
TxWin 5.xxTxWin 5.xx
Programming and User GuideProgramming and User Guide

Jan van WijkJan van Wijk

Brief programming and user guide forBrief programming and user guide for
the open-source TxWin text UI librarythe open-source TxWin text UI library

 TxWin 5.xx, Programming and User Guide © 2018 JvW

Presentation contentsPresentation contents

 Interfacing, include files, LIBs
 The message event model
 Structure of a typical application
 Setup and creation of windows

 Window classes
 Window procedures and messages
 Window handling functions
 Standard dialogs
 Command line and output buffer usage
 The menu system
 Using functional TRACE
 Miscellaneous functions

 TxWin 5.xx, Programming and User Guide © 2018 JvW

Interfacing to TxWindows (TxWin)Interfacing to TxWindows (TxWin)

 To use TxWin from a 'C' application all you
need to do is include the 'txlib.h' header file.
In turn this will include other TxWin stuff
as well as some common 'C'-library and
operating system specific headers.

 Compile and link with the TxWin library
('*.LIB' or 'lib*.a' file) that matches the platform
and the variant you want (retail, debug).

 This is part of the standard master makefile (.MIF or .OSX)

 TxWin comes as STATIC libraries (.LIB or .a)
not dynamically loaded ones (.DLL or .so)

 TxWin 5.xx, Programming and User Guide © 2018 JvW

The message event modelThe message event model

 TxWin uses almost the same model as PM/WIN:

 Windows are created and inserted in a Windows
hierarchy, each window has a unique HANDLE

 Communication with (and between) windows is mainly
done using messages (events) that are addressed to
its handle, relating to the windows procedure that
should process the message

 This message based system allows for a very
modular distribution of functionality and easy changes
to appearance or behaviour without having access to
the base window class code (sub-classing).

 TxWin 5.xx, Programming and User Guide © 2018 JvW

Message handlingMessage handling

 Messages can be 'sent' directly to a window for
synchronious execution of the related code
(much like a function-call) or 'posted' to a
QUEUE with normal processing continueing.

 After finishing current processing, the OLDEST
message will be picked up from the queue, and
sent to the window it was addressed to.
This 'dispatching' is done by the message loop
either in the main-program or inside a dialog.

 When the queue is empty, it waits for new
events, usually keyboard or mouse ...

 TxWin 5.xx, Programming and User Guide © 2018 JvW

What is a (TxWin) window ?What is a (TxWin) window ?

 An object that defines a text-area with a number
of lines and columns, with associated behaviour

 On the screen: a rectangular area showing the
window frame plus contents. The window can be
invisible or partly covered by other windows.

 In the program: a data structure that holds
all information about the window

 For many window classes, there is also a link to the
contents of the window, usually as a pointer to a
data structure and some descriptive fields.

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TxWin versus PM/WIN windowsTxWin versus PM/WIN windows

 When you are familiar with PM/WIN windowing
it is good to realize a few major differences:

 TxWin is purely TEXT based, no graphics are possible,
limiting appearance freedom and amount of information
that can be displayed and handled in one window

 A Window in TxWin includes borders, a title and footer,
special areas like close-buttons and a client-area.
In PM/WIN all of these are SEPARATE windows!

 Access to (contents) data is usually direct, with variables
instead of through a purely message based interface as
many PM/Windows classes use.

 TxWin 5.xx, Programming and User Guide © 2018 JvW

Application structureApplication structure

 In addition to standard 'C' stuff like main:

 Initialize the library, including argument handling
 Interpret command line switches, if any
 Create and initialize the main desktop window
 Create one or more application windows
 Start the action: Show a window or post a MSG
 Enter the main message-loop (event dispatch)

 Handle messages (events) in window-procedure

 On exit, terminate library and cleanup

 TxWin 5.xx, Programming and User Guide © 2018 JvW

Creating WindowsCreating Windows

 All windows and dialogs in TxWin are
created dynamically, there are no static
resources like OS/2 PM or Windows has.

 Macros and widgets can streamline this ...

 Typical window creation consists of:

 Initialize window-setup structure, directly or using
txwSetupWindowData(...)

 Create the window using txwCreateWindow(...)

 Add or attach the window contents, depending on the
class of the window (text, lists, etc ..)

 TxWin 5.xx, Programming and User Guide © 2018 JvW

Window classesWindow classes

 Window classes define TYPES of windows

 The specific appearance and behaviour of a
class is implemented in the library, mainly in
the form of the default window procedure that
handles all standard messages for the class
like painting and user input

 Applications can add to or change this by using
a specific window procedure (sub-classing) on a
per-window basis (not the class), where multiple
windows may share the same window procedure

 TxWin 5.xx, Programming and User Guide © 2018 JvW

Window proceduresWindow procedures

 A window procedure is a function being called
for every message sent to a specific window.

 The structure is simple, select (switch) on the
message-id, and perform required actions.

 The window procedure handles any messages
it is interested in, and passes all others to the
default one: txwDefWindowProc()

 Specific windows procedures can be assigned
to any window on creation to allow changing
the appearance or behaviour

 TxWin 5.xx, Programming and User Guide © 2018 JvW

Sub-classing windowsSub-classing windows

 Changes appearance and/or behaviour

 Unlike PM/WIN, subclassing in TxWin works on
a per-window basis, and NOT a whole class.

 Implemented by allowing a window-procedure to
be defined on the txwCreateWindow() and a few
other related functions like txwDlgBox()

 There is no need to register new classes,
you use the existing ones and add window
procedures where needed

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TXW_FRAME classTXW_FRAME class

 This is the simplest of classes:

 Has an optional BORDER with title and/or footer

 Does NO painting of the client area (transparent)

 Can save underlying contents, and restore on destroy

 No user data is associated with this window

 It is rarely used 'as is' but serves as the main
'desktop' window and as main window for a
dialog completely covered by its 'controls'.

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TXW_CANVAS classTXW_CANVAS class

 This is a frame, with a default 'client area':

 Client area can be filled with a solid color

 Optional 'ASCII artwork' can be defined to
appear in the client area (see TXT test program)

 Often used as main window for a dialog.
The client area then forms the 'empty' areas
between the dialog control windows like
buttons, entry fields and lists.

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TXW_STATIC classTXW_STATIC class

 This is a simple, multi-line text area to hold
static text for display (NOT editable!)

 The data is a standard TXWin array of
string-pointers allowing use of either
statically defined as well as dynamically
created texts. (char *text[])

 Useful to add descriptive texts to dialogs

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TXW_STLINE classTXW_STLINE class

 This is an even simpler, single-line text area
to hold static text for display (NOT editable!)

 The data is a standard 'C' string-pointer
allowing use of either statically defined
or dynamically created texts (char *text)

 Useful to add short descriptive texts to dialogs,
like header lines for tables or entry fields

 Note that for entry field headers you can use
the 'title' from the border area as well

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TXW_SBVIEW classTXW_SBVIEW class

 This is a multi-line, output only text window
with several special properties:

 New text can be added to the end of the buffer using
the standard TxPrint() function (printf like interface)

 ANSI style colors and some positioning can be used

 The displayed text is kept in a large 'scroll-buffer',
colors are preserved when scrolling back and forth

 Display of the buffer is optimized to allow smooth
scrolling even when other windows are displayed
on top of it (including shadowing :-)

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TXW_SBVIEW, continuedTXW_SBVIEW, continued

 Footer line of the window has automatic line counters

 Application can display short status messages to that
footer line as well, like progress indicators

 It is the standard OUTPUT WINDOW when
producing a lot of loosely structured information

 Note: Similar to showing status messages in the footer
of the scroll buffer, applications can display messages
in the desktop title (or top) line as well.

This is also used by the functional trace facility
(toggled using the Alt+/ key)

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TXW_ENTRYFIELD classTXW_ENTRYFIELD class

 This is a single-line text entry field with
some editing capabilities

 The data is a standard 'C' character array.
 (char *text)

 An optional history-buffer can be attached to
automatically store entered values for later
retrieval, either using the arrow-keys or a
popup-list. Useful for a command line :-)

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TXW_TEXTVIEW classTXW_TEXTVIEW class

 This is a simple output only view window for text

 Text may be (much) larger than the window

 Scrolling through the text possible using the
arrow-keys, PgUp/PgDn etc, as well as some
controls for the mouse in the border (if any)

 When available, the mouse scroll-wheel
can be used to scroll up and down too

 Is used internally for displaying HELP screens

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TXW_BUTTON classTXW_BUTTON class

 This is a button control, in the form of:

 Push button, where a click or ENTER on the button
performs some kind of action like [OK], [Cancel] etc

 Radio button, usually several in a group where only
one button in the group has the 'ON' status.
Clicking on a button inverses the state of that button,
and possibly all others in the group

 Check button, either single or in a group, where
each button has its own checked/unchecked status.
Clicking the button inverses the state but does
not affect any other button

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TXW_BUTTON, continuedTXW_BUTTON, continued

 The data is a simple BOOLEAN variable
for the Radio and Check buttons, and there
is no associated data for a push button.

 Click events are communicated using messages

 Radio and Check buttons can have the 'AUTO'
property, meaning that all handling for the button
is done entirely by the library. All the application
needs to do is read the boolean variable ...

 Grouped buttons (or any grouped controls) are seen
as a single entity for TAB-key navigation. In this case
the arrow-keys still navigate within the group ...

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TXW_LISTBOX classTXW_LISTBOX class

 This is a generic LIST control in the form off:

 Singe selection list, like a (menu) popup

 Multiple selection list, where more than on item
in the list can be marked as being 'selected'

 The data is an array of 'TXSELIST' items that can either
be statically defined (for the main menu for example)
or created on the fly (like for directory lists)

 There can be more items in the list than visible, and
scrolling is supported in as with the regular text view

 Items can be marked as 'disabled' or 'separator'

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TXW_LISTBOX, continuedTXW_LISTBOX, continued

 Lists can have several visual appearances:

 As a popup-window, like a menu or floating popup

 Embedded as a control in a dialog, like the
directory and file-lists in standard file dialogs

 As a 'spin' control with a single (current) value visible
and the arrow-keys 'spinning' through all available
values. The ENTER key will present a popup version.
An example is the drive selection list in file dialogs.

 TxWin 5.xx, Programming and User Guide © 2018 JvW

TXW_HEXED classTXW_HEXED class

 This implements a complete HEX-editor on one
or more (up to 9) memory buffers

 Includes a HEXadecimal and ASCII area, both
are editable (and update the other area :)

 Reading and writing is delegated to the calling
application using a callback function, to use it as
a disk/sector editor or edit various other data

 Supports a variable number of (byte) columns
and rows, to match the data structure

 TxWin 5.xx, Programming and User Guide © 2018 JvW

Dialog windowsDialog windows

 A dialog consists of a base-window, usually a
CANVAS class, and one or more CONTROLS

 Each control is a window of its own, and
can be any of the presented classes.

 Dialogs are built dynamically by creating the
dialog-frame and all control windows.
It is then presented using txwDlgBox()

 Dialogs are MODAL in nature, meaning that
other parts of the application are NOT opera-
tional while the dialog is up.

 TxWin 5.xx, Programming and User Guide © 2018 JvW

Dialog windows, continuedDialog windows, continued

 Specific window procedures can be defined
for the whole dialog and/or each control

(or the default txwDefDlgProc() / txwDefWindowProc() are used)

 Data is made available to the dialog using
the attached data for each control.

 In addition to that, a data structure could be
attached to the frame-window (window-ptr)
to be used by the dialog window procedure

 The return code identifies the control (button)
that was active when the dialog was ended

 Possibly modified data stays available after return

 TxWin 5.xx, Programming and User Guide © 2018 JvW

Dialog WidgetsDialog Widgets

 Widgets are normal controls combined in a
WIDGET-ARRAY that is processed in one go

 It is an easy way to define complex dialogs,
without having to create each window separately

 There is a dedicated (empty) canvas dialog that
will display and handle such a widget-array

 Many TxWin standard dialogs will accept
a widget array as an optional parameter,
and add the widgets to that dialog

FileOpen, FileSaveAs, Message, Confirm and more ...

 TxWin 5.xx, Programming and User Guide © 2018 JvW

Standard dialogsStandard dialogs

 TxWin includes a few standard dialogs:

 Message-box, with one to four buttons (W*)
 Prompt-box, to get simple single field input (W*)
 File-Open and File-save-as dialogs (W*)
 Directory picker dialog (W*)
 Menubar dialog, with pulldown and sub menus
 List-box, as submenu or standalone popup
 Widget dialog, easy creation of custom dialogs (W*)

 The (W*) marked dialogs can be extended very
easily using an array of Widget definitions

 Any CONTROL class can be used in a widget list

 TxWin 5.xx, Programming and User Guide © 2018 JvW

More infoMore info

 This document is NOT a reference, and actually
there IS no reference at the moment :-) So:

 Get the TxWindows library, download available from:

 https://www.dfsee.com/download/#txwin

 Check out the samples and TXT test application
 Really READ the available HELP screens :-)
 Study the interfaces as defined in the header files
 Study behaviour by looking through the sources

 If all that fails, contact me at:

 info@dfsee.com

TxWin 5.xxTxWin 5.xx
Programming and User GuideProgramming and User Guide

Questions ?Questions ?

	Title
	Contents
	int
	evt
	msg
	win
	PmWin
	app
	cre
	class
	proc
	sub
	frame
	canvas
	static
	stline
	sbv
	sb2
	entry
	view
	button
	bt2
	list
	ls2
	Slide 25
	dlg
	dl2
	widg
	Sdlg
	more
	Q?

