Python Reference Manual

Guido van Rossum

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA
E-mail: guido@cnri.reston.va.us , guido@python.org

March 6, 1998
Release 1.5

ABSTRACT

Python is an interpreted, object-oriented, high-level programming language with dy-
namic semantics. Its high-level built in data structures, combined with dynamic typing
and dynamic binding, make it very attractive for rapid application development, as well
as for use as a scripting or glue language to connect existing components together. Py-
thon's simple, easy to learn syntax emphasizes readability and therefore reduces the cost
of program maintenance. Python supports modules and packages, which encourages
program modularity and code reuse. The Python interpreter and the extensive standard
library are available in source or binary form without charge for all major platforms, and
can be freely distributed.

This reference manual describes the syntax and “core semantics” of the language. It is
terse, but attempts to be exact and complete. The semantics of non-essential built-in ob-
ject types and of the built-in functions and modules are described iyttien Library
ReferenceFor an informal introduction to the language, seeRkghon Tutorial For C

or C++ programmers, two additional manuals extsttending and Embedding the Py-
thon Interpreterdescribes the high-level picture of how to write a Python extension
module, and th&ython/C API Reference Manudéscribes the interfaces available to
C/C++ programmers in detail.

Copyright © 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and that the names of
Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or CNRI not be
used in advertising or publicity pertaining to distribution of the software without specific, written prior per-
mission.

While CWI is the initial source for this software, a modified version is made available by the Corporation
for National Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH RE-
GARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILI-
TY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN AC-
TION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Table of Contents

CHAPTER 1 Introduction L Lo 1
Notation. e 1
CHAPTER 2 Lexical analysis 3
Linestructure 3
Logicallines. 3
Physicallines 3
Comments. 3
Explicitline joining. 3
Implicitlinejoining. 4
Blanklines 4
Indentation 4
Whitespace betweentokens. L. 5
Othertokens. 5
Identifiers and keywords oL 5
Keywords e 6
Reserved classes of identifiers 6
Literals 6
Stringliterals 6
String literal concatenation 8
Numericliterals, 8
Integer and long integer literals 8
Floating pointliterals 8
Imaginary literals 9
Operators e e 9
Delimiters e 9
CHAPTER 3 Datamodel 11
Objects, valuesandtypes 11
The standard type hierarchy. 12
Special methodnames. 18
Basic customization.o 18
Customizing attribute access 19

Emulating callable objects 20

Table of Contents

Emulating sequence and mappingtypes 20
Additional methods for emulation of sequence types20
Emulating numerictypes 0oL 21
CHAPTER 4 Execution model 23
Code blocks, execution frames, and name spaces. 23
Exceptions. 25
CHAPTER 5 Expressionso 27
Arithmetic conversions 27
AtOMS 27
Identifiers (Names) 27
Literals. 28
Parenthesizedforms. 28
Listdisplays. 28
Dictionary displays 28
String conversions. e e 29
Primaries.o 29
Attribute references Lo 29
Subscriptions Lo 29
Slicings 30
Calls. 31
The poweroperator 32
Unary arithmetic operations. 32
Binary arithmetic operations 32
Shifting operationso 33
Binary bit-wise operations 33
Comparisons. 34
Booleanoperations 35
Expressionlistso 36
Summary e e e e e 37

Table of Contents

CHAPTER 6 Simple statementso 39
Expression statements. 39
Assertstatements L0 39
Assignment statements L Lo L. 40
The passstatement 41
The del statement 41
The printstatement 42
The return statement, 42
Theraise statement 42
The break statement. 43
The continue statement 43
The import statement 43
The global statement 44
Theexecstatement 44

CHAPTER 7 Compound statements 47
Theifstatement., a7
Thewhile statement. 48
Thefor statement 48
Thetry statement 49
Function definitions. 50
Class definitions. 51

CHAPTER 8 Top-level components 53
Complete Pythonprograms 53
Fileinput 53
Interactive input. 53
Expressioninput.o 54

CHAPTER 1. INTRODUCTION

This reference manual describes the Python programming language. It is not intended as a tutorial.

While | am trying to be as precise as possible, | have chosen to use English rather than formal speci-
fications for everything except syntax and lexical analysis. This should make the document more un-
derstandable to the average reader, but will leave room for ambiguities. Consequently, if you were
coming from Mars and tried to re-implement Python from this document alone, you might have to
guess things and in fact you would probably end up implementing quite a different language. On the
other hand, if you are using Python and wonder what the precise rules about a particular area of the
language are, you should definitely be able to find them here. If you would like to see a more formal
definitition of the language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the im-
plementation may change, and other implementations of the same language may work differently. On
the other hand, there is currently only one Python implementation in widespread use, and its particular
quirks are sometimes worth being mentioned, especially where the implementation imposes addition-
al limitations. Therefore, you'll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are not
documented here, but in the sepalRyghon Library Referencgocument. A few built-in modules are
mentioned when they interact in a significant way with the language definition.

1.1 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the
following style of definition:

name: Ic_letter (Ic_letter | "_")*

Ic_letter: "a"..."z"

The first line says that aame is anlc_letter followed by a sequence of zero or more
Ic_letter s and underscores. Aa_letter in turn is any of the single characters ‘a’ through

‘z’. (This rule is actually adhered to for the names used in lexical and grammar rules in this docu-
ment.)

Each rule begins with a name (which is the name defined by the rule) and a colon. A vertidal bar (

is used to separate alternatives; it is the least binding operator in this notation. A)stegdns zero

or more repetitions of the preceding item; likewise, a phkisnieans one or more repetitions, and a
phrase enclosed in square brackgthk (means zero or one occurrences (in other words, the enclosed
phrase is optional). The and+ operators bind as tightly as possible; parentheses are used for group-
ing. Literal strings are enclosed in quotes. White space is only meaningful to separate tokens. Rules
are normally contained on a single line; rules with many alternatives may be formatted alternatively
with each line after the first beginning with a vertical bar.

In lexical definitions (as in the example above), two more conventions are used: Two literal charac-
ters separated by three dots mean a choice of any single character in the given (inclusive) range of
ASCII characters. A phrase between angular brackets>() gives an informal description of the
symbol defined; e.g. this could be used to describe the notion of ‘control character’ if needed.

uononpo.|

Even though the notation used is almost the same, there is a big difference between the meaning of
lexical and syntactic definitions: a lexical definition operates on the individual characters of the input
source, while a syntax definition operates on the stream of tokens generated by the lexical analysis.
All uses of BNF in the next chapter (“Lexical Analysis”) are lexical definitions; uses in subsequent

chapters are syntactic definitions.

CHAPTER 2: LEXICAL ANALYSIS

A Python program is read bymarser. Input to the parser is a streamtokens generated by thiex-
ical analyzer This chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bit ASCII character set for program text and string literals. 8-bit characters may be
used in string literals and comments but their interpretation is platform dependent; the proper way to
insert 8-bit characters in string literals is by using octal or hexadecimal escape sequences.

The run-time character set depends on the 1/O devices connected to the program but is generally a su-
perset of ASCII.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters
is ISO Latin-1 (an ASCII superset that covers most western languages that use the Latin alphabet),
but it is possible that in the future Unicode text editors will become common. These generally use the
UTF-8 encoding, which is also an ASCII superset, but with very different use for the characters with
ordinals 128-255. While there is no consensus on this subject yet, it is unwise to assume either Latin-
1 or UTF-8, even though the current implementation appears to favor Latin-1. This applies both to the
source character set and the run-time character set.

2.1 Line structure
A Python program is divided in a numberogical lines

2.1.1 Logical lines

The end of each logical line is represented by the token NEWLINE. Statements cannot cross logical
line boundaries except where NEWLINE is allowed by the syntax (e.g. between statements in com-
pound statements). A logical line is constructed from one or rmpbysical lineshy following the ex-

plicit or implicit line joiningrules.

2.1.2 Physical lines

A physical line ends in whatever the current platform’s convention is for terminating lines. On UNIX,
this is the ASCII LF (linefeed) character. On DOS/Windows, it is the ASCII sequence CR LF (return
followed by linefeed). On Macintosh, it is the ASCII CR (return) character.

2.1.3 Comments

A comment starts with a hash charactéy that is not part of a string literal, and ends at the end of
the physical line. A comment signifies the end of the logical line unless the implicit line joining rules
are invoked. Comments are ignored by the syntax ; they are not tokens.

2.1.4 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash charadteas follows:

when a physical line ends in a backslash that is not part of a string literal or comment, it is joined with
the following forming a single logical line, deleting the backslash and the following end-of-line char-
acter. For example:

if 1900 < year < 2100 and 1 <= month <=12\
and 1 <= day <= 31 and 0 <= hour < 24\

SIsAjeue [eJIXa7 e

and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A back-
slash does not continue a token except for string literals (i.e., tokens other than string literals cannot be split
across physical lines using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.5 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line
without using backslashes. For example:

month_names = ['Januari’, 'Februari’, 'Maart’, # These are the
‘April’, 'Mei’, Juni’, # Dutch names
‘Juli’, ’Augustus’, 'September’, # for the months
'Oktober’, 'November’, 'December’] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important.
Blank continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Im-
plicit continued lines can also occur within triple-quoted strings (see below); in that case they cannot carry
comments.

2.1.6 Blank lines

Alogical line that contains only spaces, tabs, formfeeds, and possibly a comment, is ignored (i.e., no NEW-
LINE token is generated), except that during interactive input of statements, an entirely blank logical line
(i.e. one containing not even whitespace or a comment) terminates a multi-line statement.

2.1.7 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation
level of the line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up
to there is a multiple of eight (this is intended to be the same rule as used by UNIX). The total number of
spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be
split over multiple physical lines using backslashes; the whitespace up to the first backslash determines the
indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is un-
wise to use a mixture of spaces and tabs for the indentation in a single source file.

A formfeed character may be present at the start of the line; formfeed characters occurring elsewhere in the
leading whitespace have an undefined effect (for instance, they may reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a
stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off
again. The numbers pushed on the stack will always be strictly increasing from bottom to top. At the begin-
ning of each logical line, the line’s indentation level is compared to the top of the stack. If it is equal, noth-

ing happens. Ifitis larger, it is pushed on the stack, and one INDENT token is generated. If it is smaller, it

SIsAjeue [eJIXa7 e

mustbe one of the numbers occurring on the stack; all numbers on the stack that are larger are popped
off, and for each number popped off a DEDENT token is generated. At the end of the file,a DEDENT
token is generated for each number remaining on the stack that is larger than zero.
Here is an example of a correctly (though confusingly) indented piece of Python code:
def perm(l):
Compute the list of all permutations of |
if len(l) <= 1:
return [l]

r={]
for i in range(len(l)):
s =[] + I[i+1:]
p = perm(s)
for X in p:
r.append(lfi:i+1] + x)
return r

The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = I[:i] + I[i+1:]
p = perm(I[:i] + I[i+1:]) # error: unexpected indent
for x in p:
r.append(l[i:i+1] + X)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical an-
alyzer — the indentation @éturn r does not match a level popped off the stack.)

2.1.8 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and
formfeed can be used interchangeably to separate tokens. Whitespace is heeded between two tokens
only if their concatenation could otherwise be interpreted as a different tokengle.ig. one token,

buta b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens eidsttifiers
keywordsliterals, operators anddelimiters Whitespace characters (other than line terminators, dis-
cussed earlier) are not tokens, but serve to delimit tokens. Where ambiguity exists, a token comprises
the longest possible string that forms a legal token when read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to aame$ are described by the following lexical definitions:

identifier: (letter|"_") (letter|digit|"_")*
letter: lowercase | uppercase
lowercase: "a".."z"

uppercase: "A"..."Z"

digit: "0".."9"

Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved wordskeywordsof the language, and cannot be used as
ordinary identifiers. They must be spelled exactly as written here:

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass

def finally in print

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These are:

Table 1: Special Meanings of Identifiers

Form Meaning
_ Not imported byfrom moduleimport *
o System-defined name
_* Class-private name mangling

(XXX need section references here.)

2.4 Literals

Literals are notations for constant values of some built-in types

2.4.1 String literals
String literals are described by the following lexical definitions:

stringliteral: [rawprefix] (shortstring | longstring)

rawprefix: "M "R"
shortstring: ™" shortstringitem* " | " shortstringitem* ™"
longstring: "™ longstringitem* "™ | ™" longstringitem* ™"

shortstringitem: shortstringchar | escapeseq

longstringitem: longstringchar | escapeseq

shortstringchar: <any ASCII character except "\" or newline or the quote>
longstringchar: <any ASCII character except "\">

escapeseq: "\" <any ASCII character>

In plain English: String literals can be enclosed in matching single quotes (') or double quotes (*). They can
also be enclosed in matching groups of three single or double quotes (these are generally referred to as
triple-quoted strings The backslash (\) character is used to escape characters that otherwise have a special
meaning, such as newline, backslash itself, or the quote character. String literals may optionally be prefixed
with a letter ‘r'’ or ‘R’; such strings are calleaw stringsand use different rules for backslash escape se-
guences.

In “long strings” (strings surrounded by sets of three quotes), unescaped newlines and quotes are al-
lowed (and are retained), except that three unescaped quotes in a row terminate the string. (A “quote”
is the character used to open the string, i.e. €itlwar .)

Unless an ‘v’ or ‘R’ prefix is present, escape sequences in strings are interpreted according to rules
similar to those used by Standard C. The recognized escape sequences are:

SIsAjeue [eJIXa7 e

Table 2: Escape Sequences

Escape Sequence Meaning
\ newline Ignored
\\ Backslash\()
\ Single quote’()
\" Double quote'()
\a ASCII Bell (BEL)
\b ASCII Backspace (BS)
\f ASCII Formfeed (FF)
\n ASCII Linefeed (LF)
\r ASCII Carriage Return (CR)
\t ASCII Horizontal Tab (TAB)
\v ASCII Vertical Tab (VT)
\ ooo ASCII character with octal valusoo
\X XX... ASCII character with hex value...

In strict compatibility with Standard C, up to three octal digits are accepted, but an unlimited number
of hex digits is taken to be part of the hex escape (and then the lower 8 bits of the resulting hex num-
ber are used in all current implementations...).

Unlike Standard C, all unrecognized escape sequences are left in the string unchanges baek-
slash is left in the string(This behavior is useful when debugging: if an escape sequence is mistyped,
the resulting output is more easily recognized as broken.)

When an ‘r’ or ‘R’ prefix is present, backslashes are still used to quote the following character, but

all backslashes are left in the stringor example, the string literd\n" consists of two characters:

a backslash and a lowercase ‘n’. String quotes can be escaped with a backslash, but the backslash re-
mains in the string; for example\"" is a valid string literal consisting of two characters: a back-

slash and a double quot&)" is not a value string literal (even a raw string cannot end in an odd
number of backslashes).

2.4.1.1 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conven-
tions, are allowed, and their meaning is the same as their concatenation'Heilos, 'world’

is equivalent td'helloworld" . This feature can be used to reduce the number of backslashes
needed, to split long strings conveniently across long lines, or even to add comments to parts of
strings, for example:

regex.compile("[A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’ op-
erator must be used to concatenate string expressions at run time. Also note that literal concatenation
can use different quoting styles for each component.

2.4.2 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers, and
imaginary numbers.

2.4.2.1 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger: integer ("I"|"L")

integer: decimalinteger | octinteger | hexinteger
decimalinteger: nonzerodigit digit* | "0"

octinteger: "0" octdigit+

hexinteger: "0" ("X"|"X") hexdigit+

nonzerodigit: "1"..."9"

octdigit: "o

hexdigit: digit|"a"..."f"|"A"..."F"

Although both lower case ‘I' and upper case ‘L’ are allowed as suffix for long integers, it is strongly
recommended to always use ‘L’, since the letter ‘I’ looks too much like the digit ‘1.

Plain integer decimal literals must be at most 2147483647 (i.e., the largest positive integer, using 32-
bit arithmetic). Plain octal and hexadecimal literals may be as large as 4294967295, but values larger
than 2147483647 are converted to a negative value by subtracting 4294967296. There is no limit for
long integer literals apart from what can be stored in available memory.

Some examples of plain and long integer literals:

7 2147483647 0177 0x80000000
3L 79228162514264337593543950336L 0377L 0x100000000L

2.4.2.2 Floating point literals

Floating point literals are described by the following lexical definitions:

floathumber: pointfloat | exponentfloat
pointfloat: [intpart] fraction | intpart "."
exponentfloat: (intpart | pointfloat) exponent
intpart: nonzerodigit digit* | "0"

fraction: "" digit+
exponent: ("e"['E™) ["+"|"-"] digit+

Note that the integer part of a floating point number cannot look like an octal integer. The allowed
range of floating point literals is implementation-dependent. Some examples of floating point liter-
als:

3.14 10. .001 1el100 3.14e-10

2.4.2.3 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber: (floatnumber | intpart) ("j"]"J")

An imaginary literals yields a complex number with a real part of 0.0. Complex numbers are repre-
sented as a pair of floating point numbers and have the same restrictions on their range. To create a
complex number with a nonzero real part, add a floating point number to i(3a4j). Some ex-

amples of imaginary literals:

3.14j 10 10j .001j 1e100j 3.14e-10j

Note that numeric literals do not include a sign; a phrase-likés actually an expression composed
of the unary operator * and the literall.

2.5 Operators

The following tokens are operators:

+ _ * *% / %
<< >> & | n ~
< > <= >= == 1= <>

The comparison operatoxs and!= are alternate spellings of the same operator; = is the preferred
spelling, <> is obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:
¢)y [» 1 {1}

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a
special meaning as ellipses in slices.

The following printing ASCII characters have special meaning as part of other tokens or are other-
wise significant to the lexical analyzer:

0\
The following printing ASCII characters are not used in Python. Their occurrence outside string lit-
erals and comments is an unconditional error:
@ $ 2

SIsAjeue [eJIXa7 e

10

CHAPTER 3: DATA MODEL

3.1 Objects, values and types

Objectsare Python's abstraction for data. All data in a Python program is represented by objects or
by relations between objects. (In conformance to Von Neumann’s model of a “stored program com-
puter”, code is also represented by objects.)

Every object has an identity, a type and a value. An objedéstity never changes once it has been
created; you may think of it as the object’s address in memory. iEhedperator compares the iden-

tity of two objects; theid() ' function returns an integer representing its identity (currently imple-
mented as its address). An objedypeis also unchangeable. It determines the operations that an
object supports (e.g. “does it have a length?”) and also defines the possible values for objects of that
type. The type() ' function returns an object’s type (which is an object itself). adueof some

objects can change. The=’ operator compares the value of two objects. Objects whose value can
change are said to bmutable objects whose value is unchangeable once they are created are called
immutable An object’s (im)mutability is determined by its type; for instance, numbers, strings and
tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be gar-
bage-collected. An implementation is allowed to postpone garbage collection or omit it altogether —

it is a matter of implementation quality how garbage collection is implemented, as long as no objects
are collected that are still reachable. (Implementation note: the current implementation uses a refer-
ence-counting scheme which collects most objects as soon as they become unreachable, but never
collects garbage containing circular references.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that
would normally be collectable. Also note that catching an exception witty a.except ' state-
ment may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is under-
stood that these resources are freed when the object is garbage-collected, but since garbage collection
is not guaranteed to happen, such objects also provide an explicit way to release the external resource,
usually aclose() method. Programs are strongly recommended to always explicitly close such ob-
jects. Thetry...finally ' statement provides a convenient way to do this.

Some objects contain references to other objects; these are@atieiners Examples of containers

are tuples, lists and dictionaries. The references are part of a container’s value. In most cases, when
we talk about the value of a container, we imply the values, not the identities of the contained objects;
however, when we talk about the (im)mutability of a container, only the identities of the immediately
contained objects are implied. So, if an immutable container (like a tuple) contains a reference to a
mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected
in some sense: for immutable types, operations that compute new values may actually return a refer-
ence to any existing object with the same type and value, while for mutable objects this is not al-
lowed. E.g. after'a = 1; b = 1", a andb may or may not refer to the same object with the value
one, depending on the implementation, but after= []; d = [] ”, ¢ andd are guaranteed to

refer to two different, unique, newly created empty lists. (Note tlmt= d = [] " assigns the

same object to both andd.)

11

[opow ereq o

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules written in C can define ad-
ditional types. Future versions of Python may add types to the type hierarchy (e.g. rational numbers,
efficiently stored arrays of integers, etc.).

Some of the type descriptions below contain a paragraph listing ‘special attributes’. These are at-
tributes that provide access to the implementation and are not intended for general use. Their defini-
tion may change in the future. There are also some ‘generic’ special attributes, not listed with the
individual objects: _methods__ s a list of the method names of a built-in object, if it has any;
__members__ is a list of the data attribute names of a built-in object, if it has any.

None This type has a single value. There is a single object with this value. This object is accessed
through the built-in nam&lone. It is used to signify the absence of a value in many situa-
tions, e.qg. itis returned from functions that don’t explicitly return anything. Its truth value is
false.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed
through the built-in name&llipsis . Itis used to indicate the presence of the “...” syntax
in a slice. Its truth value is true.

Numbers These are created by numeric literals and returned as results by arithmetic operators and
arithmetic built-in functions. Numeric objects are immutable; once created their value never
changes. Python numbers are of course strongly related to mathematical numbers, but subject
to the limitations of numerical representation in computers.

Python distinguishes between integers and floating point numbers:

Integers These represent elements from the mathematical set of whole numbers
There are two types of integers:

Plain integersThese represent numbers in the range -2147483648 through 2147483647.
(The range may be larger on machines with a larger natural word size, but not
smaller.) When the result of an operation falls outside this range, the exception
OverflowError is raised. For the purpose of shift and mask operations, inte-
gers are assumed to have a binary, 2's complement notation using 32 or more
bits, and hiding no bits from the user (i.e., all 4294967296 different bit patterns
correspond to different values).

Long integersThese represent numbers in an unlimited range, subject to available (vir-
tual) memory only. For the purpose of shift and mask operations, a binary repre-
sentation is assumed, and negative numbers are represented in a variant of 2's
complement which gives the illusion of an infinite string of sign bits extending
to the left.

The rules for integer representation are intended to give the most meaningful interpreta-
tion of shift and mask operations involving negative integers and the least surprises when
switching between the plain and long integer domains. For any operation except left shift,
if it yields a result in the plain integer domain without causing overflow, it will yield the
same result in the long integer domain or when using mixed operands.

Floating point numbers These represent machine-level double precision floating point num-
bers. You are at the mercy of the underlying machine architecture and C implementation
for the accepted range and handling of overflow. Python does not support single-preci-
sion floating point numbers; the savings in CPU and memory usage that are usually the
reason for using these is dwarfed by the overhead of using objects in Python, so there is

12

no reason to complicate the language with two kinds of floating point numbers.

Complex numbersThese represent complex numbers as a pair of machine-level double pre-
cision floating point numbers. The same caveats apply as for floating point numbers. The

real and imaginary value of a complex numbetan be retrieved through the attributes
z.real andz.imag .

SequenceJhese represent finite ordered sets indexed by natural numbers. The built-in function
len() returns the number of items of a sequence. When the length of a sequendtkes
index set contains the numbers 0, 1n..Jtemi of sequenca is selected bi]

Sequences also support slicing]i:j] selects all items with indexk such that
i <= k < j .When used as an expression, a slice is a sequence of the same type — this
implies that the index set is renumbered so that it starts at 0 again.

Sequences are distinguished according to their mutability:

Immutable sequence®\n object of an immutable sequence type cannot change once itis cre-
ated. (If the object contains references to other objects, these other objects may be muta-
ble and may be changed; however the array of objects directly referenced by an
immutable object cannot change.)

The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; a char-
acter is represented by a string of one item. Characters represent (at least) 8-bit
bytes. The built-in functionshr() andord() convert between characters and
nonnegative integers representing the byte values. Bytes with the values 0-127
usually represent the corresponding ASCII values, but the interpretation of val-
ues is up to the program. The string data type is also used to represent arrays of
bytes, e.g. to hold data read from a file.

(What should be done on systems whose native character set is not ASCII??7?)

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items
are formed by comma-separated lists of expressions. A tuple of one item (a ‘sin-
gleton’) can be formed by affixing a comma to an expression (an expression by
itself does not create a tuple, since parentheses must be usable for grouping of
expressions). An empty tuple can be formed by enclosing ‘nothing’ in parenthe-
ses: ‘() .

Mutable sequencedutable sequences can be changed after they are created. The subscrip-

tion and slicing notations can be used as the target of assignmedebhndelete) state-
ments.

There is currently a single mutable sequence type:

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a
comma-separated list of expressions in square brackets. (Note that there are no
special cases needed to form lists of length 0 or 1.)

The optional modularray provides an additional example of a mutable sequence type.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notation
alk] selects the item indexed lkyfrom the mapping; this can be used in expressions and
as the target of assignmentsd@ statements. The built-in functiden() returns the num-
ber of items in a mapping.

13

[opow ereq o

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or
other mutable types that are compared by value rather than by object identity — the rea-
son being that the efficient implementation of dictionaries requires a key’s value to re-
main constant. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (e.g. 1 and 1.0) then they can be used inter-
changeably to index the same dictionary entry.

Dictionaries are mutable; they are created by{thg notation. (See “Dictionary dis-
plays” on page 28.)

The optional library moduledbm, gdbm andbsddb provide additional examples of map-
ping types.

Callable typesThese are the types to which the function call operation (for invocation, See “Calls”

14

on page 31.) is applied:
User-defined functionsA user-defined function object is created by a function definition.

(See “Function definitions” on page 50.)

Special read-only attributefunc_doc or __doc__ is the function’s documentation
string, orNone if unavailable;func_name or _ _name__ is the function’s name;
func_defaults is a tuple containing default argument values for those arguments
that have defaults, ddone if no arguments have a default valdfanc_code is the
code object representing the compiled function bddgc_globals is (a reference

to) the dictionary that holds the function’s global variables — it defines the global name
space of the module in which the function was defined. Additional information about a
function’s definition can be retrieved from its code object; see the description of internal
types below.

User-defined methodsA user-defined method object (a.k.@bject closurg combines a

class, a class instance (¢one) and a user-defined function.

Special read-only attributesn_self is the instance objecimn_func is the function
object;im_class is the class that defined the method (which may be a base class of the
class of whichim_self is an instance); doc__ is the method’'s documentation
(same asim_func. _doc__); _ _name__ is the method name (same as
im_func.__name__).

User-defined method objects are created in two ways: when getting an attribute of a class
that is a user-defined function object, or when getting an attributes of a class instance that
is a user-defined function object. In the former case (class attributeintreelf at-

tribute isNone, and the method object is said to isebound in the latter case (instance
attribute),im_self is the instance, and the method object is said tbdaend For in-
stance, wheis a class which contains a definition for a functiopC.f does not yield

the function object ; rather, it yields an unbound method object m wharan_class

is C, m.im_function isf,and mim_self is None. Whenx is aCinstancex.f

yields a bound method objeatwherem.im_class is C, m.im_function isf, and
m.im_self isx.

When an unbound user-defined method object is called, the underlying function
(im_func) is called, with the restriction that the first argument must be an instance of
the proper classri_class) or of a derived class thereof.

When a bound user-defined method object is called, the underlying funitiofufic)
is called, inserting the class instandm (self) in front of the argument list. For in-
stance, wheg is a class which contains a definition for a functforandx is an instance
of C, callingx.f(1) is equivalent to callin€.f(x, 1)

Note that the transformation from function object to (unbound or bound) method object
happens each time the attribute is retrieved from the class or instance. In some cases, a
fruitful optimization is to assign the attribute to a local variable and call that local vari-
able. Also notice that this transformation only happens for user-defined functions; other
callable objects (and all non-callable objects) are retrieved without transformation.

Built-in functions A built-in function object is a wrapper arodra C function. Examples of
built-in functions arden andmath.sin (math is a standard built-in module). The
number and type of the arguments are determined by the C function. Special read-only
attributes:__doc___ is the function’s documentation string, dlone if unavailable;
__name___is the function’s name;_self _ is set toNone (but see the next para-
graph).

Built-in methods This is really a different disguise of a built-in function, this time containing
an object passed to the C function as an implicit extra argument. An example of a built-
in method islist.append , assumindist is a list object. In this case, the special
read-only attribute _self __ is set to the object denoted list

Classe<Class objects are described below. When a class object is called, a new class instance
(also described below) is created and returned. This implies a call to the class’s
__init_ method ifithas one. Any arguments are passedontotiét ~ meth-
od —ifthereisno_init__ method, the class must be called without arguments.

Class instance<lass instances are described below. Class instances can be called as a func-
tion only when the class has acall__ method; in this case(arguments) isa
shorthand fox.___call__(arguments)

Modules Modules are imported by thmport statement. (See “The import statement” on page 43.)
A module object has a name space implemented by a dictionary object (this is the dictionary
referenced by th&unc_globals attribute of functions defined in the module). Attribute
references are translated to lookups in this dictionary, eixgx is equivalent to
m.__dict__ ["x" . A module object does not contain the code object used to initialize
the module (since it isn’t needed once the initialization is done).

Attribute assignment update the module’s name space dictionary,m.g. = 1" is equiv-
alentto “‘m.__dict_ ['x"]=1

Special read-only attribute: _dict__ is the dictionary object that is the module’s name
space.

Predefined (writable) attributes: name__ is the module name; doc__ is the module’s
documentation string, ddone if unavailable;_file_is the pathname of the file from
which the module was loaded, if it was loaded from a file. Théile attribute is not
present for C modules that are statically linked into the interpreter; for extension modules
loaded dynamically from a shared library, it is the pathname of the shared library file.

ClassesClass objects are created by class definitions (See “Class definitions” on page 51.). A class
has a name space implemented by a dictionary object. Class attribute references are translated
to lookups in this dictionary, e.g.C.x ” is translated to ‘C.__dict__["X" ". When
the attribute name is not found there, the attribute search continues in the base classes. The
search is depth-first, left-to-right in the order of their occurrence in the base class list. When

15

[opow ereq o

a class attribute reference would yield a user-defined function object, it is transformed into
an unbound user-defined method object (see above)nThgdass attribute of this method
object is the class in which the function object was found, not necessarily the class for which
the attribute reference was initiated.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called as a function (see above) to yield a class instance (see below).

Special read-only attributes: dict _is the dictionary that is the class’s name space;
__name___ is the class name; bases s a tuple (possibly empty or a singleton) con-
taining the base classes, in the order of their occurrence in the base class list.

Predefined (writable) attribute: doc__ is the class’s documentation string,done if un-
defined.

Class instanced\ class instance is created by calling a class object as a function (see above). A class

Files

instance has a name space implemented as a dictionary, which is the first place where in-
stance attributes are searched. When an attribute is not found there, the search continues with
the class attributes. If a class attribute is found that is a user-defined function object (and in
no other case), it is transformed into an unbound user-defined method object (see above). The
im_class attribute of this method object is the class in which the function object was
found, not necessarily the class of the instance for which the attribute reference was initiated.
If no class attribute is found, and the object’s class has getattr method, that is

called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictio-
nary. If the class has a setattr or __ delattr__ method, this is called instead of
updating the instance dictionary directly.

Class instances can pretend to be numbers, sequences, mappings, or callable objects, and
override various other special operations, if they have methods with certain special names.
See “Special method names” on page 18.

Special attributes: dict__ vyields the attribute dictionary; class__ vyields the in-
stance’s class. In some implementations these may be assigned a new value; the new value
must have the same type as the old value.

Afile object represents an open file. File objects are created bygée() built-in function,

and also byos.popen() , os.fdopen() and themakefile() method of socket ob-

jects (and perhaps by other functions or methods provided by extension modules). The ob-
jects sys.stdin , sys.stdout and sys.stderr are initialized to file objects
corresponding to the interpreter’s standard input, output and error streams. See the Python Li-
brary Reference for complete documentation of file objects.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions

16

may change with future versions of the interpreter, but they are mentioned here for complete-
ness.

Code objectsCode objects represemyte-compilexecutable Python code, loytecodeThe
difference between a code object and a function object is that the function object contains
an explicit reference to the function’s globals (the name space dictionary of the module
in which it was defined), while a code object contains no context; also the default argu-
ment values are stored in the function object, not in the code object (because they repre-
sent values calculated at run-time). Unlike function objects, code objects are immutable
and contain no references (directly or indirectly) to mutable objects.

Special read-only attributeso_argcount is the number of positional arguments (in-
cluding arguments with default valuesp nlocals is the number of local variables
used by the function (including argumentsyy_varnames is a tuple containing the
names of the local variables (starting with the argument names}ode is a string
representing the sequence of bytecode instructiomsgonsts is a tuple containing

the literals used by the bytecod®;_names is a tuple containing the names used by the
bytecode; co_filename is the filename from which the code was compiled;
co_flags is an integer encoding a number of flags for the interpreter. The following
flag bits are defined: bit 2 is set if the function uses th@rjluments " syntax to accept

an arbitrary number of positional arguments; bit 3 is set if the function uses the
“**keywords ” syntax to accept arbitrary keyword arguments; other bits are used in-
ternally or reserved for future use. The first itemcim_consts is the documentation
string of the function, oNone if undefined. To find out the first line number of a func-
tion, you have to disassemble the bytecode instructions; the standard library module
codehack defines a functiorgetlineno() that returns the first line number of a
code object.

Frame objectsFrame objects represent execution frames. They may occur in traceback ob-
jects (see below).

Special read-only attributek:back is to the previous stack frame (towards the caller),
or None if this is the bottom stack framé; code is the code object being executed in
this frame;f locals s the dictionary used to look up locals variableglobals

is used for global variables, builtins is used for built-in (intrinsic) names;

f _restricted is a flag indicating whether the function is executing in restricted ex-
ecution modef_lineno gives the currentline number ahdasti gives the precise
instruction (this is an index into the instruction string of the code object).

Special writable attributed: trace , if not None, is a function called at the start of
each source code line (this is used by the debugger).

Traceback objects Traceback objects represent a stack trace of an exception. A traceback
objectis created when an exception occurs. When the search for an exception handler un-
winds the execution stack, at each unwound level a traceback object is inserted in front
of the current traceback. When an exception handler is entered, the stack trace is made
available to the program. (See “The try statement” on page 49.) It is accessible as
sys.exc_traceback , and also as the third item of the tuple returned by
sys.exc_info() . The latter is the preferred interface, since it works correctly when
the program is using multiple threads. When the program contains no suitable exception
handler, the stack trace is printed on the standard error stream; if the interpreter is inter-
active, it is also made available to the usesyaslast traceback

Special read-only attributeth_next is the next level in the stack trace (towards the
frame where the exception occurred), Mone if there is no next leveltb_frame

points to the execution frame of the current leuwbl;lineno gives the line number
where the exception occurreth_lasti indicates the precise instruction. The line
number and last instruction in the traceback may differ from the line number of its frame
object if the exception occurred inlyy statement with no matchirexcept clause or

with afinally clause.

Slice objectsSlice objects are used to represent slices vextanded slice syntaxused (this
is a slice using two colons, or multiple slices or ellipses separated by commas, e.g.
ali:j:step] , afit, kil , oral..., ifj]). They are also created by the
built-in slice() ~ function.

17

[opow ereq o

Special read-only attributestart is the lowerboundstop is the upperboundstep
is the step value; eachNwne if omitted. These attributes can have any type.

3.3 Special method names

This section describes how user-defined classes can customize their behavior or emulate the behavior
of other object types. In the following, if a class defines a particular method, any class derived from
it is also understood to define that method (implicitly).

A class can implement certain operations that are invoked by special syntax (such as arithmetic oper-
ations or subscripting and slicing) by defining methods with special names. For instance, if a class de-
fines a method named getitem__ , andx is an instance of this class, thefi] is equivalent to
X.__getitem__ (i) . (The reverse is not true; e.g.xfis a list objectx.__getitem__ (i) is

not equivalent tx[i] .) Except where mentioned, attempts to execute an operation raise an excep-
tion when no appropriate method is defined.

3.3.1 Basic customization

__init__(self, [args...]) Called when the instance is created. The arguments are those
that were passed to the class constructor expression. If a base class hisstan method
the derived class’s _init__ method must explicitly call it to ensure proper initialization

of the base class part of the instance, e.g.
“BaseClass.__init__ (self, [args...])

__del__(self) Called when the instance is about to be destroyed. If a base class hdala
method the derived class’'s del method must explicitly call it to ensure proper deletion
of the base class part of the instance. eBaseClass.__del__(self) ”. Note that it
is possible (though not recommended!) for thelel_ method to postpone destruction of
the instance by creating a new reference to it. It may then be called at a later time when this
new reference is deleted. It is not guaranteed thalel ~ methods are called for objects
that still exist when the interpreter exits.

Programmer’s note: “ del x " doesn't directly callx.__del_ () — the former decre-
ments the reference count foiby one, and the latter is only called when its reference count
reaches zero. Some common situations that may prevent the reference count of an object to
go to zero include: circular references between objects (e.g. a doubly-linked list or a tree data
structure with parent and child pointers); a reference to the object on the stack frame of a
function that caught an exception (the traceback storegsrexc_traceback keeps the

stack frame alive); or a reference to the object on the stack frame that raised an unhandled
exception in interactive mode (the traceback storesiymlast_traceback keeps the

stack frame alive). The first situation can only be remedied by explicitly breaking the cycles;
the latter two situations can be resolved by stord@ne in sys.exc_traceback or
sys.last_traceback

Warning: due to the precarious circumstances under whidtel__ methods are invoked,
exceptions that occur during their execution @&eored and a warning is printed to
sys.stderr instead. Also, when del__ is invoked is response to a module being de-
leted (e.g. when execution of the program is done), other globals referenced byltie

method may already have been deleted. For thisreasadie] ~ methods should do the ab-
solute minimum needed to maintain external invariants. Python 1.5 guarantees that globals

18

whose name begins with a single underscore are deleted from their module before other glo-
bals are deleted; if no other references to such globals exist, this may help in assuring that
imported modules are still available at the time when tldel ~ method is called.

__repr__(self) Called by therepr() built-in function and by string conversions (reverse
quotes) to compute the “official” string representation of an object. This should normally
look like a valid Python expression that can be used to recreate an object with the same value.

__str__ (self) Called by thestr() built-in function and by the@rint statement compute the
“informal’” string representation of an object. This differs fromrepr__ inthatit doesn’t
have to look like a valid Python expression: a more convenient or concise representation may
be used instead.

__cmp__(self, other) Called by all comparison operations. Should return a negative integer
if self <other , zero if self==other , a positive integer ifself > other . If no
__cmp__ method is defined, class instances are compared by object identity (“address”).
(Note: the restriction that exceptions are not propagated loynp__ has been removed in
Python 1.5)

__hash__(self) Called for the key object for dictionary operations, and by the built-in function
hash() . Should return a 32-bit integer usable as a hash value for dictionary operations. The
only required property is that objects which compare equal have the same hash value; it is
advised to somehow mix together (e.g. using exclusive or) the hash values for the compo-
nents of the object that also play a part in comparison of objects. If hash__ method is
defined, class instances are hashed by object identity (“address”). If a class does not define
a__cmp__ method it should not define a hash__ method either; if it defines_cmp__
but not__hash__ its instances will not be usable as dictionary keys. If a class defines mu-
table objects and implements acmp__ method it should not implement hash__ since
the dictionary implementation requires that a key’s hash value is immutable (if the object’s
hash value changes, it will be in the wrong hash bucket).

__nonzero__ (self) Called to implement truth value testing; should return 0 or 1. When this
method is not defined, len__ s called, if it is defined (see below). If a class defines nei-
ther__len__ nor__nonzero__ , allits instances are considered true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assign-
ment to, or deletion ok. namg for class instances. For performance reasons, these methods are
cached in the class object at class definition time; therefore, they cannot be changed after the class
definition is executed.

__getattr__ (self, name) Called when an attribute lookup has not found the attribute in the
usual places (i.e. itis not an instance attribute nor is it found in the class traegffor). name
is the attribute name. This method should return the (computed) attribute value or raise an

AttributeError exception.

Note that if the attribute is found through the normal mechanisngetattr is not
called. (This is an intentional asymmetry betweergetattr and__ setattr)
This is done both for efficiency reasons and because otherwmsetattr ~ would have

no way to access other attributes of the instance. Note that at least for instance variables, you
can fake total control by not inserting any values in the instance attribute dictionary (but in-
stead inserting them in another object).

__setattr__(self, name, value) Called whenever an attribute assignment is attempted.

19

[opow ereq o

This is called instead of the normal mechanism (i.e. instead of storing the value in the instance
dictionary).name is the attribute namealue is the value to be assigned to it.

If _ setattr wants to assign to an instance attribute, it shaudd simply execute
“self. name = value " — this would cause a recursive call to itself. Instead, it should
insert the value in the dictionary of instance attributes, e.qg.

“self.__dict__[name] = value

__delattr__ (self, name) Like _setattr __ but for attribute deletion instead of assign-
ment.

3.3.3 Emulating callable objects

__call__(self, [args...]) Called when the instance is “called” as a function; if this meth-
od is definedx(argl, arg2, ...) is a shorthand fox.__call__(argl, arg2,
9

3.3.4 Emulating sequence and mapping types

The following methods can be defined to emulate sequence or mapping objects. The first set of meth-
ods is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence,
the allowable keys should be the integkrf®r which 0<= k < N whereN is the length of the se-
guence, and the methodgetslice_ (see below) should be defined. It is also recommended that
mappings provide methodi®ys , values anditems behaving similar to those for Python’s stan-

dard dictionary objects; mutable sequences should provide me#pgosnd , count , index

insert ,sort ,remove andreverse like Python standard list objects. Finally, sequence types
should implement addition (meaning concatenation) and multiplication (meaning repetition) by de-
finingthemethods_add__, _radd__ , mul__ and__rmul__ described below; they should

not define__coerce__ or other numerical operators.

__len__(self) Called to implement the built-in functiden() . Should return the length of the
object, an integer= 0. Also, an object that doesn't define anonzero_ method and
whose__len__ method returns zero is considered to be false in a Boolean context.

__getitem__ (self, key) Called to implement evaluation eélf[key] . Note that the spe-
cial interpretation of negative indices (if the class wishes to emulate a sequence type) is up to
the__getitem__ method.

__setitem__ (self, key, value) Called to implement assignmentdelflkey] . Same
note as for__getitem___

__delitem__ (self, key) Called to implement deletion afelflkey] . Same note as for
__getitem___

3.3.4.1 Additional methods for emulation of sequence types

The following methods can be defined to further emulate sequence objects. For immutable sequences

methods, only getslice should be defined; for mutable sequences, all three methods should
be defined.
__getslice__(self, i, j) Called to implement evaluation s&lffi:j] . The returned

object should be of the same typesadf . Note that missing orj in the slice expression
are replaced by 0 mys.maxint , respectively, and no further transformations on the indi-
ces is performed (the implementation of negative indices is up to thetslice_ meth-

od.

20

__setslice__ (self, i, j, sequence) Calledtoimplementassignmens@lffi:j]
Thesequence argument can have any type. The return value shoulddre. Same notes
fori andj asfor__ getslice

__delslice__ (self, i, j) Called to implement deletion sElf]i:j] . Same notes far
andj as for__getslice___

Notice that these methods are only invoked when a single slice with a single colon is used. For slice
operations involvingxtended slice notation _getitem__ , setitem__ or__ delitem___
is called.

3.3.5 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to opera-
tions that are not supported by the particular kind of number implemented (e.qg., bitwise operations for
non-integral numbers) should be left undefined.

__add__ (self, right)

__sub__(self, right)

__mul__(self, right)

__div__(self, right)

__mod__(self, right)

__divmod__ (self, right)

__pow__ (self, right)

__Ishift__(self, right)

__rshift__(self, right)

__and__(self, right)

__Xor__(self, right)

__or__(self, right)
These functions are called to implement the binary arithmetic operations (+, -, *, /, %, div-
mod(), pow(), <<, >>, &, ", |). For instance: to evaluate the expression x+y, where x is an
instance of a class that has an __add__ method, x.__add__ (y) is called.

__radd__(self, left)

__rsub__(self, left)

__rmul__ (self, left)

__rdiv__ (self, left)

__rmod__ (self, left)

__rdivmod__ (self, left)

__rpow__ (self, left)

__rishift__(self, left)

__rrshift__ (self, left)

__rand__ (self, left)

__rxor__(self, left)

__ror__(self, left) These functions are called toimplement the binary arithmetic operations
(+,-,*,/,%divmod() ,pow() ,<<,>>,&",|)withreversed operands. These functions
are only called if the left operand does not support the corresponding operation. For instance:
to evaluate the expression x+y, where x is an instance of a class that does not have an
__add__ methody. radd(x) is called.

__neg__(self)
__pos__(self)
__abs__(self)

21

[opow ereq o

__invert__ (self) Called to implement the unary arithmetic operations, abs() and-~).

__int__ (self)
__long__(self)

__oct__(self)

_ float__(self) Called to implement the built-in functiomst() ,long() andfloat()
Should return a value of the appropriate type.

__hex__(self) Called to implement the built-in functiomt() andhex() . Should return a
string value.

__coerce__ (self, other) Called to implement “mixed-mode” numeric arithmetic. Should

22

either return a 2-tuple containirsglf andother converted to a common numeric type, or
None if no conversion is possible. When the common type would be the typéhef , it

is sufficient to returrNone, since the interpreter will also ask the other object to attempt a
coercion (but sometimes, if the implementation of the other type cannot be changed, itis use-
ful to do the conversion to the other type here).

Coercion rules to evaluate xop y, the following steps are taken (whereop__ and
__rop__ are the method names correspondingop e.g. ifopis ‘+’, __add__ and
__radd__ are used). If an exception occurs at any point, the evaluation is abandoned and
exception handling takes over.

0. If xis a string object andp is the modulo operatof4), the string formatting operation
(see [Ref:XXX]) is invoked and the remaining steps are skipped.

1. Ifxis a class instance:

la. If x has a_coerce_ method: replace x and y with the 2-tuple returned by
X.__coerce__(y) ; skip to step 2 if the coercion retursne.

1b. If neither x nor y is a class instance after coercion, go to step 3.

lc. If x hasamethod op__ ,returnx.__op__(y) ;otherwise, restore xandyto

their value before step 1a.

2. Ifyis aclass instance:

2a. If y has a coerce_ method: replace y and x with the 2-tuple returned by
y. _coerce__ (xX) ; skip to step 3 if the coercion returns None.

2b. If neither x nor y is a class instance after coercion, go to step 3.

2b. If y has a method rop__ , returny.__rop__(X) ; otherwise, restore x and

y to their value before step 2a.
3. We only get here if neither x nor y is a class instance.
3a. Ifopis ‘+' and x is a sequence, sequence concatenation is invoked.

3b. If opis ‘* " and one operand is a sequence and the other an integer, sequence rep-
etition is invoked.

3c. Otherwise, both operands must be numbers; they are coerced to a common type
if possible, and the numeric operation is invoked for that type.

CHAPTER 4. EXECUTION MODEL

4.1 Code blocks, execution frames, and name spaces

A code blockis a piece of Python program text that can be executed as a unit, such as a module, a
class definition or a function body. Some code blocks (like modules) are normally executed only
once, others (like function bodies) may be executed many times. Code blocks may textually contain
other code blocks. Code blocks may invoke other code blocks (that may or may not be textually con-
tained in them) as part of their execution, e.g. by invoking (calling) a function.

The following are code blocks: A module is a code block. A function body is a code block. A class
definition is a code block. Each command typed interactively is a separate code block; a script file (a
file given as standard input to the interpreter or specified on the interpreter command line the first ar-
gument) is a code block; a script command (a command specified on the interpreter command line
with the *-c’ option) is a code block. The string argument passed to the built-in funetiah and to
theexec statement are code blocks. The file read by the built-in functiwecfile is a code

block. And finally, the expression read and evaluated by the built-in funetjsut is a code block.

A code block is executed in an execution frame.execution frameontains some administrative in-
formation (used for debugging), determines where and how execution continues after the code
block’s execution has completed, and (perhaps most importantly) defines two name spaces, the local
and the global name space, that affect execution of the code block.

A name spacé a mapping from names (identifiers) to objects. A particular name space may be ref-
erenced by more than one execution frame, and from other places as well. Adding a name to a hame
space is calledindinga name (to an object); changing the mapping of a name is aalédding re-

moving a name isinbinding Name spaces are functionally equivalent to dictionaries (and often im-
plemented as dictionaries).

Thelocal name spacef an execution frame determines the default place where names are defined
and searched. Thgobal name spacdetermines the place where names listeglaibal statements

are defined and searched, and where names that are not bound anywhere in the current code block are
searched.

Whether a name is local or global in a code block is determined by static inspection of the source text
for the code block: in the absenceglbbal statements, a name that is bound anywhere in the code
block is local in the entire code block; all other names are considered globagldlted statement

forces global interpretation of specified names throughout the code block. The following constructs
bind names: formal parameters to functiomsport statements, class and function definitions
(these bind the class or function name in the defining block), and targets that are identifiers if occur-
ring in an assignmentor loop header, or in the second position ofexcept clause header. Local

names are searched only on the local name space; global names are searched only in the global and

built-in namespacé.

Atarget occurring in @el statement is also considered bound for this purpose (though the actual se-
mantics are to “unbind” the name).

1. Ifthe code block contairexec statements or the construcrdm ... import * ", the semantics
of local names change subtly: local name lookup first searches in the local namespace, then in the
global namespace and in the built-in namespace.

23

[9POW UONNJaXT o

When a global name is not found in the global name space, it is searched in the built-in namespace. The
built-in namespace associated with the execution of a code block is actually found by looking up the name

__builtins__ is its global name space; this should be a dictionary or a module (in the latter case its dic-
tionary is used). Normally, the builtins__ namespace is the dictionary of the built-in module
__builtin_ (note: no ‘s’); if it isn't, restricted execution mods in effect, see [Ref:XXX]. When a

name is not found at all,dameError exception is raised.

The following table lists the local and global name space used for all types of code blocks. The hame space
for a particular module is automatically created when the module is first imported. Note that in almost all
cases, the global name space is the name space of the containing module — scopes in Python do not nest!

Table 3: Name Spaces for Various Code Blocks

Code block type Global name space Local name space Notes

Module n.s. for this module same as global
Script (file or command) n.s. for main__ same as global Q)
Interactive command n.s. for main__ same as global
Class definition global n.s. of containing block new n.s.
Function body global n.s. of containing block new n.s.
String passed to global n.s. of containing block| local n.s. of containing(2), (3)
exec statement block
String passed teval() global n.s. of caller local n.s. of caller 2), B
File read byexecfile() global n.s. of caller local n.s. of caller 2), ®)
Expression read byput global n.s. of caller local n.s. of caller

Notes:

n.s. mean:ame space

Q) The main module for a script is always callednain__; “the filename don’t enter into it.”

(2) The global and local name space for these can be overridden with optional extra arguments.

3) The exec statement and theval() andexecfile() functions have optional arguments to
override the global and local namespace. If only one namespace is specified, it is used for both.

The built-in functionsglobals() andlocals() returns a dictionary representing the current global
and local name space, respectively. The effect of modifications to this dictionary on the name space are un-

defined?

1. The current implementations return the dictionary actually used to implement the nameeszajafor
functions, where the optimizer may cause the local name space to be implemented differently, and
locals() returns a dictionary that is a shadow copy of the actual local name space.

24

4.2 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to han-
dle errors or other exceptional conditions. An exceptioraisedat the point where the error is de-
tected; it may behandledby the surrounding code block or by any code block that directly or
indirectly invoked the code block where the error occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero).
A Python program can also explicitly raise an exception withrtéhge statement. Exception han-

dlers are specified with theey...except statement. Théry .. finally statement specifies
cleanup code which does not handle the exception, but is executed whether an exception occurred or
not in the preceding code.

Python uses the “termination” model of error handling: an exception handler can find out what hap-
pened and continue execution at an outer level, but it cannot repair the cause of the error and retry the
failing operation (except by re-entering the the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of the program, or re-
turns to its interactive main loop. In this case, the interpreter normally prints a stack backtrace.

Exceptions are identified by string objects or class instances. Selection of a maxbéng clause

is based on object identity (i.e. two different string objects with the same value represent different ex-
ceptions). For string exceptions, the except clause must reference the same string object. For class ex-
ceptions, the except clause must reference the same class or a base class of it.

When an exception is raised, an object (madmoae) is passed as the exception’s “parameter” or
“value”; this object does not affect the selection of an exception handler, but is passed to the selected
exception handler as additional information. For class exceptions, this object must be an instance of
the exception class being raised.

See also the description of ttig andraise statements in “Compound statements” on page 47.

25

[9POW UONNJaXT o

26

CHAPTER 5: EXPRESSIONS

This chapter explains the meaning of the elements of expressions in Python.

suoissaldxg .

Syntax notes:in this and the following chapters, extended BNF notation will be used to describe syn-
tax, not lexical analysis. When (one alternative of) a syntax rule has the form

name: othername

and no semantics are given, the semantics of this formraroé are the same as fothername .

5.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are con-
verted to a common type”, the arguments are coerced using the coercion rules listed at the end of
chapter 3. If both arguments are standard numeric types, the following coercions are applied:

e If either argument is a complex number, the other is converted to complex;
» otherwise, if either argument is a floating point number, the other is converted to floating point;
« otherwise, if either argument is a long integer, the other is converted to long integer;

« otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g. a string left argument 8 thygerator). Ex-
tensions can define their own coercions.

52 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals.
Forms enclosed in reverse quotes or in parentheses, brackets or braces are also categorized syntacti-
cally as atoms. The syntax for atoms is:

atom: identifier | literal | enclosure
enclosure: parenth_forml|list_display|dict_display|string_conversion

5.2.1 Identifiers (Names)

An identifier occurring as an atom is a reference to a local, global or built-in name binding. If a name
is assigned to anywhere in a code block (even in unreachable code), and is not mentioned in a
global statementinthat code block, then it refers to a local name throughout that code block. When
it is not assigned to anywhere in the block, or when it is assigned to but also explicitly listed in a
global statement, it refers to a global name if one exists, else to a built-in name (and this binding
may dynamically change).

When the name is bound to an object, evaluation of the atom yields that object. When a name is not
bound, an attempt to evaluate it raisééameError exception.

Private name mangling: when an identifier that textually occurs in a class definition begins with

two or more underscore characters and does not end in two or more underscores, it is considered a
“private name” of that class. Private names are transformed to a longer form before code is generated
for them. The transformation inserts the class name in front of the name, with leading underscores
removed, and a single underscore inserted in front of the class name. For example, the identifier
__spam occurring in a class named Ham will be transformed to _Ham__spam. This transformation is

27

28

independent of the syntactical context in which the identifier is used. If the transformed name is ex-
tremely long (longer than 255 characters), implementation defined truncation may happen. If the class
name consists only of underscores, no transformation is done.

5.2.2 Literals

Python supports string literals and various numeric literals:

literal: stringliteral | integer | longinteger | floathumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating point

number, complex number) with the given value. The value may be approximated in the case of float-
ing point and imaginary (complex) literals. (See “Literals” on page 6 for details.)

All literals correspond to immutable data types, and hence the object’s identity is less important than
its value. Multiple evaluations of literals with the same value (either the same occurrence in the pro-
gram text or a different occurrence) may obtain the same object or a different object with the same
value.

5.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form: "(" [expression_list] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least

one comma, it yields a tuple; otherwise, it yields the single expression that makes up the expression
list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the rules for
literals apply(i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator. The ex-
ception is the empty tuple, for which parenthesesrequired — allowing unparenthesized “nothing”

in expressions would cause ambiguities and allow common typos to pass uncaught.

5.2.4 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display: "["[expression_list] "]"

A list display yields a new list object. If it has no expression list, the list object has no items. Other-
wise, the elements of the expression list are evaluated from left to right and inserted in the list object
in that order.

5.2.5 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display: "{" [key_datum_list] "}"
key datum_list: key datum ("," key_datum)* [","]
key datum: expression ":" expression

A dictionary display yields a new dictionary object

The key/datum pairs are evaluated from left to right to define the entries of the dictionary: each key
object is used as a key into the dictionary to store the corresponding datum.

Restrictions on the types of the key values are listed earlier in “The standard type hierarchy” on
page 12 (to summarize, the key type should be hashable, which excludes all mutable objects). Clash-
es between duplicate keys are not detected; the last datum (textually rightmost in the display) stored
for a given key value prevails.

5.2.6 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string_conversion: """ expression_list

A string conversion evaluates the contained expression list and converts the resulting object into a
string according to rules specific to its type.

If the object is a string, a numbéXone, or a tuple, list or dictionary containing only objects whose
type is one of these, the resulting string is a valid Python expression which can be passed to the built-
in functioneval() to yield an expression with the same value (or an approximation, if floating
point numbers are involved).

(In particular, converting a string adds quotes around it and converts “funny” characters to escape se-
guences that are safe to print.)

Itis illegal to attempt to convert recursive objects (e.qg. lists or dictionaries that contain a reference to
themselves, directly or indirectly.)

The built-in functionrepr() performs exactly the same conversion in its argument as enclosing it
in parentheses and reverse quotes does. The built-in funsttibn performs a similar but more
user-friendly conversion.

5.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary: atom | attributeref | subscription | slicing | call

5.3.1 Attribute references
An attribute reference is a primary followed by a period and a name:

attributeref: primary "." identifier

The primary must evaluate to an object of a type that supports attribute references. This object is then
asked to produce the attribute whose name is the identifier. If this attribute is not available, the excep-
tion AttributeError is raised. Otherwise, the type and value of the object produced is deter-
mined by the object. Multiple evaluations of the same attribute reference may yield different objects.
5.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) object:

subscription: primary "[" expression_list "]"

29

suoissaldxg .

30

The primary must evaluate to an object of a sequence or mapping type.

If the primary is a mapping, the expression list must evaluate to an object whose value is one of the
keys of the mapping, and the subscription selects the value in the mapping that corresponds to that
key.

If the primary is a sequence, the expression (list) must evaluate to a plain integer. If this value is neg-
ative, the length of the sequence is added to it (so thatxglj. selects the last item of.) The re-

sulting value must be a nonnegative integer less than the number of items in the sequence, and the
subscription selects the item whose index is that value (counting from zero).

A string’s items are characters. A character is not a separate data type but a string of exactly one char-
acter.

5.3.3 Slicings

A slicing selects a range of items in a sequence (string, tuple or list) object. Slicings may be used as
expressions or as targets in assignmeundebr statements. The syntax for a slicing:

slicing: simple_slicing | extended_slicing
simple_slicing: primary "[* short_slice "]"
extended_slicing: primary "[" slice_list "]"

slice_list: slice_item ("," slice_item)* [*,"]

slice_item: expression | proper_slice | ellipsis
proper_slice: short_slice | long_slice
short_slice: [lower_bound] ":" [upper_bound]

long_slice: short_slice ":" [stride]
lower_bound: expression
upper_bound: expression

stride: expression

ellipsis:

There’s an ambiguity in the formal syntax here: anything that looks like an expression list also looks

like a slice list, so any subscription can be interpreted as a slicing. Rather than further complicating
the syntax, this is disambiguated by declaring that in this case the interpretation as a subscription
takes priority over the interpretation as a slicing (this is the case if the slice list contains no proper

slice nor ellipses). Similarly, when the slice list has exactly one short slice and no trailing comma, the

interpretation as a simple slicing takes priority over that as an extended slicing.

The semantics for a simple slicing are as follows. The primary must evaluate to a sequence object.
The lower and upper bound expressions, if present, must evaluate to plain integers; defaults are zero
and the sequence’s length, respectively. If either bound is negative, the sequence’s length is added to
it. The slicing now selects all items with indéosuch thai <= k < j wherei andj are the specified

lower and upper bounds. This may be an empty sequence. It is not an drauij ifie outside the

range of valid indexes (such items don't exist so they aren’t selected).

The semantics for an extended slicing are as follows. The primary must evaluate to a mapping object,
and it is indexed with a key that is constructed from the slice list, as follows. If the slice list contains
at least one comma, the key is a tuple containing the conversion of the slice items; otherwise, the con-
version of the lone slice item is the key. The conversion of a slice item that is an expression is that ex-
pression. The conversion of an ellipsis slice item is the buiEHipsis object. The conversion of

suoissaldxg .

a proper slice is a slice object (see page 17) wistest |, stop andstep attributes are the values
of the expressions given as lower bound, upper bound and stride, respectively, subibminigr
missing expressions.

5.3.4 Calls

A call calls a callable object (e.g. a function) with a possibly empty series of arguments:

call: primary "(" [argument_list [*,"]] ")"

argument_list: positional_arguments [*," keyword_arguments]

| keyword_arguments
positional_arguments: expression ("," expression)*
keyword_arguments: keyword_item (*," keyword_item)*
keyword_item: identifier "=" expression

A trailing comma may be present after an argument list but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of
built-in objects, class objects, methods of class instances, and certain class instances themselves are
callable; extensions may define additional callable object types). All argument expressions are eval-
uated before the call is attempted. Please refer to “Function definitions” on page 50 for the syntax of
formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First,
a list of unfilled slots is created for the formal parameters. If there are N positional arguments, they
are placed in the first N slots. Next, for each keyword argument, the identifier is used to determine the
corresponding slot (if the identifier is the same as the first formal parameter name, the first slot is
used, and so on). If the slot is already filledlygpeError exception is raised. Otherwise, the value

of the argument is placed in the slot, filling it (even if the expressidwdse, it fills the slot). When

all arguments have been processed, the slots that are still unfilled are filled with the corresponding de-
fault value from the function definition. (Default values are calculated, once, when the function is de-
fined; thus, a mutable object such as a list or dictionary used as default value will be shared by all
calls that don't specify an argument value for the corresponding slot; this should usually be avoided.)
If there are any unfilled slots for which no default value is specifielypeError exception is
raised. Otherwise, the list of filled slots is used as the argument list for the call.

If there are more positional arguments than there are formal parameter slgfseBrror excep-

tion is raised, unless a formal parameter using the syrtidentifier " is present; in this case,

that formal parameter receives a tuple containing the excess positional arguments (or an empty tuple
if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter ndipeeBrror exception

is raised, unless a formal parameter using the syntéixiéntifier " is present; in this case, that
formal parameter receives a dictionary containing the excess keyword arguments (using the key-
words as keys and the argument values as corresponding values), or a (new) empty dictionary if there
were no excess keyword arguments.

Formal parameters using the syntasidentifier " or ** **identifier " cannot be used as
positional argument slots or as keyword argument names. Formal parameters using the syntax
“ (sublist) " cannot be used as keyword argument names; the outermost sublist corresponds to a
single unnamed argument slot, and the argument value is assigned to the sublist using the usual tuple
assignment rules after all other parameter processing is done.

31

32

A call always returns some value, possilNgne, unless it raises an exception. How this value is
computed depends on the type of the callable object.
If it is:

a user-defined functionthe code block for the function is executed, passing it the argument list. The
first thing the code block will do is bind the formal parameters to the arguments; this is de-
scribed in section“Function definitions” on page 50. When the code block executes a
turn statement, this specifies the return value of the function call.

a built-in function or method:the result is up to the interpreter; see the library reference manual for
the descriptions of built-in functions and methods.

a class objecta new instance of that class is returned.

a class instance methodthe corresponding user-defined function is called, with an argument list that
is one longer than the argument list of the call. The instance becomes the first argument.

5.4 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary
operators on its right. The syntax is:

power: primary ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from
right to left (this does not constrain the evaluation order for the operands).

The power operator has the same semantics as the bpittai¢) function: it yields its left argument
raised to the power of its right argument. The numeric arguments are first converted to a common
type. The result type is that of the arguments after coercion; if the result is not expressible in that type
(as in raising an integer to a negative power, or a negative floating point number to a broken power),
aTypeError exception is raised.

5.5 Unary arithmetic operations

All unary arithmetic (and bit-wise) operations have the same priority:

u_expr: power | "-" u_expr | "+" u_expr | "~" u_expr
The unary'-" (minus) operator yields the negation of its numeric argument.
The unary'+" (plus) operator yields its numeric argument unchanged.

The unary'~" (invert) operator yields the bit-wise inversion of its plain or long integer argument.
The bit-wise inversion of is defined as(x+1) . It only applies to integral numbers.

In all three cases, if the argument does not have the proper fiyeeBrror exception is raised.

5.6 Binary arithmetic operations

The remaining binary arithmetic operations have the conventional priority levels. Note that some of
these operations also apply to certain non-numeric types. Apart from the power operator, there are
only two levels, one for multiplicative operators and one for additive operators:

m_expr: u_expr | m_expr "*" u_expr
| m_expr "/" u_expr | m_expr "%" u_expr
a_expr: m_expr | aexpr "+" m_expr | aexpr "-" m_expr

The ™ " (multiplication) operator yields the product of its arguments. The arguments must either both

be numbers, or one argument must be a plain integer and the other must be a sequence. In the former
case, the numbers are converted to a common type and then multiplied together. In the latter case, se-
guence repetition is performed; a negative repetition factor yields an empty sequence.

The '/ " (division) operator yields the quotient of its arguments. The numeric arguments are first con-
verted to a common type. Plain or long integer division yields an integer of the same type; the result
is that of mathematical division with the ‘floor’ function applied to the result. Division by zero raises
the ZeroDivisionError exception

The "% (modulo) operator yields the remainder from the division of the first argument by the second.
The numeric arguments are first converted to a common type. A zero right argument raises the
ZeroDivisionError exception. The arguments may be floating point numbers3elg%0.7
equals0.34 (since3.14 equals4*0.7+0.34). The modulo operator always yields a result with

the same sign as its second operand (or zero); the absolute value of the result is strictly smaller than
the second operand.

The integer division and modulo operators are connected by the following identity: (x/y)*y

+ (x%y) . Integer division and modulo are also connected with the built-in funatiemod()
divmod(x, y) == (Xly, x%y) . These identities don’t hold for floating point and complex
numbers; there a similar identity holds whehe is replaced byloor(x/y)) or

floor((x/y).real) , respectively.

The"+" (addition) operator yields the sum of its arguments. The arguments must either both be num-
bers, or both sequences of the same type. In the former case, the numbers are converted to a common
type and then added together. In the latter case, the sequences are concatenated.

The"-" (subtraction) operator yields the difference of its arguments. The numeric arguments are
first converted to a common type.

5.7 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr: a_expr | shift_expr ("<<"|">>") a_expr

These operators accept plain or long integers as arguments. The arguments are converted to a com-
mon type. They shift the first argument to the left or right by the number of bits given by the second
argument.

A right shift by n bits is defined as division bgow(2, n). A left shift by n bits is defined as multi-
plication withpow(2, n); for plain integers there is no overflow check so this drops bits and flips the
sign if the result is not less thgpow(2,31) in absolute value. Negative shift counts raiséad-
ueError exception.

5.8 Binary bit-wise operations

Each of the three bitwise operations has a different priority level:

33

suoissaldxg .

and_expr: shift_expr | and_expr "&" shift_expr
XOr_expr: and_expr | xor_expr """ and_expr
or_expr: Xor_expr | or_expr "|" xor_expr

The"&" operator yields the bit-wise AND of its arguments, which must be plain or long integers.
The arguments are converted to a common type.

The"" operator yields the bitwise XOR (exclusive OR) of its arguments, which must be plain or
long integers. The arguments are converted to a common type.

The"|" operator yields the bitwise (inclusive) OR of its arguments, which must be plain or long in-
tegers. The arguments are converted to a common type.

5.9 Comparisons

Contrary to C, all comparison operations in Python have the same priority, which is lower than that
of any arithmetic, shifting or bitwise operation. Also contrary to C, expressiongalike b < ¢
have the interpretation that is conventional in mathematics:

comparison: or_expr (comp_operator or_expr)*
Comp_operator: Il<ll|II>II|lI::Illll>:Il|ll<:ll|ll<>ll|II!:lllllisll ["not"]l["not"] Ilinll

Comparisons yield integer values: 1 for true, O for false.

Comparisons can be chained arbitrarily, &g y <= z isequivalenttx < y and y <= z,
except thay is evaluated only once (but in both cageis not evaluated at all when < vy is found
to be false).

Formally, ifa, b, c, ...,y, zare expressions arga opb, ...,opyare comparison operators, theopa
b opb c...y opy zis equivalent ta opa band b opb cand ... y opy z except that each expression
is evaluated at most once.

Note thata opa b opb @oesn’t imply any kind of comparison betweemndc, so thate.gx < y
>z is perfectly legal (though perhaps not pretty).

The forms<> and!= are equivalent; for consistency with &, is preferred; wheré= is mentioned
below<> is also implied.

The operators<”, ">" "==" ">=" "<=" ,and"l=" compare the values of two objects.

The objects needn’t have the same type. If both are numbers, they are converted to a common type.
Otherwise, objects of different typasvayscompare unequal, and are ordered consistently but arbi-
trarily. (This unusual definition of comparison is done to simplify the definition of operations like
sorting and thén andnotin operators.)

Comparison of objects of the same type depends on the type:

* Numbers are compared arithmetically.

» Strings are compared lexicographically using the numeric equivalents (the result of the built-in
functionord) of their characters.

» Tuples and lists are compared lexicographically using comparison of corresponding items.

» Mappings (dictionaries) are compared through lexicographic comparison of their sorted (key, val-

34

ue) lists!

* Most other types compare unequal unless they are the same object; the choice whether one object
is considered smaller or larger than another one is made arbitrarily but consistently within one ex-
ecution of a program.

The operatorin andnot in test for sequence membershipyiis a sequencein yis true if and
only if there exists an indexsuch thak = y[i]. x not iny yields the inverse truth value. The exception

TypeError is raised whery is not a sequence, or whgns a string and is not a string of length

one?

The operatorgs andis not testfor objectidentityxis yistrue if and only ifx andy are the same
object.xis not yyields the inverse truth value.

5.10 Boolean operations

Boolean operations have the lowest priority of all Python operations:

expression: or_test | lambda_form

or_test: and_test | or_test "or" and_test
and_test: not_test | and_test "and" not_test
not_test: comparison | "not" not_test
lambda_form:"lambda" [parameter_list]: expression

In the context of Boolean operations, and also when expressions are used by control flow statements,
the following values are interpreted as faldne, numeric zero of all types, empty sequences
(strings, tuples and lists), and empty mappings (dictionaries). All other values are interpreted as true.

The operatonot yields 1 if its argument is false, 0 otherwise.

The expression and vy first evaluates; if x is false, its value is returned; otherwigds evaluated
and the resulting value is returned.

The expressior or Yy first evaluates; if xis true, its value is returned; otherwisas evaluated and
the resulting value is returned.

(Note that neitheand noror restrict the value and type they return to 0 and 1, but rather return the
last evaluated argument. This is sometimes useful, esgsif string that should be replaced by a de-
fault value if it is empty, the expressien or ‘foo’ yields the desired value. Becausa& has to

invent a value anyway, it does not bother to return a value of the same type as its argument, so e.g.
not 'foo’ yieldsO, not”)

Lambda forms (lambda expressions) have the same syntactic position as expressions. They are a
shorthand to create anonymous functions; the expressiobda arguments expression yields a
function object that behaves virtually identical to one defined with

1. This is expensive since it requires sorting the keys first, but about the only sensible defini-
tion. An earlier version of Python compared dictionaries by identity only, but this caused
surprises because people expected to be able to test a dictionary for emptiness by comparing
itto{} .

2. The latter restriction is sometimes a nuisance.

35

suoissaldxg .

def name (arguments):
return expression

See “Function definitions” on page 50 for the syntax of parameter lists. Note that functions created
with lambda forms cannot contain statements.

5.11 Expression lists
expression_list: expression ("," expression)* [*,"]

An expression list containing at least one comma yields a tuple. The length of the tuple is the number
of expressions in the list. The expressions are evaluated from left to right.

The trailing comma is required only to create a single tuple (a.lsigde); it is optional in all other

cases. A single expression without a trailing comma doesn'’t create a tuple, but rather yields the value
of that expression. (To create an empty tuple, use an empty pair of parer()heses:

36

5.12 Summary

The following table summarizes the operator precedences in Python, from lowest precedence (least
binding) to highest precedence (most binding). Operators in the same box have the same precedence.
Unless the syntax is explicitly given, operators are binary. Operators in the same box group left to
right (except for comparisons, which chain from left to right — see above).

Table 4: Operator Precedence

or Boolean OR
and Boolean AND
not x Boolean NOT
in, not in Membership tests
is, is not Identity tests
<, <=,>,>=, <> 1=, = Comparisons
| Bitwise OR
A Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and subtraction
* 1, % Multiplication, division, remainder
+X, -X Positive, negative
~X Bitwise not
x.attribute Attribute reference
x[indeX Subscription
x[index:inde} Slicing
f(arguments...) Function call
(expressions. .) Binding or tuple display
[expressions. .] List display
{key:datum. . .} Dictionary display
“expression String conversion

37

suoissaldxg .

38

CHAPTER 6: SIMPLE STATEMENTS

Simple statements are comprised within a single logical line. Several simple statements may occur on
a single line separated by semicolons. The syntax for simple statements is:

simple_stmt: expression_stmt
| assert_stmt
| assignment_stmt
| pass_stmt
| del_stmt
| print_stmt
| return_stmt
| raise_stmt
| break_stmt
| continue_stmt
| import_stmt
| global_stmt
| exec_stmt

6.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to
call a procedure (a function that returns no meaningful result; in Python, procedures return the value
None). Other uses of expression statements are allowed and occasionally useful. The syntax for an
expression statement is:

expression_stmt: expression_list

An expression statement evaluates the expression list (which may be a single expression). In interac-
tive mode, if the value is nddone, it is converted to a string using the builttiapr() function and

the resulting string is written to standard output (see “The print statement” on page 42) on a line by
itself. (Expression statements yieldiNgne are not written, so that procedure calls do not cause any
output.)

6.2 Assert statements

Assert statements are a convenient way to inkdtigging assertioriato a program:

assert_statement: "assert" expression ["," expression]

The simple form, dssert expression ", is equivalent to
if __debug_:
if not expression ' raise AssertionError
The extended formdssert expressionl, expression2 ", is equivalent to
if __debug_:
if not expressionl : raise AssertionError, expression2
These equivalences assume thadebug__ andAssertionError refer to the built-in variables

with those names. In the current implementation, the built-in variabtiebug__ is 1 under normal
circumstances, 0 when optimization is requested (command line o@ipi he current code gener-

39

sjuswalels ol dwis .

ator emits no code for amssert statement when optimization is requested at compile time. Note that it
is unnecessary to include the source code for the expression that failed in the error message; it will be dis-
played as part of the stack trace.

6.3 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable
objects:

assignment_stmt: (target_list "=")+ expression_list

target_list: target ("," target)* [*,"]

target: identifier | "(" target_list ")" | "[" target_list "]"
| attributeref | subscription | slicing

(See “Primaries” on page 29 for the syntax definitions for the last three symbols.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a
comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target
lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mu-
table object (an attribute reference, subscription or slicing), the mutable object must ultimately perform the
assignment and decide about its validity, and may raise an exception if the assignment is unacceptable. The
rules observed by various types and the exceptions raised are given with the definition of the object types
(See “The standard type hierarchy” on page 12.)

Assignment of an object to a target list is recursively defined as follows.
» If the target list is a single target: the object is assigned to that target.

» Ifthetargetlistis a comma-separated list of targets: the object must be a sequence with the same number
of items as there are targets in the target list, and the items are assigned, from left to right, to the corre-
sponding targets. (This rule has been relaxed since Python 1.5; in earlier versions, the object had to be a
tuple. Since strings are sequences, an assignment)ike=""xy" "is now legal.)

Assignment of an object to a single target is recursively defined as follows.
» |If the target is an identifier (hame):

» |f the name does not occur inghobal statement in the current code block: the name is bound
to the object in the current local name space.

» Otherwise: the name is bound to the object in the current global name space.

The name is rebound if it was already bound. This can cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its

» Ifthetargetis atargetlist enclosed in parentheses or square brackets: the object must be a sequence with
the same number of items there are targets in the target list, and its items are assigned, from left to right,
to the corresponding targets.

» Ifthetargetis an attribute reference: The primary expression in the reference is evaluated. It should yield
an object with assignable attributes; if this is not the cagpeError s raised. That object is then
asked to assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an
exception (usually but not necessanAligributeError).

40

« |Ifthe target is a subscription: The primary expression in the reference is evaluated. It should yield
either a mutable sequence object (e.g. a list) or a mapping object (e.g. a dictionary). Next, the sub-
script expression is evaluated.

If the primary is a mutable sequence object (e.g. a list), the subscript must yield a plain integer. If
it is negative, the sequence’s length is added to it. The resulting value must be a nonnegative inte-

awarels ajdwis «

ger less than the sequence’s length, and the sequence is asked to assign the assigned object to |ts:

item with that index. If the index is out of rangmdexError is raised (assignment to a sub-
scripted sequence cannot add new items to a list).

If the primary is a mapping object (e.g. a dictionary), the subscript must have a type compatible

with the mapping’s key type, and the mapping is then asked to create a key/datum pair which maps
the subscript to the assigned object. This can either replace an existing key/value pair with the
same key value, or insert a new key/value pair (if no key with the same value existed).

« Ifthetargetis aslicing: The primary expression in the reference is evaluated. It should yield a mu-
table sequence object (e.g. a list). The assigned object should be a sequence object of the same
type. Next, the lower and upper bound expressions are evaluated, insofar they are present; defaults
are zero and the sequence’s length. The bounds should evaluate to (small) integers. If either bound
is negative, the sequence’s length is added to it. The resulting bounds are clipped to lie between
zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace the slice
with the items of the assigned sequence. The length of the slice may be different from the length
of the assigned sequence, thus changing the length of the target sequence, if the object allows it.

(In the current implementation, the syntax for targets is taken to be the same as for expressions, and
invalid syntax is rejected during the code generation phase, causing less detailed error messages.)

Warning: Although the definition of assignment implies that overlaps between the left-hand side and
the right-hand side are ‘safe’ (e.ga;'b =b, a " swaps two variables), overlapgithin the collec-
tion of assigned-to variables are not safe! For instance, the following program pointa]** ":

x =[0, 1]
i=0

i, X[]=1, 2
print x

6.4 The pass statement

pass_stmt: “"pass"

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when
a statement is required syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)
class C: pass # a class with no methods (yet)

6.5 The del statement
del_stmt: "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather that spelling it
out in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

41

Deletion of a name removes the binding of that name (which must exist) from the local or global name
space, depending on whether the name occurglivbal statement in the same code block.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion
of a slicing is in general equivalent to assignment of an empty slice of the right type (but even this is deter-
mined by the sliced object).

6.6 The print statement

print_stmt: "print" [expression ("," expression)* [","]]

print evaluates each expression in turn and writes the resulting object to standard output (see below). If
an object is not a string, it is first converted to a string using the rules for string conversions. The (resulting
or original) string is then written. A space is written before each object is (converted and) written, unless the
output system believes it is positioned at the beginning of a line. This is the case: (1) when no characters
have yet been written to standard output; or (2) when the last character written to standard datpat is

(3) when the last write operation on standard output was poind statement. (In some cases it may be
functional to write an empty string to standard output for this reason.)

A "\n" character is written at the end, unless pimt statement ends with a comma. This is the only
action if the statement contains just the keywpriht . Standard output is defined as the object named
stdout in the built-in modulesys . If no such object exists, or if it does not havevete() method,

an exception is raised.

6.7 The return statement

return_stmt: "return" [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, Eisee is substituted.

return leaves the current function call with the expression lishfre) as return value.

Whenreturn passes control out oftay statement with dinally clause, that finally clause is exe-
cuted before really leaving the function.

6.8 The raise statement
raise_stmt: "raise" expression ["," expression ["," expression]]

raise evaluates its first expression, which must yield a string, class, or instance object. If there is a second
expression, this is evaluated, eldene is substituted. If the first expression is a class object, then the sec-
ond expression must be an instance of that class or one of its derivatives. If the first expression is an instance
object, the second expression mushio@e.

If the first object is a class or string, it then raises the exception identified by the first object, with the second
one (orNone) as its parameter. If the first object is an instance, it raises the exception identified by the class
of the object, with the instance as its parameter (and there should be no second object, or the second object
should beNone).

42

If a third object is present, and it is nNbne, it should be a traceback object (see page 17 traceback
objects), and it is substituted instead of the current location as the place where the exception occurred.
This is useful to re-raise an exception transparently in an except clause.

6.9 The break statement
break_stmt: "break"

break may only occur syntactically nested ifia@ orwhile loop, but not nested in a function or
class definition within that loop.

It terminates the nearest enclosing loop, skipping the optateal clause if the loop has one.
If afor loop is terminated bigreak , the loop control target keeps its current value.

Whenbreak passes control out oftay statement with éinally clause, that finally clause is ex-
ecuted before really leaving the loop.

6.10 The continue statement
continue_stmt: "continue"

continue may only occur syntactically nested ifica orwhile loop, but not nested in a function

or class definition otry statement within that looplt continues with the next cycle of the nearest
enclosing loop.

6.11 The import statement

import_stmt: "import" module ("," module)*
| "from" module "import" identifier (*," identifier)*
| "from" module "import" "*"

module: (identifier ".")* identifier

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define
a name or names in the local name space (of the scope whengatt statement occurs). The first

form (withoutfrom) repeats these steps for each identifier in the list. The formfidth performs

step (1) once, and then performs step (2) repeatedly.

The system maintains a table of modules that have been initialized, indexed by module name. (The
current implementation makes this table accessibkyasnodules .) When a module name is
found in this table, step (1) is finished. If not, a search for a module definition is started. When a mod-
uleis found, itis loaded. Details of the module searching and loading process are implementation and
platform specific. It generally involves searching for a “built-in” module with the given name and
then searching a list of locations giversgs.path

When step (1) finishes without raising an exception, step (2) can begin.

1. Except that it may currently occur within except clause.

43

sjuswalels ol dwis .

The first form ofimport statement binds the module name in the local name space to the module object,
and then goes on to import the next identifier, if any. Tiwen form does not bind the module name: it
goes through the list of identifiers, looks each one of them up in the module found in step (1), and binds the
name in the local name space to the object thus found. If a name is not foysatiError is raised. If

the list of identifiers is replaced by a stér)(all names defined in the module are bound, except those be-
ginning with an underscore).

Names bound by import statements should not ocagiolval ~ statements in the same scope.
Thefrom form with* should only occur in a module scope.

(The current implementation does not enforce the latter two restrictions, but programs should not abuse this
freedom, as future implementations may enforce them or silently change the meaning of the program.)

Hierarchical module names:when the module names contains aone or more dots, the module search path
is carried out differently. The sequence of identifiers up to the last dot is used to find a “package”; the final
identifier is then searched inside the package. [XXX Can’t be bothered to spell this out right now; see the
URL http://grail.cnri.reston.va.us/python/essays/packages.hmtl for more details, also about how the mod-
ule search works from inside a package.]

6.12 The global statement
global_stmt: "global" identifier ("," identifier)*

Theglobal statementis a declaration which holds for the entire current code block. It means that the list-
ed identifiers are to be interpreted as globals. Whilimgglobal names is automatic if they are not defined
in the local scopessigningto global names would be impossible withglabal

Names listed in global statement must not be used in the same code block beforglthatl state-
ment is executed.

Names listed in global statement must not be defined as formal parameters doin doop control tar-
get,class definition, function definition, oimport statement.

(The current implementation does not enforce the latter two restrictions, but programs should not abuse this
freedom, as future implementations may enforce them or silently change the meaning of the program.)

Programmer’s note: theglobal is a directive to the parser. It applies only to code parsed at the same
time as theglobal statement. In particular,global statement contained in @xec statement does

not affect the code blockontainingtheexec statement, and code contained inexec statement is un-
affected byglobal statements in the code containing tteec statement. The same applies to the
eval() ,execfile() andcompile() functions.

6.13 The exec statement

exec_stmt: "exec" expression ["in" expression ["," expression]]

44

This statement supports dynamic execution of Python code. The first expression should evaluate to
either a string, an open file object, or a code object. If it is a string, the string is parsed as a suite of
Python statements which is then executed (unless a syntax error occurs). If it is an open file, the file
is parsed until EOF and executed. If it is a code object, it is simply executed.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the first
expression aften is specified, it should be a dictionary, which will be used for both the global and
the local variables. If two expressions are given, both must be dictionaries and they are used for the
global and local variables, respectively.

Programmer’s hints: dynamic evaluation of expressions is supported by the built-in function
eval() . The built-in functionsylobals() andlocals() return the current global and local
dictionary, respectively, which may be useful to pass around for usxéy . When assigning to a
global variable, agglobal statement for that variable should be present in the source code string
passed to thexec statement.

45

sjuswalels ol dwis .

46

CHAPTER 7: COMPOUND STATEMENTS

Compound statements contain (groups of) other statements; they affect or control the execution of
those other statements in some way. In general, compound statements span multiple lines, although
in simple incarnations a whole compound statement may be contained in one line.

Theif ,while andfor statementsimplement traditional control flow construicis. specifies ex-
ception handlers and/or cleanup code for a group of statements. Function and class definitions are also
syntactically compound statements.

Compound statements consist of one or more ‘clauses’. A clause consists of a header and a ‘suite’.
The clause headers of a particular compound statement are all at the same indentation level. Each
clause header begins with a uniquely identifying keyword and ends with a colon. A suite is a group
of statements controlled by a clause. A suite can be one or more semicolon-separated simple state-
ments on the same line as the header, following the header’s colon, or it can be one or more indented
statements on subsequent lines. Only the latter form of suite can contain nested compound statements;
the following is illegal, mostly because it wouldn’t be clear to whith clause a followingelse

clause would belong:

if testl: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following ex-
ample, either all or none of tipeint statements are executed:

if Xx <y < z:printx; printy; print z

Summarizing:

compound_stmt: if_stmt | while_stmt | for_stmt
| try_stmt | funcdef | classdef
suite: stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement: stmt_list NEWLINE | compound_stmt
stmt_list: simple_stmt (";" simple_stmt)* [*;"]

Note that statements always end iNBEWLINEpossibly followed by & EDENTAIso note that op-

tional continuation clauses always begin with a keyword that cannot start a statement, thus there are
no ambiguities (the ‘danglinglse ’ problem is solved in Python by requiring nesitéd statements

to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line
for clarity.

7.1 Theif statement

Theif statement is used for conditional execution:

if_stmt: "if" expression ":" suite
("elif* expression ":" suite)*
['else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be
true (see section “Boolean operations” on page 35 for the definition of true and false); then that suite
is executed (and no other part of tiie statement is executed or evaluated). If all expressions are
false, the suite of thelse clause, if present, is executed.

47

suawalels punodwo) e

7.2 The while statement

Thewhile statement is used for repeated execution as long as an expression is true:

while_stmt: "while" expression ";" suite
['else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which
may be the first time it is tested) the suite of Hiee clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executimdsthe clause’s
suite. Acontinue statement executed in the first suite skips the rest of the suite and goes back to testing
the expression.

7.3 The for statement

Thefor statement is used to iterate over the elements of a sequence (string, tuple or list):

for_stmt: "for" target_list "in" expression_list ":" suite
['else" ™" suite]

The expression list is evaluated once; it should yield a sequence. The suite is then executed once for each
item in the sequence, in the order of ascending indices. Each item in turn is assigned to the target list using
the standard rules for assignments, and then the suite is executed. When the items are exhausted (which is
immediately when the sequence is empty), the suite ielde clause, if present, is executed, and the loop
terminates.

A break statement executed in the first suite terminates the loop without executimdsthe clause’s
suite. Acontinue statement executed in the first suite skips the rest of the suite and continues with the
next item, or with thelse clause if there was no next item.

The suite may assign to the variable(s) in the target list; this does not affect the next item assigned to it.

The target list is not deleted when the loop is finished, but if the sequence is empty, it will not have been
assigned to at all by the loop. Hint: the built-in functiange() returns a sequence of integers suitable
to emulate the effect of Pascaftr i ;= a to b do ;e.g.range(3) returnsthe lisfo, 1, 2]

Warning: There is a subtlety when the sequence is being modified by the loop (this can only occur for mu-
table sequences, i.e. lists). An internal counter is used to keep track of which item is used next, and this is
incremented on each iteration. When this counter has reached the length of the sequence the loop termi-
nates. This means that if the suite deletes the current (or a previous) item from the sequence, the next item
will be skipped (since it gets the index of the current item which has already been treated). Likewise, if the
suite inserts an item in the sequence before the current item, the current item will be treated again the next
time through the loop. This can lead to nasty bugs that can be avoided by making a temporary copy using a
slice of the whole sequence, e.g.

for x in a[:]:
if x < 0: a.remove(x)

48

7.4 The try statement

Thetry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt: try_exc_stmt | try_fin_stmt
try_exc_stmt: "try" ™" suite
("except" [expression ["," target]] ":" suite)+
['else" ":" suite]
try_fin_stmt: "try" ":" suite
"finally" ":" suite

There are two forms dfy statementtry...except andtry...finally . These forms can-
not be mixed (but they can be nested in each other).

Thetry...except form specifies one or more exception handlers @keept clauses). When

no exception occurs in titey clause, no exception handler is executed. When an exception occurs

in thetry suite, a search for an exception handler is started. This inspects the except clauses in turn
until one is found that matches the exception. An expression-less except clause, if present, must be
last; it matches any exception. For an except clause with an expression, that expression is evaluated,
and the clause matches the exception if the resulting object is “compatible” with the exception. An
object is compatible with an exception if it is either the object that identifies the exception, or (for ex-
ceptions that are classes) it is a base class of the exception, or it is a tuple containing an item that is
compatible with the exception. Note that the object identities must match, i.e. it must be the same ob-
ject, not just an object with the same value.

If no except clause matches the exception, the search for an exception handler continues in the sur-
rounding code and on the invocation stack.

If the evaluation of an expression in the header of an except clause raises an exception, the original
search for a handler is cancelled and a search starts for the new exception in the surrounding code and
on the call stack (it is treated as if the entiye statement raised the exception).

When a matching except clause is found, the exception’s parameter is assigned to the target specified
in that except clause, if present, and the except clause’s suite is executed. When the end of this suite
is reached, execution continues normally after the entire try statement. (This means that if two nested

handlers exist for the same exception, and the exception occurs in the try clause of the inner handler,

the outer handler will not handle the exception.)

Before an except clause’s suite is executed, details about the exception are assigned to three variables
in the sys module:sys.exc_type receives the object identifying the exception;
sys.exc_value receives the exception’s parametgys.exc_traceback receives a trace-

back object (see page 17) identifying the point in the program where the exception occurred. These
details are also available through thgs.exc_info() function, which returns a tuple
(exc_type, exc_value, exc_traceback) . Use of the corresponding variables is depre-

cated in favor of this function, since their use is unsafe in a threaded program. (As of Python 1.5, the
variables are restored to their old values when returning from a function that handled an exception.)

The optionaklse clause is executed when no exception occurs itrtheclause. Exceptions in the
else clause are not handled by the precedingept clauses.

49

suawalels punodwo) e

Thetry.. finally form specifies a ‘cleanup’ handler. Thy clause is executed. When no excep-
tion occurs, thdinally clause is executed. When an exception occurs itrtheclause, the exception

is temporarily saved, thénally clause is executed, and then the saved exception is re-raised. If the
finally clause raises another exception or executetian , break orcontinue statement, the
saved exception is lost. The exception information is not available to the program during execution of the
finally clause.

When areturn or break statementis executed in tkny suite of atry...finally statement, the

finally clause is also executed ‘on the way out'céntinue statement is illegal in they clause.
(The reason is a problem with the current implementation — this restriction may be lifted in the future).

7.5 Function definitions

A function definition defines a user-defined function object (see “The standard type hierarchy” on page 12):

funcdef: "def" funcname "(" [parameter_list] ")" ":" suite
parameter_list: (defparameter ",")* ("*" identifier [, "**" identifier]
| "**" identifier

| defparameter [*,"])
defparameter: parameter ['=" expression]

sublist: parameter ("," parameter)* [","]
parameter: identifier | "(" sublist ")"
funcname: identifier

A function definition is an executable statement. Its execution binds the function name in the current local
name space to a function object (a wrapper around the executable code for the function). This function ob-
ject contains a reference to the current global name space as the global name space to be used when the
function is called.

The function definition does not execute the function body; this gets executed only when the function is
called.

When one or more top-level parameters have the fosinameter = expressiqithe function is said to have
“default parameter valuesDefault parameter values are evaluated when the function definition is ex-
ecuted For a parameter with a default value, the correponding argument may be omitted from a call, in
which case the parameter’s default value is substituted. If a parameter has a default value, all following pa-

rameters must also have a default value — this is a syntactic restriction that is not expressed by the gram-

marl

Function call semantics are described in more detail in section “Calls” on page 31. A function call always
assigns values to all parameters mentioned in the parameter list, either from position arguments, from key-
word arguments, or from default values. If the fottidentifier" is present, it is initialized to a tuple
receiving any excess positional parameters, defaulting to the empty tuple. If the-fakentifier" is

present, it is initialized to a new dictionary receiving anyt excess keyword arguments, defaulting to a new
empty dictionary.

1. Currently this is not checked; insteadlef f(a=1,b) is interpreted asdef
f(a=1,b=None)

50

Itis also possible to create anonymous functions (functions not initially bound to a name), for imme-
diate use in expressions. This uses lambda forms, described in section “Boolean operations” on
page 35. Note that the lambda form is merely a shorthand for a simplified function definition; a func-
tion defined in &def* statement can be passed around or assigned to another name just like a func-
tion defined by a lambda form. ThHelef* form is actually more powerful since it allows the
execution of multiple statements.

Programmer’s note: A "def* form executed inside a function definition defines a local function
that can be returned or passed around. Because of Python’s two-scope philosophy, a local function
defined in this way doesot have access to the local variables of the function that contains its defini-
tion; the same rule applies to functions defined by a lambda form. A standard trick to pass selected
local variables into a locally defined function is to use default argument values, like this:

Return a function that returns its argument incremented by 'n’
def make_incrementer(n):
def increment(x, n=n):
return x+n
return increment

addl = make_incrementer(1)
print add1(3) # This prints '4’

7.6 Class definitions

A class definition defines a class object (see section “The standard type hierarchy” on page 12):

classdef: "class" classname [inheritance] ":" suite
inheritance: "(" [expression_list] ")"
classname: identifier

A class definition is an executable statement. It first evaluates the inheritance list, if present. Each
item in the inheritance list should evaluate to a class object. The class’s suite is then executed in a new
execution frame (see section “Code blocks, execution frames, and name spaces” on page 23), using a
newly created local name space and the original global name space. (Usually, the suite contains only
function definitions.) When the class’s suite finishes execution, its execution frame is discarded but
its local name space is saved. A class object is then created using the inheritance list for the base
classes and the saved local name space for the attribute dictionary. The class name is bound to this
class object in the original local name space.

Programmer’s note: variables defined in the class definition are class variables; they are shared by
all instances. To define instance variables, they must be given a value in theitite method

or in another method. Both class and instance variables are accessible through the notation
“self.name ", and an instance variable hides a class variable with the same name when accessed in
this way. Class variables with immutable values can be used as defaults for instance variables.

51

suawalels punodwo) e

52

CHAPTER 8: TOP-LEVEL COMPONENTS

The Python interpreter can get its input from a number of sources: from a script passed to it as stan-
dard input or as program argument, typed in interactively, from a module source file, etc. This chapter
gives the syntax used in these cases.

8.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful
to have a notion of a complete Python program. A complete Python program is executed in a mini-
mally initialized environment: all built-in and standard modules are available, but none have been ini-
tialized, except fosys (various system services), builtin__ (built-in functions, exceptions
andNone) and__main__ . The latter is used to provide the local and global hame space for execu-
tion of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a
complete program but reads and executes one statement (possibly compound) at a time. The initial
environment is identical to that of a complete program; each statement is executed in the name space
of main__ .

Under UNIX , a complete program can be passed to the interpreter in three forms: wittsthiag
command line option, as a file passed as the first command line argument, or as standard input. If the
file or standard input is a tty device, the interpreter enters interactive mode; otherwise, it executes the
file as a complete program.

8.2 File input

All input read from non-interactive files has the same form:
file_input: (NEWLINE | statement)*

This syntax is used in the following situations:
e when parsing a complete Python program (from a file or from a string);
» when parsing a module;

« when parsing a string passed to éixec statement;

8.3 Interactive input

Input in interactive mode is parsed using the following grammar:
interactive_input: [stmt_list]f NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this
is needed to help the parser detect the end of the input.

53

suauodwod |ang-doy .

8.4 Expression input

There are two forms of expression input. Both ignore leading whitespace. The string argusnai()to
must have the following form:

eval_input: expression_list NEWLINE*

The input line read binput() must have the following form:

input_input: expression_list NEWLINE

Note: to read ‘raw’ input line without interpretation, you can use the built-in funaton input() or
thereadline() method of file objects.

54

Symbols
o 3
abs ... 21
add__ ... 21
and L 21
_bases ... 16
_builtin__ ... 243
_builtins__ ... 24
_cal oo , 2B
_class ... oL 16
CCMP 19
_COBICE__ ottt 22
_del 18
exceptionin 18
_delattr ... , PO
delitem ... 20
__delslice_ 21
dict ... 416, 20
_div 21
_divmod__ 21
_doc__A6
_file oo 15
_float ... 22
_getattr__ , 10
_getitem__ , 2B
_getslice__ 20
_hash ... 19
hex_ 22
nit 18
int 22
_nvert__ ... 22
len__ 29
long_ 22
dshift L 21
omain__ ... , 58
__members__ 12
_methods__ 12
_mod__ ... 21
mul__ ... 21
hame —16
o NEO. 21
_nonzero__ —29
_OCt__ .. 22
o 21

_POS 21
POW__ ... 21
radd ... 21
rand ... 21
rdiv. .. 21

_rdivmod__ ... L 21

[(=] o (N 19

_rshift__ .. 21

_rmod__ ... 21
rmul 21
FOF 21

CIPOW_ e 21

_mshift__ .o 21

rshift .. 21
rsub .. 21
FXOF 21

oself 15

_setattr__, .16

_setitem___ ... 20

_setslice__ 21

_Str 19
sub 21

L UXOF 21

A

abstraction 11

addition 33

and

bit-wise 34
argument

defaultvalue 31

function 14

keyword 31
arguments

positional 31

arrayofbytes 13

ASCIl -a,9, 13

assignment » 30

attribute L. 40
class..........., 16
classinstance 16

attributes L. 40

list

55

| NDE X

target 40
slicing 41
subscription 41
atom ... e 27
attribute 12
class 16
classinstance 16
generic ..., 12
special 12
attributeaccess 19
attributesearch 15
AttributeError 129, 40
B
back-quotes, 29
backslash 6
backslash character 3
binary arithmetic operations 21
binding
name 24344, 50-51
global 44
bitwise operations 21
blankline 4
block
code ... 23
BNF, , 27
break , 48, 50
built-in 132
built-inmethod 32
byte ... 13
bytecode 16
byte-compile 16
C
C .o ,.X2, 15, 34
call 31
built-in function 32
built-in method 32
classinstance 32
class object: 416, 32
function 32
user-defined 32
function invocation 14
instance 32
method 32
procedure 39
callable , A
characters 30
chr 13
circularreferences 11
class 41, 32, 51

56

classinstance 15
clause L. 47
close 11
codeblock 2387, 44
code generationphase 41
codeobject 16

co_argcount 17

cocode 17

coconsts 17

co_filename 17

coflags 17

co_nNames 17

conlocals 17

co varnames 17
COEICIONo ii i , B0
coercionrules 22
colon 47
comma

trailing 382
commaoperator 28
commandline 53
comment 3
COMPArisonc..... 34

chaining 34
comparison operator 9
compile L. 44
complexliteral 9
complex number , 83, 27
constant 6
constructor

class 18
container , 1B
continue A88, 50
conversion

arithmetic 27

string 199, 39
curlybrace, 4
D
data 11
datum 28
debugger 17
debugging 11
decimalliteral 8
DEDENT token , 47
definition

class B

function 430
del 138, 23, 30, 41
delete

attribute L 42

| NDE X

delimiter 9
dictionary 1415, 19, 28-29, 41
display
dictionary 28
tuple.. 28
division 33
divmod 33
double precision 12
E
elif 47
Ellipsis 12
ellipsis 17
else....... , 43749
dangling................... 47
end-of-line character 3
BITOr ot 25
errorhandling 25
escape sequence 7
eval 239, 44, 54
except...... ... 49
exceptclause 23
exception , 22
class..........., 49
raising 42
exception handler)
EBXBC . , 43
execfile , 231
execution model 23
expression , 30
lambda.................... 35
expressioninput 54
expressionlist , 30
extended slice notation 21
extended slicesyntax 17
F
fdopen 16
file 1A
finally 142,50
floatingpoint 12
floating point literal 8
floating point number 27
floor 33
flowofcontrol 25
for 2483, 48
form
lambda 35
formfeed character 4
frame 17
execution 2231

frame object

fback 17
f builtins 17
fcode 17
fglobals 17
flasti............, 17
flineno 17
flocals 17
frestricted................. 17
ftrace 17
from ,.B3, 43
function 132, 50
anonymous 35
built-in 15
user-defined 15D
functionobject 16
func_code 14
func_defaults 14
func_ doc 14
func_globals 445
func name 14
G
garbage collection 11
getineno 17
global 227,40, 42, 44
globals , 25
grammar 1
H
handle an exception 25
handler
exception 17
hash 19
hash character 3
hexadecimal literal 8
I
id . 11
Identifier 5
identifier 27
specialmeaning 6
| 47
imclass 16
imself 15
imaginary literal 9
immutable 13
import ,6L5, 23, 4344
ImportError L. 44
N 48
INDENT token 4

57

| NDE X

Indentation 4
indentation 4
indentation errors 5
index operation 13
IndexError 41
inheritance 51
input 54
instance A%, 32

call 20

class 16
integer , B, 27

long 8
integer literal 8
interactive mode 53
internaltype 16
interpreter 53
invertion 32
IS o 11
item

selection 13

string ... 30
K
key 28
key/datumpair 28
keyword 6
L
Lambda 35
leading whitespace 4
len ..o 13
lexical analysis 3
lexical analyzer 5
line

blank 4

continuation 3

joning 3

physical

splitacross 4

line joining

implicit 4
line structure 3
lines

logical 3

physical 3
list.............. 128-30, 41, 48

empty 28

expression 38040

target L 40

deletion 41

Literal 6

58

literal 28
locals , 245
logicalline 3
longinteger 4
long integerliteral 8
loop
over mutable sequence 48
M
makefile 16
mapping 136, 29, 41
method 32
bound 14
built-in 15
unbound 14
user-defined 14
creation 14
method object
hame ... 14
im_class 14
im_func, 14
im_func._doc__ 14
imself 14
MINUS 32
module J20, 43
extension 12
importing 43
modulo 33
multiplication 33
mutable 4041
mutable sequence
loopover 48
N
namec.ouovuiun.. .23
binding 2380
class L. 51
function 50
global 27
mangling 6
rebinding 230
unbinding 282
namespace 23
global 123
local 23
module 15
NameError 22
negation 32
NEWLINE token =3, 47
None , B9
notation 1

null operation 41
number2, 16
numbers 16
NUMENC ... v et it ee e 12
numeric arithmetic
mixedmode 22
numericliteral 8
O
object 11
address inmemory 11
container 11
identity 11
immutable 11
mutable 11
reference to external resource .. 11
type ... 11
unreachable 11
value L. 11
objectclosure 14
octalliteral 8
OPEN . .. 16
operation
arithmetic
binary 32
unary 32
bit-wise
binary 33
unaryovi i 32
boolean 35
null 41
shifting 33
operator 9
optimization 15
or
bit-wise 34
exclusive 34
inclusive 34
ord 13
output
standard , 3P
OverflowError 12
P
parenthesized form 28
parsero, , 53
Pascal 48
Pass 41
plaininteger 2
plain integer literal 8

plus 32

popen 16
POW . .o 32
power operator 32
primary 29
print, P
program 53
Q
quotes
backward 120
double 6
reverse , P9
single 6
R
FAISE . it 42
raised an exception 25
range 48
raw_input, 54
readline 54
FECUISIVE . . .o 29
reference
attribute 29
circular 11
count, 18
counting 11
remainder 33
repr ..., .12, 39
representation
integer 12
reservedword 6
restricted execution mode 24
return , 5D
S
SCOPE . it 24
SCHPt . o 23
semicolon a7
sequence ... 136, 29-30, 35, 41, 48
immutable 13
mutable 13
SIgN . 9
slice 20, 41
boundary 30
extended 30
simple 30
Sliceobjects 17
slicing 13D
SPACE . . 4
spacecount 4
square bracket 4

stack 4
execution 17
stackframe 17
standard inpu 53
standardoutput 42
statement
assignment 13
compound 47
expression 39
loop, A8
simple 39
statement grouping 4
statements
assignment 40
stderr 16
stdin 16
stdout ,1e
Str .. , P9
string 139-30, 48
triple-quoted 4
string literal 6
concatenation 8
subscription , 2
subtraction 33
SUIte ... a7
suppression
newline 42
syntax ... , 2¥
SYS .83
exc_traceback , 4P
exctype................... 49
excvalue 49
last traceback 17
sys.exc_traceback 18
sys.last_traceback 18
sys.modules 43
sys.stderr L 16
sys.sstdin 16
sys.stdout 16
T
tab 4
target L. 40
deletion 41
loopcontrol 43
test
identity 35
membership 35

60

token 3
delimiter 5
identifier 5
keyword, 5
literal 5
operator 5

tracback object
tbo frame 17
tb lasti 17
tb_lineno, 17
tb next 17

trace
stack 17

traceback 43

traceback object
exc_traceback 17
last traceback 17

transformation 15

try .o 117,42, 49
finally 43

tuple 129-30, 36, 48
empty 138, 36
singleton 13

type -Ap
data....................... 12

immutable 28
hierarchy 12

TypeError 291-32, 40

U

UNIX ... , 83

unrecognized escape sequences

user-defined 14

user-defined function 32

\%

value
parameter

default 50
writing 39

ValueError 33

values
writing 42

VonNeumann.................. 11

W

while A8

whitespace 4

X
xor

bit-wise

| NDE X

Z
ZeroDivisionError

61

	Python Reference Manual
	Chapter 1: Introduction
	1.1 Notation

	Chapter 2: Lexical analysis
	2.1 Line structure
	2.1.1 Logical lines
	2.1.2 Physical lines
	2.1.3 Comments
	2.1.4 Explicit line joining
	2.1.5 Implicit line joining
	2.1.6 Blank lines
	2.1.7 Indentation
	2.1.8 Whitespace between tokens

	2.2 Other tokens
	2.3 Identifiers and keywords
	2.3.1 Keywords
	2.3.2 Reserved classes of identifiers

	2.4 Literals
	2.4.1 String literals
	2.4.1.1 String literal concatenation

	2.4.2 Numeric literals
	2.4.2.1 Integer and long integer literals
	2.4.2.2 Floating point literals
	2.4.2.3 Imaginary literals

	2.5 Operators
	2.6 Delimiters

	Chapter 3: Data model
	3.1 Objects, values and types
	3.2 The standard type hierarchy
	3.3 Special method names
	3.3.1 Basic customization
	3.3.2 Customizing attribute access
	3.3.3 Emulating callable objects
	3.3.4 Emulating sequence and mapping types
	3.3.4.1 Additional methods for emulation of sequence types

	3.3.5 Emulating numeric types

	Chapter 4: Execution model
	4.1 Code blocks, execution frames, and name spaces
	4.2 Exceptions

	Chapter 5: Expressions
	5.1 Arithmetic conversions
	5.2 Atoms
	5.2.1 Identifiers (Names)
	5.2.2 Literals
	5.2.3 Parenthesized forms
	5.2.4 List displays
	5.2.5 Dictionary displays
	5.2.6 String conversions

	5.3 Primaries
	5.3.1 Attribute references
	5.3.2 Subscriptions
	5.3.3 Slicings
	5.3.4 Calls

	5.4 The power operator
	5.5 Unary arithmetic operations
	5.6 Binary arithmetic operations
	5.7 Shifting operations
	5.8 Binary bit-wise operations
	5.9 Comparisons
	5.10 Boolean operations
	5.11 Expression lists
	5.12 Summary

	Chapter 6: Simple statements
	6.1 Expression statements
	6.2 Assert statements
	6.3 Assignment statements
	6.4 The pass statement
	6.5 The del statement
	6.6 The print statement
	6.7 The return statement
	6.8 The raise statement
	6.9 The break statement
	6.10 The continue statement
	6.11 The import statement
	6.12 The global statement
	6.13 The exec statement

	Chapter 7: Compound statements
	7.1 The if statement
	7.2 The while statement
	7.3 The for statement
	7.4 The try statement
	7.5 Function definitions
	7.6 Class definitions

	Chapter 8: Top-level components
	8.1 Complete Python programs
	8.2 File input
	8.3 Interactive input
	8.4 Expression input
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index

