse tree for information gathering purposes. Two examples are
presented. The simple example demonstrates emulation of thecompile() built-in function and the complex example
shows the use of a parse tree for information discovery.

352 Chapter 17. Python Language Services

Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest operation is to
do nothing. For this purpose, using theparser module to produce an intermediate data structure is equivalent to the
code

>>> code = compile(’a + 5’, ’file.py’, ’eval’)
>>> a = 5
>>> eval(code)
10

The equivalent operation using theparser module is somewhat longer, and allows the intermediate internal parse
tree to be retained as an AST object:

>>> import parser
>>> ast = parser.expr(’a + 5’)
>>> code = ast.compile(’file.py’)
>>> a = 5
>>> eval(code)
10

An application which needs both AST and code objects can package this code into readily available functions:

import parser

def load_suite(source_string):
ast = parser.suite(source_string)
return ast, ast.compile()

def load_expression(source_string):
ast = parser.expr(source_string)
return ast, ast.compile()

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates how the
parse tree provides access to module documentation defined in docstrings without requiring that the code being exam-
ined be loaded into a running interpreter viaimport . This can be very useful for performing analyses of untrusted
code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting information. Two
functions and a set of classes are developed which provide programmatic access to high level function and class
definitions provided by a module. The classes extract information from the parse tree and provide access to the
information at a useful semantic level, one function provides a simple low-level pattern matching capability, and the
other function defines a high-level interface to the classes by handling file operations on behalf of the caller. All source
files mentioned here which are not part of the Python installation are located in the ‘Demo/parser/’ directory of the
distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need only a limited
measure of this when defining classes, functions, and methods. In this example, the only definitions that will be
considered are those which are defined in the top level of their context, e.g., a function defined by adef statement at

17.1. parser — Access Python parse trees 353

column zero of a module, but not a function defined within a branch of anif ... else construct, though there are
some good reasons for doing so in some situations. Nesting of definitions will be handled by the code developed in
the example.

To construct the upper-level extraction methods, we need to know what the parse tree structure looks like and how
much of it we actually need to be concerned about. Python uses a moderately deep parse tree so there are a large
number of intermediate nodes. It is important to read and understand the formal grammar used by Python. This is
specified in the file ‘Grammar/Grammar’ in the distribution. Consider the simplest case of interest when searching for
docstrings: a module consisting of a docstring and nothing else. (See file ‘docstring.py’.)

"""Some documentation.
"""

Using the interpreter to take a look at the parse tree, we find a bewildering mass of numbers and parentheses, with the
documentation buried deep in nested tuples.

>>> import parser
>>> import pprint
>>> ast = parser.suite(open(’docstring.py’).read())
>>> tup = ast.totuple()
>>> pprint.pprint(tup)
(257,

(264,
(265,

(266,
(267,

(307,
(287,

(288,
(289,

(290,
(292,

(293,
(294,

(295,
(296,

(297,
(298,

(299,
(300, (3, ’"""Some documentation.\012"""’))))))))))))))))),

(4, ’’))),
(4, ’’),
(0, ’’))

The numbers at the first element of each node in the tree are the node types; they map directly to terminal and non-
terminal symbols in the grammar. Unfortunately, they are represented as integers in the internal representation, and
the Python structures generated do not change that. However, thesymbol and token modules provide symbolic
names for the node types and dictionaries which map from the integers to the symbolic names for the node types.

In the output presented above, the outermost tuple contains four elements: the integer257 and three additional tuples.
Node type257 has the symbolic namefile input . Each of these inner tuples contains an integer as the first ele-
ment; these integers,264 , 4, and0, represent the node typesstmt , NEWLINE, andENDMARKER, respectively. Note
that these values may change depending on the version of Python you are using; consult ‘symbol.py’ and ‘token.py’ for
details of the mapping. It should be fairly clear that the outermost node is related primarily to the input source rather
than the contents of the file, and may be disregarded for the moment. Thestmt node is much more interesting. In

354 Chapter 17. Python Language Services

particular, all docstrings are found in subtrees which are formed exactly as this node is formed, with the only difference
being the string itself. The association between the docstring in a similar tree and the defined entity (class, function,
or module) which it describes is given by the position of the docstring subtree within the tree defining the described
structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow a simple
pattern matching approach to check any given subtree for equivalence to the general pattern for docstrings. Since the
example demonstrates information extraction, we can safely require that the tree be in tuple form rather than list form,
allowing a simple variable representation to be[’variable name’] . A simple recursive function can implement
the pattern matching, returning a boolean and a dictionary of variable name to value mappings. (See file ‘example.py’.)

from types import ListType, TupleType

def match(pattern, data, vars=None):
if vars is None:

vars = {}
if type(pattern) is ListType:

vars[pattern[0]] = data
return 1, vars

if type(pattern) is not TupleType:
return (pattern == data), vars

if len(data) != len(pattern):
return 0, vars

for pattern, data in map(None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:

break
return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the candidate
docstring subtrees becomes fairly readable. (See file ‘example.py’.)

17.1. parser — Access Python parse trees 355

import symbol
import token

DOCSTRING_STMT_PATTERN = (
symbol.stmt,
(symbol.simple_stmt,

(symbol.small_stmt,
(symbol.expr_stmt,

(symbol.testlist,
(symbol.test,

(symbol.and_test,
(symbol.not_test,

(symbol.comparison,
(symbol.expr,

(symbol.xor_expr,
(symbol.and_expr,

(symbol.shift_expr,
(symbol.arith_expr,

(symbol.term,
(symbol.factor,

(symbol.power,
(symbol.atom,

(token.STRING, [’docstring’])
)))))))))))))))),

(token.NEWLINE, ’’)
))

Using thematch() function with this pattern, extracting the module docstring from the parse tree created previously
is easy:

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup[1])
>>> found
1
>>> vars
{’docstring’: ’"""Some documentation.\012"""’}

Once specific data can be extracted from a location where it is expected, the question of where information can be
expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the docstring is the first
stmt node in a code block (file input or suite node types). A module consists of a singlefile input node,
and class and function definitions each contain exactly onesuite node. Classes and functions are readily identified
as subtrees of code block nodes which start with(stmt, (compound stmt, (classdef, ... or (stmt,
(compound stmt, (funcdef, Note that these subtrees cannot be matched bymatch() since it does
not support multiple sibling nodes to match without regard to number. A more elaborate matching function could be
used to overcome this limitation, but this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract the actual string from the statement,
some work needs to be performed to walk the parse tree for an entire module and extract information about the names
defined in each context of the module and associate any docstrings with the names. The code to perform this work is
not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible. Each “major”
block of the module is described by an object providing several methods for inquiry and a constructor which accepts
at least the subtree of the complete parse tree which it represents. TheModuleInfo constructor accepts an optional
nameparameter since it cannot otherwise determine the name of the module.

The public classes includeClassInfo , FunctionInfo , and ModuleInfo . All objects provide the

356 Chapter 17. Python Language Services

methods get name() , get docstring() , get class names() , and get class info() . The
ClassInfo objects supportget method names() andget method info() while the other classes pro-
videget function names() andget function info() .

Within each of the forms of code block that the public classes represent, most of the required information is in the
same form and is accessed in the same way, with classes having the distinction that functions defined at the top level
are referred to as “methods.” Since the difference in nomenclature reflects a real semantic distinction from functions
defined outside of a class, the implementation needs to maintain the distinction. Hence, most of the functionality of
the public classes can be implemented in a common base class,SuiteInfoBase , with the accessors for function
and method information provided elsewhere. Note that there is only one class which represents function and method
information; this parallels the use of thedef statement to define both types of elements.

Most of the accessor functions are declared inSuiteInfoBase and do not need to be overridden by subclasses.
More importantly, the extraction of most information from a parse tree is handled through a method called by the
SuiteInfoBase constructor. The example code for most of the classes is clear when read alongside the formal
grammar, but the method which recursively creates new information objects requires further examination. Here is the
relevant part of theSuiteInfoBase definition from ‘example.py’:

class SuiteInfoBase:
_docstring = ’’
_name = ’’

def __init__(self, tree = None):
self._class_info = {}
self._function_info = {}
if tree:

self._extract_info(tree)

def _extract_info(self, tree):
extract docstring
if len(tree) == 2:

found, vars = match(DOCSTRING_STMT_PATTERN[1], tree[1])
else:

found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])
if found:

self._docstring = eval(vars[’docstring’])
discover inner definitions
for node in tree[1:]:

found, vars = match(COMPOUND_STMT_PATTERN, node)
if found:

cstmt = vars[’compound’]
if cstmt[0] == symbol.funcdef:

name = cstmt[2][1]
self._function_info[name] = FunctionInfo(cstmt)

elif cstmt[0] == symbol.classdef:
name = cstmt[2][1]
self._class_info[name] = ClassInfo(cstmt)

After initializing some internal state, the constructor calls theextract info() method. This method performs
the bulk of the information extraction which takes place in the entire example. The extraction has two distinct phases:
the location of the docstring for the parse tree passed in, and the discovery of additional definitions within the code
block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the “long form.” The short form is
used when the code block is on the same line as the definition of the code block, as in

17.1. parser — Access Python parse trees 357

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power(exp):
"Make a function that raises an argument to the exponent ‘exp’."
def raiser(x, y=exp):

return x ** y
return raiser

When the short form is used, the code block may contain a docstring as the first, and possibly only,small stmt
element. The extraction of such a docstring is slightly different and requires only a portion of the complete pattern used
in the more common case. As implemented, the docstring will only be found if there is only onesmall stmt node
in thesimple stmt node. Since most functions and methods which use the short form do not provide a docstring,
this may be considered sufficient. The extraction of the docstring proceeds using thematch() function as described
above, and the value of the docstring is stored as an attribute of theSuiteInfoBase object.

After docstring extraction, a simple definition discovery algorithm operates on thestmt nodes of thesuite node.
The special case of the short form is not tested; since there are nostmt nodes in the short form, the algorithm will
silently skip the singlesimple stmt node and correctly not discover any nested definitions.

Each statement in the code block is categorized as a class definition, function or method definition, or something else.
For the definition statements, the name of the element defined is extracted and a representation object appropriate to
the definition is created with the defining subtree passed as an argument to the constructor. The representation objects
are stored in instance variables and may be retrieved by name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than those provided by the
SuiteInfoBase class, but the real extraction algorithm remains common to all forms of code blocks. A high-
level function can be used to extract the complete set of information from a source file. (See file ‘example.py’.)

def get_docs(fileName):
import os
import parser

source = open(fileName).read()
basename = os.path.basename(os.path.splitext(fileName)[0])
ast = parser.suite(source)
return ModuleInfo(ast.totuple(), basename)

This provides an easy-to-use interface to the documentation of a module. If information is required which is not
extracted by the code of this example, the code may be extended at clearly defined points to provide additional capa-
bilities.

17.2 symbol — Constants used with Python parse trees

This module provides constants which represent the numeric values of internal nodes of the parse tree. Unlike most
Python constants, these use lower-case names. Refer to the file ‘Grammar/Grammar’ in the Python distribution for the
definitions of the names in the context of the language grammar. The specific numeric values which the names map to
may change between Python versions.

This module also provides one additional data object:

358 Chapter 17. Python Language Services

sym name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

See Also:

Moduleparser (section 17.1):
second example uses this module

17.3 token — Constants used with Python parse trees

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal tokens).
Refer to the file ‘Grammar/Grammar’ in the Python distribution for the definitions of the names in the context of the
language grammar. The specific numeric values which the names map to may change between Python versions.

This module also provides one data object and some functions. The functions mirror definitions in the Python C header
files.

tok name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

ISTERMINAL(x)
Return true for terminal token values.

ISNONTERMINAL(x)
Return true for non-terminal token values.

ISEOF(x)
Return true ifx is the marker indicating the end of input.

See Also:

Moduleparser (section 17.1):
second example uses this module

17.4 keyword — Testing for Python keywords

This module allows a Python program to determine if a string is a keyword. A single function is provided:

iskeyword (s)
Return true ifs is a Python keyword.

17.5 tokenize — Tokenizer for Python source

The tokenize module provides a lexical scanner for Python source code, implemented in Python. The scanner
in this module returns comments as tokens as well, making it useful for implementing “pretty-printers,” including
colorizers for on-screen displays.

The scanner is exposed by a single function:

tokenize (readline[, tokeneater])
The tokenize() function accepts two parameters: one representing the input stream, and one providing an
output mechanism fortokenize() .

The first parameter,readline, must be a callable object which provides the same interface as thereadline()

17.3. token — Constants used with Python parse trees 359

method of built-in file objects (see section 2.1.7). Each call to the function should return one line of input as a
string.

The second parameter,tokeneater, must also be a callable object. It is called with five parameters: the token
type, the token string, a tuple(srow, scol) specifying the row and column where the token begins in the
source, a tuple(erow, ecol) giving the ending position of the token, and the line on which the token was
found. The line passed is thelogical line; continuation lines are included.

All constants from thetoken module are also exported fromtokenize , as is one additional token type value that
might be passed to thetokeneaterfunction bytokenize() :

COMMENT
Token value used to indicate a comment.

17.6 tabnanny — Detection of ambiguous indentation

For the time being this module is intended to be called as a script. However it is possible to import it into an IDE and
use the functioncheck() described below.

Warning: The API provided by this module is likely to change in future releases; such changes may not be backward
compatible.

check (file or dir)
If file or dir is a directory and not a symbolic link, then recursively descend the directory tree named by
file or dir, checking all ‘.py’ files along the way. Iffile or dir is an ordinary Python source file, it is checked
for whitespace related problems. The diagnostic messages are written to standard output using the print state-
ment.

verbose
Flag indicating whether to print verbose messages. This is set to true by the-v option if called as a script.

filename only
Flag indicating whether to print only the filenames of files containing whitespace related problems. This is set
to true by the-q option if called as a script.

NannyNag
Raised bytokeneater() if detecting an ambiguous indent. Captured and handled incheck() .

tokeneater (type, token, start, end, line)
This function is used bycheck() as a callback parameter to the functiontokenize.tokenize() .

See Also:

Moduletokenize (section 17.5):
Lexical scanner for Python source code.

17.7 pyclbr — Python class browser support

Thepyclbr can be used to determine some limited information about the classes and methods defined in a module.
The information provided is sufficient to implement a traditional three-pane class browser. The information is extracted
from the source code rather than from an imported module, so this module is safe to use with untrusted source code.
This restriction makes it impossible to use this module with modules not implemented in Python, including many
standard and optional extension modules.

readmodule (module[, path])
Read a module and return a dictionary mapping class names to class descriptor objects. The parametermodule
should be the name of a module as a string; it may be the name of a module within a package. Thepathparameter

360 Chapter 17. Python Language Services

should be a sequence, and is used to augment the value ofsys.path , which is used to locate module source
code.

17.7.1 Class Descriptor Objects

The class descriptor objects used as values in the dictionary returned byreadmodule() provide the following data
members:

module
The name of the module defining the class described by the class descriptor.

name
The name of the class.

super
A list of class descriptors which describe the immediate base classes of the class being described. Classes which
are named as superclasses but which are not discoverable byreadmodule() are listed as a string with the
class name instead of class descriptors.

methods
A dictionary mapping method names to line numbers.

file
Name of the file containing the class statement defining the class.

lineno
The line number of the class statement within the file named byfile .

17.8 py compile — Compile Python source files

Thepy compile module provides a single function to generate a byte-code file from a source file.

Though not often needed, this function can be useful when installing modules for shared use, especially if some of the
users may not have permission to write the byte-code cache files in the directory containing the source code.

compile (file[, cfile[, dfile]])
Compile a source file to byte-code and write out the byte-code cache file. The source code is loaded from the
file namefile. The byte-code is written tocfile, which defaults tofile + ’c’ (’o’ if optimization is enabled in
the current interpreter). Ifdfile is specified, it is used as the name of the source file in error messages instead of
file.

See Also:

Modulecompileall (section 17.9):
Utilities to compile all Python source files in a directory tree.

17.9 compileall — Byte-compile Python libraries

This module provides some utility functions to support installing Python libraries. These functions compile Python
source files in a directory tree, allowing users without permission to write to the libraries to take advantage of cached
byte-code files.

The source file for this module may also be used as a script to compile Python sources in directories named on the
command line or insys.path .

compile dir (dir[, maxlevels[, ddir[, force]]])

17.8. py compile — Compile Python source files 361

Recursively descend the directory tree named bydir, compiling all ‘.py’ files along the way. Themaxlevels
parameter is used to limit the depth of the recursion; it defaults to10 . If ddir is given, it is used as the base path
from which the filenames used in error messages will be generated. Ifforce is true, modules are re-compiled
even if the timestamps are up to date.

compile path ([skip curdir[, maxlevels[, force]]])
Byte-compile all the ‘.py’ files found alongsys.path . If skip curdir is true (the default), the current di-
rectory is not included in the search. Themaxlevelsand force parameters default to0 and are passed to the
compile dir() function.

See Also:

Modulepy compile (section 17.8):
Byte-compile a single source file.

17.10 dis — Disassembler for Python byte code

Thedis module supports the analysis of Python byte code by disassembling it. Since there is no Python assembler,
this module defines the Python assembly language. The Python byte code which this module takes as an input is
defined in the file ‘Include/opcode.h’ and used by the compiler and the interpreter.

Example: Given the functionmyfunc :

def myfunc(alist):
return len(alist)

the following command can be used to get the disassembly ofmyfunc() :

>>> dis.dis(myfunc)
0 SET_LINENO 1

3 SET_LINENO 2
6 LOAD_GLOBAL 0 (len)
9 LOAD_FAST 0 (alist)

12 CALL_FUNCTION 1
15 RETURN_VALUE
16 LOAD_CONST 0 (None)
19 RETURN_VALUE

Thedis module defines the following functions and constants:

dis ([bytesource])
Disassemble thebytesourceobject.bytesourcecan denote either a class, a method, a function, or a code object.
For a class, it disassembles all methods. For a single code sequence, it prints one line per byte code instruction.
If no object is provided, it disassembles the last traceback.

distb ([tb])
Disassembles the top-of-stack function of a traceback, using the last traceback if none was passed. The instruc-
tion causing the exception is indicated.

disassemble (code[, lasti])
Disassembles a code object, indicating the last instruction iflasti was provided. The output is divided in the
following columns:

362 Chapter 17. Python Language Services

1.the current instruction, indicated as ‘--> ’,

2.a labelled instruction, indicated with ‘>>’,

3.the address of the instruction,

4.the operation code name,

5.operation parameters, and

6.interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch targets, and
compare operators.

disco (code[, lasti])
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier Python
releases.

opname
Sequence of operation names, indexable using the byte code.

cmp op
Sequence of all compare operation names.

hasconst
Sequence of byte codes that have a constant parameter.

hasname
Sequence of byte codes that access an attribute by name.

hasjrel
Sequence of byte codes that have a relative jump target.

hasjabs
Sequence of byte codes that have an absolute jump target.

haslocal
Sequence of byte codes that access a local variable.

hascompare
Sequence of byte codes of boolean operations.

17.10.1 Python Byte Code Instructions

The Python compiler currently generates the following byte code instructions.

STOP CODE
Indicates end-of-code to the compiler, not used by the interpreter.

POP TOP
Removes the top-of-stack (TOS) item.

ROT TWO
Swaps the two top-most stack items.

ROT THREE
Lifts second and third stack item one position up, moves top down to position three.

ROT FOUR
Lifts second, third and forth stack item one position up, moves top down to position four.

DUP TOP
Duplicates the reference on top of the stack.

17.10. dis — Disassembler for Python byte code 363

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARYPOSITIVE
ImplementsTOS = +TOS.

UNARYNEGATIVE
ImplementsTOS = -TOS.

UNARYNOT
ImplementsTOS = not TOS.

UNARYCONVERT
ImplementsTOS = ‘TOS‘ .

UNARYINVERT
ImplementsTOS = ˜TOS.

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from the stack. They
perform the operation, and put the result back on the stack.

BINARY POWER
ImplementsTOS = TOS1 ** TOS.

BINARY MULTIPLY
ImplementsTOS = TOS1 * TOS.

BINARY DIVIDE
ImplementsTOS = TOS1 / TOS.

BINARY MODULO
ImplementsTOS = TOS1 % TOS.

BINARY ADD
ImplementsTOS = TOS1 + TOS.

BINARY SUBTRACT
ImplementsTOS = TOS1 - TOS.

BINARY SUBSCR
ImplementsTOS = TOS1[TOS].

BINARY LSHIFT
ImplementsTOS = TOS1 << TOS.

BINARY RSHIFT
ImplementsTOS = TOS1 >> TOS.

BINARY AND
ImplementsTOS = TOS1 & TOS.

BINARY XOR
ImplementsTOS = TOS1 ˆ TOS.

BINARY OR
ImplementsTOS = TOS1 | TOS.

In-place operations are like binary operations, in that they remove TOS and TOS1, and push the result back on the
stack, but the operation is done in-place when TOS1 supports it, and the resulting TOS may be (but does not have to
be) the original TOS1.

INPLACE POWER
Implements in-placeTOS = TOS1 ** TOS.

INPLACE MULTIPLY
Implements in-placeTOS = TOS1 * TOS.

364 Chapter 17. Python Language Services

INPLACE DIVIDE
Implements in-placeTOS = TOS1 / TOS.

INPLACE MODULO
Implements in-placeTOS = TOS1 % TOS.

INPLACE ADD
Implements in-placeTOS = TOS1 + TOS.

INPLACE SUBTRACT
Implements in-placeTOS = TOS1 - TOS.

INPLACE LSHIFT
Implements in-placeTOS = TOS1 << TOS.

INPLACE RSHIFT
Implements in-placeTOS = TOS1 >> TOS.

INPLACE AND
Implements in-placeTOS = TOS1 & TOS.

INPLACE XOR
Implements in-placeTOS = TOS1 ˆ TOS.

INPLACE OR
Implements in-placeTOS = TOS1 | TOS.

The slice opcodes take up to three parameters.

SLICE+0
ImplementsTOS = TOS[:] .

SLICE+1
ImplementsTOS = TOS1[TOS:] .

SLICE+2
ImplementsTOS = TOS1[:TOS1] .

SLICE+3
ImplementsTOS = TOS2[TOS1:TOS].

Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.

STORE SLICE+0
ImplementsTOS[:] = TOS1 .

STORE SLICE+1
ImplementsTOS1[TOS:] = TOS2 .

STORE SLICE+2
ImplementsTOS1[:TOS] = TOS2 .

STORE SLICE+3
ImplementsTOS2[TOS1:TOS] = TOS3 .

DELETE SLICE+0
Implementsdel TOS[:] .

DELETE SLICE+1
Implementsdel TOS1[TOS:] .

DELETE SLICE+2
Implementsdel TOS1[:TOS] .

DELETE SLICE+3

17.10. dis — Disassembler for Python byte code 365

Implementsdel TOS2[TOS1:TOS] .

STORE SUBSCR
ImplementsTOS1[TOS] = TOS2.

DELETE SUBSCR
Implementsdel TOS1[TOS] .

PRINT EXPR
Implements the expression statement for the interactive mode. TOS is removed from the stack and printed. In
non-interactive mode, an expression statement is terminated withPOP STACK.

PRINT ITEM
Prints TOS to the file-like object bound tosys.stdout . There is one such instruction for each item in the
print statement.

PRINT ITEM TO
Like PRINT ITEM, but prints the item second from TOS to the file-like object at TOS. This is used by the
extended print statement.

PRINT NEWLINE
Prints a new line onsys.stdout . This is generated as the last operation of aprint statement, unless the
statement ends with a comma.

PRINT NEWLINE TO
Like PRINT NEWLINE, but prints the new line on the file-like object on the TOS. This is used by the extended
print statement.

BREAK LOOP
Terminates a loop due to abreak statement.

LOAD LOCALS
Pushes a reference to the locals of the current scope on the stack. This is used in the code for a class definition:
After the class body is evaluated, the locals are passed to the class definition.

RETURNVALUE
Returns with TOS to the caller of the function.

IMPORT STAR
Loads all symbols not starting with ‘’ directly from the module TOS to the local namespace. The module is
popped after loading all names. This opcode implementsfrom module import * .

EXEC STMT
Implementsexec TOS2,TOS1,TOS . The compiler fills missing optional parameters withNone.

POP BLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested loops, try
statements, and such.

END FINALLY
Terminates afinally clause. The interpreter recalls whether the exception has to be re-raised, or whether the
function returns, and continues with the outer-next block.

BUILD CLASS
Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of the names of the base classes, and
TOS2 the class name.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte last.

STORE NAME namei
Implementsname = TOS. nameiis the index ofnamein the attributeco names of the code object. The
compiler tries to useSTORE LOCALor STORE GLOBALif possible.

366 Chapter 17. Python Language Services

DELETE NAME namei
Implementsdel name , wherenameiis the index intoco names attribute of the code object.

UNPACKSEQUENCE count
Unpacks TOS intocountindividual values, which are put onto the stack right-to-left.

DUP TOPX count
Duplicatecountitems, keeping them in the same order. Due to implementation limits,countshould be between
1 and 5 inclusive.

STORE ATTR namei
ImplementsTOS.name = TOS1, wherenameiis the index of name inco names.

DELETE ATTR namei
Implementsdel TOS.name , usingnameias index intoco names.

STORE GLOBAL namei
Works asSTORE NAME, but stores the name as a global.

DELETE GLOBAL namei
Works asDELETE NAME, but deletes a global name.

LOAD CONST consti
Pushes ‘co consts[consti] ’ onto the stack.

LOAD NAME namei
Pushes the value associated with ‘co names[namei] ’ onto the stack.

BUILD TUPLE count
Creates a tuple consumingcountitems from the stack, and pushes the resulting tuple onto the stack.

BUILD LIST count
Works asBUILD TUPLE, but creates a list.

BUILD MAP zero
Pushes a new empty dictionary object onto the stack. The argument is ignored and set to zero by the compiler.

LOAD ATTR namei
Replaces TOS withgetattr(TOS, co names[namei] .

COMPAREOP opname
Performs a boolean operation. The operation name can be found incmp op[opname] .

IMPORT NAME namei
Imports the moduleco names[namei] . The module object is pushed onto the stack. The current namespace
is not affected: for a proper import statement, a subsequentSTORE FAST instruction modifies the namespace.

IMPORT FROM namei
Loads the attributeco names[namei] from the module found in TOS. The resulting object is pushed onto the
stack, to be subsequently stored by aSTORE FAST instruction.

JUMP FORWARDdelta
Increments byte code counter bydelta.

JUMP IF TRUE delta
If TOS is true, increment the byte code counter bydelta. TOS is left on the stack.

JUMP IF FALSE delta
If TOS is false, increment the byte code counter bydelta. TOS is not changed.

JUMP ABSOLUTE target
Set byte code counter totarget.

FOR LOOP delta

17.10. dis — Disassembler for Python byte code 367

Iterate over a sequence. TOS is the current index, TOS1 the sequence. First, the next element is computed. If the
sequence is exhausted, increment byte code counter bydelta. Otherwise, push the sequence, the incremented
counter, and the current item onto the stack.

LOAD GLOBAL namei
Loads the global namedco names[namei] onto the stack.

SETUP LOOP delta
Pushes a block for a loop onto the block stack. The block spans from the current instruction with a size ofdelta
bytes.

SETUP EXCEPT delta
Pushes a try block from a try-except clause onto the block stack.deltapoints to the first except block.

SETUP FINALLY delta
Pushes a try block from a try-except clause onto the block stack.deltapoints to the finally block.

LOAD FAST var num
Pushes a reference to the localco varnames[var num] onto the stack.

STORE FAST var num
Stores TOS into the localco varnames[var num] .

DELETE FAST var num
Deletes localco varnames[var num] .

SET LINENO lineno
Sets the current line number tolineno.

RAISE VARARGS argc
Raises an exception.argc indicates the number of parameters to the raise statement, ranging from 0 to 3. The
handler will find the traceback as TOS2, the parameter as TOS1, and the exception as TOS.

CALL FUNCTION argc
Calls a function. The low byte ofargc indicates the number of positional parameters, the high byte the number of
keyword parameters. On the stack, the opcode finds the keyword parameters first. For each keyword argument,
the value is on top of the key. Below the keyword parameters, the positional parameters are on the stack, with
the right-most parameter on top. Below the parameters, the function object to call is on the stack.

MAKE FUNCTION argc
Pushes a new function object on the stack. TOS is the code associated with the function. The function object is
defined to haveargcdefault parameters, which are found below TOS.

BUILD SLICE argc
Pushes a slice object on the stack.argc must be 2 or 3. If it is 2,slice(TOS1, TOS) is pushed; if it is 3,
slice(TOS2, TOS1, TOS) is pushed. See theslice() built-in function for more information.

EXTENDEDARG ext
Prefixes any opcode which has an argument too big to fit into the default two bytes.ext holds two additional
bytes which, taken together with the subsequent opcode’s argument, comprise a four-byte argument,extbeing
the two most-significant bytes.

CALL FUNCTION VAR argc
Calls a function.argc is interpreted as inCALL FUNCTION. The top element on the stack contains the variable
argument list, followed by keyword and positional arguments.

CALL FUNCTION KW argc
Calls a function.argc is interpreted as inCALL FUNCTION. The top element on the stack contains the keyword
arguments dictionary, followed by explicit keyword and positional arguments.

CALL FUNCTION VAR KW argc
Calls a function.argc is interpreted as inCALL FUNCTION. The top element on the stack contains the keyword

368 Chapter 17. Python Language Services

arguments dictionary, followed by the variable-arguments tuple, followed by explicit keyword and positional
arguments.

17.10. dis — Disassembler for Python byte code 369

370

CHAPTER

EIGHTEEN

SGI IRIX Specific Services

The modules described in this chapter provide interfaces to features that are unique to SGI’s IRIX operating system
(versions 4 and 5).

al Audio functions on the SGI.
AL Constants used with theal module.
cd Interface to the CD-ROM on Silicon Graphics systems.
fl FORMS library interface for GUI applications.
FL Constants used with thefl module.
flp Functions for loading stored FORMS designs.
fm Font Managerinterface for SGI workstations.
gl Functions from the Silicon GraphicsGraphics Library.
DEVICE Constants used with thegl module.
GL Constants used with thegl module.
imgfile Support for SGI imglib files.
jpeg Read and write image files in compressed JPEG format.

18.1 al — Audio functions on the SGI

This module provides access to the audio facilities of the SGI Indy and Indigo workstations. See section 3A of the
IRIX man pages for details. You’ll need to read those man pages to understand what these functions do! Some of the
functions are not available in IRIX releases before 4.0.5. Again, see the manual to check whether a specific function
is available on your platform.

All functions and methods defined in this module are equivalent to the C functions with ‘AL’ prefixed to their name.

Symbolic constants from the C header file<audio.h> are defined in the standard moduleAL, see below.

Warning: the current version of the audio library may dump core when bad argument values are passed rather than
returning an error status. Unfortunately, since the precise circumstances under which this may happen are undocu-
mented and hard to check, the Python interface can provide no protection against this kind of problems. (One example
is specifying an excessive queue size — there is no documented upper limit.)

The module defines the following functions:

openport (name, direction[, config])
The name and direction arguments are strings. The optionalconfigargument is a configuration object as returned
by newconfig() . The return value is anaudio port object; methods of audio port objects are described below.

newconfig ()
The return value is a newaudio configuration object; methods of audio configuration objects are described
below.

queryparams (device)

371

The device argument is an integer. The return value is a list of integers containing the data returned by
ALqueryparams() .

getparams (device, list)
The deviceargument is an integer. The list argument is a list such as returned byqueryparams() ; it is
modified in place (!).

setparams (device, list)
Thedeviceargument is an integer. Thelist argument is a list such as returned byqueryparams() .

18.1.1 Configuration Objects

Configuration objects (returned bynewconfig() have the following methods:

getqueuesize ()
Return the queue size.

setqueuesize (size)
Set the queue size.

getwidth ()
Get the sample width.

setwidth (width)
Set the sample width.

getchannels ()
Get the channel count.

setchannels (nchannels)
Set the channel count.

getsampfmt ()
Get the sample format.

setsampfmt (sampfmt)
Set the sample format.

getfloatmax ()
Get the maximum value for floating sample formats.

setfloatmax (floatmax)
Set the maximum value for floating sample formats.

18.1.2 Port Objects

Port objects, as returned byopenport() , have the following methods:

closeport ()
Close the port.

getfd ()
Return the file descriptor as an int.

getfilled ()
Return the number of filled samples.

getfillable ()
Return the number of fillable samples.

readsamps (nsamples)

372 Chapter 18. SGI IRIX Specific Services

Read a number of samples from the queue, blocking if necessary. Return the data as a string containing the raw
data, (e.g., 2 bytes per sample in big-endian byte order (high byte, low byte) if you have set the sample width to
2 bytes).

writesamps (samples)
Write samples into the queue, blocking if necessary. The samples are encoded as described for the
readsamps() return value.

getfillpoint ()
Return the ‘fill point’.

setfillpoint (fillpoint)
Set the ‘fill point’.

getconfig ()
Return a configuration object containing the current configuration of the port.

setconfig (config)
Set the configuration from the argument, a configuration object.

getstatus (list)
Get status information on last error.

18.2 AL — Constants used with the al module

This module defines symbolic constants needed to use the built-in moduleal (see above); they are equivalent to those
defined in the C header file<audio.h> except that the name prefix ‘AL ’ is omitted. Read the module source for a
complete list of the defined names. Suggested use:

import al
from AL import *

18.3 cd — CD-ROM access on SGI systems

This module provides an interface to the Silicon Graphics CD library. It is available only on Silicon Graphics systems.

The way the library works is as follows. A program opens the CD-ROM device withopen() and creates a parser to
parse the data from the CD withcreateparser() . The object returned byopen() can be used to read data from
the CD, but also to get status information for the CD-ROM device, and to get information about the CD, such as the
table of contents. Data from the CD is passed to the parser, which parses the frames, and calls any callback functions
that have previously been added.

An audio CD is divided intotracksor programs(the terms are used interchangeably). Tracks can be subdivided into
indices. An audio CD contains atable of contentswhich gives the starts of the tracks on the CD. Index 0 is usually the
pause before the start of a track. The start of the track as given by the table of contents is normally the start of index 1.

Positions on a CD can be represented in two ways. Either a frame number or a tuple of three values, minutes, seconds
and frames. Most functions use the latter representation. Positions can be both relative to the beginning of the CD,
and to the beginning of the track.

Modulecd defines the following functions and constants:

createparser ()
Create and return an opaque parser object. The methods of the parser object are described below.

18.2. AL — Constants used with the al module 373

msftoframe (minutes, seconds, frames)
Converts a(minutes, seconds, frames) triple representing time in absolute time code into the corresponding
CD frame number.

open ([device[, mode]])
Open the CD-ROM device. The return value is an opaque player object; methods of the player object are
described below. The device is the name of the SCSI device file, e.g.’/dev/scsi/sc0d4l0’ , or None.
If omitted orNone, the hardware inventory is consulted to locate a CD-ROM drive. Themode, if not omited,
should be the string’r’ .

The module defines the following variables:

error
Exception raised on various errors.

DATASIZE
The size of one frame’s worth of audio data. This is the size of the audio data as passed to the callback of type
audio .

BLOCKSIZE
The size of one uninterpreted frame of audio data.

The following variables are states as returned bygetstatus() :

READY
The drive is ready for operation loaded with an audio CD.

NODISC
The drive does not have a CD loaded.

CDROM
The drive is loaded with a CD-ROM. Subsequent play or read operations will return I/O errors.

ERROR
An error occurred while trying to read the disc or its table of contents.

PLAYING
The drive is in CD player mode playing an audio CD through its audio jacks.

PAUSED
The drive is in CD layer mode with play paused.

STILL
The equivalent ofPAUSEDon older (non 3301) model Toshiba CD-ROM drives. Such drives have never been
shipped by SGI.

audio
pnum
index
ptime
atime
catalog
ident
control

Integer constants describing the various types of parser callbacks that can be set by theaddcallback()
method of CD parser objects (see below).

18.3.1 Player Objects

Player objects (returned byopen()) have the following methods:

374 Chapter 18. SGI IRIX Specific Services

allowremoval ()
Unlocks the eject button on the CD-ROM drive permitting the user to eject the caddy if desired.

bestreadsize ()
Returns the best value to use for thenum framesparameter of thereadda() method. Best is defined as the
value that permits a continuous flow of data from the CD-ROM drive.

close ()
Frees the resources associated with the player object. After callingclose() , the methods of the object should
no longer be used.

eject ()
Ejects the caddy from the CD-ROM drive.

getstatus ()
Returns information pertaining to the current state of the CD-ROM drive. The returned information is a tuple
with the following values:state, track, rtime, atime, ttime, first, last, scsi audio, cur block. rtime is the time
relative to the start of the current track;atimeis the time relative to the beginning of the disc;ttime is the total
time on the disc. For more information on the meaning of the values, see the man pageCDgetstatus(3dm). The
value ofstateis one of the following:ERROR, NODISC, READY, PLAYING, PAUSED, STILL , or CDROM.

gettrackinfo (track)
Returns information about the specified track. The returned information is a tuple consisting of two elements,
the start time of the track and the duration of the track.

msftoblock (min, sec, frame)
Converts a minutes, seconds, frames triple representing a time in absolute time code into the corresponding logi-
cal block number for the given CD-ROM drive. You should usemsftoframe() rather thanmsftoblock()
for comparing times. The logical block number differs from the frame number by an offset required by certain
CD-ROM drives.

play (start, play)
Starts playback of an audio CD in the CD-ROM drive at the specified track. The audio output appears on the
CD-ROM drive’s headphone and audio jacks (if fitted). Play stops at the end of the disc.start is the number of
the track at which to start playing the CD; ifplay is 0, the CD will be set to an initial paused state. The method
togglepause() can then be used to commence play.

playabs (minutes, seconds, frames, play)
Like play() , except that the start is given in minutes, seconds, and frames instead of a track number.

playtrack (start, play)
Like play() , except that playing stops at the end of the track.

playtrackabs (track, minutes, seconds, frames, play)
Like play() , except that playing begins at the specified absolute time and ends at the end of the specified
track.

preventremoval ()
Locks the eject button on the CD-ROM drive thus preventing the user from arbitrarily ejecting the caddy.

readda (num frames)
Reads the specified number of frames from an audio CD mounted in the CD-ROM drive. The return value is a
string representing the audio frames. This string can be passed unaltered to theparseframe() method of the
parser object.

seek (minutes, seconds, frames)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to an absolute time code location specified inminutes, seconds, andframes. The return value is the
logical block number to which the pointer has been set.

seekblock (block)

18.3. cd — CD-ROM access on SGI systems 375

Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to the specified logical block number. The return value is the logical block number to which the
pointer has been set.

seektrack (track)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to the specified track. The return value is the logical block number to which the pointer has been
set.

stop ()
Stops the current playing operation.

togglepause ()
Pauses the CD if it is playing, and makes it play if it is paused.

18.3.2 Parser Objects

Parser objects (returned bycreateparser()) have the following methods:

addcallback (type, func, arg)
Adds a callback for the parser. The parser has callbacks for eight different types of data in the digital audio
data stream. Constants for these types are defined at thecd module level (see above). The callback is called
as follows:func(arg, type, data) , wherearg is the user supplied argument,typeis the particular type of
callback, anddata is the data returned for thistypeof callback. The type of the data depends on thetypeof
callback as follows:

Type Value
audio String which can be passed unmodified toal.writesamps() .
pnum Integer giving the program (track) number.
index Integer giving the index number.
ptime Tuple consisting of the program time in minutes, seconds, and frames.
atime Tuple consisting of the absolute time in minutes, seconds, and frames.
catalog String of 13 characters, giving the catalog number of the CD.
ident String of 12 characters, giving the ISRC identification number of the

recording. The string consists of two characters country code, three char-
acters owner code, two characters giving the year, and five characters
giving a serial number.

control Integer giving the control bits from the CD subcode data

deleteparser ()
Deletes the parser and frees the memory it was using. The object should not be used after this call. This call is
done automatically when the last reference to the object is removed.

parseframe (frame)
Parses one or more frames of digital audio data from a CD such as returned byreadda() . It determines which
subcodes are present in the data. If these subcodes have changed since the last frame, thenparseframe()
executes a callback of the appropriate type passing to it the subcode data found in the frame. Unlike the C
function, more than one frame of digital audio data can be passed to this method.

removecallback (type)
Removes the callback for the giventype.

resetparser ()
Resets the fields of the parser used for tracking subcodes to an initial state.resetparser() should be called
after the disc has been changed.

376 Chapter 18. SGI IRIX Specific Services

18.4 fl — FORMS library interface for GUI applications

This module provides an interface to the FORMS Library by Mark Overmars. The source for the library can be
retrieved by anonymous ftp from host ‘ftp.cs.ruu.nl ’, directory ‘SGI/FORMS’. It was last tested with version
2.0b.

Most functions are literal translations of their C equivalents, dropping the initial ‘fl ’ from their name. Constants
used by the library are defined in moduleFL described below.

The creation of objects is a little different in Python than in C: instead of the ‘current form’ maintained by the library
to which new FORMS objects are added, all functions that add a FORMS object to a form are methods of the Python
object representing the form. Consequently, there are no Python equivalents for the C functionsfl addto form()
andfl end form() , and the equivalent offl bgn form() is calledfl.make form() .

Watch out for the somewhat confusing terminology: FORMS uses the wordobject for the buttons, sliders etc. that
you can place in a form. In Python, ‘object’ means any value. The Python interface to FORMS introduces two new
Python object types: form objects (representing an entire form) and FORMS objects (representing one button, slider
etc.). Hopefully this isn’t too confusing.

There are no ‘free objects’ in the Python interface to FORMS, nor is there an easy way to add object classes written
in Python. The FORMS interface to GL event handling is available, though, so you can mix FORMS with pure GL
windows.

Please note: importing fl implies a call to the GL functionforeground() and to the FORMS routine
fl init() .

18.4.1 Functions Defined in Module fl

Module fl defines the following functions. For more information about what they do, see the description of the
equivalent C function in the FORMS documentation:

make form (type, width, height)
Create a form with given type, width and height. This returns aformobject, whose methods are described below.

do forms ()
The standard FORMS main loop. Returns a Python object representing the FORMS object needing interaction,
or the special valueFL.EVENT.

check forms ()
Check for FORMS events. Returns whatdo forms() above returns, orNone if there is no event that imme-
diately needs interaction.

set event call back (function)
Set the event callback function.

set graphics mode(rgbmode, doublebuffering)
Set the graphics modes.

get rgbmode ()
Return the current rgb mode. This is the value of the C global variablefl rgbmode .

show message (str1, str2, str3)
Show a dialog box with a three-line message and an OK button.

show question (str1, str2, str3)
Show a dialog box with a three-line message and YES and NO buttons. It returns1 if the user pressed YES,0
if NO.

show choice (str1, str2, str3, but1[, but2[, but3]])
Show a dialog box with a three-line message and up to three buttons. It returns the number of the button clicked

18.4. fl — FORMS library interface for GUI applications 377

by the user (1, 2 or 3).

show input (prompt, default)
Show a dialog box with a one-line prompt message and text field in which the user can enter a string. The second
argument is the default input string. It returns the string value as edited by the user.

show file selector (message, directory, pattern, default)
Show a dialog box in which the user can select a file. It returns the absolute filename selected by the user, or
None if the user presses Cancel.

get directory ()
get pattern ()
get filename ()

These functions return the directory, pattern and filename (the tail part only) selected by the user in the last
show file selector() call.

qdevice (dev)
unqdevice (dev)
isqueued (dev)
qtest ()
qread ()
qreset ()
qenter (dev, val)
get mouse()
tie (button, valuator1, valuator2)

These functions are the FORMS interfaces to the corresponding GL functions. Use these if you want to handle
some GL events yourself when usingfl.do events() . When a GL event is detected that FORMS cannot
handle,fl.do forms() returns the special valueFL.EVENT and you should callfl.qread() to read the
event from the queue. Don’t use the equivalent GL functions!

color ()
mapcolor ()
getmcolor ()

See the description in the FORMS documentation offl color() , fl mapcolor() and
fl getmcolor() .

18.4.2 Form Objects

Form objects (returned bymake form() above) have the following methods. Each method corresponds to a C
function whose name is prefixed with ‘fl ’; and whose first argument is a form pointer; please refer to the official
FORMS documentation for descriptions.

All the add *() methods return a Python object representing the FORMS object. Methods of FORMS objects are
described below. Most kinds of FORMS object also have some methods specific to that kind; these methods are listed
here.

show form (placement, bordertype, name)
Show the form.

hide form ()
Hide the form.

redraw form ()
Redraw the form.

set form position (x, y)
Set the form’s position.

378 Chapter 18. SGI IRIX Specific Services

freeze form ()
Freeze the form.

unfreeze form ()
Unfreeze the form.

activate form ()
Activate the form.

deactivate form ()
Deactivate the form.

bgn group ()
Begin a new group of objects; return a group object.

end group ()
End the current group of objects.

find first ()
Find the first object in the form.

find last ()
Find the last object in the form.

add box (type, x, y, w, h, name)
Add a box object to the form. No extra methods.

add text (type, x, y, w, h, name)
Add a text object to the form. No extra methods.

add clock (type, x, y, w, h, name)
Add a clock object to the form.
Method:get clock() .

add button (type, x, y, w, h, name)
Add a button object to the form.
Methods:get button() , set button() .

add lightbutton (type, x, y, w, h, name)
Add a lightbutton object to the form.
Methods:get button() , set button() .

add roundbutton (type, x, y, w, h, name)
Add a roundbutton object to the form.
Methods:get button() , set button() .

add slider (type, x, y, w, h, name)
Add a slider object to the form.
Methods:set slider value() , get slider value() , set slider bounds() ,
get slider bounds() , set slider return() , set slider size() ,
set slider precision() , set slider step() .

add valslider (type, x, y, w, h, name)
Add a valslider object to the form.
Methods:set slider value() , get slider value() , set slider bounds() ,
get slider bounds() , set slider return() , set slider size() ,
set slider precision() , set slider step() .

add dial (type, x, y, w, h, name)
Add a dial object to the form.
Methods:set dial value() , get dial value() , set dial bounds() ,
get dial bounds() .

18.4. fl — FORMS library interface for GUI applications 379

add positioner (type, x, y, w, h, name)
Add a positioner object to the form.
Methods:set positioner xvalue() , set positioner yvalue() ,
set positioner xbounds() , set positioner ybounds() , get positioner xvalue() ,
get positioner yvalue() , get positioner xbounds() , get positioner ybounds() .

add counter (type, x, y, w, h, name)
Add a counter object to the form.
Methods:set counter value() , get counter value() , set counter bounds() ,
set counter step() , set counter precision() , set counter return() .

add input (type, x, y, w, h, name)
Add a input object to the form.
Methods:set input() , get input() , set input color() , set input return() .

add menu(type, x, y, w, h, name)
Add a menu object to the form.
Methods:set menu() , get menu() , addto menu() .

add choice (type, x, y, w, h, name)
Add a choice object to the form.
Methods:set choice() , get choice() , clear choice() , addto choice() ,
replace choice() , delete choice() , get choice text() , set choice fontsize() ,
set choice fontstyle() .

add browser (type, x, y, w, h, name)
Add a browser object to the form.
Methods:set browser topline() , clear browser() , add browser line() ,
addto browser() , insert browser line() , delete browser line() ,
replace browser line() , get browser line() , load browser() ,
get browser maxline() , select browser line() , deselect browser line() ,
deselect browser() , isselected browser line() , get browser() ,
set browser fontsize() , set browser fontstyle() , set browser specialkey() .

add timer (type, x, y, w, h, name)
Add a timer object to the form.
Methods:set timer() , get timer() .

Form objects have the following data attributes; see the FORMS documentation:

Name C Type Meaning
window int (read-only) GL window id
w float form width
h float form height
x float form x origin
y float form y origin
deactivated int nonzero if form is deactivated
visible int nonzero if form is visible
frozen int nonzero if form is frozen
doublebuf int nonzero if double buffering on

18.4.3 FORMS Objects

Besides methods specific to particular kinds of FORMS objects, all FORMS objects also have the following methods:

set call back (function, argument)
Set the object’s callback function and argument. When the object needs interaction, the callback function will be

380 Chapter 18. SGI IRIX Specific Services

called with two arguments: the object, and the callback argument. (FORMS objects without a callback function
are returned byfl.do forms() or fl.check forms() when they need interaction.) Call this method
without arguments to remove the callback function.

delete object ()
Delete the object.

show object ()
Show the object.

hide object ()
Hide the object.

redraw object ()
Redraw the object.

freeze object ()
Freeze the object.

unfreeze object ()
Unfreeze the object.

FORMS objects have these data attributes; see the FORMS documentation:

Name C Type Meaning
objclass int (read-only) object class
type int (read-only) object type
boxtype int box type
x float x origin
y float y origin
w float width
h float height
col1 int primary color
col2 int secondary color
align int alignment
lcol int label color
lsize float label font size
label string label string
lstyle int label style
pushed int (read-only) (see FORMS docs)
focus int (read-only) (see FORMS docs)
belowmouse int (read-only) (see FORMS docs)
frozen int (read-only) (see FORMS docs)
active int (read-only) (see FORMS docs)
input int (read-only) (see FORMS docs)
visible int (read-only) (see FORMS docs)
radio int (read-only) (see FORMS docs)
automatic int (read-only) (see FORMS docs)

18.5 FL — Constants used with the fl module

This module defines symbolic constants needed to use the built-in modulefl (see above); they are equivalent to those
defined in the C header file<forms.h> except that the name prefix ‘FL ’ is omitted. Read the module source for a
complete list of the defined names. Suggested use:

18.5. FL — Constants used with the fl module 381

import fl
from FL import *

18.6 flp — Functions for loading stored FORMS designs

This module defines functions that can read form definitions created by the ‘form designer’ (fdesign) program that
comes with the FORMS library (see modulefl above).

For now, see the file ‘flp.doc’ in the Python library source directory for a description.

XXX A complete description should be inserted here!

18.7 fm — Font Manager interface

This module provides access to the IRISFont Managerlibrary. It is available only on Silicon Graphics machines.
See also:4Sight User’s Guide, section 1, chapter 5: “Using the IRIS Font Manager.”

This is not yet a full interface to the IRIS Font Manager. Among the unsupported features are: matrix operations; cache
operations; character operations (use string operations instead); some details of font info; individual glyph metrics;
and printer matching.

It supports the following operations:

init ()
Initialization function. Callsfminit() . It is normally not necessary to call this function, since it is called
automatically the first time thefm module is imported.

findfont (fontname)
Return a font handle object. Callsfmfindfont(fontname) .

enumerate ()
Returns a list of available font names. This is an interface tofmenumerate() .

prstr (string)
Render a string using the current font (see thesetfont() font handle method below). Calls
fmprstr(string) .

setpath (string)
Sets the font search path. Callsfmsetpath(string) . (XXX Does not work!?!)

fontpath ()
Returns the current font search path.

Font handle objects support the following operations:

scalefont (factor)
Returns a handle for a scaled version of this font. Callsfmscalefont(fh, factor) .

setfont ()
Makes this font the current font. Note: the effect is undone silently when the font handle object is deleted. Calls
fmsetfont(fh) .

getfontname ()
Returns this font’s name. Callsfmgetfontname(fh) .

getcomment ()
Returns the comment string associated with this font. Raises an exception if there is none. Calls

382 Chapter 18. SGI IRIX Specific Services

fmgetcomment(fh) .

getfontinfo ()
Returns a tuple giving some pertinent data about this font. This is an interface tofmgetfontinfo() . The
returned tuple contains the following numbers:(printermatched, fixed width, xorig, yorig, xsize, ysize, height,
nglyphs) .

getstrwidth (string)
Returns the width, in pixels, ofstringwhen drawn in this font. Callsfmgetstrwidth(fh, string) .

18.8 gl — Graphics Library interface

This module provides access to the Silicon GraphicsGraphics Library. It is available only on Silicon Graphics
machines.

Warning: Some illegal calls to the GL library cause the Python interpreter to dump core. In particular, the use of most
GL calls is unsafe before the first window is opened.

The module is too large to document here in its entirety, but the following should help you to get started. The parameter
conventions for the C functions are translated to Python as follows:

• All (short, long, unsigned) int values are represented by Python integers.

• All float and double values are represented by Python floating point numbers. In most cases, Python integers
are also allowed.

• All arrays are represented by one-dimensional Python lists. In most cases, tuples are also allowed.

• All string and character arguments are represented by Python strings, for instance,winopen(’Hi There!’)
androtate(900, ’z’) .

• All (short, long, unsigned) integer arguments or return values that are only used to specify the length of an array
argument are omitted. For example, the C call

lmdef(deftype, index, np, props)

is translated to Python as

lmdef(deftype, index, props)

• Output arguments are omitted from the argument list; they are transmitted as function return values instead. If
more than one value must be returned, the return value is a tuple. If the C function has both a regular return
value (that is not omitted because of the previous rule) and an output argument, the return value comes first in
the tuple. Examples: the C call

getmcolor(i, &red, &green, &blue)

is translated to Python as

red, green, blue = getmcolor(i)

18.8. gl — Graphics Library interface 383

The following functions are non-standard or have special argument conventions:

varray (argument)
Equivalent to but faster than a number ofv3d() calls. Theargumentis a list (or tuple) of points. Each point
must be a tuple of coordinates(x, y, z) or (x, y) . The points may be 2- or 3-dimensional but must all have
the same dimension. Float and int values may be mixed however. The points are always converted to 3D double
precision points by assumingz = 0.0 if necessary (as indicated in the man page), and for each pointv3d()
is called.

nvarray ()
Equivalent to but faster than a number ofn3f andv3f calls. The argument is an array (list or tuple) of pairs
of normals and points. Each pair is a tuple of a point and a normal for that point. Each point or normal must be
a tuple of coordinates(x, y, z) . Three coordinates must be given. Float and int values may be mixed. For
each pair,n3f() is called for the normal, and thenv3f() is called for the point.

vnarray ()
Similar tonvarray() but the pairs have the point first and the normal second.

nurbssurface (s k, t k, ctl, s ord, t ord, type)
Defines a nurbs surface. The dimensions ofctl[][] are computed as follows:[len(s k) - s ord] ,
[len(t k) - t ord] .

nurbscurve (knots, ctlpoints, order, type)
Defines a nurbs curve. The length of ctlpoints islen(knots) - order.

pwlcurve (points, type)
Defines a piecewise-linear curve.pointsis a list of points.typemust beN ST.

pick (n)
select (n)

The only argument to these functions specifies the desired size of the pick or select buffer.

endpick ()
endselect ()

These functions have no arguments. They return a list of integers representing the used part of the pick/select
buffer. No method is provided to detect buffer overrun.

Here is a tiny but complete example GL program in Python:

384 Chapter 18. SGI IRIX Specific Services

import gl, GL, time

def main():
gl.foreground()
gl.prefposition(500, 900, 500, 900)
w = gl.winopen(’CrissCross’)
gl.ortho2(0.0, 400.0, 0.0, 400.0)
gl.color(GL.WHITE)
gl.clear()
gl.color(GL.RED)
gl.bgnline()
gl.v2f(0.0, 0.0)
gl.v2f(400.0, 400.0)
gl.endline()
gl.bgnline()
gl.v2f(400.0, 0.0)
gl.v2f(0.0, 400.0)
gl.endline()
time.sleep(5)

main()

See Also:

An interface to OpenGL is also available; see information about David Ascher’sPyOpenGL online at
http://starship.python.net/crew/da/PyOpenGL/. This may be a better option if support for SGI hardware from before
about 1996 is not required.

18.9 DEVICE — Constants used with the gl module

This modules defines the constants used by the Silicon GraphicsGraphics Librarythat C programmers find in the
header file<gl/device.h> . Read the module source file for details.

18.10 GL — Constants used with the gl module

This module contains constants used by the Silicon GraphicsGraphics Libraryfrom the C header file<gl/gl.h> .
Read the module source file for details.

18.11 imgfile — Support for SGI imglib files

The imgfile module allows Python programs to access SGI imglib image files (also known as ‘.rgb’ files). The
module is far from complete, but is provided anyway since the functionality that there is is enough in some cases.
Currently, colormap files are not supported.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unsupported file type, etc.

getsizes (file)
This function returns a tuple(x, y, z) wherex andy are the size of the image in pixels andz is the number

18.9. DEVICE — Constants used with the gl module 385

of bytes per pixel. Only 3 byte RGB pixels and 1 byte greyscale pixels are currently supported.

read (file)
This function reads and decodes the image on the specified file, and returns it as a Python string. The string has
either 1 byte greyscale pixels or 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format
is suitable to pass togl.lrectwrite() , for instance.

readscaled (file, x, y, filter[, blur])
This function is identical to read but it returns an image that is scaled to the givenx andy sizes. If thefilter and
blur parameters are omitted scaling is done by simply dropping or duplicating pixels, so the result will be less
than perfect, especially for computer-generated images.

Alternatively, you can specify a filter to use to smoothen the image after scaling. The filter forms supported are
’impulse’ , ’box’ , ’triangle’ , ’quadratic’ and ’gaussian’ . If a filter is specifiedblur is an
optional parameter specifying the blurriness of the filter. It defaults to1.0 .

readscaled() makes no attempt to keep the aspect ratio correct, so that is the users’ responsibility.

ttob (flag)
This function sets a global flag which defines whether the scan lines of the image are read or written from bottom
to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is one, compatible with X). The default
is zero.

write (file, data, x, y, z)
This function writes the RGB or greyscale data indata to image filefile. x andy give the size of the image,z is
1 for 1 byte greyscale images or 3 for RGB images (which are stored as 4 byte values of which only the lower
three bytes are used). These are the formats returned bygl.lrectread() .

18.12 jpeg — Read and write JPEG files

The modulejpeg provides access to the jpeg compressor and decompressor written by the Independent JPEG Group
(IJG). JPEG is a standard for compressing pictures; it is defined in ISO 10918. For details on JPEG or the Independent
JPEG Group software refer to the JPEG standard or the documentation provided with the software.

A portable interface to JPEG image files is available with the Python Imaging Library (PIL) by Fredrik Lundh. Infor-
mation on PIL is available athttp://www.pythonware.com/products/pil/.

The jpeg module defines an exception and some functions.

error
Exception raised bycompress() anddecompress() in case of errors.

compress (data, w, h, b)
Treat data as a pixmap of widthw and heighth, with b bytes per pixel. The data is in SGI GL order, so the first
pixel is in the lower-left corner. This means thatgl.lrectread() return data can immediately be passed to
compress() . Currently only 1 byte and 4 byte pixels are allowed, the former being treated as greyscale and
the latter as RGB color.compress() returns a string that contains the compressed picture, in JFIF format.

decompress (data)
Data is a string containing a picture in JFIF format. It returns a tuple(data, width, height, bytesperpixel) .
Again, the data is suitable to pass togl.lrectwrite() .

setoption (name, value)
Set various options. Subsequentcompress() anddecompress() calls will use these options. The follow-
ing options are available:

386 Chapter 18. SGI IRIX Specific Services

Option Effect
’forcegray’ Force output to be grayscale, even if input is RGB.
’quality’ Set the quality of the compressed image to a value be-

tween0 and 100 (default is75). This only affects
compression.

’optimize’ Perform Huffman table optimization. Takes longer,
but results in smaller compressed image. This only
affects compression.

’smooth’ Perform inter-block smoothing on uncompressed im-
age. Only useful for low-quality images. This only
affects decompression.

See Also:

JPEG Still Image Data Compression Standard, by Pennebaker and Mitchell, is the canonical reference for the JPEG
image format.

The ISO standard for JPEG is also published as ITU T.81. This is available in PDF form at
http://www.w3.org/Graphics/JPEG/itu-t81.pdf.

18.12. jpeg — Read and write JPEG files 387

388

CHAPTER

NINETEEN

SunOS Specific Services

The modules described in this chapter provide interfaces to features that are unique to the SunOS operating system
(versions 4 and 5; the latter is also known as Solaris version 2).

19.1 sunaudiodev — Access to Sun audio hardware

This module allows you to access the Sun audio interface. The Sun audio hardware is capable of recording and playing
back audio data in u-LAW format with a sample rate of 8K per second. A full description can be found in theaudio(7I)
manual page.

The moduleSUNAUDIODEVdefines constants which may be used with this module.

This module defines the following variables and functions:

error
This exception is raised on all errors. The argument is a string describing what went wrong.

open (mode)
This function opens the audio device and returns a Sun audio device object. This object can then be used to do
I/O on. Themodeparameter is one of’r’ for record-only access,’w’ for play-only access,’rw’ for both and
’control’ for access to the control device. Since only one process is allowed to have the recorder or player
open at the same time it is a good idea to open the device only for the activity needed. Seeaudio(7I) for details.

As per the manpage, this module first looks in the environment variableAUDIODEVfor the base audio device
filename. If not found, it falls back to ‘/dev/audio’. The control device is calculated by appending “ctl” to the
base audio device.

19.1.1 Audio Device Objects

The audio device objects are returned byopen() define the following methods (exceptcontrol objects which only
providegetinfo() , setinfo() , fileno() , anddrain()):

close ()
This method explicitly closes the device. It is useful in situations where deleting the object does not immediately
close it since there are other references to it. A closed device should not be used again.

fileno ()
Returns the file descriptor associated with the device. This can be used to set upSIGPOLL notification, as
described below.

drain ()
This method waits until all pending output is processed and then returns. Calling this method is often not
necessary: destroying the object will automatically close the audio device and this will do an implicit drain.

389

flush ()
This method discards all pending output. It can be used avoid the slow response to a user’s stop request (due to
buffering of up to one second of sound).

getinfo ()
This method retrieves status information like input and output volume, etc. and returns it in the form of an
audio status object. This object has no methods but it contains a number of attributes describing the current
device status. The names and meanings of the attributes are described in<sun/audioio.h> and in the
audio(7I) manual page. Member names are slightly different from their C counterparts: a status object is only
a single structure. Members of theplay substructure have ‘o ’ prepended to their name and members of the
record structure have ‘i ’. So, the C memberplay.sample rate is accessed aso sample rate ,
record.gain asi gain andmonitor gain plainly asmonitor gain .

ibufcount ()
This method returns the number of samples that are buffered on the recording side, i.e. the program will not
block on aread() call of so many samples.

obufcount ()
This method returns the number of samples buffered on the playback side. Unfortunately, this number cannot
be used to determine a number of samples that can be written without blocking since the kernel output queue
length seems to be variable.

read (size)
This method readssizesamples from the audio input and returns them as a Python string. The function blocks
until enough data is available.

setinfo (status)
This method sets the audio device status parameters. Thestatusparameter is an device status object as returned
by getinfo() and possibly modified by the program.

write (samples)
Write is passed a Python string containing audio samples to be played. If there is enough buffer space free it
will immediately return, otherwise it will block.

The audio device supports asynchronous notification of various events, through the SIGPOLL signal. Here’s an exam-
ple of how you might enable this in Python:

def handle_sigpoll(signum, frame):
print ’I got a SIGPOLL update’

import fcntl, signal, STROPTS

signal.signal(signal.SIGPOLL, handle_sigpoll)
fcntl.ioctl(audio_obj.fileno(), STROPTS.I_SETSIG, STROPTS.S_MSG)

19.2 SUNAUDIODEV— Constants used with sunaudiodev

This is a companion module tosunaudiodev which defines useful symbolic constants likeMIN GAIN,
MAX GAIN, SPEAKER, etc. The names of the constants are the same names as used in the C include file
<sun/audioio.h> , with the leading string ‘AUDIO ’ stripped.

390 Chapter 19. SunOS Specific Services

CHAPTER

TWENTY

MS Windows Specific Services

This chapter describes modules that are only available on MS Windows platforms.

msvcrt Miscellaneous useful routines from the MS VC++ runtime.
winreg Routines and objects for manipulating the Windows registry.

winsound Access to the sound-playing machinery for Windows.

20.1 msvcrt – Useful routines from the MS VC++ runtime

These functions provide access to some useful capabilities on Windows platforms. Some higher-level modules use
these functions to build the Windows implementations of their services. For example, thegetpass module uses this
in the implementation of thegetpass() function.

Further documentation on these functions can be found in the Platform API documentation.

20.1.1 File Operations

locking (fd, mode, nbytes)
Lock part of a file based on a file descriptor from the C runtime. RaisesIOError on failure.

setmode (fd, flags)
Set the line-end translation mode for the file descriptorfd. To set it to text mode,flagsshould beos.O TEXT;
for binary, it should beos.O BINARY.

open osfhandle (handle, flags)
Create a C runtime file descriptor from the file handlehandle. Theflagsparameter should be a bit-wise OR of
os.O APPEND, os.O RDONLY, andos.O TEXT. The returned file descriptor may be used as a parameter
to os.fdopen() to create a file object.

get osfhandle (fd)
Return the file handle for the file descriptorfd. RaisesIOError if fd is not recognized.

20.1.2 Console I/O

kbhit ()
Return true if a keypress is waiting to be read.

getch ()
Read a keypress and return the resulting character. Nothing is echoed to the console. This call will block if a
keypress is not already available, but will not wait forEnter to be pressed. If the pressed key was a special
function key, this will return’\000’ or ’\xe0’ ; the next call will return the keycode. TheControl-C
keypress cannot be read with this function.

391

getche ()
Similar togetch() , but the keypress will be echoed if it represents a printable character.

putch (char)
Print the characterchar to the console without buffering.

ungetch (char)
Cause the characterchar to be “pushed back” into the console buffer; it will be the next character read by
getch() or getche() .

20.1.3 Other Functions

heapmin ()
Force themalloc() heap to clean itself up and return unused blocks to the operating system. This only works
on Windows NT. On failure, this raisesIOError .

20.2 winreg – Windows registry access

New in version 2.0.

These functions expose the Windows registry API to Python. Instead of using an integer as the registry handle, a
handle object is used to ensure that the handles are closed correctly, even if the programmer neglects to explicitly close
them.

This module exposes a very low-level interface to the Windows registry; it is expected that in the future a newwinreg
module will be created offering a higher-level interface to the registry API.

This module offers the following functions:

CloseKey (hkey)
Closes a previously opened registry key. The hkey argument specifies a previously opened key.

Note that ifhkeyis not closed using this method, (or thehandle.Close() closed when thehkeyobject is
destroyed by Python.

ConnectRegistry (computer name, key)
Establishes a connection to a predefined registry handle on another computer, and returns ahandle object

computer nameis the name of the remote computer, of the form ‘\\computername ’. If None, the local
computer is used.

keyis the predefined handle to connect to.

The return value is the handle of the opened key. If the function fails, anEnvironmentError exception is
raised.

CreateKey (key, subkey)
Creates or opens the specified key, returning ahandle object

keyis an already open key, or one of the predefinedHKEY * constants.

sub keyis a string that names the key this method opens or creates.

If key is one of the predefined keys,sub keymay beNone. In that case, the handle returned is the same key
handle passed in to the function.

If the key already exists, this function opens the existing key

The return value is the handle of the opened key. If the function fails, anEnvironmentError exception is
raised.

DeleteKey (key, subkey)
Deletes the specified key.

392 Chapter 20. MS Windows Specific Services

keyis an already open key, or any one of the predefinedHKEY * constants.

sub key is a string that must be a subkey of the key identified by thekeyparameter. This value must not be
None, and the key may not have subkeys.

This method can not delete keys with subkeys.

If the method succeeds, the entire key, including all of its values, is removed. If the method fails, an
EnvironmentError exception is raised.

DeleteValue (key, value)
Removes a named value from a registry key.

keyis an already open key, or one of the predefinedHKEY * constants.

valueis a string that identifies the value to remove.

EnumKey(key, index)
Enumerates subkeys of an open registry key, returning a string.

keyis an already open key, or any one of the predefinedHKEY * constants.

indexis an integer that identifies the index of the key to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly until an
EnvironmentError exception is raised, indicating, no more values are available.

EnumValue (key, index)
Enumerates values of an open registry key, returning a tuple.

keyis an already open key, or any one of the predefinedHKEY * constants.

indexis an integer that identifies the index of the value to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly, until an
EnvironmentError exception is raised, indicating no more values.

The result is a tuple of 3 items:
value name

A string that identifies the value name
value data

An object that holds the value data, and whose type depends on the underlying registry type.
data type

is an integer that identifies the type of the value data.

FlushKey (key)
Writes all the attributes of a key to the registry.

keyis an already open key, or one of the predefinedHKEY * constants.

It is not necessary to call RegFlushKey to change a key. Registry changes are flushed to disk by the registry
using its lazy flusher. Registry changes are also flushed to disk at system shutdown. UnlikeCloseKey() , the
FlushKey() method returns only when all the data has been written to the registry. An application should
only callFlushKey() if it requires absolute certainty that registry changes are on disk.

If you don’t know whether aFlushKey() call is required, it probably isn’t.

RegLoadKey (key, subkey, file name)
Creates a subkey under the specified key and stores registration information from a specified file into that subkey.

keyis an already open key, or any of the predefinedHKEY * constants.

sub keyis a string that identifies the subkey to load

file name is the name of the file to load registry data from. This file must have been created with the
SaveKey() function. Under the file allocation table (FAT) file system, the filename may not have an ex-
tension.

A call to LoadKey() fails if the calling process does not have theSE RESTOREPRIVILEGE privilege. Note
that privileges are different than permissions - see the Win32 documentation for more details.

20.2. winreg – Windows registry access 393

If key is a handle returned byConnectRegistry() , then the path specified infileNameis relative to the
remote computer.

The Win32 documentation implieskeymust be in theHKEY USERor HKEY LOCAL MACHINEtree. This
may or may not be true.

OpenKey(key, subkey[, res = 0][, sam = KEY READ])
Opens the specified key, returning ahandle object

keyis an already open key, or any one of the predefinedHKEY * constants.

sub keyis a string that identifies the subkey to open

res is a reserved integer, and must be zero. The default is zero.

samis an integer that specifies an access mask that describes the desired security access for the key. Default is
KEY READ

The result is a new handle to the specified key

If the function fails,EnvironmentError is raised.

OpenKeyEx()
The functionality ofOpenKeyEx() is provided viaOpenKey() , by the use of default arguments.

QueryInfoKey (key)
Returns information about a key, as a tuple.

keyis an already open key, or one of the predefinedHKEY * constants.

The result is a tuple of 3 items:
num subkeys

An integer that identifies the number of sub keys this key has.
num values

An integer that identifies the number of values this key has.
last modified

A long integer that identifies when the key was last modified (if available) as 100’s of nanoseconds since Jan 1,
1600.

QueryValue (key, subkey)
Retrieves the unnamed value for a key, as a string

keyis an already open key, or one of the predefinedHKEY * constants.

sub key is a string that holds the name of the subkey with which the value is associated. If this parameter is
None or empty, the function retrieves the value set by theSetValue() method for the key identified bykey.

Values in the registry have name, type, and data components. This method retrieves the data for a key’s first
value that has a NULL name. But the underlying API call doesn’t return the type, Lame Lame Lame, DO NOT
USE THIS!!!

QueryValueEx (key, valuename)
Retrieves the type and data for a specified value name associated with an open registry key.

keyis an already open key, or one of the predefinedHKEY * constants.

value nameis a string indicating the value to query.

The result is a tuple of 2 items:
value

The value of the registry item.
type id

An integer that identifies the registry type for this value.

SaveKey (key, file name)
Saves the specified key, and all its subkeys to the specified file.

keyis an already open key, or one of the predefinedHKEY * constants.

394 Chapter 20. MS Windows Specific Services

file nameis the name of the file to save registry data to. This file cannot already exist. If this filename includes
an extension, it cannot be used on file allocation table (FAT) file systems by theLoadKey() , ReplaceKey()
or RestoreKey() methods.

If keyrepresents a key on a remote computer, the path described byfile nameis relative to the remote computer.
The caller of this method must possess theSeBackupPrivilege security privilege. Note that privileges are
different than permissions - see the Win32 documentation for more details.

This function passes NULL forsecurity attributesto the API.

SetValue (key, subkey, type, value)
Associates a value with a specified key.

keyis an already open key, or one of the predefinedHKEY * constants.

sub keyis a string that names the subkey with which the value is associated.

typeis an integer that specifies the type of the data. Currently this must beREG SZ, meaning only strings are
supported. Use theSetValueEx() function for support for other data types.

valueis a string that specifies the new value.

If the key specified by thesub keyparameter does not exist, the SetValue function creates it.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as files
with the filenames stored in the configuration registry. This helps the registry perform efficiently.

The key identified by thekeyparameter must have been opened withKEY SET VALUEaccess.

SetValueEx (key, valuename, reserved, type, value)
Stores data in the value field of an open registry key.

keyis an already open key, or one of the predefinedHKEY * constants.

sub keyis a string that names the subkey with which the value is associated.

typeis an integer that specifies the type of the data. This should be one of:
REG BINARY

Binary data in any form.
REG DWORD

A 32-bit number.
REG DWORDLITTLE ENDIAN

A 32-bit number in little-endian format.
REG DWORDBIG ENDIAN

A 32-bit number in big-endian format.
REG EXPANDSZ

A null-terminated string that contains unexpanded references to environment variables (for example,%PATH%)
REG LINK

A Unicode symbolic link.
REG MULTI SZ

A sequence (eg, list, sequence) of null-terminated strings, terminated by two null characters. (Note that Python
handles this termination automatically)

REG NONE
No defined value type.

REG RESOURCELIST
A device-driver resource list.

REG SZ
A null-terminated string.

reservedcan be anything - zero is always passed to the API.

valueis a string that specifies the new value.

This method can also set additional value and type information for the specified key. The key identified by the
key parameter must have been opened withKEY SET VALUEaccess.

20.2. winreg – Windows registry access 395

To open the key, use theCreateKeyEx() or OpenKey() methods.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as files
with the filenames stored in the configuration registry. This helps the registry perform efficiently.

20.2.1 Registry handle objects

This object wraps a Windows HKEY object, automatically closing it when the object is destroyed. To guarantee
cleanup, you can call either theClose() method on the object, or theCloseKey() function.

All registry functions in this module return one of these objects.

All registry functions in this module which accept a handle object also accept an integer, however, use of the handle
object is encouraged.

Handle objects provide semantics fornonzero () - thus

if handle:
print "Yes"

will print Yes if the handle is currently valid (i.e., has not been closed or detached).

The object also support comparison semantics, so handle objects will compare true if they both reference the same
underlying Windows handle value.

Handle objects can be converted to an integer (eg, using the builtinint() function, in which case the underlying
Windows handle value is returned. You can also use theDetach() method to return the integer handle, and also
disconnect the Windows handle from the handle object.

Close ()
Closes the underlying Windows handle.

If the handle is already closed, no error is raised.

Detach ()
Detaches the Windows handle from the handle object.

The result is an integer (or long on 64 bit Windows) that holds the value of the handle before it is detached. If
the handle is already detached or closed, this will return zero.

After calling this function, the handle is effectively invalidated, but the handle is not closed. You would call this
function when you need the underlying Win32 handle to exist beyond the lifetime of the handle object.

20.3 winsound — Sound-playing interface for Windows

New in version 1.5.2.

The winsound module provides access to the basic sound-playing machinery provided by Windows platforms. It
includes two functions and several constants.

Beep(frequency, duration)
Beep the PC’s speaker. Thefrequencyparameter specifies frequency, in hertz, of the sound, and must be in the
range 37 through 32,767 (0x25 through0x7fff). Thedurationparameter specifies the number of milliseconds
the sound should last. If the system is not able to beep the speaker,RuntimeError is raised. New in version
1.5.3.

PlaySound (sound, flags)
Call the underlyingPlaySound() function from the Platform API. Thesoundparameter may be a filename,

396 Chapter 20. MS Windows Specific Services

audio data as a string, orNone. Its interpretation depends on the value offlags, which can be a bit-wise ORed
combination of the constants described below. If the system indicates an error,RuntimeError is raised.

SND FILENAME
Thesoundparameter is the name of a WAV file.

SND ALIAS
Thesoundparameter should be interpreted as a control panel sound association name.

SND LOOP
Play the sound repeatedly. TheSND ASYNCflag must also be used to avoid blocking.

SND MEMORY
Thesoundparameter toPlaySound() is a memory image of a WAV file.

Note: This module does not support playing from a memory image asynchronously, so a combination of this
flag andSND ASYNCwill raise aRuntimeError .

SND PURGE
Stop playing all instances of the specified sound.

SND ASYNC
Return immediately, allowing sounds to play asynchronously.

SND NODEFAULT
If the specified sound cannot be found, do not play a default beep.

SND NOSTOP
Do not interrupt sounds currently playing.

SND NOWAIT
Return immediately if the sound driver is busy.

20.3. winsound — Sound-playing interface for Windows 397

398

APPENDIX

A

Undocumented Modules

Here’s a quick listing of modules that are currently undocumented, but that should be documented. Feel free to
contribute documentation for them! (Send via email topython-docs@python.org.)

The idea and original contents for this chapter were taken from a posting by Fredrik Lundh; the specific contents of
this chapter have been substantially revised.

A.1 Frameworks

Frameworks tend to be harder to document, but are well worth the effort spent.

Tkinter — Interface to Tcl/Tk for graphical user interfaces; Fredrik Lundh is working on this one! SeeAn Intro-
duction to Tkinterat http://www.pythonware.com/library.htm for on-line reference material.

Tkdnd — Drag-and-drop support forTkinter .

turtle — Turtle graphics in a Tk window.

test — Regression testing framework. This is used for the Python regression test, but is useful for other Python
libraries as well. This is a package rather than a single module.

A.2 Miscellaneous useful utilities

Some of these are very old and/or not very robust; marked with “hmm.”

bdb — A generic Python debugger base class (used by pdb).

ihooks — Import hook support (forrexec ; may become obsolete).

tzparse — Parse a timezone specification (unfinished; may disappear in the future).

A.3 Platform specific modules

These modules are used to implement theos.path module, and are not documented beyond this mention. There’s
little need to document these.

dospath — Implementation ofos.path on MS-DOS.

ntpath — Implementation onos.path on Win32, Win64, WinCE, and OS/2 platforms.

posixpath — Implementation onos.path on POSIX.

399

A.4 Multimedia

audiodev — Platform-independent API for playing audio data.

sunaudio — Interpret Sun audio headers (may become obsolete or a tool/demo).

toaiff — Convert ”arbitrary” sound files to AIFF files; should probably become a tool or demo. Requires the
external programsox.

A.5 Obsolete

These modules are not normally available for import; additional work must be done to make them available.

Those which are written in Python will be installed into the directory ‘lib-old/’ installed as part of the standard library.
To use these, the directory must be added tosys.path , possibly using $PYTHONPATH.

Obsolete extension modules written in C are not built by default. Under UNIX , these must be enabled by uncomment-
ing the appropriate lines in ‘Modules/Setup’ in the build tree and either rebuilding Python if the modules are statically
linked, or building and installing the shared object if using dynamically-loaded extensions.

addpack — Alternate approach to packages. Use the built-in package support instead.

cmp — File comparison function. Use the newerfilecmp instead.

cmpcache — Caching version of the obsoletecmp module. Use the newerfilecmp instead.

codehack — Extract function name or line number from a function code object (these are now accessible as at-
tributes:co.co name, func.func name, co.co firstlineno).

dircmp — Class to build directory diff tools on (may become a demo or tool).Deprecated since release 2.0.The
filecmp module replacesdircmp .

dump — Print python code that reconstructs a variable.

fmt — Text formatting abstractions (too slow).

lockfile — Wrapper around FCNTL file locking (usefcntl.lockf() /flock() instead; seefcntl).

newdir — Newdir() function (the standarddir() is now just as good).

Para — Helper forfmt .

poly — Polynomials.

regex — Emacs-style regular expression support; may still be used in some old code (extension module). Refer to
thePython 1.6 Documentationfor documentation.

regsub — Regular expression based string replacement utilities, for use withregex (extension module). Refer to
thePython 1.6 Documentationfor documentation.

tb — Print tracebacks, with a dump of local variables (usepdb.pm() or traceback instead).

timing — Measure time intervals to high resolution (usetime.clock() instead). (This is an extension module.)

util — Useful functions that don’t fit elsewhere.

whatsound — Recognize sound files; usesndhdr instead.

zmod — Compute properties of mathematical “fields.”

400 Appendix A. Undocumented Modules

The following modules are obsolete, but are likely to re-surface as tools or scripts:

find — Find files matching pattern in directory tree.

grep — grep implementation in Python.

packmail — Create a self-unpacking UNIX shell archive.

The following modules were documented in previous versions of this manual, but are now considered obsolete. The
source for the documentation is still available as part of the documentation source archive.

ni — Import modules in “packages.” Basic package support is now built in. The built-in support is very similar to
what is provided in this module.

rand — Old interface to the random number generator.

soundex — Algorithm for collapsing names which sound similar to a shared key. The specific algorithm doesn’t
seem to match any published algorithm. (This is an extension module.)

A.6 SGI-specific Extension modules

The following are SGI specific, and may be out of touch with the current version of reality.

cl — Interface to the SGI compression library.

sv — Interface to the “simple video” board on SGI Indigo (obsolete hardware).

A.6. SGI-specific Extension modules 401

402

APPENDIX

B

Reporting Bugs

Python is a mature programming language which has established a reputation for stability. In order to maintain this
reputation, the developers would like to know of any deficiencies you find in Python or its documentation.

All bug reports should be submitted via the Python Bug Tracker on SourceForge
(http://sourceforge.net/bugs/?group id=5470). The bug tracker offers a Web form which allows pertinent infor-
mation to be entered and submitted to the developers.

Before submitting a report, please log into SourceForge if you are a member; this will make it possible for the devel-
opers to contact you for additional information if needed. If you are not a SourceForge member but would not mind
the developers contacting you, you may include your email address in your bug description. In this case, please realize
that the information is publically available and cannot be protected.

The first step in filing a report is to determine whether the problem has already been reported. The advantage in doing
so, aside from saving the developers time, is that you learn what has been done to fix it; it may be that the problem has
already been fixed for the next release, or additional information is needed (in which case you are welcome to provide
it if you can!). To do this, search the bug database using the search box near the bottom of the page.

If the problem you’re reporting is not already in the bug tracker, go back to the Python Bug Tracker
(http://sourceforge.net/bugs/?group id=5470). Select the “Submit a Bug” link at the top of the page to open the bug
reporting form.

The submission form has a number of fields. The only fields that are required are the “Summary” and “Details” fields.
For the summary, enter avery short description of the problem; less than ten words is good. In the Details field,
describe the problem in detail, including what you expected to happen and what did happen. Be sure to include the
version of Python you used, whether any extension modules were involved, and what hardware and software platform
you were using (including version information as appropriate).

The only other field that you may want to set is the “Category” field, which allows you to place the bug report into a
broad category (such as “Documentation” or “Library”).

Each bug report will be assigned to a developer who will determine what needs to be done to correct the problem. If
you have a SourceForge account and logged in to report the problem, you will receive an update each time action is
taken on the bug.

See Also:

How to Report Bugs Effectively
(http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html)

Article which goes into some detail about how to create a useful bug report. This describes what kind of
information is useful and why it is useful.

Bug Writing Guidelines
(http://www.mozilla.org/quality/bug-writing-guidelines.html)

Information about writing a good bug report. Some of this is specific to the Mozilla project, but describes
general good practices.

403

404

MODULE INDEX

Symbols
builtin , 60
main , 60

winreg , 392

A
aifc , 327
AL, 373
al , 371
anydbm, 182
array , 87
asyncore , 272
atexit , 33
audioop , 323

B
base64 , 293
BaseHTTPServer , 264
Bastion , 348
binascii , 287
binhex , 286
bisect , 86
bsddb , 184

C
calendar , 92
cd , 373
cgi , 232
CGIHTTPServer , 267
chunk , 333
cmath , 83
cmd, 93
code , 52
codecs , 75
codeop , 54
colorsys , 335
commands, 211
compileall , 361
ConfigParser , 89
Cookie , 268
copy , 48

copy reg , 46
cPickle , 46
crypt , 197
cStringIO , 75
curses , 123
curses.ascii , 139
curses.textpad , 137
curses.wrapper , 138

D
dbhash , 183
dbm, 199
DEVICE, 385
dircache , 112
dis , 362
dl , 198
dumbdbm, 182

E
errno , 143
exceptions , 15

F
fcntl , 203
filecmp , 116
fileinput , 91
FL, 381
fl , 377
flp , 382
fm , 382
fnmatch , 150
formatter , 275
fpformat , 74
ftplib , 244

G
gc , 31
gdbm, 200
getopt , 141
getpass , 123
gettext , 155

405

GL, 385
gl , 383
glob , 149
gopherlib , 247
grp , 197
gzip , 188

H
htmlentitydefs , 305
htmllib , 303
httplib , 242

I
imageop , 326
imaplib , 249
imgfile , 385
imghdr , 336
imp , 49

J
jpeg , 386

K
keyword , 359

L
linecache , 41
locale , 152

M
mailbox , 294
mailcap , 291
marshal , 49
math , 81
md5, 339
mhlib , 295
mimetools , 282
mimetypes , 292
MimeWriter , 283
mimify , 297
mmap, 180
mpz, 341
msvcrt , 391
multifile , 284
mutex , 179

N
netrc , 298
new, 58
nis , 210
nntplib , 252

O
operator , 37

os , 99
os.path , 110

P
parser , 349
pdb , 213
pickle , 42
pipes , 204
popen2 , 117
poplib , 248
posix , 195
posixfile , 205
pprint , 54
profile , 222
pstats , 223
pty , 203
pwd, 196
py compile , 361
pyclbr , 360

Q
Queue, 179
quopri , 294

R
random , 84
re , 64
readline , 191
repr , 56
resource , 207
rexec , 346
rfc822 , 279
rgbimg , 335
rlcompleter , 193
robotparser , 298
rotor , 342

S
sched , 122
select , 170
sgmllib , 301
sha , 340
shelve , 46
shlex , 95
shutil , 150
signal , 163
SimpleHTTPServer , 266
site , 58
smtplib , 255
sndhdr , 336
socket , 165
SocketServer , 262
stat , 113
statcache , 115

406 Module Index

statvfs , 115
string , 61
StringIO , 75
struct , 72
sunau , 329
SUNAUDIODEV, 390
sunaudiodev , 389
symbol , 358
sys , 27
syslog , 210

T
tabnanny , 360
telnetlib , 258
tempfile , 143
TERMIOS, 202
termios , 201
thread , 171
threading , 173
time , 118
token , 359
tokenize , 359
traceback , 39
tty , 202
types , 33

U
unicodedata , 80
urllib , 239
urlparse , 261
user , 59
UserDict , 35
UserList , 35
UserString , 36
uu , 287

W
wave, 331
webbrowser , 231
whichdb , 184
whrandom , 85
winsound , 396

X
xdrlib , 289
xml.parsers.expat , 305
xml.sax , 309
xml.sax.handler , 310
xml.sax.saxutils , 314
xml.sax.xmlreader , 314
xmllib , 318

Z
zipfile , 188
zlib , 186

Module Index 407

408

INDEX

Symbols
.ini

file, 89
.pdbrc

file, 215
.pythonrc.py

file, 59
==

operator, 4
abs () (in module operator), 37
add () (in module operator), 37
add () (in module rfc822), 281
and () (in module operator), 37
builtin (built-in module),60
cmp () , 4
concat () (in module operator), 38
contains () (in module operator), 38
copy () (in module copy), 48
deepcopy () (in module copy), 48
delitem () (in module operator), 38
delslice () (in module operator), 38
dict (pickle protocol), 43
div () (in module operator), 37
getinitargs () (in module copy), 48
getinitargs () (pickle protocol), 43
getitem () (in module operator), 38
getslice () (in module operator), 38
getstate () (in module copy), 48
getstate () (pickle protocol), 43
import () (built-in function), 18
init () (in module gettext), 157
init () (pickle protocol), 43
inv () (in module operator), 37
invert () (in module operator), 37
len () (in module rfc822), 281
lshift () (in module operator), 37
main (built-in module),60
mod () (in module operator), 37
mul () (in module operator), 37
neg () (in module operator), 37
not () (in module operator), 38

or () (in module operator), 37
pos () (in module operator), 37
repeat () (in module operator), 38
repr () (in module netrc), 298
rshift () (in module operator), 37
setitem () (in module operator), 38
setslice () (in module operator), 38
setstate () (in module copy), 48
setstate () (pickle protocol), 43
stderr (in module sys), 31
stdin (in module sys), 31
stdout (in module sys), 31
str () (in module rfc822), 281
sub () (in module operator), 37
sub () (in module rfc822), 281
xor () (in module operator), 38

exit() (in module os), 107
locale (built-in module), 152
parse() (in module gettext), 157
winreg (extension module),392

A
A-LAW, 328, 337
a2b base64() (in module binascii), 287
a2b hex() (in module binascii), 288
a2b hqx() (in module binascii), 288
a2b uu() (in module binascii), 287
ABC language, 4
abort() (in module ftplib), 246
abort() (in module os), 107
abs() (built-in function), 18
abs() (in module operator), 37
abspath() (in module os.path), 110
AbstractFormatter (in module formatter), 277
AbstractWriter (in module formatter), 279
accept() (in module asyncore), 273
accept() (in module socket), 168
accept2dyear (in module time), 119
access() (in module os), 104
acos() (in module cmath), 83
acos() (in module math), 81
acosh() (in module cmath), 83

409

acquire() (in module thread), 172
acquire() (in module threading), 174, 176
activate form() (in module fl), 379
activeCount() (in module threading), 173
add() (in module audioop), 323
add() (in module operator), 37
add() (in module pstats), 223
add box() (in module fl), 379
add browser() (in module fl), 380
add button() (in module fl), 379
add choice() (in module fl), 380
add clock() (in module fl), 379
add counter() (in module fl), 380
add dial() (in module fl), 379
add flowing data() (in module formatter), 276
add hor rule() (in module formatter), 276
add input() (in module fl), 380
add label data() (in module formatter), 276
add lightbutton() (in module fl), 379
add line break() (in module formatter), 276
add literal data() (in module formatter), 276
add menu() (in module fl), 380
add positioner() (in module fl), 379
add roundbutton() (in module fl), 379
add section() (in module ConfigParser), 90
add slider() (in module fl), 379
add text() (in module fl), 379
add timer() (in module fl), 380
add valslider() (in module fl), 379
addcallback() (in module cd), 376
addch() (in module curses), 129
addheader() (in module MimeWriter), 283
addnstr() (in module curses), 129
address family (SocketServer protocol), 263
address string() (in module Base-

HTTPServer), 266
AddressList (in module rfc822), 279
addresslist (in module rfc822), 282
addstr() (in module curses), 129
adler32() (in module zlib), 186
ADPCM, Intel/DVI, 323
adpcm2lin() (in module audioop), 323
adpcm32lin() (in module audioop), 323
AF INET (in module socket), 166
AF UNIX (in module socket), 166
aifc (standard module),327
aifc() (in module aifc), 328
AIFF, 327, 333
aiff() (in module aifc), 328
AIFF-C, 327, 333
AL (standard module), 371,373
al (built-in module),371
alarm() (in module signal), 164
all errors (in module ftplib), 245

all features (in module xml.sax.handler), 311
all properties (in module xml.sax.handler),

311
allocate lock() (in module thread), 172
allowremoval() (in module cd), 375
alt() (in module curses.ascii), 140
altsep (in module os), 110
altzone (in module time), 120
anchor bgn() (in module htmllib), 304
anchor end() (in module htmllib), 304
and

operator, 3, 4
and () (in module operator), 37
annotate() (in module dircache), 112
anydbm (standard module),182
apop() (in module poplib), 248
append() , 10
append() (in module array), 88
append() (in module imaplib), 250
append() (in module pipes), 205
apply() (built-in function), 19
arbitrary precision integers, 341
aRepr (in module repr), 57
argv (in module sys), 27
arithmetic, 5
ArithmeticError (built-in exception base class),

15
array (built-in module),87
array() (in module array), 87
arrays, 87
ArrayType (in module array), 87
article() (in module nntplib), 255
AS IS (in module formatter), 276
Ascher, David, 385
ascii() (in module curses.ascii), 140
asctime() (in module time), 120
asin() (in module cmath), 83
asin() (in module math), 81
asinh() (in module cmath), 83
assert

statement, 16
assert line data() (in module formatter), 277
AssertionError (built-in exception), 16
assignment

slice, 10
subscript, 10

ast2list() (in module parser), 351
ast2tuple() (in module parser), 351
ASTType (in module parser), 352
asyncore (built-in module),272
atan() (in module cmath), 83
atan() (in module math), 81
atan2() (in module math), 81
atanh() (in module cmath), 83

410 Index

atexit (standard module),33
atime (in module cd), 374
atof() (in module locale), 153
atof() (in module string), 62
atoi() (in module locale), 153
atoi() (in module string), 62
atol() (in module string), 62
AttributeError (built-in exception), 16
attributes (in module xmllib), 318
AttributesImpl (in module xml.sax.xmlreader),

315
AttributesNSImpl (in module

xml.sax.xmlreader), 315
attroff() (in module curses), 129
attron() (in module curses), 129
attrset() (in module curses), 129
audio (in module cd), 374
Audio Interchange File Format, 327, 333
AUDIO FILE ENCODINGADPCMG721 (in mod-

ule sunau), 330
AUDIO FILE ENCODINGADPCMG722 (in mod-

ule sunau), 330
AUDIO FILE ENCODINGADPCMG723 3 (in

module sunau), 330
AUDIO FILE ENCODINGADPCMG723 5 (in

module sunau), 330
AUDIO FILE ENCODINGALAW 8 (in module

sunau), 330
AUDIO FILE ENCODINGDOUBLE (in module

sunau), 330
AUDIO FILE ENCODINGFLOAT (in module

sunau), 330
AUDIO FILE ENCODINGLINEAR 16 (in mod-

ule sunau), 330
AUDIO FILE ENCODINGLINEAR 24 (in mod-

ule sunau), 330
AUDIO FILE ENCODINGLINEAR 32 (in mod-

ule sunau), 330
AUDIO FILE ENCODINGLINEAR 8 (in module

sunau), 330
AUDIO FILE ENCODINGMULAW8 (in module

sunau), 330
AUDIO FILE MAGIC(in module sunau), 330
audioop (built-in module),323
authenticate() (in module imaplib), 250
authenticators() (in module netrc), 298
avg() (in module audioop), 323
avgpp() (in module audioop), 324

B
b2a base64() (in module binascii), 287
b2a hex() (in module binascii), 288
b2a hqx() (in module binascii), 288
b2a uu() (in module binascii), 287

BabylMailbox (in module mailbox), 295
base64

encoding, 293
base64 (standard module),293
BaseCookie (in module Cookie), 268
BaseHTTPRequestHandler (in module Base-

HTTPServer), 264
BaseHTTPServer (standard module),264
basename() (in module os.path), 110
Bastion (standard module),348
Bastion() (in module Bastion), 348
BastionClass (in module Bastion), 348
baudrate() (in module curses), 124
bdb (standard module), 213
Beep() (in module winsound), 396
beep() (in module curses), 124
benchmarking, 120
bestreadsize() (in module cd), 375
betavariate() (in module random), 84
bgn group() (in module fl), 379
bias() (in module audioop), 324
bidirectional() (in module unicodedata), 80
binary

data, packing, 72
binary semaphores, 171
binary() (in module mpz), 342
binascii (built-in module),287
bind() (in module asyncore), 273
bind() (in module socket), 168
bindtextdomain() (in module gettext), 155
binhex (standard module),286, 287
binhex() (in module binhex), 286
bisect (standard module),86
bisect() (in module bisect), 86
bit-string

operations, 6
bkgd() (in module curses), 129
bkgdset() (in module curses), 129
BLOCKSIZE(in module cd), 374
blocksize (in module sha), 340
body() (in module nntplib), 255
BOM(in module codecs), 76
BOM32 BE (in module codecs), 76
BOM32 LE (in module codecs), 76
BOM64 BE (in module codecs), 76
BOM64 LE (in module codecs), 76
BOMBE (in module codecs), 76
BOMLE (in module codecs), 76
Boolean

operations, 3, 4
type, 3

border() (in module curses), 129
box() (in module curses), 129
bsddb (built-in module), 182, 183

Index 411

bsddb (extension module),184
btopen() (in module bsddb), 184
buffer

object, 6
buffer size, I/O, 23
buffer() , 6
buffer() (built-in function), 19
buffer() (in module types), 35
buffer info() (in module array), 88
BufferType (in module types), 35
built-in

exceptions, 3
functions, 3
types, 3

builtin module names (in module sys), 28
BuiltinFunctionType (in module types), 35
BuiltinMethodType (in module types), 35
byte-code

file, 50, 51, 361
byteorder (in module sys), 28
byteswap() (in module array), 88

C
C

language, 4, 5
structures, 72

C BUILTIN (in module imp), 51
C EXTENSION(in module imp), 50
calcsize() (in module struct), 72
calendar (standard module),92
calendar() (in module calendar), 93
call() (in module dl), 199
callable() (built-in function), 19
can change color() (in module curses), 124
can fetch() (in module robotparser), 299
cancel() (in module sched), 123
capitalize() , 7
capitalize() (in module string), 62
capwords() (in module string), 62
cat() (in module nis), 210
catalog (in module cd), 374
category() (in module unicodedata), 80
cbreak() (in module curses), 124
cd (built-in module),373
CDROM(in module cd), 374
ceil() , 5
ceil() (in module math), 81
center() , 7
center() (in module string), 63
CGI

protocol, 232
cgi (standard module),232
cgi directories (in module CGIHTTPServer),

268

CGIHTTPRequestHandler (in module CGI-
HTTPServer), 267

CGIHTTPServer (standard module), 264,267
chaining

comparisons, 4
CHAR MAX(in module locale), 154
character, 80
CharacterDataHandler() (in module

xml.parsers.expat), 306
characters() (in module xml.sax.handler), 313
CHARSET(in module mimify), 297
charset() (in module gettext), 157
chdir() (in module os), 104
check() (in module imaplib), 250
check() (in module tabnanny), 360
check forms() (in module fl), 377
checkcache() (in module linecache), 41
checksum

Cyclic Redundancy Check, 186
MD5, 339
SHA, 340

childerr (in module popen2), 118
chmod() (in module os), 104
choice() (in module random), 85
choice() (in module whrandom), 85
choose boundary() (in module mimetools), 282
chown() (in module os), 105
chr() (built-in function), 19
Chunk (in module chunk), 334
chunk (standard module),333
cipher

DES, 198, 339
Enigma, 342
IDEA, 339

classobj() (in module new), 58
ClassType (in module types), 34
clear() , 10
clear() (in module curses), 130
clear() (in module threading), 177
clearcache() (in module linecache), 41
clearok() (in module curses), 130
client address (in module BaseHTTPServer),

265
clock() (in module time), 120
clone() (in module pipes), 205
Close() (in module winreg), 396
close() , 13
close() (in module StringIO), 75
close() (in module aifc), 328, 329
close() (in module asyncore), 273
close() (in module bsddb), 185
close() (in module cd), 375
close() (in module chunk), 334
close() (in module dl), 199

412 Index

close() (in module fileinput), 92
close() (in module ftplib), 247
close() (in module imaplib), 250
close() (in module mmap), 181
close() (in module os), 102
close() (in module sgmllib), 302
close() (in module socket), 168
close() (in module sunau), 330, 331
close() (in module sunaudiodev), 389
close() (in module telnetlib), 260
close() (in module wave), 332, 333
close() (in module xml.sax.xmlreader), 316
close() (in module xmllib), 319
close() (in module zipfile), 189
closed , 14
CloseKey() (in module winreg), 392
closelog() (in module syslog), 210
closeport() (in module al), 372
clrtobot() (in module curses), 130
clrtoeol() (in module curses), 130
cmath (built-in module),83
Cmd(in module cmd), 93
cmd (standard module),93, 213
cmdloop() (in module cmd), 94
cmp() (built-in function), 19
cmp() (in module filecmp), 116
cmp() (in module locale), 153
cmp op (in module dis), 363
cmpfiles() (in module filecmp), 116
code

object, 12, 49
code (standard module),52
code() (in module new), 58
Codecs, 75

decode, 75
encode, 75

codecs (standard module),75
coded value (in module Cookie), 269
codeop (standard module),54
CodeType (in module types), 34
coerce() (built-in function), 19
collect() (in module gc), 32
color() (in module fl), 378
color content() (in module curses), 124
color pair() (in module curses), 124
colorsys (standard module),335
combining() (in module unicodedata), 80
command(in module BaseHTTPServer), 265
commands (standard module),211
COMMENT(in module tokenize), 360
comment (in module zipfile), 191
commenters (in module shlex), 96
CommentHandler() (in module

xml.parsers.expat), 307

common(in module filecmp), 117
Common Gateway Interface, 232
common dirs (in module filecmp), 117
common files (in module filecmp), 117
common funny (in module filecmp), 117
commonprefix() (in module os.path), 110
comparing

objects, 4
comparison

operator, 4
comparisons

chaining, 4
compile() , 12
compile() (built-in function), 19
compile() (in module parser), 351, 352
compile() (in module py compile), 361
compile() (in module re), 68
compile() (in module types), 34
compile command() (in module code), 52
compile command() (in module codeop), 54
compile dir() (in module compileall), 361
compile path() (in module compileall), 362
compileall (standard module),361
compileast() (in module parser), 351
complete() (in module rlcompleter), 193
complex number

literals, 5
object, 5

complex() , 5
complex() (built-in function), 19
ComplexType (in module types), 34
compress() (in module jpeg), 386
compress() (in module zlib), 186, 187
compress size (in module zipfile), 191
compress type (in module zipfile), 191
compressobj() (in module zlib), 186
concat() (in module operator), 38
concatenation

operation, 7
Condition (in module threading), 176
Condition() (in module threading), 173
ConfigParser (in module ConfigParser), 89
ConfigParser (standard module),89
configuration

file, 89
file, debugger, 215
file, path, 59
file, user, 59

confstr() (in module os), 109
confstr names (in module os), 109
conjugate() , 5
connect() (in module asyncore), 273
connect() (in module ftplib), 245
connect() (in module httplib), 243

Index 413

connect() (in module smtplib), 256
connect() (in module socket), 168
connect ex() (in module socket), 168
ConnectRegistry() (in module winreg), 392
constructor() (in module copy reg), 46
contains() (in module operator), 38
content type

MIME, 292
ContentHandler (in module xml.sax.handler),

310
control (in module cd), 374
controlnames (in module curses.ascii), 141
ConversionError (in module xdrlib), 291
conversions

numeric, 5
Cookie (standard module),268
CookieError (in module Cookie), 268
Coordinated Universal Time, 119
copy (standard module), 43, 46,48
copy() , 10
copy() (in module copy), 48
copy() (in module imaplib), 250
copy() (in module md5), 340
copy() (in module pipes), 205
copy() (in module sha), 340
copy() (in module shutil), 151
copy2() (in module shutil), 151
copy reg (standard module),46
copybinary() (in module mimetools), 282
copyfile() (in module shutil), 150
copyfileobj() (in module shutil), 151
copying files, 150
copyliteral() (in module mimetools), 282
copymessage() (in module mhlib), 297
copymode() (in module shutil), 151
copyright (in module sys), 28
copystat() (in module shutil), 151
copytree() (in module shutil), 151
cos() (in module cmath), 83
cos() (in module math), 82
cosh() (in module cmath), 83
cosh() (in module math), 82
count() , 7, 10
count() (in module array), 88
count() (in module string), 63
countOf() (in module operator), 38
cPickle (built-in module), 42, 46,46
CPU time, 120
CRC(in module zipfile), 191
crc32() (in module binascii), 288
crc32() (in module zlib), 186
crc hqx() (in module binascii), 288
create() (in module imaplib), 250
create socket() (in module asyncore), 273

create system (in module zipfile), 191
create version (in module zipfile), 191
CreateKey() (in module winreg), 392
createparser() (in module cd), 373
crop() (in module imageop), 326
cross() (in module audioop), 324
crypt (built-in module), 196,197
crypt() (in module crypt), 198
crypt(3), 198
cryptography, 339
cStringIO (built-in module),75
ctermid() (in module os), 100
ctime() (in module time), 120
ctrl() (in module curses.ascii), 140
cunifvariate() (in module random), 84
curdir (in module os), 110
currentThread() (in module threading), 173
curs set() (in module curses), 124
curses (standard module),123
curses.ascii (standard module),139
curses.textpad (standard module),137
curses.wrapper (standard module),138
cursyncup() (in module curses), 130
cwd() (in module ftplib), 247
Cyclic Redundancy Check, 186

D
data

packing binary, 72
data (in module UserDict), 35
data (in module UserList), 36
data (in module UserString), 36
database

Unicode, 80
DATASIZE (in module cd), 374
date() (in module nntplib), 255
date time (in module zipfile), 191
date time string() (in module Base-

HTTPServer), 266
daylight (in module time), 120
Daylight Saving Time, 119
dbhash (standard module), 182,183
dbm (built-in module), 47, 182,199, 200
deactivate form() (in module fl), 379
debug (in module imaplib), 252
debug (in module shlex), 96
debug (in module zipfile), 190
debug() (in module pipes), 205
DEBUGCOLLECTABLE(in module gc), 32
DEBUGINSTANCES(in module gc), 32
DEBUGLEAK(in module gc), 32
DEBUGOBJECTS(in module gc), 32
DEBUGSAVEALL(in module gc), 32
DEBUGSTATS(in module gc), 32

414 Index

DEBUGUNCOLLECTABLE(in module gc), 32
debugger, 30

configuration file, 215
debugging, 213
decimal() (in module unicodedata), 80
decode

Codecs, 75
decode() (in module base64), 293
decode() (in module codecs), 77
decode() (in module mimetools), 282
decode() (in module quopri), 294
decode() (in module uu), 287
decodestring() (in module base64), 293
decomposition() (in module unicodedata), 80
decompress() (in module jpeg), 386
decompress() (in module zlib), 187
decompressobj() (in module zlib), 187
decrypt() (in module rotor), 342
decryptmore() (in module rotor), 342
deepcopy() (in module copy), 48
def prog mode() (in module curses), 124
def shell mode() (in module curses), 124
default() (in module cmd), 94
DefaultHandler() (in module

xml.parsers.expat), 307
DefaultHandlerExpand() (in module

xml.parsers.expat), 307
defaults() (in module ConfigParser), 90
defpath (in module os), 110
del

statement, 10
delattr() (built-in function), 19
delay output() (in module curses), 125
delch() (in module curses), 130
dele() (in module poplib), 248
delete() (in module ftplib), 247
delete() (in module imaplib), 250
delete object() (in module fl), 381
deletefolder() (in module mhlib), 296
DeleteKey() (in module winreg), 392
deleteln() (in module curses), 130
deleteparser() (in module cd), 376
DeleteValue() (in module winreg), 393
delitem() (in module operator), 38
delslice() (in module operator), 38
derwin() (in module curses), 130
DES

cipher, 198, 339
descriptor, file, 13
Detach() (in module winreg), 396
deterministic profiling, 219
DEVICE (standard module),385
device

Enigma, 342

dgettext() (in module gettext), 156
dictionary

object, 10
type, operations on, 10

DictionaryType (in module types), 34
DictType (in module types), 34
diff files (in module filecmp), 117
digest() (in module md5), 340
digest() (in module sha), 340
digestsize (in module sha), 340
digit() (in module unicodedata), 80
digits (in module string), 61
dir() (built-in function), 19
dir() (in module ftplib), 247
dircache (standard module),112
dircmp (in module filecmp), 116
directory

changing, 104
creating, 105
deleting, 105, 151
site-packages, 59
site-python, 59

dirname() (in module os.path), 110
dis (standard module),362
dis() (in module dis), 362
disable() (in module gc), 31
disassemble() (in module dis), 362
disco() (in module dis), 363
dispatcher (in module asyncore), 272
distb() (in module dis), 362
dither2grey2() (in module imageop), 327
dither2mono() (in module imageop), 326
div() (in module operator), 37
division

integer, 5
long integer, 5

divm() (in module mpz), 341
divmod() (built-in function), 20
dl (extension module),198
dllhandle (in module sys), 28
do command() (in module curses.textpad), 138
do forms() (in module fl), 377
do GET() (in module SimpleHTTPServer), 267
do HEAD() (in module SimpleHTTPServer), 267
do POST() (in module CGIHTTPServer), 268
doc header (in module cmd), 95
docmd() (in module smtplib), 257
docstrings, 353
DOCTYPE declaration, 319
done() (in module xdrlib), 290
DOTALL(in module re), 68
doupdate() (in module curses), 125
drain() (in module sunaudiodev), 389
DTDHandler (in module xml.sax.handler), 310

Index 415

dumbdbm(standard module), 182,182
DumbWriter (in module formatter), 279
dump() (in module marshal), 49
dump() (in module pickle), 44
dumps() (in module marshal), 49
dumps() (in module pickle), 44
dup() (in module os), 102
dup() (posixfile method), 206
dup2() (in module os), 102
dup2() (posixfile method), 206
DuplicateSectionError (in module Config-

Parser), 90

E
e (in module cmath), 84
e (in module math), 82
E2BIG (in module errno), 144
EACCES(in module errno), 144
EADDRINUSE(in module errno), 148
EADDRNOTAVAIL(in module errno), 148
EADV(in module errno), 147
EAFNOSUPPORT(in module errno), 148
EAGAIN(in module errno), 144
EALREADY(in module errno), 149
EBADE(in module errno), 146
EBADF(in module errno), 144
EBADFD(in module errno), 147
EBADMSG(in module errno), 147
EBADR(in module errno), 146
EBADRQC(in module errno), 146
EBADSLT(in module errno), 146
EBFONT(in module errno), 146
EBUSY(in module errno), 144
ECHILD (in module errno), 144
echo() (in module curses), 125
echochar() (in module curses), 130
ECHRNG(in module errno), 145
ECOMM(in module errno), 147
ECONNABORTED(in module errno), 148
ECONNREFUSED(in module errno), 149
ECONNRESET(in module errno), 148
EDEADLK(in module errno), 145
EDEADLOCK(in module errno), 146
EDESTADDRREQ(in module errno), 148
edit() (in module curses.textpad), 137
EDOM(in module errno), 145
EDOTDOT(in module errno), 147
EDQUOT(in module errno), 149
EEXIST (in module errno), 144
EFAULT(in module errno), 144
EFBIG (in module errno), 145
ehlo() (in module smtplib), 257
EHOSTDOWN(in module errno), 149
EHOSTUNREACH(in module errno), 149

EIDRM(in module errno), 145
EILSEQ (in module errno), 147
EINPROGRESS(in module errno), 149
EINTR (in module errno), 144
EINVAL (in module errno), 144
EIO (in module errno), 144
EISCONN(in module errno), 148
EISDIR (in module errno), 144
EISNAM(in module errno), 149
eject() (in module cd), 375
EL2HLT (in module errno), 146
EL2NSYNC(in module errno), 146
EL3HLT (in module errno), 146
EL3RST(in module errno), 146
elements (in module xmllib), 318
ELIBACC (in module errno), 147
ELIBBAD (in module errno), 147
ELIBEXEC (in module errno), 147
ELIBMAX (in module errno), 147
ELIBSCN (in module errno), 147
Ellinghouse, Lance, 287, 342
EllipsisType (in module types), 35
ELNRNG(in module errno), 146
ELOOP(in module errno), 145
EMFILE (in module errno), 145
EMLINK (in module errno), 145
Empty (in module Queue), 180
empty() (in module Queue), 180
empty() (in module sched), 123
emptyline() (in module cmd), 94
EMSGSIZE(in module errno), 148
EMULTIHOP(in module errno), 147
enable() (in module gc), 31
ENAMETOOLONG(in module errno), 145
ENAVAIL (in module errno), 149
enclose() (in module curses), 130
encode

Codecs, 75
encode() , 7
encode() (in module base64), 294
encode() (in module codecs), 77
encode() (in module mimetools), 282
encode() (in module quopri), 294
encode() (in module uu), 287
EncodedFile() (in module codecs), 76
encodestring() (in module base64), 294
encoding

base64, 293
quoted-printable, 294

encodings map (in module mimetypes), 293
encrypt() (in module rotor), 342
encryptmore() (in module rotor), 342
end() (in module re), 71
end group() (in module fl), 379

416 Index

end headers() (in module BaseHTTPServer),
266

end marker() (in module multifile), 285
end paragraph() (in module formatter), 276
EndCdataSectionHandler() (in module

xml.parsers.expat), 307
endDocument() (in module xml.sax.handler), 312
endElement() (in module xml.sax.handler), 312
EndElementHandler() (in module

xml.parsers.expat), 306
endElementNS() (in module xml.sax.handler),

313
endheaders() (in module httplib), 243
EndNamespaceDeclHandler() (in module

xml.parsers.expat), 307
endpick() (in module gl), 384
endpos (in module re), 71
endPrefixMapping() (in module

xml.sax.handler), 312
endselect() (in module gl), 384
endswith() , 7
endwin() (in module curses), 125
ENETDOWN(in module errno), 148
ENETRESET(in module errno), 148
ENETUNREACH(in module errno), 148
ENFILE (in module errno), 145
Enigma

cipher, 342
device, 342

ENOANO(in module errno), 146
ENOBUFS(in module errno), 148
ENOCSI(in module errno), 146
ENODATA(in module errno), 146
ENODEV(in module errno), 144
ENOENT(in module errno), 144
ENOEXEC(in module errno), 144
ENOLCK(in module errno), 145
ENOLINK(in module errno), 147
ENOMEM(in module errno), 144
ENOMSG(in module errno), 145
ENONET(in module errno), 146
ENOPKG(in module errno), 146
ENOPROTOOPT(in module errno), 148
ENOSPC(in module errno), 145
ENOSR(in module errno), 146
ENOSTR(in module errno), 146
ENOSYS(in module errno), 145
ENOTBLK(in module errno), 144
ENOTCONN(in module errno), 148
ENOTDIR(in module errno), 144
ENOTEMPTY(in module errno), 145
ENOTNAM(in module errno), 149
ENOTSOCK(in module errno), 147
ENOTTY(in module errno), 145

ENOTUNIQ(in module errno), 147
enter() (in module sched), 123
enterabs() (in module sched), 122
ENTITY declaration, 320
entitydefs (in module htmlentitydefs), 305
entitydefs (in module xmllib), 318
EntityResolver (in module xml.sax.handler),

310
enumerate() (in module fm), 382
enumerate() (in module threading), 173
EnumKey() (in module winreg), 393
EnumValue() (in module winreg), 393
environ (in module os), 100
environ (in module posix), 196
environment variables

$HOME, 60, 110
$KDEDIR, 232
$LANGUAGE, 155, 156
$LANG, 152, 155, 156
$LC ALL, 155, 156
$LC MESSAGES, 155, 156
$LNAME, 123
$LOGNAME, 123, 245
$PAGER, 215
$PATH, 110, 236, 238
$PYTHONPATH, 30, 236, 400
$PYTHONSTARTUP, 59, 192, 193
$PYTHONY2K, 119
$TMPDIR, 143
$USERNAME, 123
$USER, 123, 245
$ftp proxy, 239
$gopher proxy, 239
$http proxy, 239
setting, 101

EnvironmentError (built-in exception base
class), 15

ENXIO (in module errno), 144
EOFError (built-in exception), 16
EOPNOTSUPP(in module errno), 148
EOVERFLOW(in module errno), 147
EPERM(in module errno), 144
EPFNOSUPPORT(in module errno), 148
EPIPE (in module errno), 145
epoch, 119
EPROTO(in module errno), 147
EPROTONOSUPPORT(in module errno), 148
EPROTOTYPE(in module errno), 148
ERANGE(in module errno), 145
erase() (in module curses), 130
erasechar() (in module curses), 125
EREMCHG(in module errno), 147
EREMOTE(in module errno), 146
EREMOTEIO(in module errno), 149

Index 417

ERESTART(in module errno), 147
EROFS(in module errno), 145
errno (built-in module), 100, 166
errno (standard module),143
ERROR(in module cd), 374
Error (in module binascii), 288
Error (in module locale), 152
Error (in module sunau), 329
Error (in module wave), 332
Error (in module webbrowser), 231
Error (in module xdrlib), 291
error (in module anydbm), 182
error (in module audioop), 323
error (in module cd), 374
error (in module curses), 124
error (in module dbhash), 183
error (in module dbm), 199
error (in module dl), 199
error (in module dumbdbm), 183
error (in module gdbm), 200
error (in module getopt), 141
error (in module imageop), 326
error (in module imgfile), 385
error (in module jpeg), 386
error (in module nis), 210
error (in module os), 100
error (in module re), 70
error (in module resource), 207
error (in module rgbimg), 335
error (in module select), 170
error (in module socket), 166
error (in module struct), 72
error (in module sunaudiodev), 389
error (in module thread), 172
error (in module zipfile), 188
error (in module zlib), 186
error() (in module mhlib), 295, 296
error leader() (in module shlex), 96
error message format (in module Base-

HTTPServer), 265
error perm (in module ftplib), 245
error proto (in module ftplib), 245
error proto (in module poplib), 248
error reply (in module ftplib), 245
error temp (in module ftplib), 245
ErrorByteIndex (in module xml.parsers.expat),

306
ErrorCode (in module xml.parsers.expat), 306
errorcode (in module errno), 143
ErrorColumnNumber (in module

xml.parsers.expat), 306
ErrorLineNumber (in module xml.parsers.expat),

306

ErrorString() (in module xml.parsers.expat),
305

escape() (in module cgi), 236
escape() (in module re), 70
escape() (in module xml.sax.saxutils), 314
ESHUTDOWN(in module errno), 148
ESOCKTNOSUPPORT(in module errno), 148
ESPIPE (in module errno), 145
ESRCH(in module errno), 144
ESRMNT(in module errno), 147
ESTALE(in module errno), 149
ESTRPIPE (in module errno), 147
ETIME (in module errno), 146
ETIMEDOUT(in module errno), 148
ETOOMANYREFS(in module errno), 148
ETXTBSY(in module errno), 145
EUCLEAN(in module errno), 149
EUNATCH(in module errno), 146
EUSERS(in module errno), 147
eval() , 12
eval() (built-in function), 20
eval() (in module parser), 351
eval() (in module pprint), 56
eval() (in module string), 62
Event (in module threading), 177
event scheduling, 122
Event() (in module threading), 173
EWOULDBLOCK(in module errno), 145
exc info() (in module sys), 28
exc traceback (in module sys), 28
exc type (in module sys), 28
exc value (in module sys), 28
except

statement, 15
Exception (built-in exception base class), 15
exceptions

built-in, 3
exceptions (standard module),15
EXDEV(in module errno), 144
exec

statement, 12
exec prefix (in module sys), 28
execfile() (built-in function), 20
execfile() (in module user), 60
execl() (in module os), 107
execle() (in module os), 107
execlp() (in module os), 107
executable (in module sys), 28
execv() (in module os), 107
execve() (in module os), 107
execvp() (in module os), 107
execvpe() (in module os), 107
EXFULL(in module errno), 146
exists() (in module os.path), 110

418 Index

exit() (in module sys), 28
exit() (in module thread), 172
exit thread() (in module thread), 172
exitfunc (in module atexit), 33
exitfunc (in module sys), 29
exp() (in module cmath), 83
exp() (in module math), 82
expand() (in module re), 71
expandtabs() , 7
expandtabs() (in module string), 62
expanduser() (in module os.path), 110
expandvars() (in module os.path), 111
expect() (in module telnetlib), 260
expovariate() (in module random), 84
expr() (in module parser), 350
expunge() (in module imaplib), 250
extend() , 10
extend() (in module array), 88
Extensible Markup Language, 318
extensions map(in module SimpleHTTPServer),

267
External Data Representation, 42, 289
external attr (in module zipfile), 191
ExternalEntityRefHandler() (in module

xml.parsers.expat), 307
extra (in module zipfile), 191
extract stack() (in module traceback), 40
extract tb() (in module traceback), 40
extract version (in module zipfile), 191

F
F BAVAIL (in module statvfs), 115
F BFREE(in module statvfs), 115
F BLOCKS(in module statvfs), 115
F BSIZE (in module statvfs), 115
F FAVAIL (in module statvfs), 116
F FFREE(in module statvfs), 116
F FILES (in module statvfs), 115
F FLAG(in module statvfs), 116
F FRSIZE (in module statvfs), 115
F NAMEMAX(in module statvfs), 116
F OK(in module os), 104
fabs() (in module math), 82
false, 3
FancyURLopener (in module urllib), 241
FCNTL(standard module), 203, 204
fcntl (built-in module), 13,203
fcntl() (in module fcntl), 203
fcntl() (in module posixfile), 205
fdopen() (in module os), 102
feature external ges (in module

xml.sax.handler), 311
feature external pes (in module

xml.sax.handler), 311

feature namespace prefixes (in module
xml.sax.handler), 310

feature namespaces (in module
xml.sax.handler), 310

feature string interning (in module
xml.sax.handler), 311

feature validation (in module
xml.sax.handler), 311

feed() (in module sgmllib), 302
feed() (in module xml.sax.xmlreader), 316
feed() (in module xmllib), 319
fetch() (in module imaplib), 251
file

.ini, 89

.pdbrc, 215

.pythonrc.py, 59
byte-code, 50, 51, 361
configuration, 89
copying, 150
debugger configuration, 215
large files, 196
mime.types, 293
object, 13
path configuration, 59
temporary, 143
user configuration, 59

file (in module pyclbr), 361
file control

UNIX , 203
file descriptor, 13
file name

temporary, 143
file object

POSIX, 205
file() (posixfile method), 206
file offset (in module zipfile), 191
file size (in module zipfile), 191
filecmp (standard module),116
FileInput (in module fileinput), 92
fileinput (standard module),91
filelineno() (in module fileinput), 92
filename (in module zipfile), 190
filename() (in module fileinput), 92
filename only (in module tabnanny), 360
filenames

pathname expansion, 149
wildcard expansion, 150

fileno() , 13
fileno() (SocketServer protocol), 263
fileno() (in module select), 171
fileno() (in module socket), 168
fileno() (in module sunaudiodev), 389
fileno() (in module telnetlib), 260
fileopen() (in module posixfile), 206

Index 419

FileType (in module types), 35
filter() (built-in function), 20
filter() (in module curses), 125
find() , 7
find() (in module gettext), 156
find() (in module mmap), 181
find() (in module string), 62
find first() (in module fl), 379
find last() (in module fl), 379
find module() (in module imp), 50
findall() (in module re), 69, 70
findfactor() (in module audioop), 324
findfit() (in module audioop), 324
findfont() (in module fm), 382
findmatch() (in module mailcap), 292
findmax() (in module audioop), 324
finish() (SocketServer protocol), 264
finish request() (SocketServer protocol), 263
first() (in module bsddb), 185
first() (in module dbhash), 183
firstkey() (in module gdbm), 201
firstweekday() (in module calendar), 93
fix() (in module fpformat), 74
FL (standard module),381
fl (built-in module),377
flag bits (in module zipfile), 191
flags (in module re), 70
flags() (posixfile method), 206
flash() (in module curses), 125
flattening

objects, 42
float() , 5
float() (built-in function), 20
float() (in module string), 62
floating point

literals, 5
object, 5

FloatingPointError (built-in exception), 16
FloatType (in module types), 34
flock() (in module fcntl), 204
floor() , 5
floor() (in module math), 82
flp (standard module),382
flush() , 13
flush() (in module formatter), 277
flush() (in module mmap), 181
flush() (in module sunaudiodev), 390
flush() (in module zlib), 187
flush softspace() (in module formatter), 276
flushheaders() (in module MimeWriter), 283
flushinp() (in module curses), 125
FlushKey() (in module winreg), 393
fm (built-in module),382
fmod() (in module math), 82

fnmatch (standard module),150
fnmatch() (in module fnmatch), 150
fnmatchcase() (in module fnmatch), 150
Folder (in module mhlib), 295
Font Manager, IRIS, 382
fontpath() (in module fm), 382
forget() (in module statcache), 115
forget dir() (in module statcache), 115
forget except prefix() (in module stat-

cache), 115
forget prefix() (in module statcache), 115
fork() (in module os), 107
fork() (in module pty), 203
forkpty() (in module os), 107
Formal Public Identifier, 319
format() (in module locale), 153
format exception() (in module traceback), 40
format exception only() (in module trace-

back), 40
format list() (in module traceback), 40
format stack() (in module traceback), 40
format tb() (in module traceback), 40
formatter (in module htmllib), 304
formatter (standard module),275, 303
formatting, string, 9
FORMS Library, 377
fp (in module rfc822), 281
fpathconf() (in module os), 102
fpformat (standard module),74
frame

object, 165
FrameType (in module types), 35
freeze form() (in module fl), 379
freeze object() (in module fl), 381
frexp() (in module math), 82
fromchild (in module popen2), 118
fromfd() (in module socket), 167
fromfile() (in module array), 88
fromlist() (in module array), 88
fromstring() (in module array), 88
fstat() (in module os), 103
fstatvfs() (in module os), 103
FTP

protocol, 241, 244
FTP (in module ftplib), 245
$ftp proxy, 239
ftplib (standard module),244
ftpmirror.py, 245
ftruncate() (in module os), 103
Full (in module Queue), 180
full() (in module Queue), 180
func code , 12
function() (in module new), 58
functions

420 Index

built-in, 3
FunctionType (in module types), 34
funny files (in module filecmp), 117

G
G.722, 328
gamma() (in module random), 84
garbage (in module gc), 32
gather() (in module curses.textpad), 138
gauss() (in module random), 84
gc (extension module),31
gcd() (in module mpz), 341
gcdext() (in module mpz), 341
gdbm (built-in module), 47, 182,200
get() , 10
get() (in module ConfigParser), 91
get() (in module Queue), 180
get() (in module rfc822), 280
get() (in module webbrowser), 232
get begidx() (in module readline), 192
get buffer() (in module xdrlib), 289, 290
get completer delims() (in module readline),

192
get debug() (in module gc), 32
get directory() (in module fl), 378
get endidx() (in module readline), 192
get filename() (in module fl), 378
get history length() (in module readline),

192
get ident() (in module thread), 172
get line buffer() (in module readline), 192
get magic() (in module imp), 50
get mouse() (in module fl), 378
get nowait() (in module Queue), 180
get osfhandle() (in module msvcrt), 391
get pattern() (in module fl), 378
get position() (in module xdrlib), 290
get request() (SocketServer protocol), 263
get rgbmode() (in module fl), 377
get socket() (in module telnetlib), 260
get starttag text() (in module sgmllib), 302
get suffixes() (in module imp), 50
get threshold() (in module gc), 32
get token() (in module shlex), 95
getaddr() (in module rfc822), 281
getaddrlist() (in module rfc822), 281
getallmatchingheaders() (in module rfc822),

280
getatime() (in module os.path), 111
getattr() (built-in function), 21
GetBase() (in module xml.parsers.expat), 306
getbegyx() (in module curses), 130
getboolean() (in module ConfigParser), 91

getByteStream() (in module xml.sax.xmlreader),
317

getcaps() (in module mailcap), 292
getch() (in module curses), 130
getch() (in module msvcrt), 391
getchannels() (in module al), 372
getCharacterStream() (in module

xml.sax.xmlreader), 317
getche() (in module msvcrt), 392
getColumnNumber() (in module

xml.sax.xmlreader), 316
getcomment() (font handle method), 382
getcompname() (in module aifc), 327
getcompname() (in module sunau), 330
getcompname() (in module wave), 332
getcomptype() (in module aifc), 327
getcomptype() (in module sunau), 330
getcomptype() (in module wave), 332
getconfig() (in module al), 373
getContentHandler() (in module

xml.sax.xmlreader), 315
getcontext() (in module mhlib), 295
getcurrent() (in module mhlib), 296
getcwd() (in module os), 104
getdate() (in module rfc822), 281
getdate tz() (in module rfc822), 281
getDTDHandler() (in module xml.sax.xmlreader),

315
getegid() (in module os), 100
getEncoding() (in module xml.sax.xmlreader),

317
getencoding() (in module mimetools), 283
getEntityResolver() (in module

xml.sax.xmlreader), 315
getErrorHandler() (in module

xml.sax.xmlreader), 316
geteuid() (in module os), 100
getException() (in module xml.sax), 310
getfd() (in module al), 372
getFeature() (in module xml.sax.xmlreader), 316
getfile() (in module httplib), 243
getfillable() (in module al), 372
getfilled() (in module al), 372
getfillpoint() (in module al), 373
getfirstmatchingheader() (in module

rfc822), 280
getfloat() (in module ConfigParser), 91
getfloatmax() (in module al), 372
getfontinfo() (font handle method), 383
getfontname() (font handle method), 382
getfqdn() (in module socket), 166
getframerate() (in module aifc), 327
getframerate() (in module sunau), 330
getframerate() (in module wave), 332

Index 421

getfullname() (in module mhlib), 296
getgid() (in module os), 100
getgrall() (in module grp), 197
getgrgid() (in module grp), 197
getgrnam() (in module grp), 197
getgroups() (in module os), 100
getheader() (in module rfc822), 280
gethostbyaddr() (in module os), 101
gethostbyaddr() (in module socket), 167
gethostbyname() (in module socket), 166
gethostbyname ex() (in module socket), 166
gethostname() (in module os), 101
gethostname() (in module socket), 167
getinfo() (in module sunaudiodev), 390
getinfo() (in module zipfile), 189
getint() (in module ConfigParser), 91
getitem() (in module operator), 38
getkey() (in module curses), 130
getlast() (in module mhlib), 296
getLength() (in module xml.sax.xmlreader), 317
getline() (in module linecache), 41
getLineNumber() (in module xml.sax.xmlreader),

316
getlogin() (in module os), 100
getmaintype() (in module mimetools), 283
getmark() (in module aifc), 328
getmark() (in module sunau), 331
getmark() (in module wave), 332
getmarkers() (in module aifc), 328
getmarkers() (in module sunau), 331
getmarkers() (in module wave), 332
getmaxyx() (in module curses), 130
getmcolor() (in module fl), 378
getMessage() (in module xml.sax), 310
getmessagefilename() (in module mhlib), 296
getmouse() (in module curses), 125
getmtime() (in module os.path), 111
getName() (in module threading), 178
getname() (in module chunk), 334
getNameByQName() (in module

xml.sax.xmlreader), 318
getNames() (in module xml.sax.xmlreader), 317
getnamespace() (in module xmllib), 319
getnchannels() (in module aifc), 327
getnchannels() (in module sunau), 330
getnchannels() (in module wave), 332
getnframes() (in module aifc), 327
getnframes() (in module sunau), 330
getnframes() (in module wave), 332
getopt (standard module),141
getopt() (in module getopt), 141
GetoptError (in module getopt), 141
getoutput() (in module commands), 211
getpagesize() (in module resource), 209

getparam() (in module mimetools), 283
getparams() (in module aifc), 328
getparams() (in module al), 372
getparams() (in module sunau), 330
getparams() (in module wave), 332
getparyx() (in module curses), 130
getpass (standard module),123
getpass() (in module getpass), 123
getpath() (in module mhlib), 295
getpeername() (in module socket), 168
getpgrp() (in module os), 101
getpid() (in module os), 101
getplist() (in module mimetools), 282
getppid() (in module os), 101
getprofile() (in module mhlib), 295
getProperty() (in module xml.sax.xmlreader),

316
getprotobyname() (in module socket), 167
getPublicId() (in module xml.sax.xmlreader),

316, 317
getpwall() (in module pwd), 197
getpwnam() (in module pwd), 197
getpwuid() (in module pwd), 197
getQNameByName() (in module

xml.sax.xmlreader), 318
getQNames() (in module xml.sax.xmlreader), 318
getqueuesize() (in module al), 372
getrawheader() (in module rfc822), 280
getrecursionlimit() (in module sys), 29
getrefcount() (in module sys), 29
getreply() (in module httplib), 243
getrlimit() (in module resource), 208
getrusage() (in module resource), 209
getsampfmt() (in module al), 372
getsample() (in module audioop), 324
getsampwidth() (in module aifc), 327
getsampwidth() (in module sunau), 330
getsampwidth() (in module wave), 332
getsequences() (in module mhlib), 296
getsequencesfilename() (in module mhlib),

296
getservbyname() (in module socket), 167
getsignal() (in module signal), 164
getsize() (in module chunk), 334
getsize() (in module os.path), 111
getsizes() (in module imgfile), 385
getslice() (in module operator), 38
getsockname() (in module socket), 168
getsockopt() (in module socket), 168
getstatus() (in module al), 373
getstatus() (in module cd), 375
getstatus() (in module commands), 211
getstatusoutput() (in module commands), 211
getstr() (in module curses), 130

422 Index

getstrwidth() (font handle method), 383
getsubtype() (in module mimetools), 283
getSystemId() (in module xml.sax.xmlreader),

317
getsyx() (in module curses), 125
gettempprefix() (in module tempfile), 143
gettext (standard module),155
gettext() (in module gettext), 156, 157
gettrackinfo() (in module cd), 375
getType() (in module xml.sax.xmlreader), 318
gettype() (in module mimetools), 283
getuid() (in module os), 101
getuser() (in module getpass), 123
getValue() (in module xml.sax.xmlreader), 318
getvalue() (in module StringIO), 75
getValueByQName() (in module

xml.sax.xmlreader), 318
getwelcome() (in module ftplib), 245
getwelcome() (in module nntplib), 254
getwelcome() (in module poplib), 248
getwidth() (in module al), 372
getwin() (in module curses), 125
getyx() (in module curses), 131
GL (standard module),385
gl (built-in module),383
glob (standard module),149, 150
glob() (in module glob), 149
globals() (built-in function), 21
gmtime() (in module time), 120
GNOME, 158
Gopher

protocol, 241, 247
$gopher proxy, 239
gopherlib (standard module),247
Greenwich Mean Time, 119
grey22grey() (in module imageop), 327
grey2grey2() (in module imageop), 327
grey2grey4() (in module imageop), 326
grey2mono() (in module imageop), 326
grey42grey() (in module imageop), 327
group() (in module nntplib), 254
group() (in module re), 71
groupdict() (in module re), 71
groupindex (in module re), 70
groups() (in module re), 71
grp (built-in module),197
guess extension() (in module mimetypes), 293
guess type() (in module mimetypes), 292
gzip (standard module),188
GzipFile (in module gzip), 188

H
halfdelay() (in module curses), 126
handle() (SocketServer protocol), 264

handle() (in module BaseHTTPServer), 265
handle accept() (in module asyncore), 272
handle cdata() (in module xmllib), 320
handle charref() (in module sgmllib), 302
handle charref() (in module xmllib), 319
handle close() (in module asyncore), 272
handle comment() (in module sgmllib), 302
handle comment() (in module xmllib), 320
handle connect() (in module asyncore), 272
handle data() (in module sgmllib), 302
handle data() (in module xmllib), 319
handle doctype() (in module xmllib), 319
handle endtag() (in module sgmllib), 302
handle endtag() (in module xmllib), 319
handle entityref() (in module sgmllib), 302
handle error() (SocketServer protocol), 263
handle expt() (in module asyncore), 272
handle image() (in module htmllib), 304
handle proc() (in module xmllib), 320
handle read() (in module asyncore), 272
handle request() (SocketServer protocol), 263
handle special() (in module xmllib), 320
handle starttag() (in module sgmllib), 302
handle starttag() (in module xmllib), 319
handle write() (in module asyncore), 272
handle xml() (in module xmllib), 319
has colors() (in module curses), 125
has extn() (in module smtplib), 257
has ic() (in module curses), 125
has il() (in module curses), 125
has key() , 10
has key() (in module bsddb), 185
has key() (in module curses), 126
has option() (in module ConfigParser), 90
has section() (in module ConfigParser), 90
hasattr() (built-in function), 21
hascompare (in module dis), 363
hasconst (in module dis), 363
hash() (built-in function), 21
hashopen() (in module bsddb), 184
hasjabs (in module dis), 363
hasjrel (in module dis), 363
haslocal (in module dis), 363
hasname (in module dis), 363
head() (in module nntplib), 255
header offset (in module zipfile), 191
headers

MIME, 232, 293
headers (in module BaseHTTPServer), 265
headers (in module rfc822), 281
heapmin() (in module msvcrt), 392
helo() (in module smtplib), 257
help() (in module nntplib), 254
hex() (built-in function), 21

Index 423

hexadecimal
literals, 5

hexbin() (in module binhex), 286
hexdigest() (in module md5), 340
hexdigest() (in module sha), 340
hexdigits (in module string), 61
hexlify() (in module binascii), 288
hexversion (in module sys), 29
hide form() (in module fl), 378
hide object() (in module fl), 381
hline() (in module curses), 131
hls to rgb() (in module colorsys), 335
$HOME, 60, 110
hosts (in module netrc), 298
hsv to rgb() (in module colorsys), 335
HTML, 241, 303
htmlentitydefs (standard module),305
htmllib (standard module), 241, 301,303
HTMLParser (in module formatter), 275
HTMLParser (in module htmllib), 304
htonl() (in module socket), 167
htons() (in module socket), 167
HTTP

protocol, 232, 241, 242, 264
HTTP(in module httplib), 242
$http proxy, 239
httpd, 264
httplib (standard module),242
HTTPServer (in module BaseHTTPServer), 264
hypertext, 303
hypot() (in module math), 82

I
I (in module re), 68
I/O control

buffering, 23, 102, 169
POSIX, 201, 202
tty, 201, 202
UNIX , 203

ibufcount() (in module sunaudiodev), 390
id() (built-in function), 21
idcok() (in module curses), 131
IDEA

cipher, 339
ident (in module cd), 374
identchars (in module cmd), 94
idlok() (in module curses), 131
if

statement, 3
ignorableWhitespace() (in module

xml.sax.handler), 313
ignore() (in module pstats), 225
IGNORECASE(in module re), 68
ihave() (in module nntplib), 255

ihooks (standard module), 18
imageop (built-in module),326
IMAP4

protocol, 249
IMAP4 (in module imaplib), 249
IMAP4.abort (in module imaplib), 249
IMAP4.error (in module imaplib), 249
IMAP4.readonly (in module imaplib), 249
imaplib (standard module),249
imgfile (built-in module),385
imghdr (standard module),336
immedok() (in module curses), 131
imp (built-in module), 18,49
import

statement, 18, 49
ImportError (built-in exception), 16
in

operator, 4, 7
INADDR * (in module socket), 166
inch() (in module curses), 131
Incomplete (in module binascii), 288
IncrementalParser (in module

xml.sax.xmlreader), 314
Independent JPEG Group, 386
index (in module cd), 374
index() , 7, 10
index() (in module array), 88
index() (in module string), 62
IndexError (built-in exception), 16
indexOf() (in module operator), 38
inet aton() (in module socket), 167
inet ntoa() (in module socket), 167
infile (in module shlex), 96
Infinity, 21, 62
info() (in module gettext), 157
infolist() (in module zipfile), 189
InfoSeek Corporation, 219
ini file, 89
init() (in module fm), 382
init() (in module mimetypes), 293
init builtin() (in module imp), 51
init color() (in module curses), 126
init frozen() (in module imp), 51
init pair() (in module curses), 126
inited (in module mimetypes), 293
initscr() (in module curses), 126
input() (built-in function), 21
input() (in module fileinput), 92
input() (in module sys), 30
InputSource (in module xml.sax.xmlreader), 315
InputType (in module cStringIO), 75
insch() (in module curses), 131
insdelln() (in module curses), 131
insert() , 10

424 Index

insert() (in module array), 88
insert text() (in module readline), 192
insertln() (in module curses), 131
insnstr() (in module curses), 131
insort() (in module bisect), 86
insstr() (in module curses), 131
install() (in module gettext), 157
instance() (in module new), 58
instancemethod() (in module new), 58
InstanceType (in module types), 34
instr() (in module curses), 131
instream (in module shlex), 96
int() , 5
int() (built-in function), 21
Int2AP() (in module imaplib), 250
integer

arbitrary precision, 341
division, 5
division, long, 5
literals, 5
literals, long, 5
object, 5
types, operations on, 6

Intel/DVI ADPCM, 323
interact() (in module code), 52, 54
interact() (in module telnetlib), 260
InteractiveConsole (in module code), 52
InteractiveInterpreter (in module code), 52
intern() (built-in function), 21
internal attr (in module zipfile), 191
Internaldate2tuple() (in module imaplib),

249
Internet, 231
Internet Config, 239
InterpolationDepthError (in module Config-

Parser), 90
InterpolationError (in module ConfigParser),

90
interpreter prompts, 30
intro (in module cmd), 95
IntType (in module types), 34
inv() (in module operator), 37
IOCTL (standard module), 204
ioctl() (in module fcntl), 204
IOError (built-in exception), 16
IP * (in module socket), 166
IPPORT * (in module socket), 166
IPPROTO * (in module socket), 166
IRIS Font Manager, 382
IRIX

threads, 173
is

operator, 4
is not

operator, 4
is builtin() (in module imp), 51
is data() (in module multifile), 285
is frozen() (in module imp), 51
is linetouched() (in module curses), 131
is wintouched() (in module curses), 131
is zipfile() (in module zipfile), 189
isabs() (in module os.path), 111
isAlive() (in module threading), 179
isalnum() , 7
isalnum() (in module curses.ascii), 139
isalpha() , 7
isalpha() (in module curses.ascii), 140
isascii() (in module curses.ascii), 140
isatty() , 13
isatty() (in module chunk), 334
isatty() (in module os), 103
isblank() (in module curses.ascii), 140
isCallable() (in module operator), 39
iscntrl() (in module curses.ascii), 140
iscomment() (in module rfc822), 280
isctrl() (in module curses.ascii), 140
isDaemon() (in module threading), 179
isdigit() , 7
isdigit() (in module curses.ascii), 140
isdir() (in module os.path), 111
isenabled() (in module gc), 31
isendwin() (in module curses), 126
ISEOF() (in module token), 359
isexpr() (in module parser), 351, 352
isfile() (in module os.path), 111
isfirstline() (in module fileinput), 92
isgraph() (in module curses.ascii), 140
isheader() (in module rfc822), 280
isinstance() (built-in function), 22
iskeyword() (in module keyword), 359
islast() (in module rfc822), 280
isleap() (in module calendar), 93
islink() (in module os.path), 111
islower() , 7
islower() (in module curses.ascii), 140
isMappingType() (in module operator), 39
ismeta() (in module curses.ascii), 140
ismount() (in module os.path), 111
ISNONTERMINAL() (in module token), 359
isNumberType() (in module operator), 39
isprint() (in module curses.ascii), 140
ispunct() (in module curses.ascii), 140
isqueued() (in module fl), 378
isreadable() (in module pprint), 56
isrecursive() (in module pprint), 56
isReservedKey() (in module Cookie), 270
isSequenceType() (in module operator), 39
isSet() (in module threading), 177

Index 425

isspace() , 7
isspace() (in module curses.ascii), 140
isstdin() (in module fileinput), 92
issubclass() (built-in function), 22
issuite() (in module parser), 351, 352
ISTERMINAL() (in module token), 359
istitle() , 8
isupper() , 8
isupper() (in module curses.ascii), 140
isxdigit() (in module curses.ascii), 140
items() , 10
itemsize (in module array), 87

J
Jansen, Jack, 287
JFIF, 386
join() , 8
join() (in module os.path), 111
join() (in module string), 63
join() (in module threading), 178
joinfields() (in module string), 63
jpeg (built-in module),386
js output() (in module Cookie), 269, 270

K
kbhit() (in module msvcrt), 391
$KDEDIR, 232
key (in module Cookie), 269
KeyboardInterrupt (built-in exception), 16
KeyError (built-in exception), 16
keyname() (in module curses), 126
keypad() (in module curses), 131
keys() , 10
keys() (in module bsddb), 185
keyword (standard module),359
kill() (in module os), 107
killchar() (in module curses), 126
knee (standard module), 52
knownfiles (in module mimetypes), 293
Kuchling, Andrew, 339

L
L (in module re), 68
LambdaType (in module types), 34
$LANG, 152, 155, 156
$LANGUAGE, 155, 156
language

ABC, 4
C, 4, 5

large files, 196
last (in module multifile), 285
last() (in module bsddb), 185
last() (in module dbhash), 184
last() (in module nntplib), 254

last traceback (in module sys), 29
last type (in module sys), 29
last value (in module sys), 29
lastcmd (in module cmd), 95
lastpart() (in module MimeWriter), 284
$LC ALL, 155, 156
LC ALL (in module locale), 154
LC COLLATE(in module locale), 154
LC CTYPE(in module locale), 153
$LC MESSAGES, 155, 156
LC MESSAGES(in module locale), 154
LC MONETARY(in module locale), 154
LC NUMERIC(in module locale), 154
LC TIME (in module locale), 154
ldexp() (in module math), 82
leapdays() (in module calendar), 93
leaveok() (in module curses), 131
left list (in module filecmp), 117
left only (in module filecmp), 117
len() , 7, 10
len() (built-in function), 22
letters (in module string), 61
level (in module multifile), 285
library (in module dbm), 200
light-weight processes, 171
lin2adpcm() (in module audioop), 324
lin2adpcm3() (in module audioop), 324
lin2lin() (in module audioop), 324
lin2ulaw() (in module audioop), 324
line-buffered I/O, 23
linecache (standard module),41
lineno (in module pyclbr), 361
lineno (in module shlex), 97
lineno() (in module fileinput), 92
linesep (in module os), 110
link() (in module os), 105
list

object, 6, 10
type, operations on, 10

list() (built-in function), 22
list() (in module imaplib), 251
list() (in module nntplib), 254
list() (in module poplib), 248
listallfolders() (in module mhlib), 295
listallsubfolders() (in module mhlib), 296
listdir() (in module dircache), 112
listdir() (in module os), 105
listen() (in module asyncore), 273
listen() (in module socket), 169
listfolders() (in module mhlib), 295
listmessages() (in module mhlib), 296
listsubfolders() (in module mhlib), 296
ListType (in module types), 34
literals

426 Index

complex number, 5
floating point, 5
hexadecimal, 5
integer, 5
long integer, 5
numeric, 5
octal, 5

ljust() , 8
ljust() (in module string), 63
$LNAME, 123
load() (in module Cookie), 269
load() (in module marshal), 49
load() (in module pickle), 44
load compiled() (in module imp), 51
load dynamic() (in module imp), 51
load module() (in module imp), 50
load source() (in module imp), 51
loads() (in module marshal), 49
loads() (in module pickle), 44
LOCALE(in module re), 68
locale (standard module),152
localeconv() (in module locale), 152
locals() (built-in function), 22
localtime() (in module time), 120
Locator (in module xml.sax.xmlreader), 315
Lock() (in module threading), 173
lock() (in module mutex), 179
lock() (posixfile method), 206
locked() (in module thread), 172
lockf() (in module fcntl), 204
lockf() (in module posixfile), 205
locking() (in module msvcrt), 391
LockType (in module thread), 172
log() (in module cmath), 83
log() (in module math), 82
log10() (in module cmath), 83
log10() (in module math), 82
log data time string() (in module Base-

HTTPServer), 266
log error() (in module BaseHTTPServer), 266
log message() (in module BaseHTTPServer),

266
log request() (in module BaseHTTPServer),

266
login() (in module ftplib), 245
login() (in module imaplib), 251
$LOGNAME, 123, 245
lognormvariate() (in module random), 84
logout() (in module imaplib), 251
long

integer division, 5
integer literals, 5

long integer
object, 5

long() , 5
long() (built-in function), 22
long() (in module string), 62
longimagedata() (in module rgbimg), 335
longname() (in module curses), 126
longstoimage() (in module rgbimg), 336
LongType (in module types), 34
lookup() (in module codecs), 76
LookupError (built-in exception base class), 15
lower() , 8
lower() (in module string), 63
lowercase (in module string), 61
lseek() (in module os), 103
lshift() (in module operator), 37
lstat() (in module os), 105
lstrip() , 8
lstrip() (in module string), 63
lsub() (in module imaplib), 251
Lundh, Fredrik, 386

M
M(in module re), 68
macros (in module netrc), 298
mailbox (standard module), 279,294
mailcap (standard module),291
Maildir (in module mailbox), 295
make form() (in module fl), 377
make parser() (in module xml.sax), 309
makedirs() (in module os), 105
makefile() (in module socket), 169
makefolder() (in module mhlib), 296
maketrans() (in module string), 63
map() (built-in function), 22
mapcolor() (in module fl), 378
mapping

object, 10
types, operations on, 10

maps() (in module nis), 210
marshal (built-in module), 42,49
marshalling

objects, 42
masking

operations, 6
match() (in module nis), 210
match() (in module re), 69, 70
math (built-in module), 5,81, 84
max() , 7
max() (built-in function), 22
max() (in module audioop), 324
MAX INTERPOLATION DEPTH(in module Config-

Parser), 90
maxdict (in module repr), 57
maxint (in module sys), 29
MAXLEN(in module mimify), 297

Index 427

maxlevel (in module repr), 57
maxlist (in module repr), 57
maxlong (in module repr), 57
maxother (in module repr), 57
maxpp() (in module audioop), 324
maxstring (in module repr), 57
maxtuple (in module repr), 57
md5 (built-in module),339
md5() (in module md5), 339
MemoryError (built-in exception), 16
Message (in module BaseHTTPServer), 265
Message (in module mhlib), 295
Message (in module mimetools), 282
Message (in module rfc822), 279
message digest, MD5, 339
MessageClass (in module BaseHTTPServer), 265
meta() (in module curses), 126
method

object, 12
methods (in module pyclbr), 361
MethodType (in module types), 35
MH(in module mhlib), 295
mhlib (standard module),295
MHMailbox (in module mailbox), 294
MIME

base64 encoding, 293
content type, 292
headers, 232, 293
quoted-printable encoding, 294

mime decode header() (in module mimify),
297

mime encode header() (in module mimify),
297

mimetools (standard module), 239, 243,282
mimetypes (standard module),292
MimeWriter (in module MimeWriter), 283
MimeWriter (standard module),283
mimify (standard module),297
mimify() (in module mimify), 297
min() , 7
min() (built-in function), 22
minmax() (in module audioop), 324
mirrored() (in module unicodedata), 80
misc header (in module cmd), 95
MissingSectionHeaderError (in module Con-

figParser), 90
mkd() (in module ftplib), 247
mkdir() (in module os), 105
mkfifo() (in module os), 105
mktemp() (in module tempfile), 143
mktime() (in module time), 120
mktime tz() (in module rfc822), 280
mmap(built-in module),180
mmap() (in module mmap), 180, 181

MmdfMailbox (in module mailbox), 294
mod() (in module operator), 37
mode, 14
modf() (in module math), 82
modified() (in module robotparser), 299
module

search path, 30, 41, 58
module (in module pyclbr), 361
module() (in module new), 58
modules (in module sys), 29
ModuleType (in module types), 35
mono2grey() (in module imageop), 326
month() (in module calendar), 93
monthcalendar() (in module calendar), 93
monthrange() (in module calendar), 93
Morsel (in module Cookie), 269
mouseinterval() (in module curses), 126
mousemask() (in module curses), 126
move() (in module curses), 132
move() (in module mmap), 181
movemessage() (in module mhlib), 296
MP, GNU library, 341
mpz (built-in module),341
mpz() (in module mpz), 341
MPZType (in module mpz), 341
msftoblock() (in module cd), 375
msftoframe() (in module cd), 374
msg() (in module telnetlib), 259
MSG* (in module socket), 166
msvcrt (built-in module),391
mt interact() (in module telnetlib), 260
mtime() (in module robotparser), 299
mul() (in module audioop), 325
mul() (in module operator), 37
MultiFile (in module multifile), 284
multifile (standard module),284
MULTILINE (in module re), 68
mutable

sequence types, 10
sequence types, operations on, 10

MutableString (in module UserString), 36
mutex (in module mutex), 179
mutex (standard module),179
mvderwin() (in module curses), 132
mvwin() (in module curses), 132

N
name, 14
name (in module os), 100
name (in module pyclbr), 361
NameError (built-in exception), 16
namelist() (in module zipfile), 190
namespaces

XML, 321

428 Index

NaN, 21, 62
NannyNag (in module tabnanny), 360
National Security Agency, 343
neg() (in module operator), 37
netrc (in module netrc), 298
netrc (standard module),298
Network News Transfer Protocol, 252
new (built-in module),58
new() (in module md5), 339
new() (in module sha), 340
new alignment() (in module formatter), 278
new font() (in module formatter), 278
new margin() (in module formatter), 278
new module() (in module imp), 50
new spacing() (in module formatter), 278
new styles() (in module formatter), 278
newconfig() (in module al), 371
newgroups() (in module nntplib), 254
newnews() (in module nntplib), 254
newpad() (in module curses), 126
newrotor() (in module rotor), 342
newwin() (in module curses), 127
next() (in module bsddb), 185
next() (in module dbhash), 184
next() (in module mailbox), 295
next() (in module multifile), 284
next() (in module nntplib), 254
nextfile() (in module fileinput), 92
nextkey() (in module gdbm), 201
nextpart() (in module MimeWriter), 284
nice() (in module os), 108
nis (extension module),210
NIST, 340
nl() (in module curses), 127
nlst() (in module ftplib), 246
NNTP

protocol, 252
NNTP(in module nntplib), 253
NNTPDataError (in module nntplib), 254
NNTPError (in module nntplib), 253
nntplib (standard module),252
NNTPPermanentError (in module nntplib), 253
NNTPProtocolError (in module nntplib), 254
NNTPReplyError (in module nntplib), 253
NNTPTemporaryError (in module nntplib), 253
nocbreak() (in module curses), 127
nodelay() (in module curses), 132
NODISC(in module cd), 374
noecho() (in module curses), 127
nofill (in module htmllib), 304
nok builtin names (in module rexec), 346
None, 3
NoneType (in module types), 34
nonl() (in module curses), 127

noop() (in module imaplib), 251
noop() (in module poplib), 248
NoOptionError (in module ConfigParser), 90
noqiflush() (in module curses), 127
noraw() (in module curses), 127
normalvariate() (in module random), 84
normcase() (in module os.path), 111
normpath() (in module os.path), 111
NoSectionError (in module ConfigParser), 90
not

operator, 4
not in

operator, 4, 7
not () (in module operator), 38
NotANumber (in module fpformat), 74
notationDecl() (in module xml.sax.handler),

313
NotationDeclHandler() (in module

xml.parsers.expat), 306
notify() (in module threading), 176
notifyAll() (in module threading), 176
notimeout() (in module curses), 132
NotImplementedError (built-in exception), 16
NotStandaloneHandler() (in module

xml.parsers.expat), 307
noutrefresh() (in module curses), 132
NSA, 343
NSIG (in module signal), 164
ntohl() (in module socket), 167
ntohs() (in module socket), 167
ntransfercmd() (in module ftplib), 246
NullFormatter (in module formatter), 277
NullWriter (in module formatter), 279
numeric

conversions, 5
literals, 5
object, 4, 5
types, operations on, 5

numeric() (in module unicodedata), 80
Numerical Python, 25
nurbscurve() (in module gl), 384
nurbssurface() (in module gl), 384
nvarray() (in module gl), 384

O
O APPEND(in module os), 104
O BINARY (in module os), 104
O CREAT(in module os), 104
O DSYNC(in module os), 104
O EXCL(in module os), 104
O NDELAY(in module os), 104
O NOCTTY(in module os), 104
O NONBLOCK(in module os), 104
O RDONLY(in module os), 104

Index 429

O RDWR(in module os), 104
O RSYNC(in module os), 104
O SYNC(in module os), 104
O TRUNC(in module os), 104
O WRONLY(in module os), 104
object

buffer, 6
code, 12, 49
complex number, 5
dictionary, 10
file, 13
floating point, 5
frame, 165
integer, 5
list, 6, 10
long integer, 5
mapping, 10
method, 12
numeric, 4, 5
sequence, 6
socket, 165
string, 6
traceback, 28, 39
tuple, 6
type, 25
Unicode, 6
xrange, 6, 9

objects
comparing, 4
flattening, 42
marshalling, 42
persistent, 42
pickling, 42
serializing, 42

obufcount() (in module sunaudiodev), 390
oct() (built-in function), 22
octal

literals, 5
octdigits (in module string), 61
ok builtin modules (in module rexec), 346
ok path (in module rexec), 346
ok posix names (in module rexec), 346
ok sys names (in module rexec), 346
onecmd() (in module cmd), 94
open() , 13
open() (built-in function), 22
open() (in module aifc), 327
open() (in module anydbm), 182
open() (in module cd), 374
open() (in module codecs), 76
open() (in module dbhash), 183
open() (in module dbm), 200
open() (in module dl), 198
open() (in module dumbdbm), 182

open() (in module gdbm), 200
open() (in module gzip), 188
open() (in module imaplib), 251
open() (in module os), 103
open() (in module pipes), 205
open() (in module posixfile), 206
open() (in module sunau), 329
open() (in module sunaudiodev), 389
open() (in module telnetlib), 259
open() (in module urllib), 241
open() (in module wave), 332
open() (in module webbrowser), 231, 232
open new() (in module webbrowser), 232
open osfhandle() (in module msvcrt), 391
open unknown() (in module urllib), 241
opendir() (in module dircache), 112
openfolder() (in module mhlib), 296
openfp() (in module sunau), 329
openfp() (in module wave), 332
OpenGL, 385
OpenKey() (in module winreg), 394
OpenKeyEx() (in module winreg), 394
openlog() (in module syslog), 210
openmessage() (in module mhlib), 297
openport() (in module al), 371
openpty() (in module os), 103
openpty() (in module pty), 203
operation

concatenation, 7
repetition, 7
slice, 7
subscript, 7

operations
bit-string, 6
Boolean, 3, 4
masking, 6
shifting, 6

operations on
dictionary type, 10
integer types, 6
list type, 10
mapping types, 10
mutable sequence types, 10
numeric types, 5
sequence types, 7, 10

operator
==, 4
and , 3, 4
comparison, 4
in , 4, 7
is , 4
is not , 4
not , 4
not in , 4, 7

430 Index

or , 3, 4
operator (built-in module),37
opname (in module dis), 363
options() (in module ConfigParser), 90
or

operator, 3, 4
or () (in module operator), 37
ord() (built-in function), 23
os (standard module), 13, 31,99, 195
os.path (standard module),110
OSError (built-in exception), 17
output() (in module Cookie), 269, 270
OutputString() (in module Cookie), 270
OutputType (in module cStringIO), 75
OverflowError (built-in exception), 17
Overmars, Mark, 377

P
P DETACH(in module os), 108
P NOWAIT(in module os), 108
P NOWAITO(in module os), 108
P OVERLAY(in module os), 108
P WAIT (in module os), 108
pack() (in module struct), 72
pack array() (in module xdrlib), 290
pack bytes() (in module xdrlib), 290
pack double() (in module xdrlib), 289
pack farray() (in module xdrlib), 290
pack float() (in module xdrlib), 289
pack fopaque() (in module xdrlib), 289
pack fstring() (in module xdrlib), 289
pack list() (in module xdrlib), 290
pack opaque() (in module xdrlib), 290
pack string() (in module xdrlib), 289
package, 59
Packer (in module xdrlib), 289
packing

binary data, 72
$PAGER, 215
pair content() (in module curses), 127
pair number() (in module curses), 127
pardir (in module os), 110
paretovariate() (in module random), 85
Parse() (in module xml.parsers.expat), 306
parse() (in module cgi), 235
parse() (in module robotparser), 299
parse() (in module xml.sax), 309
parse() (in module xml.sax.xmlreader), 315
parse and bind() (in module readline), 192
parse header() (in module cgi), 235
parse multipart() (in module cgi), 235
parse qs() (in module cgi), 235
parse qsl() (in module cgi), 235
parsedate() (in module rfc822), 279

parsedate tz() (in module rfc822), 279
ParseFile() (in module xml.parsers.expat), 306
ParseFlags() (in module imaplib), 250
parseframe() (in module cd), 376
parser (built-in module),349
ParserCreate() (in module xml.parsers.expat),

305
ParserError (in module parser), 352
parsesequence() (in module mhlib), 296
parseString() (in module xml.sax), 309
parsing

Python source code, 349
URL, 261

ParsingError (in module ConfigParser), 90
partial() (in module imaplib), 251
pass () (in module poplib), 248
$PATH, 110, 236, 238
path

configuration file, 59
module search, 30, 41, 58
operations, 110

path (in module BaseHTTPServer), 265
path (in module os), 100
path (in module sys), 30
pathconf() (in module os), 105
pathconf names (in module os), 105
pathsep (in module os), 110
pattern (in module re), 70
pause() (in module signal), 164
PAUSED(in module cd), 374
Pdb (in module pdb), 213
pdb (standard module), 29,213
persistence, 42
persistent

objects, 42
pformat() (in module pprint), 55, 56
PGP, 339
pi (in module cmath), 84
pi (in module math), 82
pick() (in module gl), 384
pickle (standard module),42, 46–49
pickle() (in module copy reg), 46
Pickler (in module pickle), 43
pickling

objects, 42
PicklingError (in module pickle), 44
pid (in module popen2), 118
PIL (the Python Imaging Library), 386
pipe() (in module os), 103
pipes (standard module),204
PKG DIRECTORY(in module imp), 51
platform (in module sys), 30
play() (in module cd), 375
playabs() (in module cd), 375

Index 431

PLAYING (in module cd), 374
PlaySound() (in module winsound), 396
playtrack() (in module cd), 375
playtrackabs() (in module cd), 375
plock() (in module os), 108
pm() (in module pdb), 214
pnum (in module cd), 374
poll() (in module popen2), 118
poll() (in module select), 170, 171
pop() , 10
pop() (in module array), 88
pop() (in module multifile), 285
POP3

protocol, 248
POP3(in module poplib), 248
pop alignment() (in module formatter), 276
pop font() (in module formatter), 277
pop margin() (in module formatter), 277
pop style() (in module formatter), 277
popen() (in module os), 102
popen() (in module select), 171
popen2 (standard module),117
popen2() (in module os), 102
popen2() (in module popen2), 118
Popen3 (in module popen2), 118
popen3() (in module os), 102
popen3() (in module popen2), 118
Popen4 (in module popen2), 118
popen4() (in module os), 102
popen4() (in module popen2), 118
poplib (standard module),248
pos (in module re), 71
pos() (in module operator), 37
posix (built-in module),195
posixfile (built-in module),205
POSIX

file object, 205
I/O control, 201, 202
threads, 172

post() (in module nntplib), 255
post mortem() (in module pdb), 214
postcmd() (in module cmd), 94
postloop() (in module cmd), 94
pow() (built-in function), 23
pow() (in module math), 82
powm() (in module mpz), 341
pprint (standard module),54
pprint() (in module pprint), 55, 56
prcal() (in module calendar), 93
pre (standard module), 64
precmd() (in module cmd), 94
prefix (in module sys), 30
preloop() (in module cmd), 94

prepare input source() (in module
xml.sax.saxutils), 314

prepend() (in module pipes), 205
Pretty Good Privacy, 339
PrettyPrinter (in module pprint), 55
preventremoval() (in module cd), 375
previous() (in module bsddb), 185
previous() (in module dbhash), 184
print

statement, 3
print callees() (in module pstats), 225
print callers() (in module pstats), 224
print directory() (in module cgi), 236
print environ() (in module cgi), 236
print environ usage() (in module cgi), 236
print exc() (in module traceback), 40
print exception() (in module traceback), 40
print form() (in module cgi), 236
print last() (in module traceback), 40
print stack() (in module traceback), 40
print stats() (in module pstats), 224
print tb() (in module traceback), 39
printable (in module string), 61
printdir() (in module zipfile), 190
printf-style formatting, 9
prmonth() (in module calendar), 93
process

group, 100, 101
id, 101
id of parent, 101
killing, 107
signalling, 107

process request() (SocketServer protocol),
263

processes, light-weight, 171
processingInstruction() (in module

xml.sax.handler), 313
ProcessingInstructionHandler() (in mod-

ule xml.parsers.expat), 306
profile (standard module),222
profile function, 30
profiler, 30
profiling, deterministic, 219
prompt (in module cmd), 94
prompts, interpreter, 30
property declaration handler (in module

xml.sax.handler), 311
property dom node (in module

xml.sax.handler), 311
property lexical handler (in module

xml.sax.handler), 311
property xml string (in module

xml.sax.handler), 311
protocol

432 Index

CGI, 232
FTP, 241, 244
Gopher, 241, 247
HTTP, 232, 241, 242, 264
IMAP4, 249
NNTP, 252
POP3, 248
SMTP, 255

PROTOCOLVERSION(in module imaplib), 252
protocol version (in module Base-

HTTPServer), 265
prstr() (in module fm), 382
ps1 (in module sys), 30
ps2 (in module sys), 30
pstats (standard module),223
pthreads, 172
ptime (in module cd), 374
pty (standard module), 103,203
punctuation (in module string), 61
push() (in module code), 54
push() (in module multifile), 284
push alignment() (in module formatter), 276
push font() (in module formatter), 277
push margin() (in module formatter), 277
push style() (in module formatter), 277
push token() (in module shlex), 95
put() (in module Queue), 180
put nowait() (in module Queue), 180
putch() (in module msvcrt), 392
putenv() (in module os), 101
putheader() (in module httplib), 243
putp() (in module curses), 127
putrequest() (in module httplib), 243
putsequences() (in module mhlib), 296
putwin() (in module curses), 132
pwd (built-in module), 111,196
pwd() (in module ftplib), 247
pwlcurve() (in module gl), 384
py compile (standard module),361
PY COMPILED(in module imp), 50
PY FROZEN(in module imp), 51
PY RESOURCE(in module imp), 51
PY SOURCE(in module imp), 50
pyclbr (standard module),360
pyexpat (built-in module), 305
PyOpenGL, 385
Python Imaging Library, 386
$PYTHONPATH, 30, 236, 400
$PYTHONSTARTUP, 59, 192, 193
$PYTHONY2K, 119
PyZipFile (in module zipfile), 189

Q
qdevice() (in module fl), 378

qenter() (in module fl), 378
qiflush() (in module curses), 127
qread() (in module fl), 378
qreset() (in module fl), 378
qsize() (in module Queue), 180
qtest() (in module fl), 378
QueryInfoKey() (in module winreg), 394
queryparams() (in module al), 371
QueryValue() (in module winreg), 394
QueryValueEx() (in module winreg), 394
Queue (in module Queue), 180
Queue (standard module),179
quit() (in module ftplib), 247
quit() (in module nntplib), 255
quit() (in module poplib), 249
quit() (in module smtplib), 258
quopri (standard module),294
quote() (in module urllib), 240
quote plus() (in module urllib), 240
quoted-printable

encoding, 294
quotes (in module shlex), 96

R
r eval() (in module rexec), 347
r exec() (in module rexec), 347
r execfile() (in module rexec), 347
r import() (in module rexec), 347
R OK(in module os), 104
r open() (in module rexec), 347
r reload() (in module rexec), 347
r unload() (in module rexec), 347
raise

statement, 15
randint() (in module random), 85
randint() (in module whrandom), 85
random (standard module),84
random() (in module random), 85
random() (in module whrandom), 85
randrange() (in module random), 85
range() (built-in function), 23
Rat (in module mpz), 341
ratecv() (in module audioop), 325
rational numbers, 341
raw() (in module curses), 127
raw input() (built-in function), 23
raw input() (in module code), 54
raw input() (in module sys), 30
re (in module re), 72
re (standard module), 9, 61,64, 150
read() , 13
read() (in module ConfigParser), 90
read() (in module array), 88
read() (in module chunk), 334

Index 433

read() (in module codecs), 78
read() (in module imgfile), 386
read() (in module mmap), 181
read() (in module multifile), 284
read() (in module os), 103
read() (in module robotparser), 299
read() (in module sunaudiodev), 390
read() (in module zipfile), 190
read all() (in module telnetlib), 259
read byte() (in module mmap), 181
read eager() (in module telnetlib), 259
read history file() (in module readline), 192
read init file() (in module readline), 192
read lazy() (in module telnetlib), 259
read mime types() (in module mimetypes), 293
read some() (in module telnetlib), 259
read token() (in module shlex), 95
read until() (in module telnetlib), 259
read very eager() (in module telnetlib), 259
read very lazy() (in module telnetlib), 259
readable() (in module asyncore), 273
readda() (in module cd), 375
readfp() (in module ConfigParser), 91
readframes() (in module aifc), 328
readframes() (in module sunau), 330
readframes() (in module wave), 332
readline (built-in module),191
readline() , 13
readline() (in module codecs), 79
readline() (in module mmap), 181
readline() (in module multifile), 284
readlines() , 13
readlines() (in module codecs), 79
readlines() (in module multifile), 284
readlink() (in module os), 105
readmodule() (in module pyclbr), 360
readsamps() (in module al), 372
readscaled() (in module imgfile), 386
READY(in module cd), 374
Real Media File Format, 333
recent() (in module imaplib), 251
rectangle() (in module curses.textpad), 137
recv() (in module asyncore), 273
recv() (in module socket), 169
recvfrom() (in module socket), 169
redraw form() (in module fl), 378
redraw object() (in module fl), 381
redrawln() (in module curses), 132
redrawwin() (in module curses), 132
reduce() (built-in function), 24
refilemessages() (in module mhlib), 296
refresh() (in module curses), 132
register() (in module atexit), 33
register() (in module codecs), 75

register() (in module select), 171
register() (in module webbrowser), 232
RegLoadKey() (in module winreg), 393
relative

URL, 261
release() (in module thread), 172
release() (in module threading), 174–177
reload() (built-in function), 24
reload() (in module imp), 50, 52
reload() (in module sys), 29
remove() , 10
remove() (in module array), 88
remove() (in module os), 105
remove option() (in module ConfigParser), 91
remove section() (in module ConfigParser), 91
removecallback() (in module cd), 376
removedirs() (in module os), 105
removemessages() (in module mhlib), 296
rename() (in module ftplib), 247
rename() (in module imaplib), 251
rename() (in module os), 106
renames() (in module os), 106
reorganize() (in module gdbm), 201
repeat() (in module operator), 38
repetition

operation, 7
replace() , 8
replace() (in module string), 64
report() (in module filecmp), 117
report full closure() (in module filecmp),

117
report partial closure() (in module

filecmp), 117
report unbalanced() (in module sgmllib), 302
Repr (in module repr), 56
repr (standard module),56
repr() (built-in function), 24
repr() (in module repr), 57
repr1() (in module repr), 57
request queue size (SocketServer protocol),

263
request version (in module BaseHTTPServer),

265
RequestHandlerClass (SocketServer protocol),

263
reserved (in module zipfile), 191
reset() (in module codecs), 78, 79
reset() (in module pipes), 205
reset() (in module sgmllib), 301
reset() (in module statcache), 115
reset() (in module xdrlib), 289, 290
reset() (in module xml.sax.xmlreader), 316
reset() (in module xmllib), 319
reset prog mode() (in module curses), 128

434 Index

reset shell mode() (in module curses), 128
resetbuffer() (in module code), 54
resetparser() (in module cd), 376
resize() (in module mmap), 181
resolveEntity() (in module xml.sax.handler),

314
resource (built-in module),207
response() (in module imaplib), 251
responses (in module BaseHTTPServer), 265
retr() (in module poplib), 248
retrbinary() (in module ftplib), 246
retrieve() (in module urllib), 241
retrlines() (in module ftplib), 246
returns unicode (in module xml.parsers.expat),

306
reverse() , 10
reverse() (in module array), 88
reverse() (in module audioop), 325
reverse order() (in module pstats), 224
rewind() (in module aifc), 328
rewind() (in module sunau), 330
rewind() (in module wave), 332
rewindbody() (in module rfc822), 280
RExec (in module rexec), 346
rexec (standard module), 18,346
RFC

RFC 1014, 289
RFC 1321, 339
RFC 1521, 293, 294
RFC 1524, 292
RFC 1725, 248
RFC 1730, 249
RFC 1738, 262
RFC 1808, 262
RFC 1832, 289
RFC 1866, 303, 304
RFC 1869, 255, 256
RFC 2060, 249
RFC 2068, 268
RFC 2109, 268, 269
RFC 2396, 262
RFC 821, 255, 256
RFC 822, 89, 158, 243, 257, 258, 279, 280
RFC 854, 258, 259
RFC 959, 244
RFC 977, 252

rfc822 (standard module),279, 282
rfile (in module BaseHTTPServer), 265
rfind() , 8
rfind() (in module string), 62
rgb to hls() (in module colorsys), 335
rgb to hsv() (in module colorsys), 335
rgb to yiq() (in module colorsys), 335
rgbimg (built-in module),335

right list (in module filecmp), 117
right only (in module filecmp), 117
rindex() , 8
rindex() (in module string), 63
rjust() , 8
rjust() (in module string), 63
rlcompleter (standard module),193
rlecode hqx() (in module binascii), 288
rledecode hqx() (in module binascii), 288
RLIMIT AS (in module resource), 209
RLIMIT CORE(in module resource), 208
RLIMIT CPU(in module resource), 208
RLIMIT DATA(in module resource), 208
RLIMIT FSIZE (in module resource), 208
RLIMIT MEMLOC(in module resource), 208
RLIMIT NOFILE (in module resource), 208
RLIMIT NPROC(in module resource), 208
RLIMIT OFILE (in module resource), 208
RLIMIT RSS(in module resource), 208
RLIMIT STACK(in module resource), 208
RLIMIT VMEM(in module resource), 209
RLock() (in module threading), 173
rmd() (in module ftplib), 247
rmdir() (in module os), 106
RMFF, 333
rms() (in module audioop), 325
rmtree() (in module shutil), 151
rnopen() (in module bsddb), 185
RobotFileParser (in module robotparser), 299
robotparser (standard module),298
robots.txt, 298
rotor (built-in module),342
round() (built-in function), 24
rpop() (in module poplib), 248
rset() (in module poplib), 248
rshift() (in module operator), 37
rstrip() , 8
rstrip() (in module string), 63
RTLD LAZY (in module dl), 198
RTLD NOW(in module dl), 198
ruler (in module cmd), 95
run() (in module pdb), 214
run() (in module profile), 222
run() (in module sched), 123
run() (in module threading), 178
runcall() (in module pdb), 214
runcode() (in module code), 53
runeval() (in module pdb), 214
runsource() (in module code), 53
RuntimeError (built-in exception), 17
RUSAGEBOTH(in module resource), 210
RUSAGECHILDREN(in module resource), 209
RUSAGESELF (in module resource), 209

Index 435

S
S (in module re), 68
s eval() (in module rexec), 347
s exec() (in module rexec), 347
s execfile() (in module rexec), 347
S IFMT() (in module stat), 113
S IMODE() (in module stat), 113
s import() (in module rexec), 347
S ISBLK() (in module stat), 113
S ISCHR() (in module stat), 113
S ISDIR() (in module stat), 113
S ISFIFO() (in module stat), 113
S ISLNK() (in module stat), 113
S ISREG() (in module stat), 113
S ISSOCK() (in module stat), 113
s reload() (in module rexec), 347
s unload() (in module rexec), 347
saferepr() (in module pprint), 56
same files (in module filecmp), 117
samefile() (in module os.path), 111
sameopenfile() (in module os.path), 111
samestat() (in module os.path), 112
save bgn() (in module htmllib), 304
save end() (in module htmllib), 304
SaveKey() (in module winreg), 394
SAXException (in module xml.sax), 309
SAXNotRecognizedException (in module

xml.sax), 309
SAXNotSupportedException (in module

xml.sax), 309
SAXParseException (in module xml.sax), 309
scale() (in module imageop), 326
scalefont() (font handle method), 382
sched (standard module),122
scheduler (in module sched), 122
sci() (in module fpformat), 74
scroll() (in module curses), 132
scrollok() (in module curses), 132
search

path, module, 30, 41, 58
search() (in module imaplib), 251
search() (in module re), 68, 70
SEARCHERROR(in module imp), 51
section divider() (in module multifile), 285
sections() (in module ConfigParser), 90
Secure Hash Algorithm, 340
seed() (in module whrandom), 85, 86
seek() , 13
seek() (in module cd), 375
seek() (in module chunk), 334
seek() (in module mmap), 181
seek() (in module multifile), 285
SEEK CUR(in module posixfile), 206
SEEK END(in module posixfile), 206

SEEK SET (in module posixfile), 206
seekblock() (in module cd), 375
seektrack() (in module cd), 376
select (built-in module),170
select() (in module gl), 384
select() (in module imaplib), 251
select() (in module select), 170
Semaphore (in module threading), 176
Semaphore() (in module threading), 173
semaphores, binary, 171
send() (in module asyncore), 273
send() (in module httplib), 243
send() (in module socket), 169
send error() (in module BaseHTTPServer), 266
send flowing data() (in module formatter),

278
send header() (in module BaseHTTPServer),

266
send hor rule() (in module formatter), 278
send label data() (in module formatter), 278
send line break() (in module formatter), 278
send literal data() (in module formatter),

278
send paragraph() (in module formatter), 278
send query() (in module gopherlib), 247
send response() (in module BaseHTTPServer),

266
send selector() (in module gopherlib), 247
sendcmd() (in module ftplib), 246
sendmail() (in module smtplib), 257
sendto() (in module socket), 169
sep (in module os), 110
sequence

object, 6
types, mutable, 10
types, operations on, 7, 10
types, operations on mutable, 10

sequence2ast() (in module parser), 350
sequenceIncludes() (in module operator), 38
SerialCookie (in module Cookie), 268
serializing

objects, 42
serve forever() (SocketServer protocol), 263
server

WWW, 232, 264
server activate() (SocketServer protocol),

263
server address (SocketServer protocol), 263
server bind() (SocketServer protocol), 263
server version (in module BaseHTTPServer),

265
server version (in module SimpleHTTPServer),

267
set() (in module ConfigParser), 91

436 Index

set() (in module Cookie), 270
set() (in module threading), 177
set call back() (in module fl), 380
set completer() (in module readline), 192
set completer delims() (in module readline),

192
set debug() (in module gc), 32
set debuglevel() (in module ftplib), 245
set debuglevel() (in module httplib), 243
set debuglevel() (in module nntplib), 254
set debuglevel() (in module smtplib), 256
set debuglevel() (in module telnetlib), 260
set event call back() (in module fl), 377
set form position() (in module fl), 378
set graphics mode() (in module fl), 377
set history length() (in module readline),

192
set location() (in module bsddb), 185
set pasv() (in module ftplib), 246
set position() (in module xdrlib), 290
set spacing() (in module formatter), 277
set threshold() (in module gc), 32
set trace() (in module pdb), 214
set url() (in module robotparser), 299
setattr() (built-in function), 24
SetBase() (in module xml.parsers.expat), 306
setblocking() (in module socket), 169
setByteStream() (in module xml.sax.xmlreader),

317
setcbreak() (in module tty), 203
setchannels() (in module al), 372
setCharacterStream() (in module

xml.sax.xmlreader), 317
setcheckinterval() (in module sys), 30
setcomptype() (in module aifc), 328
setcomptype() (in module sunau), 331
setcomptype() (in module wave), 333
setconfig() (in module al), 373
setContentHandler() (in module

xml.sax.xmlreader), 315
setcontext() (in module mhlib), 295
setcurrent() (in module mhlib), 296
setDaemon() (in module threading), 179
setDocumentLocator() (in module

xml.sax.handler), 312
setDTDHandler() (in module xml.sax.xmlreader),

315
setegid() (in module os), 101
setEncoding() (in module xml.sax.xmlreader),

317
setEntityResolver() (in module

xml.sax.xmlreader), 315
setErrorHandler() (in module

xml.sax.xmlreader), 316

seteuid() (in module os), 101
setFeature() (in module xml.sax.xmlreader), 316
setfillpoint() (in module al), 373
setfirstweekday() (in module calendar), 92
setfloatmax() (in module al), 372
setfont() (font handle method), 382
setframerate() (in module aifc), 328
setframerate() (in module sunau), 331
setframerate() (in module wave), 333
setgid() (in module os), 101
setinfo() (in module sunaudiodev), 390
setitem() (in module operator), 38
setkey() (in module rotor), 342
setlast() (in module mhlib), 296
setliteral() (in module sgmllib), 301
setliteral() (in module xmllib), 319
setLocale() (in module xml.sax.xmlreader), 316
setlocale() (in module locale), 152
setlogmask() (in module syslog), 210
setmark() (in module aifc), 329
setmode() (in module msvcrt), 391
setName() (in module threading), 178
setnchannels() (in module aifc), 328
setnchannels() (in module sunau), 331
setnchannels() (in module wave), 333
setnframes() (in module aifc), 328
setnframes() (in module sunau), 331
setnframes() (in module wave), 333
setnomoretags() (in module sgmllib), 301
setnomoretags() (in module xmllib), 319
setoption() (in module jpeg), 386
setparams() (in module aifc), 328
setparams() (in module al), 372
setparams() (in module sunau), 331
setparams() (in module wave), 333
setpath() (in module fm), 382
setpgid() (in module os), 101
setpgrp() (in module os), 101
setpos() (in module aifc), 328
setpos() (in module sunau), 330
setpos() (in module wave), 333
setprofile() (in module sys), 30
setProperty() (in module xml.sax.xmlreader),

316
setPublicId() (in module xml.sax.xmlreader),

317
setqueuesize() (in module al), 372
setraw() (in module tty), 203
setrecursionlimit() (in module sys), 30
setregid() (in module os), 101
setreuid() (in module os), 101
setrlimit() (in module resource), 208
setsampfmt() (in module al), 372
setsampwidth() (in module aifc), 328

Index 437

setsampwidth() (in module sunau), 331
setsampwidth() (in module wave), 333
setscrreg() (in module curses), 132
setsid() (in module os), 101
setslice() (in module operator), 38
setsockopt() (in module socket), 169
setSystemId() (in module xml.sax.xmlreader),

317
setsyx() (in module curses), 128
settrace() (in module sys), 30
setuid() (in module os), 101
setup() (SocketServer protocol), 264
SetValue() (in module winreg), 395
SetValueEx() (in module winreg), 395
setwidth() (in module al), 372
SGML, 301
sgmllib (standard module),301, 303
SGMLParser (in module htmllib), 303
SGMLParser (in module sgmllib), 301
sha (built-in module),340
shelve (standard module), 42,46, 49
shifting

operations, 6
shlex (in module shlex), 95
shlex (standard module),95
show choice() (in module fl), 377
show file selector() (in module fl), 378
show form() (in module fl), 378
show input() (in module fl), 378
show message() (in module fl), 377
show object() (in module fl), 381
show question() (in module fl), 377
showsyntaxerror() (in module code), 53
showtraceback() (in module code), 53
shutdown() (in module socket), 169
shutil (standard module),150
SIG* (in module signal), 164
SIG DFL (in module signal), 164
SIG IGN (in module signal), 164
signal (built-in module),163, 172
signal() (in module signal), 164
Simple Mail Transfer Protocol, 255
SimpleCookie (in module Cookie), 268
SimpleHTTPRequestHandler (in module Sim-

pleHTTPServer), 267
SimpleHTTPServer (standard module), 264,266
sin() (in module cmath), 83
sin() (in module math), 82
sinh() (in module cmath), 83
sinh() (in module math), 82
site (standard module),58, 60
site-packages

directory, 59
site-python

directory, 59
sitecustomize (module), 59
size() (in module ftplib), 247
size() (in module mmap), 181
sizeofimage() (in module rgbimg), 335
skip() (in module chunk), 334
skippedEntity() (in module xml.sax.handler),

313
slave() (in module nntplib), 255
sleep() (in module time), 120
slice

assignment, 10
operation, 7

slice() (built-in function), 25
slice() (byte code insns), 368
slice() (in module types), 35
SliceType (in module types), 35
SmartCookie (in module Cookie), 268
SMTP

protocol, 255
SMTP(in module smtplib), 255
SMTPConnectError (in module smtplib), 256
SMTPDataError (in module smtplib), 256
SMTPException (in module smtplib), 256
SMTPHeloError (in module smtplib), 256
smtplib (standard module),255
SMTPRecipientsRefused (in module smtplib),

256
SMTPResponseException (in module smtplib),

256
SMTPSenderRefused (in module smtplib), 256
SMTPServerDisconnected (in module smtplib),

256
SND ALIAS (in module winsound), 397
SND ASYNC(in module winsound), 397
SND FILENAME(in module winsound), 397
SND LOOP(in module winsound), 397
SND MEMORY(in module winsound), 397
SND NODEFAULT(in module winsound), 397
SND NOSTOP(in module winsound), 397
SND NOWAIT(in module winsound), 397
SND PURGE(in module winsound), 397
sndhdr (standard module),336
SO * (in module socket), 166
SOCK DGRAM(in module socket), 166
SOCK RAW(in module socket), 166
SOCK RDM(in module socket), 166
SOCK SEQPACKET(in module socket), 166
SOCK STREAM(in module socket), 166
socket

object, 165
socket (SocketServer protocol), 263
socket (built-in module), 13,165, 231
socket() (in module imaplib), 251

438 Index

socket() (in module select), 171
socket() (in module socket), 167
socket type (SocketServer protocol), 263
SocketServer (standard module),262
SocketType (in module socket), 168
softspace , 14
SOL * (in module socket), 166
SOMAXCONN(in module socket), 166
sort() , 10
sort stats() (in module pstats), 223
source (in module shlex), 96
sourcehook() (in module shlex), 95
span() (in module re), 71
spawn() (in module pty), 203
spawnv() (in module os), 108
spawnve() (in module os), 108
split() , 8
split() (in module os.path), 112
split() (in module re), 69, 70
split() (in module string), 63
splitdrive() (in module os.path), 112
splitext() (in module os.path), 112
splitfields() (in module string), 63
splitlines() , 8
sprintf-style formatting, 9
sqrt() (in module cmath), 83
sqrt() (in module math), 82
sqrt() (in module mpz), 341
sqrtrem() (in module mpz), 341
ST ATIME (in module stat), 114
ST CTIME (in module stat), 114
ST DEV(in module stat), 114
ST GID (in module stat), 114
ST INO (in module stat), 114
ST MODE(in module stat), 114
ST MTIME(in module stat), 114
ST NLINK (in module stat), 114
ST SIZE (in module stat), 114
ST UID (in module stat), 114
stackable

streams, 75
StandardError (built-in exception base class), 15
standend() (in module curses), 133
standout() (in module curses), 133
start() (in module re), 71
start() (in module threading), 178
start color() (in module curses), 128
start new thread() (in module thread), 172
startbody() (in module MimeWriter), 283
StartCdataSectionHandler() (in module

xml.parsers.expat), 307
startDocument() (in module xml.sax.handler),

312

startElement() (in module xml.sax.handler),
312

StartElementHandler() (in module
xml.parsers.expat), 306

startElementNS() (in module xml.sax.handler),
313

startfile() (in module os), 108
startmultipartbody() (in module

MimeWriter), 283
StartNamespaceDeclHandler() (in module

xml.parsers.expat), 307
startPrefixMapping() (in module

xml.sax.handler), 312
startswith() , 8
stat (standard module), 106,113
stat() (in module nntplib), 254
stat() (in module os), 106
stat() (in module poplib), 248
stat() (in module statcache), 115
statcache (standard module),115
statement

assert , 16
del , 10
except , 15
exec , 12
if , 3
import , 18, 49
print , 3
raise , 15
try , 15
while , 3

Stats (in module pstats), 223
status() (in module imaplib), 251
statvfs (standard module), 106,115
statvfs() (in module os), 106
stderr (in module sys), 30
stdin (in module sys), 30
stdout (in module sys), 30
stdwin (built-in module), 171
STILL (in module cd), 374
stop() (in module cd), 376
storbinary() (in module ftplib), 246
store() (in module imaplib), 252
storlines() (in module ftplib), 246
str() (built-in function), 25
str() (in module locale), 153
strcoll() (in module locale), 153
StreamReader (in module codecs), 78
StreamReaderWriter (in module codecs), 79
StreamRecoder (in module codecs), 79
streams, 75

stackable, 75
StreamWriter (in module codecs), 77
strerror() (in module os), 101

Index 439

strftime() (in module time), 120
string

documentation, 353
formatting, 9
object, 6

string (in module re), 72
string (standard module), 9,61, 153, 155
StringIO (in module StringIO), 75
StringIO (standard module),75
StringType (in module types), 34
strip() , 8
strip() (in module string), 63
strip dirs() (in module pstats), 223
stripspaces (in module curses.textpad), 138
strop (built-in module), 64, 155
strptime() (in module time), 121
struct (built-in module),72, 169
structures

C, 72
strxfrm() (in module locale), 153
sub() (in module operator), 37
sub() (in module re), 69, 70
subdirs (in module filecmp), 117
subn() (in module re), 69, 70
subpad() (in module curses), 133
subscribe() (in module imaplib), 252
subscript

assignment, 10
operation, 7

subwin() (in module curses), 133
suffix map (in module mimetypes), 293
suite() (in module parser), 350
sunau (standard module),329
SUNAUDIODEV(standard module), 389,390
sunaudiodev (built-in module),389, 390
super (in module pyclbr), 361
swapcase() , 8
swapcase() (in module string), 63
sym() (in module dl), 199
sym name (in module symbol), 358
symbol (standard module),358
symbol table, 3
symlink() (in module os), 106
sync() (in module bsddb), 185
sync() (in module dbhash), 184
sync() (in module gdbm), 201
syncdown() (in module curses), 133
syncok() (in module curses), 133
syncup() (in module curses), 133
syntax error() (in module xmllib), 320
SyntaxError (built-in exception), 17
sys (built-in module),27
sys version (in module BaseHTTPServer), 265
sysconf() (in module os), 109

sysconf names (in module os), 110
syslog (built-in module),210
syslog() (in module syslog), 210
system() (in module os), 108
SystemError (built-in exception), 17
SystemExit (built-in exception), 17

T
tabnanny (standard module),360
tan() (in module cmath), 83
tan() (in module math), 82
tanh() (in module cmath), 83
tanh() (in module math), 82
tb lineno() (in module traceback), 40
tcdrain() (in module termios), 202
tcflow() (in module termios), 202
tcflush() (in module termios), 202
tcgetattr() (in module termios), 201
tcgetpgrp() (in module os), 103
tcsendbreak() (in module termios), 201
tcsetattr() (in module termios), 201
tcsetpgrp() (in module os), 103
tell() , 13
tell() (in module aifc), 328, 329
tell() (in module chunk), 334
tell() (in module mmap), 181
tell() (in module multifile), 285
tell() (in module sunau), 331
tell() (in module wave), 333
Telnet (in module telnetlib), 258
telnetlib (standard module),258
tempdir (in module tempfile), 143
tempfile (standard module),143
Template (in module pipes), 204
template (in module tempfile), 143
tempnam() (in module os), 106
temporary

file, 143
file name, 143

TemporaryFile() (in module tempfile), 143
termattrs() (in module curses), 128
TERMIOS(standard module), 201,202
termios (built-in module),201, 202
termname() (in module curses), 128
test() (in module cgi), 235
test() (in module mutex), 179
testandset() (in module mutex), 179
tests (in module imghdr), 336
testzip() (in module zipfile), 190
Textbox (in module curses.textpad), 137
textdomain() (in module gettext), 156
Thread (in module threading), 173, 178
thread (built-in module),171
threading (standard module),173

440 Index

threads
IRIX, 173
POSIX, 172

tie() (in module fl), 378
tigetflag() (in module curses), 128
tigetnum() (in module curses), 128
tigetstr() (in module curses), 128
time (built-in module),118
time() (in module time), 121
Time2Internaldate() (in module imaplib), 250
timegm() (in module calendar), 93
timeout() (in module curses), 133
times() (in module os), 108
timezone (in module time), 122
title() , 8
TMP MAX(in module os), 106
$TMPDIR, 143
tmpfile() (in module os), 102
tmpnam() (in module os), 106
tochild (in module popen2), 118
tofile() (in module array), 88
togglepause() (in module cd), 376
tok name (in module token), 359
token (in module shlex), 97
token (standard module),359
tokeneater() (in module tabnanny), 360
tokenize (standard module),359
tokenize() (in module tokenize), 359
tolist() , 9
tolist() (in module array), 88
tolist() (in module parser), 352
tomono() (in module audioop), 325
top() (in module poplib), 249
tostereo() (in module audioop), 325
tostring() (in module array), 88
totuple() (in module parser), 352
touchline() (in module curses), 133
touchwin() (in module curses), 133
tovideo() (in module imageop), 326
trace function, 30
traceback

object, 28, 39
traceback (standard module),39
tracebacklimit (in module sys), 31
TracebackType (in module types), 35
transfercmd() (in module ftplib), 246
translate() , 8
translate() (in module string), 63
translate references() (in module xmllib),

319
translation() (in module gettext), 156
true, 3
truncate() , 13
truth

value, 3
truth() (in module operator), 38
try

statement, 15
ttob() (in module imgfile), 386
ttob() (in module rgbimg), 336
tty

I/O control, 201, 202
tty (standard module),202
ttyname() (in module os), 103
tuple

object, 6
tuple() (built-in function), 25
tuple2ast() (in module parser), 351
TupleType (in module types), 34
type

Boolean, 3
object, 25
operations on dictionary, 10
operations on list, 10

type() , 12
type() (built-in function), 25
type() (in module types), 34
typeahead() (in module curses), 128
typecode (in module array), 87
TypeError (built-in exception), 17
types

built-in, 3
mutable sequence, 10
operations on integer, 6
operations on mapping, 10
operations on mutable sequence, 10
operations on numeric, 5
operations on sequence, 7, 10

types (standard module), 12, 25,33
types map (in module mimetypes), 293
TypeType (in module types), 34
tzname (in module time), 122

U
U (in module re), 68
u-LAW, 323, 328, 337, 389
ugettext() (in module gettext), 157
uid() (in module imaplib), 252
uidl() (in module poplib), 249
ulaw2lin() (in module audioop), 325
umask() (in module os), 101
uname() (in module os), 101
UnboundLocalError (built-in exception), 17
UnboundMethodType (in module types), 35
unbuffered I/O, 23
unctrl() (in module curses), 128
unctrl() (in module curses.ascii), 141
undoc header (in module cmd), 95

Index 441

unfreeze form() (in module fl), 379
unfreeze object() (in module fl), 381
ungetch() (in module curses), 128
ungetch() (in module msvcrt), 392
ungetmouse() (in module curses), 128
unhexlify() (in module binascii), 288
unichr() (built-in function), 25
UNICODE(in module re), 68
Unicode, 75, 80

database, 80
object, 6

unicode() (built-in function), 25
unicodedata (standard module),80
UnicodeError (built-in exception), 18
UnicodeType (in module types), 34
uniform() (in module random), 85
uniform() (in module whrandom), 86
UNIX

file control, 203
I/O control, 203

UnixMailbox (in module mailbox), 294
unknown charref() (in module sgmllib), 303
unknown charref() (in module xmllib), 320
unknown endtag() (in module sgmllib), 303
unknown endtag() (in module xmllib), 320
unknown entityref() (in module sgmllib), 303
unknown entityref() (in module xmllib), 320
unknown starttag() (in module sgmllib), 302
unknown starttag() (in module xmllib), 320
unlink() (in module os), 106
unlock() (in module mutex), 179
unmimify() (in module mimify), 297
unpack() (in module struct), 72
unpack array() (in module xdrlib), 291
unpack bytes() (in module xdrlib), 291
unpack double() (in module xdrlib), 290
unpack farray() (in module xdrlib), 291
unpack float() (in module xdrlib), 290
unpack fopaque() (in module xdrlib), 291
unpack fstring() (in module xdrlib), 291
unpack list() (in module xdrlib), 291
unpack opaque() (in module xdrlib), 291
unpack string() (in module xdrlib), 291
Unpacker (in module xdrlib), 289
unparsedEntityDecl() (in module

xml.sax.handler), 313
UnparsedEntityDeclHandler() (in module

xml.parsers.expat), 306
Unpickler (in module pickle), 43
unqdevice() (in module fl), 378
unquote() (in module urllib), 240
unquote plus() (in module urllib), 240
unregister() (in module select), 171
unsubscribe() (in module imaplib), 252

untouchwin() (in module curses), 133
unused data (in module zlib), 187
update() , 10
update() (in module md5), 340
update() (in module sha), 340
upper() , 9
upper() (in module string), 63
uppercase (in module string), 61
URL, 232, 239, 261, 264, 298

parsing, 261
relative, 261

urlcleanup() (in module urllib), 240
urlencode() (in module urllib), 240
urljoin() (in module urlparse), 262
urllib (standard module),239, 242
urlopen() (in module urllib), 239
URLopener (in module urllib), 240
urlparse (standard module), 241,261
urlparse() (in module urlparse), 261
urlretrieve() (in module urllib), 239
urlunparse() (in module urlparse), 262
use env() (in module curses), 128
$USER, 123, 245
user

configuration file, 59
effective id, 100
id, 101
id, setting, 101

user (standard module),59
user() (in module poplib), 248
UserDict (in module UserDict), 35
UserDict (standard module),35
UserList (in module UserList), 36
UserList (standard module),35
$USERNAME, 123
UserString (in module UserString), 36
UserString (standard module),36
UTC, 119
utime() (in module os), 106
uu (standard module), 287,287

V
value

truth, 3
value (in module Cookie), 269
value decode() (in module Cookie), 269
value encode() (in module Cookie), 269
ValueError (built-in exception), 18
values() , 10
varray() (in module gl), 384
vars() (built-in function), 25
VERBOSE(in module re), 68
verbose (in module tabnanny), 360
verify() (in module smtplib), 257

442 Index

verify request() (SocketServer protocol), 264
version (in module curses), 133
version (in module sys), 31
version (in module urllib), 242
version info (in module sys), 31
version string() (in module Base-

HTTPServer), 266
vline() (in module curses), 133
vnarray() (in module gl), 384
voidcmd() (in module ftplib), 246
volume (in module zipfile), 191
vonmisesvariate() (in module random), 84

W
W OK(in module os), 104
wait() (in module os), 108
wait() (in module popen2), 118
wait() (in module threading), 176, 177
waitpid() (in module os), 109
walk() (in module os.path), 112
wave (standard module),331
webbrowser (standard module),231
weekday() (in module calendar), 93
weibullvariate() (in module random), 85
WEXITSTATUS() (in module os), 109
wfile (in module BaseHTTPServer), 265
what() (in module imghdr), 336
what() (in module sndhdr), 337
whathdr() (in module sndhdr), 337
whichdb (standard module),184
whichdb() (in module whichdb), 184
while

statement, 3
whitespace (in module shlex), 96
whitespace (in module string), 62
whrandom (standard module),85
WIFEXITED() (in module os), 109
WIFSIGNALED() (in module os), 109
WIFSTOPPED() (in module os), 109
Windows ini file, 89
WindowsError (built-in exception), 18
winsound (built-in module),396
winver (in module sys), 31
WNOHANG(in module os), 109
wordchars (in module shlex), 96
World-Wide Web, 231, 239, 261, 298
wrapper() (in module curses.wrapper), 138
write() , 14
write() (in module ConfigParser), 91
write() (in module array), 89
write() (in module code), 53
write() (in module codecs), 78
write() (in module imgfile), 386
write() (in module mmap), 181

write() (in module os), 104
write() (in module sunaudiodev), 390
write() (in module telnetlib), 260
write() (in module zipfile), 190
write byte() (in module mmap), 182
write history file() (in module readline),

192
writeable() (in module asyncore), 273
writeframes() (in module aifc), 329
writeframes() (in module sunau), 331
writeframes() (in module wave), 333
writeframesraw() (in module aifc), 329
writeframesraw() (in module sunau), 331
writeframesraw() (in module wave), 333
writelines() , 14
writelines() (in module codecs), 78
writepy() (in module zipfile), 190
writer (in module formatter), 276
writesamps() (in module al), 373
writestr() (in module zipfile), 190
WSTOPSIG() (in module os), 109
WTERMSIG()(in module os), 109
WWW, 231, 239, 261, 298

server, 232, 264

X
X (in module re), 68
X OK(in module os), 104
xatom() (in module imaplib), 252
XDR, 42, 289
xdrlib (standard module),289
xgtitle() (in module nntplib), 255
xhdr() (in module nntplib), 255
XML, 318

namespaces, 321
xml.parsers.expat (standard module),305
xml.sax (standard module),309
xml.sax.handler (standard module),310
xml.sax.saxutils (standard module),314
xml.sax.xmlreader (standard module),314
XML ERRORASYNC ENTITY (in module

xml.parsers.expat), 308
XML ERRORATTRIBUTE EXTERNALENTITY REF

(in module xml.parsers.expat), 308
XML ERRORBAD CHAR REF (in module

xml.parsers.expat), 308
XML ERRORBINARY ENTITY REF (in module

xml.parsers.expat), 308
XML ERRORDUPLICATE ATTRIBUTE (in mod-

ule xml.parsers.expat), 308
XML ERRORINCORRECTENCODING(in module

xml.parsers.expat), 308
XML ERRORINVALID TOKEN (in module

xml.parsers.expat), 308

Index 443

XML ERRORJUNK AFTER DOC ELEMENT (in
module xml.parsers.expat), 308

XML ERRORMISPLACED XML PI (in module
xml.parsers.expat), 308

XML ERRORNO ELEMENTS (in module
xml.parsers.expat), 308

XML ERRORNO MEMORY (in module
xml.parsers.expat), 308

XML ERRORPARAMENTITY REF (in module
xml.parsers.expat), 308

XML ERRORPARTIAL CHAR (in module
xml.parsers.expat), 308

XML ERRORRECURSIVE ENTITY REF(in mod-
ule xml.parsers.expat), 308

XML ERRORSYNTAX (in module
xml.parsers.expat), 308

XML ERRORTAG MISMATCH (in module
xml.parsers.expat), 308

XML ERRORUNCLOSEDTOKEN (in module
xml.parsers.expat), 308

XML ERRORUNDEFINED ENTITY (in module
xml.parsers.expat), 308

XML ERRORUNKNOWNENCODING (in module
xml.parsers.expat), 308

XMLFilterBase (in module xml.sax.saxutils), 314
XMLGenerator (in module xml.sax.saxutils), 314
xmllib (standard module),318
XMLParser (in module xmllib), 318
XMLReader (in module xml.sax.xmlreader), 314
xor() (in module operator), 37
xover() (in module nntplib), 255
xpath() (in module nntplib), 255
xrange

object, 6, 9
xrange() , 6
xrange() (built-in function), 25
xrange() (in module types), 35
XRangeType (in module types), 35

Y
Y2K, 119
Year 2000, 119
Year 2038, 119
yiq to rgb() (in module colorsys), 335

Z
ZeroDivisionError (built-in exception), 18
zfill() (in module string), 64
zip() (built-in function), 25
ZIP DEFLATED(in module zipfile), 189
ZIP STORED(in module zipfile), 189
ZipFile (in module zipfile), 189
zipfile (standard module),188
ZipInfo (in module zipfile), 189

zlib (built-in module),186

444 Index

	1 Introduction
	2 Built-in Types, Exceptions and Functions
	2.1 Built-in Types
	2.1.1 Truth Value Testing
	2.1.2 Boolean Operations
	2.1.3 Comparisons
	2.1.4 Numeric Types
	Bit-string Operations on Integer Types

	2.1.5 Sequence Types
	String Methods
	String Formatting Operations
	XRange Type
	Mutable Sequence Types

	2.1.6 Mapping Types
	2.1.7 Other Built-in Types
	Modules
	Classes and Class Instances
	Functions
	Methods
	Code Objects
	Type Objects
	The Null Object
	The Ellipsis Object
	File Objects
	Internal Objects

	2.1.8 Special Attributes

	2.2 Built-in Exceptions
	2.3 Built-in Functions

	3 Python Runtime Services
	3.1 sys --- System-specific parameters and functions
	3.2 gc --- Garbage Collector interface
	3.3 atexit --- Exit handlers
	3.3.1 atexit Example

	3.4 types --- Names for all built-in types
	3.5 UserDict --- Class wrapper for dictionary objects
	3.6 UserList --- Class wrapper for list objects
	3.7 UserString --- Class wrapper for string objects
	3.8 operator --- Standard operators as functions.
	3.9 traceback --- Print or retrieve a stack traceback
	3.9.1 Traceback Example

	3.10 linecache --- Random access to text lines
	3.11 pickle --- Python object serialization
	3.11.1 Example

	3.12 cPickle --- Alternate implementation of pickle
	3.13 copyprotect unhbox voidb@x kern .06emvbox {hrule width.55em}reg --- Register pickle support functions
	3.14 shelve --- Python object persistence
	3.15 copy --- Shallow and deep copy operations
	3.16 marshal --- Alternate Python object serialization
	3.17 imp --- Access the import internals
	3.17.1 Examples

	3.18 code --- Interpreter base classes
	3.18.1 Interactive Interpreter Objects
	3.18.2 Interactive Console Objects

	3.19 codeop --- Compile Python code
	3.20 pprint --- Data pretty printer
	3.20.1 PrettyPrinter Objects

	3.21 repr --- Alternate repr() implementation
	3.21.1 Repr Objects
	3.21.2 Subclassing Repr Objects

	3.22 new --- Creation of runtime internal objects
	3.23 site --- Site-specific configuration hook
	3.24 user --- User-specific configuration hook
	3.25 protect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em}builtinprotect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em} --- Built-in functions
	3.26 protect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em}mainprotect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em} --- Top-level script environment

	4 String Services
	4.1 string --- Common string operations
	4.2 re --- Regular expression operations
	4.2.1 Regular Expression Syntax
	4.2.2 Matching vs. Searching
	4.2.3 Module Contents
	4.2.4 Regular Expression Objects
	4.2.5 Match Objects

	4.3 struct --- Interpret strings as packed binary data
	4.4 fpformat --- Floating point conversions
	4.5 StringIO --- Read and write strings as files
	4.6 cStringIO --- Faster version of StringIO
	4.7 codecs --- Codec registry and base classes
	4.7.1 Codec Base Classes
	Codec Objects
	StreamWriter Objects
	StreamReader Objects
	StreamReaderWriter Objects
	StreamRecoder Objects

	4.8 unicodedata --- Unicode Database

	5 Miscellaneous Services
	5.1 math --- Mathematical functions
	5.2 cmath --- Mathematical functions for complex numbers
	5.3 random --- Generate pseudo-random numbers
	5.3.1 The Random Number Generator Interface

	5.4 whrandom --- Pseudo-random number generator
	5.5 bisect --- Array bisection algorithm
	5.5.1 Example

	5.6 array --- Efficient arrays of numeric values
	5.7 ConfigParser --- Configuration file parser
	5.7.1 ConfigParser Objects

	5.8 fileinput --- Iterate over lines from multiple input streams
	5.9 calendar --- General calendar-related functions
	5.10 cmd --- Support for line-oriented command interpreters
	5.10.1 Cmd Objects

	5.11 shlex --- Simple lexical analysis
	5.11.1 shlex Objects

	6 Generic Operating System Services
	6.1 os --- Miscellaneous OS interfaces
	6.1.1 Process Parameters
	6.1.2 File Object Creation
	6.1.3 File Descriptor Operations
	6.1.4 Files and Directories
	6.1.5 Process Management
	6.1.6 Miscellaneous System Information

	6.2 os.path --- Common pathname manipulations
	6.3 dircache --- Cached directory listings
	6.4 stat --- Interpreting stat() results
	6.5 statcache --- An optimization of os.stat()
	6.6 statvfs --- Constants used with os.statvfs()
	6.7 filecmp --- File and Directory Comparisons
	6.7.1 The dircmp class

	6.8 popen2 --- Subprocesses with accessible I/O streams
	6.8.1 Popen3 and Popen4 Objects

	6.9 time --- Time access and conversions
	6.10 sched --- Event scheduler
	6.10.1 Scheduler Objects

	6.11 getpass --- Portable password input
	6.12 curses --- Terminal handling for character-cell displays
	6.12.1 Functions
	6.12.2 Window Objects
	6.12.3 Constants

	6.13 curses.textpad --- Text input widget for curses programs
	6.13.1 Textbox objects

	6.14 curses.wrapper --- Terminal handler for curses programs
	6.15 curses.ascii --- Utilities for ASCII characters
	6.16 getopt --- Parser for command line options
	6.17 tempfile --- Generate temporary file names
	6.18 errno --- Standard errno system symbols
	6.19 glob --- Unix style pathname pattern expansion
	6.20 fnmatch --- Unix filename pattern matching
	6.21 shutil --- High-level file operations
	6.21.1 Example

	6.22 locale --- Internationalization services
	6.22.1 Background, details, hints, tips and caveats
	6.22.2 For extension writers and programs that embed Python

	6.23 gettext --- Multilingual internationalization services
	6.23.1 GNU gettext API
	6.23.2 Class-based API
	The NullTranslations class
	The GNUTranslations class
	Solaris message catalog support
	The Catalog constructor

	6.23.3 Internationalizing your programs and modules
	Localizing your module
	Localizing your application
	Changing languages on the fly
	Deferred translations

	6.23.4 Acknowledgements

	7 Optional Operating System Services
	7.1 signal --- Set handlers for asynchronous events
	7.1.1 Example

	7.2 socket --- Low-level networking interface
	7.2.1 Socket Objects
	7.2.2 Example

	7.3 select --- Waiting for I/O completion
	7.3.1 Polling Objects

	7.4 thread --- Multiple threads of control
	7.5 threading --- Higher-level threading interface
	7.5.1 Lock Objects
	7.5.2 RLock Objects
	7.5.3 Condition Objects
	7.5.4 Semaphore Objects
	7.5.5 Event Objects
	7.5.6 Thread Objects

	7.6 mutex --- Mutual exclusion support
	7.6.1 Mutex Objects

	7.7 Queue --- A synchronized queue class
	7.7.1 Queue Objects

	7.8 mmap --- Memory-mapped file support
	7.9 anydbm --- Generic access to DBM-style databases
	7.10 dumbdbm --- Portable DBM implementation
	7.11 dbhash --- DBM-style interface to the BSD database library
	7.11.1 Database Objects

	7.12 whichdb --- Guess which DBM module created a database
	7.13 bsddb --- Interface to Berkeley DB library
	7.13.1 Hash, BTree and Record Objects

	7.14 zlib --- Compression compatible with gzip
	7.15 gzip --- Support for gzip files
	7.16 zipfile --- Work with ZIP archives
	7.16.1 ZipFile Objects
	7.16.2 PyZipFile Objects
	7.16.3 ZipInfo Objects

	7.17 readline --- GNU readline interface
	7.17.1 Example

	7.18 rlcompleter --- Completion function for GNU readline
	7.18.1 Completer Objects

	8 Unix Specific Services
	8.1 posix --- The most common POSIX system calls
	8.1.1 Large File Support
	8.1.2 Module Contents

	8.2 pwd --- The password database
	8.3 grp --- The group database
	8.4 crypt --- Function to check Unix passwords
	8.5 dl --- Call C functions in shared objects
	8.5.1 Dl Objects

	8.6 dbm --- Simple ``database'' interface
	8.7 gdbm --- GNU's reinterpretation of dbm
	8.8 termios --- POSIX style tty control
	8.8.1 Example

	8.9 TERMIOS --- Constants used with the termios module
	8.10 tty --- Terminal control functions
	8.11 pty --- Pseudo-terminal utilities
	8.12 fcntl --- The fcntl() and ioctl() system calls
	8.13 pipes --- Interface to shell pipelines
	8.13.1 Template Objects

	8.14 posixfile --- File-like objects with locking support
	8.15 resource --- Resource usage information
	8.15.1 Resource Limits
	8.15.2 Resource Usage

	8.16 nis --- Interface to Sun's NIS (Yellow Pages)
	8.17 syslog --- Unix syslog library routines
	8.18 commands --- Utilities for running commands

	9 The Python Debugger
	9.1 Debugger Commands
	9.2 How It Works

	10 The Python Profiler
	10.1 Introduction to the profiler
	10.2 How Is This Profiler Different From The Old Profiler?
	10.3 Instant Users Manual
	10.4 What Is Deterministic Profiling?
	10.5 Reference Manual
	10.5.1 The Stats Class

	10.6 Limitations
	10.7 Calibration
	10.8 Extensions --- Deriving Better Profilers
	10.8.1 OldProfile Class
	10.8.2 HotProfile Class

	11 Internet Protocols and Support
	11.1 webbrowser --- Convenient Web-browser controller
	11.1.1 Browser Controller Objects

	11.2 cgi --- Common Gateway Interface support.
	11.2.1 Introduction
	11.2.2 Using the cgi module
	11.2.3 Old classes
	11.2.4 Functions
	11.2.5 Caring about security
	11.2.6 Installing your CGI script on a Unix system
	11.2.7 Testing your CGI script
	11.2.8 Debugging CGI scripts
	11.2.9 Common problems and solutions

	11.3 urllib --- Open arbitrary resources by URL
	11.3.1 URLopener Objects
	11.3.2 Examples

	11.4 httplib --- HTTP protocol client
	11.4.1 HTTP Objects
	11.4.2 Examples

	11.5 ftplib --- FTP protocol client
	11.5.1 FTP Objects

	11.6 gopherlib --- Gopher protocol client
	11.7 poplib --- POP3 protocol client
	11.7.1 POP3 Objects
	11.7.2 POP3 Example

	11.8 imaplib --- IMAP4 protocol client
	11.8.1 IMAP4 Objects
	11.8.2 IMAP4 Example

	11.9 nntplib --- NNTP protocol client
	11.9.1 NNTP Objects

	11.10 smtplib --- SMTP protocol client
	11.10.1 SMTP Objects
	11.10.2 SMTP Example

	11.11 telnetlib --- Telnet client
	11.11.1 Telnet Objects
	11.11.2 Telnet Example

	11.12 urlparse --- Parse URLs into components
	11.13 SocketServer --- A framework for network servers
	11.14 BaseHTTPServer --- Basic HTTP server
	11.15 SimpleHTTPServer --- Simple HTTP request handler
	11.16 CGIHTTPServer --- CGI-capable HTTP request handler
	11.17 Cookie --- HTTP state management
	11.17.1 Cookie Objects
	11.17.2 Morsel Objects
	11.17.3 Example

	11.18 asyncore --- Asynchronous socket handler
	11.18.1 Example basic HTTP client

	12 Internet Data Handling
	12.1 formatter --- Generic output formatting
	12.1.1 The Formatter Interface
	12.1.2 Formatter Implementations
	12.1.3 The Writer Interface
	12.1.4 Writer Implementations

	12.2 rfc822 --- Parse RFC 822 mail headers
	12.2.1 Message Objects
	12.2.2 AddressList Objects

	12.3 mimetools --- Tools for parsing MIME messages
	12.3.1 Additional Methods of Message Objects

	12.4 MimeWriter --- Generic MIME file writer
	12.4.1 MimeWriter Objects

	12.5 multifile --- Support for files containing distinct parts
	12.5.1 MultiFile Objects
	12.5.2 MultiFile Example

	12.6 binhex --- Encode and decode binhex4 files
	12.6.1 Notes

	12.7 uu --- Encode and decode uuencode files
	12.8 binascii --- Convert between binary and ascii
	12.9 xdrlib --- Encode and decode XDR data
	12.9.1 Packer Objects
	12.9.2 Unpacker Objects
	12.9.3 Exceptions

	12.10 mailcap --- Mailcap file handling.
	12.11 mimetypes --- Map filenames to MIME types
	12.12 base64 --- Encode and decode MIME base64 data
	12.13 quopri --- Encode and decode MIME quoted-printable data
	12.14 mailbox --- Read various mailbox formats
	12.14.1 Mailbox Objects

	12.15 mhlib --- Access to MH mailboxes
	12.15.1 MH Objects
	12.15.2 Folder Objects
	12.15.3 Message Objects

	12.16 mimify --- MIME processing of mail messages
	12.17 netrc --- netrc file processing
	12.17.1 netrc Objects

	12.18 robotparser --- Parser for robots.txt

	13 Structured Markup Processing Tools
	13.1 sgmllib --- Simple SGML parser
	13.2 htmllib --- A parser for HTML documents
	13.2.1 HTMLParser Objects

	13.3 htmlentitydefs --- Definitions of HTML general entities
	13.4 xml.parsers.expat --- Fast XML parsing using the Expat library
	13.4.1 Example
	13.4.2 Expat error constants

	13.5 xml.sax --- Support for SAX2 parsers
	13.5.1 SAXException Objects

	13.6 xml.sax.handler --- Base classes for SAX handlers
	13.6.1 ContentHandler Objects
	13.6.2 DTDHandler Objects
	13.6.3 EntityResolver Objects

	13.7 xml.sax.saxutils --- SAX Utilities
	13.8 xml.sax.xmlreader --- Interface for XML parsers
	13.8.1 XMLReader Objects
	13.8.2 IncrementalParser Objects
	13.8.3 Locator Objects
	13.8.4 InputSource Objects
	13.8.5 AttributesImpl Objects
	13.8.6 AttributesNSImpl Objects

	13.9 xmllib --- A parser for XML documents
	13.9.1 XML Namespaces

	14 Multimedia Services
	14.1 audioop --- Manipulate raw audio data
	14.2 imageop --- Manipulate raw image data
	14.3 aifc --- Read and write AIFF and AIFC files
	14.4 sunau --- Read and write Sun AU files
	14.4.1 AUprotect unhbox voidb@x kern .06emvbox {hrule width.55em}read Objects
	14.4.2 AUprotect unhbox voidb@x kern .06emvbox {hrule width.55em}write Objects

	14.5 wave --- Read and write WAV files
	14.5.1 Waveprotect unhbox voidb@x kern .06emvbox {hrule width.55em}read Objects
	14.5.2 Waveprotect unhbox voidb@x kern .06emvbox {hrule width.55em}write Objects

	14.6 chunk --- Read IFF chunked data
	14.7 colorsys --- Conversions between color systems
	14.8 rgbimg --- Read and write ``SGI RGB'' files
	14.9 imghdr --- Determine the type of an image
	14.10 sndhdr --- Determine type of sound file

	15 Cryptographic Services
	15.1 md5 --- MD5 message digest algorithm
	15.2 sha --- SHA message digest algorithm
	15.3 mpz --- GNU arbitrary magnitude integers
	15.4 rotor --- Enigma-like encryption and decryption

	16 Restricted Execution
	16.1 rexec --- Restricted execution framework
	16.1.1 An example

	16.2 Bastion --- Restricting access to objects

	17 Python Language Services
	17.1 parser --- Access Python parse trees
	17.1.1 Creating AST Objects
	17.1.2 Converting AST Objects
	17.1.3 Queries on AST Objects
	17.1.4 Exceptions and Error Handling
	17.1.5 AST Objects
	17.1.6 Examples
	Emulation of compile()
	Information Discovery

	17.2 symbol --- Constants used with Python parse trees
	17.3 token --- Constants used with Python parse trees
	17.4 keyword --- Testing for Python keywords
	17.5 tokenize --- Tokenizer for Python source
	17.6 tabnanny --- Detection of ambiguous indentation
	17.7 pyclbr --- Python class browser support
	17.7.1 Class Descriptor Objects

	17.8 pyprotect unhbox voidb@x kern .06emvbox {hrule width.55em}compile --- Compile Python source files
	17.9 compileall --- Byte-compile Python libraries
	17.10 dis --- Disassembler for Python byte code
	17.10.1 Python Byte Code Instructions

	18 SGI IRIX Specific Services
	18.1 al --- Audio functions on the SGI
	18.1.1 Configuration Objects
	18.1.2 Port Objects

	18.2 AL --- Constants used with the al module
	18.3 cd --- CD-ROM access on SGI systems
	18.3.1 Player Objects
	18.3.2 Parser Objects

	18.4 fl --- FORMS library interface for GUI applications
	18.4.1 Functions Defined in Module fl
	18.4.2 Form Objects
	18.4.3 FORMS Objects

	18.5 FL --- Constants used with the fl module
	18.6 flp --- Functions for loading stored FORMS designs
	18.7 fm --- Font Manager interface
	18.8 gl --- Graphics Library interface
	18.9 DEVICE --- Constants used with the gl module
	18.10 GL --- Constants used with the gl module
	18.11 imgfile --- Support for SGI imglib files
	18.12 jpeg --- Read and write JPEG files

	19 SunOS Specific Services
	19.1 sunaudiodev --- Access to Sun audio hardware
	19.1.1 Audio Device Objects

	19.2 SUNAUDIODEV --- Constants used with sunaudiodev

	20 MS Windows Specific Services
	20.1 msvcrt -- Useful routines from the MS VC++ runtime
	20.1.1 File Operations
	20.1.2 Console I/O
	20.1.3 Other Functions

	20.2 protect unhbox voidb@x kern .06emvbox {hrule width.55em}winreg -- Windows registry access
	20.2.1 Registry handle objects

	20.3 winsound --- Sound-playing interface for Windows

	A Undocumented Modules
	A.1 Frameworks
	A.2 Miscellaneous useful utilities
	A.3 Platform specific modules
	A.4 Multimedia
	A.5 Obsolete
	A.6 SGI-specific Extension modules

	B Reporting Bugs
	Module Index
	Index

