
Document Object Model (DOM) Level 1 Specification
(Second Edition)

Version 1.0

W3C Working Draft 29 September, 2000
This version:

http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929
(PostScript , PDF file , plain text , ZIP file)

Latest version:
http://www.w3.org/TR/REC-DOM-Level-1

Previous version:
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001

Editors:
Lauren Wood, SoftQuad, Inc., chair
Arnaud Le Hors, W3C, staff contact
Vidur Apparao, Netscape
Steve Byrne, Sun
Mike Champion, ArborText
Scott Isaacs, Microsoft
Ian Jacobs, W3C
Gavin Nicol, Inso EPS
Jonathan Robie, Texcel Research
Robert Sutor, IBM
Chris Wilson, Microsoft

Copyright © 2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Level 1, a platform- and language-neutral interface
that allows programs and scripts to dynamically access and update the content, structure and style of
documents. The Document Object Model provides a standard set of objects for representing HTML and
XML documents, a standard model of how these objects can be combined, and a standard interface for
accessing and manipulating them. Vendors can support the DOM as an interface to their proprietary data
structures and APIs, and content authors can write to the standard DOM interfaces rather than

1

Document Object Model (DOM) Level 1 Specification (Second Edition)

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001
http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/DOM.zip
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/DOM.txt
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/DOM.pdf
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/DOM.ps
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929
http://www.w3.org/

product-specific APIs, thus increasing interoperability on the Web.

The goal of the DOM specification is to define a programmatic interface for XML and HTML. The DOM
Level 1 specification is separated into two parts: Core and HTML. The Core DOM Level 1 section
provides a low-level set of fundamental interfaces that can represent any structured document, as well as
defining extended interfaces for representing an XML document. These extended XML interfaces need
not be implemented by a DOM implementation that only provides access to HTML documents; all of the
fundamental interfaces in the Core section must be implemented. A compliant DOM implementation that
implements the extended XML interfaces is required to also implement the fundamental Core interfaces,
but not the HTML interfaces. The HTML Level 1 section provides additional, higher-level interfaces that
are used with the fundamental interfaces defined in the Core Level 1 section to provide a more convenient
view of an HTML document. A compliant implementation of the HTML DOM implements all of the
fundamental Core interfaces as well as the HTML interfaces.

Status of this document
This document is a version of the DOM Level 1 Recommendation incorporating the errata changes as of
September 29, 2000. It is released by the DOM Working Group as a W3C Working Draft to gather public
feedback before its final release as the DOM Level 1 second edition W3C Recommendation (as these
changes are editorials, there will be no Candidate Recommendation or Proposed Recommendation stages).
The review period for this Working Draft is 4 weeks ending October 27 2000.

This second edition is not a new version of the DOM Level 1; it merely incorporates the changes dictated
by the first-edition errata list. This document should not be used as reference material or cited as a
normative reference from another document.

This document has been produced as part of the W3C DOM Activity . The authors of this document are
the DOM WG members. Different modules of the Document Object Model have different editors.

Please report errors in this document to the public mailing list www-dom@w3.org. An archive is available
at http://lists.w3.org/Archives/Public/www-dom/.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Table of contents
................ 5Expanded Table of Contents
................... 7Copyright Notice
.............. 11What is the Document Object Model?

............. 17Chapter 1: Document Object Model Core

............. 53Chapter 2: Document Object Model HTML

2

Status of this document

http://www.w3.org/TR/
http://lists.w3.org/Archives/Public/www-dom/
http://www.w3.org/DOM/Activity.html
http://www.w3.org/Consortium/Process/Process-19991111/tr.html#RecsPR
http://www.w3.org/Consortium/Process/Process-19991111/tr.html#RecsCR
http://www.w3.org/Consortium/Process/Process-19991111/tr.html#RecsW3C
http://www.w3.org/DOM/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/

................. 105Appendix A: Changes

................ 129Appendix B: IDL Definitions

.............. 143Appendix C: Java Language Binding

............ 175Appendix D: ECMA Script Language Binding

............... 123Appendix E: Acknowledgements

.................... 125Glossary

.................... 201References

................... 203Objects Index

..................... 205Index

............... 211Production Notes (Non-Normative)

3

Table of contents

4

Table of contents

Expanded Table of Contents
................ 5Expanded Table of Contents
................... 7Copyright Notice
........... 7W3C Document Copyright Notice and License
........... 8W3C Software Copyright Notice and License
.............. 11What is the Document Object Model?
................... 11Introduction
............. 11What the Document Object Model is
............ 13What the Document Object Model is not
........... 13Where the Document Object Model came from
............... 14Entities and the DOM Core
................... 14Compliance
........... 15DOM Interfaces and DOM Implementations
................ 15Limitations of Level 1

............. 17Chapter 1: Document Object Model Core

............ 171.1. Overview of the DOM Core Interfaces

............. 171.1.1. The DOM Structure Model

.............. 181.1.2. Memory Management

.............. 181.1.3. Naming Conventions

......... 191.1.4. Inheritance vs. Flattened Views of the API

.............. 191.1.5. The DOMString type

............ 201.1.6. String comparisons in the DOM

............... 201.2. Fundamental Interfaces

................ 481.3. Extended Interfaces

............. 53Chapter 2: Document Object Model HTML

.................. 532.1. Introduction

............. 542.2. HTML Application of Core DOM

.............. 542.2.1. Naming Conventions

............. 542.3. Miscellaneous Object Definitions

............ 552.4. Objects related to HTML documents

................. 582.5. HTML Elements

............... 592.5.1. Property Attributes

.............. 592.5.2. Naming Exceptions

......... 592.5.3. Exposing Element Type Names (tagName)

............ 592.5.4. The HTMLElement interface

............... 602.5.5. Object definitions

................. 105Appendix A: Changes

........ 105A.1. Changes in the "What is the Document Object Model?"

.......... 106A.2. Changes in the Document Object Model Core

.......... 118A.3. Changes in the Document Object Model HTML

5

Expanded Table of Contents

.............. 121A.4. Changes in the Appendices

................ 129Appendix B: IDL Definitions

............ 129B.1. Document Object Model Level 1 Core

........... 133B.2. Document Object Model Level 1 HTML

.............. 143Appendix C: Java Language Binding

............ 143C.1. Document Object Model Level 1 Core

........... 149C.2. Document Object Model Level 1 HTML

............ 175Appendix D: ECMA Script Language Binding

............ 175D.1. Document Object Model Level 1 Core

........... 181D.2. Document Object Model Level 1 HTML

............... 123Appendix E: Acknowledgements

.................... 125Glossary

.................... 201References

................ 2011. Normative references

................ 2012. Informative references

................... 203Objects Index

..................... 205Index

............... 211Production Notes (Non-Normative)

.............. 2111. The Document Type Definition

................ 2112. The production process

................. 2123. Object Definitions

6

Expanded Table of Contents

Copyright Notice
Copyright © 2000 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.

This document is published under the W3C Document Copyright Notice and License [p.7] . The bindings
within this document are published under the W3C Software Copyright Notice and License [p.8] . The
software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL Definitions, the pragma prefix can no longer be
’w3c.org’; in the case of the Java Language binding, the package names can no longer be in the ’org.w3c’
package.

W3C Document Copyright Notice and License
Note: This section is a copy of the W3C Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-documents-19990405.

Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
Software Notice. By using and/or copying this document, or the W3C document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice of the form:

"Copyright © [$date-of-document] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

7

Copyright Notice

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C Software Copyright Notice and License
Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/."

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We

8

W3C Software Copyright Notice and License

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

9

W3C Software Copyright Notice and License

10

W3C Software Copyright Notice and License

What is the Document Object Model?
Editors

Jonathan Robie, Texcel Research

Introduction
The Document Object Model (DOM) is an application programming interface (API) for valid HTML and
well-formed XML documents. It defines the logical structure of documents and the way a document is
accessed and manipulated. In the DOM specification, the term "document" is used in the broad sense -
increasingly, XML is being used as a way of representing many different kinds of information that may be
stored in diverse systems, and much of this would traditionally be seen as data rather than as documents.
Nevertheless, XML presents this data as documents, and the DOM may be used to manage this data.

With the Document Object Model, programmers can build documents, navigate their structure, and add,
modify, or delete elements and content. Anything found in an HTML or XML document can be accessed,
changed, deleted, or added using the Document Object Model, with a few exceptions - in particular, the
DOM interfaces for the XML internal and external subsets have not yet been specified.

As a W3C specification, one important objective for the Document Object Model is to provide a standard
programming interface that can be used in a wide variety of environments and applications. The DOM is
designed to be used with any programming language. In order to provide a precise, language-independent
specification of the DOM interfaces, we have chosen to define the specifications in Object Management
Group (OMG) IDL [OMGIDL], as defined in the CORBA 2.2 specification [CORBA]. In addition to the
OMG IDL specification, we provide language bindings for Java [Java] and ECMAScript [ECMAScript]
(an industry-standard scripting language based on JavaScript and JScript).

Note: OMG IDL is used only as a language-independent and implementation-neutral way to specify
interfaces. Various other IDLs could have been used. In general, IDLs are designed for specific computing
environments. The Document Object Model can be implemented in any computing environment, and does
not require the object binding runtimes generally associated with such IDLs.

What the Document Object Model is
The DOM is a programming API for documents. It is based on an object structure that closely resembles
the structure of the documents it models. For instance, consider this table, taken from an HTML
document:

 <TABLE>
 <TBODY>
 <TR>
 <TD>Shady Grove</TD>
 <TD>Aeolian</TD>
 </TR>
 <TR>
 <TD>Over the River, Charlie</TD>

11

What is the Document Object Model?

 <TD>Dorian</TD>
 </TR>
 </TBODY>
 </TABLE>

The DOM represents this table like this:

DOM representation of the example table

In the DOM, documents have a logical structure which is very much like a tree; to be more precise, which
is like a "forest" or "grove", which can contain more than one tree. Each document contains zero or one
doctype nodes, one root element node, and zero or more comments or processing instructions; the root
element serves as the root of the element tree for the document. However, the DOM does not specify that
documents must be implemented as a tree or a grove, nor does it specify how the relationships among
objects be implemented. The DOM is a logical model that may be implemented in any convenient manner.
In this specification, we use the term structure model to describe the tree-like representation of a
document. We also use the term "tree" when referring to the arrangement of those information items
which can be reached by using "tree-walking" methods; (this does not include attributes). One important
property of DOM structure models is structural isomorphism: if any two Document Object Model
implementations are used to create a representation of the same document, they will create the same
structure model, in accordance with the XML Information Set [Infoset].

Note: There may be some variations depending on the parser being used to build the DOM. For instance,
the DOM may not contain whitespaces in element content if the parser discards them.

The name "Document Object Model" was chosen because it is an "object model" in the traditional object
oriented design sense: documents are modeled using objects, and the model encompasses not only the
structure of a document, but also the behavior of a document and the objects of which it is composed. In
other words, the nodes in the above diagram do not represent a data structure, they represent objects,
which have functions and identity. As an object model, the DOM identifies:

12

What the Document Object Model is

the interfaces and objects used to represent and manipulate a document
the semantics of these interfaces and objects - including both behavior and attributes
the relationships and collaborations among these interfaces and objects

The structure of SGML documents has traditionally been represented by an abstract data model, not by an
object model. In an abstract data model, the model is centered around the data. In object oriented
programming languages, the data itself is encapsulated in objects that hide the data, protecting it from
direct external manipulation. The functions associated with these objects determine how the objects may
be manipulated, and they are part of the object model.

What the Document Object Model is not
This section is designed to give a more precise understanding of the DOM by distinguishing it from other
systems that may seem to be like it.

Although the Document Object Model was strongly influenced by "Dynamic HTML", in Level 1, it
does not implement all of "Dynamic HTML". In particular, events have not yet been defined. Level 1
is designed to lay a firm foundation for this kind of functionality by providing a robust, flexible
model of the document itself.
The Document Object Model is not a binary specification. DOM programs written in the same
language binding will be source code compatible across platforms, but the DOM does not define any
form of binary interoperability.
The Document Object Model is not a way of persisting objects to XML or HTML. Instead of
specifying how objects may be represented in XML, the DOM specifies how XML and HTML
documents are represented as objects, so that they may be used in object oriented programs.
The Document Object Model is not a set of data structures; it is an object model that specifies
interfaces. Although this document contains diagrams showing parent/child relationships, these are
logical relationships defined by the programming interfaces, not representations of any particular
internal data structures.
The Document Object Model does not define what information in a document is relevant or how
information in a document is structured. For XML, this is specified by the W3C XML Information
Set [Infoset]. The DOM is simply an API to this information set.
The Document Object Model, despite its name, is not a competitor to the Component Object Model
(COM). COM, like CORBA, is a language independent way to specify interfaces and objects; the
DOM is a set of interfaces and objects designed for managing HTML and XML documents. The
DOM may be implemented using language-independent systems like COM or CORBA; it may also
be implemented using language-specific bindings like the Java or ECMAScript bindings specified in
this document.

Where the Document Object Model came from
The DOM originated as a specification to allow JavaScript scripts and Java programs to be portable
among Web browsers. "Dynamic HTML" was the immediate ancestor of the Document Object Model,
and it was originally thought of largely in terms of browsers. However, when the DOM Working Group
was formed at W3C, it was also joined by vendors in other domains, including HTML or XML editors and

13

What the Document Object Model is not

document repositories. Several of these vendors had worked with SGML before XML was developed; as a
result, the DOM has been influenced by SGML Groves and the HyTime standard. Some of these vendors
had also developed their own object models for documents in order to provide an API for SGML/XML
editors or document repositories, and these object models have also influenced the DOM.

Entities and the DOM Core
In the fundamental DOM interfaces, there are no objects representing entities. Numeric character
references, and references to the pre-defined entities in HTML and XML, are replaced by the single
character that makes up the entity’s replacement. For example, in:

 <p>This is a dog & a cat</p>

the "&" will be replaced by the character "&", and the text in the P element will form a single
continuous sequence of characters. Since numeric character references and pre-defined entities are not
recognized as such in CDATA sections, or in the SCRIPT and STYLE elements in HTML, they are not
replaced by the single character they appear to refer to. If the example above were enclosed in a CDATA
section, the "&" would not be replaced by "&"; neither would the <p> be recognized as a start tag.
The representation of general entities, both internal and external, are defined within the extended (XML)
interfaces of the Level 1 specification.

Note: When a DOM representation of a document is serialized as XML or HTML text, applications will
need to check each character in text data to see if it needs to be escaped using a numeric or pre-defined
entity. Failing to do so could result in invalid HTML or XML. Also, implementations should be aware of
the fact that serialization into a character encoding ("charset") that does not fully cover ISO 10646 may
fail if there are characters in markup or CDATA sections that are not present in the encoding.

Compliance
The Document Object Model Level 1 currently consists of two parts, DOM Core and DOM HTML. The
DOM Core represents the functionality used for XML documents, and also serves as the basis for DOM
HTML.

A compliant implementation of the DOM must implement all of the fundamental interfaces in the Core
chapter with the semantics as defined. Further, it must implement at least one of the HTML DOM and the
extended (XML) interfaces with the semantics as defined.

A DOM application can use the hasFeature method of the DOMImplementation [p.22] interface to
determine whether the module is supported or not. The feature strings for all modules in DOM Level 1 are
listed in the following table; (strings are case-insensitive):

Module Feature String

XML XML

HTML HTML

14

Entities and the DOM Core

DOM Interfaces and DOM Implementations
The DOM specifies interfaces which may be used to manage XML or HTML documents. It is important
to realize that these interfaces are an abstraction - much like "abstract base classes" in C++, they are a
means of specifying a way to access and manipulate an application’s internal representation of a
document. Interfaces do not imply a particular concrete implementation. Each DOM application is free to
maintain documents in any convenient representation, as long as the interfaces shown in this specification
are supported. Some DOM implementations will be existing programs that use the DOM interfaces to
access software written long before the DOM specification existed. Therefore, the DOM is designed to
avoid implementation dependencies; in particular,

1. Attributes defined in the IDL do not imply concrete objects which must have specific data members -
in the language bindings, they are translated to a pair of get()/set() functions, not to a data member.
Read-only attributes have only a get() function in the language bindings.

2. DOM applications may provide additional interfaces and objects not found in this specification and
still be considered DOM compliant.

3. Because we specify interfaces and not the actual objects that are to be created, the DOM cannot know
what constructors to call for an implementation. In general, DOM users call the createX() methods on
the Document class to create document structures, and DOM implementations create their own
internal representations of these structures in their implementations of the createX() functions.

Limitations of Level 1
The DOM Level 1 specification is intentionally limited to those methods needed to represent and
manipulate document structure and content. The plan is for future Levels of the DOM specification to
provide:

1. A structure model for the internal subset and the external subset.
2. Validation against a schema.
3. Control for rendering documents via style sheets.
4. Access control.
5. Thread-safety.
6. Events.

15

DOM Interfaces and DOM Implementations

16

Limitations of Level 1

1. Document Object Model Core
Editors

Mike Champion, ArborText (from November 20, 1997)
Steve Byrne, JavaSoft (until November 19, 1997)
Gavin Nicol, Inso EPS
Lauren Wood, SoftQuad, Inc.

1.1. Overview of the DOM Core Interfaces
This section defines a set of objects and interfaces for accessing and manipulating document objects. The
functionality specified in this section (the Core functionality) is sufficient to allow software developers
and web script authors to access and manipulate parsed HTML and XML content inside conforming
products. The DOM Core API also allows creation and population of a Document [p.23] object using
only DOM API calls; loading a Document and saving it persistently is left to the product that
implements the DOM API.

1.1.1. The DOM Structure Model

The DOM presents documents as a hierarchy of Node [p.28] objects that also implement other, more
specialized interfaces. Some types of nodes may have child nodes of various types, and others are leaf
nodes that cannot have anything below them in the document structure. For XML and HTML, the node
types, and which node types they may have as children, are as follows:

Document [p.23] -- Element [p.43] (maximum of one), ProcessingInstruction [p.52] ,
Comment [p.48] , DocumentType [p.49] (maximum of one)
DocumentFragment [p.23] -- Element [p.43] , ProcessingInstruction [p.52] ,
Comment [p.48] , Text [p.47] , CDATASection [p.48] , EntityReference [p.52]
DocumentType [p.49] -- no children
EntityReference [p.52] -- Element [p.43] , ProcessingInstruction [p.52] , Comment
[p.48] , Text [p.47] , CDATASection [p.48] , EntityReference
Element [p.43] -- Element, Text [p.47] , Comment [p.48] , ProcessingInstruction
[p.52] , CDATASection [p.48] , EntityReference [p.52]
Attr [p.42] -- Text [p.47] , EntityReference [p.52]
ProcessingInstruction [p.52] -- no children
Comment [p.48] -- no children
Text [p.47] -- no children
CDATASection [p.48] -- no children
Entity [p.51] -- Element [p.43] , ProcessingInstruction [p.52] , Comment [p.48] ,
Text [p.47] , CDATASection [p.48] , EntityReference [p.52]
Notation [p.50] -- no children

The DOM also specifies a NodeList [p.35] interface to handle ordered lists of Nodes [p.28] , such as
the children of a Node [p.28] , or the elements returned by the getElementsByTagName method of
the Element [p.43] interface, and also a NamedNodeMap [p.36] interface to handle unordered sets of

17

1. Document Object Model Core

nodes referenced by their name attribute, such as the attributes of an Element. NodeList [p.35] and
NamedNodeMap [p.36] objects in the DOM are live; that is, changes to the underlying document
structure are reflected in all relevant NodeList and NamedNodeMap objects. For example, if a DOM
user gets a NodeList object containing the children of an Element [p.43] , then subsequently adds
more children to that element (or removes children, or modifies them), those changes are automatically
reflected in the NodeList, without further action on the user’s part. Likewise, changes to a Node [p.28]
in the tree are reflected in all references to that Node in NodeList and NamedNodeMap objects.

Finally, the interfaces Text [p.47] , Comment [p.48] , and CDATASection [p.48] all inherit from the
CharacterData [p.38] interface.

1.1.2. Memory Management

Most of the APIs defined by this specification are interfaces rather than classes. That means that an
implementation need only expose methods with the defined names and specified operation, not implement
classes that correspond directly to the interfaces. This allows the DOM APIs to be implemented as a thin
veneer on top of legacy applications with their own data structures, or on top of newer applications with
different class hierarchies. This also means that ordinary constructors (in the Java or C++ sense) cannot be
used to create DOM objects, since the underlying objects to be constructed may have little relationship to
the DOM interfaces. The conventional solution to this in object-oriented design is to define factory
methods that create instances of objects that implement the various interfaces. In the DOM Level 1,
objects implementing some interface "X" are created by a "createX()" method on the Document [p.23]
interface; this is because all DOM objects live in the context of a specific Document.

The DOM Level 1 API does not define a standard way to create DOMImplementation [p.22] or
Document [p.23] objects; DOM implementations must provide some proprietary way of bootstrapping
these DOM interfaces, and then all other objects can be built from there.

The Core DOM APIs are designed to be compatible with a wide range of languages, including both
general-user scripting languages and the more challenging languages used mostly by professional
programmers. Thus, the DOM APIs need to operate across a variety of memory management
philosophies, from language bindings that do not expose memory management to the user at all, through
those (notably Java) that provide explicit constructors but provide an automatic garbage collection
mechanism to automatically reclaim unused memory, to those (especially C/C++) that generally require
the programmer to explicitly allocate object memory, track where it is used, and explicitly free it for
re-use. To ensure a consistent API across these platforms, the DOM does not address memory
management issues at all, but instead leaves these for the implementation. Neither of the explicit language
bindings devised by the DOM Working Group (for ECMAScript and Java) require any memory
management methods, but DOM bindings for other languages (especially C or C++) may require such
support. These extensions will be the responsibility of those adapting the DOM API to a specific
language, not the DOM Working Group.

18

1.1.2. Memory Management

1.1.3. Naming Conventions

While it would be nice to have attribute and method names that are short, informative, internally
consistent, and familiar to users of similar APIs, the names also should not clash with the names in legacy
APIs supported by DOM implementations. Furthermore, both OMG IDL and ECMAScript have
significant limitations in their ability to disambiguate names from different namespaces that make it
difficult to avoid naming conflicts with short, familiar names. So, some DOM names tend to be long and
quite descriptive in order to be unique across all environments.

The Working Group has also attempted to be internally consistent in its use of various terms, even though
these may not be common distinctions in other APIs. For example, we use the method name "remove"
when the method changes the structural model, and the method name "delete" when the method gets rid of
something inside the structure model. The thing that is deleted is not returned. The thing that is removed
may be returned, when it makes sense to return it.

1.1.4. Inheritance vs. Flattened Views of the API

The DOM Core APIs present two somewhat different sets of interfaces to an XML/HTML document; one
presenting an "object oriented" approach with a hierarchy of inheritance, and a "simplified" view that
allows all manipulation to be done via the Node [p.28] interface without requiring casts (in Java and other
C-like languages) or query interface calls in COM environments. These operations are fairly expensive in
Java and COM, and the DOM may be used in performance-critical environments, so we allow significant
functionality using just the Node interface. Because many other users will find the inheritance hierarchy
easier to understand than the "everything is a Node" approach to the DOM, we also support the full
higher-level interfaces for those who prefer a more object-oriented API.

In practice, this means that there is a certain amount of redundancy in the API. The Working Group
considers the "inheritance" approach the primary view of the API, and the full set of functionality on
Node [p.28] to be "extra" functionality that users may employ, but that does not eliminate the need for
methods on other interfaces that an object-oriented analysis would dictate. (Of course, when the O-O
analysis yields an attribute or method that is identical to one on the Node interface, we don’t specify a
completely redundant one.) Thus, even though there is a generic nodeName attribute on the Node
interface, there is still a tagName attribute on the Element [p.43] interface; these two attributes must
contain the same value, but the Working Group considers it worthwhile to support both, given the
different constituencies the DOM API must satisfy.

1.1.5. The DOMString type

To ensure interoperability, the DOM specifies the following:

Type Definition DOMString

A DOMString [p.19] is a sequence of 16-bit units [p.125] .
IDL Definition

19

1.1.3. Naming Conventions

typedef sequence<unsigned short> DOMString;

Applications must encode DOMString [p.19] using UTF-16 (defined in [Unicode] and Amendment
1 of [ISO/IEC 10646]).
The UTF-16 encoding was chosen because of its widespread industry practice. Note that for both
HTML and XML, the document character set (and therefore the notation of numeric character
references) is based on UCS [ISO-10646]. A single numeric character reference in a source
document may therefore in some cases correspond to two 16-bit units in a DOMString [p.19] (a
high surrogate and a low surrogate).

Note: Even though the DOM defines the name of the string type to be DOMString [p.19] , bindings
may use different names. For example for Java, DOMString is bound to the String type because
it also uses UTF-16 as its encoding.

Note: As of August 1998, the OMG IDL specification included a wstring type. However, that
definition did not meet the interoperability criteria of the DOM API since it relied on negotiation to decide
the width and encoding of a character.

1.1.6. String comparisons in the DOM

The DOM has many interfaces that imply string matching. HTML processors generally assume an
uppercase (less often, lowercase) normalization of names for such things as elements, while XML is
explicitly case sensitive. For the purposes of the DOM, string matching is performed purely by binary
comparison of the 16-bit units [p.125] of the DOMString [p.19] . In addition, the DOM assumes that any
case normalizations take place in the processor, before the DOM structures are built.

Note: Besides case folding, there are additional normalizations that can be applied to text. The W3C I18N
Working Group is in the process of defining exactly which normalizations are necessary, and where they
should be applied. The W3C I18N Working Group expects to require early normalization, which means
that data read into the DOM is assumed to already be normalized. The DOM and applications built on top
of it in this case only have to assure that text remains normalized when being changed. For further details,
please see [Charmod].

1.2. Fundamental Interfaces
The interfaces within this section are considered fundamental, and must be fully implemented by all
conforming implementations of the DOM, including all HTML DOM implementations, unless otherwise
specified.

Exception DOMException

DOM operations only raise exceptions in "exceptional" circumstances, i.e., when an operation is
impossible to perform (either for logical reasons, because data is lost, or because the implementation
has become unstable). In general, DOM methods return specific error values in ordinary processing
situations, such as out-of-bound errors when using NodeList [p.35] .

20

1.2. Fundamental Interfaces

Implementations may raise other exceptions under other circumstances. For example,
implementations may raise an implementation-dependent exception if a null argument is passed.

Some languages and object systems do not support the concept of exceptions. For such systems, error
conditions may be indicated using native error reporting mechanisms. For some bindings, for
example, methods may return error codes similar to those listed in the corresponding method
descriptions.
IDL Definition

exception DOMException {
 unsigned short code;
};
// ExceptionCode
const unsigned short INDEX_SIZE_ERR = 1;
const unsigned short DOMSTRING_SIZE_ERR = 2;
const unsigned short HIERARCHY_REQUEST_ERR = 3;
const unsigned short WRONG_DOCUMENT_ERR = 4;
const unsigned short INVALID_CHARACTER_ERR = 5;
const unsigned short NO_DATA_ALLOWED_ERR = 6;
const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
const unsigned short NOT_FOUND_ERR = 8;
const unsigned short NOT_SUPPORTED_ERR = 9;
const unsigned short INUSE_ATTRIBUTE_ERR = 10;

Definition group ExceptionCode

An integer indicating the type of error generated.

Note: Other numeric codes are reserved for W3C for possible future use.

Defined Constants
DOMSTRING_SIZE_ERR

If the specified range of text does not fit into a DOMString

HIERARCHY_REQUEST_ERR
If any node is inserted somewhere it doesn’t belong

INDEX_SIZE_ERR
If index or size is negative, or greater than the allowed value

INUSE_ATTRIBUTE_ERR
If an attempt is made to add an attribute that is already in use elsewhere

INVALID_CHARACTER_ERR
If an invalid or illegal character is specified, such as in a name. See production 2 in
the XML specification for the definition of a legal character, and production 5 for the
definition of a legal name character.

NOT_FOUND_ERR
If an attempt is made to reference a node in a context where it does not exist

21

1.2. Fundamental Interfaces

http://www.w3.org/TR/1998/REC-xml-19980210#NT-Name
http://www.w3.org/TR/1998/REC-xml-19980210#NT-Char

NOT_SUPPORTED_ERR
If the implementation does not support the type of object requested

NO_DATA_ALLOWED_ERR
If data is specified for a node which does not support data

NO_MODIFICATION_ALLOWED_ERR
If an attempt is made to modify an object where modifications are not allowed

WRONG_DOCUMENT_ERR
If a node is used in a different document than the one that created it (that doesn’t
support it)

Interface DOMImplementation

The DOMImplementation interface provides a number of methods for performing operations that
are independent of any particular instance of the document object model.

The DOM Level 1 does not specify a way of creating a document instance, and hence document
creation is an operation specific to an implementation. Future Levels of the DOM specification are
expected to provide methods for creating documents directly.
IDL Definition

interface DOMImplementation {
 boolean hasFeature(in DOMString feature,
 in DOMString version);
};

Methods
hasFeature

Test if the DOM implementation implements a specific feature.
Parameters
feature of type DOMString [p.19]

The name of the feature to test (case-insensitive). The values used by DOM features
are defined throughout this specification and listed in the Compliance [p.14] section.
The name must be an XML name [p.128] . To avoid possible conflicts, as a
convention, names referring to features defined outside the DOM specification should
be made unique by reversing the name of the Internet domain name of the person (or
the organization that the person belongs to) who defines the feature, component by
component, and using this as a prefix. For instance, the W3C SYMM Working Group
defines the feature "org.w3c.dom.smil".

version of type DOMString
This is the version number of the feature to test. In Level 1, this is the string "1.0". If
the version is not specified, supporting any version of the feature causes the method to
return true.

22

1.2. Fundamental Interfaces

Return Value

boolean true if the feature is implemented in the specified version, false
otherwise.

No Exceptions

Interface DocumentFragment

DocumentFragment is a "lightweight" or "minimal" Document [p.23] object. It is very common
to want to be able to extract a portion of a document’s tree or to create a new fragment of a
document. Imagine implementing a user command like cut or rearranging a document by moving
fragments around. It is desirable to have an object which can hold such fragments and it is quite
natural to use a Node for this purpose. While it is true that a Document object could fulfill this role,
a Document object can potentially be a heavyweight object, depending on the underlying
implementation. What is really needed for this is a very lightweight object. DocumentFragment
is such an object.

Furthermore, various operations -- such as inserting nodes as children of another Node [p.28] -- may
take DocumentFragment objects as arguments; this results in all the child nodes of the
DocumentFragment being moved to the child list of this node.

The children of a DocumentFragment node are zero or more nodes representing the tops of any
sub-trees defining the structure of the document. DocumentFragment nodes do not need to be
well-formed XML documents (although they do need to follow the rules imposed upon well-formed
XML parsed entities, which can have multiple top nodes). For example, a DocumentFragment
might have only one child and that child node could be a Text [p.47] node. Such a structure model
represents neither an HTML document nor a well-formed XML document.

When a DocumentFragment is inserted into a Document [p.23] (or indeed any other Node
[p.28] that may take children) the children of the DocumentFragment and not the
DocumentFragment itself are inserted into the Node. This makes the DocumentFragment
very useful when the user wishes to create nodes that are siblings; the DocumentFragment acts as
the parent of these nodes so that the user can use the standard methods from the Node interface, such
as insertBefore and appendChild.
IDL Definition

interface DocumentFragment : Node {
};

Interface Document

The Document interface represents the entire HTML or XML document. Conceptually, it is the root
of the document tree, and provides the primary access to the document’s data.

Since elements, text nodes, comments, processing instructions, etc. cannot exist outside the context
of a Document, the Document interface also contains the factory methods needed to create these
objects. The Node [p.28] objects created have a ownerDocument attribute which associates them

23

1.2. Fundamental Interfaces

with the Document within whose context they were created.
IDL Definition

interface Document : Node {
 readonly attribute DocumentType doctype;
 readonly attribute DOMImplementation implementation;
 readonly attribute Element documentElement;
 Element createElement(in DOMString tagName)
 raises(DOMException);
 DocumentFragment createDocumentFragment();
 Text createTextNode(in DOMString data);
 Comment createComment(in DOMString data);
 CDATASection createCDATASection(in DOMString data)
 raises(DOMException);
 ProcessingInstruction createProcessingInstruction(in DOMString target,
 in DOMString data)
 raises(DOMException);
 Attr createAttribute(in DOMString name)
 raises(DOMException);
 EntityReference createEntityReference(in DOMString name)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString tagname);
};

Attributes
doctype of type DocumentType [p.49] , readonly

The Document Type Declaration (see DocumentType [p.49]) associated with this
document. For HTML documents as well as XML documents without a document type
declaration this returns null. The DOM Level 1 does not support editing the Document
Type Declaration. docType cannot be altered in any way, including through the use of
methods inherited from the Node [p.28] interface, such as insertNode or
removeNode.

documentElement of type Element [p.43] , readonly
This is a convenience attribute that allows direct access to the child node that is the root
element of the document. For HTML documents, this is the element with the tagName
"HTML".

implementation of type DOMImplementation [p.22] , readonly
The DOMImplementation [p.22] object that handles this document. A DOM
application may use objects from multiple implementations.

Methods
createAttribute

Creates an Attr [p.42] of the given name. Note that the Attr instance can then be set on
an Element [p.43] using the setAttributeNode method.
Parameters
name of type DOMString [p.19]

The name of the attribute.

24

1.2. Fundamental Interfaces

Return Value

Attr
[p.42]

A new Attr object with the NodeName attribute set to name. The
value of the attribute is the empty string.

Exceptions

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified
name contains an illegal character.

createCDATASection
Creates a CDATASection [p.48] node whose value is the specified string.
Parameters
data of type DOMString [p.19]

The data for the CDATASection [p.48] contents.

Return Value

CDATASection [p.48] The new CDATASection object.

Exceptions

DOMException
[p.20]

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

createComment
Creates a Comment [p.48] node given the specified string.
Parameters
data of type DOMString [p.19]

The data for the node.

Return Value

Comment [p.48] The new Comment object.

No Exceptions

createDocumentFragment
Creates an empty DocumentFragment [p.23] object.
Return Value

DocumentFragment [p.23] A new DocumentFragment.

25

1.2. Fundamental Interfaces

No Parameters
No Exceptions

createElement
Creates an element of the type specified. Note that the instance returned implements the
Element [p.43] interface, so attributes can be specified directly on the returned object.
In addition, if there are known attributes with default values, Attr [p.42] nodes
representing them are automatically created and attached to the element.
Parameters
tagName of type DOMString [p.19]

The name of the element type to instantiate. For XML, this is case-sensitive. For
HTML, the tagName parameter may be provided in any case, but it must be mapped
to the canonical uppercase form by the DOM implementation.

Return Value

Element
[p.43]

A new Element object with the nodeName attribute set to
tagName.

Exceptions

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified
name contains an illegal character.

createEntityReference
Creates an EntityReference [p.52] object. In addition, if the referenced entity is
known, the child list of the EntityReference node is made the same as that of the
corresponding Entity [p.51] node.
Parameters
name of type DOMString [p.19]

The name of the entity to reference.

Return Value

EntityReference [p.52] The new EntityReference object.

Exceptions

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified
name contains an illegal character.

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

26

1.2. Fundamental Interfaces

createProcessingInstruction
Creates a ProcessingInstruction [p.52] node given the specified name and data
strings.
Parameters
target of type DOMString [p.19]

The target part of the processing instruction.

data of type DOMString
The data for the node.

Return Value

ProcessingInstruction
[p.52]

The new ProcessingInstruction
object.

Exceptions

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified
target contains an illegal character.

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

createTextNode
Creates a Text [p.47] node given the specified string.
Parameters
data of type DOMString [p.19]

The data for the node.

Return Value

Text [p.47] The new Text object.

No Exceptions

getElementsByTagName
Returns a NodeList [p.35] of all the Elements [p.43] with a given tag name in the
order in which they are encountered in a preorder traversal of the Document tree.
Parameters
tagname of type DOMString [p.19]

The name of the tag to match on. The special value "*" matches all tags.

Return Value

27

1.2. Fundamental Interfaces

NodeList
[p.35]

A new NodeList object containing all the matched
Elements [p.43] .

No Exceptions

Interface Node

The Node interface is the primary datatype for the entire Document Object Model. It represents a
single node in the document tree. While all objects implementing the Node interface expose methods
for dealing with children, not all objects implementing the Node interface may have children. For
example, Text [p.47] nodes may not have children, and adding children to such nodes results in a
DOMException [p.20] being raised.

The attributes nodeName, nodeValue and attributes are included as a mechanism to get at
node information without casting down to the specific derived interface. In cases where there is no
obvious mapping of these attributes for a specific nodeType (e.g., nodeValue for an Element or
attributes for a Comment [p.48]), this returns null. Note that the specialized interfaces may
contain additional and more convenient mechanisms to get and set the relevant information.
IDL Definition

interface Node {

 // NodeType
 const unsigned short ELEMENT_NODE = 1;
 const unsigned short ATTRIBUTE_NODE = 2;
 const unsigned short TEXT_NODE = 3;
 const unsigned short CDATA_SECTION_NODE = 4;
 const unsigned short ENTITY_REFERENCE_NODE = 5;
 const unsigned short ENTITY_NODE = 6;
 const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
 const unsigned short COMMENT_NODE = 8;
 const unsigned short DOCUMENT_NODE = 9;
 const unsigned short DOCUMENT_TYPE_NODE = 10;
 const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
 const unsigned short NOTATION_NODE = 12;

 readonly attribute DOMString nodeName;
 attribute DOMString nodeValue;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned short nodeType;
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 readonly attribute Node firstChild;
 readonly attribute Node lastChild;
 readonly attribute Node previousSibling;
 readonly attribute Node nextSibling;
 readonly attribute NamedNodeMap attributes;
 readonly attribute Document ownerDocument;
 Node insertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);

28

1.2. Fundamental Interfaces

 Node replaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 Node removeChild(in Node oldChild)
 raises(DOMException);
 Node appendChild(in Node newChild)
 raises(DOMException);
 boolean hasChildNodes();
 Node cloneNode(in boolean deep)
 raises(DOMException);
};

Definition group NodeType

An integer indicating which type of node this is.

Note: Numeric codes up to 200 are reserved to W3C for possible future use.

Defined Constants
ATTRIBUTE_NODE

The node is an Attr [p.42] .

CDATA_SECTION_NODE
The node is a CDATASection [p.48] .

COMMENT_NODE
The node is a Comment [p.48] .

DOCUMENT_FRAGMENT_NODE
The node is a DocumentFragment [p.23] .

DOCUMENT_NODE
The node is a Document [p.23] .

DOCUMENT_TYPE_NODE
The node is a DocumentType [p.49] .

ELEMENT_NODE
The node is an Element [p.43] .

ENTITY_NODE
The node is an Entity [p.51] .

ENTITY_REFERENCE_NODE
The node is an EntityReference [p.52] .

NOTATION_NODE
The node is a Notation [p.50] .

29

1.2. Fundamental Interfaces

PROCESSING_INSTRUCTION_NODE
The node is a ProcessingInstruction [p.52] .

TEXT_NODE
The node is a Text [p.47] node.

The values of nodeName, nodeValue, and attributes vary according to the node type as
follows:

nodeName nodeValue attributes

Attr name of attribute value of attribute null

CDATASection #cdata-section content of the CDATA
Section

null

Comment #comment content of the comment null

Document #document null null

DocumentFragment #document-fragment null null

DocumentType document type name null null

Element tag name null NamedNodeMap

Entity entity name null null

EntityReference name of entity
referenced

null null

Notation notation name null null

ProcessingInstructiontarget entire content excluding
the target

null

Text #text content of the text node null

Attributes
attributes of type NamedNodeMap [p.36] , readonly

A NamedNodeMap [p.36] containing the attributes of this node (if it is an Element
[p.43]) or null otherwise.

childNodes of type NodeList [p.35] , readonly
A NodeList [p.35] that contains all children of this node. If there are no children, this is
a NodeList containing no nodes.

firstChild of type Node [p.28] , readonly
The first child of this node. If there is no such node, this returns null.

30

1.2. Fundamental Interfaces

lastChild of type Node [p.28] , readonly
The last child of this node. If there is no such node, this returns null.

nextSibling of type Node [p.28] , readonly
The node immediately following this node. If there is no such node, this returns null.

nodeName of type DOMString [p.19] , readonly
The name of this node, depending on its type; see the table above.

nodeType of type unsigned short, readonly
A code representing the type of the underlying object, as defined above.

nodeValue of type DOMString [p.19]
The value of this node, depending on its type; see the table above. When it is defined to be
null, setting it has no effect.
Exceptions on setting

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised when
the node is readonly.

Exceptions on retrieval

DOMException
[p.20]

DOMSTRING_SIZE_ERR: Raised when it would return
more characters than fit in a DOMString [p.19] variable on
the implementation platform.

ownerDocument of type Document [p.23] , readonly
The Document [p.23] object associated with this node. This is also the Document object
used to create new nodes. When this node is a Document, this is null.

parentNode of type Node [p.28] , readonly
The parent of this node. All nodes, except Attr [p.42] , Document [p.23] ,
DocumentFragment [p.23] , Entity [p.51] , and Notation [p.50] may have a
parent. However, if a node has just been created and not yet added to the tree, or if it has
been removed from the tree, this is null.

previousSibling of type Node [p.28] , readonly
The node immediately preceding this node. If there is no such node, this returns null.

Methods
appendChild

Adds the node newChild to the end of the list of children of this node. If the newChild
is already in the tree, it is first removed.
Parameters
newChild of type Node [p.28]

The node to add.
If it is a DocumentFragment [p.23] object, the entire contents of the document

31

1.2. Fundamental Interfaces

fragment are moved into the child list of this node

Return Value

Node [p.28] The node added.

Exceptions

DOMException
[p.20]

HIERARCHY_REQUEST_ERR: Raised if this node is of a
type that does not allow children of the type of the
newChild node, or if the node to append is one of this
node’s ancestors.

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created
this node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

cloneNode
Returns a duplicate of this node, i.e., serves as a generic copy constructor for nodes. The
duplicate node has no parent; (parentNode is null.).
Cloning an Element [p.43] copies all attributes and their values, including those
generated by the XML processor to represent defaulted attributes, but this method does not
copy any text it contains unless it is a deep clone, since the text is contained in a child
Text [p.47] node. Cloning an Attribute directly, as opposed to be cloned as part of an
Element cloning operation, returns a specified attribute (specified is true). Cloning
any other type of node simply returns a copy of this node.
Note that cloning an immutable subtree results in a mutable copy, but the children of an
EntityReference [p.52] clone are readonly [p.128] . In addition, clones of unspecified
Attr [p.42] nodes are specified. And, cloning Document [p.23] , DocumentType
[p.49] , Entity [p.51] , and Notation [p.50] nodes is implementation dependent.
Parameters
deep of type boolean

If true, recursively clone the subtree under the specified node; if false, clone only
the node itself (and its attributes, if it is an Element [p.43]).

Return Value

Node [p.28] The duplicate node.

Exceptions

32

1.2. Fundamental Interfaces

DOMException
[p.20]

NOT_SUPPORTED_ERR: Raised if this node is a of type
DOCUMENT_NODE, DOCUMENT_TYPE_NODE,
ENTITY_NODE, or NOTATION_NODE and the
implementation does not support cloning this type of node.

hasChildNodes
This is a convenience method to allow easy determination of whether a node has any
children.
Return Value

boolean true if the node has any children, false if the node has no
children.

No Parameters
No Exceptions

insertBefore
Inserts the node newChild before the existing child node refChild. If refChild is
null, insert newChild at the end of the list of children.
If newChild is a DocumentFragment [p.23] object, all of its children are inserted, in
the same order, before refChild. If the newChild is already in the tree, it is first
removed.
Parameters
newChild of type Node [p.28]

The node to insert.

refChild of type Node
The reference node, i.e., the node before which the new node must be inserted.

Return Value

Node [p.28] The node being inserted.

Exceptions

33

1.2. Fundamental Interfaces

DOMException
[p.20]

HIERARCHY_REQUEST_ERR: Raised if this node is of a
type that does not allow children of the type of the
newChild node, or if the node to insert is one of this node’s
ancestors.

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created
this node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly or if the parent of the node being inserted is
readonly.

NOT_FOUND_ERR: Raised if refChild is not a child of
this node.

removeChild
Removes the child node indicated by oldChild from the list of children, and returns it.
Parameters
oldChild of type Node [p.28]

The node being removed.

Return Value

Node [p.28] The node removed.

Exceptions

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

NOT_FOUND_ERR: Raised if oldChild is not a child
of this node.

replaceChild
Replaces the child node oldChild with newChild in the list of children, and returns the
oldChild node.
If newChild is a DocumentFragment [p.23] object, oldChild is replaced by all of
the DocumentFragment children, which are inserted in the same order. If the
newChild is already in the tree, it is first removed.
Parameters
newChild of type Node [p.28]

The new node to put in the child list.

34

1.2. Fundamental Interfaces

oldChild of type Node
The node being replaced in the list.

Return Value

Node [p.28] The node replaced.

Exceptions

DOMException
[p.20]

HIERARCHY_REQUEST_ERR: Raised if this node is of a
type that does not allow children of the type of the
newChild node, or it the node to put in is one of this node’s
ancestors.

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created
this node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node or the parent of the new node is readonly.

NOT_FOUND_ERR: Raised if oldChild is not a child of
this node.

Interface NodeList

The NodeList interface provides the abstraction of an ordered collection of nodes, without
defining or constraining how this collection is implemented. NodeList objects in the DOM are live
[p.18] .

The items in the NodeList are accessible via an integral index, starting from 0.
IDL Definition

interface NodeList {
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
};

Attributes
length of type unsigned long, readonly

The number of nodes in the list. The range of valid child node indices is 0 to length-1
inclusive.

Methods
item

Returns the indexth item in the collection. If index is greater than or equal to the
number of nodes in the list, this returns null.
Parameters

35

1.2. Fundamental Interfaces

index of type unsigned long
Index into the collection.

Return Value

Node
[p.28]

The node at the indexth position in the NodeList, or null if that
is not a valid index.

No Exceptions

Interface NamedNodeMap

Objects implementing the NamedNodeMap interface are used to represent collections of nodes that
can be accessed by name. Note that NamedNodeMap does not inherit from NodeList [p.35] ;
NamedNodeMaps are not maintained in any particular order. Objects contained in an object
implementing NamedNodeMap may also be accessed by an ordinal index, but this is simply to allow
convenient enumeration of the contents of a NamedNodeMap, and does not imply that the DOM
specifies an order to these Nodes.
IDL Definition

interface NamedNodeMap {
 Node getNamedItem(in DOMString name);
 Node setNamedItem(in Node arg)
 raises(DOMException);
 Node removeNamedItem(in DOMString name)
 raises(DOMException);
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
};

NamedNodeMap objects in the DOM are live [p.18] .
Attributes

length of type unsigned long, readonly
The number of nodes in this map. The range of valid child node indices is 0 to length-1
inclusive.

Methods
getNamedItem

Retrieves a node specified by name.
Parameters
name of type DOMString [p.19]

The nodeName of a node to retrieve.

Return Value

Node
[p.28]

A Node (of any type) with the specified nodeName, or null if it
does not identify any node in this map.

36

1.2. Fundamental Interfaces

No Exceptions

item
Returns the indexth item in the map. If index is greater than or equal to the number of
nodes in this map, this returns null.
Parameters
index of type unsigned long

Index into this map.

Return Value

Node
[p.28]

The node at the indexth position in the map, or null if that is not
a valid index.

No Exceptions

removeNamedItem
Removes a node specified by name. When this map contains the attributes attached to an
element, if the removed attribute is known to have a default value, an attribute immediately
appears containing the default value.
Parameters
name of type DOMString [p.19]

The nodeName of the node to remove.

Return Value

Node [p.28] The node removed from this map if a node with such a name exists.

Exceptions

DOMException
[p.20]

NOT_FOUND_ERR: Raised if there is no node named
name in this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
map is readonly.

setNamedItem
Adds a node using its nodeName attribute. If a node with that name is already present in
this map, it is replaced by the new one.
As the nodeName attribute is used to derive the name which the node must be stored
under, multiple nodes of certain types (those that have a "special" string value) cannot be
stored as the names would clash. This is seen as preferable to allowing nodes to be aliased.
Parameters
arg of type Node [p.28]

A node to store in this map. The node will later be accessible using the value of its
nodeName attribute.

37

1.2. Fundamental Interfaces

Return Value

Node
[p.28]

If the new Node replaces an existing node the replaced Node is
returned, otherwise null is returned.

Exceptions

DOMException
[p.20]

WRONG_DOCUMENT_ERR: Raised if arg was created
from a different document than the one that created this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
map is readonly.

INUSE_ATTRIBUTE_ERR: Raised if arg is an Attr
[p.42] that is already an attribute of another Element [p.43]
object. The DOM user must explicitly clone Attr nodes to
re-use them in other elements.

Interface CharacterData

The CharacterData interface extends Node with a set of attributes and methods for accessing
character data in the DOM. For clarity this set is defined here rather than on each object that uses
these attributes and methods. No DOM objects correspond directly to CharacterData, though
Text [p.47] and others do inherit the interface from it. All offsets in this interface start from 0.

As explained in the DOMString [p.19] interface, text strings in the DOM are represented in
UTF-16, i.e. as a sequence of 16-bit units. In the following, the term 16-bit units [p.125] is used
whenever necessary to indicate that indexing on CharacterData is done in 16-bit units.
IDL Definition

interface CharacterData : Node {
 attribute DOMString data;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned long length;
 DOMString substringData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void appendData(in DOMString arg)
 raises(DOMException);
 void insertData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);
 void deleteData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void replaceData(in unsigned long offset,

38

1.2. Fundamental Interfaces

 in unsigned long count,
 in DOMString arg)
 raises(DOMException);
};

Attributes
data of type DOMString [p.19]

The character data of the node that implements this interface. The DOM implementation
may not put arbitrary limits on the amount of data that may be stored in a
CharacterData node. However, implementation limits may mean that the entirety of a
node’s data may not fit into a single DOMString [p.19] . In such cases, the user may call
substringData to retrieve the data in appropriately sized pieces.
Exceptions on setting

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised when
the node is readonly.

Exceptions on retrieval

DOMException
[p.20]

DOMSTRING_SIZE_ERR: Raised when it would return
more characters than fit in a DOMString [p.19] variable on
the implementation platform.

length of type unsigned long, readonly
The number of 16-bit units [p.125] that are available through data and the
substringData method below. This may have the value zero, i.e., CharacterData
nodes may be empty.

Methods
appendData

Append the string to the end of the character data of the node. Upon success, data
provides access to the concatenation of data and the DOMString [p.19] specified.
Parameters
arg of type DOMString [p.19]

The DOMString to append.

Exceptions

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value

deleteData
Remove a range of 16-bit units [p.125] from the node. Upon success, data and length
reflect the change.

39

1.2. Fundamental Interfaces

Parameters
offset of type unsigned long

The offset from which to start removing.

count of type unsigned long
The number of 16-bit units to delete. If the sum of offset and count exceeds
length then all 16-bit units from offset to the end of the data are deleted.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data,
or if the specified count is negative.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value

insertData
Insert a string at the specified 16-bit unit [p.125] offset.
Parameters
offset of type unsigned long

The character offset at which to insert.

arg of type DOMString [p.19]
The DOMString to insert.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value

replaceData
Replace the characters starting at the specified 16-bit unit [p.125] offset with the specified
string.
Parameters
offset of type unsigned long

The offset from which to start replacing.

40

1.2. Fundamental Interfaces

count of type unsigned long
The number of 16-bit units to replace. If the sum of offset and count exceeds
length, then all 16-bit units to the end of the data are replaced; (i.e., the effect is the
same as a remove method call with the same range, followed by an append method
invocation).

arg of type DOMString [p.19]
The DOMString with which the range must be replaced.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data,
or if the specified count is negative.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value

substringData
Extracts a range of data from the node.
Parameters
offset of type unsigned long

Start offset of substring to extract.

count of type unsigned long
The number of 16-bit units to extract.

Return Value

DOMString
[p.19]

The specified substring. If the sum of offset and count
exceeds the length, then all 16-bit units to the end of the data
are returned.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data,
or if the specified count is negative.

DOMSTRING_SIZE_ERR: Raised if the specified range of
text does not fit into a DOMString [p.19] .

41

1.2. Fundamental Interfaces

Interface Attr

The Attr interface represents an attribute in an Element [p.43] object. Typically the allowable
values for the attribute are defined in a document type definition.

Attr objects inherit the Node [p.28] interface, but since they are not actually child nodes of the
element they describe, the DOM does not consider them part of the document tree. Thus, the Node
attributes parentNode, previousSibling, and nextSibling have a null value for Attr
objects. The DOM takes the view that attributes are properties of elements rather than having a
separate identity from the elements they are associated with; this should make it more efficient to
implement such features as default attributes associated with all elements of a given type.
Furthermore, Attr nodes may not be immediate children of a DocumentFragment [p.23] .
However, they can be associated with Element [p.43] nodes contained within a
DocumentFragment. In short, users and implementors of the DOM need to be aware that Attr
nodes have some things in common with other objects inheriting the Node interface, but they also
are quite distinct.

The attribute’s effective value is determined as follows: if this attribute has been explicitly assigned
any value, that value is the attribute’s effective value; otherwise, if there is a declaration for this
attribute, and that declaration includes a default value, then that default value is the attribute’s
effective value; otherwise, the attribute does not exist on this element in the structure model until it
has been explicitly added. Note that the nodeValue attribute on the Attr instance can also be used
to retrieve the string version of the attribute’s value(s).

In XML, where the value of an attribute can contain entity references, the child nodes of the Attr
node provide a representation in which entity references are not expanded. These child nodes may be
either Text [p.47] or EntityReference [p.52] nodes. Because the attribute type may be
unknown, there are no tokenized attribute values.
IDL Definition

interface Attr : Node {
 readonly attribute DOMString name;
 readonly attribute boolean specified;
 // Modified in DOM Level 1:
 attribute DOMString value;
 // raises(DOMException) on setting

};

Attributes
name of type DOMString [p.19] , readonly

Returns the name of this attribute.

specified of type boolean, readonly
If this attribute was explicitly given a value in the original document, this is true;
otherwise, it is false. Note that the implementation is in charge of this attribute, not the
user. If the user changes the value of the attribute (even if it ends up having the same value
as the default value) then the specified flag is automatically flipped to true. To
re-specify the attribute as the default value from the DTD, the user must delete the

42

1.2. Fundamental Interfaces

attribute. The implementation will then make a new attribute available with specified
set to false and the default value (if one exists).
In summary:

If the attribute has an assigned value in the document then specified is true, and
the value is the assigned value.
If the attribute has no assigned value in the document and has a default value in the
DTD, then specified is false, and the value is the default value in the DTD.
If the attribute has no assigned value in the document and has a value of #IMPLIED in
the DTD, then the attribute does not appear in the structure model of the document.
If the attribute is not associated to any element (i.e. because it was just created or was
obtained from some removal or cloning operation) specified is true.

value of type DOMString [p.19] , modified in DOM Level 1
On retrieval, the value of the attribute is returned as a string. Character and general entity
references are replaced with their values. See also the method getAttribute on the
Element [p.43] interface.
On setting, this creates a Text [p.47] node with the unparsed contents of the string. I.e.
any characters that an XML processor would recognize as markup are instead treated as
literal text. See also the method setAttribute on the Element [p.43] interface.
Exceptions on setting

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised when
the node is readonly.

Interface Element

The Element interface represents an element in an HTML or XML document. Elements may have
attributes associated with them; since the Element interface inherits from Node [p.28] , the generic
Node interface attribute attributes may be used to retrieve the set of all attributes for an
element. There are methods on the Element interface to retrieve either an Attr [p.42] object by
name or an attribute value by name. In XML, where an attribute value may contain entity references,
an Attr object should be retrieved to examine the possibly fairly complex sub-tree representing the
attribute value. On the other hand, in HTML, where all attributes have simple string values, methods
to directly access an attribute value can safely be used as a convenience.
IDL Definition

interface Element : Node {
 readonly attribute DOMString tagName;
 DOMString getAttribute(in DOMString name);
 void setAttribute(in DOMString name,
 in DOMString value)
 raises(DOMException);
 void removeAttribute(in DOMString name)
 raises(DOMException);
 Attr getAttributeNode(in DOMString name);
 Attr setAttributeNode(in Attr newAttr)
 raises(DOMException);
 Attr removeAttributeNode(in Attr oldAttr)

43

1.2. Fundamental Interfaces

 raises(DOMException);
 NodeList getElementsByTagName(in DOMString name);
 void normalize();
};

Attributes
tagName of type DOMString [p.19] , readonly

The name of the element. For example, in:

<elementExample id="demo">
 ...
</elementExample> ,

tagName has the value "elementExample". Note that this is case-preserving in XML,
as are all of the operations of the DOM. The HTML DOM returns the tagName of an
HTML element in the canonical uppercase form, regardless of the case in the source
HTML document.

Methods
getAttribute

Retrieves an attribute value by name.
Parameters
name of type DOMString [p.19]

The name of the attribute to retrieve.

Return Value

DOMString
[p.19]

The Attr [p.42] value as a string, or the empty string if that
attribute does not have a specified or default value.

No Exceptions

getAttributeNode
Retrieves an Attr [p.42] node by name.
Parameters
name of type DOMString [p.19]

The name of the attribute to retrieve.

Return Value

Attr
[p.42]

The Attr node with the specified attribute name or null if there is
no such attribute.

No Exceptions

getElementsByTagName
Returns a NodeList [p.35] of all descendant Elements with a given tag name, in the
order in which they would be encountered in a preorder traversal of the Element tree.

44

1.2. Fundamental Interfaces

Parameters
name of type DOMString [p.19]

The name of the tag to match on. The special value "*" matches all tags.

Return Value

NodeList [p.35] A list of matching Element nodes.

No Exceptions

normalize
Puts all Text [p.47] nodes in the full depth of the sub-tree underneath this Element,
including attribute nodes, into a "normal" form where only markup (e.g., tags, comments,
processing instructions, CDATA sections, and entity references) separates Text nodes,
i.e., there are no adjacent Text nodes. This can be used to ensure that the DOM view of a
document is the same as if it were saved and re-loaded, and is useful when operations (such
as XPointer [XPointer] lookups) that depend on a particular document tree structure are to
be used.

Note: In cases where the document contains CDATASections [p.48] , the normalize
operation alone may not be sufficient, since XPointers do not differentiate between Text
[p.47] nodes and CDATASection [p.48] nodes.

No Parameters
No Return Value
No Exceptions

removeAttribute
Removes an attribute by name. If the removed attribute is known to have a default value,
an attribute immediately appears containing the default value.
Parameters
name of type DOMString [p.19]

The name of the attribute to remove.

Exceptions

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value

removeAttributeNode
Removes the specified attribute. If the removed Attr [p.42] has a default value it is
immediately replaced.
Parameters

45

1.2. Fundamental Interfaces

oldAttr of type Attr [p.42]
The Attr node to remove from the attribute list.

Return Value

Attr [p.42] The Attr node that was removed.

Exceptions

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

NOT_FOUND_ERR: Raised if oldAttr is not an
attribute of the element.

setAttribute
Adds a new attribute. If an attribute with that name is already present in the element, its
value is changed to be that of the value parameter. This value is a simple string; it is not
parsed as it is being set. So any markup (such as syntax to be recognized as an entity
reference) is treated as literal text, and needs to be appropriately escaped by the
implementation when it is written out. In order to assign an attribute value that contains
entity references, the user must create an Attr [p.42] node plus any Text [p.47] and
EntityReference [p.52] nodes, build the appropriate subtree, and use
setAttributeNode to assign it as the value of an attribute.
Parameters
name of type DOMString [p.19]

The name of the attribute to create or alter.

value of type DOMString
Value to set in string form.

Exceptions

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified
name contains an illegal character.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value

setAttributeNode
Adds a new attribute node. If an attribute with that name is already present in the element,
it is replaced by the new one.
Parameters

46

1.2. Fundamental Interfaces

newAttr of type Attr [p.42]
The Attr node to add to the attribute list.

Return Value

Attr
[p.42]

If the newAttr attribute replaces an existing attribute, the replaced
Attr node is returned, otherwise null is returned.

Exceptions

DOMException
[p.20]

WRONG_DOCUMENT_ERR: Raised if newAttr was
created from a different document than the one that created
the element.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

INUSE_ATTRIBUTE_ERR: Raised if newAttr is already
an attribute of another Element object. The DOM user must
explicitly clone Attr [p.42] nodes to re-use them in other
elements.

Interface Text

The Text interface inherits from CharacterData [p.38] and represents the textual content
(termed character data in XML) of an Element [p.43] or Attr [p.42] . If there is no markup inside
an element’s content, the text is contained in a single object implementing the Text interface that is
the only child of the element. If there is markup, it is parsed into the information items [p.127]
(elements, comments, etc.) and Text nodes that form the list of children of the element.

When a document is first made available via the DOM, there is only one Text node for each block
of text. Users may create adjacent Text nodes that represent the contents of a given element without
any intervening markup, but should be aware that there is no way to represent the separations
between these nodes in XML or HTML, so they will not (in general) persist between DOM editing
sessions. The normalize() method on Element [p.43] merges any such adjacent Text objects
into a single node for each block of text.
IDL Definition

interface Text : CharacterData {
 Text splitText(in unsigned long offset)
 raises(DOMException);
};

Methods
splitText

Breaks this node into two nodes at the specified offset, keeping both in the tree as
siblings. This node then only contains all the content up to the offset point. A new node

47

1.2. Fundamental Interfaces

http://www.w3.org/TR/1998/REC-xml-19980210#syntax

of the same type, which is inserted as the next sibling of this node, contains all the content
at and after the offset point. When the offset is equal to the length of this node, the
new node has no data.
Parameters
offset of type unsigned long

The 16-bit unit [p.125] offset at which to split, starting from 0.

Return Value

Text [p.47] The new node, of the same type as this node.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data.

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

Interface Comment

This interface inherits from CharacterData [p.38] and represents the content of a comment, i.e.,
all the characters between the starting ’<!--’ and ending ’-->’. Note that this is the definition of a
comment in XML, and, in practice, HTML, although some HTML tools may implement the full
SGML comment structure.
IDL Definition

interface Comment : CharacterData {
};

1.3. Extended Interfaces
The interfaces defined here form part of the DOM Level 1 Core specification, but objects that expose
these interfaces will never be encountered in a DOM implementation that deals only with HTML. As
such, HTML-only DOM implementations do not need to have objects that implement these interfaces.

A DOM application can use the hasFeature method of the DOMImplementation [p.22] interface to
determine whether they are supported or not. The feature string for all the interfaces listed in this section
is "XML" and the version is "1.0".

Interface CDATASection

CDATA sections are used to escape blocks of text containing characters that would otherwise be
regarded as markup. The only delimiter that is recognized in a CDATA section is the "]]>" string that
ends the CDATA section. CDATA sections cannot be nested. Their primary purpose is for including
material such as XML fragments, without needing to escape all the delimiters.

48

1.3. Extended Interfaces

The DOMString [p.19] attribute of the Text [p.47] node holds the text that is contained by the
CDATA section. Note that this may contain characters that need to be escaped outside of CDATA
sections and that, depending on the character encoding ("charset") chosen for serialization, it may be
impossible to write out some characters as part of a CDATA section.

The CDATASection interface inherits from the CharacterData [p.38] interface through the
Text [p.47] interface. Adjacent CDATASection nodes are not merged by use of the normalize
method on the Element [p.43] interface.

Note: Because no markup is recognized within a CDATASection, character numeric references
cannot be used as an escape mechanism when serializing. Therefore, action needs to be taken when
serializing a CDATASection with a character encoding where some of the contained characters
cannot be represented. Failure to do so would not produce well-formed XML.
One potential solution in the serialization process is to end the CDATA section before the character,
output the character using a character reference or entity reference, and open a new CDATA section
for any further characters in the text node. Note, however, that some code conversion libraries at the
time of writing do not return an error or exception when a character is missing from the encoding,
making the task of ensuring that data is not corrupted on serialization more difficult.

IDL Definition

interface CDATASection : Text {
};

Interface DocumentType

Each Document [p.23] has a doctype attribute whose value is either null or a DocumentType
object. The DocumentType interface in the DOM Level 1 Core provides an interface to the list of
entities that are defined for the document, and little else because the effect of namespaces and the
various XML scheme efforts on DTD representation are not clearly understood as of this writing.

The DOM Level 1 doesn’t support editing DocumentType nodes.
IDL Definition

interface DocumentType : Node {
 readonly attribute DOMString name;
 readonly attribute NamedNodeMap entities;
 readonly attribute NamedNodeMap notations;
};

Attributes
entities of type NamedNodeMap [p.36] , readonly

A NamedNodeMap [p.36] containing the general entities, both external and internal,
declared in the DTD. Parameter entities are not contained. Duplicates are discarded. For
example in:

49

1.3. Extended Interfaces

<!DOCTYPE ex SYSTEM "ex.dtd" [
 <!ENTITY foo "foo">
 <!ENTITY bar "bar">
 <!ENTITY bar "bar2">
 <!ENTITY % baz "baz">
]>
<ex/>

the interface provides access to foo and the first declaration of bar but not the second
declaration of bar or baz. Every node in this map also implements the Entity [p.51]
interface.
The DOM Level 1 does not support editing entities, therefore entities cannot be altered
in any way.

name of type DOMString [p.19] , readonly
The name of DTD; i.e., the name immediately following the DOCTYPE keyword.

notations of type NamedNodeMap [p.36] , readonly
A NamedNodeMap [p.36] containing the notations declared in the DTD. Duplicates are
discarded. Every node in this map also implements the Notation [p.50] interface.
The DOM Level 1 does not support editing notations, therefore notations cannot be
altered in any way.

Interface Notation

This interface represents a notation declared in the DTD. A notation either declares, by name, the
format of an unparsed entity (see section 4.7 of the XML 1.0 specification [XML]), or is used for
formal declaration of processing instruction targets (see section 2.6 of the XML 1.0 specification
[XML]). The nodeName attribute inherited from Node [p.28] is set to the declared name of the
notation.

The DOM Level 1 does not support editing Notation nodes; they are therefore readonly [p.128] .

A Notation node does not have any parent.
IDL Definition

interface Notation : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
};

Attributes
publicId of type DOMString [p.19] , readonly

The public identifier of this notation. If the public identifier was not specified, this is
null.

systemId of type DOMString [p.19] , readonly
The system identifier of this notation. If the system identifier was not specified, this is
null.

50

1.3. Extended Interfaces

http://www.w3.org/TR/1998/REC-xml-19980210#sec-pi
http://www.w3.org/TR/1998/REC-xml-19980210#Notations

Interface Entity

This interface represents an entity, either parsed or unparsed, in an XML document. Note that this
models the entity itself not the entity declaration. Entity declaration modeling has been left for a
later Level of the DOM specification.

The nodeName attribute that is inherited from Node [p.28] contains the name of the entity.

An XML processor may choose to completely expand entities before the structure model is passed to
the DOM; in this case there will be no EntityReference [p.52] nodes in the document tree.

XML does not mandate that a non-validating XML processor read and process entity declarations
made in the external subset or declared in external parameter entities. This means that parsed entities
declared in the external subset need not be expanded by some classes of applications, and that the
replacement value of the entity may not be available. When the replacement value is available, the
corresponding Entity node’s child list represents the structure of that replacement text. Otherwise,
the child list is empty.

The resolution of the children of the Entity (the replacement value) may be lazily evaluated;
actions by the user (such as calling the childNodes method on the Entity Node) are assumed to
trigger the evaluation.

The DOM Level 1 does not support editing Entity nodes; if a user wants to make changes to the
contents of an Entity, every related EntityReference [p.52] node has to be replaced in the
structure model by a clone of the Entity’s contents, and then the desired changes must be made to
each of those clones instead. Entity nodes and all their descendants are readonly [p.128] .

An Entity node does not have any parent.
IDL Definition

interface Entity : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 readonly attribute DOMString notationName;
};

Attributes
notationName of type DOMString [p.19] , readonly

For unparsed entities, the name of the notation for the entity. For parsed entities, this is
null.

publicId of type DOMString [p.19] , readonly
The public identifier associated with the entity, if specified. If the public identifier was not
specified, this is null.

systemId of type DOMString [p.19] , readonly
The system identifier associated with the entity, if specified. If the system identifier was
not specified, this is null.

51

1.3. Extended Interfaces

Interface EntityReference

EntityReference objects may be inserted into the structure model when an entity reference is in
the source document, or when the user wishes to insert an entity reference. Note that character
references and references to predefined entities are considered to be expanded by the HTML or XML
processor so that characters are represented by their Unicode equivalent rather than by an entity
reference. Moreover, the XML processor may completely expand references to entities while
building the structure model, instead of providing EntityReference objects. If it does provide
such objects, then for a given EntityReference node, it may be that there is no Entity [p.51]
node representing the referenced entity. If such an Entity exists, then the child list of the
EntityReference node is the same as that of the Entity node.

As for Entity [p.51] nodes, EntityReference nodes and all their descendants are readonly
[p.128] .

The resolution of the children of the EntityReference (the replacement value of the referenced
Entity [p.51]) may be lazily evaluated; actions by the user (such as calling the childNodes
method on the EntityReference node) are assumed to trigger the evaluation.
IDL Definition

interface EntityReference : Node {
};

Interface ProcessingInstruction

The ProcessingInstruction interface represents a "processing instruction", used in XML as a
way to keep processor-specific information in the text of the document.
IDL Definition

interface ProcessingInstruction : Node {
 readonly attribute DOMString target;
 attribute DOMString data;
 // raises(DOMException) on setting

};

Attributes
data of type DOMString [p.19]

The content of this processing instruction. This is from the first non white space character
after the target to the character immediately preceding the ?>.
Exceptions on setting

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised when
the node is readonly.

target of type DOMString [p.19] , readonly
The target of this processing instruction. XML defines this as being the first token
following the markup that begins the processing instruction.

52

1.3. Extended Interfaces

2. Document Object Model HTML
Editors

Mike Champion, ArborText
Vidur Apparao, Netscape
Scott Isaacs, Microsoft (until January 1998)
Chris Wilson, Microsoft (after January 1998)
Ian Jacobs, W3C

2.1. Introduction
This section extends the Level 1 Core API to describe objects and methods specific to HTML documents
[HTML4.0]. In general, the functionality needed to manipulate hierarchical document structures,
elements, and attributes will be found in the core section; functionality that depends on the specific
elements defined in HTML will be found in this section.

The goals of the HTML-specific DOM API are:

to specialize and add functionality that relates specifically to HTML documents and elements.
to address issues of backwards compatibility with the DOM Level 0 [p.126] .
to provide convenience mechanisms, where appropriate, for common and frequent operations on
HTML documents.

The key differences between the core DOM and the HTML application of DOM is that the HTML
Document Object Model exposes a number of convenience methods and properties that are consistent
with the existing models and are more appropriate to script writers. In many cases, these enhancements are
not applicable to a general DOM because they rely on the presence of a predefined DTD. The transitional
and frameset DTDs for HTML 4.0 are assumed. Interoperability between implementations is only
guaranteed for elements and attributes that are specified in the HTML 4.0 DTDs.

More specifically, this document includes the following specializations for HTML:

An HTMLDocument interface, derived from the core Document [p.23] interface. HTMLDocument
[p.55] specifies the operations and queries that can be made on a HTML document.
An HTMLElement [p.59] interface, derived from the core Element [p.43] interface.
HTMLElement specifies the operations and queries that can be made on any HTML element.
Methods on HTMLElement include those that allow for the retrieval and modification of attributes
that apply to all HTML elements.
Specializations for all HTML elements that have attributes that extend beyond those specified in the
HTMLElement [p.59] interface. For all such attributes, the derived interface for the element
contains explicit methods for setting and getting the values.

The DOM Level 1 does not include mechanisms to access and modify style specified through CSS 1.
Furthermore, it does not define an event model for HTML documents. This functionality is planned to be
specified in a future Level of this specification.

53

2. Document Object Model HTML

The interfaces found within this section are not mandatory. A DOM application can use the
hasFeature method of the DOMImplementation [p.22] interface to determine whether they are
supported or not. The feature string for all the interfaces listed in this section is "HTML" and the version
is "1.0".

The interfaces in this specification are designed for HTML 4.0 documents, and not for XHTML
documents. Use of the HTML DOM with XHTML documents may result in incorrect processing; see
Appendix C11 in the [XHTML10] for more information.

2.2. HTML Application of Core DOM

2.2.1. Naming Conventions

The HTML DOM follows a naming convention for properties, methods, events, collections, and data
types. All names are defined as one or more English words concatenated together to form a single string.

2.2.1.1. Properties and Methods

The property or method name starts with the initial keyword in lowercase, and each subsequent word
starts with a capital letter. For example, a property that returns document meta information such as the
date the file was created might be named "fileDateCreated". In the ECMAScript binding, properties are
exposed as properties of a given object. In Java, properties are exposed with get and set methods.

2.2.1.2. Non-HTML 4.0 interfaces and attributes

While most of the interfaces defined below can be mapped directly to elements defined in the HTML 4.0
Recommendation, some of them cannot. Similarly, not all attributes listed below have counterparts in the
HTML 4.0 specification (and some do, but have been renamed to avoid conflicts with scripting
languages). Interfaces and attribute definitions that have links to the HTML 4.0 specification have
corresponding element and attribute definitions there; all others are added by this specification, either for
convenience or backwards compatibility with DOM Level 0 [p.126] implementations.

2.3. Miscellaneous Object Definitions
Interface HTMLCollection

An HTMLCollection is a list of nodes. An individual node may be accessed by either ordinal
index or the node’s name or id attributes. Note: Collections in the HTML DOM are assumed to be
live meaning that they are automatically updated when the underlying document is changed.
IDL Definition

interface HTMLCollection {
 readonly attribute unsigned long length;
 Node item(in unsigned long index);
 Node namedItem(in DOMString name);
};

54

2.2. HTML Application of Core DOM

Attributes
length of type unsigned long, readonly

This attribute specifies the length or size of the list.

Methods
item

This method retrieves a node specified by ordinal index. Nodes are numbered in tree order
(depth-first traversal order).
Parameters
index of type unsigned long

The index of the node to be fetched. The index origin is 0.

Return Value

Node
[p.28]

The Node at the corresponding position upon success. A value of
null is returned if the index is out of range.

No Exceptions

namedItem
This method retrieves a Node [p.28] using a name. It first searches for a Node with a
matching id attribute. If it doesn’t find one, it then searches for a Node with a matching
name attribute, but only on those elements that are allowed a name attribute.
Parameters
name of type DOMString [p.19]

The name of the Node [p.28] to be fetched.

Return Value

Node
[p.28]

The Node with a name or id attribute whose value corresponds to the
specified string. Upon failure (e.g., no node with this name exists),
returns null.

No Exceptions

2.4. Objects related to HTML documents
Interface HTMLDocument

An HTMLDocument is the root of the HTML hierarchy and holds the entire content. Besides
providing access to the hierarchy, it also provides some convenience methods for accessing certain
sets of information from the document.

The following properties have been deprecated in favor of the corresponding ones for the BODY
element:

alinkColor

55

2.4. Objects related to HTML documents

background
bgColor
fgColor
linkColor
vlinkColor

IDL Definition

interface HTMLDocument : Document {
 attribute DOMString title;
 readonly attribute DOMString referrer;
 readonly attribute DOMString domain;
 readonly attribute DOMString URL;
 attribute HTMLElement body;
 readonly attribute HTMLCollection images;
 readonly attribute HTMLCollection applets;
 readonly attribute HTMLCollection links;
 readonly attribute HTMLCollection forms;
 readonly attribute HTMLCollection anchors;
 attribute DOMString cookie;
 void open();
 void close();
 void write(in DOMString text);
 void writeln(in DOMString text);
 Element getElementById(in DOMString elementId);
 NodeList getElementsByName(in DOMString elementName);
};

Attributes
URL of type DOMString [p.19] , readonly

The complete URI of the document.

anchors of type HTMLCollection [p.54] , readonly
A collection of all the anchor (A) elements in a document with a value for the name
attribute.Note. For reasons of backwards compatibility, the returned set of anchors only
contains those anchors created with the name attribute, not those created with the id
attribute.

applets of type HTMLCollection [p.54] , readonly
A collection of all the OBJECT elements that include applets and APPLET (deprecated)
elements in a document.

body of type HTMLElement [p.59]
The element that contains the content for the document. In documents with BODY contents,
returns the BODY element. In frameset documents, this returns the outermost FRAMESET
element.

cookie of type DOMString [p.19]
The cookies associated with this document. If there are none, the value is an empty string.
Otherwise, the value is a string: a semicolon-delimited list of "name=value" pairs for all the
cookies associated with the page. For example, name=value;expires=date.

56

2.4. Objects related to HTML documents

domain of type DOMString [p.19] , readonly
The domain name of the server that served the document, or null if the server cannot be
identified by a domain name.

forms of type HTMLCollection [p.54] , readonly
A collection of all the forms of a document.

images of type HTMLCollection [p.54] , readonly
A collection of all the IMG elements in a document. The behavior is limited to IMG
elements for backwards compatibility.

links of type HTMLCollection [p.54] , readonly
A collection of all AREA elements and anchor (A) elements in a document with a value for
the href attribute.

referrer of type DOMString [p.19] , readonly
Returns the URI of the page that linked to this page. The value is an empty string if the user
navigated to the page directly (not through a link, but, for example, via a bookmark).

title of type DOMString [p.19]
The title of a document as specified by the TITLE element in the head of the document.

Methods
close

Closes a document stream opened by open() and forces rendering.

No Parameters
No Return Value
No Exceptions

getElementById
Returns the Element whose id is given by elementId. If no such element exists, returns
null. Behavior is not defined if more than one element has this id.
Parameters
elementId of type DOMString [p.19]

The unique id value for an element.

Return Value

Element [p.43] The matching element.

No Exceptions

getElementsByName
Returns the (possibly empty) collection of elements whose name value is given by
elementName.
Parameters

57

2.4. Objects related to HTML documents

elementName of type DOMString [p.19]
The name attribute value for an element.

Return Value

NodeList [p.35] The matching elements.

No Exceptions

open
Note. This method and the ones following allow a user to add to or replace the structure
model of a document using strings of unparsed HTML. At the time of writing alternate
methods for providing similar functionality for both HTML and XML documents were
being considered. The following methods may be deprecated at some point in the future in
favor of a more general-purpose mechanism.
Open a document stream for writing. If a document exists in the target, this method clears
it.

No Parameters
No Return Value
No Exceptions

write
Write a string of text to a document stream opened by open(). The text is parsed into the
document’s structure model.
Parameters
text of type DOMString [p.19]

The string to be parsed into some structure in the document structure model.

No Return Value
No Exceptions

writeln
Write a string of text followed by a newline character to a document stream opened by
open(). The text is parsed into the document’s structure model.
Parameters
text of type DOMString [p.19]

The string to be parsed into some structure in the document structure model.

No Return Value
No Exceptions

58

2.4. Objects related to HTML documents

2.5. HTML Elements

2.5.1. Property Attributes

HTML attributes are exposed as properties on the element object. The DOM naming conventions always
determine the name of the exposed property, and is independent of the case of the attribute in the source
document. The data type of the property is determined by the type of the attribute as determined by the
HTML 4.0 transitional and frameset DTDs. The attributes have the semantics (including case-sensitivity)
given in the HTML 4.0 specification.

The attributes are exposed as properties for compatibility with DOM Level 0 [p.126] . This usage is
deprecated because it can not be generalized to all possible attribute names, as is required both for XML
and potentially for future versions of HTML. We recommend the use of generic methods on the core
Element interface for setting, getting and removing attributes.

DTD Data Type Object Model Data Type

CDATA DOMString

Value list (e.g., (left | right | center)) DOMString

one-value Value list (e.g., (disabled)) boolean

Number long int

The return value of an attribute that has a data type that is a value list is always capitalized, independent of
the case of the value in the source document. For example, if the value of the align attribute on a P
element is "left" then it is returned as "Left". For attributes with the CDATA data type, the case of the
return value is that given in the source document.

2.5.2. Naming Exceptions

To avoid namespace conflicts, an attribute with the same name as a keyword in one of our chosen binding
languages is prefixed. For HTML, the prefix used is "html". For example, the for attribute of the LABEL
element collides with loop construct naming conventions and is renamed htmlFor.

2.5.3. Exposing Element Type Names (tagName)

The element type names exposed through a property are in uppercase. For example, the body element type
name is exposed through the tagName property as BODY.

2.5.4. The HTMLElement interface

Interface HTMLElement

59

2.5. HTML Elements

All HTML element interfaces derive from this class. Elements that only expose the HTML core
attributes are represented by the base HTMLElement interface. These elements are as follows:

HEAD
special: SUB, SUP, SPAN, BDO
font: TT, I, B, U, S, STRIKE, BIG, SMALL
phrase: EM, STRONG, DFN, CODE, SAMP, KBD, VAR, CITE, ACRONYM, ABBR
list: DD, DT
NOFRAMES, NOSCRIPT
ADDRESS, CENTER

Note. The style attribute for this interface is reserved for future usage.
IDL Definition

interface HTMLElement : Element {
 attribute DOMString id;
 attribute DOMString title;
 attribute DOMString lang;
 attribute DOMString dir;
 attribute DOMString className;
};

Attributes
className of type DOMString [p.19]

The class attribute of the element. This attribute has been renamed due to conflicts with the
"class" keyword exposed by many languages. See the class attribute definition in HTML
4.0.

dir of type DOMString [p.19]
Specifies the base direction of directionally neutral text and the directionality of tables. See
the dir attribute definition in HTML 4.0.

id of type DOMString [p.19]
The element’s identifier. See the id attribute definition in HTML 4.0.

lang of type DOMString [p.19]
Language code defined in RFC 1766. See the lang attribute definition in HTML 4.0.

title of type DOMString [p.19]
The element’s advisory title. See the title attribute definition in HTML 4.0.

2.5.5. Object definitions

Interface HTMLHtmlElement

Root of an HTML document. See the HTML element definition in HTML 4.0.
IDL Definition

60

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-HTML
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-title
http://www.w3.org/TR/1998/REC-html40-19980424/struct/dirlang.html#adef-lang
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-id
http://www.w3.org/TR/1998/REC-html40-19980424/struct/dirlang.html#adef-dir
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-class

interface HTMLHtmlElement : HTMLElement {
 attribute DOMString version;
};

Attributes
version of type DOMString [p.19]

Version information about the document’s DTD. See the version attribute definition in
HTML 4.0. This attribute is deprecated in HTML 4.0.

Interface HTMLHeadElement

Document head information. See the HEAD element definition in HTML 4.0.
IDL Definition

interface HTMLHeadElement : HTMLElement {
 attribute DOMString profile;
};

Attributes
profile of type DOMString [p.19]

URI designating a metadata profile. See the profile attribute definition in HTML 4.0.

Interface HTMLLinkElement

The LINK element specifies a link to an external resource, and defines this document’s relationship
to that resource (or vice versa). See the LINK element definition in HTML 4.0.
IDL Definition

interface HTMLLinkElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString charset;
 attribute DOMString href;
 attribute DOMString hreflang;
 attribute DOMString media;
 attribute DOMString rel;
 attribute DOMString rev;
 attribute DOMString target;
 attribute DOMString type;
};

Attributes
charset of type DOMString [p.19]

The character encoding of the resource being linked to. See the charset attribute definition
in HTML 4.0.

disabled of type boolean
Enables/disables the link. This is currently only used for style sheet links, and may be used
to activate or deactivate style sheets.

href of type DOMString [p.19]
The URI of the linked resource. See the href attribute definition in HTML 4.0.

61

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-href
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-charset
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#edef-LINK
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-profile
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-HEAD
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-version

hreflang of type DOMString [p.19]
Language code of the linked resource. See the hreflang attribute definition in HTML 4.0.

media of type DOMString [p.19]
Designed for use with one or more target media. See the media attribute definition in
HTML 4.0.

rel of type DOMString [p.19]
Forward link type. See the rel attribute definition in HTML 4.0.

rev of type DOMString [p.19]
Reverse link type. See the rev attribute definition in HTML 4.0.

target of type DOMString [p.19]
Frame to render the resource in. See the target attribute definition in HTML 4.0.

type of type DOMString [p.19]
Advisory content type. See the type attribute definition in HTML 4.0.

Interface HTMLTitleElement

The document title. See the TITLE element definition in HTML 4.0.
IDL Definition

interface HTMLTitleElement : HTMLElement {
 attribute DOMString text;
};

Attributes
text of type DOMString [p.19]

The specified title as a string.

Interface HTMLMetaElement

This contains generic meta-information about the document. See the META element definition in
HTML 4.0.
IDL Definition

interface HTMLMetaElement : HTMLElement {
 attribute DOMString content;
 attribute DOMString httpEquiv;
 attribute DOMString name;
 attribute DOMString scheme;
};

Attributes
content of type DOMString [p.19]

Associated information. See the content attribute definition in HTML 4.0.

62

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-content
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-META
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-TITLE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-type-A
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-target
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-rev
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-rel
http://www.w3.org/TR/1998/REC-html40-19980424/present/styles.html#adef-media
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-hreflang

httpEquiv of type DOMString [p.19]
HTTP response header name. See the http-equiv attribute definition in HTML 4.0.

name of type DOMString [p.19]
Meta information name. See the name attribute definition in HTML 4.0.

scheme of type DOMString [p.19]
Select form of content. See the scheme attribute definition in HTML 4.0.

Interface HTMLBaseElement

Document base URI. See the BASE element definition in HTML 4.0.
IDL Definition

interface HTMLBaseElement : HTMLElement {
 attribute DOMString href;
 attribute DOMString target;
};

Attributes
href of type DOMString [p.19]

The base URI. See the href attribute definition in HTML 4.0.

target of type DOMString [p.19]
The default target frame. See the target attribute definition in HTML 4.0.

Interface HTMLIsIndexElement

This element is used for single-line text input. See the ISINDEX element definition in HTML 4.0.
This element is deprecated in HTML 4.0.
IDL Definition

interface HTMLIsIndexElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString prompt;
};

Attributes
form of type HTMLFormElement [p.65] , readonly

Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

prompt of type DOMString [p.19]
The prompt message. See the prompt attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLStyleElement

63

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-prompt
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-ISINDEX
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-target
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-href-BASE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#edef-BASE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-scheme
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-name-META
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-http-equiv

Style information. A more detailed style sheet object model is planned to be defined in a separate
document. See the STYLE element definition in HTML 4.0.
IDL Definition

interface HTMLStyleElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString media;
 attribute DOMString type;
};

Attributes
disabled of type boolean

Enables/disables the style sheet.

media of type DOMString [p.19]
Designed for use with one or more target media. See the media attribute definition in
HTML 4.0.

type of type DOMString [p.19]
The content type of the style sheet language. See the type attribute definition in HTML 4.0.

Interface HTMLBodyElement

The HTML document body. This element is always present in the DOM API, even if the tags are not
present in the source document. See the BODY element definition in HTML 4.0.
IDL Definition

interface HTMLBodyElement : HTMLElement {
 attribute DOMString aLink;
 attribute DOMString background;
 attribute DOMString bgColor;
 attribute DOMString link;
 attribute DOMString text;
 attribute DOMString vLink;
};

Attributes
aLink of type DOMString [p.19]

Color of active links (after mouse-button down, but before mouse-button up). See the alink
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

background of type DOMString [p.19]
URI of the background texture tile image. See the background attribute definition in HTML
4.0. This attribute is deprecated in HTML 4.0.

bgColor of type DOMString [p.19]
Document background color. See the bgcolor attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

64

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-bgcolor
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-background
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-alink
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-alink
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-BODY
http://www.w3.org/TR/1998/REC-html40-19980424/present/styles.html#adef-type-STYLE
http://www.w3.org/TR/1998/REC-html40-19980424/present/styles.html#adef-media
http://www.w3.org/TR/1998/REC-html40-19980424/present/styles.html#edef-STYLE

link of type DOMString [p.19]
Color of links that are not active and unvisited. See the link attribute definition in HTML
4.0. This attribute is deprecated in HTML 4.0.

text of type DOMString [p.19]
Document text color. See the text attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

vLink of type DOMString [p.19]
Color of links that have been visited by the user. See the vlink attribute definition in HTML
4.0. This attribute is deprecated in HTML 4.0.

Interface HTMLFormElement

The FORM element encompasses behavior similar to a collection and an element. It provides direct
access to the contained input elements as well as the attributes of the form element. See the FORM
element definition in HTML 4.0.
IDL Definition

interface HTMLFormElement : HTMLElement {
 readonly attribute HTMLCollection elements;
 readonly attribute long length;
 attribute DOMString name;
 attribute DOMString acceptCharset;
 attribute DOMString action;
 attribute DOMString enctype;
 attribute DOMString method;
 attribute DOMString target;
 void submit();
 void reset();
};

Attributes
acceptCharset of type DOMString [p.19]

List of character sets supported by the server. See the accept-charset attribute definition in
HTML 4.0.

action of type DOMString [p.19]
Server-side form handler. See the action attribute definition in HTML 4.0.

elements of type HTMLCollection [p.54] , readonly
Returns a collection of all control elements in the form.

enctype of type DOMString [p.19]
The content type of the submitted form, generally "application/x-www-form-urlencoded".
See the enctype attribute definition in HTML 4.0.

length of type long, readonly
The number of form controls in the form.

65

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-enctype
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-action
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accept-charset
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-FORM
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-FORM
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-vlink
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-text
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#adef-link

method of type DOMString [p.19]
HTTP method used to submit form. See the method attribute definition in HTML 4.0.

name of type DOMString [p.19]
Names the form.

target of type DOMString [p.19]
Frame to render the resource in. See the target attribute definition in HTML 4.0.

Methods
reset

Restores a form element’s default values. It performs the same action as a reset button.

No Parameters
No Return Value
No Exceptions

submit
Submits the form. It performs the same action as a submit button.

No Parameters
No Return Value
No Exceptions

Interface HTMLSelectElement

The select element allows the selection of an option. The contained options can be directly accessed
through the select element as a collection. See the SELECT element definition in HTML 4.0.
IDL Definition

interface HTMLSelectElement : HTMLElement {
 readonly attribute DOMString type;
 attribute long selectedIndex;
 attribute DOMString value;
 readonly attribute long length;
 readonly attribute HTMLFormElement form;
 readonly attribute HTMLCollection options;
 attribute boolean disabled;
 attribute boolean multiple;
 attribute DOMString name;
 attribute long size;
 attribute long tabIndex;
 void add(in HTMLElement element,
 in HTMLElement before)
 raises(DOMException);
 void remove(in long index);
 void blur();
 void focus();
};

66

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-SELECT
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-target
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-method

Attributes
disabled of type boolean

The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

form of type HTMLFormElement [p.65] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

length of type long, readonly
The number of options in this SELECT.

multiple of type boolean
If true, multiple OPTION elements may be selected in this SELECT. See the multiple
attribute definition in HTML 4.0.

name of type DOMString [p.19]
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

options of type HTMLCollection [p.54] , readonly
The collection of OPTION elements contained by this element.

selectedIndex of type long
The ordinal index of the selected option, starting from 0. The value -1 is returned if no
element is selected. If multiple options are selected, the index of the first selected option is
returned.

size of type long
Number of visible rows. See the size attribute definition in HTML 4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

type of type DOMString [p.19] , readonly
The type of this form control. This is the string "select-multiple" when the multiple
attribute is true and the string "select-one" when false.

value of type DOMString [p.19]
The current form control value.

Methods
add

Add a new element to the collection of OPTION elements for this SELECT.
Parameters

67

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-size-SELECT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-name-SELECT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-multiple
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-multiple
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-disabled

element of type HTMLElement [p.59]
The element to add.

before of type HTMLElement
The element to insert before, or null for the tail of the list.

Exceptions

DOMException
[p.20]

NOT_FOUND_ERR: Raised if before is not a
descendant of the SELECT element.

No Return Value

blur
Removes keyboard focus from this element.

No Parameters
No Return Value
No Exceptions

focus
Gives keyboard focus to this element.

No Parameters
No Return Value
No Exceptions

remove
Remove an element from the collection of OPTION elements for this SELECT. Does
nothing if no element has the given index.
Parameters
index of type long

The index of the item to remove, starting from 0.

No Return Value
No Exceptions

Interface HTMLOptGroupElement

Group options together in logical subdivisions. See the OPTGROUP element definition in HTML
4.0.
IDL Definition

interface HTMLOptGroupElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString label;
};

68

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-OPTGROUP

Attributes
disabled of type boolean

The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

label of type DOMString [p.19]
Assigns a label to this option group. See the label attribute definition in HTML 4.0.

Interface HTMLOptionElement

A selectable choice. See the OPTION element definition in HTML 4.0.
IDL Definition

interface HTMLOptionElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute boolean defaultSelected;
 readonly attribute DOMString text;
 readonly attribute long index;
 attribute boolean disabled;
 attribute DOMString label;
 attribute boolean selected;
 attribute DOMString value;
};

Attributes
defaultSelected of type boolean

Represents the value of the HTML selected attribute. The value of this attribute does not
change if the state of the corresponding form control, in an interactive user agent, changes.
Changing defaultSelected, however, resets the state of the form control. See the
selected attribute definition in HTML 4.0.

disabled of type boolean
The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

form of type HTMLFormElement [p.65] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

index of type long, readonly
The index of this OPTION in its parent SELECT, starting from 0.

label of type DOMString [p.19]
Option label for use in hierarchical menus. See the label attribute definition in HTML 4.0.

selected of type boolean
Represents the current state of the corresponding form control, in an interactive user agent.
Changing this attribute changes the state of the form control, but does not change the value
of the HTML selected attribute of the element.

69

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-label-OPTION
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-disabled
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-selected
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-OPTION
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-label-OPTGROUP
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-disabled

text of type DOMString [p.19] , readonly
The text contained within the option element.

value of type DOMString [p.19]
The current form control value. See the value attribute definition in HTML 4.0.

Interface HTMLInputElement

Form control. Note. Depending upon the environment in which the page is being viewed, the value
property may be read-only for the file upload input type. For the "password" input type, the actual
value returned may be masked to prevent unauthorized use. See the INPUT element definition in
HTML 4.0.
IDL Definition

interface HTMLInputElement : HTMLElement {
 attribute DOMString defaultValue;
 attribute boolean defaultChecked;
 readonly attribute HTMLFormElement form;
 attribute DOMString accept;
 attribute DOMString accessKey;
 attribute DOMString align;
 attribute DOMString alt;
 attribute boolean checked;
 attribute boolean disabled;
 attribute long maxLength;
 attribute DOMString name;
 attribute boolean readOnly;
 attribute DOMString size;
 attribute DOMString src;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString useMap;
 attribute DOMString value;
 void blur();
 void focus();
 void select();
 void click();
};

Attributes
accept of type DOMString [p.19]

A comma-separated list of content types that a server processing this form will handle
correctly. See the accept attribute definition in HTML 4.0.

accessKey of type DOMString [p.19]
A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

align of type DOMString [p.19]
Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

70

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-align-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accept
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-value-OPTION

alt of type DOMString [p.19]
Alternate text for user agents not rendering the normal content of this element. See the alt
attribute definition in HTML 4.0.

checked of type boolean
When the type attribute of the element has the value "Radio" or "Checkbox", this
represents the current state of the form control, in an interactive user agent. Changes to this
attribute change the state of the form control, but do not change the value of the HTML
value attribute of the element.

defaultChecked of type boolean
When type has the value "Radio" or "Checkbox", this represents the HTML checked
attribute of the element. The value of this attribute does not change if the state of the
corresponding form control, in an interactive user agent, changes. Changes to this attribute,
however, resets the state of the form control. See the checked attribute definition in HTML
4.0.

defaultValue of type DOMString [p.19]
When the type attribute of the element has the value "Text", "File" or "Password", this
represents the HTML value attribute of the element. The value of this attribute does not
change if the contents of the corresponding form control, in an interactive user agent,
changes. Changing this attribute, however, resets the contents of the form control. See the
value attribute definition in HTML 4.0.

disabled of type boolean
The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

form of type HTMLFormElement [p.65] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

maxLength of type long
Maximum number of characters for text fields, when type has the value "Text" or
"Password". See the maxlength attribute definition in HTML 4.0.

name of type DOMString [p.19]
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

readOnly of type boolean
This control is read-only. Relevant only when type has the value "Text" or "Password".
See the readonly attribute definition in HTML 4.0.

size of type DOMString [p.19]
Size information. The precise meaning is specific to each type of field. See the size
attribute definition in HTML 4.0.

71

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-size-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-size-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-readonly
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-name-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-maxlength
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-disabled
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-value-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-checked
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt

src of type DOMString [p.19]
When the type attribute has the value "Image", this attribute specifies the location of the
image to be used to decorate the graphical submit button. See the src attribute definition in
HTML 4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

type of type DOMString [p.19] , readonly
The type of control created. See the type attribute definition in HTML 4.0.

useMap of type DOMString [p.19]
Use client-side image map. See the usemap attribute definition in HTML 4.0.

value of type DOMString [p.19]
When the type attribute of the element has the value "Text", "File" or "Password", this
represents the current contents of the corresponding form control, in an interactive user
agent. Changing this attribute changes the contents of the form control, but does not change
the value of the HTML value attribute of the element. When the type attribute of the
element has the value "Button", "Hidden", "Submit", "Reset", "Image", "Checkbox" or
"Radio", this represents the HTML value attribute of the element. See the value attribute
definition in HTML 4.0.

Methods
blur

Removes keyboard focus from this element.

No Parameters
No Return Value
No Exceptions

click
Simulate a mouse-click. For INPUT elements whose type attribute has one of the
following values: "Button", "Checkbox", "Radio", "Reset", or "Submit".

No Parameters
No Return Value
No Exceptions

focus
Gives keyboard focus to this element.

No Parameters
No Return Value
No Exceptions

72

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-value-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-value-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-usemap
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-type-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-src

select
Select the contents of the text area. For INPUT elements whose type attribute has one of
the following values: "Text", "File", or "Password".

No Parameters
No Return Value
No Exceptions

Interface HTMLTextAreaElement

Multi-line text field. See the TEXTAREA element definition in HTML 4.0.
IDL Definition

interface HTMLTextAreaElement : HTMLElement {
 attribute DOMString defaultValue;
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute long cols;
 attribute boolean disabled;
 attribute DOMString name;
 attribute boolean readOnly;
 attribute long rows;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString value;
 void blur();
 void focus();
 void select();
};

Attributes
accessKey of type DOMString [p.19]

A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

cols of type long
Width of control (in characters). See the cols attribute definition in HTML 4.0.

defaultValue of type DOMString [p.19]
Represents the contents of the element. The value of this attribute does not change if the
contents of the corresponding form control, in an interactive user agent, changes. Changing
this attribute, however, resets the contents of the form control.

disabled of type boolean
The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

form of type HTMLFormElement [p.65] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

73

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-disabled
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-cols-TEXTAREA
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-TEXTAREA

name of type DOMString [p.19]
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

readOnly of type boolean
This control is read-only. See the readonly attribute definition in HTML 4.0.

rows of type long
Number of text rows. See the rows attribute definition in HTML 4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

type of type DOMString [p.19] , readonly
The type of this form control. This the string "textarea".

value of type DOMString [p.19]
Represents the current contents of the corresponding form control, in an interactive user
agent. Changing this attribute changes the contents of the form control, but does not change
the contents of the element. If the entirety of the data can not fit into a single DOMString
[p.19] , the implementation may truncate the data.

Methods
blur

Removes keyboard focus from this element.

No Parameters
No Return Value
No Exceptions

focus
Gives keyboard focus to this element.

No Parameters
No Return Value
No Exceptions

select
Select the contents of the TEXTAREA.

No Parameters
No Return Value
No Exceptions

Interface HTMLButtonElement

74

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-rows-TEXTAREA
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-readonly
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-name-TEXTAREA

Push button. See the BUTTON element definition in HTML 4.0.
IDL Definition

interface HTMLButtonElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute boolean disabled;
 attribute DOMString name;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString value;
};

Attributes
accessKey of type DOMString [p.19]

A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

disabled of type boolean
The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

form of type HTMLFormElement [p.65] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

name of type DOMString [p.19]
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

type of type DOMString [p.19] , readonly
The type of button. See the type attribute definition in HTML 4.0.

value of type DOMString [p.19]
The current form control value. See the value attribute definition in HTML 4.0.

Interface HTMLLabelElement

Form field label text. See the LABEL element definition in HTML 4.0.
IDL Definition

interface HTMLLabelElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute DOMString htmlFor;
};

75

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-LABEL
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-value-BUTTON
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-type-BUTTON
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-name-BUTTON
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-disabled
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-BUTTON

Attributes
accessKey of type DOMString [p.19]

A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

form of type HTMLFormElement [p.65] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

htmlFor of type DOMString [p.19]
This attribute links this label with another form control by id attribute. See the for attribute
definition in HTML 4.0.

Interface HTMLFieldSetElement

Organizes form controls into logical groups. See the FIELDSET element definition in HTML 4.0.
IDL Definition

interface HTMLFieldSetElement : HTMLElement {
 readonly attribute HTMLFormElement form;
};

Attributes
form of type HTMLFormElement [p.65] , readonly

Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

Interface HTMLLegendElement

Provides a caption for a FIELDSET grouping. See the LEGEND element definition in HTML 4.0.
IDL Definition

interface HTMLLegendElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute DOMString align;
};

Attributes
accessKey of type DOMString [p.19]

A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

align of type DOMString [p.19]
Text alignment relative to FIELDSET. See the align attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

form of type HTMLFormElement [p.65] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

76

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-align-LEGEND
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-LEGEND
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#edef-FIELDSET
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-for
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-for
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey

Interface HTMLUListElement

Unordered list. See the UL element definition in HTML 4.0.
IDL Definition

interface HTMLUListElement : HTMLElement {
 attribute boolean compact;
 attribute DOMString type;
};

Attributes
compact of type boolean

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

type of type DOMString [p.19]
Bullet style. See the type attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

Interface HTMLOListElement

Ordered list. See the OL element definition in HTML 4.0.
IDL Definition

interface HTMLOListElement : HTMLElement {
 attribute boolean compact;
 attribute long start;
 attribute DOMString type;
};

Attributes
compact of type boolean

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

start of type long
Starting sequence number. See the start attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

type of type DOMString [p.19]
Numbering style. See the type attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLDListElement

Definition list. See the DL element definition in HTML 4.0.
IDL Definition

77

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#edef-DL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-type-OL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-start
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-compact
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#edef-OL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-type-UL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-compact
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#edef-UL

interface HTMLDListElement : HTMLElement {
 attribute boolean compact;
};

Attributes
compact of type boolean

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

Interface HTMLDirectoryElement

Directory list. See the DIR element definition in HTML 4.0. This element is deprecated in HTML
4.0.
IDL Definition

interface HTMLDirectoryElement : HTMLElement {
 attribute boolean compact;
};

Attributes
compact of type boolean

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

Interface HTMLMenuElement

Menu list. See the MENU element definition in HTML 4.0. This element is deprecated in HTML 4.0.
IDL Definition

interface HTMLMenuElement : HTMLElement {
 attribute boolean compact;
};

Attributes
compact of type boolean

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

Interface HTMLLIElement

List item. See the LI element definition in HTML 4.0.
IDL Definition

interface HTMLLIElement : HTMLElement {
 attribute DOMString type;
 attribute long value;
};

Attributes
type of type DOMString [p.19]

List item bullet style. See the type attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

78

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-type-LI
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#edef-LI
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-compact
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#edef-MENU
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-compact
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#edef-DIR
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-compact

value of type long
Reset sequence number when used in OL. See the value attribute definition in HTML 4.0.
This attribute is deprecated in HTML 4.0.

Interface HTMLDivElement

Generic block container. See the DIV element definition in HTML 4.0.
IDL Definition

interface HTMLDivElement : HTMLElement {
 attribute DOMString align;
};

Attributes
align of type DOMString [p.19]

Horizontal text alignment. See the align attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLParagraphElement

Paragraphs. See the P element definition in HTML 4.0.
IDL Definition

interface HTMLParagraphElement : HTMLElement {
 attribute DOMString align;
};

Attributes
align of type DOMString [p.19]

Horizontal text alignment. See the align attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLHeadingElement

For the H1 to H6 elements. See the H1 element definition in HTML 4.0.
IDL Definition

interface HTMLHeadingElement : HTMLElement {
 attribute DOMString align;
};

Attributes
align of type DOMString [p.19]

Horizontal text alignment. See the align attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLQuoteElement

For the Q and BLOCKQUOTE elements. See the Q element definition in HTML 4.0.

79

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#edef-Q
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-align
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-H1
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-align
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#edef-P
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-align
http://www.w3.org/TR/1998/REC-html40-19980424/struct/global.html#edef-DIV
http://www.w3.org/TR/1998/REC-html40-19980424/struct/lists.html#adef-value-LI

IDL Definition

interface HTMLQuoteElement : HTMLElement {
 attribute DOMString cite;
};

Attributes
cite of type DOMString [p.19]

A URI designating a source document or message. See the cite attribute definition in
HTML 4.0.

Interface HTMLPreElement

Preformatted text. See the PRE element definition in HTML 4.0.
IDL Definition

interface HTMLPreElement : HTMLElement {
 attribute long width;
};

Attributes
width of type long

Fixed width for content. See the width attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLBRElement

Force a line break. See the BR element definition in HTML 4.0.
IDL Definition

interface HTMLBRElement : HTMLElement {
 attribute DOMString clear;
};

Attributes
clear of type DOMString [p.19]

Control flow of text around floats. See the clear attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

Interface HTMLBaseFontElement

Base font. See the BASEFONT element definition in HTML 4.0. This element is deprecated in
HTML 4.0.
IDL Definition

interface HTMLBaseFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
};

80

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#edef-BASEFONT
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-clear
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#edef-BR
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#adef-width-PRE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#edef-PRE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#adef-cite-Q

Attributes
color of type DOMString [p.19]

Font color. See the color attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

face of type DOMString [p.19]
Font face identifier. See the face attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

size of type DOMString [p.19]
Font size. See the size attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

Interface HTMLFontElement

Local change to font. See the FONT element definition in HTML 4.0. This element is deprecated in
HTML 4.0.
IDL Definition

interface HTMLFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
};

Attributes
color of type DOMString [p.19]

Font color. See the color attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

face of type DOMString [p.19]
Font face identifier. See the face attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

size of type DOMString [p.19]
Font size. See the size attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

Interface HTMLHRElement

Create a horizontal rule. See the HR element definition in HTML 4.0.
IDL Definition

interface HTMLHRElement : HTMLElement {
 attribute DOMString align;
 attribute boolean noShade;
 attribute DOMString size;
 attribute DOMString width;
};

81

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#edef-HR
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-size-FONT
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-face-FONT
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-color-FONT
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#edef-FONT
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-size-BASEFONT
http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/1998/REC-html40-19980424/

Attributes
align of type DOMString [p.19]

Align the rule on the page. See the align attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

noShade of type boolean
Indicates to the user agent that there should be no shading in the rendering of this element.
See the noshade attribute definition in HTML 4.0. This attribute is deprecated in HTML
4.0.

size of type DOMString [p.19]
The height of the rule. See the size attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

width of type DOMString [p.19]
The width of the rule. See the width attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLModElement

Notice of modification to part of a document. See the INS and DEL element definitions in HTML
4.0.
IDL Definition

interface HTMLModElement : HTMLElement {
 attribute DOMString cite;
 attribute DOMString dateTime;
};

Attributes
cite of type DOMString [p.19]

A URI designating a document that describes the reason for the change. See the cite
attribute definition in HTML 4.0.

dateTime of type DOMString [p.19]
The date and time of the change. See the datetime attribute definition in HTML 4.0.

Interface HTMLAnchorElement

The anchor element. See the A element definition in HTML 4.0.
IDL Definition

interface HTMLAnchorElement : HTMLElement {
 attribute DOMString accessKey;
 attribute DOMString charset;
 attribute DOMString coords;
 attribute DOMString href;
 attribute DOMString hreflang;
 attribute DOMString name;
 attribute DOMString rel;
 attribute DOMString rev;

82

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#edef-A
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#adef-datetime
http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#edef-del
http://www.w3.org/TR/1998/REC-html40-19980424/struct/text.html#edef-ins
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-width-HR
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-size-HR
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-noshade
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-align-HR

 attribute DOMString shape;
 attribute long tabIndex;
 attribute DOMString target;
 attribute DOMString type;
 void blur();
 void focus();
};

Attributes
accessKey of type DOMString [p.19]

A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

charset of type DOMString [p.19]
The character encoding of the linked resource. See the charset attribute definition in HTML
4.0.

coords of type DOMString [p.19]
Comma-separated list of lengths, defining an active region geometry. See also shape for
the shape of the region. See the coords attribute definition in HTML 4.0.

href of type DOMString [p.19]
The URI of the linked resource. See the href attribute definition in HTML 4.0.

hreflang of type DOMString [p.19]
Language code of the linked resource. See the hreflang attribute definition in HTML 4.0.

name of type DOMString [p.19]
Anchor name. See the name attribute definition in HTML 4.0.

rel of type DOMString [p.19]
Forward link type. See the rel attribute definition in HTML 4.0.

rev of type DOMString [p.19]
Reverse link type. See the rev attribute definition in HTML 4.0.

shape of type DOMString [p.19]
The shape of the active area. The coordinates are given by coords. See the shape attribute
definition in HTML 4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

target of type DOMString [p.19]
Frame to render the resource in. See the target attribute definition in HTML 4.0.

type of type DOMString [p.19]
Advisory content type. See the type attribute definition in HTML 4.0.

83

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-type-A
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-target
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-shape
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-shape
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-rev
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-rel
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-name-A
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-hreflang
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-href
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-coords
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-charset
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey

Methods
blur

Removes keyboard focus from this element.

No Parameters
No Return Value
No Exceptions

focus
Gives keyboard focus to this element.

No Parameters
No Return Value
No Exceptions

Interface HTMLImageElement

Embedded image. See the IMG element definition in HTML 4.0.
IDL Definition

interface HTMLImageElement : HTMLElement {
 attribute DOMString lowSrc;
 attribute DOMString name;
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString border;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute boolean isMap;
 attribute DOMString longDesc;
 attribute DOMString src;
 attribute DOMString useMap;
 attribute DOMString vspace;
 attribute DOMString width;
};

Attributes
align of type DOMString [p.19]

Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

alt of type DOMString [p.19]
Alternate text for user agents not rendering the normal content of this element. See the alt
attribute definition in HTML 4.0.

border of type DOMString [p.19]
Width of border around image. See the border attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

84

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-border-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-align-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#edef-IMG

height of type DOMString [p.19]
Override height. See the height attribute definition in HTML 4.0.

hspace of type DOMString [p.19]
Horizontal space to the left and right of this image. See the hspace attribute definition in
HTML 4.0. This attribute is deprecated in HTML 4.0.

isMap of type boolean
Use server-side image map. See the ismap attribute definition in HTML 4.0.

longDesc of type DOMString [p.19]
URI designating a long description of this image or frame. See the longdesc attribute
definition in HTML 4.0.

lowSrc of type DOMString [p.19]
URI designating the source of this image, for low-resolution output.

name of type DOMString [p.19]
The name of the element (for backwards compatibility).

src of type DOMString [p.19]
URI designating the source of this image. See the src attribute definition in HTML 4.0.

useMap of type DOMString [p.19]
Use client-side image map. See the usemap attribute definition in HTML 4.0.

vspace of type DOMString [p.19]
Vertical space above and below this image. See the vspace attribute definition in HTML
4.0. This attribute is deprecated in HTML 4.0.

width of type DOMString [p.19]
Override width. See the width attribute definition in HTML 4.0.

Interface HTMLObjectElement

Generic embedded object. Note. In principle, all properties on the object element are read-write but in
some environments some properties may be read-only once the underlying object is instantiated. See
the OBJECT element definition in HTML 4.0.
IDL Definition

interface HTMLObjectElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString code;
 attribute DOMString align;
 attribute DOMString archive;
 attribute DOMString border;
 attribute DOMString codeBase;
 attribute DOMString codeType;
 attribute DOMString data;
 attribute boolean declare;

85

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#edef-OBJECT
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-width-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-vspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-usemap
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-src-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-longdesc-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-longdesc-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-ismap
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-hspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-height-IMG

 attribute DOMString height;
 attribute DOMString hspace;
 attribute DOMString name;
 attribute DOMString standby;
 attribute long tabIndex;
 attribute DOMString type;
 attribute DOMString useMap;
 attribute DOMString vspace;
 attribute DOMString width;
};

Attributes
align of type DOMString [p.19]

Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

archive of type DOMString [p.19]
Space-separated list of archives. See the archive attribute definition in HTML 4.0.

border of type DOMString [p.19]
Width of border around the object. See the border attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

code of type DOMString [p.19]
Applet class file. See the code attribute for HTMLAppletElement.

codeBase of type DOMString [p.19]
Base URI for classid, data, and archive attributes. See the codebase attribute
definition in HTML 4.0.

codeType of type DOMString [p.19]
Content type for data downloaded via classid attribute. See the codetype attribute
definition in HTML 4.0.

data of type DOMString [p.19]
A URI specifying the location of the object’s data. See the data attribute definition in
HTML 4.0.

declare of type boolean
Declare (for future reference), but do not instantiate, this object. See the declare attribute
definition in HTML 4.0.

form of type HTMLFormElement [p.65] , readonly
Returns the FORM element containing this control. Returns null if this control is not
within the context of a form.

height of type DOMString [p.19]
Override height. See the height attribute definition in HTML 4.0.

86

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-height-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-declare
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-declare
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-data
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-codetype
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-codetype
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-codebase-OBJECT
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-codebase-OBJECT
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-border-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-archive-OBJECT
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-align-IMG

hspace of type DOMString [p.19]
Horizontal space to the left and right of this image, applet, or object. See the hspace
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

name of type DOMString [p.19]
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

standby of type DOMString [p.19]
Message to render while loading the object. See the standby attribute definition in HTML
4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

type of type DOMString [p.19]
Content type for data downloaded via data attribute. See the type attribute definition in
HTML 4.0.

useMap of type DOMString [p.19]
Use client-side image map. See the usemap attribute definition in HTML 4.0.

vspace of type DOMString [p.19]
Vertical space above and below this image, applet, or object. See the vspace attribute
definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

width of type DOMString [p.19]
Override width. See the width attribute definition in HTML 4.0.

Interface HTMLParamElement

Parameters fed to the OBJECT element. See the PARAM element definition in HTML 4.0.
IDL Definition

interface HTMLParamElement : HTMLElement {
 attribute DOMString name;
 attribute DOMString type;
 attribute DOMString value;
 attribute DOMString valueType;
};

Attributes
name of type DOMString [p.19]

The name of a run-time parameter. See the name attribute definition in HTML 4.0.

type of type DOMString [p.19]
Content type for the value attribute when valuetype has the value "ref". See the type
attribute definition in HTML 4.0.

87

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-type-PARAM
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-type-PARAM
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-name-PARAM
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#edef-PARAM
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-width-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-vspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-vspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-usemap
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-type-OBJECT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-standby
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-name-INPUT
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-hspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-hspace

value of type DOMString [p.19]
The value of a run-time parameter. See the value attribute definition in HTML 4.0.

valueType of type DOMString [p.19]
Information about the meaning of the value attribute value. See the valuetype attribute
definition in HTML 4.0.

Interface HTMLAppletElement

An embedded Java applet. See the APPLET element definition in HTML 4.0. This element is
deprecated in HTML 4.0.
IDL Definition

interface HTMLAppletElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString archive;
 attribute DOMString code;
 attribute DOMString codeBase;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute DOMString name;
 attribute DOMString object;
 attribute DOMString vspace;
 attribute DOMString width;
};

Attributes
align of type DOMString [p.19]

Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

alt of type DOMString [p.19]
Alternate text for user agents not rendering the normal content of this element. See the alt
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

archive of type DOMString [p.19]
Comma-separated archive list. See the archive attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

code of type DOMString [p.19]
Applet class file. See the code attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

codeBase of type DOMString [p.19]
Optional base URI for applet. See the codebase attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

88

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-codebase-APPLET
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-code
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-archive-APPLET
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-align-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#edef-APPLET
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-valuetype
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-valuetype
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-value-PARAM

height of type DOMString [p.19]
Override height. See the height attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

hspace of type DOMString [p.19]
Horizontal space to the left and right of this image, applet, or object. See the hspace
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

name of type DOMString [p.19]
The name of the applet. See the name attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

object of type DOMString [p.19]
Serialized applet file. See the object attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

vspace of type DOMString [p.19]
Vertical space above and below this image, applet, or object. See the vspace attribute
definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

width of type DOMString [p.19]
Override width. See the width attribute definition in HTML 4.0. This attribute is deprecated
in HTML 4.0.

Interface HTMLMapElement

Client-side image map. See the MAP element definition in HTML 4.0.
IDL Definition

interface HTMLMapElement : HTMLElement {
 readonly attribute HTMLCollection areas;
 attribute DOMString name;
};

Attributes
areas of type HTMLCollection [p.54] , readonly

The list of areas defined for the image map.

name of type DOMString [p.19]
Names the map (for use with usemap). See the name attribute definition in HTML 4.0.

Interface HTMLAreaElement

Client-side image map area definition. See the AREA element definition in HTML 4.0.
IDL Definition

89

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#edef-AREA
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-name-MAP
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#edef-MAP
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-width-APPLET
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-vspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-vspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-object
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-name-APPLET
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-hspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-hspace
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-height-APPLET

interface HTMLAreaElement : HTMLElement {
 attribute DOMString accessKey;
 attribute DOMString alt;
 attribute DOMString coords;
 attribute DOMString href;
 attribute boolean noHref;
 attribute DOMString shape;
 attribute long tabIndex;
 attribute DOMString target;
};

Attributes
accessKey of type DOMString [p.19]

A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

alt of type DOMString [p.19]
Alternate text for user agents not rendering the normal content of this element. See the alt
attribute definition in HTML 4.0.

coords of type DOMString [p.19]
Comma-separated list of lengths, defining an active region geometry. See also shape for
the shape of the region. See the coords attribute definition in HTML 4.0.

href of type DOMString [p.19]
The URI of the linked resource. See the href attribute definition in HTML 4.0.

noHref of type boolean
Specifies that this area is inactive, i.e., has no associated action. See the nohref attribute
definition in HTML 4.0.

shape of type DOMString [p.19]
The shape of the active area. The coordinates are given by coords. See the shape attribute
definition in HTML 4.0.

tabIndex of type long
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

target of type DOMString [p.19]
Frame to render the resource in. See the target attribute definition in HTML 4.0.

Interface HTMLScriptElement

Script statements. See the SCRIPT element definition in HTML 4.0.
IDL Definition

90

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/interact/scripts.html#edef-SCRIPT
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-target
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-tabindex
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-shape
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-shape
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-nohref
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-nohref
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-href
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-coords
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-alt
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-accesskey

interface HTMLScriptElement : HTMLElement {
 attribute DOMString text;
 attribute DOMString htmlFor;
 attribute DOMString event;
 attribute DOMString charset;
 attribute boolean defer;
 attribute DOMString src;
 attribute DOMString type;
};

Attributes
charset of type DOMString [p.19]

The character encoding of the linked resource. See the charset attribute definition in HTML
4.0.

defer of type boolean
Indicates that the user agent can defer processing of the script. See the defer attribute
definition in HTML 4.0.

event of type DOMString [p.19]
Reserved for future use.

htmlFor of type DOMString [p.19]
Reserved for future use.

src of type DOMString [p.19]
URI designating an external script. See the src attribute definition in HTML 4.0.

text of type DOMString [p.19]
The script content of the element.

type of type DOMString [p.19]
The content type of the script language. See the type attribute definition in HTML 4.0.

Interface HTMLTableElement

The create* and delete* methods on the table allow authors to construct and modify tables. HTML
4.0 specifies that only one of each of the CAPTION, THEAD, and TFOOT elements may exist in a
table. Therefore, if one exists, and the createTHead() or createTFoot() method is called, the method
returns the existing THead or TFoot element. See the TABLE element definition in HTML 4.0.
IDL Definition

interface HTMLTableElement : HTMLElement {
 attribute HTMLTableCaptionElement caption;
 attribute HTMLTableSectionElement tHead;
 attribute HTMLTableSectionElement tFoot;
 readonly attribute HTMLCollection rows;
 readonly attribute HTMLCollection tBodies;
 attribute DOMString align;
 attribute DOMString bgColor;
 attribute DOMString border;
 attribute DOMString cellPadding;

91

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#edef-TABLE
http://www.w3.org/TR/1998/REC-html40-19980424/interact/scripts.html#adef-type-SCRIPT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/scripts.html#adef-src-SCRIPT
http://www.w3.org/TR/1998/REC-html40-19980424/interact/scripts.html#adef-defer
http://www.w3.org/TR/1998/REC-html40-19980424/interact/scripts.html#adef-defer
http://www.w3.org/TR/1998/REC-html40-19980424/struct/links.html#adef-charset

 attribute DOMString cellSpacing;
 attribute DOMString frame;
 attribute DOMString rules;
 attribute DOMString summary;
 attribute DOMString width;
 HTMLElement createTHead();
 void deleteTHead();
 HTMLElement createTFoot();
 void deleteTFoot();
 HTMLElement createCaption();
 void deleteCaption();
 HTMLElement insertRow(in long index)
 raises(DOMException);
 void deleteRow(in long index)
 raises(DOMException);
};

Attributes
align of type DOMString [p.19]

Specifies the table’s position with respect to the rest of the document. See the align
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

bgColor of type DOMString [p.19]
Cell background color. See the bgcolor attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

border of type DOMString [p.19]
The width of the border around the table. See the border attribute definition in HTML 4.0.

caption of type HTMLTableCaptionElement [p.95]
Returns the table’s CAPTION, or void if none exists.

cellPadding of type DOMString [p.19]
Specifies the horizontal and vertical space between cell content and cell borders. See the
cellpadding attribute definition in HTML 4.0.

cellSpacing of type DOMString [p.19]
Specifies the horizontal and vertical separation between cells. See the cellspacing attribute
definition in HTML 4.0.

frame of type DOMString [p.19]
Specifies which external table borders to render. See the frame attribute definition in
HTML 4.0.

rows of type HTMLCollection [p.54] , readonly
Returns a collection of all the rows in the table, including all in THEAD, TFOOT, all
TBODY elements.

rules of type DOMString [p.19]
Specifies which internal table borders to render. See the rules attribute definition in HTML
4.0.

92

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-rules
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-frame
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-cellspacing
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-cellspacing
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-cellpadding
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-border-TABLE
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-bgcolor
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-align-TABLE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-align-TABLE

summary of type DOMString [p.19]
Description about the purpose or structure of a table. See the summary attribute definition
in HTML 4.0.

tBodies of type HTMLCollection [p.54] , readonly
Returns a collection of the defined table bodies.

tFoot of type HTMLTableSectionElement [p.96]
Returns the table’s TFOOT, or null if none exists.

tHead of type HTMLTableSectionElement [p.96]
Returns the table’s THEAD, or null if none exists.

width of type DOMString [p.19]
Specifies the desired table width. See the width attribute definition in HTML 4.0.

Methods
createCaption

Create a new table caption object or return an existing one.
Return Value

HTMLElement [p.59] A CAPTION element.

No Parameters
No Exceptions

createTFoot
Create a table footer row or return an existing one.
Return Value

HTMLElement [p.59] A footer element (TFOOT).

No Parameters
No Exceptions

createTHead
Create a table header row or return an existing one.
Return Value

HTMLElement [p.59] A new table header element (THEAD).

No Parameters
No Exceptions

93

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-width-TABLE
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-summary

deleteCaption
Delete the table caption, if one exists.

No Parameters
No Return Value
No Exceptions

deleteRow
Delete a table row.
Parameters
index of type long

The index of the row to be deleted. This index starts from 0 and is relative to all the
rows contained inside the table, regardless of section parentage.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified index is greater
than or equal to the number of rows or if the index is
negative.

No Return Value

deleteTFoot
Delete the footer from the table, if one exists.

No Parameters
No Return Value
No Exceptions

deleteTHead
Delete the header from the table, if one exists.

No Parameters
No Return Value
No Exceptions

insertRow
Insert a new empty row in the table. The new row is inserted immediately before and in the
same section as the current indexth row in the table. If index is equal to the number of
rows, the new row is appended. In addition, when the table is empty the row is inserted into
a TBODY which is created and inserted into the table. Note. A table row cannot be empty
according to HTML 4.0 Recommendation.
Parameters
index of type long

The row number where to insert a new row. This index starts from 0 and is relative to
all the rows contained inside the table, regardless of section parentage.

94

2.5.5. Object definitions

Return Value

HTMLElement [p.59] The newly created row.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified index is
greater than the number of rows or if the index is negative.

Interface HTMLTableCaptionElement

Table caption See the CAPTION element definition in HTML 4.0.
IDL Definition

interface HTMLTableCaptionElement : HTMLElement {
 attribute DOMString align;
};

Attributes
align of type DOMString [p.19]

Caption alignment with respect to the table. See the align attribute definition in HTML 4.0.
This attribute is deprecated in HTML 4.0.

Interface HTMLTableColElement

Regroups the COL and COLGROUP elements. See the COL element definition in HTML 4.0.
IDL Definition

interface HTMLTableColElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute long span;
 attribute DOMString vAlign;
 attribute DOMString width;
};

Attributes
align of type DOMString [p.19]

Horizontal alignment of cell data in column. See the align attribute definition in HTML
4.0.

ch of type DOMString [p.19]
Alignment character for cells in a column. See the char attribute definition in HTML 4.0.

chOff of type DOMString [p.19]
Offset of alignment character. See the charoff attribute definition in HTML 4.0.

95

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-charoff
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-char
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-align-TD
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#edef-COL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-align-CAPTION
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#edef-CAPTION

span of type long
Indicates the number of columns in a group or affected by a grouping. See the span
attribute definition in HTML 4.0.

vAlign of type DOMString [p.19]
Vertical alignment of cell data in column. See the valign attribute definition in HTML 4.0.

width of type DOMString [p.19]
Default column width. See the width attribute definition in HTML 4.0.

Interface HTMLTableSectionElement

The THEAD, TFOOT, and TBODY elements.
IDL Definition

interface HTMLTableSectionElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
 readonly attribute HTMLCollection rows;
 HTMLElement insertRow(in long index)
 raises(DOMException);
 void deleteRow(in long index)
 raises(DOMException);
};

Attributes
align of type DOMString [p.19]

Horizontal alignment of data in cells. See the align attribute for HTMLTheadElement for
details.

ch of type DOMString [p.19]
Alignment character for cells in a column. See the char attribute definition in HTML 4.0.

chOff of type DOMString [p.19]
Offset of alignment character. See the charoff attribute definition in HTML 4.0.

rows of type HTMLCollection [p.54] , readonly
The collection of rows in this table section.

vAlign of type DOMString [p.19]
Vertical alignment of data in cells. See the valign attribute for HTMLTheadElement for
details.

Methods
deleteRow

Delete a row from this section.
Parameters

96

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-charoff
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-char
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-width-COL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-valign
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-span-COL
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-span-COL

index of type long
The index of the row to be deleted. This index starts from 0 and is relative only to the
rows contained inside this section, not all the rows in the table.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified index is greater
than or equal to the number of rows or if the index is
negative.

No Return Value

insertRow
Insert a row into this section. The new row is inserted immediately before the current
indexth row in this section. If index is equal to the number of rows in this section, the
new row is appended.
Parameters
index of type long

The row number where to insert a new row. This index starts from 0 and is relative
only to the rows contained inside this section, not all the rows in the table.

Return Value

HTMLElement [p.59] The newly created row.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified index is
greater than the number of rows or if the index is negative.

Interface HTMLTableRowElement

A row in a table. See the TR element definition in HTML 4.0.
IDL Definition

interface HTMLTableRowElement : HTMLElement {
 readonly attribute long rowIndex;
 readonly attribute long sectionRowIndex;
 readonly attribute HTMLCollection cells;
 attribute DOMString align;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
 HTMLElement insertCell(in long index)

97

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#edef-TR

 raises(DOMException);
 void deleteCell(in long index)
 raises(DOMException);
};

Attributes
align of type DOMString [p.19]

Horizontal alignment of data within cells of this row. See the align attribute definition in
HTML 4.0.

bgColor of type DOMString [p.19]
Background color for rows. See the bgcolor attribute definition in HTML 4.0. This attribute
is deprecated in HTML 4.0.

cells of type HTMLCollection [p.54] , readonly
The collection of cells in this row.

ch of type DOMString [p.19]
Alignment character for cells in a column. See the char attribute definition in HTML 4.0.

chOff of type DOMString [p.19]
Offset of alignment character. See the charoff attribute definition in HTML 4.0.

rowIndex of type long, readonly
The index of this row, relative to the entire table, starting from 0. This is in document tree
order and not display order. The rowIndex does not take into account sections (THEAD,
TFOOT, or TBODY) within the table.

sectionRowIndex of type long, readonly
The index of this row, relative to the current section (THEAD, TFOOT, or TBODY), starting
from 0.

vAlign of type DOMString [p.19]
Vertical alignment of data within cells of this row. See the valign attribute definition in
HTML 4.0.

Methods
deleteCell

Delete a cell from the current row.
Parameters
index of type long

The index of the cell to delete, starting from 0.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified index is
greater than or equal to the number of cells or if the index is
negative.

98

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-valign
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-charoff
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-char
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-bgcolor
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-align-TD

No Return Value

insertCell
Insert an empty TD cell into this row. If index is equal to the number of cells, the new cell
is appended.
Parameters
index of type long

The place to insert the cell, starting from 0.

Return Value

HTMLElement [p.59] The newly created cell.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified index is
greater than the number of cells or if the index is negative.

Interface HTMLTableCellElement

The object used to represent the TH and TD elements. See the TD element definition in HTML 4.0.
IDL Definition

interface HTMLTableCellElement : HTMLElement {
 readonly attribute long cellIndex;
 attribute DOMString abbr;
 attribute DOMString align;
 attribute DOMString axis;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute long colSpan;
 attribute DOMString headers;
 attribute DOMString height;
 attribute boolean noWrap;
 attribute long rowSpan;
 attribute DOMString scope;
 attribute DOMString vAlign;
 attribute DOMString width;
};

Attributes
abbr of type DOMString [p.19]

Abbreviation for header cells. See the abbr attribute definition in HTML 4.0.

align of type DOMString [p.19]
Horizontal alignment of data in cell. See the align attribute definition in HTML 4.0.

99

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-align-TD
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-abbr
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#edef-TD

axis of type DOMString [p.19]
Names group of related headers. See the axis attribute definition in HTML 4.0.

bgColor of type DOMString [p.19]
Cell background color. See the bgcolor attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

cellIndex of type long, readonly
The index of this cell in the row, starting from 0. This index is in document tree order and
not display order.

ch of type DOMString [p.19]
Alignment character for cells in a column. See the char attribute definition in HTML 4.0.

chOff of type DOMString [p.19]
Offset of alignment character. See the charoff attribute definition in HTML 4.0.

colSpan of type long
Number of columns spanned by cell. See the colspan attribute definition in HTML 4.0.

headers of type DOMString [p.19]
List of id attribute values for header cells. See the headers attribute definition in HTML
4.0.

height of type DOMString [p.19]
Cell height. See the height attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

noWrap of type boolean
Suppress word wrapping. See the nowrap attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

rowSpan of type long
Number of rows spanned by cell. See the rowspan attribute definition in HTML 4.0.

scope of type DOMString [p.19]
Scope covered by header cells. See the scope attribute definition in HTML 4.0.

vAlign of type DOMString [p.19]
Vertical alignment of data in cell. See the valign attribute definition in HTML 4.0.

width of type DOMString [p.19]
Cell width. See the width attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

Interface HTMLFrameSetElement

100

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-width-TH
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-valign
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-scope
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-rowspan
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-nowrap
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-height-TH
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-headers
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-colspan
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-charoff
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-char
http://www.w3.org/TR/1998/REC-html40-19980424/present/graphics.html#adef-bgcolor
http://www.w3.org/TR/1998/REC-html40-19980424/struct/tables.html#adef-axis

Create a grid of frames. See the FRAMESET element definition in HTML 4.0.
IDL Definition

interface HTMLFrameSetElement : HTMLElement {
 attribute DOMString cols;
 attribute DOMString rows;
};

Attributes
cols of type DOMString [p.19]

The number of columns of frames in the frameset. See the cols attribute definition in
HTML 4.0.

rows of type DOMString [p.19]
The number of rows of frames in the frameset. See the rows attribute definition in HTML
4.0.

Interface HTMLFrameElement

Create a frame. See the FRAME element definition in HTML 4.0.
IDL Definition

interface HTMLFrameElement : HTMLElement {
 attribute DOMString frameBorder;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;
 attribute DOMString name;
 attribute boolean noResize;
 attribute DOMString scrolling;
 attribute DOMString src;
};

Attributes
frameBorder of type DOMString [p.19]

Request frame borders. See the frameborder attribute definition in HTML 4.0.

longDesc of type DOMString [p.19]
URI designating a long description of this image or frame. See the longdesc attribute
definition in HTML 4.0.

marginHeight of type DOMString [p.19]
Frame margin height, in pixels. See the marginheight attribute definition in HTML 4.0.

marginWidth of type DOMString [p.19]
Frame margin width, in pixels. See the marginwidth attribute definition in HTML 4.0.

name of type DOMString [p.19]
The frame name (object of the target attribute). See the name attribute definition in
HTML 4.0.

101

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-name-FRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-marginwidth
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-marginheight
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-longdesc-FRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-longdesc-FRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-frameborder
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#edef-FRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-rows-FRAMESET
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-cols-FRAMESET
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#edef-FRAMESET

noResize of type boolean
When true, forbid user from resizing frame. See the noresize attribute definition in HTML
4.0.

scrolling of type DOMString [p.19]
Specify whether or not the frame should have scrollbars. See the scrolling attribute
definition in HTML 4.0.

src of type DOMString [p.19]
A URI designating the initial frame contents. See the src attribute definition in HTML 4.0.

Interface HTMLIFrameElement

Inline subwindows. See the IFRAME element definition in HTML 4.0.
IDL Definition

interface HTMLIFrameElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString frameBorder;
 attribute DOMString height;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;
 attribute DOMString name;
 attribute DOMString scrolling;
 attribute DOMString src;
 attribute DOMString width;
};

Attributes
align of type DOMString [p.19]

Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

frameBorder of type DOMString [p.19]
Request frame borders. See the frameborder attribute definition in HTML 4.0.

height of type DOMString [p.19]
Frame height. See the height attribute definition in HTML 4.0.

longDesc of type DOMString [p.19]
URI designating a long description of this image or frame. See the longdesc attribute
definition in HTML 4.0.

marginHeight of type DOMString [p.19]
Frame margin height, in pixels. See the marginheight attribute definition in HTML 4.0.

marginWidth of type DOMString [p.19]
Frame margin width, in pixels. See the marginwidth attribute definition in HTML 4.0.

102

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-marginwidth
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-marginheight
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-longdesc-IFRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-longdesc-IFRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-height-IFRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-frameborder
http://www.w3.org/TR/1998/REC-html40-19980424/struct/objects.html#adef-align-IMG
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#edef-IFRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-src-FRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-scrolling
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-scrolling
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-noresize

name of type DOMString [p.19]
The frame name (object of the target attribute). See the name attribute definition in
HTML 4.0.

scrolling of type DOMString [p.19]
Specify whether or not the frame should have scrollbars. See the scrolling attribute
definition in HTML 4.0.

src of type DOMString [p.19]
A URI designating the initial frame contents. See the src attribute definition in HTML 4.0.

width of type DOMString [p.19]
Frame width. See the width attribute definition in HTML 4.0.

103

2.5.5. Object definitions

http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-width-IFRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-src-FRAME
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-scrolling
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-scrolling
http://www.w3.org/TR/1998/REC-html40-19980424/present/frames.html#adef-name-IFRAME

104

2.5.5. Object definitions

Appendix A: Changes
Editors

Philippe Le Hégaret, W3C

This appendix contains the changes from the 1 October 1998 specification.

A.1: Changes in the "What is the Document Object Model?"
Introduction [p.11]

The link to the CORBA 2.2 specification was broken.
Also, the first item of the list about "DOM Interfaces and DOM Implementations" had text about
"read-only functions" which was changed to "read-only attributes".

What the Document Object Model is [p.11]
The following sentence was missing:

Each document contains zero or one doctype nodes, one root element node, and zero or more
comments or processing instructions; the root element serves as the root of the element tree for
the document.

The following statement has been modified:

One important property of DOM structure models is structural isomorphism: if any two
Document Object Model implementations are used to create a representation of the same
document, they will create the same structure model, with precisely the same objects and
relationships.

It now reads:

One important property of DOM structure models is structural isomorphism: if any two
Document Object Model implementations are used to create a representation of the same
document, they will create the same structure model, in accordance with the XML Information
Set [Infoset].

with the following note:

Note: There may be some variations depending on the parser being used to build the DOM. For
instance, the DOM may not contain whitespaces in element content if the parser discards them.

The compliance paragraph has been moved into a specific section (see Compliance [p.14]).
What the Document Object Model is not [p.13]

The following statement has been modified:

The Document Object Model does not define "the true inner semantics" of XML or HTML. The
semantics of those languages are defined by W3C Recommendations for these languages. The
DOM is a programming model designed to respect these semantics. The DOM does not have
any ramifications for the way you write XML and HTML documents; any document that can be

105

Appendix A: Changes

written in these languages can be represented in the DOM.

It now reads:

The Document Object Model does not define what information in a document is relevant or how
information in a document is structured. For XML, this is specified by the W3C XML
Information Set [Infoset]. The DOM is simply an API to this information set.

A.2: Changes in the Document Object Model Core
Section 1.1.5. The DOMString type [p.19]

The DOMString [p.19] type was defined as "a sequence of 16-bit quantities". Instead, it is now
defined as "sequence of 16-bit units".
Then, the description contained the following sentences:

Please note that for both HTML and XML, the document character set (and therefore the
notation of numeric character references) is based on UCS-4. A single numeric character
reference in a source document may therefore in some cases correspond to two array positions
in a DOMString [p.19] (a high surrogate and a low surrogate).

This now reads:

Please note that for both HTML and XML, the document character set (and therefore the
notation of numeric character references) is based on UCS [ISO-10646]. A single numeric
character reference in a source document may therefore in some cases correspond to two 16-bit
units in a DOMString [p.19] (a high surrogate and a low surrogate).

Section 1.1.6. String comparisons in the DOM [p.20]
The title of this section, which was Case sensitivity in the DOM, was changed to be more accurate.
The first paragraph ended with the following:

For the purposes of the DOM, string matching takes place on a character code by character code
basis, on the 16 bit value of a DOMString. As such, the DOM assumes that any normalizations
will take place in the processor, before the DOM structures are built.

This sentence now reads:

For the purposes of the DOM, string matching is performed purely by binary comparison of the
16-bit units [p.125] of the DOMString. In addition, the DOM assumes that any normalizations
take place in the processor, before the DOM structures are built.

With the following note:

Note: Besides case folding, there are additional normalizations that can be applied to text. The W3C
I18N Working Group is in the process of defining exactly which normalizations are necessary, and
where they should be applied. The W3C I18N Working Group expects to require early normalization,
which means that data read into the DOM is assumed to already be normalized. The DOM and
applications built on top of it in this case only have to assure that text remains normalized when

106

A.2: Changes in the Document Object Model Core

being changed. For further details, please see [Charmod].

Section 1.2 Interface Attr [p.42]
The fact that setting the value attribute raises a NO_MODIFICATION_ALLOWED_ERR
DOMException [p.20] when the node is readonly was added.
A sentence has been added at the end of the first paragraph of the description of the value attribute:

See also the method getAttribute on the Element [p.43] interface.

also at the end of the second paragraph:

I.e. any characters that an XML processor would recognize as markup are instead treated as
literal text. See also the method setAttribute on the Element [p.43] interface.

And on the specified attribute:

If the attribute is not associated to any element (i.e. because it was just created or was obtained
from some removal or cloning operation) specified is true.

Section 1.2 Interface CharacterData [p.38]
The following paragraph has been added:

As explained in the DOMString [p.19] interface, text strings in the DOM are represented in
UTF-16, i.e. as a sequence of 16-bit units. In the following, the term 16-bit units [p.125] is used
whenever necessary to indicate that indexing on CharacterData is done in 16-bit units.

The description of the length attribute read:

The number of characters that are available through data and the substringData method
below.

It now reads:

The number of 16-bit units [p.125] that are available through data and the substringData
method below.

The description of the count parameter of the substringData method read:

The number of characters to extract.

It now reads:

The number of 16-bit units to extract.

Then the description of the return value read:

The specified substring. If the sum of offset and count exceeds the length, then all
characters to the end of the data are returned.

107

A.2: Changes in the Document Object Model Core

It now reads:

The specified substring. If the sum of offset and count exceeds the length, then all 16-bit
units to the end of the data are returned.

The exception INDEX_SIZE_ERR was said to be:

Raised if the specified offset is negative or greater than the number of characters in data, or if
the specified count is negative.

Instead this now reads:

Raised if the specified offset is negative or greater than the number of 16-bit units in data, or
if the specified count is negative.

The description of the insertData method read:

Insert a string at the specified character offset.

Instead it now reads:

Insert a string at the specified 16-bit unit offset.

Then the description of the offset parameter read:

The character offset at which to insert.

when it now reads:

The 16-bit unit offset at which to insert.

The exception INDEX_SIZE_ERR was said to be:

Raised if the specified offset is negative or greater than the number of characters in data, or if
the specified count is negative.

Instead this now reads:

Raised if the specified offset is negative or greater than the number of 16-bit units in data, or
if the specified count is negative.

The description of the deleteData method read:

Remove a range of characters from the node.

Instead it now reads:

Remove a range of 16-bit units [p.125] from the node.

108

A.2: Changes in the Document Object Model Core

Then the description of the count parameter read:

The number of characters to delete. If the sum of offset and count exceeds length then
all characters from offset to the end of the data are deleted.

when it now reads:

The number of 16-bit units to delete. If the sum of offset and count exceeds length then
all 16-bit units from offset to the end of the data are deleted.

The description of the replaceData method read:

Replace the characters starting at the specified character offset with the specified string.

instead it now reads:

Replace the characters starting at the specified 16-bit unit [p.125] offset with the specified
string.

Then the description of the count parameter read:

The number of characters to replace. If the sum of offset and count exceeds length, then
all characters to the end of the data are replaced

when it now reads:

The number of 16-bit units to replace. If the sum of offset and count exceeds length,
then all 16-bit units to the end of the data are replaced

The exception INDEX_SIZE_ERR was said to be:

Raised if the specified offset is negative or greater than the number of characters in data, or if
the specified count is negative.

Instead this now reads:

Raised if the specified offset is negative or greater than the number of 16-bit units in data, or
if the specified count is negative.

Section 1.2 Interface DOMImplementation [p.22]
The definition of the feature parameter read:

The package name of the feature to test. In Level 1, the legal values are "HTML" and "XML"
(case-insensitive).

This now reads:

109

A.2: Changes in the Document Object Model Core

The name of the feature to test (case-insensitive). The values used by DOM features are defined
throughout this specification and listed i n the Compliance [p.14] section. The name must be an
XML name [p.128] . To avoid possible conflicts, as a convention, names referring to features
defined outside the DOM specification should be made unique by reversing the name of the
Internet domain name of the person (or the organization that the person belongs to) who defines
the feature, component by component, and using this as a prefix. For instance, the W3C SYMM
Working Group defines the feature "org.w3c.dom.smil".

The definition of the version parameter read:

This is the version number of the package name to test. In Level 1, this is the string "1.0".

This now reads:

This is the version number of the feature to test. In Level 1, this is the string "1.0".

Section 1.2 Interface Document [p.23]
The description of the createElement method was missing the following piece:

In addition, if there are known attributes with default values, Attr nodes representing them are
automatically created and attached to the element.

The description of the createEntityReference method was missing the following piece:

In addition, if the referenced entity is known, the child list of the EntityReference [p.52]
node is made the same as that of the corresponding Entity [p.51] node.

The description of the doctype attribute was missing the following piece:

The DOM Level 1 does not support editing the Document Type Declaration, therefore
docType cannot be altered in any way, including through the use of methods, such as
insertNode or removeNode, which are inherited from the Node [p.28] interface.

The description of the createAttribute method was said to be:

Creates an Attr [p.42] of the given name. Note that the Attr instance can then be set on an
Element [p.43] using the setAttribute method.

it is now:

Creates an Attr [p.42] of the given name. Note that the Attr instance can then be set on an
Element [p.43] using the setAttributeNode method.

The description of the return value was missing:

The value of the attribute is the emtpy string.

110

A.2: Changes in the Document Object Model Core

The exception INVALID_CHARACTER_ERR for createElement, createAttribute,
createEntityReference and createProcessingInstruction methods was said to be:

Raised if the specified name contains an invalid character.

Instead this now reads:

Raised if the specified name contains an illegal character.

Section 1.2 Interface DocumentType [p.49]
The description of the entities attribute has been modified:

A NamedNodeMap [p.36] containing the general entities, both external and internal, declared
in the DTD. Duplicates are discarded.

It now reads:

A NamedNodeMap [p.36] containing the general entities, both external and internal, declared
in the DTD. Parameter entities are not contained. Duplicates are discarded.

The example has been modified as follows:

<!DOCTYPE ex SYSTEM "ex.dtd" [
 <!ENTITY foo "foo">
 <!ENTITY bar "bar">
 <!ENTITY % baz "baz">
]>
<ex/>

the interface provides access to foo and bar but not baz. [...]

It is now:

<!DOCTYPE ex SYSTEM "ex.dtd" [
 <!ENTITY foo "foo">
 <!ENTITY bar "bar">
 <!ENTITY bar "bar2">
 <!ENTITY % baz "baz">
]>
<ex/>

the interface provides access to foo and the first declaration of bar but not the second
declaration of bar or baz. [...]

Section 1.2 Interface Element [p.43]
The following example has been removed:

By far the vast majority of objects (apart from text) that authors encounter when traversing a
document are Element [p.43] nodes. Assume the following XML document:

111

A.2: Changes in the Document Object Model Core

<elementExample id="demo">
 <subelement1/>
 <subelement2><subsubelement/></subelement2>
</elementExample>

When represented using DOM, the top node is a Document [p.23] node containing an
Element [p.43] node for "elementExample" which contains two child Element nodes, one
for "subelement1" and one for "subelement2". "subelement1" contains no child nodes.

The following sentence has been added:

The Element [p.43] interface represents an element in an HTML or XML document.

The description read:

the generic Node interface method getAttributes may be used to retrieve the set of all
attributes for an element.

However, there is no getAttributes method per se, although it may exist in some language
binding such as the java one. So this section now reads:

the generic Node interface attribute attributes may be used to retrieve the set of all
attributes for an element.

The removeAttribute method description read:

If the removed attribute has a default value it is immediately replaced.

This now reads:

If the removed attribute is known to have a default value, an attribute immediately appears
containing the default value.

The removeAttributeNode method description read:

Removes the specified attribute.

This now reads:

Removes the specified attribute. If the removed Attr [p.42] has a default value it is
immediately replaced.

The description of the oldAttr has been chagned according to the previous change:

The Attr [p.42] node to remove from the attribute list. If the removed Attr has a default
value it is immediately replaced.

This now reads:

112

A.2: Changes in the Document Object Model Core

The Attr [p.42] node to remove from the attribute list.

In addition, the following note was added to the description of the normalize method:

Note: In cases where the document contains CDATASections [p.48] , the normalize operation
alone may not be sufficient, since XPointers do not differentiate between Text [p.47] nodes
and CDATASection [p.48] nodes.

And the following change was made to the description of the same method:

Puts all Text [p.47] nodes in the full depth of the sub-tree underneath this Element [p.43]
into a "normal" form where only markup (e.g., tags, comments, processing instructions,
CDATA sections, and entity references) separates Text nodes, i.e., there are no adjacent Text
nodes.

This now reads:

Puts all Text [p.47] nodes in the full depth of the sub-tree underneath this Element [p.43] ,
including attribute nodes, into a "normal" form where only markup (e.g., tags, comments,
processing instructions, CDATA sections, and entity references) separates Text nodes, i.e.,
there are no adjacent Text nodes.

The exception INVALID_CHARACTER_ERR for the setAttribute method was said to be:

Raised if the specified name contains an invalid character.

Instead this now reads:

Raised if the specified name contains an illegal character.

The description for setAttributeNode was said to be:

Adds a new attribute.

Instead this now reads:

Adds a new attribute node.

The description for setAttributeNode return value was said to be:

If the newAttr attribute replaces an existing attribute with the same name, the previously
existing Attr [p.42] node is returned, otherwise null is returned.

Instead this now reads:

If the newAttr attribute replaces an existing attribute, the replaced Attr [p.42] node is
returned, otherwise null is returned.

113

A.2: Changes in the Document Object Model Core

Section 1.2 Interface DOMException [p.20]
The following note has been added for the ExceptionCode group:

Note: Other numeric codes are reserved for W3C for possible future use.

The description of the INVALID_CHARACTER_ERR read:

If an invalid character is specified, such as in a name.

Instead it now reads:

If an invalid or illegal character is specified, such as in a name. See production 2 in the XML
specification for the definition of a legal character, and production 5 for the definition of a legal
name character.

Section 1.2 Interface NamedNodeMap [p.36]
The description of the setNamedItem was missing (moved from the description of the arg
parameter):

If a node with that name is already present in this map, it is replaced by the new one.

The description of the return value of the removeNamedItem method read:

The node removed from the map or null if no node with such a name exists.

But this error case is already handled by having the method to throw a NOT_FOUND_ERR
DOMException. So this section now simply reads:

The node removed from the map if a node with such a name exists.

The description of the removeNamedItem method now includes the following note that was
missing:

When this map contains the attributes attached to an element, if the removed attribute is known
to have a default value, an attribute immediately appears containing the default value.

In addition, it was added that the removeNamedItem method raises a
NO_MODIFICATION_ALLOWED_ERR DOMException [p.20] when the NamedNodeMap
[p.36] is readonly.

Section 1.2 Interface Node [p.28]
It was added to the description of the nodeValue attribute that setting it, when it is defined to be
null, has no effect.
It was also added to the description of the parentNode attribute that Entity [p.51] and
Notation [p.50] nodes do not have a parent.
It was also added to the description of the NodeType group:

Numeric codes up to 200 are reserved to W3C for possible future use.

114

A.2: Changes in the Document Object Model Core

http://www.w3.org/TR/1998/REC-xml-19980210#NT-Name
http://www.w3.org/TR/1998/REC-xml-19980210#NT-Char

The following description has been removed:

The content of the returned NodeList [p.35] is "live" in the sense that, for instance, changes to
the children of the node object that it was created from are immediately reflected in the nodes
returned by the NodeList accessors; it is not a static snapshot of the content of the node. This
is true for every NodeList, including the ones returned by the getElementsByTagName
method.

The description of the NO_MODIFICATION_ALLOWED_ERR exception of the insertBefore
method read:

Raised if this node is readonly.

It now reads:

Raised if this node is readonly or if the parent of the node being inserted is readonly.

The description of the replaceChild method was missing:

If newChild is a DocumentFragment [p.23] object, oldChild is replaced by all of the
DocumentFragment children, which are inserted in the same order. If the newChild is
already in the tree, it is first removed.

The description of the NO_MODIFICATION_ALLOWED_ERR exception of the replaceChild
method read:

Raised if this node is readonly.

It now reads:

Raised if this node or the parent of the new node is readonly.

The description of the cloneNode method was missing:

Note that cloning an immutable subtree results in a mutable copy, but the children of an
EntityReference [p.52] clone are readonly [p.128] . In addition, clones of unspecified
Attr [p.42] nodes are specified. And, cloning Document [p.23] , DocumentType [p.49] ,
Entity [p.51] , and Notation [p.50] nodes is implementation dependent.

and also missing the following exceptions:

NOT_SUPPORTED_ERR: Raised if this node is a of type DOCUMENT_NODE,
DOCUMENT_TYPE_NODE, ENTITY_NODE, or NOTATION_NODE and the implementation
does not support cloning this type of node.

Section 1.2 Interface NodeList [p.35]
The description was missing:

115

A.2: Changes in the Document Object Model Core

NodeList [p.35] objects in the DOM are live [p.18] .

Section 1.2 Interface Comment [p.48]
The first paragraph read:

This represents the content of a comment, i.e., all the characters between the starting ’<!--’
and ending ’-->’.

It now reads "This interface inherits from CharacterData and represents ...".
Section 1.2 Interface Text [p.47]

The first paragraph read:

The Text [p.47] interface represents the textual content (termed character data in XML) of an
Element [p.43] or Attr [p.42] .

It now reads "The Text interface inherits from CharacterData and represents ...".
The first paragraph read:

If there is markup, it is parsed into a list of elements and Text [p.47] nodes that form the list of
children of the element.

It has been clarified, now reads "into the information items (elements, children comments, etc.) and
...".
The last sentence of the second paragraph of the interface description read:

The normalize() method on Element [p.43] merges any such adjacent Text [p.47]
objects into a single node for each block of text; this is recommended before employing
operations that depend on a particular document structure, such as navigation with
XPointers.

However, since in cases where the document contains CDATASections [p.48] , the normalize
operation alone may not be sufficient, since XPointers do not differentiate between Text [p.47]
nodes and CDATASection [p.48] nodes, the last part of the sentence (after the semi-colon) was
dropped.
The following sentence was added, for clarification purpose, to the description of the splitText
method:

When the offset is equal to the length of this node, the new Text [p.47] node has no data.

The description of the slitText method has been clarified:

Breaks this Text [p.47] node into two Text at the specified offset, ...

It now reads "Breaks this node into two nodes ...".
The description offset parameter of the splitText method read:

116

A.2: Changes in the Document Object Model Core

http://www.w3.org/TR/1998/REC-xml-19980210#syntax

The offset at which to split, starting from 0.

It now reads:

The 16-bit unit offset at which to split, starting from 0.

The description return value read:

The new Text [p.47] node.

It now reads:

The new node, of the same type as this node.

The exception INDEX_SIZE_ERR was said to be:

Raised if the specified offset is negative or greater than the number of characters in data.

Instead this now reads:

Raised if the specified offset is negative or greater than the number of 16-bit units in data.

Section 1.3 Extended Interfaces [p.48]
The following paragraph was missing:

A DOM application can use the hasFeature method of the DOMImplementation [p.22]
interface to determine whether they are supported or not. The feature string for all the interfaces
listed in this section is "XML".

Section 1.3 Interface CDATASection [p.48]
The following note was added to the description:

Note: Because no markup is recognized within a CDATASection [p.48] , character numeric
references cannot be used as an escape mechanism when serializing. Therefore, action needs to
be taken when serializing a CDATASection with a character encoding where some of the
contained characters cannot be represented. Failure to do so would not produce well-formed
XML.
One potential solution in the serialization process is to end the CDATA section before the
character, output the character using a character reference or entity reference, and open a new
CDATA section for any further characters in the text node. Note, however, that some code
conversion libraries at the time of writing do not return an error or exception when a character is
missing from the encoding, making the task of ensuring that data is not corrupted on
serialization more difficult.

Section 1.3. Interface Notation [p.50]
The first paragraph read:

117

A.2: Changes in the Document Object Model Core

they are therefore readonly.

A link to the glossary has been added for readonly [p.128] .
Section 1.3 Interface Entity [p.51]

The last sentence of the last paragraph was said to be:

All the descendants of an Entity [p.51] node are readonly.

Instead, it now reads:

Entity [p.51] nodes and all their descendants are readonly [p.128] .

Section 1.3 Interface EntityReference [p.52]
The following note was added to the description:

As for Entity [p.51] nodes, EntityReference [p.52] nodes and all their descendants are
readonly [p.128] .

A.3: Changes in the Document Object Model HTML
Section 2.1 Introduction [p.53]

The last sentence of the third paragraph was:

Interoperability between implementations is only guaranteed for elements and attributes that are
specified in these DTDs.

This seemed to imply interoperability is not guaranteed for the HTML 4.0 strict DTD, so it was
changed to:

Interoperability between implementations is only guaranteed for elements and attributes that are
specified in the HTML 4.0 DTDs.

Section 2.5.1 Property Attributes [p.59]
"border" was given as an example of an open-value value list in the table. It was changed to
"disabled".

Section 2.5.5 Interface HTMLBlockquoteElement
This interface was an error and was removed. The Interface HTMLQuoteElement [p.79] is used for
both the Q and BLOCKQUOTE HTML elements.

Section 2.5.5 Interface HTMLInputElement [p.70]
The description of the defaultValue attribute now reads:

value "Text", "File" or "Password", this represents the HTML value attribute of the element.
The value of this attribute does not change if the contents of the corresponding form control in
an interactive user agent changes. Changing this attribute, however, resets the contents of the
form control. See the value attribute definition in HTML 4.0.

118

A.3: Changes in the Document Object Model HTML

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-value-INPUT

The description of the value attribute now reads:

When the type attribute of the element has the value "Text", "File" or "Password", this
represents the current contents of the corresponding form control in an interactive user agent.
Changing this attribute changes the contents of the form control, but does not change the value
of the HTML value attribute of the element. When the type attribute of the element has the
value "Button", "Hidden", "Submit", "Reset", "Image", "Checkbox" or "Radio", this represents
the HTML value attribute of the element. See the value attribute definition in HTML 4.0.

The description of the defaultChecked attribute now reads:

When the type attribute of the element has the value "Checkbox" or "Radio", this represents
the HTML checked attribute of the element. The value of this attribute does not change if the
state of the corresponding form control in an interactive user agent changes. Changes to this
attribute, however, resets the state of the form control. See the checked attribute definition in
HTML 4.0.

The description of the checked attribute now reads:

When the type attribute of the element has the value "Checkbox" or "Radio", this represents
the current state of the corresponding form control in am interactive user agent. Changes to this
attribute changes the state of the form control, but does not change the value of the HTML value
attribute of the element.

Section 2.5.5 Interface HTMLOptionElement [p.69]
The index attribute was changed to readonly and the selected attribute to readwrite. It was also
added that the index attribute starts from 0.
The description of the defaultSelected attribute was unclear, it now reads:

Represents the value of the HTML selected attribute. The value of this attribute does not change
if the state of the corresponding form control in an interactive user agent changes. Changing
defaultSelected, however, resets the state of the form control. See the selected attribute
definition in HTML 4.0.

In addition, its description was unclear, it now reads:

Represents the current state of the corresponding form control in an interactive user agent.
Changing this attribute changes the state of the form control, but does not change the value of
the HTML selected attribute of the element.

Section 2.5.5 Interface HTMLSelectElement [p.66]
It was added that the value of the type attribute is the string "select-multiple" when the multiple
attribute is true and the string "select-one" when false.
It was also added that the index attribute starts from 0.
The description of the before parameter of the add method read:

119

A.3: Changes in the Document Object Model HTML

http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-selected
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-selected
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-checked
http://www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#adef-value-INPUT

The element to insert before, or null for the head of the list.

It was changed to:

The element to insert before, or null for the tail of the list.

Finally, it was added that an NOT_FOUND_ERR DOMException [p.20] is raised when the
before given to the add method is not a descendant of the SELECT element.

Section 2.5.5 Interface HTMLTableCellElement [p.99]
The cellIndex attribute was changed to readonly and it was added that it starts from 0.

Section 2.5.5 Interface HTMLTableElement [p.91]
The description of the index parameter of the insertRow and deleteRow methods was
augmented with the following:

This index starts from 0 and is relative to all the rows contained inside the table, regardless of
section parentage.

In addition, the following was added to the description of the insertRow method:

The new row is inserted immediately before and in the same section as the current indexth row
in the table. If there is no such row, the row is inserted following the one before in the table.
Finally, when the table is empty the row is inserted into a TBODY which is created and inserted
into the table.

Finally, it was added that an INDEX_SIZE_ERR DOMException [p.20] is raised when the index
given to the insertRow method is greater than the number of rows, and when the index given to
the deleteRow method is greater than or equal to the number of rows. In both case, the exception is
also raised if the index is negative.

Section 2.5.5 Interface HTMLTableRowElement [p.97]
The rowIndex, selectionRowIndex, and cells attributes were changed to readonly. And it
was added that these indexes start from 0.
It was added that the index parameter of the insertCell and deleteCell methods starts from
0.
The following sentence was added to the description of the insertCell:

If index is equal to the number of cells, the new cell is appended.

In addition, it was added that an INDEX_SIZE_ERR DOMException [p.20] is raised when the
index given to the insertCell method is greater than the number of cells and when the index
given to the deleteCell method is greater than or equal to the number of cells. In both case, the
exception is also raised if the index is negative.

Section 2.5.5 Interface HTMLTableSectionElement [p.96]
The description of the index parameter of the insertRow and deleteRow methods was
augmented with the following:

This index starts from 0 and is relative only to the rows contained inside this section, not all the
rows in the table.

120

A.3: Changes in the Document Object Model HTML

In addition, it was added that an INDEX_SIZE_ERR DOMException [p.20] is raised when the
index given to the insertRow method is greater than the number of rows, and when the index
given to the deleteRow method is greater than or equal to the number of rows. In both case, the
exception is also raised if the index is negative.

Section 2.5.5 Interface HTMLTextArea [p.73]
The value of the type attribute is now defined to be the string "textarea".
The description of the defaultValue attribute was unclear, it now reads:

Represents the contents of the element. The value of this attribute does not change if the
contents of the corresponding form control in an interactive user agent changes. Changing this
attribute, however, resets the contents of the form control.

The description of the value attribute was unclear, it now reads:

Represents the current contents of the corresponding form control in an interactive user agent.
Changing this attribute changes the contents of the form control, but does not change the
contents of the element.

A.4: Changes in the Appendices
Appendix D (formerly C): IDL Definition [p.129]

The list of exception codes appeared twice and several pieces of information, such as the names and
prefixes of the modules were missing.
We also added the following paragraph:
"Unfortunately the OMG IDL for the Document Object Model HTML is not compliant because of
problems in the validator that was used to validate Level 1. The readOnly attribute on the
HTMLInputElement and HTMLTextAreaElement interfaces, as well as the object attribute on the
HTMLAppletElement interface, are not compliant with OMG IDL 2.2. The valueType attribute on the
HTMLParamElement interface is not compliant with OMG IDL 2.3, which hadn’t been released
when DOM Level 1 was published."

Appendix E (formerly D): Java Language Binding [p.143]
The java source files did not contain the copyright notice appropriate for people to use them in their
products. A few errors in the javadoc part of them were also fixed.

References [p.201]
The references were sorted by alphabetical order, severals references were added and updated.

121

A.4: Changes in the Appendices

122

A.4: Changes in the Appendices

Appendix E: Acknowledgements
The authors of this specification, members of the DOM Working Group, deserve much credit for their
hard work: Lauren Wood (SoftQuad, Inc., chair), Arnaud Le Hors (W3C, W3C staff contact), Andrew
Watson (Object Management Group), Bill Smith (Sun), Chris Lovett (Microsoft), Chris Wilson
(Microsoft), David Brownell (Sun), David Singer (IBM), Don Park (invited), Eric Vasilik (Microsoft),
Gavin Nicol (INSO), Ian Jacobs (W3C), James Clark (invited), Jared Sorensen (Novell), Jonathan Robie
(Texcel Research and Software AG), Mike Champion (ArborText and Software AG), Paul Grosso
(ArborText), Peter Sharpe (SoftQuad, Inc.), Phil Karlton (Netscape), Ray Whitmer (iMall), Rich Rollman
(Microsoft), Rick Gessner (Netscape), Robert Sutor (IBM), Scott Isaacs (Microsoft), Sharon Adler
(INSO), Steve Byrne (JavaSoft), Tim Bray (invited), Tom Pixley (Netscape), Vidur Apparao (Netscape).

Thanks to all those who have helped to improve this specification by sending suggestions and corrections.

Thanks to Joe English, author of cost, which was used as the basis for producing DOM Level 1. Thanks
also to Gavin Nicol, who wrote the scripts which run on top of cost. Arnaud Le Hors and Philippe Le
Hégaret maintained the scripts.

For DOM Level 1 Second edition, we used Xerces as the basis DOM implementation and wish to thank
the authors. Philippe Le Hégaret and Arnaud Le Hors wrote the Java programs which are the DOM
application.

Thanks to Jan Kärrman, author of html2ps for helping so much in creating the Postscript version of the
specification.

123

Appendix E: Acknowledgements

http://www.tdb.uu.se/~jan/html2ps.html
http://dev.w3.org/cvsweb/java/classes/org/w3c/tools/specgenerator/
http://xml.apache.org/xerces-j
http://www.flightlab.com/cost

124

Appendix E: Acknowledgements

Glossary
Editors

Robert S. Sutor, IBM Research

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

16-bit unit
The base unit of a DOMString [p.19] . This indicates that indexing on a DOMString occurs in
units of 16 bits. This must not be misunderstood to mean that a DOMString can store arbitrary
16-bit units. A DOMString is a character string encoded in UTF-16; this means that the restrictions
of UTF-16 as well as the other relevant restrictions on character strings must be maintained. A single
character, for example in the form of a numeric character reference, may correspond to one or two
16-bit units.
For more information, see [Unicode] and [ISO/IEC 10646].

ancestor
An ancestor node of any node A is any node above A in a tree model of a document, where "above"
means "toward the root."

API
An API is an application programming interface, a set of functions or methods used to access some
functionality.

child
A child is an immediate descendant node of a node.

client application
A [client] application is any software that uses the Document Object Model programming interfaces
provided by the hosting implementation to accomplish useful work. Some examples of client
applications are scripts within an HTML or XML document.

COM
COM is Microsoft’s Component Object Model [COM], a technology for building applications from
binary software components.

content model
The content model is a simple grammar governing the allowed types of the child elements and the
order in which they appear. See Element Content in XML [XML].

context
A context specifies an access pattern (or path): a set of interfaces which give you a way to interact
with a model. For example, imagine a model with different colored arcs connecting data nodes. A
context might be a sheet of colored acetate that is placed over the model allowing you a partial view
of the total information in the model.

convenience
A convenience method is an operation on an object that could be accomplished by a program
consisting of more basic operations on the object. Convenience methods are usually provided to
make the API easier and simpler to use or to allow specific programs to create more optimized
implementations for common operations. A similar definition holds for a convenience property.

125

Glossary

http://www.w3.org/TR/1998/REC-xml-19980210#sec-element-content

cooked model
A model for a document that represents the document after it has been manipulated in some way. For
example, any combination of any of the following transformations would create a cooked model:

1. Expansion of internal text entities.
2. Expansion of external entities.
3. Model augmentation with style-specified generated text.
4. Execution of style-specified reordering.
5. Execution of scripts.

A browser might only be able to provide access to a cooked model, while an editor might provide
access to a cooked or the initial structure model (also known as the uncooked model) for a document.

CORBA
CORBA is the Common Object Request Broker Architecture from the OMG [CORBA]. This
architecture is a collection of objects and libraries that allow the creation of applications containing
objects that make and receive requests and responses in a distributed environment.

cursor
A cursor is an object representation of a node. It may possess information about context and the path
traversed to reach the node.

data model
A data model is a collection of descriptions of data structures and their contained fields, together
with the operations or functions that manipulate them.

deprecation
When new releases of specifications are released, some older features may be marked as being
deprecated. This means that new work should not use the features and that although they are
supported in the current release, they may not be supported or available in future releases.

descendant
A descendant node of any node A is any node below A in a tree model of a document, where "above"
means "toward the root."

DOM Level 0
The term "DOM Level 0" refers to a mix (not formally specified) of HTML document functionalities
offered by Netscape Navigator version 3.0 and Microsoft Internet Explorer version 3.0. In some
cases, attributes or methods have been included for reasons of backward compatibility with "DOM
Level 0".

ECMAScript
The programming language defined by the ECMA-262 standard [ECMAScript]. As stated in the
standard, the originating technology for ECMAScript was JavaScript [JavaScript]. Note that in the
ECMAScript binding, the word "property" is used in the same sense as the IDL term "attribute."

element
Each document contains one or more elements, the boundaries of which are either delimited by
start-tags and end-tags, or, for empty elements by an empty-element tag. Each element has a type,
identified by name, and may have a set of attributes. Each attribute has a name and a value. See
Logical Structures in XML [XML].

event propagation, also known as event bubbling
This is the idea that an event can affect one object and a set of related objects. Any of the potentially
affected objects can block the event or substitute a different one (upward event propagation). The
event is broadcast from the node at which it originates to every parent node.

126

Glossary

http://www.w3.org/TR/1998/REC-xml-19980210#sec-logical-struct
http://www.omg.org/

equivalence
Two nodes are equivalent if they have the same node type and same node name. Also, if the nodes
contain data, that must be the same. Finally, if the nodes have attributes the collection of attribute
names must be the same and the attributes corresponding by name must be equivalent as nodes.
Two nodes are deeply equivalent if they are equivalent, their child node lists are equivalent are
equivalent as NodeList [p.35] objects, and their attributes are deeply equivalent.
Two NodeList [p.35] objects are equivalent if they have the same length, and the nodes
corresponding by index are deeply equivalent.
Two NamedNodeMap [p.36] objects are equivalent if they have the same length, they have same
collection of names, and the nodes corresponding by name in the maps are deeply equivalent.
Two DocumentType [p.49] nodes are equivalent if they are equivalent as nodes, have the same
names, and have equivalent entities and attributes NamedNodeMap [p.36] objects.

information item
An information item is an abstract representation of some component of an XML document. See the
[Infoset] for details.

hosting implementation
A [hosting] implementation is a software module that provides an implementation of the DOM
interfaces so that a client application can use them. Some examples of hosting implementations are
browsers, editors and document repositories.

HTML
The HyperText Markup Language (HTML) is a simple markup language used to create hypertext
documents that are portable from one platform to another. HTML documents are SGML documents
with generic semantics that are appropriate for representing information from a wide range of
applications. [HTML3.2] [HTML4.0]

IDL
An Interface Definition Language (IDL) is used to define the interfaces for accessing and operating
objects. Examples of IDLs are the Object Management Group’s IDL [CORBA], Microsoft’s IDL
[MIDL], and Sun’s Java IDL [JavaIDL].

implementor
Companies, organizations, and individuals that claim to support the Document Object Model as an
API for their products.

inheritance
In object-oriented programming, the ability to create new classes (or interfaces) that contain all the
methods and properties of another class (or interface), plus additional methods and properties. If class
(or interface) D inherits from class (or interface) B, then D is said to be derived from B. B is said to
be a base class (or interface) for D. Some programming languages allow for multiple inheritance, that
is, inheritance from more than one class or interface.

initial structure model
Also known as the raw structure model or the uncooked model, this represents the document before it
has been modified by entity expansions, generated text, style-specified reordering, or the execution of
scripts. In some implementations, this might correspond to the "initial parse tree" for the document, if
it ever exists. Note that a given implementation might not be able to provide access to the initial
structure model for a document, though an editor probably would.

interface
An interface is a declaration of a set of methods with no information given about their
implementation. In object systems that support interfaces and inheritance, interfaces can usually

127

Glossary

inherit from one another.
language binding

A programming language binding for an IDL specification is an implementation of the interfaces in
the specification for the given language. For example, a Java language binding for the Document
Object Model IDL specification would implement the concrete Java classes that provide the
functionality exposed by the interfaces.

method
A method is an operation or function that is associated with an object and is allowed to manipulate
the object’s data.

model
A model is the actual data representation for the information at hand. Examples are the structural
model and the style model representing the parse structure and the style information associated with a
document. The model might be a tree, or a directed graph, or something else.

object model
An object model is a collection of descriptions of classes or interfaces, together with their member
data, member functions, and class-static operations.

parent
A parent is an immediate ancestor node of a node.

readonly node
A readonly node is a node that is immutable. This means its list of children, its content, and its
attributes, when it is an element, cannot be changed in any way. However, a readonly node can
possibly be moved, when it is not itself contained in a readonly node.

root node
The root node is the unique node that is not a child of any other node. All other nodes are children or
other descendents of the root node. Well-Formed XML Documents in XML [XML].

sibling
Two nodes are siblings if they have the same parent node.

string comparison
When string matching is required, it is to occur as though the comparison was between 2 sequences
of code points from the Unicode 3.0 standard.

tag valid document
A document is tag valid if all begin and end tags are properly balanced and nested.

type valid document
A document is type valid if it conforms to an explicit DTD.

uncooked model
See initial structure model.

well-formed document
A document is well-formed if it is tag valid and entities are limited to single elements (i.e., single
sub-trees).

XML
Extensible Markup Language (XML) is an extremely simple dialect of SGML. The goal is to enable
generic SGML to be served, received, and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for interoperability with both SGML
and HTML. [XML]

XML name
See XML name in the XML specification [XML].

128

Glossary

http://www.w3.org/TR/1998/REC-xml-19980210#NT-Name
http://www.w3.org/TR/1998/REC-xml-19980210#sec-well-formed

Appendix B: IDL Definitions
This appendix contains the complete OMG IDL for the Level 1 Document Object Model definitions. The
definitions are divided into Core [p.129] , HTML [p.133] .

The IDL files are also available as: http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/idl.zip

Unfortunately the OMG IDL for the Document Object Model HTML is not compliant because of
problems in the validator that was used to validate Level 1. The readOnly attribute on the
HTMLInputElement [p.70] and HTMLTextAreaElement [p.73] interfaces, as well as the object
attribute on the HTMLAppletElement [p.88] interface, are not compliant with OMG IDL 2.2.

B.1: Document Object Model Level 1 Core
This section contains the OMG IDL definitions for the interfaces in the Core Document Object Model
specification, including the extended (XML) interfaces.

dom.idl:
// File: dom.idl

#ifndef _DOM_IDL_
#define _DOM_IDL_

#pragma prefix "w3c.org"
module dom
{

 typedef sequence<unsigned short> DOMString;

 interface NodeList;
 interface NamedNodeMap;
 interface Document;

 exception DOMException {
 unsigned short code;
 };
 // ExceptionCode
 const unsigned short INDEX_SIZE_ERR = 1;
 const unsigned short DOMSTRING_SIZE_ERR = 2;
 const unsigned short HIERARCHY_REQUEST_ERR = 3;
 const unsigned short WRONG_DOCUMENT_ERR = 4;
 const unsigned short INVALID_CHARACTER_ERR = 5;
 const unsigned short NO_DATA_ALLOWED_ERR = 6;
 const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
 const unsigned short NOT_FOUND_ERR = 8;
 const unsigned short NOT_SUPPORTED_ERR = 9;
 const unsigned short INUSE_ATTRIBUTE_ERR = 10;

 interface DOMImplementation {
 boolean hasFeature(in DOMString feature,

129

Appendix B: IDL Definitions

 in DOMString version);
 };

 interface Node {

 // NodeType
 const unsigned short ELEMENT_NODE = 1;
 const unsigned short ATTRIBUTE_NODE = 2;
 const unsigned short TEXT_NODE = 3;
 const unsigned short CDATA_SECTION_NODE = 4;
 const unsigned short ENTITY_REFERENCE_NODE = 5;
 const unsigned short ENTITY_NODE = 6;
 const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
 const unsigned short COMMENT_NODE = 8;
 const unsigned short DOCUMENT_NODE = 9;
 const unsigned short DOCUMENT_TYPE_NODE = 10;
 const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
 const unsigned short NOTATION_NODE = 12;

 readonly attribute DOMString nodeName;
 attribute DOMString nodeValue;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned short nodeType;
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 readonly attribute Node firstChild;
 readonly attribute Node lastChild;
 readonly attribute Node previousSibling;
 readonly attribute Node nextSibling;
 readonly attribute NamedNodeMap attributes;
 readonly attribute Document ownerDocument;
 Node insertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);
 Node replaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 Node removeChild(in Node oldChild)
 raises(DOMException);
 Node appendChild(in Node newChild)
 raises(DOMException);
 boolean hasChildNodes();
 Node cloneNode(in boolean deep)
 raises(DOMException);
 };

 interface NodeList {
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 };

 interface NamedNodeMap {
 Node getNamedItem(in DOMString name);
 Node setNamedItem(in Node arg)
 raises(DOMException);

130

dom.idl:

 Node removeNamedItem(in DOMString name)
 raises(DOMException);
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 };

 interface CharacterData : Node {
 attribute DOMString data;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned long length;
 DOMString substringData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void appendData(in DOMString arg)
 raises(DOMException);
 void insertData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);
 void deleteData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void replaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg)
 raises(DOMException);
 };

 interface Attr : Node {
 readonly attribute DOMString name;
 readonly attribute boolean specified;
 // Modified in DOM Level 1:
 attribute DOMString value;
 // raises(DOMException) on setting

 };

 interface Element : Node {
 readonly attribute DOMString tagName;
 DOMString getAttribute(in DOMString name);
 void setAttribute(in DOMString name,
 in DOMString value)
 raises(DOMException);
 void removeAttribute(in DOMString name)
 raises(DOMException);
 Attr getAttributeNode(in DOMString name);
 Attr setAttributeNode(in Attr newAttr)
 raises(DOMException);
 Attr removeAttributeNode(in Attr oldAttr)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString name);
 void normalize();
 };

 interface Text : CharacterData {
 Text splitText(in unsigned long offset)

131

dom.idl:

 raises(DOMException);
 };

 interface Comment : CharacterData {
 };

 interface CDATASection : Text {
 };

 interface DocumentType : Node {
 readonly attribute DOMString name;
 readonly attribute NamedNodeMap entities;
 readonly attribute NamedNodeMap notations;
 };

 interface Notation : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 };

 interface Entity : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 readonly attribute DOMString notationName;
 };

 interface EntityReference : Node {
 };

 interface ProcessingInstruction : Node {
 readonly attribute DOMString target;
 attribute DOMString data;
 // raises(DOMException) on setting

 };

 interface DocumentFragment : Node {
 };

 interface Document : Node {
 readonly attribute DocumentType doctype;
 readonly attribute DOMImplementation implementation;
 readonly attribute Element documentElement;
 Element createElement(in DOMString tagName)
 raises(DOMException);
 DocumentFragment createDocumentFragment();
 Text createTextNode(in DOMString data);
 Comment createComment(in DOMString data);
 CDATASection createCDATASection(in DOMString data)
 raises(DOMException);
 ProcessingInstruction createProcessingInstruction(in DOMString target,
 in DOMString data)
 raises(DOMException);
 Attr createAttribute(in DOMString name)
 raises(DOMException);
 EntityReference createEntityReference(in DOMString name)
 raises(DOMException);

132

dom.idl:

 NodeList getElementsByTagName(in DOMString tagname);
 };
};

#endif // _DOM_IDL_

B.2: Document Object Model Level 1 HTML

html.idl :
// File: html.idl

#ifndef _HTML_IDL_
#define _HTML_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"
module html
{

 typedef dom::DOMString DOMString;
 typedef dom::Node Node;
 typedef dom::Document Document;
 typedef dom::Element Element;
 typedef dom::NodeList NodeList;

 interface HTMLElement;
 interface HTMLFormElement;
 interface HTMLTableCaptionElement;
 interface HTMLTableSectionElement;

 interface HTMLCollection {
 readonly attribute unsigned long length;
 Node item(in unsigned long index);
 Node namedItem(in DOMString name);
 };

 interface HTMLDocument : Document {
 attribute DOMString title;
 readonly attribute DOMString referrer;
 readonly attribute DOMString domain;
 readonly attribute DOMString URL;
 attribute HTMLElement body;
 readonly attribute HTMLCollection images;
 readonly attribute HTMLCollection applets;
 readonly attribute HTMLCollection links;
 readonly attribute HTMLCollection forms;
 readonly attribute HTMLCollection anchors;
 attribute DOMString cookie;
 void open();
 void close();
 void write(in DOMString text);
 void writeln(in DOMString text);
 Element getElementById(in DOMString elementId);

133

B.2: Document Object Model Level 1 HTML

 NodeList getElementsByName(in DOMString elementName);
 };

 interface HTMLElement : Element {
 attribute DOMString id;
 attribute DOMString title;
 attribute DOMString lang;
 attribute DOMString dir;
 attribute DOMString className;
 };

 interface HTMLHtmlElement : HTMLElement {
 attribute DOMString version;
 };

 interface HTMLHeadElement : HTMLElement {
 attribute DOMString profile;
 };

 interface HTMLLinkElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString charset;
 attribute DOMString href;
 attribute DOMString hreflang;
 attribute DOMString media;
 attribute DOMString rel;
 attribute DOMString rev;
 attribute DOMString target;
 attribute DOMString type;
 };

 interface HTMLTitleElement : HTMLElement {
 attribute DOMString text;
 };

 interface HTMLMetaElement : HTMLElement {
 attribute DOMString content;
 attribute DOMString httpEquiv;
 attribute DOMString name;
 attribute DOMString scheme;
 };

 interface HTMLBaseElement : HTMLElement {
 attribute DOMString href;
 attribute DOMString target;
 };

 interface HTMLIsIndexElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString prompt;
 };

 interface HTMLStyleElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString media;
 attribute DOMString type;
 };

134

html.idl:

 interface HTMLBodyElement : HTMLElement {
 attribute DOMString aLink;
 attribute DOMString background;
 attribute DOMString bgColor;
 attribute DOMString link;
 attribute DOMString text;
 attribute DOMString vLink;
 };

 interface HTMLFormElement : HTMLElement {
 readonly attribute HTMLCollection elements;
 readonly attribute long length;
 attribute DOMString name;
 attribute DOMString acceptCharset;
 attribute DOMString action;
 attribute DOMString enctype;
 attribute DOMString method;
 attribute DOMString target;
 void submit();
 void reset();
 };

 interface HTMLSelectElement : HTMLElement {
 readonly attribute DOMString type;
 attribute long selectedIndex;
 attribute DOMString value;
 readonly attribute long length;
 readonly attribute HTMLFormElement form;
 readonly attribute HTMLCollection options;
 attribute boolean disabled;
 attribute boolean multiple;
 attribute DOMString name;
 attribute long size;
 attribute long tabIndex;
 void add(in HTMLElement element,
 in HTMLElement before)
 raises(dom::DOMException);
 void remove(in long index);
 void blur();
 void focus();
 };

 interface HTMLOptGroupElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString label;
 };

 interface HTMLOptionElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute boolean defaultSelected;
 readonly attribute DOMString text;
 readonly attribute long index;
 attribute boolean disabled;
 attribute DOMString label;
 attribute boolean selected;
 attribute DOMString value;

135

html.idl:

 };

 interface HTMLInputElement : HTMLElement {
 attribute DOMString defaultValue;
 attribute boolean defaultChecked;
 readonly attribute HTMLFormElement form;
 attribute DOMString accept;
 attribute DOMString accessKey;
 attribute DOMString align;
 attribute DOMString alt;
 attribute boolean checked;
 attribute boolean disabled;
 attribute long maxLength;
 attribute DOMString name;
 attribute boolean readOnly;
 attribute DOMString size;
 attribute DOMString src;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString useMap;
 attribute DOMString value;
 void blur();
 void focus();
 void select();
 void click();
 };

 interface HTMLTextAreaElement : HTMLElement {
 attribute DOMString defaultValue;
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute long cols;
 attribute boolean disabled;
 attribute DOMString name;
 attribute boolean readOnly;
 attribute long rows;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString value;
 void blur();
 void focus();
 void select();
 };

 interface HTMLButtonElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute boolean disabled;
 attribute DOMString name;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString value;
 };

 interface HTMLLabelElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;

136

html.idl:

 attribute DOMString htmlFor;
 };

 interface HTMLFieldSetElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 };

 interface HTMLLegendElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute DOMString align;
 };

 interface HTMLUListElement : HTMLElement {
 attribute boolean compact;
 attribute DOMString type;
 };

 interface HTMLOListElement : HTMLElement {
 attribute boolean compact;
 attribute long start;
 attribute DOMString type;
 };

 interface HTMLDListElement : HTMLElement {
 attribute boolean compact;
 };

 interface HTMLDirectoryElement : HTMLElement {
 attribute boolean compact;
 };

 interface HTMLMenuElement : HTMLElement {
 attribute boolean compact;
 };

 interface HTMLLIElement : HTMLElement {
 attribute DOMString type;
 attribute long value;
 };

 interface HTMLDivElement : HTMLElement {
 attribute DOMString align;
 };

 interface HTMLParagraphElement : HTMLElement {
 attribute DOMString align;
 };

 interface HTMLHeadingElement : HTMLElement {
 attribute DOMString align;
 };

 interface HTMLQuoteElement : HTMLElement {
 attribute DOMString cite;
 };

137

html.idl:

 interface HTMLPreElement : HTMLElement {
 attribute long width;
 };

 interface HTMLBRElement : HTMLElement {
 attribute DOMString clear;
 };

 interface HTMLBaseFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
 };

 interface HTMLFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
 };

 interface HTMLHRElement : HTMLElement {
 attribute DOMString align;
 attribute boolean noShade;
 attribute DOMString size;
 attribute DOMString width;
 };

 interface HTMLModElement : HTMLElement {
 attribute DOMString cite;
 attribute DOMString dateTime;
 };

 interface HTMLAnchorElement : HTMLElement {
 attribute DOMString accessKey;
 attribute DOMString charset;
 attribute DOMString coords;
 attribute DOMString href;
 attribute DOMString hreflang;
 attribute DOMString name;
 attribute DOMString rel;
 attribute DOMString rev;
 attribute DOMString shape;
 attribute long tabIndex;
 attribute DOMString target;
 attribute DOMString type;
 void blur();
 void focus();
 };

 interface HTMLImageElement : HTMLElement {
 attribute DOMString lowSrc;
 attribute DOMString name;
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString border;
 attribute DOMString height;
 attribute DOMString hspace;

138

html.idl:

 attribute boolean isMap;
 attribute DOMString longDesc;
 attribute DOMString src;
 attribute DOMString useMap;
 attribute DOMString vspace;
 attribute DOMString width;
 };

 interface HTMLObjectElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString code;
 attribute DOMString align;
 attribute DOMString archive;
 attribute DOMString border;
 attribute DOMString codeBase;
 attribute DOMString codeType;
 attribute DOMString data;
 attribute boolean declare;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute DOMString name;
 attribute DOMString standby;
 attribute long tabIndex;
 attribute DOMString type;
 attribute DOMString useMap;
 attribute DOMString vspace;
 attribute DOMString width;
 };

 interface HTMLParamElement : HTMLElement {
 attribute DOMString name;
 attribute DOMString type;
 attribute DOMString value;
 attribute DOMString valueType;
 };

 interface HTMLAppletElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString archive;
 attribute DOMString code;
 attribute DOMString codeBase;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute DOMString name;
 attribute DOMString object;
 attribute DOMString vspace;
 attribute DOMString width;
 };

 interface HTMLMapElement : HTMLElement {
 readonly attribute HTMLCollection areas;
 attribute DOMString name;
 };

 interface HTMLAreaElement : HTMLElement {
 attribute DOMString accessKey;

139

html.idl:

 attribute DOMString alt;
 attribute DOMString coords;
 attribute DOMString href;
 attribute boolean noHref;
 attribute DOMString shape;
 attribute long tabIndex;
 attribute DOMString target;
 };

 interface HTMLScriptElement : HTMLElement {
 attribute DOMString text;
 attribute DOMString htmlFor;
 attribute DOMString event;
 attribute DOMString charset;
 attribute boolean defer;
 attribute DOMString src;
 attribute DOMString type;
 };

 interface HTMLTableElement : HTMLElement {
 attribute HTMLTableCaptionElement caption;
 attribute HTMLTableSectionElement tHead;
 attribute HTMLTableSectionElement tFoot;
 readonly attribute HTMLCollection rows;
 readonly attribute HTMLCollection tBodies;
 attribute DOMString align;
 attribute DOMString bgColor;
 attribute DOMString border;
 attribute DOMString cellPadding;
 attribute DOMString cellSpacing;
 attribute DOMString frame;
 attribute DOMString rules;
 attribute DOMString summary;
 attribute DOMString width;
 HTMLElement createTHead();
 void deleteTHead();
 HTMLElement createTFoot();
 void deleteTFoot();
 HTMLElement createCaption();
 void deleteCaption();
 HTMLElement insertRow(in long index)
 raises(dom::DOMException);
 void deleteRow(in long index)
 raises(dom::DOMException);
 };

 interface HTMLTableCaptionElement : HTMLElement {
 attribute DOMString align;
 };

 interface HTMLTableColElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute long span;
 attribute DOMString vAlign;
 attribute DOMString width;

140

html.idl:

 };

 interface HTMLTableSectionElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
 readonly attribute HTMLCollection rows;
 HTMLElement insertRow(in long index)
 raises(dom::DOMException);
 void deleteRow(in long index)
 raises(dom::DOMException);
 };

 interface HTMLTableRowElement : HTMLElement {
 readonly attribute long rowIndex;
 readonly attribute long sectionRowIndex;
 readonly attribute HTMLCollection cells;
 attribute DOMString align;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
 HTMLElement insertCell(in long index)
 raises(dom::DOMException);
 void deleteCell(in long index)
 raises(dom::DOMException);
 };

 interface HTMLTableCellElement : HTMLElement {
 readonly attribute long cellIndex;
 attribute DOMString abbr;
 attribute DOMString align;
 attribute DOMString axis;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute long colSpan;
 attribute DOMString headers;
 attribute DOMString height;
 attribute boolean noWrap;
 attribute long rowSpan;
 attribute DOMString scope;
 attribute DOMString vAlign;
 attribute DOMString width;
 };

 interface HTMLFrameSetElement : HTMLElement {
 attribute DOMString cols;
 attribute DOMString rows;
 };

 interface HTMLFrameElement : HTMLElement {
 attribute DOMString frameBorder;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;

141

html.idl:

 attribute DOMString name;
 attribute boolean noResize;
 attribute DOMString scrolling;
 attribute DOMString src;
 };

 interface HTMLIFrameElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString frameBorder;
 attribute DOMString height;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;
 attribute DOMString name;
 attribute DOMString scrolling;
 attribute DOMString src;
 attribute DOMString width;
 };
};

#endif // _HTML_IDL_

142

html.idl:

Appendix C: Java Language Binding
This appendix contains the complete Java binding for the Level 1 Document Object Model. The
definitions are divided into Core [p.143] , HTML [p.149] .

The Java files are also available as
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/java-binding.zip

C.1: Document Object Model Level 1 Core

org/w3c/dom/DOMException.java:
package org.w3c.dom;

public class DOMException extends RuntimeException {
 public DOMException(short code, String message) {
 super(message);
 this.code = code;
 }
 public short code;
 // ExceptionCode
 public static final short INDEX_SIZE_ERR = 1;
 public static final short DOMSTRING_SIZE_ERR = 2;
 public static final short HIERARCHY_REQUEST_ERR = 3;
 public static final short WRONG_DOCUMENT_ERR = 4;
 public static final short INVALID_CHARACTER_ERR = 5;
 public static final short NO_DATA_ALLOWED_ERR = 6;
 public static final short NO_MODIFICATION_ALLOWED_ERR = 7;
 public static final short NOT_FOUND_ERR = 8;
 public static final short NOT_SUPPORTED_ERR = 9;
 public static final short INUSE_ATTRIBUTE_ERR = 10;

}

org/w3c/dom/DOMImplementation.java:
package org.w3c.dom;

public interface DOMImplementation {
 public boolean hasFeature(String feature,
 String version);

}

org/w3c/dom/DocumentFragment.java:
package org.w3c.dom;

public interface DocumentFragment extends Node {
}

143

Appendix C: Java Language Binding

org/w3c/dom/Document.java:
package org.w3c.dom;

public interface Document extends Node {
 public DocumentType getDoctype();

 public DOMImplementation getImplementation();

 public Element getDocumentElement();

 public Element createElement(String tagName)
 throws DOMException;

 public DocumentFragment createDocumentFragment();

 public Text createTextNode(String data);

 public Comment createComment(String data);

 public CDATASection createCDATASection(String data)
 throws DOMException;

 public ProcessingInstruction createProcessingInstruction(String target,
 String data)
 throws DOMException;

 public Attr createAttribute(String name)
 throws DOMException;

 public EntityReference createEntityReference(String name)
 throws DOMException;

 public NodeList getElementsByTagName(String tagname);

}

org/w3c/dom/Node.java:
package org.w3c.dom;

public interface Node {
 // NodeType
 public static final short ELEMENT_NODE = 1;
 public static final short ATTRIBUTE_NODE = 2;
 public static final short TEXT_NODE = 3;
 public static final short CDATA_SECTION_NODE = 4;
 public static final short ENTITY_REFERENCE_NODE = 5;
 public static final short ENTITY_NODE = 6;
 public static final short PROCESSING_INSTRUCTION_NODE = 7;
 public static final short COMMENT_NODE = 8;
 public static final short DOCUMENT_NODE = 9;
 public static final short DOCUMENT_TYPE_NODE = 10;
 public static final short DOCUMENT_FRAGMENT_NODE = 11;
 public static final short NOTATION_NODE = 12;

144

org/w3c/dom/Document.java:

 public String getNodeName();

 public String getNodeValue()
 throws DOMException;
 public void setNodeValue(String nodeValue)
 throws DOMException;

 public short getNodeType();

 public Node getParentNode();

 public NodeList getChildNodes();

 public Node getFirstChild();

 public Node getLastChild();

 public Node getPreviousSibling();

 public Node getNextSibling();

 public NamedNodeMap getAttributes();

 public Document getOwnerDocument();

 public Node insertBefore(Node newChild,
 Node refChild)
 throws DOMException;

 public Node replaceChild(Node newChild,
 Node oldChild)
 throws DOMException;

 public Node removeChild(Node oldChild)
 throws DOMException;

 public Node appendChild(Node newChild)
 throws DOMException;

 public boolean hasChildNodes();

 public Node cloneNode(boolean deep)
 throws DOMException;

}

org/w3c/dom/NodeList.java:
package org.w3c.dom;

public interface NodeList {
 public Node item(int index);

 public int getLength();

}

145

org/w3c/dom/NodeList.java:

org/w3c/dom/NamedNodeMap.java:
package org.w3c.dom;

public interface NamedNodeMap {
 public Node getNamedItem(String name);

 public Node setNamedItem(Node arg)
 throws DOMException;

 public Node removeNamedItem(String name)
 throws DOMException;

 public Node item(int index);

 public int getLength();

}

org/w3c/dom/CharacterData.java:
package org.w3c.dom;

public interface CharacterData extends Node {
 public String getData()
 throws DOMException;
 public void setData(String data)
 throws DOMException;

 public int getLength();

 public String substringData(int offset,
 int count)
 throws DOMException;

 public void appendData(String arg)
 throws DOMException;

 public void insertData(int offset,
 String arg)
 throws DOMException;

 public void deleteData(int offset,
 int count)
 throws DOMException;

 public void replaceData(int offset,
 int count,
 String arg)
 throws DOMException;

}

146

org/w3c/dom/NamedNodeMap.java:

org/w3c/dom/Attr.java:
package org.w3c.dom;

public interface Attr extends Node {
 public String getName();

 public boolean getSpecified();

 public String getValue();
 public void setValue(String value)
 throws DOMException;

}

org/w3c/dom/Element.java:
package org.w3c.dom;

public interface Element extends Node {
 public String getTagName();

 public String getAttribute(String name);

 public void setAttribute(String name,
 String value)
 throws DOMException;

 public void removeAttribute(String name)
 throws DOMException;

 public Attr getAttributeNode(String name);

 public Attr setAttributeNode(Attr newAttr)
 throws DOMException;

 public Attr removeAttributeNode(Attr oldAttr)
 throws DOMException;

 public NodeList getElementsByTagName(String name);

 public void normalize();

}

org/w3c/dom/Text.java:
package org.w3c.dom;

public interface Text extends CharacterData {
 public Text splitText(int offset)
 throws DOMException;

}

147

org/w3c/dom/Attr.java:

org/w3c/dom/Comment.java:
package org.w3c.dom;

public interface Comment extends CharacterData {
}

org/w3c/dom/CDATASection.java:
package org.w3c.dom;

public interface CDATASection extends Text {
}

org/w3c/dom/DocumentType.java:
package org.w3c.dom;

public interface DocumentType extends Node {
 public String getName();

 public NamedNodeMap getEntities();

 public NamedNodeMap getNotations();

}

org/w3c/dom/Notation.java:
package org.w3c.dom;

public interface Notation extends Node {
 public String getPublicId();

 public String getSystemId();

}

org/w3c/dom/Entity.java:
package org.w3c.dom;

public interface Entity extends Node {
 public String getPublicId();

 public String getSystemId();

 public String getNotationName();

}

148

org/w3c/dom/Comment.java:

org/w3c/dom/EntityReference.java:
package org.w3c.dom;

public interface EntityReference extends Node {
}

org/w3c/dom/ProcessingInstruction.java:
package org.w3c.dom;

public interface ProcessingInstruction extends Node {
 public String getTarget();

 public String getData();
 public void setData(String data)
 throws DOMException;

}

C.2: Document Object Model Level 1 HTML

org/w3c/dom/html/HTMLCollection.java:
package org.w3c.dom.html;

import org.w3c.dom.Node;

public interface HTMLCollection {
 public int getLength();

 public Node item(int index);

 public Node namedItem(String name);

}

org/w3c/dom/html/HTMLDocument.java:
package org.w3c.dom.html;

import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Element;

public interface HTMLDocument extends Document {
 public String getTitle();
 public void setTitle(String title);

 public String getReferrer();

 public String getDomain();

149

C.2: Document Object Model Level 1 HTML

 public String getURL();

 public HTMLElement getBody();
 public void setBody(HTMLElement body);

 public HTMLCollection getImages();

 public HTMLCollection getApplets();

 public HTMLCollection getLinks();

 public HTMLCollection getForms();

 public HTMLCollection getAnchors();

 public String getCookie();
 public void setCookie(String cookie);

 public void open();

 public void close();

 public void write(String text);

 public void writeln(String text);

 public Element getElementById(String elementId);

 public NodeList getElementsByName(String elementName);

}

org/w3c/dom/html/HTMLElement.java:
package org.w3c.dom.html;

import org.w3c.dom.Element;

public interface HTMLElement extends Element {
 public String getId();
 public void setId(String id);

 public String getTitle();
 public void setTitle(String title);

 public String getLang();
 public void setLang(String lang);

 public String getDir();
 public void setDir(String dir);

 public String getClassName();
 public void setClassName(String className);

}

150

org/w3c/dom/html/HTMLElement.java:

org/w3c/dom/html/HTMLHtmlElement.java:
package org.w3c.dom.html;

public interface HTMLHtmlElement extends HTMLElement {
 public String getVersion();
 public void setVersion(String version);

}

org/w3c/dom/html/HTMLHeadElement.java:
package org.w3c.dom.html;

public interface HTMLHeadElement extends HTMLElement {
 public String getProfile();
 public void setProfile(String profile);

}

org/w3c/dom/html/HTMLLinkElement.java:
package org.w3c.dom.html;

public interface HTMLLinkElement extends HTMLElement {
 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public String getCharset();
 public void setCharset(String charset);

 public String getHref();
 public void setHref(String href);

 public String getHreflang();
 public void setHreflang(String hreflang);

 public String getMedia();
 public void setMedia(String media);

 public String getRel();
 public void setRel(String rel);

 public String getRev();
 public void setRev(String rev);

 public String getTarget();
 public void setTarget(String target);

 public String getType();
 public void setType(String type);

}

151

org/w3c/dom/html/HTMLHtmlElement.java:

org/w3c/dom/html/HTMLTitleElement.java:
package org.w3c.dom.html;

public interface HTMLTitleElement extends HTMLElement {
 public String getText();
 public void setText(String text);

}

org/w3c/dom/html/HTMLMetaElement.java:
package org.w3c.dom.html;

public interface HTMLMetaElement extends HTMLElement {
 public String getContent();
 public void setContent(String content);

 public String getHttpEquiv();
 public void setHttpEquiv(String httpEquiv);

 public String getName();
 public void setName(String name);

 public String getScheme();
 public void setScheme(String scheme);

}

org/w3c/dom/html/HTMLBaseElement.java:
package org.w3c.dom.html;

public interface HTMLBaseElement extends HTMLElement {
 public String getHref();
 public void setHref(String href);

 public String getTarget();
 public void setTarget(String target);

}

org/w3c/dom/html/HTMLIsIndexElement.java:
package org.w3c.dom.html;

public interface HTMLIsIndexElement extends HTMLElement {
 public HTMLFormElement getForm();

 public String getPrompt();
 public void setPrompt(String prompt);

}

152

org/w3c/dom/html/HTMLTitleElement.java:

org/w3c/dom/html/HTMLStyleElement.java:
package org.w3c.dom.html;

public interface HTMLStyleElement extends HTMLElement {
 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public String getMedia();
 public void setMedia(String media);

 public String getType();
 public void setType(String type);

}

org/w3c/dom/html/HTMLBodyElement.java:
package org.w3c.dom.html;

public interface HTMLBodyElement extends HTMLElement {
 public String getALink();
 public void setALink(String aLink);

 public String getBackground();
 public void setBackground(String background);

 public String getBgColor();
 public void setBgColor(String bgColor);

 public String getLink();
 public void setLink(String link);

 public String getText();
 public void setText(String text);

 public String getVLink();
 public void setVLink(String vLink);

}

org/w3c/dom/html/HTMLFormElement.java:
package org.w3c.dom.html;

public interface HTMLFormElement extends HTMLElement {
 public HTMLCollection getElements();

 public int getLength();

 public String getName();
 public void setName(String name);

 public String getAcceptCharset();
 public void setAcceptCharset(String acceptCharset);

153

org/w3c/dom/html/HTMLStyleElement.java:

 public String getAction();
 public void setAction(String action);

 public String getEnctype();
 public void setEnctype(String enctype);

 public String getMethod();
 public void setMethod(String method);

 public String getTarget();
 public void setTarget(String target);

 public void submit();

 public void reset();

}

org/w3c/dom/html/HTMLSelectElement.java:
package org.w3c.dom.html;

import org.w3c.dom.DOMException;

public interface HTMLSelectElement extends HTMLElement {
 public String getType();

 public int getSelectedIndex();
 public void setSelectedIndex(int selectedIndex);

 public String getValue();
 public void setValue(String value);

 public int getLength();

 public HTMLFormElement getForm();

 public HTMLCollection getOptions();

 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public boolean getMultiple();
 public void setMultiple(boolean multiple);

 public String getName();
 public void setName(String name);

 public int getSize();
 public void setSize(int size);

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public void add(HTMLElement element,

154

org/w3c/dom/html/HTMLSelectElement.java:

 HTMLElement before)
 throws DOMException;

 public void remove(int index);

 public void blur();

 public void focus();

}

org/w3c/dom/html/HTMLOptGroupElement.java:
package org.w3c.dom.html;

public interface HTMLOptGroupElement extends HTMLElement {
 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public String getLabel();
 public void setLabel(String label);

}

org/w3c/dom/html/HTMLOptionElement.java:
package org.w3c.dom.html;

public interface HTMLOptionElement extends HTMLElement {
 public HTMLFormElement getForm();

 public boolean getDefaultSelected();
 public void setDefaultSelected(boolean defaultSelected);

 public String getText();

 public int getIndex();

 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public String getLabel();
 public void setLabel(String label);

 public boolean getSelected();
 public void setSelected(boolean selected);

 public String getValue();
 public void setValue(String value);

}

155

org/w3c/dom/html/HTMLOptGroupElement.java:

org/w3c/dom/html/HTMLInputElement.java:
package org.w3c.dom.html;

public interface HTMLInputElement extends HTMLElement {
 public String getDefaultValue();
 public void setDefaultValue(String defaultValue);

 public boolean getDefaultChecked();
 public void setDefaultChecked(boolean defaultChecked);

 public HTMLFormElement getForm();

 public String getAccept();
 public void setAccept(String accept);

 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public String getAlign();
 public void setAlign(String align);

 public String getAlt();
 public void setAlt(String alt);

 public boolean getChecked();
 public void setChecked(boolean checked);

 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public int getMaxLength();
 public void setMaxLength(int maxLength);

 public String getName();
 public void setName(String name);

 public boolean getReadOnly();
 public void setReadOnly(boolean readOnly);

 public String getSize();
 public void setSize(String size);

 public String getSrc();
 public void setSrc(String src);

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public String getType();

 public String getUseMap();
 public void setUseMap(String useMap);

 public String getValue();
 public void setValue(String value);

156

org/w3c/dom/html/HTMLInputElement.java:

 public void blur();

 public void focus();

 public void select();

 public void click();

}

org/w3c/dom/html/HTMLTextAreaElement.java:
package org.w3c.dom.html;

public interface HTMLTextAreaElement extends HTMLElement {
 public String getDefaultValue();
 public void setDefaultValue(String defaultValue);

 public HTMLFormElement getForm();

 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public int getCols();
 public void setCols(int cols);

 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public String getName();
 public void setName(String name);

 public boolean getReadOnly();
 public void setReadOnly(boolean readOnly);

 public int getRows();
 public void setRows(int rows);

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public String getType();

 public String getValue();
 public void setValue(String value);

 public void blur();

 public void focus();

 public void select();

}

157

org/w3c/dom/html/HTMLTextAreaElement.java:

org/w3c/dom/html/HTMLButtonElement.java:
package org.w3c.dom.html;

public interface HTMLButtonElement extends HTMLElement {
 public HTMLFormElement getForm();

 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public boolean getDisabled();
 public void setDisabled(boolean disabled);

 public String getName();
 public void setName(String name);

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public String getType();

 public String getValue();
 public void setValue(String value);

}

org/w3c/dom/html/HTMLLabelElement.java:
package org.w3c.dom.html;

public interface HTMLLabelElement extends HTMLElement {
 public HTMLFormElement getForm();

 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public String getHtmlFor();
 public void setHtmlFor(String htmlFor);

}

org/w3c/dom/html/HTMLFieldSetElement.java:
package org.w3c.dom.html;

public interface HTMLFieldSetElement extends HTMLElement {
 public HTMLFormElement getForm();

}

158

org/w3c/dom/html/HTMLButtonElement.java:

org/w3c/dom/html/HTMLLegendElement.java:
package org.w3c.dom.html;

public interface HTMLLegendElement extends HTMLElement {
 public HTMLFormElement getForm();

 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public String getAlign();
 public void setAlign(String align);

}

org/w3c/dom/html/HTMLUListElement.java:
package org.w3c.dom.html;

public interface HTMLUListElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);

 public String getType();
 public void setType(String type);

}

org/w3c/dom/html/HTMLOListElement.java:
package org.w3c.dom.html;

public interface HTMLOListElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);

 public int getStart();
 public void setStart(int start);

 public String getType();
 public void setType(String type);

}

org/w3c/dom/html/HTMLDListElement.java:
package org.w3c.dom.html;

public interface HTMLDListElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);

}

159

org/w3c/dom/html/HTMLLegendElement.java:

org/w3c/dom/html/HTMLDirectoryElement.java:
package org.w3c.dom.html;

public interface HTMLDirectoryElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);

}

org/w3c/dom/html/HTMLMenuElement.java:
package org.w3c.dom.html;

public interface HTMLMenuElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);

}

org/w3c/dom/html/HTMLLIElement.java:
package org.w3c.dom.html;

public interface HTMLLIElement extends HTMLElement {
 public String getType();
 public void setType(String type);

 public int getValue();
 public void setValue(int value);

}

org/w3c/dom/html/HTMLDivElement.java:
package org.w3c.dom.html;

public interface HTMLDivElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

}

org/w3c/dom/html/HTMLParagraphElement.java:
package org.w3c.dom.html;

public interface HTMLParagraphElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

}

160

org/w3c/dom/html/HTMLDirectoryElement.java:

org/w3c/dom/html/HTMLHeadingElement.java:
package org.w3c.dom.html;

public interface HTMLHeadingElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

}

org/w3c/dom/html/HTMLQuoteElement.java:
package org.w3c.dom.html;

public interface HTMLQuoteElement extends HTMLElement {
 public String getCite();
 public void setCite(String cite);

}

org/w3c/dom/html/HTMLPreElement.java:
package org.w3c.dom.html;

public interface HTMLPreElement extends HTMLElement {
 public int getWidth();
 public void setWidth(int width);

}

org/w3c/dom/html/HTMLBRElement.java:
package org.w3c.dom.html;

public interface HTMLBRElement extends HTMLElement {
 public String getClear();
 public void setClear(String clear);

}

org/w3c/dom/html/HTMLBaseFontElement.java:
package org.w3c.dom.html;

public interface HTMLBaseFontElement extends HTMLElement {
 public String getColor();
 public void setColor(String color);

 public String getFace();
 public void setFace(String face);

161

org/w3c/dom/html/HTMLHeadingElement.java:

 public String getSize();
 public void setSize(String size);

}

org/w3c/dom/html/HTMLFontElement.java:
package org.w3c.dom.html;

public interface HTMLFontElement extends HTMLElement {
 public String getColor();
 public void setColor(String color);

 public String getFace();
 public void setFace(String face);

 public String getSize();
 public void setSize(String size);

}

org/w3c/dom/html/HTMLHRElement.java:
package org.w3c.dom.html;

public interface HTMLHRElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

 public boolean getNoShade();
 public void setNoShade(boolean noShade);

 public String getSize();
 public void setSize(String size);

 public String getWidth();
 public void setWidth(String width);

}

org/w3c/dom/html/HTMLModElement.java:
package org.w3c.dom.html;

public interface HTMLModElement extends HTMLElement {
 public String getCite();
 public void setCite(String cite);

 public String getDateTime();
 public void setDateTime(String dateTime);

}

162

org/w3c/dom/html/HTMLFontElement.java:

org/w3c/dom/html/HTMLAnchorElement.java:
package org.w3c.dom.html;

public interface HTMLAnchorElement extends HTMLElement {
 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public String getCharset();
 public void setCharset(String charset);

 public String getCoords();
 public void setCoords(String coords);

 public String getHref();
 public void setHref(String href);

 public String getHreflang();
 public void setHreflang(String hreflang);

 public String getName();
 public void setName(String name);

 public String getRel();
 public void setRel(String rel);

 public String getRev();
 public void setRev(String rev);

 public String getShape();
 public void setShape(String shape);

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public String getTarget();
 public void setTarget(String target);

 public String getType();
 public void setType(String type);

 public void blur();

 public void focus();

}

org/w3c/dom/html/HTMLImageElement.java:
package org.w3c.dom.html;

public interface HTMLImageElement extends HTMLElement {
 public String getLowSrc();
 public void setLowSrc(String lowSrc);

 public String getName();

163

org/w3c/dom/html/HTMLAnchorElement.java:

 public void setName(String name);

 public String getAlign();
 public void setAlign(String align);

 public String getAlt();
 public void setAlt(String alt);

 public String getBorder();
 public void setBorder(String border);

 public String getHeight();
 public void setHeight(String height);

 public String getHspace();
 public void setHspace(String hspace);

 public boolean getIsMap();
 public void setIsMap(boolean isMap);

 public String getLongDesc();
 public void setLongDesc(String longDesc);

 public String getSrc();
 public void setSrc(String src);

 public String getUseMap();
 public void setUseMap(String useMap);

 public String getVspace();
 public void setVspace(String vspace);

 public String getWidth();
 public void setWidth(String width);

}

org/w3c/dom/html/HTMLObjectElement.java:
package org.w3c.dom.html;

public interface HTMLObjectElement extends HTMLElement {
 public HTMLFormElement getForm();

 public String getCode();
 public void setCode(String code);

 public String getAlign();
 public void setAlign(String align);

 public String getArchive();
 public void setArchive(String archive);

 public String getBorder();
 public void setBorder(String border);

164

org/w3c/dom/html/HTMLObjectElement.java:

 public String getCodeBase();
 public void setCodeBase(String codeBase);

 public String getCodeType();
 public void setCodeType(String codeType);

 public String getData();
 public void setData(String data);

 public boolean getDeclare();
 public void setDeclare(boolean declare);

 public String getHeight();
 public void setHeight(String height);

 public String getHspace();
 public void setHspace(String hspace);

 public String getName();
 public void setName(String name);

 public String getStandby();
 public void setStandby(String standby);

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public String getType();
 public void setType(String type);

 public String getUseMap();
 public void setUseMap(String useMap);

 public String getVspace();
 public void setVspace(String vspace);

 public String getWidth();
 public void setWidth(String width);

}

org/w3c/dom/html/HTMLParamElement.java:
package org.w3c.dom.html;

public interface HTMLParamElement extends HTMLElement {
 public String getName();
 public void setName(String name);

 public String getType();
 public void setType(String type);

 public String getValue();
 public void setValue(String value);

165

org/w3c/dom/html/HTMLParamElement.java:

 public String getValueType();
 public void setValueType(String valueType);

}

org/w3c/dom/html/HTMLAppletElement.java:
package org.w3c.dom.html;

public interface HTMLAppletElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

 public String getAlt();
 public void setAlt(String alt);

 public String getArchive();
 public void setArchive(String archive);

 public String getCode();
 public void setCode(String code);

 public String getCodeBase();
 public void setCodeBase(String codeBase);

 public String getHeight();
 public void setHeight(String height);

 public String getHspace();
 public void setHspace(String hspace);

 public String getName();
 public void setName(String name);

 public String getObject();
 public void setObject(String object);

 public String getVspace();
 public void setVspace(String vspace);

 public String getWidth();
 public void setWidth(String width);

}

org/w3c/dom/html/HTMLMapElement.java:
package org.w3c.dom.html;

public interface HTMLMapElement extends HTMLElement {
 public HTMLCollection getAreas();

 public String getName();
 public void setName(String name);

}

166

org/w3c/dom/html/HTMLAppletElement.java:

org/w3c/dom/html/HTMLAreaElement.java:
package org.w3c.dom.html;

public interface HTMLAreaElement extends HTMLElement {
 public String getAccessKey();
 public void setAccessKey(String accessKey);

 public String getAlt();
 public void setAlt(String alt);

 public String getCoords();
 public void setCoords(String coords);

 public String getHref();
 public void setHref(String href);

 public boolean getNoHref();
 public void setNoHref(boolean noHref);

 public String getShape();
 public void setShape(String shape);

 public int getTabIndex();
 public void setTabIndex(int tabIndex);

 public String getTarget();
 public void setTarget(String target);

}

org/w3c/dom/html/HTMLScriptElement.java:
package org.w3c.dom.html;

public interface HTMLScriptElement extends HTMLElement {
 public String getText();
 public void setText(String text);

 public String getHtmlFor();
 public void setHtmlFor(String htmlFor);

 public String getEvent();
 public void setEvent(String event);

 public String getCharset();
 public void setCharset(String charset);

 public boolean getDefer();
 public void setDefer(boolean defer);

 public String getSrc();
 public void setSrc(String src);

167

org/w3c/dom/html/HTMLAreaElement.java:

 public String getType();
 public void setType(String type);

}

org/w3c/dom/html/HTMLTableElement.java:
package org.w3c.dom.html;

import org.w3c.dom.DOMException;

public interface HTMLTableElement extends HTMLElement {
 public HTMLTableCaptionElement getCaption();
 public void setCaption(HTMLTableCaptionElement caption);

 public HTMLTableSectionElement getTHead();
 public void setTHead(HTMLTableSectionElement tHead);

 public HTMLTableSectionElement getTFoot();
 public void setTFoot(HTMLTableSectionElement tFoot);

 public HTMLCollection getRows();

 public HTMLCollection getTBodies();

 public String getAlign();
 public void setAlign(String align);

 public String getBgColor();
 public void setBgColor(String bgColor);

 public String getBorder();
 public void setBorder(String border);

 public String getCellPadding();
 public void setCellPadding(String cellPadding);

 public String getCellSpacing();
 public void setCellSpacing(String cellSpacing);

 public String getFrame();
 public void setFrame(String frame);

 public String getRules();
 public void setRules(String rules);

 public String getSummary();
 public void setSummary(String summary);

 public String getWidth();
 public void setWidth(String width);

 public HTMLElement createTHead();

 public void deleteTHead();

168

org/w3c/dom/html/HTMLTableElement.java:

 public HTMLElement createTFoot();

 public void deleteTFoot();

 public HTMLElement createCaption();

 public void deleteCaption();

 public HTMLElement insertRow(int index)
 throws DOMException;

 public void deleteRow(int index)
 throws DOMException;

}

org/w3c/dom/html/HTMLTableCaptionElement.java:
package org.w3c.dom.html;

public interface HTMLTableCaptionElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

}

org/w3c/dom/html/HTMLTableColElement.java:
package org.w3c.dom.html;

public interface HTMLTableColElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

 public String getCh();
 public void setCh(String ch);

 public String getChOff();
 public void setChOff(String chOff);

 public int getSpan();
 public void setSpan(int span);

 public String getVAlign();
 public void setVAlign(String vAlign);

 public String getWidth();
 public void setWidth(String width);

}

169

org/w3c/dom/html/HTMLTableCaptionElement.java:

org/w3c/dom/html/HTMLTableSectionElement.java:
package org.w3c.dom.html;

import org.w3c.dom.DOMException;

public interface HTMLTableSectionElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

 public String getCh();
 public void setCh(String ch);

 public String getChOff();
 public void setChOff(String chOff);

 public String getVAlign();
 public void setVAlign(String vAlign);

 public HTMLCollection getRows();

 public HTMLElement insertRow(int index)
 throws DOMException;

 public void deleteRow(int index)
 throws DOMException;

}

org/w3c/dom/html/HTMLTableRowElement.java:
package org.w3c.dom.html;

import org.w3c.dom.DOMException;

public interface HTMLTableRowElement extends HTMLElement {
 public int getRowIndex();

 public int getSectionRowIndex();

 public HTMLCollection getCells();

 public String getAlign();
 public void setAlign(String align);

 public String getBgColor();
 public void setBgColor(String bgColor);

 public String getCh();
 public void setCh(String ch);

 public String getChOff();
 public void setChOff(String chOff);

 public String getVAlign();
 public void setVAlign(String vAlign);

170

org/w3c/dom/html/HTMLTableSectionElement.java:

 public HTMLElement insertCell(int index)
 throws DOMException;

 public void deleteCell(int index)
 throws DOMException;

}

org/w3c/dom/html/HTMLTableCellElement.java:
package org.w3c.dom.html;

public interface HTMLTableCellElement extends HTMLElement {
 public int getCellIndex();

 public String getAbbr();
 public void setAbbr(String abbr);

 public String getAlign();
 public void setAlign(String align);

 public String getAxis();
 public void setAxis(String axis);

 public String getBgColor();
 public void setBgColor(String bgColor);

 public String getCh();
 public void setCh(String ch);

 public String getChOff();
 public void setChOff(String chOff);

 public int getColSpan();
 public void setColSpan(int colSpan);

 public String getHeaders();
 public void setHeaders(String headers);

 public String getHeight();
 public void setHeight(String height);

 public boolean getNoWrap();
 public void setNoWrap(boolean noWrap);

 public int getRowSpan();
 public void setRowSpan(int rowSpan);

 public String getScope();
 public void setScope(String scope);

 public String getVAlign();
 public void setVAlign(String vAlign);

171

org/w3c/dom/html/HTMLTableCellElement.java:

 public String getWidth();
 public void setWidth(String width);

}

org/w3c/dom/html/HTMLFrameSetElement.java:
package org.w3c.dom.html;

public interface HTMLFrameSetElement extends HTMLElement {
 public String getCols();
 public void setCols(String cols);

 public String getRows();
 public void setRows(String rows);

}

org/w3c/dom/html/HTMLFrameElement.java:
package org.w3c.dom.html;

public interface HTMLFrameElement extends HTMLElement {
 public String getFrameBorder();
 public void setFrameBorder(String frameBorder);

 public String getLongDesc();
 public void setLongDesc(String longDesc);

 public String getMarginHeight();
 public void setMarginHeight(String marginHeight);

 public String getMarginWidth();
 public void setMarginWidth(String marginWidth);

 public String getName();
 public void setName(String name);

 public boolean getNoResize();
 public void setNoResize(boolean noResize);

 public String getScrolling();
 public void setScrolling(String scrolling);

 public String getSrc();
 public void setSrc(String src);

}

172

org/w3c/dom/html/HTMLFrameSetElement.java:

org/w3c/dom/html/HTMLIFrameElement.java:
package org.w3c.dom.html;

public interface HTMLIFrameElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);

 public String getFrameBorder();
 public void setFrameBorder(String frameBorder);

 public String getHeight();
 public void setHeight(String height);

 public String getLongDesc();
 public void setLongDesc(String longDesc);

 public String getMarginHeight();
 public void setMarginHeight(String marginHeight);

 public String getMarginWidth();
 public void setMarginWidth(String marginWidth);

 public String getName();
 public void setName(String name);

 public String getScrolling();
 public void setScrolling(String scrolling);

 public String getSrc();
 public void setSrc(String src);

 public String getWidth();
 public void setWidth(String width);

}

173

org/w3c/dom/html/HTMLIFrameElement.java:

174

org/w3c/dom/html/HTMLIFrameElement.java:

Appendix D: ECMA Script Language Binding
This appendix contains the complete ECMA Script binding for the Level 1 Document Object Model
definitions. The definitions are divided into Core [p.175] and HTML [p.181] .

D.1: Document Object Model Level 1 Core
Object DOMImplementation

The DOMImplementation object has the following methods:
hasFeature(feature, version)

This method returns a Boolean.
The feature parameter is of type String.
The version parameter is of type String.

Object DocumentFragment
DocumentFragment has the all the properties and methods of the Node object as well as the
properties and methods defined below.

Object Document
Document has the all the properties and methods of the Node object as well as the properties and
methods defined below.
The Document object has the following properties:

doctype
This read-only property is a DocumentType object.

implementation
This read-only property is a DOMImplementation object.

documentElement
This read-only property is a Element object.

The Document object has the following methods:
createElement(tagName)

This method returns a Element object.
The tagName parameter is of type String.

createDocumentFragment()
This method returns a DocumentFragment object.

createTextNode(data)
This method returns a Text object.
The data parameter is of type String.

createComment(data)
This method returns a Comment object.
The data parameter is of type String.

createCDATASection(data)
This method returns a CDATASection object.
The data parameter is of type String.

createProcessingInstruction(target, data)
This method returns a ProcessingInstruction object.
The target parameter is of type String.
The data parameter is of type String.

175

Appendix D: ECMA Script Language Binding

createAttribute(name)
This method returns a Attr object.
The name parameter is of type String.

createEntityReference(name)
This method returns a EntityReference object.
The name parameter is of type String.

getElementsByTagName(tagname)
This method returns a NodeList object.
The tagname parameter is of type String.

Prototype Object Node
The Node class has the following constants:

Node.ELEMENT_NODE
This constant is of type Number and its value is 1.

Node.ATTRIBUTE_NODE
This constant is of type Number and its value is 2.

Node.TEXT_NODE
This constant is of type Number and its value is 3.

Node.CDATA_SECTION_NODE
This constant is of type Number and its value is 4.

Node.ENTITY_REFERENCE_NODE
This constant is of type Number and its value is 5.

Node.ENTITY_NODE
This constant is of type Number and its value is 6.

Node.PROCESSING_INSTRUCTION_NODE
This constant is of type Number and its value is 7.

Node.COMMENT_NODE
This constant is of type Number and its value is 8.

Node.DOCUMENT_NODE
This constant is of type Number and its value is 9.

Node.DOCUMENT_TYPE_NODE
This constant is of type Number and its value is 10.

Node.DOCUMENT_FRAGMENT_NODE
This constant is of type Number and its value is 11.

Node.NOTATION_NODE
This constant is of type Number and its value is 12.

Object Node
The Node object has the following properties:

nodeName
This read-only property is of type String.

nodeValue
This property is of type String.

nodeType
This read-only property is of type Number.

parentNode
This read-only property is a Node object.

176

D.1: Document Object Model Level 1 Core

childNodes
This read-only property is a NodeList object.

firstChild
This read-only property is a Node object.

lastChild
This read-only property is a Node object.

previousSibling
This read-only property is a Node object.

nextSibling
This read-only property is a Node object.

attributes
This read-only property is a NamedNodeMap object.

ownerDocument
This read-only property is a Document object.

The Node object has the following methods:
insertBefore(newChild, refChild)

This method returns a Node object.
The newChild parameter is a Node object.
The refChild parameter is a Node object.

replaceChild(newChild, oldChild)
This method returns a Node object.
The newChild parameter is a Node object.
The oldChild parameter is a Node object.

removeChild(oldChild)
This method returns a Node object.
The oldChild parameter is a Node object.

appendChild(newChild)
This method returns a Node object.
The newChild parameter is a Node object.

hasChildNodes()
This method returns a Boolean.

cloneNode(deep)
This method returns a Node object.
The deep parameter is of type Boolean.

Object NodeList
The NodeList object has the following properties:

length
This read-only property is of type Number.

The NodeList object has the following methods:
item(index)

This method returns a Node object.
The index parameter is of type Number.
Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).
Dereferencing with an integer index is equivalent to invoking the item method with that
index.

177

D.1: Document Object Model Level 1 Core

Object NamedNodeMap
The NamedNodeMap object has the following properties:

length
This read-only property is of type Number.

The NamedNodeMap object has the following methods:
getNamedItem(name)

This method returns a Node object.
The name parameter is of type String.

setNamedItem(arg)
This method returns a Node object.
The arg parameter is a Node object.

removeNamedItem(name)
This method returns a Node object.
The name parameter is of type String.

item(index)
This method returns a Node object.
The index parameter is of type Number.
Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).
Dereferencing with an integer index is equivalent to invoking the item method with that
index.

Object CharacterData
CharacterData has the all the properties and methods of the Node object as well as the properties
and methods defined below.
The CharacterData object has the following properties:

data
This property is of type String.

length
This read-only property is of type Number.

The CharacterData object has the following methods:
substringData(offset, count)

This method returns a String.
The offset parameter is of type Number.
The count parameter is of type Number.

appendData(arg)
This method has no return value.
The arg parameter is of type String.

insertData(offset, arg)
This method has no return value.
The offset parameter is of type Number.
The arg parameter is of type String.

deleteData(offset, count)
This method has no return value.
The offset parameter is of type Number.
The count parameter is of type Number.

replaceData(offset, count, arg)
This method has no return value.

178

D.1: Document Object Model Level 1 Core

The offset parameter is of type Number.
The count parameter is of type Number.
The arg parameter is of type String.

Object Attr
Attr has the all the properties and methods of the Node object as well as the properties and methods
defined below.
The Attr object has the following properties:

name
This read-only property is of type String.

specified
This read-only property is of type Boolean.

value
This property is of type String.

Object Element
Element has the all the properties and methods of the Node object as well as the properties and
methods defined below.
The Element object has the following properties:

tagName
This read-only property is of type String.

The Element object has the following methods:
getAttribute(name)

This method returns a String.
The name parameter is of type String.

setAttribute(name, value)
This method has no return value.
The name parameter is of type String.
The value parameter is of type String.

removeAttribute(name)
This method has no return value.
The name parameter is of type String.

getAttributeNode(name)
This method returns a Attr object.
The name parameter is of type String.

setAttributeNode(newAttr)
This method returns a Attr object.
The newAttr parameter is a Attr object.

removeAttributeNode(oldAttr)
This method returns a Attr object.
The oldAttr parameter is a Attr object.

getElementsByTagName(name)
This method returns a NodeList object.
The name parameter is of type String.

normalize()
This method has no return value.

Object Text

179

D.1: Document Object Model Level 1 Core

Text has the all the properties and methods of the CharacterData object as well as the properties
and methods defined below.
The Text object has the following methods:

splitText(offset)
This method returns a Text object.
The offset parameter is of type Number.

Object Comment
Comment has the all the properties and methods of the CharacterData object as well as the
properties and methods defined below.

Object CDATASection
CDATASection has the all the properties and methods of the Text object as well as the properties
and methods defined below.

Object DocumentType
DocumentType has the all the properties and methods of the Node object as well as the properties
and methods defined below.
The DocumentType object has the following properties:

name
This read-only property is of type String.

entities
This read-only property is a NamedNodeMap object.

notations
This read-only property is a NamedNodeMap object.

Object Notation
Notation has the all the properties and methods of the Node object as well as the properties and
methods defined below.
The Notation object has the following properties:

publicId
This read-only property is of type String.

systemId
This read-only property is of type String.

Object Entity
Entity has the all the properties and methods of the Node object as well as the properties and
methods defined below.
The Entity object has the following properties:

publicId
This read-only property is of type String.

systemId
This read-only property is of type String.

notationName
This read-only property is of type String.

Object EntityReference
EntityReference has the all the properties and methods of the Node object as well as the properties
and methods defined below.

Object ProcessingInstruction
ProcessingInstruction has the all the properties and methods of the Node object as well as the
properties and methods defined below.

180

D.1: Document Object Model Level 1 Core

The ProcessingInstruction object has the following properties:
target

This read-only property is of type String.
data

This property is of type String.

D.2: Document Object Model Level 1 HTML
Object HTMLCollection

The HTMLCollection object has the following properties:
length

This read-only property is of type Number.
The HTMLCollection object has the following methods:

item(index)
This method returns a Node object.
The index parameter is of type Number.
Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).
Dereferencing with an integer index is equivalent to invoking the item method with that
index.

namedItem(name)
This method returns a Node object.
The name parameter is of type String.
Note: This object can also be dereferenced using square bracket notation (e.g. obj["foo"]).
Dereferencing using a string index is equivalent to invoking the namedItem method with
that index.

Object HTMLDocument
HTMLDocument has the all the properties and methods of the Document object as well as the
properties and methods defined below.
The HTMLDocument object has the following properties:

title
This property is of type String.

referrer
This read-only property is of type String.

domain
This read-only property is of type String.

URL
This read-only property is of type String.

body
This property is a HTMLElement object.

images
This read-only property is a HTMLCollection object.

applets
This read-only property is a HTMLCollection object.

links
This read-only property is a HTMLCollection object.

181

D.2: Document Object Model Level 1 HTML

forms
This read-only property is a HTMLCollection object.

anchors
This read-only property is a HTMLCollection object.

cookie
This property is of type String.

The HTMLDocument object has the following methods:
open()

This method has no return value.
close()

This method has no return value.
write(text)

This method has no return value.
The text parameter is of type String.

writeln(text)
This method has no return value.
The text parameter is of type String.

getElementById(elementId)
This method returns a Element object.
The elementId parameter is of type String.

getElementsByName(elementName)
This method returns a NodeList object.
The elementName parameter is of type String.

Object HTMLElement
HTMLElement has the all the properties and methods of the Element object as well as the
properties and methods defined below.
The HTMLElement object has the following properties:

id
This property is of type String.

title
This property is of type String.

lang
This property is of type String.

dir
This property is of type String.

className
This property is of type String.

Object HTMLHtmlElement
HTMLHtmlElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLHtmlElement object has the following properties:

version
This property is of type String.

Object HTMLHeadElement
HTMLHeadElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.

182

D.2: Document Object Model Level 1 HTML

The HTMLHeadElement object has the following properties:
profile

This property is of type String.
Object HTMLLinkElement

HTMLLinkElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLLinkElement object has the following properties:

disabled
This property is of type Boolean.

charset
This property is of type String.

href
This property is of type String.

hreflang
This property is of type String.

media
This property is of type String.

rel
This property is of type String.

rev
This property is of type String.

target
This property is of type String.

type
This property is of type String.

Object HTMLTitleElement
HTMLTitleElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLTitleElement object has the following properties:

text
This property is of type String.

Object HTMLMetaElement
HTMLMetaElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLMetaElement object has the following properties:

content
This property is of type String.

httpEquiv
This property is of type String.

name
This property is of type String.

scheme
This property is of type String.

Object HTMLBaseElement
HTMLBaseElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.

183

D.2: Document Object Model Level 1 HTML

The HTMLBaseElement object has the following properties:
href

This property is of type String.
target

This property is of type String.
Object HTMLIsIndexElement

HTMLIsIndexElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLIsIndexElement object has the following properties:

form
This read-only property is a HTMLFormElement object.

prompt
This property is of type String.

Object HTMLStyleElement
HTMLStyleElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLStyleElement object has the following properties:

disabled
This property is of type Boolean.

media
This property is of type String.

type
This property is of type String.

Object HTMLBodyElement
HTMLBodyElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLBodyElement object has the following properties:

aLink
This property is of type String.

background
This property is of type String.

bgColor
This property is of type String.

link
This property is of type String.

text
This property is of type String.

vLink
This property is of type String.

Object HTMLFormElement
HTMLFormElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLFormElement object has the following properties:

elements
This read-only property is a HTMLCollection object.

184

D.2: Document Object Model Level 1 HTML

length
This read-only property is a long object.

name
This property is of type String.

acceptCharset
This property is of type String.

action
This property is of type String.

enctype
This property is of type String.

method
This property is of type String.

target
This property is of type String.

The HTMLFormElement object has the following methods:
submit()

This method has no return value.
reset()

This method has no return value.
Object HTMLSelectElement

HTMLSelectElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLSelectElement object has the following properties:

type
This read-only property is of type String.

selectedIndex
This property is a long object.

value
This property is of type String.

length
This read-only property is a long object.

form
This read-only property is a HTMLFormElement object.

options
This read-only property is a HTMLCollection object.

disabled
This property is of type Boolean.

multiple
This property is of type Boolean.

name
This property is of type String.

size
This property is a long object.

tabIndex
This property is a long object.

185

D.2: Document Object Model Level 1 HTML

The HTMLSelectElement object has the following methods:
add(element, before)

This method has no return value.
The element parameter is a HTMLElement object.
The before parameter is a HTMLElement object.

remove(index)
This method has no return value.
The index parameter is a long object.

blur()
This method has no return value.

focus()
This method has no return value.

Object HTMLOptGroupElement
HTMLOptGroupElement has the all the properties and methods of the HTMLElement object as
well as the properties and methods defined below.
The HTMLOptGroupElement object has the following properties:

disabled
This property is of type Boolean.

label
This property is of type String.

Object HTMLOptionElement
HTMLOptionElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLOptionElement object has the following properties:

form
This read-only property is a HTMLFormElement object.

defaultSelected
This property is of type Boolean.

text
This read-only property is of type String.

index
This read-only property is a long object.

disabled
This property is of type Boolean.

label
This property is of type String.

selected
This property is of type Boolean.

value
This property is of type String.

Object HTMLInputElement
HTMLInputElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLInputElement object has the following properties:

defaultValue
This property is of type String.

186

D.2: Document Object Model Level 1 HTML

defaultChecked
This property is of type Boolean.

form
This read-only property is a HTMLFormElement object.

accept
This property is of type String.

accessKey
This property is of type String.

align
This property is of type String.

alt
This property is of type String.

checked
This property is of type Boolean.

disabled
This property is of type Boolean.

maxLength
This property is a long object.

name
This property is of type String.

readOnly
This property is of type Boolean.

size
This property is of type String.

src
This property is of type String.

tabIndex
This property is a long object.

type
This read-only property is of type String.

useMap
This property is of type String.

value
This property is of type String.

The HTMLInputElement object has the following methods:
blur()

This method has no return value.
focus()

This method has no return value.
select()

This method has no return value.
click()

This method has no return value.
Object HTMLTextAreaElement

HTMLTextAreaElement has the all the properties and methods of the HTMLElement object as
well as the properties and methods defined below.

187

D.2: Document Object Model Level 1 HTML

The HTMLTextAreaElement object has the following properties:
defaultValue

This property is of type String.
form

This read-only property is a HTMLFormElement object.
accessKey

This property is of type String.
cols

This property is a long object.
disabled

This property is of type Boolean.
name

This property is of type String.
readOnly

This property is of type Boolean.
rows

This property is a long object.
tabIndex

This property is a long object.
type

This read-only property is of type String.
value

This property is of type String.
The HTMLTextAreaElement object has the following methods:

blur()
This method has no return value.

focus()
This method has no return value.

select()
This method has no return value.

Object HTMLButtonElement
HTMLButtonElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLButtonElement object has the following properties:

form
This read-only property is a HTMLFormElement object.

accessKey
This property is of type String.

disabled
This property is of type Boolean.

name
This property is of type String.

tabIndex
This property is a long object.

type
This read-only property is of type String.

188

D.2: Document Object Model Level 1 HTML

value
This property is of type String.

Object HTMLLabelElement
HTMLLabelElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLLabelElement object has the following properties:

form
This read-only property is a HTMLFormElement object.

accessKey
This property is of type String.

htmlFor
This property is of type String.

Object HTMLFieldSetElement
HTMLFieldSetElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLFieldSetElement object has the following properties:

form
This read-only property is a HTMLFormElement object.

Object HTMLLegendElement
HTMLLegendElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLLegendElement object has the following properties:

form
This read-only property is a HTMLFormElement object.

accessKey
This property is of type String.

align
This property is of type String.

Object HTMLUListElement
HTMLUListElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLUListElement object has the following properties:

compact
This property is of type Boolean.

type
This property is of type String.

Object HTMLOListElement
HTMLOListElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLOListElement object has the following properties:

compact
This property is of type Boolean.

start
This property is a long object.

type
This property is of type String.

189

D.2: Document Object Model Level 1 HTML

Object HTMLDListElement
HTMLDListElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLDListElement object has the following properties:

compact
This property is of type Boolean.

Object HTMLDirectoryElement
HTMLDirectoryElement has the all the properties and methods of the HTMLElement object as
well as the properties and methods defined below.
The HTMLDirectoryElement object has the following properties:

compact
This property is of type Boolean.

Object HTMLMenuElement
HTMLMenuElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLMenuElement object has the following properties:

compact
This property is of type Boolean.

Object HTMLLIElement
HTMLLIElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLLIElement object has the following properties:

type
This property is of type String.

value
This property is a long object.

Object HTMLDivElement
HTMLDivElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLDivElement object has the following properties:

align
This property is of type String.

Object HTMLParagraphElement
HTMLParagraphElement has the all the properties and methods of the HTMLElement object as
well as the properties and methods defined below.
The HTMLParagraphElement object has the following properties:

align
This property is of type String.

Object HTMLHeadingElement
HTMLHeadingElement has the all the properties and methods of the HTMLElement object as
well as the properties and methods defined below.
The HTMLHeadingElement object has the following properties:

align
This property is of type String.

Object HTMLQuoteElement

190

D.2: Document Object Model Level 1 HTML

HTMLQuoteElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLQuoteElement object has the following properties:

cite
This property is of type String.

Object HTMLPreElement
HTMLPreElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLPreElement object has the following properties:

width
This property is a long object.

Object HTMLBRElement
HTMLBRElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLBRElement object has the following properties:

clear
This property is of type String.

Object HTMLBaseFontElement
HTMLBaseFontElement has the all the properties and methods of the HTMLElement object as
well as the properties and methods defined below.
The HTMLBaseFontElement object has the following properties:

color
This property is of type String.

face
This property is of type String.

size
This property is of type String.

Object HTMLFontElement
HTMLFontElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLFontElement object has the following properties:

color
This property is of type String.

face
This property is of type String.

size
This property is of type String.

Object HTMLHRElement
HTMLHRElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLHRElement object has the following properties:

align
This property is of type String.

noShade
This property is of type Boolean.

191

D.2: Document Object Model Level 1 HTML

size
This property is of type String.

width
This property is of type String.

Object HTMLModElement
HTMLModElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLModElement object has the following properties:

cite
This property is of type String.

dateTime
This property is of type String.

Object HTMLAnchorElement
HTMLAnchorElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLAnchorElement object has the following properties:

accessKey
This property is of type String.

charset
This property is of type String.

coords
This property is of type String.

href
This property is of type String.

hreflang
This property is of type String.

name
This property is of type String.

rel
This property is of type String.

rev
This property is of type String.

shape
This property is of type String.

tabIndex
This property is a long object.

target
This property is of type String.

type
This property is of type String.

The HTMLAnchorElement object has the following methods:
blur()

This method has no return value.
focus()

This method has no return value.

192

D.2: Document Object Model Level 1 HTML

Object HTMLImageElement
HTMLImageElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLImageElement object has the following properties:

lowSrc
This property is of type String.

name
This property is of type String.

align
This property is of type String.

alt
This property is of type String.

border
This property is of type String.

height
This property is of type String.

hspace
This property is of type String.

isMap
This property is of type Boolean.

longDesc
This property is of type String.

src
This property is of type String.

useMap
This property is of type String.

vspace
This property is of type String.

width
This property is of type String.

Object HTMLObjectElement
HTMLObjectElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLObjectElement object has the following properties:

form
This read-only property is a HTMLFormElement object.

code
This property is of type String.

align
This property is of type String.

archive
This property is of type String.

border
This property is of type String.

codeBase
This property is of type String.

193

D.2: Document Object Model Level 1 HTML

codeType
This property is of type String.

data
This property is of type String.

declare
This property is of type Boolean.

height
This property is of type String.

hspace
This property is of type String.

name
This property is of type String.

standby
This property is of type String.

tabIndex
This property is a long object.

type
This property is of type String.

useMap
This property is of type String.

vspace
This property is of type String.

width
This property is of type String.

Object HTMLParamElement
HTMLParamElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLParamElement object has the following properties:

name
This property is of type String.

type
This property is of type String.

value
This property is of type String.

valueType
This property is of type String.

Object HTMLAppletElement
HTMLAppletElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLAppletElement object has the following properties:

align
This property is of type String.

alt
This property is of type String.

archive
This property is of type String.

194

D.2: Document Object Model Level 1 HTML

code
This property is of type String.

codeBase
This property is of type String.

height
This property is of type String.

hspace
This property is of type String.

name
This property is of type String.

object
This property is of type String.

vspace
This property is of type String.

width
This property is of type String.

Object HTMLMapElement
HTMLMapElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLMapElement object has the following properties:

areas
This read-only property is a HTMLCollection object.

name
This property is of type String.

Object HTMLAreaElement
HTMLAreaElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLAreaElement object has the following properties:

accessKey
This property is of type String.

alt
This property is of type String.

coords
This property is of type String.

href
This property is of type String.

noHref
This property is of type Boolean.

shape
This property is of type String.

tabIndex
This property is a long object.

target
This property is of type String.

Object HTMLScriptElement

195

D.2: Document Object Model Level 1 HTML

HTMLScriptElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLScriptElement object has the following properties:

text
This property is of type String.

htmlFor
This property is of type String.

event
This property is of type String.

charset
This property is of type String.

defer
This property is of type Boolean.

src
This property is of type String.

type
This property is of type String.

Object HTMLTableElement
HTMLTableElement has the all the properties and methods of the HTMLElement object as well as
the properties and methods defined below.
The HTMLTableElement object has the following properties:

caption
This property is a HTMLTableCaptionElement object.

tHead
This property is a HTMLTableSectionElement object.

tFoot
This property is a HTMLTableSectionElement object.

rows
This read-only property is a HTMLCollection object.

tBodies
This read-only property is a HTMLCollection object.

align
This property is of type String.

bgColor
This property is of type String.

border
This property is of type String.

cellPadding
This property is of type String.

cellSpacing
This property is of type String.

frame
This property is of type String.

rules
This property is of type String.

196

D.2: Document Object Model Level 1 HTML

summary
This property is of type String.

width
This property is of type String.

The HTMLTableElement object has the following methods:
createTHead()

This method returns a HTMLElement object.
deleteTHead()

This method has no return value.
createTFoot()

This method returns a HTMLElement object.
deleteTFoot()

This method has no return value.
createCaption()

This method returns a HTMLElement object.
deleteCaption()

This method has no return value.
insertRow(index)

This method returns a HTMLElement object.
The index parameter is a long object.

deleteRow(index)
This method has no return value.
The index parameter is a long object.

Object HTMLTableCaptionElement
HTMLTableCaptionElement has the all the properties and methods of the HTMLElement object
as well as the properties and methods defined below.
The HTMLTableCaptionElement object has the following properties:

align
This property is of type String.

Object HTMLTableColElement
HTMLTableColElement has the all the properties and methods of the HTMLElement object as
well as the properties and methods defined below.
The HTMLTableColElement object has the following properties:

align
This property is of type String.

ch
This property is of type String.

chOff
This property is of type String.

span
This property is a long object.

vAlign
This property is of type String.

width
This property is of type String.

197

D.2: Document Object Model Level 1 HTML

Object HTMLTableSectionElement
HTMLTableSectionElement has the all the properties and methods of the HTMLElement object as
well as the properties and methods defined below.
The HTMLTableSectionElement object has the following properties:

align
This property is of type String.

ch
This property is of type String.

chOff
This property is of type String.

vAlign
This property is of type String.

rows
This read-only property is a HTMLCollection object.

The HTMLTableSectionElement object has the following methods:
insertRow(index)

This method returns a HTMLElement object.
The index parameter is a long object.

deleteRow(index)
This method has no return value.
The index parameter is a long object.

Object HTMLTableRowElement
HTMLTableRowElement has the all the properties and methods of the HTMLElement object as
well as the properties and methods defined below.
The HTMLTableRowElement object has the following properties:

rowIndex
This read-only property is a long object.

sectionRowIndex
This read-only property is a long object.

cells
This read-only property is a HTMLCollection object.

align
This property is of type String.

bgColor
This property is of type String.

ch
This property is of type String.

chOff
This property is of type String.

vAlign
This property is of type String.

The HTMLTableRowElement object has the following methods:
insertCell(index)

This method returns a HTMLElement object.
The index parameter is a long object.

198

D.2: Document Object Model Level 1 HTML

deleteCell(index)
This method has no return value.
The index parameter is a long object.

Object HTMLTableCellElement
HTMLTableCellElement has the all the properties and methods of the HTMLElement object as
well as the properties and methods defined below.
The HTMLTableCellElement object has the following properties:

cellIndex
This read-only property is a long object.

abbr
This property is of type String.

align
This property is of type String.

axis
This property is of type String.

bgColor
This property is of type String.

ch
This property is of type String.

chOff
This property is of type String.

colSpan
This property is a long object.

headers
This property is of type String.

height
This property is of type String.

noWrap
This property is of type Boolean.

rowSpan
This property is a long object.

scope
This property is of type String.

vAlign
This property is of type String.

width
This property is of type String.

Object HTMLFrameSetElement
HTMLFrameSetElement has the all the properties and methods of the HTMLElement object as
well as the properties and methods defined below.
The HTMLFrameSetElement object has the following properties:

cols
This property is of type String.

rows
This property is of type String.

199

D.2: Document Object Model Level 1 HTML

Object HTMLFrameElement
HTMLFrameElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLFrameElement object has the following properties:

frameBorder
This property is of type String.

longDesc
This property is of type String.

marginHeight
This property is of type String.

marginWidth
This property is of type String.

name
This property is of type String.

noResize
This property is of type Boolean.

scrolling
This property is of type String.

src
This property is of type String.

Object HTMLIFrameElement
HTMLIFrameElement has the all the properties and methods of the HTMLElement object as well
as the properties and methods defined below.
The HTMLIFrameElement object has the following properties:

align
This property is of type String.

frameBorder
This property is of type String.

height
This property is of type String.

longDesc
This property is of type String.

marginHeight
This property is of type String.

marginWidth
This property is of type String.

name
This property is of type String.

scrolling
This property is of type String.

src
This property is of type String.

width
This property is of type String.

200

D.2: Document Object Model Level 1 HTML

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

G.1: Normative references
Charmod

W3C (World Wide Web Consortium) Character Model for the World Wide Web, November 1999.
Available at http://www.w3.org/TR/1999/WD-charmod-19991129

ECMAScript
ECMA (European Computer Manufacturers Association) ECMAScript Language Specification.
Available at http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

HTML4.0
W3C (World Wide Web Consortium) HTML 4.0 Specification, April 1998. Available at
http://www.w3.org/TR/1998/REC-html40-19980424

ISO/IEC 10646
ISO (International Organization for Standardization). ISO/IEC 10646-1:2000 (E). Information
technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1: Architecture and Basic
Multilingual Plane. [Geneva]: International Organization for Standardization.

Java
Sun Microsystems Inc. The Java Language Specification, James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/books/jls

OMGIDL
OMG (Object Management Group) IDL (Interface Definition Language) defined in The Common
Object Request Broker: Architecture and Specification, version 2.2. Available at
http://www.omg.org/

Unicode
The Unicode Consortium. The Unicode Standard, Version 3.0., February 2000. Available at
http://www.unicode.org/unicode/standard/versions/Unicode3.0.html.

XML
W3C (World Wide Web Consortium) Extensible Markup Language (XML) 1.0, February 1998.
Available at http://www.w3.org/TR/1998/REC-xml-19980210

G.2: Informative references
COM

Microsoft Corporation The Component Object Model. Available at http://www.microsoft.com/com
CORBA

OMG (Object Management Group) The Common Object Request Broker: Architecture and
Specification, version 2.3.1, October 1999. Available at http://www.omg.org/

HTML3.2
W3C (World Wide Web Consortium) HTML 3.2 Specification, January 1997. Available at
http://www.w3.org/TR/REC-html32

201

References

http://www.w3.org/TR/REC-html32
http://www.omg.org/
http://www.microsoft.com/com
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.unicode.org/unicode/standard/versions/Unicode3.0.html
http://www.omg.org/
http://java.sun.com/docs/books/jls
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR/1999/WD-charmod-19991129
http://www.w3.org/TR

Infoset
W3C (World Wide Web Consortium) XML Information Set, December 1999. Available at
http://www.w3.org/TR/xml-infoset

JavaIDL
Sun Microsystems Inc. Java IDL. Available at http://java.sun.com/products/jdk/1.2/docs/guide/idl

JavaScript
Netscape Communications Corporation JavaScript Resources. Available at
http://developer.netscape.com/one/javascript/resources.html

MIDL
Microsoft Corporation MIDL Language Reference. Available at
http://msdn.microsoft.com/library/psdk/midl/mi-laref_1r1h.htm

XHTML10
W3C (World Wide Web Consortium) XHTML 1.0: Extensible HyperText Markup Language, A
Reformulation of HTML 4.0 in XML 1.0. Available at
http://www.w3.org/TR/2000/REC-xhtml1-20000126

XPointer
W3C (World Wide Web Consortium) XML Pointer Language (XPointer), June 2000. Available at
http://www.w3.org/TR/xptr

202

G.2: Informative references

http://www.w3.org/TR/xptr
http://www.w3.org/TR/2000/REC-xhtml1-20000126
http://msdn.microsoft.com/library/psdk/midl/mi-laref_1r1h.htm
http://developer.netscape.com/one/javascript/resources.html
http://java.sun.com/products/jdk/1.2/docs/guide/idl
http://www.w3.org/TR/xml-infoset

Objects Index

Document Object Model Core

Attr, 42 CDATASection, 48 CharacterData, 38

Comment, 48 DOMException, 20 DOMImplementation, 22

DOMString, 19 Document, 23 DocumentFragment, 23

DocumentType, 49 Element, 43 Entity, 51

EntityReference, 52 ExceptionCode, 21 NamedNodeMap, 36

Node, 28 NodeList, 35 Notation, 50

ProcessingInstruction, 52 Text, 47

Document Object Model HTML

203

Objects Index

HTMLAnchorElement, 82 HTMLAppletElement, 88 HTMLAreaElement, 89

HTMLBRElement, 80 HTMLBaseElement, 63
HTMLBaseFontElement,
80

HTMLBodyElement, 64 HTMLButtonElement, 74 HTMLCollection, 54

HTMLDListElement, 77 HTMLDirectoryElement, 78 HTMLDivElement, 79

HTMLDocument, 55 HTMLElement, 59 HTMLFieldSetElement, 76

HTMLFontElement, 81 HTMLFormElement, 65 HTMLFrameElement, 101

HTMLFrameSetElement, 100 HTMLHRElement, 81 HTMLHeadElement, 61

HTMLHeadingElement, 79 HTMLHtmlElement, 60 HTMLIFrameElement, 102

HTMLImageElement, 84 HTMLInputElement, 70 HTMLIsIndexElement, 63

HTMLLIElement, 78 HTMLLabelElement, 75 HTMLLegendElement, 76

HTMLLinkElement, 61 HTMLMapElement, 89 HTMLMenuElement, 78

HTMLMetaElement, 62 HTMLModElement, 82 HTMLOListElement, 77

HTMLObjectElement, 85 HTMLOptGroupElement, 68 HTMLOptionElement, 69

HTMLParagraphElement, 79 HTMLParamElement, 87 HTMLPreElement, 80

HTMLQuoteElement, 79 HTMLScriptElement, 90 HTMLSelectElement, 66

HTMLStyleElement, 63
HTMLTableCaptionElement,
95

HTMLTableCellElement,
99

HTMLTableColElement, 95 HTMLTableElement, 91
HTMLTableRowElement,
97

HTMLTableSectionElement,
96

HTMLTextAreaElement, 73 HTMLTitleElement, 62

HTMLUListElement, 77

204

Document Object Model HTML

Index
16-bit unit 19, 20, 38, 39, 40, 39, 40, 47,
125

abbr accept acceptCharset

accessKey 70, 73, 75, 76, 76, 83, 90 action add

align 70, 76, 79, 79, 79, 82, 84, 86, 88,
92, 95, 95, 96, 98, 99, 102

aLink alt 71, 84, 88, 90

ancestor anchors API

appendChild appendData applets

archive 86, 88 areas Attr

ATTRIBUTE_NODE attributes axis

background bgColor 64, 92, 98, 100 blur 68, 72, 74, 84

body border 84, 86, 92

caption CDATA_SECTION_NODE CDATASection

cellIndex cellPadding cells

cellSpacing ch 95, 96, 98, 100 CharacterData

Charmod 20, 201 charset 61, 83, 91 checked

child childNodes chOff 95, 96, 98, 100

cite 80, 82 className clear

click client application cloneNode

close code 86, 88 codeBase 86, 88

codeType color 81, 81 cols 73, 101

colSpan COM 125, 201 Comment

COMMENT_NODE compact 77, 77, 78, 78, 78 content

content model context convenience

cooked model cookie coords 83, 90

CORBA 11, 126, 127, 201 createAttribute createCaption

createCDATASection createComment createDocumentFragment

createElement createEntityReference createProcessingInstruction

createTextNode createTFoot createTHead

cursor

205

Index

data 39, 52, 86 data model dateTime

declare defaultChecked defaultSelected

defaultValue 71, 73 defer deleteCaption

deleteCell deleteData deleteRow 94, 96

deleteTFoot deleteTHead deprecation

descendant dir disabled 61, 64, 67, 69, 69, 71, 73, 75

doctype Document DOCUMENT_FRAGMENT_NODE

DOCUMENT_NODE DOCUMENT_TYPE_NODE documentElement

DocumentFragment DocumentType DOM Level 0 53, 54, 59, 126

domain DOMException DOMImplementation

DOMString DOMSTRING_SIZE_ERR

ECMAScript 11, 126, 201 Element 43, 126 ELEMENT_NODE

elements enctype entities

Entity ENTITY_NODE ENTITY_REFERENCE_NODE

EntityReference equivalence event

event propagation, also known as event
bubbling

face 81, 81 firstChild focus 68, 72, 74, 84

form 63, 67, 69, 71, 73, 75, 76, 76, 76,
86

forms frame

frameBorder 101, 102

getAttribute getAttributeNode getElementById

getElementsByName getElementsByTagName 27, 44 getNamedItem

hasChildNodes hasFeature headers

height 85, 86, 89, 100, 102 HIERARCHY_REQUEST_ERR hosting implementation

href 61, 63, 83, 90 hreflang 62, 83 hspace 85, 87, 89

HTML HTML3.2 127, 201 HTML4.0 53, 127, 201

HTMLAnchorElement HTMLAppletElement HTMLAreaElement

HTMLBaseElement HTMLBaseFontElement HTMLBodyElement

HTMLBRElement HTMLButtonElement HTMLCollection

206

Index

HTMLDirectoryElement HTMLDivElement HTMLDListElement

HTMLDocument HTMLElement HTMLFieldSetElement

HTMLFontElement htmlFor 76, 91 HTMLFormElement

HTMLFrameElement HTMLFrameSetElement HTMLHeadElement

HTMLHeadingElement HTMLHRElement HTMLHtmlElement

HTMLIFrameElement HTMLImageElement HTMLInputElement

HTMLIsIndexElement HTMLLabelElement HTMLLegendElement

HTMLLIElement HTMLLinkElement HTMLMapElement

HTMLMenuElement HTMLMetaElement HTMLModElement

HTMLObjectElement HTMLOListElement HTMLOptGroupElement

HTMLOptionElement HTMLParagraphElement HTMLParamElement

HTMLPreElement HTMLQuoteElement HTMLScriptElement

HTMLSelectElement HTMLStyleElement HTMLTableCaptionElement

HTMLTableCellElement HTMLTableColElement HTMLTableElement

HTMLTableRowElement HTMLTableSectionElement HTMLTextAreaElement

HTMLTitleElement HTMLUListElement httpEquiv

id IDL images

implementation implementor index

INDEX_SIZE_ERR information item 47, 127 Infoset 11, 13, 127, 202

inheritance initial structure model insertBefore

insertCell insertData insertRow 94, 97

interface INUSE_ATTRIBUTE_ERR INVALID_CHARACTER_ERR

isMap ISO/IEC 10646 19, 125, 201 item 35, 37, 55

Java 11, 201 JavaIDL 127, 202 JavaScript 126, 202

label 69, 69 lang language binding

lastChild length 35, 36, 39, 55, 65, 67 link

links live 18, 35, 36 longDesc 85, 101, 102

lowSrc

marginHeight 101, 102 marginWidth 101, 102 maxLength

media 62, 64 method 66, 128 MIDL 127, 202

207

Index

model multiple

name 42, 50, 63, 66, 67, 71, 74, 75, 83,
85, 87, 87, 89, 89, 101, 103

namedItem NamedNodeMap

nextSibling NO_DATA_ALLOWED_ERR NO_MODIFICATION_ALLOWED_ERR

Node NodeList nodeName

nodeType nodeValue noHref

noResize normalize noShade

NOT_FOUND_ERR NOT_SUPPORTED_ERR Notation

NOTATION_NODE notationName notations

noWrap

object object model OMGIDL 11, 201

open options ownerDocument

parent parentNode previousSibling

PROCESSING_INSTRUCTION_NODE ProcessingInstruction profile

prompt publicId 50, 51

readOnly 71, 74
readonly node 32, 50, 51, 52,
128

referrer

rel 62, 83 remove removeAttribute

removeAttributeNode removeChild removeNamedItem

replaceChild replaceData reset

rev 62, 83 root node rowIndex

rows 74, 92, 96, 101 rowSpan rules

scheme scope scrolling 102, 103

sectionRowIndex select 73, 74 selected

selectedIndex setAttribute setAttributeNode

setNamedItem shape 83, 90 sibling

size 67, 71, 81, 81, 82 span specified

splitText src 72, 85, 91, 102, 103 standby

start string comparison submit

substringData summary systemId 50, 51

208

Index

tabIndex 67, 72, 74, 75, 83, 87, 90 tag valid document tagName

target 52, 62, 63, 66, 83, 90 tBodies Text 47, 62, 65, 70, 91

TEXT_NODE tFoot tHead

title 57, 60
type 62, 64, 67, 72, 74, 75, 77,
77, 78, 83, 87, 87, 91

type valid document

uncooked model Unicode 19, 125, 201 URL

useMap 72, 85, 87

vAlign 96, 96, 98, 100
value 43, 67, 70, 72, 74, 75, 79,
88

valueType

version vLink vspace 85, 87, 89

well-formed document
width 80, 82, 85, 87, 89, 93, 96,
100, 103

write

writeln WRONG_DOCUMENT_ERR

XHTML10 53, 202
XML 50, 128, 125, 126, 128,
128, 201

XML name 22, 128

XPointer 45, 202

209

Index

210

Index

Production Notes (Non-Normative)
Editors

Gavin Nicol, Inso EPS

The DOM specification serves as a good example of the power of using XML: all of the HTML
documents, Java bindings, OMG IDL bindings, and ECMA Script bindings are generated from a single set
of XML source files. This section outlines how this specification is written in XML, and how the various
derived works are created.

A. The Document Type Definition
This specification was written entirely in XML, using a DTD based heavily on the DTD used by the XML
Working Group for the XML specification. The major difference between the DTD used by the XML
Working Group, and the DTD used for this specification is the addition of a DTD module for interface
specifications.

The DTD module for interfaces specifications is a very loose translation of the Extended Backus-Naur
Form (EBNF) specification of the OMG IDL syntax into XML DTD syntax. In addition to the translation,
the ability to describe the interfaces was added, thereby creating a limited form of literate programming
for interface definitions.

While the DTD module is sufficient for the purposes of the DOM WG, it is very loosely typed, meaning
that there are very few constraints placed on the type specifications (the type information is effectively
treated as an opaque string). In a DTD for object to object communication, some stricter enforcement of
data types would probably be beneficial.

B. The production process
The DOM specification is written using XML. All documents are valid XML. In order to produce the
HTML versions of the specification, the object indexes, the Java source code, and the OMG IDL and
ECMA Script definitions, the XML specification is converted.

The tool currently used for conversion is COST by Joe English. COST takes the ESIS output of nsgmls,
creates an internal representation, and then allows scripts, and event handlers to be run over the internal
data structure. Event handlers allow document patterns and associated processing to be specified: when
the pattern is matched during a pre-order traversal of a document subtree, the associated action is
executed. This is the heart of the conversion process. Scripts are used to tie the various components
together. For example, each of the major derived data sources (Java code etc.) is created by the execution
of a script, which in turn executes one or more event handlers. The scripts and event handlers are specified
using TCL.

The current version of COST has been somewhat modified from the publicly available version. In
particular, it now runs correctly under 32-bit Windows, uses TCL 8.0, and correctly handles the case
sensitivity of XML (though it probably could not correctly handle native language markup).

211

Production Notes (Non-Normative)

We could also have used Jade, by James Clark. Like COST, Jade allows patterns and actions to be
specified, but Jade is based on DSSSL, an international standard, whereas COST is not. Jade is more
powerful than COST in many ways, but prior experience of the editor with Cost made it easier to use this
rather than Jade. A future version or Level of the DOM specification may be produced using Jade or an
XSL processor.

The complete XML source files are available at:
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/xml-source.zip

Note: The DOM Level 1 Specification Second Edition has been produced using a DOM Level 2
implementation and an XPath implementation in Java.

C. Object Definitions
As stated earlier, all object definitions are specified in XML. The Java bindings, OMG IDL bindings, and
ECMA Script bindings are all generated automatically from the XML source code.

This is possible because the information specified in XML is a superset of what these other syntax need.
This is a general observation, and the same kind of technique can be applied to many other areas: given
rich structure, rich processing and conversion are possible. For Java and OMG IDL, it is basically just a
matter of renaming syntactic keywords; for ECMA Script, the process is somewhat more involved.

A typical object definition in XML looks something like this:

<interface name="foo">
 <descr><p>Description goes here...</p></descr>
 <method name="bar">
 <descr><p>Description goes here...</p></descr>
 <parameters>
 <param name="baz" type="DOMString" attr="in">
 <descr><p>Description goes here...</p></descr>
 </param>
 </parameters>
 <returns type="void">
 <descr><p>Description goes here...</p></descr>
 </returns>
 <raises>
 <!-- Throws no exceptions -->
 </raises>
 </method>
</interface>

As can easily be seen, this is quite verbose, but not unlike OMG IDL. In fact, when the specification was
originally converted to use XML, the OMG IDL definitions were automatically converted into the
corresponding XML source using common Unix text manipulation tools.

212

C. Object Definitions

	Document Object Model †DOM‡ Level 1 Specification †Second Edition‡
	Version 1.0
	W3C Working Draft 29 September, 2000
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	What is the Document Object Model?
	Introduction
	What the Document Object Model is
	What the Document Object Model is not
	Where the Document Object Model came from
	Entities and the DOM Core
	Compliance
	DOM Interfaces and DOM Implementations
	Limitations of Level 1

	1. Document Object Model Core
	1.1. Overview of the DOM Core Interfaces
	1.1.1. The DOM Structure Model
	1.1.2. Memory Management
	1.1.3. Naming Conventions
	1.1.4. Inheritance vs. Flattened Views of the API
	1.1.5. The DOMString type
	1.1.6. String comparisons in the DOM

	1.2. Fundamental Interfaces
	1.3. Extended Interfaces

	2. Document Object Model HTML
	2.1. Introduction
	2.2. HTML Application of Core DOM
	2.2.1. Naming Conventions
	2.2.1.1. Properties and Methods
	2.2.1.2. Non-HTML 4.0 interfaces and attributes

	2.3. Miscellaneous Object Definitions
	2.4. Objects related to HTML documents
	2.5. HTML Elements
	2.5.1. Property Attributes
	2.5.2. Naming Exceptions
	2.5.3. Exposing Element Type Names †tagName‡
	2.5.4. The HTMLElement interface
	2.5.5. Object definitions

	Appendix A: Changes
	A.1: Changes in the "What is the Document Object Model?"
	A.2: Changes in the Document Object Model Core
	A.3: Changes in the Document Object Model HTML
	A.4: Changes in the Appendices

	Appendix E: Acknowledgements
	Glossary
	Appendix B: IDL Definitions
	B.1: Document Object Model Level 1 Core
	dom.idl:

	B.2: Document Object Model Level 1 HTML
	html.idl:

	Appendix C: Java Language Binding
	C.1: Document Object Model Level 1 Core
	org/w3c/dom/DOMException.java:
	org/w3c/dom/DOMImplementation.java:
	org/w3c/dom/DocumentFragment.java:
	org/w3c/dom/Document.java:
	org/w3c/dom/Node.java:
	org/w3c/dom/NodeList.java:
	org/w3c/dom/NamedNodeMap.java:
	org/w3c/dom/CharacterData.java:
	org/w3c/dom/Attr.java:
	org/w3c/dom/Element.java:
	org/w3c/dom/Text.java:
	org/w3c/dom/Comment.java:
	org/w3c/dom/CDATASection.java:
	org/w3c/dom/DocumentType.java:
	org/w3c/dom/Notation.java:
	org/w3c/dom/Entity.java:
	org/w3c/dom/EntityReference.java:
	org/w3c/dom/ProcessingInstruction.java:

	C.2: Document Object Model Level 1 HTML
	org/w3c/dom/html/HTMLCollection.java:
	org/w3c/dom/html/HTMLDocument.java:
	org/w3c/dom/html/HTMLElement.java:
	org/w3c/dom/html/HTMLHtmlElement.java:
	org/w3c/dom/html/HTMLHeadElement.java:
	org/w3c/dom/html/HTMLLinkElement.java:
	org/w3c/dom/html/HTMLTitleElement.java:
	org/w3c/dom/html/HTMLMetaElement.java:
	org/w3c/dom/html/HTMLBaseElement.java:
	org/w3c/dom/html/HTMLIsIndexElement.java:
	org/w3c/dom/html/HTMLStyleElement.java:
	org/w3c/dom/html/HTMLBodyElement.java:
	org/w3c/dom/html/HTMLFormElement.java:
	org/w3c/dom/html/HTMLSelectElement.java:
	org/w3c/dom/html/HTMLOptGroupElement.java:
	org/w3c/dom/html/HTMLOptionElement.java:
	org/w3c/dom/html/HTMLInputElement.java:
	org/w3c/dom/html/HTMLTextAreaElement.java:
	org/w3c/dom/html/HTMLButtonElement.java:
	org/w3c/dom/html/HTMLLabelElement.java:
	org/w3c/dom/html/HTMLFieldSetElement.java:
	org/w3c/dom/html/HTMLLegendElement.java:
	org/w3c/dom/html/HTMLUListElement.java:
	org/w3c/dom/html/HTMLOListElement.java:
	org/w3c/dom/html/HTMLDListElement.java:
	org/w3c/dom/html/HTMLDirectoryElement.java:
	org/w3c/dom/html/HTMLMenuElement.java:
	org/w3c/dom/html/HTMLLIElement.java:
	org/w3c/dom/html/HTMLDivElement.java:
	org/w3c/dom/html/HTMLParagraphElement.java:
	org/w3c/dom/html/HTMLHeadingElement.java:
	org/w3c/dom/html/HTMLQuoteElement.java:
	org/w3c/dom/html/HTMLPreElement.java:
	org/w3c/dom/html/HTMLBRElement.java:
	org/w3c/dom/html/HTMLBaseFontElement.java:
	org/w3c/dom/html/HTMLFontElement.java:
	org/w3c/dom/html/HTMLHRElement.java:
	org/w3c/dom/html/HTMLModElement.java:
	org/w3c/dom/html/HTMLAnchorElement.java:
	org/w3c/dom/html/HTMLImageElement.java:
	org/w3c/dom/html/HTMLObjectElement.java:
	org/w3c/dom/html/HTMLParamElement.java:
	org/w3c/dom/html/HTMLAppletElement.java:
	org/w3c/dom/html/HTMLMapElement.java:
	org/w3c/dom/html/HTMLAreaElement.java:
	org/w3c/dom/html/HTMLScriptElement.java:
	org/w3c/dom/html/HTMLTableElement.java:
	org/w3c/dom/html/HTMLTableCaptionElement.java:
	org/w3c/dom/html/HTMLTableColElement.java:
	org/w3c/dom/html/HTMLTableSectionElement.java:
	org/w3c/dom/html/HTMLTableRowElement.java:
	org/w3c/dom/html/HTMLTableCellElement.java:
	org/w3c/dom/html/HTMLFrameSetElement.java:
	org/w3c/dom/html/HTMLFrameElement.java:
	org/w3c/dom/html/HTMLIFrameElement.java:

	Appendix D: ECMA Script Language Binding
	D.1: Document Object Model Level 1 Core
	D.2: Document Object Model Level 1 HTML

	References
	G.1: Normative references
	G.2: Informative references

	Objects Index
	
	Document Object Model Core
	Document Object Model HTML

	Index
	Production Notes †Non-Normative‡
	A. The Document Type Definition
	B. The production process
	C. Object Definitions

