.

The ATM Forum
Technical Committee

APl Semantics
for Native ATM Services
Using UNI 4.0
AF-SAA-0108.000

February, 1999

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

© 1999 by The ATM Forum. This specification/document may be reproduced and distributed in whole, but
(except as provided in the next sentence) not in part, for internal and informational use only and not for
commercia distribution. Notwithstanding the foregoing sentence, any protocol implementation
conformance statements (PICS) or implementation conformance statements (1CS) contained in this
specification/document may be separately reproduced and distributed provided that it is reproduced and
distributed in whole, but not in part, for uses other than commercial distribution. All other rights reserved.
Except as expresdy stated in this notice, no part of this specification/document may be reproduced or
transmitted in any form or by any means, or stored in any information storage and retrieval system, without
the prior written permission of The ATM Forum.

Theinformation in this publication is believed to be accurate as of its publication date. Such information is
subject to change without notice and The ATM Forum is not responsible for any errors. The ATM Forum
does not assume any responsibility to update or correct any information in this publication.

Notwithstanding anything to the contrary, neither The ATM Forum nor the publisher make any
representation or warranty, expressed or implied, concerning the completeness, accuracy, or applicability of
any information contained in this publication. No liability of any kind shall be assumed by The ATM
Forum or the publisher as aresult of reliance upon any information contained in this publication.

The receipt or any use of this document or its contents does not in any way create by implication or
otherwise:

* Any express or implied license or right to or under any ATM Forum member company's patent,
copyright, trademark or trade secret rights which are or may be associated with the ideas, techniques,
concepts or expressions contained herein; nor

* Any warranty or representation that any ATM Forum member companies will announce any product(s)
and/or service(s) related thereto, or if such announcements are made, that such announced product(s)
and/or service(s) embody any or all of the ideas, technologies, or concepts contained herein; nor

* Any form of relationship between any ATM Forum member companies and the recipient or user of this
document.

Implementation or use of specific ATM standards or recommendations and ATM Forum specifications will
be voluntary, and no company shall agree or be obliged to implement them by virtue of participation in The
ATM Forum.

The ATM Forum is a non-profit international organization accelerating industry cooperation on ATM
technology. The ATM Forum does not, expressly or otherwise, endorse or promote any specific products or
services.

NOTE: The user's attention is called to the possibility that implementation of the ATM interoperability
specification contained herein may require use of an invention covered by patent rights held by ATM Forum
Member companies or others. By publication of this ATM interoperability specification, no position is

taken by The ATM Forum with respect to validity of any patent claims or of any patent rights related

thereto or the ability to obtain the license to use such rights. ATM Forum Member companies agree to
grant licenses under the relevant patents they own on reasonable and nondiscriminatory terms and
conditions to applicants desiring to obtain such a license. For additional information contact:

The ATM Forum

Worldwide Headquarters

2570 West El Camino Real, Suite 304
Mountain View, CA 94040-1313

Tel: +1-650-949-6700
Fax:+1-650-949-6705

Page 2 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

Acknowledgements

This document would not have been possible without the outstanding and continuing efforts of several individuals.
These people have played a significant role in the development of this document via contributions, comments, editing,
reviewing, knowledge and support. The editor wishes to thank these people:

Werner Almesberger
Francois Audet

Ken Brown

Tom Jepsen
ArataKoike

Eric Lampland

K.K. Ramakrishnan
Serge Sasyan

John Shaffer
Jong-Jin Sung

Editor: Steven A. Wright
Chairman, SAA API Ad Hoc: Jim Harford

ATM Forum Technica Committee Page 3 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0

February 1999
Contents

L. INTRODUCTION. ..ottt sttt sttt st b e saesbe s e e e seeabesbesheebeeseessesseabesbesbesbeeneenesbesneeneeneens 8
1.1, PURPOSE OF DOCUMENTceiiteiiteetesresseesseesseesneesssssesseessesssesnessnesaessseesneennesnnesnessneessesssesnsesnssnnesnes 8
1.2, SCOPE OF DOCUMENTutiiteeteesteeresnesieesseesseese s sseesseesse e sesssesanesmeesreesneeanesmnesmeenneesre e resnnesnnesnnesns 8
1.3, REFERENCE MODELtiiiiieiiteesieesieesie st e e s sme s s ssnesmeesmeesmeenneenneenneeneesneenreennens 10
1.31. Notesfor the RefErence MOE ...t 10
1.4. NORMATIVE VERSUS INFORMATIVE TEXT .eoiueeiuieirieiriereseesneesreesresssesneseesmeesneesneenssnnssnessneessessnens 11
2. API_CONNECTION STATE MACHINESoo ettt s 12
P22 I Y/ [0 1 17 1 T N T OO URUTURRPPR 12
2.2, ONE-SHOT STATE IMACHINEcoiuiiitiittete et eite st ettt e steseesee st e saeesbeebesabesaeesaeesbeebeebesneesaeesaeesas 12
2.3. TERMSUSED ...ttt ettt et eae e bbb e et e st e s et e s he e sae e bt e bt eabeeabeebe e b e e beenbeenbesaeesaeesais 13
2.4, STATES OF APl _CONNECTION ...cutiittettetteteeueesteesteesseessessesaeessessaeasseasesssesasessssssesssesssessesnsssneesaes 13
ot T (1 (V0) SRR 13
24.2. T QTR U= N S STRSRR 13
24.3. Outgoing Call Preparation (A2)cococerereeirereeesieseeiessesese st snesenes 13
24.4, Outgoing Call REGUESIEA (A3) ...ooviveeereiieiirieieer ettt 13
245, Incoming Call Preparation (Ad) ..ot 14
24.6. Wait INCOMING Call (AD)eeuiriiieiiriiieiirieie sttt 14
24.7. INCOMING Call PreSENt (AB)c.eeuereieriirieieiirieieet sttt bbb n e sb et eee e 14
24.8. INcoming Call REGUESIEA (A7) ...eviueeeeriiieierieieitst ettt 14
24.9. Point-to-Point Data Transfer (A8).......uicurireriririeieerieeeie st 14
2.4.10. Point-to-Multipoint Root Data Transfer (A9)coureerirererirersese st 15
24.11. Point-to-Multipoint Leaf Data Transfer (AL0).......cccoereirerieienenieesesiee e 15
2.4.12. Connection TErMiNAted (ALL).......ccccoerireirieieerieieesi e 15
2413, Leaf - INItial (LO)..icteieeeeieeeie ettt sttt st et se et et se et e neene e enean 15
2414, Leaf - LI PENAING (LL).itiiiiiiieiiie ettt sttt st ne et e eeeneas 15
2415, Leaf - LIJRESOIVEA (L2)...eiiiieiieieieeteeee ettt sttt ettt st st e s 15
24.16. ROt - INitial (ROeieieeeeerieieriesie ettt sttt e bbb st e et e e et et e neeneeneenean 15
24.17. ROOt - BOUNA (RL) ..eieeeiieiieieriiieiesiesie sttt ettt b e 15
2.4.18. ROt - LIJPENAING (R2) ...c.eiuiiiuirieiriirieisesieisie ettt st 15
24.19. ROOt - LIJRESOIVEA (R3) ..c.uiiuiiiiiisieiiesieeeeee ettt ettt sttt s e s 15
25, ENTITY-RELATIONSHIP DIAGRAMSctiitiitieutisteesteesteesteseeseesaeesaeesseesesssesssesaessseassesnsesnsesasssaessaes 16
251 Client-Server MOTEIINGcccoerireerireiee ettt bbbt b e 16
252, Specific ER Diagrams for EACh SLAteccoeovririiiiririiiesee e 16
25.2.1. U (AD) coveeveeeeeeteeeeesessee s e sses s s sessssees s sssens s es s s s s e st s ss st en s ssenseeseesssensssnsssenseans 16
2522 TEHETA] (AL) 1orverveeeeeeeeesseessseessessseessessseessessssess s ssesss s st s s s ssen st st sssesssenssenssnsensssssnsssenssnseans 16
2523. Outgoing Call Preparation (A2)coeeereerreereriesreireeiese e e neenes 17
2524 Outgoing Call REGUESIEA (A3)veuereeiirerererieesre ettt e e 18
2525 Incoming Call Preparation (A4)oeoeeereireienreeesr st sesnenens 18
2526. Wait INCOMING Call (AD)....viueiieiireeiieire et et 19
25.2.7. INCOMING Call PreESENt (AB)... e eueeeieierieeieie ettt sttt e et e st seesae e e e eseeaesee s e sneseesnens 20
2528. INCOMING Call REGUESIEA (A7) ...veeeeeiireeiiesieireee ettt e 20
25209 Point-to-Point Data TranSfer (A8)......cvo ettt s 21
25.2.10. Point-to-Multipoint ROOt Data Transfer (A9)vevveerreresecreeereeeses e s 21
25211, Point-to-Multipoint Leaf Data Transfer (A10)ccoeereereneiereerreeseseesre e s 22
25212, Connection TErMINAEA (ALL)......cooiireireereerreerree et sresenrens 23
P T - | =Y I R OO 23
254, FAESRL, R2, & R3....ei ittt bttt ettt et e e eenes 24
2.6, STATEMACHINES.....coitiitiiie ittt et ettt eae e et sb e e b e e besaee st e saeesaeesbe e bt eabeeabeebeesbeebeenbeenbesanesaeesais 25
26.1. Partial State Diagram for API_CONNECHION.........cuieiririienirieeeeseeeee s 25
2.6.2. LIJ SLAtE MACKINES.......eoeiiiie ettt sttt ettt et et sbe e e e e 25
3o PRIMITIVES ..ottt et h et e e et bbbt ae st e e et e b sr e b e s bt sne e e e e s 27

Page 4 of 102

ATM Forum Technical Committee

APl Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000

February 1999

R TR T 0V = I o I N =SS 27
I B 7 7N I =TT 42
321, SENAING DALA.....ceeieiietiiieet et 43
322, RECEIVING DALA......c.couieciiitiieiiitiie sttt bbbt b e s 43
3221 POIHING TMPIEMENEBLION ... vt e 43
3222 BIOCKING IMPIEMENLALTION ...t s 44
3.223. Messaging IMPIEMENTALIONc.ooviuirirreeiee e s 45
3.2.3. FIOW CONtrol ManagemENtco.eeeerierie ettt et se e et e b sae e enee e 46
3.23.1. Source Cell Rat NOLTICAIONccveeiiecceee ettt ettt e st sae e et e e saee et ressnneeans 46
3.2.3.2. SOUrCE CEIl RAEE CONIIONveeveeieeecetie ettt eetee et eete e e e et e steesbeeeaeeesbesssseeseesaeeebees s eressaseenns 48
3.2.3.3. Destination Cell Rate NotifiCationcccceciieiiiieiiieeicceecte et 48
3.2.34. Destination Cell RAEE CONIOLccuiiiuieiiecieeeee et ceee et eee et e sr e e et e eeeesteesaeeebeesaes e enresennes 50

TR T |V N VY= Y = N Y N TR 52
R o SO 1 B 10 = 3 T 56
4.1, PV C PROVISIONINGciciiiiiituttteieeeieiiirreeteesseiiiatssesesssesssabasssesssessstssssessssiasssssseessssiassssssssesssassnsens 56
41.1. LS =10 TS 200 | 56
4.1.2. IS8T 07= Lo 56
4.2, SV C PROVISIONING ...cciiiiiiiittriieie e e ieiitrreetes st essabsseseessessabasseesssesassbasssesssesasbssssesssssassrsssresesssanssnsens 56
4.2.1. T QTR F=] T = - SR 56
42.1.1. LS r= 0 11 a0 11 | OO 56
4.2.1.2. Adding and REMOVING LEAFS........cccciiieicicieiie ettt ebe s e neere s 57
42.1.3. = 0001107 (1oL PSR URRSU 57
VR N == = o 1o 1010 |10 I (o 1= W | 57
42.2.1. LS r= 0 11 a0 11 | OO 57
4222 = 001107 (1oL PSSR 58
4.2.3. Leaf [nitiated JOIN PrOCEAUINES.........ccoviiieiietieceee ettt ree b s e sressbe s s bessabesssbessabessbessanas 58
4.3. SYNCHRONIZATION AND COORDINATION FUNCTIONuuturiieeeeeiiirrreieseeeisirrsseessessessssseesesssesssnsens 60
4.3.1. NULL_SSCS....oeciceee st sttt ettt et e e e s seesaeesaeesaeeneeeneesseesseenseenteentesneesneesnseensenns 60
4.3.2. SSCOP_RELIABLE_SSCS..... .ottt st ste ettt et ssaesnaesneesaeenneennesneenneenes 61
43.2.1. CoNNECHioN EStabliShMENE.........coiieiciiiiccie ettt sb et b e e sresre e s sbeeaeesreens 61
4.3.2.2. (D itz W -0 = GRS 63
43.2.3. CONNECLION TEIMINGLION.....cviitiiieiteeeisteeeecte s et e e sreersesbeetesresreesbeaseesbesbeesesseessesbees sabesseesrnens 63
4.3.3. SSCOP_UNRELABLE_SSCS.......oooiiiieieeee et ste et e e ste e tesaesaesneesneesneenseannenns 65
4.4, SPECIFICATION OF SAP ADDRESS.......uttttiieiiiiiiiieeieeeseiiitasetessseisisssssessssissssssseessssssssssssesessssssssens 65
44.1. YA Ao [0 [= o= Y/ o1 (o 65
44.1.1. SAP VECLOr EIEMENt (SVE) ...cueieiieii ettt sttt sttt st st e vt 65
R Voo o o S 66
44.21. ATM_A0Ar SVE ...ttt b e st s b e e e et e b e s re b e e seteeresrennenes 66
4422, F N Y = 1= v (o LV SRR 66
4.4.2.3. BLLI T2 SVE ...ttt sttt et s b et s s e et e e tesbe st e s e eneeneebenrenean 66
4.4.2.4. BLLI I3 SVE ... ittt sttt st b et e b e e besbesaens e eneeneerenrennan 67
4.4.25. [T [T o 1SV TR 67

45, REGISTRATION OF A LOCAL SAP ADDRESSutttiiieiiiiiiiireieseseisiisseeesesssssssssseesssssssssssssesssssssssssens 69
45.1. LCTC L= IS A TR 69
45.2. FOECIAl SAPS ...ttt et e e et r et e e et et e Eesaeereeneeneeaenaeeneeneeeens 69
45.2.1. NaATOWDANG SENVICES SAPoi ittt e bt e s be b e s beeaesbeen sreebeeens 69
45.2.2. CACN-AI SAP.......ee e ettt b e et e st e e e e be e be et e s be et e abeente s s beebeereeaeete e 69

4.6. INCOMING CALL DISTRIBUTIONcciiiurreeieeeieiiiurreereseseisssrssseessseisssssssesssssssssssseessssssssssssesssssassssens 70
4.6.1. INcOMing Call DIStriBULIONccuecuieeeeeie ettt st eas 70
A S\ VY - T S 70
4.6.3. NAITOWDANT SENVICES.....coitiiitie ettt s st s st st e e s ba e s sbb e s sbee s sbbeesbeeesbbessbesesbeessanes 70
4.7. COMPATIBILITY CHECKING ..uuttitiieiiiiitrreeteeeseiistseeeesssessstasseesssessssssssessssissssssseessssssssssssesssssassssses 71
4.8. NEGOTIATION OF PARAMETERSccoittttttiieeiiiiittreeeeeeseisisbsseeesssesssssssssesssesasssssseesssssssssssssesesssessnsens 71
8 5 TR @ U (o [0 1o [o= | =SSP 71
4.8.2. L aTeo 0411 Te o= 1 K= OSSP 71
4.9, PROCEDURESFOR APPLICATION CONTROL OF ABR TRAFFIC U-PLANE PARAMETERS...........ccvuv.e. 71

ATM Forum Technica Committee Page 5 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

5. REFERENCE DOCUMENTSottt ettt s e s st e s s st ee s sesaaea s sbeeessssbesssenseeessbenesas 73
ANNEX A CONNECTION ATTRIBUTES ..ottt ettt et s sbab s e e s s saanres 74
ANNEX A.1 CONNECTION ATTRIBUTES OF UNI 4.0 SIGNALLING ..cccceiiiitttiiieeee ettt seiaraeee e e 74
ANNEX A.2 CONNECTION ATTRIBUTES OF LOCAL SERVICES......uttiiiiiiiiiiiitiiiee e s sstsrtees e e s sssssraeesessseeans 81
ANNEX B MANAGEMENT VARIABLES ...ttt ettt st e s e s e sate e 82
ANNEX B.1 UNI DEFINED .vviiiiiiiiiiitiiieee e ciitieee e e e et sbrree e s e s e ssibaaaeessssssabssaeesssssassssbsessesssansssrsnesesssannns 82
ANNEX B.2 NATIVEATM SERVICES DEFINED ...ccccoeiiiuttriieeeeeiiiiirieeeeseiesisssseesessssssssssessesssasssssssssesssenns 83
ANNEX C USAGE OF WILDCARDSIN SAPS ...ttt 84
ANNEX D APl CONFORMANCE STATEMENT .. .ottt ettt e s e s ssres e enes 85
ANNEX D.1 NATIVE ATM SERVICES SUPPORTcoitttitiiiei i i iiibttiiee s s s sssbasseessssssssbssssesesssssssssasssssssesnns 85
ANNEX D.2 COMPATIBILITY OF CONTROL PLANE FUNCTIONAL PRIMITIVES ..ccvveeieeiiiiiirieeeeee e 85
ANNEX D.3 COMPATIBILITY OF DATA PLANE FUNCTIONAL PRIMITIVEScoiiiitiieiee e eeeirieeeee e 86
ANNEX D.4 COMPATIBILITY OF MANAGEMENT PLANE FUNCTIONAL PRIMITIVES.....ccovvveeeeeeenns 86
ANNEX D.5 STATE COMPATIBILITY tttttiiiiiiiiutteiieeeieiiistsseiesssssssssssseessssssssssssssssssssssssssssesssssssssssssesssasns 87
APPENDIX A PRAGMATICS OF DATA SEND AND RECEIVE [INFORMATIVE].....cccoc..... 88
APPENDIX B MAPPING BETWEEN NATIVE ATM SERVICE PRIMITIVESAND ATM
FORUM UNI 3.X/4.0 SIGNALLING MESSAGES[INFORMATIVE]...ccccceieieresese s 90
APPENDIX B.1 PRIMITIVESINVOKED BY THE APPLICATION ...cciiitttiieeeeeieitrreeeseesssssssseeseessesssssssssesssennns 90
APPENDIX B.2 MESSAGES RECEIVED FROM NETWORK ...uvvtiiiiiiiiirrieeeeesiesitsseeesesesssisssseesesssesssssssssesssenns 91
APPENDIX C EXAMPLE SAP COMBINATIONS [INFORMATIVE] .cceiiieieeeeeeeeeeee e 92
APPENDIX C.1 SAPSFOR DATA LINK LAYER PROTOCOLScccctttiiiiei ettt eesarae e s 92
APPENDIX C.2 SAPSFOR NETWORK LAYER PROTOCOLS.......cocctttiiiieieieirtiiee e e s ssbsrrees e e s s essaraeesessseeans 92
APPENDIX C.3 SAPSFOR HIGHER LAYER PROTOCOLS AND ATM-AWARE APPLICATIONS.......cevveeerenne 93
APPENDIX D IMPLEMENTATION GUIDELINESFOR THE ABR APl OPTIONSOF THE
NATIVE ATM SERVICESAPI [INFORMATIVE] ceiiiieie ettt e 94
APPENDIX D.1 RATIONALE FOR AN APl ACCESSTOABR SERVICESccciutiiiieii ittt eetrieee e 94
APPENDIX D.2 EXAMPLE APPLICATIONS USE OF THE ABR APl PRIMITIVES.......coiiitiiiiiee e eeeirieeeee e 96
APPENDIX D.3 EXAMPLE ABR NOTIFICATION MECHANISMScuttiiiiiiiiiiiitiiee e sssivreees e s s s ssssraeesessseeans 97
APPENDIX E NARROWBAND VOICE IMPLEMENTATION GUIDELINES
[INFORMATIVE] et eeeiee ettt ettt ettt te et e ae s ae st e st eneeseesseseesaeeseeneeneeeensesseseesbesneeneeneenean 101

APPENDIX F PROXY SIGNALING AGENT IMPLEMENTATION GUIDEL INES
[INFORMATIVE] oo eeeeee e sseee s sesssee e eeseee e s s ees s ee s seee s 102

Page 6 of 102 ATM Forum Technical Committee

APl Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000

February 1999
TABLE OF FIGURES

Figure 1 E-R Diagram fOr AL SEALEccueeeeeeieiie e stestesee e sae e e st st e e sae st et sreste e sne e e esesteresneeneennenean 17
Figure 2 E-R DIagram iN A2 SEALE.....cecceeieeiieee e ste st see e e ste e te st e e e saestesnesreeseenaenaessetesesesseeneennenss 18
Figure 3 E-R Diagram fOr A3 SEAEeiuveueeeeieie e sttt s see e sae s e te st sassaesae e seeste s e ese e e esestetesneeneennenean 18
Figure 4 E-R DIagram iN A SEALE.....ceccveceeieeee et s et eee e e e e et a e ae s e e te e sreere e e enaess e tesensesneeneennenean 19
Figure 5 E-R Diagram iN AD SEALE.....ceccvciierieesiesesesesee e este et e e s e te s nesresse e e enaesaetesesesneeneenneneen 20
Figure 6 E-R Diagram fOr AB SEAEcceceeieeiierie e e se st seetesae et te s e e e sae e sreste s e ese e e esessetesneeneennenean 20
Figure 7 E-R DIagram iN A7 SEALE.....cvcceeeeieee e sttt eee e e ste et a e e st e tesnesresse e e enaesaetesesesneeneennenean 21
Figure 8 E-R Diagram iN A8 SEaLB.......cccveiierieiesieeiesesteeee e seste e e e e e e s ae e s sreese e e enaessetesesesneeneennennan 21
Figure 9 E-R Diagram iN AQ SEALE.......cccveieriere i sttt eee e e st s ae s e e te s ae s resse e e enaess e tesesesneeneennenean 22
Figure 10 E-R Diagram iN AL SEAE......ccveeeeeierieresiesteseeeesae e e sres e saeesesseesaeseeseestessesnesseensessesessessesnseneen 22
Figure 11 Entity Relationship Diagram for Leaf ATM deVICe......ccccceveieiiere e 23
Figure 12 Entity Relationship Diagram for the ROOt ATM deVICEcccoeveieiecireceeerer e 24
Figure 13 Partial Stat€ MaChiNe.........cccciieieiiie et st e st e bn e s r e eneennenean 25
Figure 14 LIJLeaf Stale MaChiNe........cceceeieie ettt e st e e se st e eneennenean 26
Figure 15 LIJROOt StAE MAChINEciuicieeeeeeie ettt st et s resre e e e e e s e e eneennenean 26
Figure 16 Example Message Sequence for Pt-MPt LIJ: New Connection Case.......cccccvveverereeseeieenennenns 58
Figure 17 Example Message Sequence for Root Join LI1J ProCedUre..........cccvveeeeeeveeseseesese s seeae s 59
Figure 18 Example Message Sequence for Pt-MPt LIJ Network L1J Case of Existing Connection.............. 59
Figure 19 Example Message Sequence for Call Rgjection Case of LIJ......cccccvvvvevececceie s 60
Figure 20 Synchronization and Co-0rdination FUNCLIONc.cccvirieceeiece e 60
Figure 21 Native ATM SAP With NUIL SCCS.......civiiiiiireenese sttt ss s 61
Figure 22 Native ATM SAP with Reliahle SSCS..........cooviiiinineenese et e 61
Figure 23 Example Message Sequence for Connection OriginatioN.........c.ccceeeeeeeieresesiesesresseeeeseeseesee s 62
Figure 24 Example Message Sequence for Connection EstabliShment...........cccovvvevevevinie v ccsceceecee e 63
Figure 25 Example Message Sequence for Data TraNSFerccccvveieeereceeiesese e se e e e sneenen 63
Figure 26 Example Message Sequence for Connection TEMMINGLON.........ccccvevereeieeieeresie e 64
Figure 27 Example Message Sequence for SSCOP TermiNation........cccevveereeesieeieereesesesesreseeseeseesseseesns 64
Figure 28 Example Message Sequence for Q.2931 REIEESE........ccccvvvevirereceeieee e se e s e sae e e 64
Figure 29 Example Message Sequence for Q.2931 Release COMPIELioN.........ccccveeevererieveneseseeeeseesie e 65
Figure 30 ABR PrimitivVes EXAMPIES.......cciiiiiiieetieieiesee et tese e se e ae st st eeaesaeseestesnesrseeneennenees 72
FIQUre 31 ABR CEll REIESeceeiesiiie sttt te et e st te e reese e e e teseesbeseesteeseeneseesresneeneennenen 99
Figure 32 ABR Ratesin relation to low and high thresholds for disabled notifications............cccccccccevenenee. 99
Figure 33 ABR Ratesand simple binary NOtifiCationS..........ccccvvvireeeieeiene e eneneas 99
Figure 34 ABR Rates with notifications at PCR/MCRccccoueiiiieiineneseceeseesie st se e seense e 100
Figure 35 ABR Rates with thresholds for adaptation...........ccccceveiieie e e 100
Figure 36 Relationship of Narrowband Interworking SAP and NAS..........cccovieienevesie e see e 101

ATM Forum Technica Committee Page 7 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

1. Introduction

1.1. Purpose of Document

This document specifies the semantic definition of ATM-specific services that are available to software
programs and hardware residing in devices on the user side of the ATM User-Network Interface. The ATM
environment provides a wealth of new services to the application developer. This alows enhancements in
performance and specification of network characteristics. Such ATM-specific services are denoted by the
term “Native ATM Services”.

“Semantic”, means that this document will describe the services in a way that is independent of any
programming language or operating system environment. Semantic specifications for generic services
define various aspects of the interface to those underlying services, such as:

« request for the underlying service to perform some action

 notification that some event has occurred

« parameters of the requests and naotifications

» response codes to the requests and notifications.

This document uses state machines, entity-relation diagrams, primitives, implementation-specific tips, and
other informative text to accomplish this aim.

The semantic description presented in this document is not an Applications Programming Interface (API).
An APl is a set of libraries or interfaces that enable an application to use the language in which it is written
to access the functionality of lower-level modules - such as operating systems, graphical user interfaces, and
communications protocols. The ATM Forum’s interest is in applications being able to access the
functionality provided by Native ATM Services.

This document will advance the development of such APIs that allow access to Native ATM Services. The
semantic description included herein is intended to influence the direction of these emerging APIs. This
document addresses concerns with both interoperability aspects and the proper abstraction of ATM
procedures and parameters. Thus, this semantic description provides a firm engineering foundation and
logically precedes any API development. Note that APl development is expected to occur within the ATM
Forum, other industry groups, and ATM vendors.

Note also that the semantic description herein is not limited to development of traditional APIs. Rather, this
interface can be applied to any software program or hardware that uses Native ATM Services. Some
examples of this are:
1. operating system kernel interface between Native ATM Services and ATM LAN Emulation
2. operating system kernel interface between Native ATM Services and traditional networking
protocols (e.g. IP, X.25)
3. operating system kernel interface to an ATM device driver, where the device driver contains the
implementation of the Native ATM Services
4. inside a PBX, used for circuit emulation
5. inside an ATM switch, used for vendor applications providing value-added services.

1.2. Scope of Document
“Native ATM Services” include the following:
1. data transfer, including both reliable and unreliable data delivery, using the ATM layer and various
ATM adaptation layers
2. provisions for setting up switched virtual circuits (SVC)
3. provisions for setting up permanent virtual circuits (PVC)

Page 8 of 102 ATM Forum Technical Committee

APl Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000

February 1999

4. traffic management considerations, including traffic types and quality of service guarantees
5. distribution of connections and associated data to the correct application, or entity.
6. provisionsfor loca participation in network management (i.e. ILMI and OAM protocols)

The next section presents a reference model showing the relationships between the various software
components in a device at the user side of the ATM User-Network Interface. In the reference model, the
dashed line labeled “Native ATM SAP” identifies the general scope and interest of this document.

This version of the specification supports version 4.0 of the ATM Forum’s User-Network Interface (UNI)
Specification. Future versions of this specification will support future versions of the UNI. Not all features
of UNI 4.0 are supported by this document. In particular, several limitations are listed below.

UNI 3.x,4.0 allows for two levels of ATM bearer service: virtual path (VP) and virtual channel (VC).
This document supports only VC-level service. The support of VP-level service is for further study.

UNI 3.x,4.0 allows for AAL type 1, AAL type 3/4, AAL type 5, and a user-defined AAL. This
document supports only AAL Type 1, AAL type 5, and a user-defined AAL. The support for AAL1 and
user-defined AAL includes the control plane (signaling), but the data plane is considered
implementation-specific at this time. The support of the other AAL types (including AAL type 2) is for
further study.

This document supports only the message mode of AAL type 5. Support of AAL type 5 streaming
mode is for further study.

The procedures in this document do not support a single ATM device being multiple leaves on a same
point-to-multipoint connection. This feature is for further study.

Some features of UNI 3.0 were changed or obsoleted by UNI 3.1. Similarly some of the features of UNI
3.1 were obsoleted by UNI 4.0. Where such conflicts exist, this document is consistent with UNI 4.0.

Motivation for a software interface specification centers on portability of software and reduction of
development expense. In addition, this document addresses end-to-end interoperability issues, such as:

distribution of an incoming connection to the correct application inside the device on the user side of the
UNI
agreement of what parameters supported in the UNI may be expected by the application

ATM Forum Technica Committee Page 9 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

1.3. Reference Model

Applications
_ Existing
Native ATM API Transport API(s)
Nat!ve ATM other API libraries
Library
:
Traditional transport &
network protocols
_ other
Native services
ATM SAP
Connection and Data
Distribution

UNI Services

Data Local
Transfer SVe PVC Management
Drivers
:

Network
Interface(s)

Figure1: Reference Model for Native ATM Services (Native ATM SAP)
1.3.1. Notes for the Reference Model

The notes in this section are intended to help the reader understand the reference model.
1. “Native ATM API” — an API that is specifically tailored to support Native ATM Services.

Page 10 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

2. “Existing Transport APIs” — an API that provides application access to an underlying transport layer.
Note that in order to support applications that are aware of an underlying ATM network, the APl must
be extended to support Native ATM Services. Examples of existing transport APIs include sockets,
XTI, Winsock, Netbios, etc.

3. “Native ATM Library” — software component that presents the Native ATM API to an application.

4. “other API libraries” — software components that present the transport APIs to the application.

5. “traditional transport & network protocols” — traditional data communications protocols such as X.25,
TCP/IP, SPX/IPX, SNA, Netbui, Appletalk, etc. Note that these protocols may or may not be aware of
the underlying ATM network.

6. “other services” — software components that provide an appearance of some network type other than
ATM. Examples include ATM LAN Emulation, Circuit Emulation, etc.

7. “Connection and Data Distribution” — this component allows multiple applications (software programs
and hardware) to simultaneously use the functions of ATM networks in a native fashion.

8. The directions of the arrows in the diagram are meant to loosely show the relationship between a service
provider and a service user. For example, "Applications" uses the services of "Native ATM API".

9. The data transfer block can be SSCOP/AALS

1.4. Normative Versus Informative Text

The main body of this specification, plus the annexes, are considered normative text. If a particular
implementation supports a given service (e.g. SVC, PVC, AAL5, AAL1, SSCOP, ILMI, OAM), then access
to that service shall be done in a manner consistent with this specification. The normative text can include
hints for implementations.

The appendices of this specification are considered informative text.

ATM Forum Technica Committee Page 11 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

2. API_CONNECTION State Machines

2.1. Motivation

This document describes behavior that is dynamic in nature. The valid actions across the interface to
Native ATM Services change with time. For example, an application may not transfer data to another ATM
device until an ATM call (between the two ATM devices) is setup across the network. In order to
accomplish many actions, a certain sequence of requests and notifications must occur across the interface to
Native ATM Services. To be precise, this document describes the dynamic behavior in terms of a finite
state machine.

2.2. One-Shot State Machine

Most finite state machines contain cycles, or return paths, because the object being modeled repeats a

similar sequence of actions. With these kinds of objects, a “dead end” in the state transition path implies a
deadlocked state. The object becomes “stuck” in the deadlocked state and is unavailable for future use. For
this reason, the last state in an operational sequence often returns to some initial state.

The state machines used for Native ATM Services are “one-shot” state machines. After the last state in the
operational sequence, the state machine remains in the final state (e.g. A11) forever.

The difference in these two approaches result from differences in the objects being modeled. The first case
is used when modeling an object that can be reused or recycled. Examples of this are communication
channels, blood cells carrying oxygen, or a rental video tape. The second case can be used when modeling
an object that has a finitdespan. Examples of this are human age progression or consumption by fire.

By design, the state machines used for Native ATM Services models objects with a finite lifespan. The
objects being modeled are:

e aconnection between two or more parties across an ATM network, which occurs once in time,
e an LIJ request, each of which occurs once from the perspective of the leaf and root.

The alternative would have been to modebpacity provided by the ATM device’s operating system to
communicate across the ATM network. In real operating systems, this capacity is typically identified by
something analogous to a UNIX file descriptor. The problem with this approach is that various operating
systems and existing APIs attach different semantics to the capacity identifier. The differences might
include ability to share the capacity identifier across process boundaries, generation of a new capacity
identifier when an incoming call is accepted, and the recycling of a capacity identifier after a connection has
been terminated. The differing semantics for capacity identifiers would have resulted in a state machine
that was tied to a particular operating environment or existing API.

Native ATM Services abstracts away from these differences. Instead, the API_connection state machine
models an object much more fundamental to ATM communication: an individual connection across the
ATM network. The focus of the API_connection state machine is an abstract concept herein called an
“API1_connection” or “connection”. Note that the definition for “connection” differs in this document from

the use of that term found in the UNI specification. The precise definition and properties of an
API_connection were created in order to describe the interface to Native ATM Services in terms of a finite
state machine. The specific definition for an API_connection is found immediately below.

In addition to the API_connection state machine described above, other state machines are referenced in
this specification in relation to the LIJ services. Theses state machines are the LIJ Leaf State Machine and
the LIJ Root State Machine which apply at the respective leaf and root API_Endpoints of an LIJ ATM
Multicast connection.

Page 12 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

The number of API_connection State Machines, LI1J Leaf State Machines, and/or LIJ Root State Machines
controlled by an API_endpoint is dependent on the actions taken by the applications. All potential L1J and
API_connection Finite State Machines (FSMs) are considered initialized when the API_endpoint is
allocated through ATM _associate endpoint. Primitives affect all relevant API_connection and LIJ FSMs
controlled by a particular API_endpoint at the time the primitive is invoked. (See section 2.5.2 for details)

2 3. Terms Used

“AP|_endpoint” or “endpoint” - an object associated with a set of attributes by which an application
communicates with other ATM devices.
e “API_connection” or “connection” - a relationship between an API_endpoint and other API_endpoints,

that has the following characteristics:

1. Data communication may occur between the API_endpoint and the other API_endpoints
participating in the API_connection.

2. Each API_connection may occur over a duration of time only once; the same set of communicating
API_Endpoints may form a new connection after a prior connection is released.

3. The API_connection may be presently active (able to transfer data), or merely anticipated for the
future.

4. It is possible that more than one API_endpoint of an API_connection may reside within the same
ATM device. In this case, the underlying ATM service provider may or may not detect the fact and
perform an internal loopback.

2.4. States of API_connection

The states of the API_connection state machine are denoted by the terminology (Ax), where x is an Arabic
integer. The states of the LIJ Leaf State Machine are denoted by the terminology (Lx), where x is an Arabic
numeral. The states of the LIJ Root State Machine are denoted by the terminology (Rx), where x is an
Arabic numeral.

2.4.1. Null (AO)
There is no association between the API_connection and the API_endpoint that may be used in the future to
offer native ATM service to the application.

2.4.2. Initial (A1)
An association now exists between the API_connection and the API_endpoint that may be used to offer
native ATM service to the application.

2.4.3. Outgoing Call Preparation (A2)

The application has indicated the intention of placing an outgoing call across the ATM network. Any data
structures that are needed to specify characteristics of the outgoing call must exist while the API_connection
is in state A2. Those data structures are initialized, to the extent possible, when the API_connection enters
state A2. The application is allowed to examine and/or modify some subset of these data structures while in
state A2.

2.4.4. Outgoing Call Requested (A3)

The application has requested that an outgoing call be placed across the ATM network. The characteristics

of the call are those specified by data structures that were manipulated while the API_connection was in

state A2.

State A3 is entered when the application issues a primitive requesting that the outgoing call be established.

This state (A3) can be mapped to the following possible system implementations:

polling: The application polls to determine the status of the requested outgoing call. While polling
(and before receiving a status indication), the API_connection remains in state A3.

ATM Forum Technica Committee Page 13 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

blocking: The operating system blocks the application’s process thread, until the outgoing call
attempt is either accepted or rejected by the network. While the application is blocked,
the API_connection remains in state A3.

messaging: The application receives an asynchronous message to indicate either acceptance or
rejection of the outgoing call attempt. While the application is waiting for that message,
the API_connection remains in state A3.

2.4.5. Incoming Call Preparation (A4)

The application has indicated the intention of receiving an incoming call across the ATM network. Any
data structures that are needed to queue incoming calls (for the purpose of presenting them to the
application) must exist while the API_connection is in states A4, A5, A6, and A7.

2.4.6. Wait Incoming Call (A5)
The application has requested that incoming calls from the ATM network be queued for possible
acceptance. The characteristics of the queue of potential calls are those specified by data structures that
were manipulated while the API_connection was in state A4.
State A5 is entered when the application issues a primitive requesting that incoming calls with the registered
SAP be queued and presented to this application. This state (A5) can be mapped to the following possible
system implementations:
polling: The application polls to determine the presence of an incoming call that has not been
presented to the application. While polling, the APIl_connection remains in state A5 until
the application is notified of the new incoming call.

blocking: The operating system blocks the application’s process thread, until a new incoming call is
present. While the application is blocked, the API_connection remains in state A5.

messaging: The application receives an asynchronous message to indicate that a new incoming call is
present. While the application is waiting for that message, the API_connection remains in
state A5.

2.4.7. Incoming Call Present (A6)

An incoming call exists that has not been presented to an application; it is presented to the application for
possible acceptance. While in this state (A6), the Native ATM Services makes available characteristics of
the incoming call that help the application make an accept/reject decision. If parameter negotiation is
present, the application can choose and/or modify the appropriate parameters.

2.4.8. Incoming Call Requested (A7)

The application has accepted the incoming call that is at the head of the incoming call queue. However, the

call must be awarded by the network before the call is completely setup and ready for data transfer.

State A7 is entered when the application issues a primitive requesting that the incoming call at the head of

the incoming call queue be accepted. This state (A7) can be mapped to the following possible system

implementations:

polling: The application polls to determine the status of the accepted call. While polling (and
before receiving a status indicating the call was either awarded or released), the
API_connection remains in state A7.

blocking: The operating system blocks the application’s process thread, until the accepted call is
either awarded or released. While the application is blocked, the API_connection remains
in state A7.

messaging: The application receives an asynchronous message to indicate that the call is either

awarded or released. While the application is waiting for that message, the
API_connection remains in state A7.

2.4.9. Point-to-Point Data Transfer (A8)

The point-to-point call (either outgoing or incoming) has been set up across the ATM network. The
application may now send and receive data. If any additional states are required for flow control, they will
be considered sub-states of state A8.

Page 14 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

2.4.10.Point-to-Multipoint Root Data Transfer (A9)

The point-to-multipoint call has been set up across the ATM network, with the application being the root
node. The application may now send data. If any additional states are required for flow control, they will
be considered sub-states of state A9. If any additional states are required for the joining and releasing of
additional leafs, they will be considered sub-states of state A9.

2.4.11.Point-to-Multipoint Leaf Data Transfer (A10)

The point-to-multipoint call has been set up across the ATM network, with the application being a leaf
node. The application may now receive data. |f any additional states are required for flow control, they
will be considered sub-states of state A10.

2.4.12.Connection Terminated (Al1l)

The connection’s lifespan is completed. This state could have been reached by either:

1. An active connection (APIl_connection in state A8, A9, or A10) was released.

2. A pending connection (API_connection in state A3, A6 or A7) was released by the network, remote
ATM device, or the application.

3. A connection was aborted by the application.

There is no longer an association between the API_connection and the API_endpoint that was used to offer

native ATM service to the application.

2.4.13.Leaf - Initial (LO)
The join request modeled by this state has not been requested by the application.

2.4.14 Leaf - LI1J Pending (L1)
The join request modeled by this state has been requested; the leaf application is now awaiting a response.

2.4.15.Leaf - LIJ Resolved (L2)
The join request that was previously considered pending (state L1) has been resolved, in one of the
following ways:
« the leaf has been added to the point-to-multipoint connection
« the leaf's join request has been denied by either the network or the root of the point-to-multipoint
connection
* NAS timed out waiting for a response to the leaf's request.

2.4.16.Root - Initial (RO)
The LIJ call identification and LIJ call parameters have not been specified for the API_endpoint.

2.4.17.Root - Bound (R1)
The LIJ call identification and LIJ call parameters have been specified for the API_endpoint.

2.4.18.Root - LIJ Pending (R2)
The join request modeled by this state has been requested; NAS is awaiting a response from the root
application.

2.4.19.Root - LIJ Resolved (R3)
The join request that was previously considered pending (state R1) has not been resolved, in one of the
following ways:

« the leaf has been added to the point-to-multipoint connection

« the leaf’s join request has been denied by the root application

ATM Forum Technica Committee Page 15 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

2.5. Entity-Relationship Diagrams

The following diagrams are entity-relationship diagrams for each state of API_connection. The prime
purpose of the entity-relationship diagramsis to show, for each state:

 the data structures required to implement Native ATM Services

« theinformation available to the application, through the interface primitives.

In the diagrams, the following conventions are used:

» therectangles are entities

 thecircles are attributes of the attached entities

» thediamonds are relationships between the entities

« the numbers on either side of the diamond denote the cardinality of the relationship (e.g. one-to-one,
many-to-one).

2.5.1. Client-Server modeling

Note the cardinality of the relationship between API_endpoint and API_connection. During the early states

of the state transition path, the relationship is one-to-many. This means that many API_connections are
“bundled” together with one API_endpoint. During the later states of the state transition path, the
relationship is one-to-one. Thus, only one API_connection is associated with an API_endpoint.

This is done to model the manner in which client-server programs are written. Typically, a server program
will listen for incoming calls on a single API_endpoint. When an incoming call is accepted, then the server
program will create a child process that communicates with the client program, but communication will
involve a new API_endpoint. Thus, an API_endpoint is created while the API_connection transitions into a
data transfer state.

To handle this, the model allows API_connection to change the API_endpoint with which it is associated,
during the life of API_connection. The future API_endpoint with which API_connection will be associated
during the data transfer phase may be unknown during the early states of the state transition path.

As an example, consider that API_connections labeled X, Y, and Z are going to occur some time in the

future, involving a server program listening for incoming calls on API_endpoint 22. The state for

API_connections X, Y, and Z would be state A5; and all of them would be associated with API_endpoint

22. Asincoming calls are accepted, the following state transitions occur:

1. API_connection X moves to state A8 and becomes associated with API_endpoint 23. Connections Y
and Z remain in state A5 and are associated with API_endpoint 22.

2. API_connection Y moves to state A8 and becomes associated with API_endpoint 24. Connection Z
remains in state A5 and is associated with API_endpoint 22.

3. API_connection Z moves to state A8 and becomes associated with API_endpoint 25. Any other
connections that will be forked from the server program remain in state A5 are associated with
AP|_endpoint 22.

2.5.2. Specific ER Diagrams for Each State

2.5.2.1. Null (A0)

In this state, there is no association between the API_connection and the API_endpoint that may be used in
the future to offer native ATM service to the application. Also, there is no relationship between the
application and the API_endpoint. Thus, there is no entity-relationship diagram for this state.

2.5.2.2. Initial (A1)

In this state, the application has access to an APl_endpoint. Native ATM Services are offered to the
application via the exchange of primitives between the application and the API_endpoint. The relationship
between an application and the API_endpoint is one-to-many as shown in Figure 1. An application may
exchange primitives with many API_endpoints, but each API_endpoint is bound to a maximum of one
application.

Page 16 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

Connection

Endpoint Application

Figure 1 E-R Diagram for Al State

In this state, the relationship between an API_endpoint and an API_connection is one-to-many. A single
API_endpoint may be associated with multiple API_connections, but each API_connection is associated
with a maximum of one API_endpoint. The significance of thisis that many API_connections may share a
single API_endpoint in this state. Thisis done to model environments where an API_connection acquires a
new API_endpoint as the API_connection progresses from the early states (call setup) to the data transfer
states (A8, A9, A10).

2.5.2.3. Outgoing Call Preparation (A2)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the
application via the exchange of primitives between the application and the API_endpoint. The relationship
between an application and the API_endpoint is one-to-many; an application may exchange primitives with
many API_endpoints, but each API_endpoint is bound to a maximum of one application.

In this state, the relationship between an API_endpoint and an API_connection is one-to-many. A single
API_endpoint may be associated with multiple API_connections, but each API_connection is associated
with a maximum of one API_endpoint. The significance of thisis that many API_connections may share a
single API_endpoint in this state. Thisis done to model environments where an API_connection acquires a
new API_endpoint as the API_connection progresses from the early states (call setup) to the data transfer

states (A8, A9, A10).
1 n]
Connection

requested dpoi licati
connection Endpoint Application
attributes n 1
n n
Located at
1 1
destination Local
address Address

ATM Address @ ATM Address

ATM Forum Technica Committee Page 17 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

Figure2 E-R Diagram in A2 State
There exist “requested connection attributes” that specify various characteristics of the call to be originated
across the ATM network. These are modeled as an attribute of APl_endpoint. The application issues
primitives to query or set the attributes. Examples of these attributes would include AAL type, forward
peak cell rate, quality of service class, and AAL1 clock frequency recovery method.

The API_endpoint is associated with a destination address (as shown in Figure 2), which is the complete
specification for the software entity with which the application desires to communicate. The destination
address includes both the ATM address of the target device, plus a “SAP” that allows the call notification to
reach the correct software entity within that target device. See section 4.6 for more information on call
distribution within an ATM device. Notice the many-to-one relationship implies that many API_endpoints
can simultaneously be communicating with the same destination address.

NOTE: The destination address is supplied by the primitive that moves the connection from this state to A3.

In cases where the API_endpoint resides in a device known by multiple ATM addresses, there can only be
one local ATM address associated with each API_endpoint. The ATM address referenced here will be
reported in the “Calling Party Number” signaling information element. This ATM address might be known
implicitly by default, or it could be explicitly specified by the application. Notice the many-to-one
relationship implies that many API_endpoints can simultaneously be calling from the same ATM address.

2.5.2.4. Outgoing Call Requested (A3)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the

application via the exchange of primitives between the application and the API1_endpoint. The relationship

between an application and the API_endpoint is one-to-many; an application may exchange primitives with

many API_endpoints, but each API_endpoint is bound to a maximum of one application.

In this state, the relationship between an API_endpoint and an API_connection is one-to-one (as shown in
Figure 3). Each API_endpoint may be associated with a maximum of one API_connection, and vice-versa.
The significance of this is that multiple API_connections may not share a single API_endpoint in this state.

This is done to model environments where an API_connection acquires a new API_endpoint as the
API_connection progresses from the early states (call setup) to the data transfer states (A8, A9, A10).

Connection

completion
status

Endpoint Application

Figure 3 E-R Diagram for A3 State

The attribute of API_endpoint labeled “completion status” displays the status of the application’s request to
originate an outgoing call. This modeling may be useful for operating environments where polling is used
to implement this state.

2.5.2.5. Incoming Call Preparation (A4)

In this state (as shown in Figure 4), the application has access to an API_endpoint. Native ATM Services
are offered to the application via the exchange of primitives between the application and the API_endpoint.
The relationship between an application and the API_endpoint is one-to-many; an application may

Page 18 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

exchange primitives with many API_endpoints, but each API_endpoint is bound to a maximum of one
application.

In this state, the relationship between an API_endpoint and an API_connection is one-to-many. A single
API_endpoint may be associated with multiple API_connections, but each API_connection is associated
with a maximum of one API_endpoint. The significance of thisis that many API_connections may share a
single API_endpoint in this state. Thisis done to model environments where an API_connection acquires a
new API_endpoint as the API_connection progresses from the early states (call setup) to the data transfer
states (A8, A9, A10).

1 n .
Connection
queue Endpoint Application
size
n 1
1
located at
1
local
address

ATM Address @

Figure 4 E-R Diagram in A4 State

The queue size specifies the number of incoming calls that may be held prior to the application’s
acceptance.

The API_endpoint is associated with a local address, which is the complete incoming call distribution
specification for the application. The local address includes both the ATM address of the device housing
the application, plus a “SAP” that allows the call notification to reach the correct application within the
target device. See section 4.6 for more information on call distribution within an ATM device. Notice the
one-to-one relationship (“located at”) implies that only one API_endpoint can receive calls on any given
local address.

2.5.2.6. Wait Incoming Call (A5)

In this state, the application has access to an API_endpoint as shown in Figure 5. Native ATM Services are
offered to the application via the exchange of primitives between the application and the API_endpoint.
The relationship between an application and the API_endpoint is one-to-many; an application may
exchange primitives with many API_endpoints, but each API_endpoint is bound to a maximum of one
application.

ATM Forum Technica Committee Page 19 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

Connection

new call
status

Endpoint Application

Figure5 E-R Diagram in A5 State

In this state, the relationship between an API_endpoint and an API_connection is one-to-many. A single
API_endpoint may be associated with multiple API_connections, but each API_connection is associated

with a maximum of one API_endpoint. The significance of this is that many API_connections may share a

single API_endpoint in this state. Thisis done to model environments where an API_connection acquires a

new API_endpoint as the API_connection progresses from the early states (call setup) to the data transfer

states (A8, A9, A10).

The attribute of API_endpoint labeled “new call status” displays the existence of a new incoming call. This
modeling may be useful for operating environments where polling is used to implement this state.

2.5.2.7. Incoming Call Present (A6)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the
application via the exchange of primitives between the application and the API_endpoint. The relationship
between an application and the API_endpoint is one-to-many; an application may exchange primitives with
many API_endpoints, but each API_endpoint is bound to a maximum of one application.

1 1

Connection call attributes

Endpoint Application

n 1
Figure 6 E-R Diagram for A6 State

In this state, the relationship between an API_endpoint and an API_connection is one-to-one as shown in
Figure 6. Each API_endpoint may be associated with a maximum of one API_connection, and vice-versa.
The significance of this is that multiple API_connections may not share a single API_endpoint in this state.
This is done to model environments where an API_connection acquires a new API_endpoint as the
API_connection progresses from the early states (call setup) to the data transfer states (A8, A9, A10).

The queue that holds incoming calls for the application will have one and only one incoming call at the head
of the queue. There exist “call attributes” that specify various characteristics of the call being received
across the ATM network. These are modeled as an attribute of the entity “incoming call”. The application
issues primitives to query or set the attributes. Examples of these attributes would include AAL type,
forward peak cell rate, quality of service class, and AAL1 clock frequency recovery method. Note that the
number of attributes that may be set by the application are the set of parameters that are negotiated end-to-
end: “Broadband low-layer information” is an example.

2.5.2.8. Incoming Call Requested (A7)

In this state, the application has access to an API_endpoint as shown in Figure 7. Native ATM Services are
offered to the application via the exchange of primitives between the application and the API_endpoint.
The relationship between an application and the API_endpoint is one-to-many; an application may
exchange primitives with many API_endpoints, but each API_endpoint is bound to a maximum of one
application.

Page 20 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

Connection

completion
status

Endpoint Application

Figure7 E-R Diagram in A7 State

In this state, the relationship between an API_endpoint and an API_connection is one-to-one. Each
API_endpoint may be associated with a maximum of one API_connection, and vice-versa. The significance

of thisis that multiple API_connections may not share a single API_endpoint in this state. This is done to

model environments where an API_connection acquires a new API_endpoint as the API_connection
progresses from the early states (call setup) to the data transfer states (A8, A9, A10).

The attribute of API_endpoint labeled “completion status” displays the status of the application’s request to
accept an incoming call. This modeling may be useful for operating environments where polling is used to
implement this state.

2.5.2.9. Point-to-Point Data Transfer (A8)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the
application via the exchange of primitives between the application and the APl_endpoint. The relationship
between an application and the API_endpoint is one-to-many; an application may exchange primitives with
many API_endpoints, but each API_endpoint is bound to a maximum of one application.

Connection

Endpoint Application

n 1
Figure 8 E-R Diagramin A8 State

In this state, the relationship between an API_endpoint and an API_connection is one-to-one as shown in
Figure 8. Each API_endpoint may be associated with a maximum of one API_connection, and vice-versa.
The significance of this is that multiple API_connections may not share a single API_endpoint in this state.
This is done to model environments where an API_connection acquires a new API_endpoint as the
API_connection progresses from the early states (call setup) to the data transfer states (A8, A9, A10).

There exist “connection attributes” that specify various characteristics of the present call. These are
modeled as an attribute of API_endpoint. The application issues primitives to query the attributes.
Examples of these attributes would include AAL type, forward peak cell rate, quality of service class, and
AAL1 clock frequency recovery method. Every API_endpoint in this state is associated with one and only
one VCC that carries user data to/from the application. The VCC may be designated by a VPI and a VCI.
2.5.2.10.Point-to-Multipoint Root Data Transfer (A9)

In this state, the application has access to an APl_endpoint. Native ATM Services are offered to the
application via the exchange of primitives between the application and the APIl_endpoint. The relationship
between an application and the API_endpoint is one-to-many; an application may exchange primitives with

ATM Forum Technica Committee Page 21 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

many API_endpoints, but each API_endpoint is bound to a maximum of one application as shown in Figure
9.

Connection

Endpoint Application

n 1
Figure9 E-R Diagram in A9 State

In this state, the relationship between an API_endpoint and an API_connection is one-to-one. Each
API_endpoint may be associated with a maximum of one API_connection, and vice-versa. The significance

of thisis that multiple API_connections may not share a single API_endpoint in this state. This is done to

model environments where an API_connection acquires a new API_endpoint as the API_connection
progresses from the early states (call setup) to the data transfer states (A8, A9, A10).

There exist “connection attributes” that specify various characteristics of the present call. These are
modeled as an attribute of APl _endpoint. The application issues primitives to query the attributes.
Examples of these attributes would include AAL type, forward peak cell rate, quality of service class, and
AAL1 clock frequency recovery method.

Every API_endpoint in this state is associated with one and only one VCC that carries user data to/from the
application. The VCC may be designated by a VPI and a VCI.

A “list of remote leafs” may be modeled as an attribute of API_endpoint. The remote leafs are other ATM
devices that are leafs of a point-to-multipoint call, with the device housing API_endpoint as the root. The
application uses primitives to modify this list, thereby adding and dropping parties of the point-to-
multipoint call.

2.5.2.11.Point-to-Multipoint Leaf Data Transfer (A10)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the
application via the exchange of primitives between the application and the API_endpoint. The relationship
between an application and the API_endpoint is one-to-many; an application may exchange primitives with
many API_endpoints, but each API_endpoint is bound to a maximum of one application as shown in Figure
10.

Connection

Endpoint Application

n 1
Figure 10 E-R Diagram in A10 State

In this state, the relationship between an API_endpoint and an API_connection is one-to-one. Each
API_endpoint may be associated with a maximum of one API_connection, and vice-versa. The significance
of this is that multiple API_connections may not share a single API_endpoint in this state. This is done to
model environments where an API_connection acquires a new AP|_endpoint as the API_connection
progresses from the early states (call setup) to the data transfer states (A8, A9, A10).

Page 22 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

There exist “connection attributes” that specify various characteristics of the present call. These are
modeled as an attribute of API_endpoint. The application issues primitives to query the attributes.
Examples of these attributes would include AAL type, forward peak cell rate, quality of service class, and
AAL1 clock frequency recovery method.

Every API_endpoint in this state is associated with one and only one VCC that carries user data to/from the
application. The VCC may be designated by a VPl and a VCI.

2.5.2.12.Connection Terminated (All)

There is no entity-relationship diagram for this state.

The lifetime of API_connection is now over. There is no remaining association between an API_endpoint
and the API_connection. Hence, there is no entity-relationship diagram needed for this state.

2.5.3. States L1 & L2

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the
application via the exchange of primitives between the application and the API_endpoint. The relationship
between an application and the API_endpoint is one-to-many; an application may exchange primitives with
many API_endpoints, but each API_endpoint is bound to a maximum of one application as shown in Figure
11.

In this state, the relationship between an API_endpoint and an API_connection is one-to-many. A single
API_endpoint may be associated with multiple API_connections, but each API_connection is associated
with a maximum of one API_endpoint. The significance of this is that many API_connections may share a
single API_endpoint in this state. This is done to model environments where an API_connection acquires a
new API_endpoint as the API_connection progresses from the early states (call setup) to the data transfer
states (A8, A9, A10).

Connection

Endpoint Application

requests
join

Leaf_sequence
_number

point-to-
multipoint
connection

LI1J call
identification

ATM Address
of root

Figure 11 Entity Relationship Diagram for Leaf ATM device

An API_endpoint may initiate the joining of multiple point-to-multipoint connections. Each potential point-
to-multipoint connection can be characterized by the ATM address of the connection’s root, plus the LIJ
call identification, which is beyond the scope of this document and Signaling 4.0. Because an
API_endpoint can have multiple join requests pending, the cardinality of the “requests join” relationship is
one-to-many. Note that a given Pt-MPt connection can be associated with a maximum of one API_endpoint
in the ATM device.

ATM Forum Technica Committee Page 23 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

Because an API_endpoint can have multiple join requests pending, the APl must correlate individual join
requests with subsequent responses. The leaf_sequence number is used to correlate individual
L1J join_requests with subsequent responses. The leaf_sequence_number is administered by the NAS.

2.5.4. States R1, R2, & R3

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the
application via the exchange of primitives between the application and the API_endpoint. The relationship
between an application and the API_endpoint is one-to-many; an application may exchange primitives with
many API_endpoints, but each API_endpoint is bound to a maximum of one application as shown in Figure
12.

In this state, the relationship between an API_endpoint and an API_connection is one-to-many. A single
API_endpoint may be associated with multiple API_connections, but each API_connection is associated
with a maximum of one API_endpoint. The significance of thisis that many API_connections may share a
single API_endpoint in this state. Thisis done to model environments where an API_connection acquires a
new API_endpoint as the API_connection progresses from the early states (call setup) to the data transfer

states (A8, A9, A10).
1 n .
@ Connection
Endpoint Application
n 1

n

requests
join

m
] L1J call
Prospective parameters
Leaf

LI1J call
identifier
ATM Address

Figure 12 Entity Relationship Diagram for the Root ATM device

An API_endpoint may respond to join requests from other ATM devices. For a given point-to-multipoint
connection, these join requests can be characterized by the ATM Address of the prospective leaf. A given
point-to-multipoint connection can accommodate simultaneous requests from different prospective leafs.

Also, any given leaf can simultaneously request a join to several different point-to-multipoint connections
originating from the same ATM device . Because of this, the “requests join” relationship has the
cardinality of many-to-many.

Page 24 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

Any API_endpoint that responds to LIJ requests must have a LIJ call identifier that is unique for a given
ATM address. The LIJ call identifier is beyond the scope of this document and Signaling 4.0. Also, any

API_endpoint that responds to L1J requests conforms to one or more LI1J call parameters. Both the L1J call
identifer and any LIJ call parameters are modeled as attributes of API_endpoint.

2.6. State Machines
Thecircles are the states and the edges are primitives that cause transitions between states. These
primitives will be described further in chapter 3.

2.6.1. Partial State Diagram for API_Connection
Below in Figure 13 is a partial state diagram for API_connection.

ATM_associate_endpoint

@ ATM_prepare_incoming_call
ATM_prepare_outgoing_call @

ATM_wait_on_incoming_call

ATM_connect_outgoing_call ATM_arrival_of incoming_call

. o

ATM_P2P_call_active
- ATM _accept_incoming_call

ATM_reject_incoming_call

ATM_P2P_call_active
ATM_P2MP_call_active

@ ATM_P2MP_call_active
ATM_call_release
ATM_call_release

ATM_abort_connection

ATM_call_release

| A11

Figure 13 Partial State Machine

2.6.2. L1J State Machines

ATM Forum Technica Committee Page 25 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

Multiple LIJ state machines are permitted. An ATM device may simultaneoudly exist as a leaf within
multiple multicast connection trees. An API_connection may only exist as a leaf with one multicast
connection tree at any given time. An application may attempt to join multiple multicast connections
essentially simultaneoudly. Refer to section 4 for more detailed procedures. Figure 14 below is the complete
one-shot state diagram regarding the leaf initiated join request at the leaf. The leaf sequence number is used
asacorrelator at the L1J leaf.

ATM_LIJ_request_join

ATM _arrival_of_incoming_call
ATM_LIJ_leaf_rejected

Figure14 L1J Leaf State Machine

Figure 15 provides the corresponding complete state machine at the root end of the Pt-MPt connection. At
the root end, al state machines with the same call_ID, are synchronized during initialization by the
ATM_LI1J associate call_ID primitive. The state machines then progress independently with each LIJ
request. The ATM address of aleaf is used as a correlator at the L1J Root.

ATM_LIJ_associate_call_ID

ATM_LIJ_join_requested

ATM_connect_outgoing_call
ATM_add_party
v ATM_LIJ_reject_leaf

R3

Figure15 LI1J Root State Machine

Page 26 of 102 ATM Forum Technical Committee

APl Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000

3.

February 1999

PRIMITIVES

The symbol “&&” will be used to denote the logical AND operator. The symbol “||” will be used to denote
the logical OR operator. This allows us to build Boolean expressions to specify the valid states for
invocation of each primitive.

This section uses the following conventions for the primitives specified herein:

"IN" - a parameter value supplied by the originator of the primitive (e.g. the caller of a
subroutine).

"OUT" - a parameter value supplied by the recipient of the primitive (e.g. the callee of a
subroutine).

"INOUT" - a parameter value that might be supplied by the primitive's originator, recipient, or
both; depending on the implementation.

"Request”, "Indication”, "Response", "Confirm" - these terms are conventionally used by ISO to
describe the role of the primitive.

3.1. Control Plane
ATM _abort_connection Request
Purpose: clear the connection due to abnormal conditions

ATM _abort_connection (

IN endpoint_identifier,
IN cause

)

where

« endpoint_identifier specifies the connection to which this primitive applies.

» cause specifies the abnormal condition

Return Values: none

Valid States: Al]| A2|| A3|| Ad|| A5|| A6|| A7|| A8|| A9|| AL0

State Transitions: the state becomes A1l

This primitive ends the association between the API_connection and an API_endpoint.

This primitive is used to terminate a communication endpoint. All connections associated with this
communication API_endpoint will be aborted and all the resources allocated for the communication
API_endpoint are released.

ATM Forum Technica Committee Page 27 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

ATM _accept_incoming_call Response

Purpose: application signals acceptance of the pending incoming call

ATM _accept_incoming_call (

IN endpoint_identifier,
INOUT new_endpoint_identifier
)

where

« endpoint_identifier specifies the connection to which this primitive applies.

* new_endpoint_identifier specifiesthe new API_endpoint identifier to be associated with this
API_connection. In cases where the parent application provides a new API_endpoint
identifier, this parameter isIN. In case where the underlying service provides a new
API_endpoint identifier, this parameter is OUT.

Return Values:
SUCCESS
CONNECTION_PREVIOUSLY_ABORTED

Valid States: A6

State Transitions:

» If thereturn value is SUCCESS, then the API_connection most recently presented to the application
moves to state A7. This connection is controlled by new_endpoint_identifier. endpoint_identifier
controls the remaining API_connections in the incoming queue, which will be in state A5.

e If the return value is CONNECTION_PREVIOUSLY_ABORTED, then the API_connection most
recently presented to the application moves to state A1l. This connection is controlled by
new_endpoint_identifier. endpoint_identifier controls the remaining API_connections in the
incoming queue, which will be in state A5.

This primitive signals that the application wishes to accept the incoming call that is at the head of the
incoming call queue.

The connection attribute BLLI_SELECTOR is set by the application to one of the following values:

* 0: no “Broadband Low Layer Information” (BLLI) information element should be returned to the
calling party

» 1: the first occurrence of BLLI information element should be returned to the calling party
» 2:the second occurrence of BLLI information element should be returned to the calling party
* 3 -the third occurrence of BLLI information element should be returned to the calling party.

Page 28 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

ATM _add_party Request
Purpose: add aleaf to an existing point-to-multipoint call

ATM _add_party (

IN endpoint_identifier,
IN leaf identifier,

IN leaf ATM_address
)

where

» endpoint_identifier specifies the connection to which this primitive applies.

» leaf _identifier isreference to the ATM device being added to this connection. (NOTE: This
value must be non-zero and less than 32,768.)

* leaf ATM_addressisthe ATM address of the ATM device being added to this connection.
Return Values. none
Valid States: A9

State Transitions: If
0] this API_endpoint is the root of a L1J point-to-multipoint connection,
(i) the LIJFSM isin state R2, and
(iii) parameter leaf ATM_address specifiesthe ATM address of the leaf currently attempting
to join the connection;
then invocation of this primitive moves the L1J FSM to state R3.

This primitive allows applications to add new ATM devices to an existing point-to-multipoint call. The
new leaf inherits the traffic parameters already in force for the existing leaf(s) of this connection. Note
that data traffic in a point-to-multipoint connection only flows from the root node to each |eaf node.

ATM _add party reject Confirm

Purpose: signal that a previous ATM_add_party request was unsuccessful.

ATM _add_party reject (

IN endpoint_identifier,
IN leaf identifier,

IN rejection_cause

)

ATM Forum Technica Committee Page 29 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

where
« endpoint_identifier specifies the connection to which this primitive applies.
» leaf identifier isareferenceto the ATM device that could not be added.

» regjection_cause specifies why the addition of aleaf was rejected.
Return Values. none
Valid States: A9

State Transitions: no transitions

ATM_add_party success Confirm

Purpose: signal that aprevious ATM_add_party request was successful.

ATM_add_party_success (

IN endpoint_identifier,
IN leaf identifier,

)

where

» endpoint_identifier specifies the connection to which this primitive applies.

« leaf _identifier is reference to the ATM device being added to this connection.
Return Values. none
Valid States: A9

State Transitions: no transitions

ATM _arrival_of incoming_call Indication

Purpose: notifies the application that a call has arrived

ATM _arrival_of_incoming_call (
IN endpoint_identifier,

)

where
« endpoint_identifier specifies the incoming call queue upon which the cal islocated.

Return Values: none

Page 30 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

Valid States: A5

State Transitions:. The API_connection that is presented to the application moves from state A5 to
AG6. All other API_connections for this endpoint_identifier remain in state A5.
If
0] this API_endpoint is attempting to become aleaf of a L1J point-to-multipoint connection,
(i) theLIJFSM isin state L1, and
(iii) the connection attributes specify the leaf sequence number corresponding to a previous
L1Jrequest. Refer to Annex A for connection attributes.
then invocation of this primitive movesthe LIJFSM to state L2.

This primitive signals the application that an incoming call is present in the incoming call queue.

The connection attribute BLLI_SELECTOR is set by Native ATM Services to one of the following

values:
* 0: no “Broadband Low Layer Information” (BLLI) information element was present in the
incoming call

« 1: the first occurrence of BLLI information element present in the incoming call forms part of the
SAP (over which this call is being received)

« 2:the second occurrence of BLLI information element present in the incoming call forms part of
the SAP (over which this call is being received)

* 3 -the third occurrence of BLLI information element present in the incoming call forms part of the
SAP (over which this call is being received).

ATM _associate endpoint Request
Purpose: associates an API_endpoint with the potential AP1_connections that will use that
endpoint.

ATM _associate_endpoint (
OUT endpoint_identifier,
)

where

« endpoint_identifier is the newly allocated API_endpoint.
Return Values: none
Valid States: A0

State Transitions: API_connection moves to state Al. This primitive initializes any potential root
LIJ FSMs to RO and any potential leaf LIJ FSMs to LO.

This primitive creates an initial association between the API_connection and API_endpoint.

ATM Forum Technica Committee Page 31 of 102

AF-SAA-0108.000
February 1999

APl Semantics for Native ATM Services using UNI 4.0

ATM call release

Purpose:
application.

Request

terminates an API_connection that isin an active state (A8|| A9|| A10) by the

ATM call_release (

IN endpoint_identifier,
IN release_cause,

)

where

« endpoint_identifier specifies the connection to which this primitive applies.

» release causeidentifiesthe cause of release.

Return Values:

Valid States:

none

A8|| A9 A10

State Transitions: API_connection movesto state A1l

ATM call release

Purpose:

Indication

terminates an API_connection because of a network or remote device action.

ATM call_release (

IN endpoint_identifier,
IN release_cause,

)

where

« endpoint_identifier specifies the connection to which this primitive applies.

» release causeidentifiesthe cause of release.

Return Values:

Valid States:

none

A3|| A7|| A8|| A9|| A10

State Transitions: API_connection movesto state A1l

Page 32 of 102

ATM Forum Technical Committee

APl Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000

February 1999

ATM _connect_outgoing_call Request

Purpose: initiates a call acrossthe ATM network

ATM _connect_outgoing_call (

IN endpoint_identifier,
IN destination_SAP,

)

where

« endpoint_identifier specifies the connection to which this primitive applies.

» destination_SAP is the address of the target ATM device and target entity within the ATM
device. See section 4.4 and section 4.5 for more information on SAP addresses.

Return Values: none

Valid States: A2

State Transitions: The API_Connect state machine moves to state A3.

If

(i) this API_endpoint is the root of a L1J point-to-multipoint connection,

(i) the LIJFSM isin state R2, and

(iii) parameter destination_SAP specifiesthe ATM address of the leaf currently attempting to join
the connection;

then invocation of this primitive movesthe LI1JFSM to state R3.

This primitive causes the underlying ATM protocols to attempt set up of an outgoing call.

ATM drop_party Request

Purpose: remove an ATM device from a point-to-multipoint call.

ATM drop_party (

IN endpoint_identifier,
IN leaf identifier,

IN drop_cause

)

where

» endpoint_identifier specifies the connection to which this primitive applies.
» leaf identifier specifiesthe ATM device being dropped.

» drop_cause specifies the reason for dropping.

ATM Forum Technica Committee Page 33 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

Return Values: none
Valid States: A9
State Transitions: no state transitions

This primitive allows applications to drop aleaf node from a point-to-multipoint connection.

ATM drop_party Indication

Purpose: an ATM device (leaf of point-to-multipoint call) released the connection.

ATM drop_party (

IN endpoint_identifier,
IN leaf identifier,

IN drop_cause

)

where

» endpoint_identifier specifies the connection to which this primitive applies.
« leaf identifier specifiesthe ATM device that dropped off of the connection.

» drop_cause specifies the reason for dropping.
Return Values: none
Valid States: A9
State Transitions: no state transitions

This primitive notifies an application that a remote leaf node dropped off a point-to-multipoint

connection.
ATM _get local port_info Request
Purpose: obtain necessary information related to an ATM physical port

ATM _get local _port_info (
IN port_number,
OUT address list
OUT line rate

)

Page 34 of 102 ATM Forum Technical Committee

APl Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999
where
e port_number identifies a physical UNI attachment.
* address listisalist of ATM addressesthat are valid for the port number.

« line _rateisthe maximum cell rate supported by the ATM port in cells per second.

Return Values:
SUCCESS
INVALID_PORT_NUMBER
NO_VALID_ADDRESSES

Valid States: not applicable
State Transitions. not applicable

This primitive reports the result of ILMI address registration, as specified in section 5.8 of the UNI.

ATM_P2MP_call_active Confirm

Purpose: signal that the point-to-multipoint call is now in active state

ATM_P2MP_call_active (
IN endpoint_identifier,

)

where

» endpoint_identifier specifies the connection to which this primitive applies.
Return Values: none
Valid States: A3|| A7

State Transitions: If the API_connection was in state A3, then the new state will be A9. If the
API_connection was in state A7, then the new state will be A10.

ATM_P2P call_active Confirm

Purpose: signal that the point-to-point call is now in active state

ATM_P2P call_active (
IN endpoint_identifier,

)

ATM Forum Technica Committee Page 35 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

where

« endpoint_identifier specifies the connection to which this primitive applies.
Return Values. none
Valid States: A3||A7

State Transitions. API_connection moves A8.

ATM _prepare_incoming_call Request

Purpose: sets up incoming call distribution tables

ATM _prepare_incoming_call (

IN endpoint_identifier,
IN local _SAP,

IN gueue size

)

where

« endpoint_identifier specifies the connection to which this primitive applies.

» local_SAP isthe address of this ATM device and application entity. See section 4.4 for a
discussion on SAP addresses.

» queue_size specifies the depth of the incoming call queue.
Return Values:

SUCCESS

SAP_ALREADY_USED
Valid States: Al

State Transitions: API_connection movesto state A4

This primitive allows applications to associate an API_endpoint with alocal address. Theintent of the
2nd parameter is to specify an address that can be used to identify a unique API_endpoint.

ATM _prepare_outgoing_call Request

Purpose: sets up data structures that hold the characteristics of the outgoing call

ATM _prepare_outgoing_call (
IN endpoint_identifier,

)

Page 36 of 102 ATM Forum Technical Committee

APl Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000

February 1999
where
« endpoint_identifier specifies the connection to which this primitive applies.
Return Values: none
Valid States: Al
State Transitions: API_connection moves to state A2.
ATM_query_connection_attributes Request

Purpose: to obtain an attribute value of the connection

ATM_query_connection_attributes (

IN endpoint_identifier,
IN attribute_name,
OUT attribute value,

)

where

« endpoint_identifier specifies the connection to which this primitive applies.
« attribute_name identifies the attribute.
« attribute valueisthe value of attribute.

Return Values:

SUCCESS
ATTRIBUTE_DOES NOT_EXIST

Valid States: A2|| A6|| A8|| A9|| A10
State Transitions. no state transitions

This primitive allows applications to query connection attributes. The attribute_name parameter
specifies the name of the attribute (e.g. QoS, peak cell rate). The attribute_value parameter contains
the query result.

NOTE: Native ATM Services must provide access to as many as three instances of the connection
attributes found in the “Broadband Low Layer Information” information element. One convenient way
to do this is to use connection attribute BLLI_SELECTOR to select which of the three instances is
being queried. Such implementations should default BLLI_ SELECTOR to a value of 1 when
API_connection transitions from state Al to A2.

ATM Forum Technica Committee Page 37 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

ATM _reject_incoming_call Response

Purpose: signals that the application does not accept the incoming call

ATM regect_incoming_call (

IN endpoint_identifier,
IN rejection_cause

)

where

« endpoint_identifier specifies the connection to which this primitive applies.

* rejection_cause specifies why the connection is being rejected.
Return Values: none
Valid States: A6
State Transitions: API_connection movesto state A1l
This primitive signals that the application wishes to reject the incoming call that is at the head of the

incoming call queue. endpoint_identifier controls the remaining API_connections in the incoming queue,
which will bein state A5.

ATM_set_connection_attributes Request

Purpose: to modify an attribute value of the connection

ATM_set_connection_attributes (

IN endpoint_identifier,
IN attribute_name,

IN attribute value,

)

where

« endpoint_identifier specifies the connection to which this primitive applies.
« attribute_name identifies the attribute.

« attribute value isthe desired value of attribute.

Page 38 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

Return Values:
SUCCESS
ATTRIBUTE_DOES NOT_EXIST
CAN_NOT_MODIFY
INVALID_VALUE

Valid States: A2|| A6
State Transitions: no state transitions

This primitive allows applications to modify connection attributes. The attribute_name parameter
specifies the name of the attribute (e.g. Q0S, peak cell rate). The attribute value parameter contains
the desired new value.

NOTE: Native ATM Services must provide access to as many as three instances of the connection
attributes found in the “Broadband Low Layer Information” information element. One convenient way
to do this is to use connection attribute BLLI_SELECTOR to select which of the three instances is
being manipulated. Such implementations should default BLLI_SELECTOR to a value of 1 when
API_connection transitions from state Al to A2.

ATM_wait_on_incoming_call Request

Purpose: activates the incoming call distribution function for this endpoint.

ATM _wait_on_incoming_call (
IN endpoint_identifier,

)

where

» endpoint_identifier specifies the connection to which this primitive applies.
Return Values: none
Valid States: A4
State Transitions: All AP1_connections associated with this APl_endpoint move to state A5

This primitive causes the application to wait for an incoming call to enter the incoming call queue.

ATM _LI1J associate call_ID Request

Purpose: associates an API_endpoint with a locally unique leaf-initiated join call identifier.

ATM Forum Technica Committee Page 39 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

ATM_LI1J associate call_ID (
IN endpoint_identifier,
IN LIJ_call_identifier,
IN LIJ _call_parameters,
)

where
« endpoint_identifier specifies the connection to which this primitive applies.

e LIJ call_identifier specifiesavalue (uniqueto this ATM device) that is used to identify a
particular leaf-initiated point-to-multipoint connection.

e LIJ call_parameters specifies whether or not the root is notified of leaf-initiated join requests.
Return Values:

SUCCESS

LI1J ID_ALREADY_USED

LIJ ONLY_ONE_ID_ALLOWED
Valid States: A2 && RO

State Transitions: The primitive moves any potential root LIJFSMsto R1.

ATM_LIJ request_join Request
Purpose: aleaf usesthis primitive to attempt to join a point-to-multi point connection.

ATM_L1J request_join (
IN endpoint_identifier,
IN root_ ATM_address,
IN LIJ _call_identifier,
OUT leaf sequence number

)

where
« endpoint_identifier specifies the connection to which this primitive applies.
e root ATM_addressisthe ATM address of the connection’s root.

e LIJ call_identifier specifies avalue (unique to the root's ATM device) that is used to identify
aparticular leaf-initiated point-to-multipoint connection.

» leaf_sequence_number specifies a unique value for a multicast connection session. It isused to
identify one of potentially several simultaneous multicast connections.

Return Values: none

Page 40 of 102 ATM Forum Technical Committee

APl Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000

February 1999
Valid States: (A4 || A5) && LO
State Transitions. The leaf’s LIJ FSM moves to state L1.
ATM_L1J join_requested Indication
Purpose: notifies the root that a leaf is attempting to join a point-to-multipoint connection.

ATM_LIJ join_requested (

IN endpoint_identifier,
IN leaf ATM_address,
)

where

» endpoint_identifier specifies the connection to which this primitive applies.

« leaf ATM addressis the ATM address of the leaf attempting to join the connection.
Return Values: none
Valid States: (A2 || A9) && R1

State Transitions: The root’s LIJ FSM moves to state R2.

ATM_LIJ reject_leaf Response

Purpose: reject leaf's attempt to join a point-to-multipoint connection.

ATM_LIJ reect_leaf (

IN endpoint_identifier,

IN leaf ATM_address,
IN rejection_cause,

)

where

« endpoint_identifier specifies the connection to which this primitive applies.
» leaf ATM_addressis the ATM address of the leaf attempting to join the connection.

* regection_cause specifies why the join attempt is being rejected.
Return Values: none

valid States: (A2 || A9) && R2

ATM Forum Technica Committee Page 41 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

State Transitions: The root’s LIJ FSM moves to state R3.

ATM _LIJ leaf rejected Confirm

Purpose: notifies leaf that an attempt to join a point-to-multipoint connection was rejected.

ATM _LIJ leaf rejected (

IN endpoint_identifier,

IN rejection_cause,

IN leaf _sequence number
)

where

» endpoint_identifier specifies the connection to which this primitive applies.
* rgection_cause specifies why the join attempt was rejected.

» leaf_sequence_number specifies a unique value for a multicast connection session. It is used to
identify one of potentially several simultaneous multicast connections.

Return Values: none
Valid States: A5 && L1
State Transitions: The leaf's LIJ FSM moves to state L2.

This primitive must be locally generated by Native ATM Services when the current pending request to
join a point-to-multipoint connection times out.

3.2. Data Plane

There are three major approaches to the implementation of the data transfer primitives:

* polling

« blocking

* messaging

Another issue is the location of the data. The data bound for the application could exist in:

* memory space that the operating system kernel manages

* memory space that the application manages

« hardware (e.g.the ATM adapter card, the video card, the sound card, a private data bus)

It is possible that there is a total hardware path between the ATM function and an application implemented
in hardware. In this case, the data plane primitives are realized in hardware.

Implementation choices are outside the scope of this document. However, for completeness, this section
considers the differing semantics associated with these different implementation approaches. See Appendix
A for a discussion of pragmatic issues concerning these primitives.

Page 42 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

NOTE: the data plane primitives to support AAL1 and User defined AAL traffic are implementation
specific at thistime. Thistopic isfor further study.

3.2.1. Sending Data

ATM _send_data Request

Purpose: to send data on the API_connection

ATM _send_data (
IN endpoint_identifier,
IN data_source,
OUT sending_result

)

where
» endpoint_identifier specifies the connection to which this primitive applies.

« data sourcedescribesthe data. For example, it could be a buffer location and amount of data,
or even a collection of buffers. As another example, it could be an instance of the application’s
data to be transmitted across the ATM network.

» sending_result is a status indication. In some implementations, it is simply SUCCESS or
FAILURE. In other implementations, it could be the amount of data transferred.

Return Values:
SUCCESS
NO_CONNECTION

Valid States: A8|| A9

State Transitions: no state transition

3.2.2. Receiving Data
Only one of the following implementations needs to be supported in a conforming system.

3.2.2.1. Polling Implementation

ATM _receive data Request

Purpose: to receive data on the API_connection

ATM Forum Technica Committee Page 43 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

ATM _receive data (

IN

endpoint_identifier,

INOUT data_receptor,

)

where

endpoint_identifier specifies the connection to which this primitive applies.

data_receptor:

Before this primitive is invoked, data_receptor describes where the received data should be
placed. After this primitivereturns, data receptor describes the data.

For example, before the primitive is invoked, data receptor could be a buffer location and
buffer size. After the primitive returns, data_receptor would be a buffer location and amount
of data.

As another example, before the primitive is invoked, data_receptor could be a character string
of zero length and a maximum string size. After the primitive returns, data_receptor would be a
character string.

Return Values:
SUCCESS
DATA_NOT_PRESENT
NO _CONNECTION

Valid States: A8||A10

State Transitions: no state transition

3.2.2.2. Blocking Implementation

ATM receive data Request

Purpose: to receive data on the API_connection

ATM receive data (

IN

endpoint_identifier,

INOUT data_receptor,

)

where

endpoint_identifier specifies the connection to which this primitive applies.

data_receptor:

Before this primitive is invoked, data_receptor describes where the received data should be
placed. After this primitive returns, data_receptor describes the data.

Page 44 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

For example, before the primitive is invoked, data_receptor could be a buffer location and
buffer size. After the primitive returns, data_receptor would be a buffer location and amount
of data.

As another example, before the primitive is invoked, data_receptor could be a character string
of zero length and a maximum string size. After the primitive returns, data_receptor would be a
character string.
Return Values:
SUCCESS
NO_CONNECTION
Valid States: A8||A10

State Transitions: no state transition

3.2.2.3. Messaging Implementation

ATM _receive data Indication

Purpose: to receive data on the API_connection

ATM _receive data (

IN endpoint_identifier,
IN receive data

)

where

» endpoint_identifier specifies the connection to which this primitive applies.
» receive data describesthe data. Consider the following examples for this parameter:
1. abuffer location and the amount of data

2. aninstance of the data (received across the ATM network) traversing a bus from the
ATM hardware to some other hardware device

3. anindication to an implementation-specific "receive handler" (see below) that the data
either has been or isin the process of being received across the ATM network.

Return Values: none

Valid States: A8||A10

State Transitions: no state transition

In some cases, a “receive handler” would be installed in the system. An environment-specific function
is performed to install the receive handler. The receive handler becomes the recipient of the
ATM_receive_data primitive. Additionally, the sending application could include application-defined

control information in an AAL frame and the application-defined receive handler could interpret this
control information.

ATM Forum Technica Committee Page 45 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

3.2.3. Flow Control Management

Flow control management primitives apply for connections using the ABR service only. These primitives
provide away to be notified of the Allowed Cell Rate and to control the Allowed Cell Rate within the limit
of the traffic contract negotiated at connection establishment. These primitives are available at both the
source and destination. The Allowed Cell Rate can be retrieved directly (polling) or indicated
(asynchronous) as specified. The variation of the Allowed Cell Rate must follow the Traffic Management
Specification. These primitives only provide away to specify arequested Cell Rate, not to force its value.

Appendix D provides informative material regarding the flow control management primitives associated
with the ABR service.

3.2.3.1. Source Cell Rate Notification

An application might choose to tune its outbound traffic according to the actual available bandwidth. The
following primitives allow an application to be notified of the Allowed Cell Rate as a source.

ATM_query_outbound_rate Request

Purpose: Query the ACR (Allowed Cell Rate) used to send U-Plane data in the
outbound direction.

ATM_query_outbound_rate (
IN endpoint_identifier,
OUT «allowed_cell_rate
)

where
* endpoint_tdentifier specifies the connection to which this primitive applies.

e allowed_cell_rate specifies the Allowed Cell Rate used to send in Cells/sec.

Return Values: none

Valid States: A8]|| A9

State Transitions: no state transition
ATM_set_outbound_notification_threshold Request
Purpose: specifies the thresholds for outbound data rate values (ACR) that

trigger asynchronous notifications to the application.

Page 46 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

ATM_set_outbound_notification_threshold(

IN high,
IN low

)

where

* high specifies in Cells/sec the upper threshold of ACR for triggering asynchronous
notifications

e low specifies in Cells/sec the lower threshold of ACR for triggering asynchronous
notifications

Return Values: none

Valid States: A8]|| A9

State Transitions: no state transition

Note: Implementations that support the ATM_outbound_rate_changed primitive will use this primitive
to specify conditions under which the ATM_outbound_rate changed indication primitive shall be

invoked. An implementation may internally trandlate the threshold parameters to some other convenient
metric (e.g. queue length) .

ATM_outbound_rate_changed Indication

Purpose: notifies the application that the outbound rate (Allowed Cell Rate) has
exceeded the high threshold, or fallen below the low threshold.

ATM_outbound_rate_changed(

IN endpoint_identifier,
IN OPTIONAL allowed_cell_rate

)

where

» endpoint_identifier specifies the connection to which this primitive applies.

* allowed_cell_rate specifies (in cells/sec) the Allowed Cell Rate used to send.
Return Values: none
Valid States: A8]|]| A9
State Transitions: no state transition

Note: Animplementation may or may not support thisindication. If supported, this indication depends
onthe ATM_set outbound_notification_threshold primitive to establish and maintain the high and low

ATM Forum Technica Committee Page 47 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

thresholds. If the optional alowed_cell_rate parameter is not supplied, then the application may
determine the value of this parameter by use of the ATM_query_outbound_rate primitive.

3.2.3.2. Source Cell Rate Control

An application might be willing to give up some of the Traffic Contract Quality Of Service, provided it can
be granted full benefit when needed. The following primitive provides a way to request an Allowed Cell
Rate different from the Peak Rate.

ATM_request_outbound_rate Request

Purpose: to request to change the outbound rate (Explicit Rate) from the source.

ATM_request_outbound_rate(
IN endpoint_identifier,
IN requested_cell_rate

)

where
* endpoint_identifier specifies the connection to which this primitive applies.

e The requested_cell_rate in cells/sec.

Return Values:
SUCCESS
INVALID VALUE

Valid States: A8|| A9
State Transitions: no state transition

Note: The actual Allowed Cell Rate achieved and the speed of the adaptation depends on the Traffic
Contract, the network load and traffic management policy as well as on the destination. The value of
the requested cell_rate must be compatible with the existing traffic contract i.e. less than Peak Cell
Rate (PCR) and aso greater than or equal to the Minimum Cell Rate (MCR). Vaues of
requested_cell_rate that do not meet the traffic contract will result in an appropriate error code
(INVALID_VALUE).

3.2.3.3. Destination Cell Rate Notification

An application might choose to tune its inbound traffic according to the actual available bandwidth. The
following primitives allow an application to be notified of the Allowed Cell Rate as a source.

ATM_query_inbound_rate Request

Purpose: Query the ACR (Allowed Cell Rate) used to receive U-Plane data in the
inbound direction.

Page 48 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

ATM_query_inbound_rate (
IN endpoint_identifier,
OUT allowed_cell_rate
)

where
* endpoint_tdentifier specifies the connection to which this primitive applies.

e allowed_cell_rate specifies the Allowed Cell Rate used to send in Cells/sec.
Return Values: none

Valid States: AS8|| A10

State Transitions: no state transition
ATM_set_inbound_notification_threshold Request
Purpose: specifies the thresholds for inbound data rate values (ACR) that trigger

asynchronous notifications to the application.

ATM_set_inbound_notification_threshold(

IN high,
IN low

)

where

* high specifies in Cells/sec the upper threshold of ACR for triggering asynchronous
notifications

e low specifies in Cells/sec the lower threshold of ACR for triggering asynchronous
notifications

Return Values: none

Valid States: A8]| | Al10

State Transitions: no state transition

Note: Implementations that support the ATM_inbound_rate_changed primitive will use this primitive
to specify conditions under which the ATM_inbound_rate changed indication primitive shall be

invoked. An implementation may internally trandlate the threshold parameters to some other convenient
metric (e.g. queue length) .

ATM Forum Technica Committee Page 49 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

ATM_inbound_rate_changed Indication

Purpose: notifies the application that the inbound rate (Allowed Cell Rate) has
exceeded the high threshold, or fallen below the low threshold.

ATM_inbound_rate_changed(

IN endpoint_identifier,
IN OPTIONAL allowed_cell_rate

)

where

» endpoint_identifier specifies the connection to which this primitive applies.

» allowed_cell_rate specifies (in cells/sec) the Allowed Cell Rate used to send.
Return Values: none
Valid States: A8]|| Al0
State Transitions: no state transition
Note: Animplementation may or may not support thisindication. If supported, this indication depends
on the ATM_set inbound_notification threshold primitive to establish and maintain the high and low

thresholds. If the optional alowed cell rate parameter is not supplied, then the application may
determine the value of this parameter by use of the ATM_query_inbound_rate primitive.

3.2.3.4. Destination Cell Rate Control

An application might be willing to give up some of the Traffic Contract Quality Of Service, provided it can
be granted full benefit when needed. The following primitive provides a way to request an Allowed Cell
Rate different from the Peak Rate.

ATM_request_inbound_rate Request

Purpose: to request to change the inbound rate (Explicit Rate) .

ATM_request_inbound_rate(
IN endpoint_identifier,
IN requested_cell_rate

)

where
* endpoint_identifier specifies the connection to which this primitive applies.
e The requested_cell_rate in cells/sec.

Return Values:

SUCCESS
INVALID_VALUE

Page 50 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

Valid States: A8]|| Al10

State Transitions: no state transition

Note: The actual Allowed Cell Rate achieved and the speed of the adaptation depends on the Traffic
Contract, the network load and traffic management policy as well as on the destination. The value of
the requested cell_rate must be compatible with the existing traffic contract i.e. less than Peak Cell
Rate (PCR) and aso greater than or equal to the Minimum Cel Rate (MCR). Vaues of
requested_cell_rate that do not meet the traffic contract will result in an appropriate error code
(INVALID_VALUE).

ATM Forum Technica Committee Page 51 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999
3.3. Management Plane

ATM _confirm_loopback Confirm

Purpose: confirms completion of loopback test

ATM _confirm_loopback (

IN endpoint_identifier,
IN correlator

)

where

» endpoint_identifier specifies the connection to which this primitive applies.

« correlator alows the management application to match this confirmation to a previous
ATM _initiate loopback request.

Return Values: none

Valid States: AS8

Note: When this confirmation is received, it means that the loopback test was successful. If no
confirmation to a corresponding ATM _intiate loopback is received, then the loopback test failed.

ATM indicate error Indication

Purpose: indicates an error was detected among the managed objects.

ATM indicate error (
IN error_code,
OPTIONAL IN endpoint_identifier,

)

where

« error_code isthe error that occurred.

» endpoint_identifier specifies the connection to which this primitive applies, when error_code
identifies an error that is associated with a single connection. Otherwise, the value of
endpoint_identifier is unspecified.

Return Values: none

Error_Code Values:

Notes:

Page 52 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

1. These are network-oriented error messages. They arise from errors detected over the UNI. These
values are for further study.

2. Only AO (null) and A11 (call terminated) states cannot generate an error when an API_endpoint
identifier is provided.

ATM _indicate fault_alert Indication

Purpose: indicates reception of an OAM alarm signal

ATM _indicate fault_alert (
IN endpoint_identifier,

)

where

« endpoint_identifier specifies the connection to which this primitive applies.
Return Values. none

Valid States: AS8

ATM initiate_loopback request

Purpose: initiates aloopback test to the nearest switch or the far end point of a connection.

ATM _initiate loopback (

IN endpoint_identifier,
IN loopback _extent,
IN correlator,

)

where

« endpoint_identifier specifies the connection to which this primitive applies.
» loopback_extent specifies nearest switch loopback or end-to-end loopback.

« correlator isavalue that will be returned with the ATM_confirm_loopback primitive.
Return Values: none

Valid States: A8

ATM Forum Technica Committee Page 53 of 102

AF-SAA-0108.000
February 1999

APl Semantics for Native ATM Services using UNI 4.0

ATM _query mgmt_variable

Purpose:

ATM _query_mgmt_variable (

IN variable _name,
IN table_index,
OUT variable value,

)

where

» variable name identifies the managed object.

Request

gueries the value of the specified management variable.

« table index identifies the table location when this variable islocated in atable. For variables

not located in atable, this parameter isignored.

» variable valueisthe value of the managed object.

Return Values:
SUCCESS
VARIABLE_NOT_SUPPORTED
INDEX_OUT_OF RANGE
VARIABLE_DOES NOT_EXIST

ATM_set mgmt_variable
Purpose:

ATM _set mgmt_variable (
IN variable _name,
IN table_index,
IN desired value,

)

where

» variable name identifies the managed object.

Request

modifies the value of the specified management variable

« table index identifies the table location when this variable islocated in atable. For variables

not located in atable, this parameter isignored.
* desired_valueisthe desired value of the managed object.
Return Values:

SUCCESS
VARIABLE_NOT_SUPPORTED

Page 54 of 102

ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

INDEX_OUT_OF RANGE
VARIABLE_DOES NOT_EXIST
CAN_NOT_MODIFY
INVALID_VALUE

ATM Forum Technica Committee Page 55 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

4. Procedures

4.1. PVC Provisioning

These procedure shall be limited to trusted applications, such as a management application. General user
applications that use a PV C shall only receive an indication that aPVC is active.

4.1.1. Establishment

The management application shall perform the following stepsin order to provision aPVC;

1. Choose an unused table entry in the atmfV ccGroup.

2. Using the ATM_set_ mgmt_variable primitive, set al the parameters for this table entry of the
amfVccGroup except for atmfVccOperStatus. It is presumed that atmfV ccOperStatus has the value
unknown or localDown.

3. Using the ATM_set mgmt_variable primitive, set atmfVccOperStatus in atmfVccGroup to
localUpEnd2endUnknown. Thisisasignal to native ATM services to perform all locally required setup
of the VC. This includes hardware register manipulation and buffer allocation. During this time
atmfV ccEndpointldentifier shall be assigned by native ATM services. The vaue for
atmfV ccOperStatus will retain the value of unknown or localDown until the initialization of the VC is
complete. After the initialization is completed atmfV ccOperStatus is set to local UpEnd2endUnknown
by Native ATM services.

4. Using the ATM_query_mgmt_variable primitive, poll and query amfVccOperStatus in
amfV ccGroup until the value is local UpEnd2endUnknown.

5. Using the ATM_query_mgmt_variable primitive, obtain the value for atmfV ccEndpointldentifier and
pass it to the entity that isto use this PV C.

4.1.2. Termination

The management application shall perform the following stepsin order to terminate a PV C:

1. Usingthe ATM_set mgmt_variable primitive, set atmfV ccOperStatus in atmfV ccGroup to localDown.
This is a signal to native ATM services to perform al localy required teardown of the VC. This
includes hardware register manipulation and buffer deallocation.

4.2. SVC Provisioning

4.2.1. Initiating a Call

4.2.1.1. Establishment

The application first acquires a local connection API_endpoint with which primitives may be exchanged
that offer native ATM services. This is done via the ATM_associate endpoint primitive. The
endpoint_identifier that is returned from this primitive is used in the future to identify the newly acquired
connection endpoint.

Next, the application must signal its intent to initiate an outgoing call. The application does this via the
ATM _prepare_outgoing_call primitive. In response to the primitive, the connection API_endpoint
creates data structures that initially hold default values for various connection attributes. Examples of
connection attributes include the AAL type, forward peak cell rate, and QOS class; for a complete listing
see Annex A. The application may examine any of these default connection attributes via the
ATM_query _connection_attributes primitive. In addition, the application may optionally modify some
of these attributes via the ATM _set_connection_attributes primitive. Depending on the implementation,
each of these attributes may or may not be settable by the application. Also, the value to which the
application attempts to set a given connection attribute may be modified by the connection endpoint, due to
local resource constraints or the local implementation of Native ATM Services.

The application can optionally select additional data plane services. The default is that no additional data
plane service is provided beyond AALS5. The only such additional option supported at this time is the

Page 56 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

SSCOP protocol; SSCOP adds reliability to the ATM connection. Option selection is performed via the

SSCS connection attribute.

If the application wishes to place a point-to-multipoint call, then the application signals this to the
connection API_endpoint by setting the user plane connection configuration attribute of the Broadband

Bearer capability Information Element within the connection attributes to reflect this (refer to Annex A).

The default value for the user plane connection configuration attribute shall be to select a point-to-point

call. When a point-to-multipoint connection is selected, then Native ATM Services will enforce a reverse
bandwidth of zero and indicate aleaf identifier of zero in the Q.2931 network messages.

When the application is satisfied that the connection attributes, as represented by the connection endpoint,
conform to the application’s requirements, then a call is placed across the ATM network. The application
initiates this via theATM _connect_outgoing_call primitive. Included as a parameter of this primitive is
destination_SAP. The destination SAP is the ATM address of the remote ATM device plus the additional
information allowing the call to reach the correct target software entity within the remote ATM device.
Native ATM Services places the call across the ATM network to the target ATM device. If a point-to-point
call attempt is successful, then Native ATM Services signals the application AIBNMNP2P_call_active
primitive. If a point-to-multipoint call attempt is successful, then Native ATM Services signals the
application via alRTM_P2MP_call_active primitive. In the event that the call attempt was unsuccessful,
then Native ATM Services signals the application viaAdrVi_call_release primitive. This primitive
includes the cause for the lack of success.

4.2.1.2. Adding and Removing Leafs

For point-to-multipoint calls, the application originating the call has the ability to add and remove
additional parties of the call. In this section, the originating application is referred to as the “root” of the
call; all other participants of the call are referred to as “leafs”.

To add a leaf, the root issuesANM _add_party primitive. The parameters for this primitive include the
ATM address of the leaf, plusleaf_identifier, which is used to identify the leaf in future primitives that
affect that leaf. Note that the application is responsible for generating valiea$ tdentifier. If the leaf

is successfully added to the point-to-multipoint call, then the application is notified of this via the
ATM _add_party success primitive. Otherwise, the application is notified that the request to add a leaf
failed, via theATM _add_party_reject primitive.

To remove a leaf, the root issuesf/ahM _drop_party (request) primitive. Included as a parameter of this
primitive the root’s reason for removing the leaf.

If a leaf decides to remove itself from a point-to-multipoint call, then Native ATM Services notifies the
application via theATM _drop_party (indication) primitive. Included as a parameter of this primitive is
the leaf’s reason for removing itself. This primitive would also be used in the case of the ATM network
deciding to remove the leaf.

4.2.1.3. Termination

When the application wishes to terminate the connection, then the application invokes the
ATM _call_release (request) primitive. If the remote ATM device or the ATM network terminates the
connection, then the application is notified of this viaAfileM call_release (indication) primitive. Data

in transit at the time a connection is terminated is lost. It is therefore up to the cooperating applications to
determine that all necessary data has successfully passed through the network prior to terminating the
connection.

4.2.2. Responding to a Call

4.2.2.1. Establishment

The application first acquires a local connection API_endpoint with which primitives may be exchanged
that offer Native ATM Services. This is done via tAdM_associate endpoint primitive. The
endpoint_identifier that is returned from this primitive is used in the future to identify the newly acquired
connection endpoint.

Next, the application must signal its intent to respond to an incoming call. The application does this via the
ATM _prepare_incoming_call primitive. Included as parameters of this primitive are the ATM address of
the local ATM device, plus the SAP information allowing call notification to reach the application. During

ATM Forum Technica Committee Page 57 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

the processing of this primitive, Native ATM Services ensures that no other application is using the same
SAP.

The application then issues the ATM_wait_on_incoming_call primitive to request that incoming calls be
queued and presented to the application. When such an incoming call does arrive, the connection
API_endpoint notifies the application viathe ATM _arrival_of_incoming_call primitive.

The application must make a decision as to whether or not to accept the call. The application may examine
the connection attributes of the newly arrived incoming call viathe ATM _query_connection_attributes
primitive. In addition, the application may modify a small number of attributes via the
ATM_set_connection_attributes primitive.

If the application decides to accept the call, the application invokes the ATM _accept_incoming_call
primitive. Otherwise, the application rejects the call viathe ATM _reject_incoming_call primitive.

Even if call has been accepted, the application must wait for the ATM network to award the call. After an
incoming point-to-point call has been awarded, the application is notified via the ATM_P2P_call_active
primitive. After an incoming point-to-multipoint call has been awarded, the application is notified via the
ATM_P2MP_call_active primitive. If an error occurred during the awarding of the call, then the
application is notified viathe ATM _call_release primitive.

4.2.2.2. Termination

When the application wishes to terminate the connection, then the application invokes the
ATM _call_release (request) primitive. If the remote ATM device or the ATM network terminates the
connection, then the application is notified of this viathe ATM _call_release (indication) primitive. Data
intransit at the time a connection isterminated islost. It istherefore up to the cooperating applications to
determine that al necessary data has successfully passed through the network prior to terminating the
connection.

4.2.3. Leaf Initiated Join Procedures

A new Pt-MPt connection may be established in response to an LIJ request as shown in Figure 16. The

root will respond with a SETUP message. If the root maintains control (“ROOT LIJ") then further
LEAF_SETUP_REQUEST messages from other leaves will be responded to by the root as shown in Figure
17. Alternatively, if the Pt-MPt- connection is identified as a Network LIJ in the SETUP message, the
network will be responsible for responding to further LEAF_SETUP_REQUEST messages as shown in
Figure 18.

©) A NAS Newok NAS AP (%)
@ @ ATM_LIJ regpest_join e
B LEAF_SETUP_REQUEST L1J associate call_| D
ATM_wait_ingpming call UL EAF_SETUP_REQUEST e
L1J joi ed
A5) join_reques
{ATM_connect e
SETUP e
< SETUP a
ATM_arrival_of |incoming_call
v) 4
L2
A6 API
Q O U Am U UNI U UNI U U @

ROOT
LEAF#1

Figure 16 Example M essage Sequence for Pt-MPt L1J : New Connection Case

Page 58 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

The NAS at the root must be able to associate the LI1J join_request and the corresponding SETUP,
ADD_PARTY, or LEAF_SETUP_FAILURE message. In particular the association is required to be able
to provide the leaf _atm address and leaf_sequence_number parameters per application API_endpoint for

these messages.
(=)

e APP NAS Network NAS APP
()

ATM_LIJ refest_join

LEAF_SETUP_REQUEST

ATM_wait_ihtoming_call LEAF_SETUP_REQUEST

e LIJ join_requested
),

ATM_add_part

ADD_PARTY

SETUP @

ATM_arriva_pf_incoming_call

h 4
(o (2

UNI UNI
AR ROOT

LEAF#2

Figure 17 Example M essage Sequence for Root Join L1J procedure

ATM_LIJ regpest_join

LEAF_SETUP_REQUEST

g APP NAS Network NAS APP
) () ’
5

ATM_wait_incoming_call

(3)e
&/

SETUP
ATM_arriva_of |incoming_call

ROOT

LEAF#2

Figure 18 Example M essage Sequence for Pt-M Pt L1J Network L1J Case of Existing Connection

In the case of an existing Pt-MPt connection configured for Network LIJ, the Network may originate the
LEAF SETUP_FAILURE message (rather than the root). In Figure 19, the application at the leaf may also
receive an ATM_LIJ leaf rejected primitive due to the expiry of the local timer (T331 of the UNI 4.0
stack).

ATM Forum Technica Committee Page 59 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

APP NAS Network NAS APP

@ ATMiLIJJeg est_join
©

LEAF_SETUP_REQUEST L1] associate_c

ATM_wait_ingpming_call LEAF_SETUP_REQUEST

e L1J join_requested e
o 72)

ATM_LIJ_rejed

LEAF_SETUP_FAILURE

LLEAF_SETUP_FAILURE|

ATM_LIJ_leaf |rijected

4
UNI API

@ API UNI

ROOT

LEAF#1

Figure 19 Example M essage Sequence for Call Regjection Caseof LI1J

4.3. Synchronization and Coordination Function

This section describes the synchronization and coordination function (SCF) that Native ATM Services
performs between the control and data planes. This service is related to and can be selected via the local
service connection attribute SSCS that is modified with the ATM_set_connection_attribute primitive.

Native ATM SAP

SCF
signaling
data SSCS control SSCS
AAL AAL-5
data plane control plane

Figure 20 Synchronization and Co-ordination Function

4.3.1. NULL_SSCS
In this case, the data plane protocol stack for Native ATM Services includes the SAR function and
CPCS layer (AAL5, AALL, or a user-defined AAL). The only function that SCF performs is to
maintain the state of API_connection and verify that the ATM_send data and ATM _receive data
primitives are issued in the appropriate states.

Page 60 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

| Native ATM SAP

SCF
|
signaling
|
null control SSCS
|
AAL AAL-5
data plane control plane

Figure 21 Native ATM SAP with Null SCCS

4.3.2. SSCOP_RELIABLE_SSCS

In this case, the data plane protocol stack for Native ATM Services includes the SAR function, the
CPCS layer (AAL type 5 only), and the SSCOP protocol. The SCF is defined below. Note that this
option isonly available for point-to-point connections.

"SSCOP" in this discussion is restricted to an instance of the SSCOP protocol that provides reliability
in the data plane; it has nothing to do with the instance of SSCOP that provides a similar service for the
signaling protocol. Note that the only SSCOP signals used by SCF are: AA-ESTABLISH, AA-
RELEASE, AA-DATA, and MAA-ERROR.

| Native ATM SAP

SCF
|
signaling
|
SSCOP control SSCS
|
AAL-5 AAL-5
data plane control plane

Figure 22 Native ATM SAP with Reliable SSCS

4.3.2.1. Connection Establishment
After ATM_connect_outgoing_call is invoked, the SCF in the ATM device initiating the ATM
call shall establish an SSCOP connection in the following manner:
1. After the Q.2931 CONNECT message is received from the ATM network, the SCF will
invoke the AA-ESTABLISH (request) signal to the SSCOP function. Parameter SSCOP-
UU shall be null. Parameter BR shall be YES.

ATM Forum Technica Committee Page 61 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

2. The SCF shall wait for an AA-ESTABLISH (confirm) signal from the SSCOP function.
Parameter SSCOP-UU shall be ignored.

3. Native ATM Services then indicates that the connection is in state A8, via
ATM_P2P call_active primitive.

app SCF SSCOP signaling ATM network

— ATM connect _
out goi ng_cal |

Set up. r equest

Q 2931 SETUP

Q 2931 CONNECT

Q 2931 CONNECT_ACK

Set up. confirm

AA- est abl i sh

re est
(request) SSCOP BN

AA- est abl i sh SSCOP BGNAK
(confirm

ATM P2P_cal | _active

Figure 23 Example M essage Sequence for Connection Origination

After ATM _accept_incoming_call is invoked, the SCF in the ATM device receiving the ATM
call shall establish an SSCOP connection in the following manner:

1. After the Q.2931 CONNECT_ ACK message isreceived from the ATM network, the SCF
continues to wait.

2. The SCF shall wait for an AA-ESTABLISH (indication) signal from the SSCOP function.
Parameter SSCOP-UU shall be ignored.

3. The SCF will invoke the AA-ESTABLISH (response) signa to the SSCOP function.
Parameter SSCOP-UU shall be null. Parameter BR shall be YES.

4. Native ATM Services then indicates that the connection is in state A8, via
ATM_P2P call_active primitive.

Page 62 of 102 ATM Forum Technical Committee

APl Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000

February 1999
app SCF SSCOP signaling ATM network
. - . Q 2931 SETUP
ATM arrival _ Set up. i ndi cati on
i ncom ng_cal |
ATM accept _
i ncom ng_cal |
Set up. response
Q 2931 CONNECT
/Q. 2931 CONNECT_ACK
SSCOP BGN
AA-establ i sh
(i ndication)
AA-establish
. (response)
ATM P2P_cal | _active SSCOP BGNAK
Figure 24 Example M essage Sequence for Connection Establishment
4.3.2.2. Data Transfer

app

When the ATM_send_data primitive is issued, the SCF will invoke an AA-DATA (request)
signal to the SSCOP function. When the SSCOP function signals AA-DATA (indication) signal to
SCF, then the ATM _receive_data primitiveis completed. Parameter SN from SSCOP isignored.

SCF SSCOP ATM network

ATM send_dat a

AA-data (request)

SSCOP SD

NV

SSCOP SD

AA-data (indication)

ATM r ecei ve_dat a

4.3.2.3.

Figure 25 Example M essage Sequence for Data Transfer

Connection Termination

If the ATM_call_release (request) primitive is issued, the SCF invokes an AA-RELEASE
(request) signal to the SSCOP function. Parameter SSCOP-UU shall be null. After this, the ATM
device sends a Q.2931 RELEASE message to the ATM network. If the instantiation of SSCOP
reguires any cleanup, this should be performed after the SCF has requested the Q.2931 RELEASE
message to be sent.

Note that depending on a race condition, an SSCOP ENDAK PDU may or may not arrive across
the ATM network before the Q.2931 RELEASE_COMPLETE message. This SSCOP ENDAK
PDU should be ignored.

ATM Forum Technica Committee Page 63 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

app SCF SSCOP signaling ATM network
— ATM cal | _rel ease — — — —
(request)

AA-rel ease (request)

SSCOP END

Rel ease. r equest

Q 2931 RELEASE

any required cl eanup Q 2931 RELEASE

COWPLETE

i &1

Figure 26 Example M essage Sequence for Connection Termination

As aresult of the previous scenario, the peer SCF on the other end of the ATM connection will receive an
AA-RELEASE (indication) signal from the SSCOP function. (The other possibility of the race condition --
a Q.2931 RELEASE being received first -- will be covered below.) When the SCF receives an AA-
RELEASE (indication) signal from the SSCOP function, and the SOURCE parameter indicates that the peer
user requested the release, then SCF will simply indicate to the application that the connection is no longer
available. It is assumed that a Q.2931 RELEASE message will arrive shortly from the ATM network.
After the Q.2931 RELEASE message is received, the SCF cleans up any resources from the instantiation of
the SSCOP function.

app SCF SSCOP signaling ATM network
] [] AA-rel ease]] SSCOoP END]
(indication)
ATM cal | _rel ease SSOCP ENDAK
(indication)

- ’ Q 2931 RELEASE
Rel ease. i ndi cation

Q 2931 RELEASE
any required cl eanup COWPLETE

Figure 27 Example M essage Sequence for SSCOP Termination

The ATM device may receive an unexpected Q.2931 REL EASE message from the ATM network. This
could be the result of the race condition presented in the first flow diagram of this section, or else the ATM
network terminates the connection. In these cases, SCF issuesaATM _call_release (indication) primitive
and cleans up any resources from the instantiation of the SSCOP function.

app SCF SSCOP signaling ATM network
Q 2931 RELEASE
ATM cal | _rel ease Rel ease. i ndi cation N
(i ndi cation) Q 2931 RELEASE_

COVPLETE

any required cleanup

Figure 28 Example M essage Sequence for Q.2931 Release
If the SCF receives an AA-RELEASE (indication) with the SOURCE parameter indicating the local SSCOP

has terminated the connection, or MAA-ERROR signa from the SSCOP function; then SCF issues a
ATM _call_release (indication) primitive and sends a Q.2931 RELEASE message to the ATM network. |f

Page 64 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

the instantiation of SSCOP requires any cleanup, this should be performed after the SCF has requested the
Q.2931 REL EASE message to be sent.

app SCF SSCOP signaling ATM network

ATM cal | rel ease AA-rel ease (indication)

(i ndication) or MAA-error

Rel ease. request
Q 2931 RELEASE

Q 2931 RELEASE_

any required cleanup LETE

Figure 29 Example M essage Sequence for Q.2931 Release Completion

4.3.3. SSCOP_UNRELABLE_SSCS
The SCF for this SSCSis for further study.

4.4. Specification of SAP Address

In this document, a “SAP” (service access point) is used for the following purposes:

1. When the application initiates an outgoing call to a remote ATM devibesiaation SAP specifies the
ATM address of the remote device, plus further addressing that identifies the target software entity
within the remote device.

2. When the application prepares to respond to incoming calls from remote ATM devlceal &AP
specifies the ATM address of the device housing the application, plus further addressing that identifies
the application within the local device.

NOTE: The preceding explanation refers to a single destination SAP. This is a simplification; Native

ATM Services actually supports up to three destination SAPs. For a discussion of this, see section 4.6.

4.4.1. SAP Address as a Vector
The SAP address may be expressed as a ved&®M_@ddr, ATM_selector, BLLI id2, BLLI _id3,
BHLI_id), where:

« ATM_addr corresponds to the 19 most significant octets of a device's 20-octet ATM address (private
ATM address structure) or the entire E.164 address (E.164 address structure)

 ATM_selector corresponds to the least significant octet of a device’'s 20-octet ATM address (private
ATM address structure only)

e BLLI_id2 corresponds to a set of octets in the Q.2931 BLLI information element that identify a layer 2
protocol

e BLLI_id3 corresponds to a set of octets in the Q.2931 BLLI information element that identify a layer 3
protocol

e BHLI_id corresponds to a set of octets in the Q.2931 BHLI information element that identify an
application (or session layer protocol of an application)

4.4.1.1. SAP Vector Element (SVE)

Each element of the SAP vector is called a SAP Vector Element, or SVE. Each SVE semantically consists

of a SVE_tag, SVE_length, and SVE_value field, as defined below. The method used to realize this is

implementation specific.

e SVE tag determines the interpretation of the SVE. There are three values defined: PRESENT,
ABSENT, and ANY. The value of PRESENT means thatS¥E value field contains valid data,

ATM Forum Technica Committee Page 65 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

which may be compared against corresponding octets found in the Q.2931 SETUP message. The value
of ABSENT means that the SVE_value field is invalid, and the corresponding octets in the Q.2931
SETUP message are hot present. The value of ANY means that the SVE_value field isinvalid, and that
the corresponding octets in the Q.2931 SETUP message may either be not present or assume any value.

The parameter destination_SAP in primitive ATM _connect_outgoing_call has these special restrictions:
1. AnSVE tagof ANY isnot alowed for any SVE.
2. AnSVE_tag of ABSENT is not allowed for the SVE that conveysthe ATM address.

3. For private ATM addresses, the SVE_tag for the ATM selector byte is PRESENT; for public
ATM addresses, the SVE_tag for the ATM selector byteis ABSENT.

e SVE_length contains the size, in bytes, of the SVE_value field. Note that if the value of SVE tag is
ABSENT or ANY, then SVE_length shall contain avalue of zero.

e SVE value, when valid, contains a value to be compared against corresponding octets found in the
Q.2931 SETUP message. For example, the SVE value field for the ATM_selector SVE may be
compared against the Q.2931 Called Party Number information element. As another example, the
SVE_value field for the BHLI_id SVE may be compared against the Q.2931 BHLI information
element.

4.4.2. SVE Encoding

This section specifies the mapping between the SVE_value field and the corresponding Q.2931 information
element, for each of the five SVE types. See the preceding section for the encoding of the SVE_tag and
SVE_length fields.

In the mappings listed below, the following conventions are used:

« tolabel bytes of the SVE value field: the first byte is called “1”, the second byte is called “2”, and so
on

* to label octets of the Q.2931 information element: the same label specified in Q.2931 is used.
4.42.1. ATM_addr SVE
» Byte 1 of theSVE_value field corresponds to octet 5 of the Q.2931 “Called Party Number” information
element (“Type of number” and “Addressing/Number plan identification”). Note that this determines
whether the ATM address uses private ATM address structure or E.164 address structure.
e When the ATM address uses the private ATM address structure, then bytes 2 - 2B\ thalue
field correspond to octets 6 through the next-to-last octet of tR83Q.“Called Party Number”
information element.
When the ATM address uses the E.164 address structure, then bytes 2 - NSGE thaue field
correspond to octets 6 and beyond of the Q.2931 “Called Party Number” information element.
4.4.2.2. ATM_selector SVE
When the ATM address uses the private ATM address structure, then byte 1 QfEthalue field
corresponds to the last octet of the Q.2931 “Called Party Number” information element.
When the ATM address uses the E.164 address structure, th&vEhealue field cannot exist; the
SVE _tag field for the SVE must equal ABSENT or ANY.
4.4.2.3. BLLI id2 SVE
In this case, there are two options for the structure dd\¥kevalue.
1. Option 1
» Byte 1 of theSVE value field corresponds to octet 6 of the Q.2931 “Broadband Low Layer
Information” information element (“User information layer 2 protocol”). Note that for this
option, the value of this byte must not correspond to User Specified (b’20000’).
2. Option 2
e Byte 1 of theSVE value field corresponds to octet 6 of the Q.2931 “Broadband Low Layer
Information” information element (“User information layer 2 protocol”). Note that for this
option, the value of this byte must correspond to User Specified (b’10000).

Page 66 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

« Byte 2 of the SVE value field corresponds to octet 6a of the Q.2931 “Broadband Low Layer
Information” information element (“User specified layer 2 protocol information”).

NOTE: This option must be restricted to experimental applications. Uniqueness of these values cannot
be guaranteed in a non-experimental ATM environment.

4.4.2.4. BLLI_id3 SVE
In this case, there are five options for the structure obie value.
1. Option 1

e Byte 1 of theSVE value field corresponds to octet 7 of the Q.2931 “Broadband Low Layer
Information” information element (“User information layer 3 protocol”). Note that for this
option, the value of this byte must not correspond to ISO/IEC TR 9577 (b’'01011") or User
Specified (b’10000).

2. Option 2

» Byte 1 of theSVE value field corresponds to octet 7 of the Q.2931 “Broadband Low Layer
Information” information element (“User information layer 3 protocol”). Note that for this
option, the value of this byte must correspond to User Specified (b’10000’).

« Byte 2 of theSVE value field corresponds to octet 7a of the Q.2931 “Broadband Low Layer
Information” information element (“User specified layer 3 protocol information”).

NOTE: This option must be restricted to experimental applications. Uniqueness of these values cannot
be guaranteed in a non-experimental ATM environment.

3. Option 3

» Byte 1 of theSVE value field corresponds to octet 7 of the Q.2931 “Broadband Low Layer
Information” information element (“User information layer 3 protocol”). Note that for this
option, the value of this byte must correspond to ISO/IEC TR 9577 (b'01011").

« Byte 2 of theSVE value field corresponds to octets 7a and 7b of the Q.2931 “Broadband Low
Layer Information” information element (“Initial Protocol Identifier”). Note that for this option,
the value of this byte must not correspond to IEEE 802.1 SNAP (b’20000000).

4. Option 4

» Byte 1 of theSVE value field corresponds to octet 7 of the Q.2931 “Broadband Low Layer
Information” information element (“User information layer 3 protocol”). Note that for this
option, the value of this byte must correspond to ISO/IEC TR 9577 (b'01011").

« Byte 2 of theSVE value field corresponds to octets 7a and 7b of the Q.2931 “Broadband Low
Layer Information” information element (“Initial Protocol Identifier”). Note that for this option,
the value of this byte must correspond to IEEE 802.1 SNAP (b’10000000).

* Bytes 3 - 7 of thé&&VE_value field correspond to octets 8.1- 8.5 of the Q.2931 “Broadband Low
Layer Information” information element (“*OUI” and “PID”").

5. Option 5

- Byte 1 of theSVE value field corresponds to octet 7 of the Q.2931 “Broadband Low Layer
Information” information element (“User information layer 3 protocol”). Note that for this
option, the value of this byte must correspond to ISO/IEC TR 9577 (b'01011).

» Byte 2 of theSVE_value field corresponds to octets 7a and 7b of the Q.2931 “Broadband Low
Layer Information” information element (“Initial Protocol Identifier”) is not present. Therefore,
SVE_length equals 1.

NOTE: This option is an exception case of BLLI_Id3 that does not identify a layer 3 protocol. The
semantic meaning of this option is that each frame in the data plane will contain a header identifying
the layer 3 protocol for that frame.

NOTE: This option is equivalent ®/E_tag value of ABSENT except for when the vector is used to
specify a destination SAP.

4.4.2.5. BHLI_id SVE
In this case, there are three options for the structure &ihevalue.
1. Option 1

« Byte 1 of theSVE value field corresponds to octet 5 of the Q.2931 “Broadband High Layer
Information” information element (“High Layer Information Type”). Note that for this option,
the value of this byte must correspond to 1ISO (b’0000000’).

ATM Forum Technica Committee Page 67 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

» Bytes 2 - 9 of the SVE value field correspond to octets 6 - 13 of the Q.2931 “Broadband High
Layer Information” information element (“High Layer Information”).
2. Option 2
« Byte 1 of theSVE value field corresponds to octet 5 of the Q.2931 “Broadband High Layer
Information” information element (“High Layer Information Type”). Note that for this option,
the value of this byte must correspond to User Specific (b’0000001’).
« Bytes 2 - 9 of the&sVE value field correspond to octets 6 - 13 of the Q.2931 “Broadband High
Layer Information” information element (“High Layer Information”).
NOTE: This option must be restricted to experimental applications. Uniqueness of these values cannot
be guaranteed in a non-experimental ATM environment.
3. Option 3
« Byte 1 of theSVE value field corresponds to octet 5 of the Q.2931 “Broadband High Layer
Information” information element (“High Layer Information Type”). Note that for this option,
the value of this byte must correspond to Vendor-Specific (b’'0000011’).
« Bytes 2 - 8 of the&sVE value field correspond to octets 6 - 12 of the Q.2931 “Broadband High
Layer Information” information element (“High Layer Information”).

Page 68 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

4.5. Registration of a Local SAP Address

This section specifies the actions taken by Native ATM Services for the purposes of registering alocal SAP
address by an application through the ATM _prepare_incoming_call() primitive.

Native ATM Services must maintain knowledge about all local SAP addresses registered by all
applications. When a new SAP is being registered, Native ATM Services must search for a match with al
currently registered SAPs and accept the new SAP only when no match is found. If amatch isfound, Native
ATM Services must reject the SAP with areturn value of SAP_ALREADY_USED.

4.5.1. General SAPs

A match between two SAPs occurs when all the SVEs match according to the rules in the table below. A
“registered vector” may be defined as the result of mapping any SAP address currently registered with
Native ATM Services into the structure as specified in section 4.4.1. A new vector may be defined as the
result of mapping the SAP address which the application is attempting to register into the structure as
specified in section 4.4.1.

| New SVE Registered SVE
I

SVE tag=ABSENT | SVE tag=PRESENT | SVE tag=ANY
SVE tag= ABSENT Match No Match Match
SVE_tag= PRESENT | No Match Match if Values Match | Match
SVE tag=ANY Match Match Match

1. For a more precise specification — 8vE_value field of the new vector is compared to tBéE value
field of the registered vector; if the values equal each other, then there is a match.

Native ATM Services does not allow multiple overlapping SAPs to be registered at the same time. The use
of overlapping SAPs is for further study. However, this does not preclude, wild card SAPs which use the
ANY value in SVE_tag field.

4.5.2. Special SAPs

4.5.2.1. Narrowband Services SAP

For implementations supporting Narrowband ISDN Services, a special SAP is used provide natification that
an incoming call has arrived that uses narrowband bearer services. This SAP address can be registered by
only one application on an end system. It is anticipated that the “application” which registers for this SAP
address could be a multiplexing service that provides multiple narrowband SAPs to support multiple
simultaneous narrowband applications. For any incoming call that uses narrowband bearer services, the
Narrowband Services SAP delivers notification of such incoming call to the application registered for the
Narrowband Services SAP address.

4.5.2.2. Catch-all SAP

An implementation may optionally allow a special SAP with ANY as the SVE_tag of every SVE. This SAP
violates the above rules, but could be allowed as a special case. This SAP can be registered by only one
application on an end system. It receives indication of all calls not distributed to other SAPs (see next
section for the description of incoming call distribution).

ATM Forum Technica Committee Page 69 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

4.6. Incoming Call Distribution

4.6.1. Incoming Call Distribution

This section specifies actions taken by native ATM services for the purposes of call distribution to the

correct entity at the destination ATM device.

An entity shall be identified by a SAP address. A SAP address shall only identify one entity. An entity may

be identified by more than one SAP address. A “registered vector” may be defined as the result of mapping
the valid address registered by an entity into the structure as specified in section 4.4.1. An entity shall
register a SAP address by issuing A¥eM _prepare_incoming_call primitive.

4.6.2. SVE Matching

An “incoming vector” is defined as the result of mapping the incoming call's Q.2931 information elements
into the structure as specified in section 4.4.1. Native ATM Services supports up to three incoming vectors
for a single incoming call:

* The “first choice” incoming vector's elements are generated from the following Q.2931 information
elements: “Called Party Number”, “Broadband High Layer Information”, and the first occurrence (if
any) of “Broadband Low Layer Information”.

* The “second choice” incoming vector’'s elements are generated from the following Q.2931 information
elements: “Called Party Number”, “Broadband High Layer Information”, and the second occurrence of
“Broadband Low Layer Information”. If only one occurrence of “Broadband Low Layer Information”
is present, then there is no second choice incoming vector.

* The “third choice” incoming vector’s elements are generated from the following Q.2931 information
elements: “Called Party Number”, “Broadband High Layer Information”, and the third occurrence of
“Broadband Low Layer Information”. If no more than two occurrences of “Broadband Low Layer
Information” is present, then there is no third choice incoming vector.

When an incoming call arrives, the list of registered vectors is searched for a match with the first choice,

then second choice, then third choice incoming vectors. A match between a registered vector and one of the

incoming vectors occurs when all of the SVEs match according to the rules in the following table. If a

registered vector is found that matches one of the incoming vectors, then the entity corresponding to the

vector shall be notified of the incoming call via tAGM _arrival_of incoming_call primitive. If a

registered vector is not found, the ATM native services rejects the call with a cause value 88 (incompatible

destination).

| Incoming SVE Registered SVE
* SVE tag=ABSENT | SVE tag=PRESENT | SVE tag=ANY

SVE tag=ABSENT Match No Match Match
SVE_tag= PRESENT | No Match Match if Values Match | Match
Notes

1. For a more precise specification — tB¢E_value field of the incoming vector is compared to the
SVE_value field of the registered vector; if the two values are equal, then there is a match.

4.6.3. Narrowband Services
When an incoming call is received across the UNI that contains the Narrowband Bearer Capability

information element, then that call is considered to use narrowband ISDN services. The notification of such
a incoming call shall be provided to the application registered for the Narrowband Services SAP.

Page 70 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

4.7. Compatibility Checking

The ATM Forum Technical Committee User-Network Interface (UNI) Specification Version 3.1 Annex B,
and SIG 4.0 describe the compatibility checking that is required for an incoming connection.

Call distribution uses some of the parameters that must be checked for compatibility. The parameters of an
incoming call will be checked against the parameters registered by applications. If there is a match, the
connections will be offered to that application viathe ATM_arrival_of incoming_call primitive. If thereis
no match, the call shall be cleared.

The application shall perform compatibility checking, according to the specified procedure in UNI 3.x,
while the connection isin state A6. If this procedure determines that the connection is not compatible, the
application shall regject the connection using the ATM_reject_incoming_call primitive; otherwise it may
accept the connection viathe ATM_accept_incoming_call primitive.

4.8. Negotiation of Parameters

The ATM Forum Technical Committee SIG 4.0 and User Network Interface Specification Version 3.1
Annex C describes negotiation for Broadband Low Layer Information (BLLI). Annex F describes
negotiation for the ATM Adaptation Layer (AAL). These procedures are supported by Native ATM
Services.

As part of the BLLI negotiation, the application initiating the call can specify up to three destination SAPs.
These SAPs are composed of the following:

e The first choice destination SAP is completely specified by the destination SAP parameter of the
ATM _connect_outgoing_call primitive.

e The second choice destination SAP contains the ATM_addr SVE, ATM_selector SVE, and BHLI _id
SVE from the destination SAP parameter of the ATM_connect_outgoing_call primitive. The
BLLI id2 SVE and BLLI_id3 SVE are obtained from the second instance of the connection attributes
located in the “Broadband Low Layer Information” information element.

e The third choice destination SAP contains the ATM_addr SVE, ATM_selector SVE, and BHLI id
SVE from the destination SAP parameter of theATM _connect_outgoing call primitive. The
BLLI id2 SVE and BLLI_id3 SVE are obtained from the third instance of the connection attributes
located in the “Broadband Low Layer Information” information element.

4.8.1. Outgoing calls

While the outgoing connection is in state A2, all negotiable parameters may be set using the
ATM_set_connection_attributes primitive. This includes the setting of up to 3 BLLI choices.

After the connection is in state A8 or A9, the results of negotiation may be obtained via the
ATM_query_connection_attributes primitive.

4.8.2. Incoming calls

While incoming connection is in state A6, the proposed values for negotiable parameters may be read via
the ATM_query_connection_attributes primitive. If alternate values are required, they are set via the
ATM_set_connection_attributes primitive. If nothing is set, the proposed values shall be used for the
connection. This includes the first proposed value for BLLI.

4.9. Procedures for Application Control of ABR Traffic U-Plane
Parameters

Examples of the usage of the ABR primitives are shown in Figure 30. These primitives are identified with
regard to the direction of flow of U plane data on an ABR connection. Both source and destination of the U-
plane data connection can query the value of the ACR parameter using the appropriate primitives
(ATM_query_outbound_rate and ATM_query_inbound_rate respectively). Setting a threshold at the source
or destination may result in a notification, if that threshold is exceeded in some RM cell received later. If

ATM Forum Technica Committee Page 71 of 102

AF-SAA-0108.000 APl Semantics for Native ATM Services using UNI 4.0
February 1999

the notification parameters are not provided, the application can query using the appropriate get request. It
is also possible for the applications to explicitly knock down the values of the ER set in the RM cells.
Using the appropriate set_ER primitives.

ABR Primitives

|-
»
U-Plane Data Flow

Knockdown of ER at
these points

APP NAS Networ

FRM Cell

BRM Cell

ATM_query |qutbound_rate ATM_query_inbound rate

>

FRM Cell ERM Cell ATM_set_inbqynd_rate_threshold

ATM_request| putbound_rate > [

q BRM Cdll BRM Cdll \ T1--4TM_notify linbound_ rat_ changed
ATM_notify_outbound rate changed | |« N
4

<

ATM_queryri nppund_rate
ATM_request| putbound_rate

» FRM Cell ERM Cell
= 11 ATM_request_inbound_rate
BRM Cell BRM Cell <+
> A
UNI APl
APl UNI

Figure 30 ABR Primitives Examples

Page 72 of 102 ATM Forum Technical Committee

API Semantics for Native ATM Services using UNI 4.0 AF-SAA-0108.000
February 1999

5. Reference Documents

The following documents are referred to within this document. They define various aspects of the ATM
layers that are being abstracted.

1.361 B-ISDN ATM layer specification

1.362 B-ISDN ATM Adaptation Layer (AAL) Functional Description

1.363 B-ISDN ATM Adaptation Layer (AAL) Specification

Q.2100 B-ISDN Signaling ATM Adaptation Layer Overview Description

Q.2110 B-ISDN - Adaptation Layer - Service Specific Connection Oriented Protocol (SSCOP)

Q.2130 B-ISDN Signaling ATM Adaptation Layer - Service Specific Coordination Function for

Support of Signaling at the User-to-Network Interface (SSCF at UNI)

NAS Native ATM Service: Semantic description, af-saa-0048.000, February 1996

ILMI ATM Forum ILMI 4.0 Specification, af-ilmi-0065.000, September 1996

VTOA Voiceand Telephony Over ATM to the Desktop, af-vtoa-0083.000, May 1997

UNI 3.x ATM User-Network Interface Specification 3.x:

Version 3.0, af-uni-0010.001, September 1993
Version 3.1, af-uni-0010.002, 1994

UNI 4.0 ATM Forum Anchorage Accord Specifications related to UNI:
TM4.0 af-tm-0056.000, April 1997
ABR Addendum, af-tm-0077.000, January 1997
SIG4.0 af-sig-0061.000, July 1996

Signalling ABR Addendum, af-sig-0076.000, January 1997

ATM Forum Technica Committee Page 73 of 102

AF-SAA-0108.000
February 1999

APl Semantics for Native ATM Services using UNI 4.0

Annex A CONNECTION ATTRIBUTES

Annex A.1 Connection Attributes of UNI 4.0 Signalling

Column Headings:

I nter pretation

UNI 4.0 Information
Element

IE’s specified in UNI 4.0 (and UNI 3.x)

Information Element
Attribute

The attributes of the IEs specified in UNI 4.0

Octet#

The octet number of the attributes within the IE

UNI 3.0

x : the information element / attribute applies in this version of UNI signa
- : the information element / attribute does not apply in this version of UN
signalling

ling

UNI 3.1

X : the information element / attribute applies in this version of UNI signa
- : the information element / attribute does not apply in this version of UN
signalling

ling

UNI 4.0

X : the information element / attribute applies in this version of UNI signa
- : the information element / attribute does not apply in this version of UN
signalling

ling

UNI 3.x API Item Name

This is a cross reference to names used in previous version of Semanti
specification. There is no syntax implies by these names . The use of the
names is deprecated in favor of explicit identification of the signalling
information elements and their attributes.

Ccs
se

Page 74 of 102

ATM Forum Technical Committee

ATM Forum Technical Committee AF-SAA-0108.000

February 1999

UNI 4.0 Information Element Information Element Attribute Octet # State | UNI UNI UNI UNI 3.x APl ITEM Name

Set 3.0 3.1 4.0
Narrowband bearer capability - - X
Cause Coding Standard 2 (note X X X CAUSE_CODING
Cause Location 5 (n‘:))te X X X CAUSE_LOCATION
Cause Cause value 6 (n‘:))te X X X CAUSE_VALUE
Cause Diagnostic 7 etc. (n‘:))te X X X CAUSE_DIAGNOSTICS
Call state 2 - - X -
Progress indicator - - X -
Notification indicator - - X -
End-to-end transit delay - - X -
Connected number - - X -
Connected subaddress - - X -
Endpoint reference - - X -
Endpoint state - - X -
ATM adaptation layer parameters AAL Type 5 A2 X X X AAL_TYPE
ATM adaptation layer parameters Subtype 6.1 A2 X X X AAL1_SUBTYPE
ATM adaptation layer parameters CBR Rate 7.1 A2 X X X AAL1_CBR_RATE
ATM adaptation layer parameters 8.1-82 A2 X X X AAL1 MULTIPLIER
ATM adaptation layer parameters Clock Recovery Type 9.1 A2 X X X AAL1 CLOCK_RECOVERY_TYPE
ATM adaptation layer parameters Error Correction Type 101 A2 X X X AAL1_ERROR_CORRECTION
ATM adaptation layer parameters Structured Data Transfer 11.1-11.2 A2 X X X AAL1 ST RUCTUREIEE{DATA_TRANSF

Page 75 of 102 ATM Forum Technical Committee

AF-SAA-0108.000
February 1999

ATM Forum Technical Committee

UNI 4.0 Information Element Information Element Attribute Octet # State | UNI UNI UNI UNI 3.x APl ITEM Name
Set 3.0 3.1 4.0
ATM adaptation layer parameters Partialy Filled Cells 121 A2 X X X AAL1 PARTIALLY_FILLED CELLS
ATM adaptation layer parameters Forward Maximum CPCS-SDU Size 6.1-6.2 A2+A6 X X X AAL5 FWD_MAX_SDU
ATM adaptation layer parameters Backward Maximum CPCS-SDU Size 71-7.2 A2+A6 X X X AAL5_BAK_MAX_SDU
ATM adaptation layer parameters MID Size 8.1-8.2 X - - -
ATM adaptation layer parameters Mode 9.1 X - - -
ATM adaptation layer parameters SSCS Type 8.1 (note 1) A2 X X X AALS5_SSCS TYPE
ATM adaptation layer parameters User Defined AAL Information 6-6.3 A2+A6 X X X USER_DEFINED_AAL_INFO
ATM traffic descriptor Forward Peak Cell Rate (CLP=0) 51-53 A2 X X X FWD_PCR_CLPO
ATM traffic descriptor Forward Peak Cell Rate (CLP=0+1) 71-73 A2 X X X FWD_PCR_CLP1
ATM traffic descriptor Backward Peak Cell Rate (CLP=0) 6.1-6.3 A2 X X X BAK_PCR_CLPO
ATM traffic descriptor Backward Peak Cell Rate (CLP=0+1) 8.1-83 A2 X X X BAK_PCR_CLP1
ATM traffic descriptor Forward Sustainable Cell Rate (CLP=0) 9.1-93 A2 X X X FWD_SCR_CLPO
ATM traffic descriptor Forward Sustainable Cell Rate (CLP=0+1) 11.1-113 A2 X X X FWD_SCR_CLP1
ATM traffic descriptor Backward Sustainable Cell Rate (CLP=0) 10.1-10.3 A2 X X X BAK_SCR_CLPO
ATM traffic descriptor Backward Sustainable Cell Rate (CLP=0+1) 12.1-12.3 A2 X X X BAK_SCR_CLP1
ATM traffic descriptor Forward Maximum Burst Size (CLP=0) 13.1-133 A2 X X X FWD_MBS CLPO
ATM traffic descriptor Forward Maximum Burst Size (CLP=0+1) 151-153 A2 X X X FWD_MBS CLP1
ATM traffic descriptor Backward Maximum Burst Size (CLP=0) 14.1-143 A2 X X X BAK_MBS CLPO
ATM traffic descriptor Backward Maximum Burst Size (CLP=0+1) 16.1-16.3 A2 X X X BAK_MBS CLP1
ATM traffic descriptor Best Effort Indicator 17 A2 X X X BEST_EFFORT
ATM traffic descriptor Tagging Forward 18.1 A2 X X X FWD_TAGGING
ATM traffic descriptor Tagging backward 18.1 A2 X X X BAK_TAGGING
ATM traffic descriptor Forward Frame Discard 171 - - X -
ATM traffic descriptor Backward Frame Discard 171 - - X -

ATM Forum Technical Committee

Page 76 of 102

ATM Forum Technical Committee

AF-SAA-0108.000
February 1999

UNI 4.0 Information Element Information Element Attribute Octet # State | UNI UNI UNI UNI 3x APl ITEM Name

Set 3.0 31 4.0
ATM traffic descriptor Forward ABR Minimum Cell Rate 19.1-19.3 - - X -
ATM traffic descriptor Backward ABR Minimum Cell Rate 20.1-20.3 - - X -
Connection identifier A2 X X X -

(note

6)

Quiality of service parameter QoS Class Forward A2 X X X FWD_QOS CLASS
Quiality of service parameter QoS Class Backward A2 X X X BAK_QOS CLASS
Broadband high layer information X X APPL_ID TYPE
Broadband high layer information 6-13 X X APPL_ID
Broadband bearer capability Bearer Class 5 A2 X X X BEARER_CLASS
Broadband bearer capability ATM Transfer Capability 5a - - X -
Broadband bearer capability Traffic Type 5a A2 X X - TRAFFIC_TYPE
Broadband bearer capability Timing Requirements 5a A2 X X - TIME_REQ
Broadband bearer capability Susceptibility to clipping A2 X X X CLIPPING_IND
Broadband bearer capability User plane connection configuration A2 X X X CONNECT_CONFIG
Broadband low-layer information - - A2+A6 - - - BLLI_SELECTOR (note 3)
Broadband low-layer information User Information Layer 2 Protocol 6 A2 X X X LAYER 2 1D
Broadband low-layer information Mode 6a A2+A6 X X X LAYER 2 MODE
Broadband low-layer information Window Size (k) 6b A2+A6 X X X LAYER 2 WINDOW_SIZE
Broadband low-layer information | User Specified Layer 2 Protocol Information 6a A2 X X X LAYER 2 USER ID
Broadband low-layer information User Information Layer 3 Protocol 7 A2 X X X LAYER 3 ID
Broadband low-layer information Mode 7a A2+A6 X X X LAYER_3 MODE
Broadband low-layer information Default Packet Size 7b A2+AB X X X LAYER 3 PACKET_SIZE
Broadband low-layer information Packet Window Size 7c A2+A6 X X X LAYER_3 WINDOW_SIZE
Broadband low-layer information | User Specified Layer 3 Protocol Information 7a A2 X X X LAYER 3 USER ID

Page 77 of 102

ATM Forum Technical Committee

AF-SAA-0108.000
February 1999

ATM Forum Technical Committee

UNI 4.0 Information Element Information Element Attribute Octet # State | UNI UNI UNI UNI 3x APl ITEM Name
Set 3.0 3.1 4.0

Broadband low-layer information ISO/IEC TR 9577 Initial Protocol Ta-7b A2 X X X LAYER 3 IPI_ID

Identification (IP1) (bits 8-2)
Broadband low-layer information oul 8.1-83 A2 X X X LAYER_3 OUI_ID
Broadband low-layer information PID 84-85 A2 X X X LAYER 3 PID_ID
Broadband low-layer information Terminal Type 7a - - X -
Broadband low-layer information Forward Multiplexing 7b - - X -
Broadband low-layer information Backward Multiplexing 7b - - X -
Broadband locking shift X X X -
Broadband non-locking shift X X X -
Broadband sending complete X X X -
Broadband repeat indicator X X X -
Calling party number Type of Number 5 A2 X X X CALLING_ADDR_FORMAT (note 2)
Calling party number Addressing/ numbering plan identification 5 A2 X X X CALLING_ADDR_FORMAT (note 2)
Calling party number Address 6 etc. A2 X X X CALLING_ADDR
Calling party number Presentation Indicator 5a A2 X X X PRESENTATION_IND
Calling party number Screening Indicator 5a A2 X X X SCREENING_IND
Calling party subaddress Type of Sub address 5 A2 X X X CALLING_SUBADDR TYPE
Calling party subaddress Subaddress information 6 etc. A2 X X X CALLING_SUBADDR
Called party number Type of Number 5 X X CALLED_ADDR_FORMAT (note 2)
Called party number Addressing/ numbering plan identification 5 X X CALLED_ADDR_FORMAT (note 2)
Called party number Address 6 etc. X X X CALLED_ADDR
Called party subaddress Type of Sub address 5 A2 X X X CALLED_SUBADDR_TYPE
Called party subaddress Subaddress information 6 etc. A2 X X X CALLED_SUBADDR
Transit network selection Network Identification 6 etc. A2 X X X NETWORK _ID

ATM Forum Technical Committee

Page 78 of 102

ATM Forum Technical Committee

AF-SAA-0108.000
February 1999

UNI 4.0 Information Element Information Element Attribute Octet # State | UNI UNI UNI UNI 3x APl ITEM Name
Set 3.0 31 4.0

Restart indicator X -

Narrowband low layer - - X -

compatibility

Narrowband high layer - - X -

compatibility

Generic identifier transport - - X -

Minimum acceptable traffic - - X -

descriptor

Alternative ATM traffic - - X -

descriptor

ABR setup parameters Forward ABR Initial Cell Rate Identifier (CLP 5 (note - - X -

=0+1) 5)

ABR setup parameters Forward ABR Initial Cell Rate 5.1-5.3 (note - - X -
5)

ABR setup parameters Backward ABR Initial Cell Rate 6.1-6.3 (note - - X -
5)

ABR setup parameters Forward ABR Transient Buffer Exposure 7.1-7.3 (note - - X -
5)

ABR setup parameters Backward ABR Transient Buffer Exposure 8.1-8.3 (note - - X -
5)

ABR setup parameters Cumulative RM Fixed Round Trip Time 9.1-9.3 (note - - X -
5)

ABR setup parameters Forward Rate Increase Factor 10.1 (note - - X -
5)

ABR setup parameters Backward Rate | ncrease Factor 111 (note - - X -
5)

ABR setup parameters Forward Rate Decrease Factor 121 (note - - X -
5)

ABR setup parameters Backward Rate Decrease Factor 131 (note - - X -
5)

Leaf initiated join call identifier L1J Call Identifier Type 5 - - X -

Leaf initiated join cal identifier Identifier Vaue 6-9 - - X -

Page 79 of 102

ATM Forum Technical Committee

AF-SAA-0108.000
February 1999

ATM Forum Technical Committee

UNI 4.0 Information Element Information Element Attribute Octet # State | UNI UNI UNI UNI 3x APl ITEM Name
Set 3.0 31 4.0

Leaf initiated join parameters Screening Indication 5 - - X -

Leaf sequence number Leaf sequence number 5-8 - - X -

Connection scope selection Connection scope selection 6 - - X -

ABR additional parameters Forward Additional Parameters Record 5154 (note - - X -
5)

ABR additional parameters Backward Additional Parameters Record 6.1-6.4 (note - - X -
5)

Extended QoS parameters Origin 5 - - X -

Extended QoS parameters Acceptable Forward Peak-to-Peak Cell Delay 6.1-6.3 - - X -

Variation
Extended QoS parameters Acceptable Backward Peak-to-Peak Cell 7.1-7.3 - - X -
Delay Variation
Extended QoS parameters Cumulative Forward Peak-to-Peak Cell Delay 8.1-8.3 - - X -
Variation
Extended QoS parameters Cumulative Backward Peak-to-Peak Cell 9.1-9.3 - - X -
Delay Variation
Extended QoS parameters Acceptable Forward Cell Loss Ratio 10.1 - - X -
Extended QoS parameters Acceptable Backward Cell Loss Ratio 111 - - X -
Notes:

1. This connection attribute is encoded at octet 10.1 for AAL 3 /4 and octet 9.1 for AAL5 in UNI 3.0.
2. TheUNI 3.0 API specification merged these two information element attributes into one data item.

3. This connection attribute does not appear in a Q.2931 message; it is used to select the choice of BLLI that other primitives operate on. See primitives
ATM_query_connection_attributes, ATM _set_connection_attributes, ATM _arrival_of_incoming_call, and ATM _accept_incoming_call for the
semantics of this attribute.

4. This connection attribute is set viathe ATM_abort_connection, ATM_call_release, and ATM_reject_incoming_call primitives.

5. Refer to the TM4.0 Specification
6. This connection attribute may only be set for UNI 4.0.

ATM Forum Technical Committee

Page 80 of 102

ATM Forum Technical Committee

AF-SAA-0108.000

February 1999
Annex A.2 Connection Attributes of Local Services
ltem Set in Values Notes

State
A2 | A6
SSCS (Service Specific Convergence X X NULL, 1
Sublayer) SSCOP_RELIABLE,
SSCOP UNRELIABLE

Notes:

1. Thisselectsthe services that native ATM services suppliesin the data plane for AALS.

Page 81 of 102

ATM Forum Technical Committee

AF-SAA-0108.000
February 1999

Annex B Management Variables
Annex B.1 UNI Defined

ATM Forum Technical Committee

The semantic meaning and codings of these management variables may be found in ATM User Network
Specification (3.x) Chapter 4, and in the ILMI 4.0 specification, which introduced the notation:

e R required
e D deprecated, use only for backward compatibility

MIB Group and Variable

3.0

31

H
o

Table
Entry

atmfPhysicalGroup

atmfPortl ndex

atmfPortTransmissionType

atmfPortMediaType

atmfPortOperStatus

atmfPortSpecific

XXX | X[X

atmfPortMylfName

XXX X[X[X

XXX X[X[X

atmfPortMyIfldentifier

atmfMySysteml dentifier

atmfMylpNmAddress

atmfMyOsiINmNsapAddress

x| X

puyipvipiprlpliviieiiwiie] Py

atmfAtmL ayer Group

atmfAtmL ayerlndex

amfAtmLayerMaxV PCs

atmfAtmLayerMaxV CCs

atmfAtmL ayerConfiguredV PCs

atmfAtmL ayerConfiguredV CCs

amfAtmLayerMaxV piBits

atmfAtmLayerMaxV ciBits

XXX XX |[X[X

XXX XXX X

XXX XX X[X

atmfVecTable

atmfAtmL ayerMaxSvpcV pi

atmfAtmLayerMaxSvccVpi

atmfAtmLayerMinSvccVci

atmfAtmLayerDeviceType

atmfAtmLayerlImiVersion

atmfAtmLayerUniType

atmfAtmLayerUniVersion

x| X

puipiplpslpsipvipipelprlpvlplpelipelpuipy)

x| X

atmfAtmStatsGroup

atmfAtmStatsl ndex

atmfAtmStatsReceivedCells

atmfAtmStatsDroppedReceivedCells

atmfAtmStatsT ransmittedCells

XX | X[X

XXX [X

O|0(0|0|0

XXX [X

atmfVccGroup

atmfV ccPortlndex

atmfAtmL ayerConfiguredV CCs

atmfV ccBestEffortl ndicator

atmfV ccTransmitFrameDiscard

puipvip i)

ATM Forum Technical Committee

Page 82 of 102

ATM Forum Technical Committee

AF-SAA-0108.000

February 1999
MIB Group and Variable 30| 31| 40| Table
Entry

atmfV ccReceiveFrameDiscard R

atmfV pcServiceCategory R

atmfVccV pi X X R X
amfVcecVi X X R X
atmfV ccOperStatus X X R X
atmfV ccTransmitTrafficDescriptorType X X X
atmfV ccTransmitTrafficDescriptorParaml X X X
atmfV ccTransmitTrafficDescriptorParam?2 X X X
atmfV ccTransmitTrafficDescriptorParam3 X X X
atmfV ccTransmitTrafficDescriptorParam4 X X X
atmfV ccTransmitTrafficDescriptorParam5 X X X
atmfV ccReceiveT rafficDescriptorType X X X
atmfV ccReceiveT rafficDescriptorParaml X X X
atmfV ccReceiveT rafficDescriptorParam?2 X X X
atmfV ccReceiveT rafficDescriptorParam3 X X X
atmfV ccReceiveT rafficDescriptorParam4 X X X
atmfV ccReceiveT rafficDescriptorParamb X X X
atmfV ccTransmitQoSClass X X D X
atmV ccReceiveQoSClass X X D X

atmfV ccAbrGroup

amfV ccAbrPortlndex R

AtmfVccAbrVpi R

amfVccAbrVci R

amfVccAbrTable R

Annex B.2 Native ATM Services Defined

atmfV ccEndpointl dentifier

Page 83 of 102

This element is an extension of atmfV ccEntry defined in
the atmfV ccGroup of UNI 3.0 Chapter 4. Its purposeisto
correlate a vV CC with an API_endpoint.

NOTE: thisisatable entry and requires an index
parameter.

ATM Forum Technical Committee

AF-SAA-0108.000 ATM Forum Technical Committee
February 1999

Annex C Usage of Wildcardsin SAPs

This annex describes the care that must be taken when using “wildcards” to specify SAPs. A “wildcard” is
defined as an SVE (SAP vector element) with a tag of ANY. The use of wildcards in a SAP offers
flexibility to an application developer. However, this feature shall optionally be used only after the

following implications are understood:

e Thedestination SAP parameter of thATM _connect_outgoing_call primitive may not contain
any wildcards.

* When an application successfully registers a SAP with a wildcard, the SAP occupies a large
number of the available SAP combinations, based on the matching rules in section 4.5. Thus,
careless use of wildcards may preclude other desired applications from registering their SAPs.

« When an application registers a SAP containing a wildcard, the application implies that it supports
all specific values for the matching SVE of an incoming vector (including the ABSENT tag) on an
incoming call.

* Once an application has accepted an incoming call on an API_endpoint associated with a wildcard
SAP, the application must support and employ the protocols specified by the incoming vector that
matched the applicationis registered SAP.

ATM Forum Technica Committee Page 84 of 102

ATM Forum Technical Committee AF-SAA-0108.000
February 1999

Annex D API Conformance Statement

The following tables detail compatibility of an implementation of Native ATM Services with this
specification. Various implementations of the NAS may use different programming languages and operating
system services. These will result in the use of a concrete syntax instantiation of the NAS primitives at the API.
In genera, this APl conformance is intended to support software based implementations of Native ATM
Services, however, thisintent should not preclude hardware implementations of some primitives.

AnnexD.1 Native ATM Services Support
The set of services supported by NAS isimplementation-specific.

Service | Native ATM Service Notes | Doesthelmplementation

Index support this Service?

1 PV C Connection

Pt-Pt SV C Connection

Pt-Mpt SVC Connection

leaf-initiated-join

data reception via polling

data reception via blocking

WIW(WIN |-

data reception via messaging

data transmission service

OO (N[oO|O |~ W[N

ABR flow control management

=
o

ABR flow control indications 4

=
=

OAM loopback testing

=
N

OAM fault alerts

=
w

ILMI MIB access

[EEY
~

SSCOP in user plane 1,5

=
o1

Narrowband Services access via “narrowband services SAP”

[EnY
o
=
Q|

default incoming call notification via “catch-all SAP”

=
\I
\‘

BLLI negotiation 1,

Table 1 Service Support

Notes
This service requires Pt-Pt SVC connection service.
This service requires Pt-Mpt SVC connection service.

This service requires ABR flow control management service.
This service is specified in section 4.3.2.
This service is specified in section 4.5.2.

NookrwhE

connection attribute in thATM _query_connection_attributes, ATM_set_connection_attributes,
ATM _arrival_of incoming_call, ATM _accept_incoming_call primitives).

Annex D.2 Compatibility of Control Plane Functional Primitives
The services for which the primitive is mandatory are indicated by the service index.

Native ATM Services Primitive | Type Service Inde Concrete Syntax Primitivies Notes
ATM abort_connection Request 2
ATM accept_incoming call Request 2
ATM add party Request 3

Page 85 of 102 ATM Forum Technical Committee

At least one data reception service (polling, blocking, messaging) is required in order to receive data.

This service is specified in section 4.8 and section 3.1 (refer to usage of the BLLI_ SELECTOR

AF-SAA-0108.000

ATM Forum Technical Committee

February 1999

ATM add party reject Confirm 3
ATM add party success Confirm 3
ATM _arrival_of_incoming Indication | 2
_call

ATM associate endpoint Request 2
ATM call release Request 2
ATM call release Confirm 2
ATM connect_outgoing_call Request 2
ATM drop party Request 3
ATM _drop_party Indication | 3
ATM get local port info Request 2
ATM _P2MP call active Confirm 3
ATM _P2P call active Confirm 2
ATM _prepare incoming_call Request 2
ATM _prepare_outgoing_call Request 2
ATM_query_connection_ Request 2
attributes

ATM reject_incoming_call Response 2
ATM_set_connection_ Request 2
attributes

ATM wait_on_incoming call Request 2
ATM LIJ associate call 1D Request 4
ATM LI1J regest join Request 4
ATM_L1J join_reguested Indication | 4
ATM LIJ reect leaf Response 4
ATM LIJ leaf rejected Confirm 4

Table 2 Control Plane Primitives Support

Annex D.3 Compatibility of Data Plane Functional Primitives
The services for which the primitive is mandatory are indicated by the service index.
Native ATM Services Primitive Type ServiceIndex | Concrete Syntax Primitives | Notes
ATM send data Request 8

ATM receive data (polling) Request 5

ATM _receive data (blocking) Request 6

ATM receive data (messaging) Request 7

ATM query outbound rate Request 9
ATM_set_outbound_notification | Request 10

_threshold

ATM outbound rate changed Indication | 10

ATM request outbound rate Request 9

ATM query inbound rate Request 9
ATM_set_inbound_notification_t | Request 10

hreshold

ATM inbound rate changed Indication | 10

ATM reguest inbound rate Request 9

Table 3 Data Plane Primitives Support

Annex D.4

Compatibility of Management Plane Functional Primitives

The services for which the primitive is mandatory are indicated by the service index.

ATM Forum Technical Committee

Page 86 of 102

ATM Forum Technical Committee AF-SAA-0108.000

February 1999
Native ATM Services Primitive Type ServiceIndex | Concrete Syntax Primitives | Notes
ATM _confirm_loopback Confirm 11
ATM indicate error Indication
ATM indicate fault Indication | 12
ATM initiate loopback Request 11
ATM query mgmt variable Request 1,13
ATM set mgmt variable Request 1,13

Table 4 Management Plane Primitives Support

AnnexD.5 State Compatibility

While the implementation using these specific state variables is not required, in many implementations, it is
expected that the state may be observable via some state management variable. The tables in this section
provide a mechanism to identify such state variables within the concrete syntax implementation of the NAS

Native ATM Services State Concrete Syntax Equivalent Notes /Examples

Null (A0)

Initial (A1)

Outgoing Call Preparation (A2)

Outgoing Call Requested (A3)

Incoming Call Preparation (A4)

Wait Incoming Call (A5)

Incoming Call Present (A6)

Incoming Call Requested (A7)

Point-to-Point Data Transfer (A8)

Point-to-M ultipoint Root Data
Transfer (A9)

Point-to-M ultipoint Leaf Data
Transfer (A10)

Connection Terminated (A11)

Table5 API_connection State Machine

Native ATM Services State Concrete Syntax Equivalent Notes /Examples

L1J Leaf Null (LO)

L1J Leaf Initialized (L1)

L1J Leaf Closed (L2)

L1J Root Null (RO)

L1J Root Initialized (R1)

L1J Root (R2)

L1J Root Closed(R3)

Table6 L1J State M achines

Page 87 of 102 ATM Forum Technical Committee

AF-SAA-0108.000 ATM Forum Technical Committee
February 1999

Appendix A Pragmatics of Data Send and Receive [INFORMATIVE]
Fundamental issuesin sending data are:

1. identifying the location for outgoing data,

2. determining when the source location(s) may be reused, and

3. recognizing/handling sender overflow.
The most common way to specify the data source is to provide the location of a buffer (e.g. via a pointer)
and amount of data to send starting from that location. Alternatively, the source data may be specified as an
immediate operand to the send operation, i.e., the datais contained on the stack or in aregister.

The source buffer cannot be reused until either the data has been deemed sent (or the attempt aborted) or the
data has been copied to another buffer. Thus returning from a send operation does not necessarily mean the
data has actually been sent. Depending on the communication protocol, (in the case of AAL type 5,
depending on assured vs. unassured modes), the data might not be deemed sent until it is known to be
successfully received at the destination. Typically, a send operation blocks until the source datais copied or
mapped to an intermediate buffer (e.g. in the operating system/network driver). An implementation could
also block until the data is deemed sent, but since this incurs latency waiting for the network this usualy has
poor performance. Yet other possibilities are to poll until the reuse is indicated or to asynchronously
interrupt/notify/callback the application to permit buffer reuse.

Sender overflow may occur if the network is not able to send data as fast as an application(s) can transfer
data via send operations. In particular, intermediate buffers in the operating system/network driver may
overflow. Thisis an important issue for UBR (unspecified bit rate) traffic: the network capacity devoted to
such a connection can change at any time. Thus no amount of sender rate preplanning or buffer size can
prevent overflow. Furthermore, the ABR connection capacity can change rapidly. Consequently,
implementations may provide a feedback mechanism for indicating and controlling sender overflow. (Of
course, a particular implementation is free to simply drop data while an overflow condition exists, but thisis
not a satisfactory solution for al applications.) Fundamental ways to accomplish this feedback are by
blocking (e.g. on a send call), polling (either explicitly or based on some value returned by a send call), or
interrupt/notification/callback to the application. It is often effective to tie the source generation rate to the
availability of buffers for reuse.

Fundamental issuesin receiving data are:

1. identifying the location for depositing incoming data,

2. indicating arrival of datato the application, and

3. recognizing/handling receiver overflow.
Typically, the operating system/network driver chooses a temporary intermediate location in operating
system memory for the incoming data. However, it is also possible for the application to specify a location
for the incoming data. For example, the application can indicate a memory range that can be transferred to
the operating system/network driver as a buffer.

The application can determine the arrival of data via polling or blocking until the data arrives. Alternatively,
the application can be informed of data arrival via an interrupt/notification/callback. In polling or blocking,
once data has arrived it is transferred via copying or mapping to a location pre-specified by the application
in the receive operation. In the case of interrupt/notification/callback, the application can provide a location
at the time of such an event to which the data it is transferred via copying or mapping.

Receiver overflow may occur if the application is not able to retrieve (or use data) as fast as the network
receives it. As with sender overflow, intermediate buffers in the operating system/network driver may
overflow. Thisis an important issue for UBR (unspecified bit rate) traffic: the network could deliver data at
any point; moreover, the application may not be scheduled. Unless the application is guaranteed to attempt
to receive data at regular intervals (e.g. via a timer) and the connection PCR (peak cell rate) is set
appropriately, it is possible that receiver overflow occurs. Receiver overflow is also an issue for CBR
(constant bit rate) connections, unless the application can be guaranteed to be scheduled regularly and

ATM Forum Technica Committee Page 88 of 102

ATM Forum Technical Committee AF-SAA-0108.000
February 1999

consume data. Since the application may not be scheduled and thus not able to consume and thereby
replenish the intermediate buffers, there should be an interrupt/notification/callback mechanism for receiver
overflow feedback.

For guaranteed connection rates (e.g. CBR), underflow may also be an issue. Sender underflow arises when
there is insufficient data available for the network to send. For CBR connections, sender underflow may
result in aviolation of the guaranteed rate to the destination application. Likewise, receiver underflow arises
when there may not be sufficient data available for the application.

Findly, it is very common to use operating system/network driver memory as a intermediate buffer for
sending and receiving. Various work has explored eliminating the overhead of this approach by obtaining
the source data directly from application memory and storing incoming network data directly into
application memory.

Page 89 of 102 ATM Forum Technical Committee

AF-SAA-0108.000
February 1999

Appendix B

ATM Forum Technical Committee

Mapping between Native ATM Service primitives

and ATM Forum UNI 3.x/4.0 Signalling messages [INFORMATIVE]
This annex presents the mapping between the UNI 3.x/4.0 messages provided by the signaling and the

Native ATM Services primitives.

Appendix B.1

Primitives invoked by the application

The left column of the following table contains the Native ATM Services primitives and in the right column

the resulting signaling messages. The Native ATM Services primitives refer to request or response

primitives.

Native ATM Services primitives

ATM Forum signaling messages

ATM abort_connection

RELEASE

ATM _accept_incoming_call CONNECT

ATM add party ADD PARTY

ATM associate endpoint None (local significance)
ATM call release REL EASE

ATM connect_outgoing_call SETUP

ATM drop party DROP PARTY

ATM prepare incoming_call

None (local significance)

ATM prepare outgoing_call

None (local significance)

ATM query connection_attributes

None (local significance)

ATM reject incoming_call

RELEASE

ATM set connection_attributes

None (local significance)

ATM wait_on_incoming_call

None (local significance)

ATM LIJ associate call ID

N/A- local action

ATM LIJ request join

LEAF_SETUP REQUEST

ATM LIJ regect leaf

LEAF SETUP FAILURE

ATM query outbound rate

N/A- local action

ATM set outbound notification threshold

N/A- local action

ATM request outbound rate

N/A- affects FRM cell

ATM query inbound rate

N/A- local action

ATM set inbound notification threshold

N/A- local action

ATM request_inbound rate

N/A- affects BRM cell

Messages indicated in the ATM Forum signaling message column without correspondence primitive in the

Native ATM Services primitives column should not be generated by the application.

ATM Forum Technical Committee

Page 90 of 102

ATM Forum Technical Committee

Appendix B.2

AF-SAA-0108.000
February 1999

M essages received from Network

The left column of the following table contains the signaling messages and in the right column the resulting
Native ATM Services primitives. The Native ATM Services primitives refer to indication or confirm

primitives.

ATM Forum signaling messages

Native ATM Services primitives

CALL PROCEEDING

None

CONNECT ATM_P2P_call_activeor
ATM_P2MP call_active

CONNECT ACKNOWLEDGE ATM_P2P_call_activeor
ATM_P2MP call_active

SETUP ATM_arrival_of_incoming_call

RELEASE ATM_cal_release

RELEASE COMPLETE None

STATUS None*

STATUSINQUIRY None

RESTART ATM call release

RESTART ACKNOWLEDGE None

ADD PARTY Invalid under the restrictions in this specification

ADD PARTY ACKNOWLEDGE

ATM add party success

ADD PARTY REJECT

ATM add party reject

DROP PARTY

ATM drop party

DROP PARTY ACKNOWLEDGE

None

LEAF SETUP REQUEST

ATM_LI1J join_requested

LEAF_SETUP_FAILURE

ATM_LIJ leaf rejected

N/A — triggered by RM cell

ATM_ outbound rate changed

N/A — triggered by RM cell

ATM inbound rate changed

Signaling messages that correspond to ‘None’ (in the Native ATM Services primitives column) do not

generate a primitive that reaches the application.

1 This depends on the cause information element. In some cases, this message may imply the

release of the connection.

Page 91 of 102

ATM Forum Technical Committee

AF-SAA-0108.000 ATM Forum Technical Committee
February 1999

Appendix C Example SAP Combinations [INFORMATIVE]
This appendix provides examples of users of Native ATM Services can be specify SAPs. Thisis not meant
to restrict implementations, but rather to provide helpful guidance.

Appendix C.1 SAPsfor Data Link Layer Protocols

Characteristics

This group of SAPsis used when the destination of the connection is a Data Link Layer protocol entity.
This provides support for the transport of several network protocols over asingle VC, which may be cost
effective when the cost of aVC isaconsideration. Examples of these data link protocolsinclude LLC
(Logical Link Control) and PPP (Point-to-Point Protocol).

Semantic Definition
The SAP address consists of the ATM address, including the selector byte, and the identification of a Layer
2 protocol

Specific Coding

The Layer 2 protocol specification is encoded in the following way:
ATM_addr.SVE_tag = PRESENT
ATM_addr.SVE vaue = the ATM address, minus the selector byte
ATM_selector.SVE_tag = PRESENT (private ATM address) or ABSENT (E.164 address)
ATM_selector.SVE_value = the selector byte (from the private ATM address)
BLLI_jd2.SVE_tag= PRESENT
BLLI id2.SVE_value = the identification of the layer 2 protocol
BLLI_id3.SVE_tag = ABSENT
BHLI_id.SVE_tag= ABSENT

Appendix C.2 SAPsfor Network Layer Protocols

Characteristics

This group of SAPs s used when the destination of the connection is a Network or Transport Layer
protocol entity, or a service transport entity. This provides support for a single network or transport
protocol, or asingle service transport over asingle VC. Examples of these network protocols include X.25
and IP. Examples of transport protocols are TCP and TP4. Examples of service transport entitiesare ATM
LAN emulation and ATM Circuit emulation.

Semantic Definition
The SAP address consists of the ATM address, including the selector byte, and the specification of a Layer
3 protocol.

Specific Coding

The Layer 3 protocol specification is encoded in the following way:
ATM_addr.SVE_tag = PRESENT
ATM_addr.SVE value = the ATM address, minus the selector byte
ATM_selector.SVE_tag = PRESENT (private ATM address) or ABSENT (E.164 address)
ATM_selector.SVE_value = the selector byte (from the private ATM address)
BLLI_jd2.SVE_tag= ANY
BLLI_id3.SVE_tag = PRESENT
BLLI_id3.SVE_vaue = the identification of the layer 3 protocol (options 1 - 3 only)
BHLI_id.SVE_tag= ABSENT

ATM Forum Technica Committee Page 92 of 102

ATM Forum Technical Committee AF-SAA-0108.000
February 1999

Appendix C.3 SAPsfor Higher Layer Protocols and ATM-Aware
Applications

Characteristics

This group of SAPs is used when the destination of the connection is an ATM-aware application, or more
properly, the session layer of an application. This provides for the transport of a single application’s data
over a single VC.

Semantic Definition

The SAP address consists of the ATM address, including the selector byte, identification of the layer-2
protocol used (if present), identification of the layer-3 protocol used (if present), and the identification of
the higher layer protocol or an ATM-aware application.

Specific Coding

The ATM-aware application specification is encoded in the BHLI information element.
ATM_addr.SVE_tag = PRESENT
ATM_addr.SVE_value = the ATM address, minus the selector byte
ATM_selector.SVE_tag = PRESENT (private ATM address) or ABSENT (E.164 address)
ATM_selector.SVE_value = the selector byte (from the private ATM address)
BLLI_id2.SVE_tag = ABSENT or PRESENT
BLLI_id2.SVE_value = identification of the layer 2 protocol (if tag = PRESENT)
BLLI_id3.SVE_tag = ABSENT or PRESENT
BLLI_id3.SVE_value = identification of the layer 3 protocol (if tag = PRESENT)
BHLI_id.SVE_tag = PRESENT
BHLI_id.SVE_value = the identification of the ATM-aware application

Page 93 of 102 ATM Forum Technical Committee

AF-SAA-0108.000 ATM Forum Technical Committee
February 1999

Appendix D | mplementation Guidelinesfor the ABR API options
of the Native ATM Services API [INFORMATIVE]

Appendix D.1 Rationale for an APl accessto ABR Services

For connections using ATM layer CBR, VBR and even UBR services, their User-plane traffic
characteristics are determined at the connection setup time. They are categorized as using "preventive
control" for User-plane flow control. Applications or upper layer protocols send and receive their User-
plane data in accordance with these pre-negotiated characteristics. For connections with ABR service, the
application relies on a "reactive control* for the network based flow control mechanism. Traffic
characteristics of ABR change (depending on the network status) during the lifetime of a connection.

The concept of dynamically changing connection attributes during the lifetime of a connection is a new and
completely different function from the previous (UNI 3.x) API semantics. This flow control function is a
User-plane capability.

Since the concept of flow control API is new, there have been a lot of discussions regarding the
implementation impacts of ABR-API primitives at ATM Forum meetings. However, it is apparent from the
simulation results for TCP-ABR interworking that the more we deal with high-speed networks, the more the
importance of this new API capability increases.

Appendix D.1.1 API Objectives

e Application Perspective

Once an access method to the lower layer capability is established for an application, other applications will
also want to use the same or a similar access method. If another application wants to use exactly the same
method, it is desirable for application writers to have a standardized API for the access method. When
another application wants to use a similar access method creating a common standard API is beneficial.
This is because an application can usually absorb differences from the standard API capability.

e Network Perspective

From the view-point of the network, the API is a very important functionality. At the initial stage of
computer communication, networks had limited capability and as a result, the only APIs regarding User-
plane data transmission provided simple read and write functionality. With the deployment of more
advanced ATM technology, the network can provide various new capabilities to upper layer protocols
regarding the data transmission. For ABR service, the new network capability of adapting the flow rate to
network conditions can be made available for application layer use.

« Relation of application and network capability

Developing a new network service (ABR service) means deploying a new network capability. Thisis new

capability can provide

1) improved performance for existing applications or

2) abase for new applications motivated by the new network capability or other applications we did not
consider initialy.

Once the APIs are specified, various applications that utilize the APl may be independently developed and

evolved. Providing the semantic specification of the API to access a new network capability eliminates the
chicken and egg problem of which comes first — the application or the network capability.

Appendix D.1.2 ABR Service Motivation

ATM Forum Technica Committee Page 94 of 102

ATM Forum Technical Committee AF-SAA-0108.000
February 1999

Flow control to avoid cell loss during network congestion was the motivation for the creation of the ABR
service. By using ABR service for an ATM connection, we can solve cell loss problems at the ATM layer.

However, networked applications have been continuously evolving since the concept of ABR was
developed. The ABR service can be deployed without the application layers being aware of the service
parameters. For an implementation such as an ATM NIC in a PC, this requires adequate buffering on the
NIC. Buffer reguirements may be difficult to characterize, or may be considered excessive for general
purpose hardware deployments. Performance for upper layer protocols (such as a TCP protocol stack
implementation that has been tuned up for high-speed transmission) may be deteriorated. Although the ABR
service may ensure there is minimal cell loss in the network, there may be buffer overruns between the PC
and the NIC, which are seen as cell loss by the upper layer protocols. In these situations an API to extend
the ABR capabilities to the upper layer protocols may be useful.

Appendix D.1.3 Motivation for ABR API

When the ATM Forum specified the ABR Service, it was assumed that there may be several applications
which can utilize the benefit of flow control. This can be true if we utilize flow control information from
upper layers or if we install enough buffers to tolerate sudden bandwidth change due to flow control. For
existing (legacy) applications, they cannot utilize feedback information. When we use these applications,
sufficient buffers at ATM-edge devices are required. The adaptability to the flow control depends on NIC
buffer size. Most of current (legacy) applications are based on software platform. Software control is slow (
compared to link transmission speeds) and takes time at least in the order of several hundred milli-seconds
before the control effectively works. If we want to use such legacy applications in a high-speed ABR
network environment, at least we need enough buffers to absorb the impact of flow control. Alternatively,
we may utilize the ABR feedback information at the upper layer protocols. By using this information, the
application itself can utilize the benefit of flow control.

Appendix D.1.4 Application dependent usage

For example, software-based applications cannot adapt effectively to high-speed networks if they only guess
network status by measuring packet loss etc. To effectively adapt the applications to high-speed networks,
explicit rate notifications are necessary. To do this, APIs regarding the flow control capability, such as the
ABR API, provided in this specification are necessary. Here, we must note that specifying semantics of
ABR API does not mean we also specify only one implementation technique to use that capability. How
often it is invoked or the implementation syntax are application specific aspects. However, this semantic
specification be clarifies for the upper layer users what kind of information is available from the ATM

layer.

We aso note that there are not only software-based applications but also there are hardware-based
applications. For hardware-based applications, they can also adapt to feedback from the high-speed
network. A common semantic specification can also be used as a reference for hardware implementation of
the primitives as well as software implementations.

Appendix D.1.5 APl implementation
The set of ABR APl Primitives that the ATM device, (e.g. a NIC) implements is considered to be
implementation specific. For example:

e |If an ATM device (NIC) is intended to support al types of (hardware and/or software-based)
ABR-applications, it is strongly recommended to implement all of the primitives. This approach,
however, increases the NIC costs.

e |f the ATM device (NIC) is expected to play more optimized role, only part of the primitives may
be useful for a carefully targeted set of applications.

Appendix D.1.6 ABR user

Finally, we would like to note who is the user of ABR service. We could say that the user is not restricted to
end-users or application writers. All of the following could be ABR users:

Page 95 of 102 ATM Forum Technical Committee

AF-SAA-0108.000 ATM Forum Technical Committee
February 1999

- End-user

- Network administrator
- Application writer

- Protocol/OS devel oper
- NIC vendor

- Network provider

Appendix D.2 Example Applications use of the ABR API Primitives

In many applications of the ABR service, the use of the ABR service is transparent to the application
software layers. In these cases the ABR service parameters are configured via other means (e.g.
management plane actions) and the ABR control loop may be entirely terminated within the NIC. In other
circumstances, the application may wish to take advantage of the information provided by the ABR loop.

In particular, the rationde behind two primitivess "ATM_query outbound rate" and
"ATM_query_inbound_rate" are considered in this section. The basis for this material is work on using
ABR like mechanisms for supporting rate-adaptive video in ATM networks. Giving access to these
primitives for other rate adaptive applications may also be desirable (e.g., rate adaptive audio).

Appendix D.2.1 Specifying a Demand

Although typically data applications that are interested in using al of the available bandwidth would prefer
to request the Peak Cell Rate (PCR) from the network, there are several cases where it may be useful to ask
for arate that is different from the PCR. The local application may be aware of its ability to use arate, ER,
that is lower than the PCR. It would result in better use of the network’s resources to request an ER that is
lower than PCR. In addition, we feel that an application that has the ability to ask for a rate that is lower
than the PCR may be useful for rate-adaptive applications (not necessarily only best-effort data
applications). These applications look to utilize the rate based feedback control mechanism specified in
ATM’s ABR service to adapt themselves to the available capacity in the network. An example of thisis rate-
adaptive video.

Because the ABR protocol allows the network to control the source rate directly, ABR schemes can be
designed and tuned to control queueing delays at switches, in addition to controlling cell-loss rates. Given
this, and if the Minimum Cell Rate (MCR) selected for the ABR connection is chosen to correspond to the
minimum rate required by the video encoder, then the Available Cell Rate (ACR) determined by the ABR
scheme may be used to determine the rate of the video encoder.

Appendix D.2.2 Overview of an example implementation

One can use the inherent negotiation in ABR, viathe ER field of RM cells, to allow sources to indicate their
needed rates (demand) over very short intervals. The desired ideal rate that the source needs to transmit
video at the ideal quality is communicated in the ER field of the Resource Management (RM) cells
transmitted by the source. It is highly desirable for the application to request an ER value
(ATM_request_outbound rate) based on the desired ideal rate for the video frame to be transmitted. This
allows the network to potentially allocate a rate that is commensurate with the demand from the source (as
seenin the ER field at the time of origination of the RM cell) and the network conditions.

Appendix D.2.3 Using the Allocated Rate

As per the specifications in TM 4.0, the network computes an explicit rate that the source may transmit at,
based on the available resources. This rate is communicated back to the source in the RM cell that returns.

ATM Forum Technica Committee Page 96 of 102

ATM Forum Technical Committee AF-SAA-0108.000
February 1999

The Available Cell Rate (ACR) value is then updated at the source, following the source rules specified in
TM 4.0. The video source now adapts its rate to the rate communicated back by the network, whenever
necessary. The source enhances its adaptation by using information about the source buffer occupancy and
arecent set of allowed rates, subject to the constraints imposed by the ABR specification.

There may be a variety of video-source rate-adaptation mechanisms. For example, one can use a source
buffer between the video encoder and the ATM layer. The rate at which the compressed video data was
drained from the source buffer by the ATM layer may be the ACR that it is alowed to transmit at.
However, the video encoder has to adapt it’s bit rate to match the bandwidth granted by the network, to
prevent overflow of the source buffer between the encoder and the ATM layer.

The source buffer serves to isolate the encoder from the rapid changes in the rate provided by the network,
and also acts as an integrator of the difference between the encoder’s desired rate and the alowed rate,
ACR, over time. One can use a combination of the source buffer and the recent history of ACR returned to
adapt the coder’s rate. The source buffer also smooths errors in estimation of the feedback delay, thus
minimizing rapid fluctuations in the coding rate, and hence avoiding impacting adversely the quality of the
video. The encoder rate adaptation function accounts for both the ACR and the state of the source buffer. If
the encoder were not to adapt, then either the source buffer would be very large (adversely impacting the
end-end delay) or there would be overflow of the source buffer. Therefore, it is very desirable that the
adaptation function have available to it the ACR that the network returns. ATM Forum contributions have
been presented providing simulation results to demonstrate the effectiveness of an adaptation function, that
utilized the ACR value.

Appendix D.3 Example ABR Notification Mechanisms

The use of the ABR service class by an application opens unique opportunities, however its use is
coincident with several tradeoffs and choices. An ABR service connection setup involves specifying
several parameters; among these are peak cell rate (PCR), minimum cell rate (MCR), allowed cell rate
(ACR), and initial cell rate (ICR).

Of these, the ACR is dynamic, its value varying between the MCR and PCR. Since the ACR (presumably)
varies based on the load of the network, the service an application receives from the network also varies.
On the other hand, some applications may be able to make clever use of the ACR and either meter data onto
the network or perform more complex traffic shaping in an attempt to more closely match its demand of the
network to the currently available supply of network service. The implication is that the application must,
in some manner, be made aware of the rate at which it may send data. This section examines choices and
tradeoffs in communicating this information to an application. It then proposes a simple two parameter
mechanism which can be employed to control the level of active involvement of the NIC, and its associated
hardware and drivers, in this effort. The two parameter mechanism specified can be implemented by either
directly monitoring the ACR parameter or by using some other proxy (e.g. queue size in the buffer).

Appendix D.3.1 Discussion of ABR Notification mechanisms

An ABR capable NIC is the first to become aware of the ACR available on a particular connection,
consequently it also keeps record of this value. Enabling an application to make use of this information
means transferring this information from the NIC to the application and can happen one of several ways:

(1) The application POLLS the NIC
pros:
- NO UNNecessary communication,
- tight application control of polling frequency
or rate.
cons:
- may miss significant ACR behavior due to granularity,
- high involvement of application in information
gathering.

Page 97 of 102 ATM Forum Technical Committee

AF-SAA-0108.000 ATM Forum Technical Committee
February 1999

(2) NIC asynchronously "notifies" the application

pros:
- significant ACR events are not missed,
- low "active" involvement of application.

cons:
- unnecessary notifications (periodic and no new info),
- high level of NIC involvement in application

oriented matters.

These choices collapse into some basic issues:

- Polling vs. notification

- Polling/notification frequency?

- Reducing the frequency by defining some trigger event. What isan "ACR event?' and further,
what isa"significant" event?

High polling or notification frequency increases the granularity, hence the accuracy of the application’s idea
of the "actual" ACR. If the frequency is too small, information is lost. If the frequency is too high it creates
other problems:

e |t demands resources (that might be used for other work) just to convey information;

» theinformation may be redundant if the frequency may be higher than the change rate of the ACR.

The problem then is to find a balance between all these issues, but with the added cavest that it is simple to
implement from the NIC perspective and easy to use from the application perspective.

Several issues must be considered when devising a solution:

« applications are al different and a specific application has the best knowledge of its own
prospective service requirements of a network. Thisimplies that the solution must be adaptable to
the application without undue restrictions or complexity. Basicaly, there is no one "idea"
mechanism for all applications.

e it should be simple to implement in the NIC.

« it should be easy to use by the application while providing a wide range of choices as to method
and frequency of ACR information.

Appendix D.3.2 Implementation of ABR Notification based on ACR

Adhering to these constraints, a simple method was devised using a pair of parameters: low and high.
These two parameters are specified at ABR connection setup time but can be changed throughout the life of
the connection. The mechanism provides the ability to use either polling or notification, it allows variance
of the polling or notification frequency, also providing the ability to combine the two methods if needed,
and allows the disabling of the entire mechanism.

Imagine aline (Figure 31) which represents cell rates for a connection from zero up to some number N. We

see the prescribed Minimum Cell Rate and Peak Cell Rate. Also in Figure 31 is the current ACR at some
instant in time and is appropriately positioned within the bounds of the MCR and the PCR.

ATM Forum Technica Committee Page 98 of 102

ATM Forum Technical Committee AF-SAA-0108.000
February 1999

0 N

| | | | |5
| | | | "

MCR ACR PCR

Figure 31 ABR Cell Rates

The new parameters low and high have a valid range of valuesis 0 to N inclusive where low <= high. They
specify when to send a notification to the application. In genera, notification is sent when the ACR rate
either drops below the low or climbs above the high. There is a special provision to avoid thrashing across
aboundary by mandating that low notifications occur only after ahigh, and vice versa. More formally:

low triggers a notification when:
1) the ACR changes from a higher value to alower value, AND
2) the new value of ACR islessthan or equal tolow, AND
3) either (a) thisisthefirst notification OR the last notification was triggered from high.

Similarly, high triggers a notification when:

1) the ACR changes from alower value to a higher value, AND
2) the new value of ACR is greater than or equal to high, AND
3) either (@) thisisthefirst notification OR (b) the last notification was triggered from low.

Severa flavors of communication are now possible. The simplest, disabling the notification mechanism, is
easily accomplished via setting the low and high to values above the PCR and is shown in Figure 32. Since
the ACR will never be in that range, no notifications will occur. The application can now use polling or may
ignore all ACR information altogether.

0 NCRhi N

| | | | | L,
! | | | | '
MCR ACR PCR NCRIo

Figure 32 ABR Ratesin relation to low and high thresholdsfor disabled notifications

Another possibility is that of simple binary notification, in other words two states: Service, No Service.
Thisis shown in Figure 33 by setting the low = MCR-1 and high = MCR. In this case, when the ACR drops
below the MCR (actually zero) a low notification occurs and when it rises back to at least MCR a high
notification is triggered.

0 NCRhi N

| | | | | |5
»>

! I I I !
NCRIo MCR ACR PCR

Figure 33 ABR Rates and simple binary notifications
To enable natification only if the ACR is at the MCR or the PCR, one would specify low=MCR and

high=PCR. In this case no notifications occur if the ACR remains bounded by MCR and PCR. This is
shown in Figure 34.

Page 99 of 102 ATM Forum Technical Committee

AF-SAA-0108.000 ATM Forum Technical Committee
February 1999

NCRIo
0 NCRhi N

MCR ACR PCR

v

Figure 34 ABR Rates with notificationsat PCR/M CR

This does not preclude the possibility of low and high being set within the bounds of MCR and PCR.
Figure 35 shows one possibility in this scenario with ACR(n) and ACR(n-1) meaning the current ACR
and the previously calculated ACR respectively.

0 ACR ACR N
| | | " | | ™ I I |
! | I I I |]

MCR NCRIlo NCRhi PCR

v

Figure 35 ABR Rateswith thresholds for adaptation

Here the ACR has dropped from a higher value to a lower value and in the process crossed the low
boundary. This will cause low notification. Another notification will not occur until the ACR rises to
greater than or equal to the high. This mechanism then can be used to increase or decrease the frequency of
notifications by decreasing or increasing the distance between low and high respectively. By setting low
=high a notification will occur every time that boundary is crossed, however this can lead to wasteful
thrashing about that boundary. The other direction where ACR(n) > ACR(n-1) worksin asimilar fashion.

Appendix D.3.3 Implementation of ABR Notification based on Queue
Size asaProxy for ACR

The parameter for the service is specified as a cell rate. It may be convenient to utilize ssmple proxy
parameters that are readily available in the NIC. The transmit queue size is one such proxy mechanism that
may provide a convenient implementation approach, in that it is expected that this approach would not
reguire any hardware changes to typical existing NIC designs.

Consider there are two implementation specific threshold H and L (where H>L) for the NIC transmit queue.
When the queue length exceeds the threshold H, then ACR value is notified. After that, when the queue
length decreases less than L, then the ACR is notified. In this case the NIC must prepare one bit of memory
space per VC to remember whether the queue length has been above H and has still been above L.

ATM Forum Technical Committee Page 100 of 102

ATM Forum Technical Committee AF-SAA-0108.000
February 1999

Appendix E Narrowband Voice Implementation Guidelines [informative]

The incoming call distribution model has been extended from the previous version of the APl semantics to

take into account N-ISDN services provided in B-ISDN. The ATM Forum specification “Voice and
Telephony Over ATM to the Desktop” is dependent on this for Native ATM Voice Services. For N-ISDN
services, there is now a single, dedicated SAP. The application successfully registering this SAP would
receive notification of all incoming calls that carry the “Narrow-band bearer capability” information
element. Thedestination_SAP parameter of the ATM_connect_outgoing_call primitive is similarly
extended.

For scenarios where there is only a single narrowband application present, then the narrowband application
directly registers with Native ATM Services for the special narrowband SAP.

For scenarios where there are multiple narrowband applications present, then each narrowband application
registers itself with a new functional component labeled herein “Narrowband Services Call Distribution”.
This new component has the responsibility of sharing the special narrowband SAP from Native ATM
Services among multiple narrowband applications. In this case, the “Narrowband Services Call
Distribution” component shall register with Native ATM Services for the special narrowband SAP.

There must be an APl between the narrowband applications and the “Narrowband Services Call
Distribution” component. The specification of this API is for further study.

A diagram showing the relationships between components follows in Figure 36. The normative text
describing narrowband services SAP is found in section 4.5.2.1 and 4.6.3.

Narrowband Apps

Narrowband API

Narrowband Services
Broadband Apps Call Distribution
NAS API
'\Special “Narrowband
Native ATM Services Services” SAP

Figure 36 Relationship of Narrowband Interworking SAP and NAS.

Page 101 of 102 ATM Forum Technical Committee

AF-SAA-0108.000 ATM Forum Technical Committee
February 1999

Appendix F Proxy Signaling Agent |mplementation Guidelines

[Informative]
Proxy Signaling, defined in Annex 2 of SIG 4.0, is an optiona capability - for both the network and the
user. This informative appendix contains guidelines for the implementation of a Proxy Signaling Agent
(PSA) that utilizes the services of the NAS API. This capability, when supported by prior agreement
between the user and the network, allows a user, called the Proxy Signaling Agent (PSA), to perform
signalling on behalf of one or more users that do not support signaling. Figure 37, adapted from Annex 2 of
SIGA4.0, illustrates an example of PSA application usage of the NAS API.

Control for
VPCIs=1,2, and 3
PSA
Application UNIs
APl ——— Signalling VC ATM Switch
NAS
UNI=A
VPCI=1 (local VPI=0) ignalling
UNI=B Control
VPCI=2 (local VPI=0)
svC
UNI=C established
VPCI=3 (local VPI=0) by PSA

Figure 37 Example PSA usage of NAS API

In this example, the devices attached to UNIs A, B, and C do not support UNI signalling. There is one
signalling channel between the ATM device containing the PSA and the ATM switch. In order for the PSA
to initiate an SVC connection from a device on UNI B to a device on UNI C, the PSA creates an
API_Endpoint corresponding to each side of the connection (origination, termination). The originating side
API_Endpoint (corresponding to UNI B in this example) follows the procedures of section 4.2.1. The
terminating side API_Endpoint (corresponding to UNI C in this example) follows the procedures of section
4.2.2.

The correlation of API_Endpoint to a UNI is done via the VPCI of the connection. On the originating side,
the PSA application sets the VPCI in state A2 using the ATM _set_connection_attributes primitive. On
the terminating side, the PSA application gets the VPClI in state A6 using the
ATM_query_connection_attributes primitive. The VPCI is obtained via the “connection identifier”
information element defined in SIG 4.0.

The coordination of data transfer on UNIs A, B, and C with the invocation of signaling functions by the

PSA is beyond the scope of this specification. Per Annex 2 of SIG 4.0, the mapping of VPCI values to a
specific UNI and VPI combination is resolved at service subscription time.

ATM Forum Technical Committee Page 102 of 102

