

IBM VisualAge COBOL IBM

Visual Builder User’s Guide

 SC26-9053-02

IBM VisualAge COBOL IBM

Visual Builder User’s Guide

 SC26-9053-02

 Note

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page ix.

Third Edition (April 1998)

This edition applies to Version 2.2 of IBM VisualAge COBOL and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, W92/H3
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments
electronically to IBM. See “Communicating Your Comments to IBM” for a description of the methods. This page
immediately precedes the Readers’ Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

Copyright International Business Machines Corporation 1998. All rights reserved. Note to U.S. Government Users —
Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth in GSA
ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Trademarks . ix

About this book . xi
What's new in this edition . xi
Who should use this book . xi
How to use this book . xii
How to read the syntax diagrams . xii
How this book is organized . xiii
Highlighting conventions . xiv

Part 1. Introducing the Visual Builder . 1

Chapter 1. Learning Visual Builder application development concepts 3
Object technology overview . 3

The application segmentation paradigm . 3
Separation of models from views . 5
Segmentation within the model . 7

What is construction from parts? . 8
The origins of construction from parts . 9
The benefits of using parts . 10
What is a part? . 11
How parts and classes are related . 12
How you can connect parts . 13
Sources of parts . 13

The part interface architecture . 14
Architecture characteristics . 15
Kinds of parts supported in Visual Builder 21

The notification framework . 22
Notifiers and observers . 22
Notification protocol . 23
IBM notification class hierarchy . 24

Chapter 2. What is Visual Builder? . 25
What are the benefits of using Visual Builder? 25
Reviewing the key concepts . 25

Part 2. Touring Visual Builder . 29

Chapter 3. Getting acquainted with the Visual Builder window 31
Getting to know the Visual Builder Window . 31
Working with part files . 33

Loading part files . 33
Unloading part files . 34

 Contents iii

Selecting all part files . 35
Deselecting all part files . 35

Importing other types of files . 36
Part information files (.VCE) . 36
Version 1 components . 36
Copy files . 37

Customizing the information area . 37
Seeing the base files . 38
Seeing where part files are located . 38
Seeing the type list . 38
Using File Allocation Table (FAT) file names 39
Setting the working directory . 40
Refreshing the display . 41

Chapter 4. Getting to know the Visual Builder editors 43
The editor symbols . 43
The Composition Editor . 43

The tool bar . 44
The parts palette . 47
The free-form surface . 50

The System Interface Editor . 51
Entering a description of a part . 52
Specifying a different part file . 53
Seeing the parent class of a part . 53
Specifying the target to create . 53
Specifying the import libraries to include . 53
Specifying a starting resource ID . 53
Specifying a unique icon for your part . 54
Seeing the original file name of imported parts 54
Specifying the names of your part source files 54
Specifying additional code files . 55

The Part Interface Editor . 56
The Attribute page . 57
The Event page . 63
The Action page . 66
The Promote page . 69
The Preferred page . 72
A note on data parts . 74

Part 3. Developing Visual Builder applications . 77

Chapter 5. Starting Visual Builder . 79
Starting Visual Builder from a COBOL Visual Builder project 79
Starting Visual Builder from VisualAge COBOL 80
Starting Visual Builder from a command prompt 81

Chapter 6. Creating parts – an overview . 83
Designing the part . 83

iv IBM VisualAge COBOL: Visual Builder User’s Guide

Naming parts . 84
Naming actions, attributes, and events . 85

Constructing the part . 85
Implementing attributes . 86
Implementing actions . 89
Guidelines for implementing nonvisual parts 90

Generating source and build files . 91
Generating COBOL source code a part . 91
Generating feature code . 92
Generating build files . 93
Preparing generated files for compilation . 93

Building your part . 95
Building from a COBOL Visual Builder project 95
Building from the command line . 95

Using or running your part . 95
Debugging your part . 95

Workstation beeps . 96
No connections run in user code . 96
Offset calculation for windows . 96
Cannot enter text into entry fields on Windows 96
Error handling . 97
Application terminates suddenly . 97
Tracing execution flow . 98

Chapter 7. Creating nonvisual parts . 99
Using existing COBOL code with Visual Builder 100

Defining the part interface using part information files 100
Importing copy files . 101

Defining the part interface . 103
Adding code to your part . 104

Generating feature code . 104
Adding code created outside Visual Builder 104

Chapter 8. Learning to use parts . 107
Working with parts in the Visual Builder Window 107

Displaying part names . 107
Selecting all parts . 108
Deselecting all parts . 108
Importing part information . 108
Exporting part information . 109
Creating a new part . 110
Opening parts . 112
Copying parts from one part file to another 114
Moving parts to a different part file . 114
Deleting parts from a part file . 116
Renaming parts in part files . 117

Working with parts on the free-form surface . 118
Placing parts on the free-form surface . 118

 Contents v

Guidelines for placing parts on the free-form surface 119
Selecting and deselecting parts . 122
Manipulating parts . 123
Arranging parts . 126
Changing settings for a part . 129
Using the generic settings notebook . 132
Listing parts within a composite part . 133
Changing depth order within a composite part 134
Performing other operations on parts in the Parts List window 135
Setting the tabbing order . 135
Editing parts placed on the free-form surface 138
Promoting a part’s features . 139
Tearing off an attribute . 141
Undoing and redoing changes in the Composition Editor 141

Sharing parts with others . 141
Providing part files (.VCB) . 142
Providing part information files (.VCE) . 142
Providing enumerations and types . 143

Adding categories and parts to the parts palette 143
Preparing icons for the parts palette . 144
Adding a category to the parts palette . 146
Specifying a unique icon for a part . 147
Adding a part to the parts palette . 148
Deleting a category or part from the parts palette 150
Saving parts palette changes . 151

Chapter 9. Learning to use connections . 153
Connection type summary . 158
Making the connections . 158

Determining the source and target . 158
Browsing a part’s features . 159
Connecting features to features . 162
Supplying parameter data for incomplete connections 163

Manipulating connections . 165
Changing settings for a connection . 166
Reordering connections . 168
Deleting connections . 168
Showing and hiding connections . 169
Rearranging connections . 170

Chapter 10. Adding menus to Visual Builder applications 173
Types of menus and menu items . 173
The Frame Extensions category . 174
Creating a menu bar . 174

Adding the CMenu part . 175
Adding the CMenuCascade parts . 175
Defining the CMenu part as a menu bar . 177
Adding menu items to a menu cascade . 177

vi IBM VisualAge COBOL: Visual Builder User’s Guide

Defining a CMenu part as a pull-down menu 179
Creating a pop-up menu . 179

Adding a CMenu part . 179
Defining a CMenu part as a pop-up menu 181
Adding menu items to a pop-up menu . 181

Adding menu separators . 183
Connecting menu items to actions . 183
Building and running the part . 184

Chapter 11. Adding containers and list boxes to Visual Builder applications 185
Creating container parts . 185

Container parts . 185
Creating the project . 186
Adding a container part . 187
Setting up the container . 188
Adding container columns . 190
Setting up a container column . 191
Filling in the container with data . 191

Building the part . 192
Creating list box parts . 192

Creating the project . 193
Adding list boxes . 193
Filling in the list boxes with data . 194
Building and running the part . 194

Chapter 12. Adding notebooks to Visual Builder applications 197
Creating the project . 197
Adding a notebook part . 198

Specifying the notebook layout and appearance 199
Adding notebook pages . 200

Setting up the notebook pages and tabs . 201
Adding parts to a notebook page . 202

Building and running the part . 203

Chapter 13. Adding help to Visual Builder applications 205
The help subproject . 206

Creating the help file . 206
Editing the help source file . 206
Building the help source file . 208
Providing context-sensitive help . 208
Providing general help . 209
Providing the application Help window . 210
Providing a Help button . 211
Building and running the part . 211

Chapter 14. Integrating visual parts into a single application 213
Creating the dynamic visual parts . 213
Creating the static visual parts . 214

 Contents vii

Adding visual parts as dynamic instances . 214
Adding and setting factory parts . 215
Adding and setting variable parts . 215
Connecting to the factory parts . 216
Connecting the factory parts to their corresponding variable parts 216

Part 4. Extending Visual Builder applications . 217

Chapter 15. Hints and tips for using Visual Builder 219

Part 5. Appendixes . 221

Appendix A. Creating part information files 223
Describing part interfaces in part information files 223

General rules for entering part information 223
Part and class information syntax . 224
Enumeration information syntax . 230
Enumeration information example . 232
Type definition information syntax . 232

Glossary . 237

Related information . 243

Index . 245

viii IBM VisualAge COBOL: Visual Builder User’s Guide

 Notices

Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program, or service that does not infringe any of IBM’s intellectual property
rights can be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the

IBM Director of Licensing,
IBM Corporation,
500 Columbus Avenue,
Thornwood, NY 10594,
USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independent created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact . Such information may be available, subject to
appropriate terms and conditions, including in some cases payment of a fee.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other
countries:

 IBM
 VisualAge

Common User Access
 CUA
 OS/2
 Open Class

Windows is a trademark of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks of others.

 Notices ix

x IBM VisualAge COBOL: Visual Builder User’s Guide

About this book

Welcome to Visual Builder—the quickest and easiest way to create GUI applications
using the COBOL programming language! This book, Visual Builder User’s Guide,
introduces parts, tools, and features that you can use to build Visual Builder
applications.

Visual Builder is a tool provided by VisualAge COBOL. It is based on the
construction-from-parts paradigm, a software development paradigm in which
applications are assembled from reusable and existing software components, called
parts. You can extend Visual Builder by adding your own reusable, custom parts and
then using these parts in your applications as you need them.

Visual Builder gets you started by providing a set of parts as well as interactive visual
programming tools to work with those parts. You create your applications by visually
assembling and connecting these prefabricated parts. In many cases, you do not even
have to write any code.

What's new in this edition
There have been several significant additions and improvements made to this book. A
few of these include:

Improved organization
There are have changes to the organization of the book. For example,
information related to the Visual Builder interface has been grouped
together in Part 2. Also, information listed in Chapter 15, “Hints and tips for
using Visual Builder” on page 219 has been integrated into the book.

Inclusion of new information
Information previously found in the Building Parts for Fun & Profit book has
been merged into this book.

Don't forget to look at the samples provided with VisualAge COBOL. There are Visual
Builder samples that often provide more information than is covered in this book. You
can access the samples from the Guide to Samples item in the VisualAge COBOL
menu.

Who should use this book
Programmers who want to develop COBOL applications using Visual Builder should
read this book. Knowledge of object-oriented (OO) concepts, although not required, is
highly recommended. This product incorporates OO concepts and knowledge of them
will allow you to get the maximum use from the product, as well as an understanding of
the terminology used in this book.

 About this book xi

How to use this book
If you are new to Visual Builder, read through the first section completely. If you have
used Visual Builder before, you can skim that section.

You will find shortcut techniques and other tips wherever you see .

How to read the syntax diagrams
Throughout this book, syntax for the compiler options is described using the structure
defined below.

� Read the syntax diagrams from left to right, from top to bottom, following the path
of the line. The following table shows the meaning of symbols at the beginning and
end of syntax diagram lines.

Diagrams of syntactical units other than complete statements start with the >–
symbol and end with the –> symbol.

� Required items appear on the horizontal line (the main path).

55──STATEMENT──required item───5%

� Optional items appear below the main path.

55─ ─STATEMENT─ ──┬ ┬─────────────── ──5%
 └ ┘─optional item─

� When you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

55──STATEMENT─ ──┬ ┬─required choice 1─ ────────────────────────────────────5%
└ ┘─required choice 2─

If choosing one of the items is optional, the entire stack appears below the main
path.

Symbol Indicates

>>– the syntax diagram starts here

–> the syntax diagram is continued on the next line

>– the syntax diagram is continued from the previous line

–>< the syntax diagram ends here

xii IBM VisualAge COBOL: Visual Builder User’s Guide

55─ ─STATEMENT─ ──┬ ┬─────────────────── ────────────────────────────────────5%
├ ┤─optional choice 1─
└ ┘─optional choice 2─

� An arrow returning to the left above the main line indicates an item that can be
repeated.

 ┌ ┐───────────────────
55─ ─STATEMENT─ ───

6
┴─repeatable item─ ──────────────────────────────────────5%

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

A comma or semicolon included in the repeat symbol indicates a separator that
you must include between repeated parameters. These separators must be coded
where shown.

� Keywords appear in mixed case letters (for example, VisualPart). They must be
entered exactly as shown.

� Variables appear in all lowercase italic letters (for example, item). They represent
user-supplied names or values.

� If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax.

� Use at least one blank or comma to separate parameters.

How this book is organized
This book is grouped into the following parts and appendixes:

� Part 1, “Introducing the Visual Builder” on page 1

The first part introduces you to Visual Builder and its concepts.

� Part 2, “Touring Visual Builder” on page 29

This part shows you how to work with the Visual Builder window and provides an
overview of the Visual Builder editors.

� Part 3, “Developing Visual Builder applications” on page 77

In this part, you learn how to add advanced features to a Visual Builder application,
such as menus, online help, and additional windows. This part assumes you have
gone through the Visual Builder tutorial in the Getting Started book.

� Part 4, “Extending Visual Builder applications” on page 217

This part provides some additional information which may help you during your
Visual Builder development.

� Appendix A, “Creating part information files” on page 223

An appendix has been added that includes information previously found in Building
Parts for Fun & Profit. This appendix describes the syntax of part information files.

 About this book xiii

� Glossary and Reader’s Comment Form

The book ends with a glossary and information on sending us your comments and
questions about Visual Builder.

 Highlighting conventions
This book uses the following highlighting conventions:

Bold : Key interface items in code listings; areas in code examples that are
described in accompanying text. Example: Select Tools from the menu bar.

Monospace : COBOL coding examples; text that the user enters; messages within
text. Examples follow:

The following code from the CFrameWindow class illustrates ...

The street method returns the current street address.

Italics : Emphasis of words; feature names; the first time a glossary term is used;
titles of books. Examples follow:

... stored in persistent objects ...

Refer to Object-Oriented User Interface Design – IBM Common User Access
Guidelines.

xiv IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

Part 1. Introducing the Visual Builder

This part describes Visual Builder, its benefits, and its key concepts.

Chapter 1. Learning Visual Builder application development concepts 3
Object technology overview . 3
What is construction from parts? . 8
The part interface architecture . 14
The notification framework . 22

Chapter 2. What is Visual Builder? . 25
What are the benefits of using Visual Builder? 25
Reviewing the key concepts . 25

 Part 1. Introducing the Visual Builder 1

Introducing the Visual Builder

2 IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

Chapter 1. Learning Visual Builder application development
concepts

This chapter introduces you to the concepts, terms, and paradigms you need to
understand in order to use the Visual Builder effectively. The first section gives a brief
introduction to the object-oriented programming paradigm, and includes definitions of
terms used to describe the features of Visual Builder. The second section defines a
part, the fundamental building block in Visual Builder, and how you use parts to easily
create complex applications. The third sections describes a part in detail, describing the
features of a part, the different kinds of parts, and how parts interact with each other.
The fourth, and final, section of this chapter describes the notification framework. Use
the notification framework to define the order in which you want your parts to interact.

Object technology overview
This section provides a brief overview of some of the concepts and terminology of
object-oriented programming. The information presented in this chapter is
language-independent, but the application development methodology described is
applicable to VisualAge COBOL, and forms the basis for the rest of the book.
Subsequent chapters describe construction from parts specifically in relation to the
VisualAge COBOL environment.

As the cost of processing power has decreased, enterprises have taken the opportunity
to make people more effective. One way of increasing people's effectiveness is to make
the computer system into an extension of their everyday business environment.

In the batch and transaction environments, you were presented with lists of functions
that you could use. These functions did not necessarily correspond to the problem you
were trying to solve. Rather, they were the application designer's idea of the solutions
to the problem you were supposed to have.

With computer power moving to the desktop, a new approach to building applications
has emerged. This approach provides you with the impression the computer is able to
deal with the things common to your business, such as calendars, notepads, invoices,
bank accounts, or a wastebasket. Your desktop computer becomes an extension of
your real world.

Designing applications to operate in this new environment can be challenging. Many
books are available to guide you in this endeavor. We only touch lightly on the design
issues here and suggest that you consult a book devoted to the subject if you need
in-depth knowledge (see “Related information” on page 243).

The application segmentation paradigm
The overall structure of an application developed using the guidelines presented in this
book is shown in Figure 1 on page 4. This structure follows an application
segmentation paradigm common in the cooperative processing environment, where an

 Chapter 1. Learning Visual Builder application development concepts 3

Introducing the Visual Builder

application is divided into three segments: user interface, business logic, and data
access.

Name
Home

Street
City

Work
Street
City

User
Interface

Business
Logic

Distributed logicMultiple views

Data
Access

Data
Access

Business
Logic

Business
Logic

Name Address

Figure 1. Overall application structure

The user interface segment defines how the user and the system interact. It presents
information to the user and accepts input from the user on behalf of the business logic.
Because it does not implement any of the business logic behavior, it can be updated, or
completely replaced, without affecting the business logic. We refer to this user interface
function as a view .

The business logic segment implements the real-world objects of the application. It
defines the behaviors of these objects and their interrelationships without consideration
for how they are presented to users or how users interact with them. We refer to the
business logic segment as a model. The implementation of the model can be totally
contained in a single computer, or it can be distributed among several computers using
available inter-computer communication mechanisms to interconnect the distributed
components of the model.

The third segment of an application is data access. From the application builder's
perspective, this segment can be thought of as simply an extension of the model.
Because of this, we do not discuss it in this book.

Segmenting an application in this way provides you with several benefits, even outside
the construction from parts environment:

4 IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

� It enhances parallel development.

Prototyping of the views can be done by user interface specialists working with end
users. This activity can take place in parallel and is somewhat independent of the
development of the underlying model.

� It supports connecting multiple views to the same model.

Users can access several concurrent views of the business models.

� It facilitates cooperative processing.

The business logic can be effectively distributed between the workstation and one
or more servers.

Separation of models from views
To segment your application into manageable chunks, first separate your views from
your models. By segmenting them, you can provide several views of the same model or
models. Figure 2 shows two views (a detailed view and a tabular view) of a single
model.

Name
Home

Street
City

Work
Street
City

Name Address

Views Model

Notification
Framework

Dependency registration
Notification of occurrence

Figure 2. Connecting views to a model

To use this method of designing applications effectively, keep two important points in
mind:

� Views can directly update models, but models cannot directly update views.

 Chapter 1. Learning Visual Builder application development concepts 5

Introducing the Visual Builder

� Views contain only presentation and user-manipulation logic. Business logic exists
only in the models.

The dependency manager (in COBOL, the notification framework) is used to
communicate between views and models in place of sending direct messages.
Systems that support the model-view or model-view-controller (MVC) application
structure also support a dependency manager function. The specific implementation
details may differ from system to system, but the overall concept remains constant.

The dependency manager maintains lists of objects that depend on the occurrence of
specific events. It provides a set of interfaces so objects can register their dependency
on an event or remove their dependency from it.

An object can signal the occurrence of each of its events to the dependency manager.
The dependency manager searches its lists and forwards the notification to the objects
dependent on the event. These objects can then take action based on the occurrence
of the event.

To see how this works, consider a simple example. You might want to refer back to
Figure 2 on page 5 as we go through the example.

In this example we define one event (nameChanged) that is associated with a change
in the name of a person. Assume the upper-left object in the figure is a person model.
Because it maintains the data about a person, it has a dependency on the
nameChanged event. Both views must also be notified when the nameChanged event
occurs so they can update the content of the name field on the screen. Each of these
objects registers a dependency on the nameChanged event with the dependency
manager.

Now, suppose you type over the contents of the name field in the detailView view and
then tab out of the field. The view signals a notification that the nameChanged event
has occurred. The dependency manager receives this notification message and looks
for its list of nameChanged event dependents. It finds the list and forwards the
notification to the objects that have registered their dependency on the event.

The person model receives the notification and updates its internal data. The
tabularView view receives the notification and refreshes the display with the updated
name.

Because the detailView view is also dependent on the nameChanged event, you might
wonder why the notification was not forwarded back to it. Also, because the
tabularView view signals a notification when the name changes, you might wonder why
the program does not go into an endless loop sending this notification around. The
answer to both these issues is that the dependency manager recognizes recursive
notifications and discards them.

6 IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

Segmentation within the model
We have described one major approach to segmenting your application—dividing it into
a model and one or more views of that model. You can further segment the model into
several categories of objects. Figure 3 shows these divisions using the analogy of an
iceberg, because most models contain many more hidden (nonvisual) objects than
visible real-world objects.

V
R
I
S

V

V

I

I

I

I
I

I

III
I

I
S

S

S

S

S

S

S

R

R

R

R

R R

- View objects
- Real-world objects
- Implementation objects
- Service objects

apparent connection

actual connection

Figure 3. The Iceberg Model

The categories shown in the figure are as follows:

View objects (V)
These objects create the user interface display. They implement the
interface between users of the application and the application business
model.

Real-world objects (R)
These objects implement the physical objects of your business enterprise,
such as a car, an invoice, a notepad, or a calendar. Their behavior closely
models the behavior of these physical objects. They have a formally
specified interface, which allows them to be widely used by application
development tools.

Implementation objects (I)
These objects provide the internal implementation of the real-world objects.
They generally correspond to more traditional computer-related entities,

 Chapter 1. Learning Visual Builder application development concepts 7

Introducing the Visual Builder

such as arrays, numbers, or abstract objects used to collect common
behavior.

Service objects (S)
These objects provide access to external services, such as communication
support, database access, or operating system functions. They insulate the
real-world and implementation objects from the details of these external
services.

As an example of this application segmentation, consider an application that shows you
the contents of a customer file:

� The windows, entry fields, push buttons, and all other parts of the application's
visual interface are view objects.

� The customer object is the real-world object, providing the data about a selected
customer to the view objects.

� An array implementation object might be used internally by the customer object to
hold the data.

� Service objects support querying a data store and returning the customer
information, which insulates all the other objects from dependence upon the kind of
data store used to hold the customer records or its location.

What is construction from parts?
Just about any construction project you can imagine involves assembling standard or
customized basic parts into more complex parts. This process is repeated until the final
product is complete. If you are building a birdhouse, these basic parts might be lumber,
screws, wire, and paint. Some parts, such as screws and paint, can be used in their
standard form. Other parts, such as lumber and wire, come in a standard form but need
to be customized, or cut, before you use them.

If reusable software parts are available, building a software application can be
conceptually similar to building a birdhouse. You can use the software parts as-is, as
you would with the screws, or tailor the software parts to your exact needs, as you
would with the lumber.

In both scenarios, you need to decide whether to build or buy the basic parts for your
construction project. If you decide to build some basic software parts, this book guides
you through the process (you will need to read about creating the parts of a birdhouse
somewhere else). If you decide to buy the software parts, this book can help you to
choose well-constructed software parts.

Construction from parts is a technology for application development in which
applications are built from existing, reusable software components called parts. Parts
provide a wide range of capability, from very simple function through complete, highly
sophisticated applications. Figure 4 on page 9 shows a few examples.

8 IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

Window

Person
View

Customer
Query
Application

SQL Result

Remote
Transaction

Entry
FieldName

Home
Street
City

Work
Street
City

Name
Home

Street
City

Work
Street
City

Figure 4. The range of primitive and composite parts

An entry field, a window, and a data array are examples of primitive parts. You
combine primitive parts to form more complex composite parts, such as a person view.
You can then extend this approach by combining primitive parts with composite parts to
create entire applications, such as a customer query application.

In general, parts are either visual or nonvisual. In the previous example, the entry field,
window, and person view are visual parts. The data array is a nonvisual part. For more
information about types of parts, see “Kinds of parts supported in Visual Builder” on
page 21.

Note that although construction from parts is an object-oriented methodology, the parts
you use and reuse need not be written in object-oriented COBOL. There is great scope
for exploiting existing code within the construction from parts methodology. For
example, you can use construction from parts to build visual front-ends for your existing
applications.

The origins of construction from parts
The construction from parts technology is just becoming popular in the software
industry, but it is based on well-established techniques from other industries, such as
manufacturing. Figure 5 on page 10 compares the manufacturing process of
constructing a computer system and the software process of constructing an
application.

 Chapter 1. Learning Visual Builder application development concepts 9

Introducing the Visual Builder

Computer Application

Board

Chip

Composite Part

Part

Figure 5. Construction from parts technology

Just as electronic chips can be combined to form a functional board and functional
boards can be combined to form a computer, software parts can be combined to form a
composite part and composite parts can be combined to form an application.

To build a new computer today, you probably would not consider designing and
constructing every single electronic and mechanical component from raw materials.
Likewise, rather than always designing and developing new code for your applications,
you can now use available standard parts. Now the software application development
industry can realize the same benefits of reduced cycle time and increased quality that
have become so prevalent in the manufacturing industry.

The benefits of using parts
The benefits you and your company can realize from using the construction from parts
technology to build applications include the following:

� Reduced application development cost through division of labor.

Application developers are able to focus their expertise on rapid development of
superior solutions for their users by tailoring reusable parts and assembling them
into applications. Meanwhile, part designers can concentrate on developing new
and innovative parts to meet the needs of the application developers.

� Enhanced application quality and reliability.

10 IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

Reusing existing parts reduces the chance of introducing errors when building
applications. As parts are reused and refined, they become the solid building
blocks for your applications.

� Reduced cycle time to respond to users' needs.

Building an application prototype from a library of pre-existing parts allows you to
rapidly verify your users' requirements. You can then smoothly and quickly extend
this prototype into a production application.

Your success in using this technology depends on the availability of easy-to-use
construction tools, standard interface protocols to enable the tools and parts to
interoperate, and an ever-growing library of standard, increasingly powerful parts to be
reused.

What is a part?
A part is a software object implemented as a COBOL class1 with some special
characteristics:

� It supports a simple, standard interface protocol.

This protocol supports the interconnection of parts to form higher-function parts or
entire applications. You can think of this protocol as being like the "innies" and
"outies" on puzzle pieces that enable them to be interlocked into larger portions of
the puzzle.

The part interface is composed of three distinct features: attributes, actions, and
events. These features correspond to a natural way of viewing parts (and objects in
general) in terms of what properties (attributes) they have, what behaviors (actions)
they can perform, and what unsolicited information (events) they can notify other
parts about. Figure 6 on page 12 shows an example of a part interface.

1 Visual Builder supplied parts are not COBOL objects, but pointers managed by the CInterfaceManager class.

 Chapter 1. Learning Visual Builder application development concepts 11

Introducing the Visual Builder

Attribute

contents
address
name

Properties

Behaviors

Notifications

clicked
opened
selected

open
close
add
remove
next

Action

Event

Figure 6. A part interface

� It can extend the functions of application building tools.

The part itself can extend the construction environment by providing tool functions
specifically customized to the part. Examples of these tool functions are icons,
automated view builders, and attribute value initialization. You can think of the
picture on the top of real jigsaw puzzle pieces as a tool extension—it enhances the
ability of the tool (you) to complete the job (putting this particular puzzle together).

How parts and classes are related
If you are familiar with object-oriented concepts, you have probably noticed that a part
is very much like an object in object-oriented programming. You might also have
thought a part is very similar to a class in object-oriented programming. In fact, parts
and classes are closely related because COBOL classes form the underlying software
implementation of parts.

It might seem to you that we are not always talking about the same thing when we talk
about a part. This is because the word part can mean different things at different times.

Part is most often used as shorthand for part class. A part class is nothing more than a
COBOL class definition with some special characteristics, such as a method to handle
events. A part class is used as a form for creating part instances. You can develop a
new part, or enable an existing class to become a part, by supplying support for these
characteristics in addition to the normal operations of the object class.

12 IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

A part instance is created from a part class and can be accessed using methods of the
class. Each part instance has a unique set of values for the variables defined in the
working-storage section of the class. These values distinguish one part instance from
another. Object or subpart is used as shorthand for part instance. In COBOL, you might
code an expression such as

INVOKE BananaClass "somNew" RETURNING BananaInstance.

to create a particular instance of a part class. In a visual programming environment,
you might create a particular part instance by picking a Banana part class from a
palette of part classes and dropping it on a free-form surface.

You can tell which kind of part we are talking about from the context in which the word
appears. When we talk about parts on a palette or parts you create by writing code, we
are referring to part classes. When we talk about parts on a free-form surface or parts
that are connected together to form an application, we are referring to part instances.

“The part interface architecture” on page 14 provides the blueprint for adding the
characteristics that turn an object class into a part class. It sets the stage for you to
build your own part classes.

How you can connect parts
In the Composition Editor of the Visual Builder, you can connect parts to define
application flow. VisualAge COBOL supports the following part connections:

� A visual part to a visual part

� A nonvisual part to a nonvisual part

� A visual part to a nonvisual part

Refer to “Reviewing the key concepts” on page 25 for a complete list of the types of
connections you can make.

Sources of parts
There are many possible sources for parts you can combine to build new parts or
complete applications.

Visual Builder is shipped with a collection of prefabricated parts. These parts are the
basic building blocks of a VisualAge COBOL application. Entry fields and push buttons
are examples of visual parts shipped with Visual Builder.

If none of the available parts fulfills your needs, you (or someone in your organization)
can create new parts either by modifying existing parts to add functions, by modifying
existing COBOL classes to enable them as parts, or by building parts just as you would
any other COBOL class. The most common approach to constructing parts with
VisualAge COBOL is to take a collection of existing COBOL programs and create a
dynamic link library (DLL). Then create a part information file to create a part interface
for the DLL. You can do this by using the //VBComposerInfo: Programs part information

 Chapter 1. Learning Visual Builder application development concepts 13

Introducing the Visual Builder

statement. See “Describing part interfaces in part information files” on page 223 for
more information about part information statements.

The part interface architecture
The Construction from Parts architecture has been developed to give you an easier,
more productive way to create high-quality applications in today's complex application
development environment. Our ability to conceive this architecture has been enabled by
the evolution of application structure, and by the emergence of application-building
power tools.

The earliest batch applications were designed and implemented with a monolithic
structure. In these applications, embedded logic usually governed the flow of control.
Such applications controlled the user, rather than allowing the user to control the
application. In addition, the monolithic structure led to application components that were
highly customized for the application in which they were developed.

Eventually these first-generation batch applications evolved into second-generation
transaction applications, as shown in Figure 7. While this evolution did enable users to
gain direct, on-line access to the applications through dumb terminals, it still left the
applications in control of the users' interactions with the system.

Event-Driven

Transactions

Batch

System StructureUser Interface

S
Pay

CallPrint

Open

Send

Figure 7. Evolution of application structure

14 IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

As workstations became popular, another step in the evolution of application structure
began. This evolutionary step came in response to the distributed nature of systems,
the users' need to control system flow, and the desire of enterprises to reuse previously
developed application components. While these three factors seem to be independent
of each other, they drove toward a single solution. The application structure developed
in response to these factors represents the third generation in the evolutionary flow.

The third-generation application structure embodies the concept of event-driven
application design and implementation. Event-driven applications allow the user to
control the flow of operations. This structure also supports dividing applications into
cooperating elements that can run on different systems. A natural outgrowth of this
application structure is small, modularized components with increasingly standard
interface protocols.

 Architecture characteristics
The Construction from Parts architecture formalizes this application structure, and
facilitates the development of parts to be used in the new environment. It specifies the
following:

� A structural paradigm for applications that is independent of implementation.

This maximizes the flexibility afforded to implementers. The only implementation
constraints in the specification are those needed to provide reliable semantics for
the interfaces.

� A standard interface protocol.

A small, simple protocol suite achieves greater acceptance by part builders and
users than a large complex suite. This protocol supports communication among
application parts, and between application parts and the tools used to build the
applications.

This standardized interface is called the part interface. Applications can be built
from parts by connecting the part interface features.

The architecture specification supports both new and pre-existing object classes. You
can apply the interface protocol to existing classes without making extensive code
modifications.

In a COBOL programming environment where applications are created using an editor,
implementing the part interface of a part is sufficient. As more sophisticated tools, such
as visual application builders, become available, parts can play a larger role in assisting
the application developer to build applications.

The part interface architecture specifies the general format of the programming
interfaces, not the particular implementation behind the interface. For example, the
protocol describes how to build an attribute interface, independent of the contents,
address, name, or other properties that are specific to this part.

 Chapter 1. Learning Visual Builder application development concepts 15

Introducing the Visual Builder

Access to part properties
Attributes provide access to the properties of a part. A property can be any of the
following:

� An actual data item defined as instance data in the Working-Storage section of the
COBOL part class definition. The definition of the street in an address part is an
example.

� An actual data item that is accessed via another part or via a system interface,
such as the contents of an entry field.

� A computed data item that is a transformed version of an actual data item, such as
the temperature in Fahrenheit when the actual data item is the temperature in
Celsius.

� A computed data item that is not stored, such as the sum of all numbers in an
array or the profit that is computed by subtracting dealer cost from the retail price.

You can use the attribute interface to return the value of a property, to set the value of
a property, and to notify other parts when the value of a property changes. You are not
required to supply a complete attribute interface for a property. For example, a property
might be read-only, in which case the part's attribute interface would not support the
ability to set the property's value.

The attribute interface is implemented in COBOL as a collection of definitions for
methods to set or get the value of a property. We might for example have getData as
the method to get the current value of the property; setData as the method to set the
value of the property to some value; and getEventId as the method to get the
notification ID for the property change event.

You can use the attribute interface by coding method invocation statements as follows:

INVOKE obj "getData" RETURNING aValue.

INVOKE obj "setData" USING aValue.

INVOKE obj "getEventId" RETURNING eventId.

where aValue is declared according to the requirements of the property, and eventId is
a pointer used to determine the origin of an event.

The method that sets the value of the property can use the following expression to
notify observer parts that the value of its property has changed:

INVOKE CNotificationEvent "somNew" returning event.

SET anObject TO SELF.

INVOKE event "initializeNotificationEvent" USING

by value eventId by value anObject.

INVOKE SELF "notifyObservers" using by value event.

INVOKE event "somFree".

notifyObservers is the method that signals the event; eventId is the notification ID for
the property change event; anObject is the notifier object. If you want to retrieve data
from the notifier of an event, you can use the notifier object and a method in that object

16 IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

to obtain the data. (For more information about events, see “Notification of changes to
parts” on page 19.)

The method that sets a property's value usually signals the value change, but any
method that is aware of the change can signal the event.

While a property is often represented as instance data in a part, it need not be; the
property could be a computed value. What is important is that whenever the value of
the property changes, the change takes place using the set method for the property.
Changes made in any other way might not cause the event to be signalled.

A part implements the attribute interface protocol by implementing the methods defined
in Visual Builder's Part Interface Editor or in a part information file. For example, the
following working storage definition and get and set methods support the attribute
interface protocol for the temperature property of the iThermometer part:

 IDENTIFICATION DIVISION.

CLASS-ID. iThermometer INHERITS CStandardNotifier, CObserver.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 iTemperature PIC 9(9) COMP-5.

 PROCEDURE DIVISION.

\ getTemperature method

 IDENTIFICATION DIVISION.

 METHOD-ID. "getTemperature".

 DATA DIVISION.

 LINKAGE SECTION.

ð1 Temperature PIC 9(9) COMP-5.

PROCEDURE DIVISION RETURNING Temperature.

MOVE iTemperature TO Temperature.

END METHOD "getTemperature".

\ setTemperature method

 IDENTIFICATION DIVISION.

 METHOD-ID. "setTemperature".

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

ð1 aThermometer USAGE OBJECT REFERENCE IThermometer.

ð1 thermometerId USAGE POINTER.

ð1 event USAGE OBJECT REFERENCE CNotificationEvent.

 LINKAGE SECTION.

ð1 Temperature PIC 9(9) COMP-5.

PROCEDURE DIVISION USING Temperature.

MOVE Temperature TO iTemperature.

INVOKE getTemperatureId RETURNING temperatureId.

INVOKE CNotificationEvent "somNew" returning event.

SET aThermometer TO SELF.

INVOKE event "initializeNotificationEvent" USING

by value temperatureId aThermometer.

INVOKE SELF "notifyObservers" using by value event.

 Chapter 1. Learning Visual Builder application development concepts 17

Introducing the Visual Builder

INVOKE event "somFree".

END METHOD "setTemperature".

\ getTemperatureId method

 IDENTIFICATION DIVISION.

 METHOD-ID. getTemperatureId.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 initFlag PIC 9 VALUE 1.

ð1 temperatureId USAGE POINTER.

ð1 temperatureIdString PIC X(28)

 VALUE Z"iThermometer::temperatureId".

 LINKAGE SECTION.

ð1 aTemperatureId USAGE POINTER.

PROCEDURE DIVISION RETURNING aTemperatureId.

IF initFlag = 1 THEN

MOVE ZERO TO initFlag

SET temperatureId TO ADDRESS OF temperatureIdString

 END-IF.

SET aTemperatureId to temperatureId.

END METHOD getTemperatureId.

Because temperature has two common representations, Celsius and Fahrenheit, a
more general solution would be to have an attribute for each representation. If the
temperature was stored internally in Celsius, then you could rename the two methods
to getTempInCelsius and setTempInCelsius. You could then implement two additional
methods, such as the following, that return and set the temperature in Fahrenheit:

\ getTempInFahrenheit method

 IDENTIFICATION DIVISION.

 METHOD-ID. "getTempInFahrenheit".

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

 LINKAGE SECTION.

ð1 FTemperature PIC 9(9) COMP-5.

PROCEDURE DIVISION RETURNING FTemperature.

COMPUTE FTemperature = (iTemperature \ (9/5)) + 32.

END METHOD "getTempInFahrenheit".

\ setTempInFahrenheit method

 IDENTIFICATION DIVISION.

 METHOD-ID. "setTempInFahrenheit".

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

ð1 Temperature PIC 9(9) COMP-5.

 LINKAGE SECTION.

ð1 FTemperature PIC 9(9) COMP-5.

PROCEDURE DIVISION USING FTemperature.

COMPUTE Temperature = ((FTemperature - 32) \ (5/9)).

INVOKE SELF "setTempInCelsius" using Temperature.

END METHOD "setTempInFahrenheit".

18 IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

Notice that we did not introduce any additional instance data when we added these two
new methods. There is still only one property (iTemperature) being maintained.
However, now it is being maintained through two different attribute interfaces. This
illustrates the design guideline for using a set method (for example,
setTempInFahrenheit) to change the value of a property. It also shows that a property
is not always implemented as instance data.

Access to part behavior
An action provides access to the behavior of a part. Actions represent the tasks you
can assign a part to do, such as open a window or add an object to a collection of
objects.

The action interface is implemented in COBOL as a method definition in the part class.
You can use the action interface by coding method invocation statements as follows:

INVOKE "anActionMethod" USING parm1 ... RETURNING aValue.

where anActionMethod is the name of the method for the action to be performed; parm1
is the first parameter (if any); and aValue is the return variable (if any).

A part implements the action interface by supplying a method that responds to the
behavior defined in Visual Builder's Part Interface Editor or in a Part Information File.
For example, the following method supports the action interface to set the default value
of the temperature attribute in the IThermometer part:

\ setDefaultTemp method

 IDENTIFICATION DIVISION.

 METHOD-ID. "setDefaultTemp".

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

ð1 defaultTemperature PIC 9(9) COMP-5 VALUE ZERO.

PROCEDURE DIVISION .

INVOKE SELF "setTempInCelsius" using defaultTemperature.

END METHOD "setDefaultTemp".

This example shows that actions can cause values of attributes to change.

Notification of changes to parts
By signalling events, a part can notify other parts that a state or value in its interface
has changed. Events can be signalled when the state of a view part changes, such as
when a push button is clicked or when a window is opened, as well as when the state
of a model part changes, such as when the balance in a bank account becomes
negative. Events can also be signalled when the value of a part's property changes,
such as when money is deposited into or withdrawn from a bank account.

Notifications appear as messages broadcast to all parts that are observers of the event.
Observers of an event are those parts that depend on the event's occurrence. The
event interface is represented as an event ID and a get method to retrieve it.

 Chapter 1. Learning Visual Builder application development concepts 19

Introducing the Visual Builder

The event ID is the notification ID for the event and is implemented as a pointer to an
address that uniquely identifies the event. When an instance of the class that will signal
these events is created, the event ID must be initialized to the address of a data
element in WORKING-STORAGE of the method used to get the event ID. This data
element can be anything, but to simplify debugging it is conventionally a null-terminated
string of the form className::eventId. The following sample shows a declaration for a
notification ID (eventId), and a method (getEventId) to retrieve it:

ð1 eventId USAGE POINTER.

 IDENTIFICATION DIVISION.

 METHOD-ID. getEventId.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 eventIdString PIC X(19) VALUE Z"className::eventId".

 LINKAGE SECTION.

ð1 anEventId USAGE POINTER.

PROCEDURE DIVISION RETURNING anEventId.

SET anEventId TO ADDRESS OF eventIdString.

 GOBACK.

END METHOD getEventId.

To implement notification within a part, you can invoke notifyObservers in one or more
of its methods. For example, the following setTempInCelsius method notifies other parts
when the temperature has changed and when the temperature is above the boiling
point of water:

\ setTempInCelsius method

 IDENTIFICATION DIVISION.

 METHOD-ID. "setTempInCelsius".

 DATA DIVISION.

 LINKAGE SECTION.

ð1 newTEMP PIC 9(9) COMP-5.

PROCEDURE DIVISION USING newTemp.

IF iTemperature NOT EQUAL newTemp THEN

MOVE newTemp TO iTemperature

INVOKE CNotificationEvent "somNew" RETURNING event

SET anObj TO SELF

INVOKE event "initializeNotificationEvent"

USING BY VALUE temperatureId anObj

INVOKE SELF "notifyObservers" USING BY VALUE event

IF iTemperature > 1ðð THEN

INVOKE event "initializeNotificationEvent"

USING BY VALUE boilingId anObj

INVOKE SELF "notifyObservers" USING BY VALUE event

 END-IF

INVOKE event "somFree"

 ENDIF.

END METHOD "setTempInCelsius".

20 IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

Kinds of parts supported in Visual Builder
You can use many kinds of parts to construct applications. These different kinds of
parts, categorized according to their characteristics, are shown in Figure 8.

Part

Visual

Primitive

Nonvisual

Composite
Built from

other parts

Supports visual
editing

Built with a
programming

language

Supports iconic
editing

Cannot contain
other parts

Can contain
other parts Shell Window

Entry Field

CompositeView PrimitiveView

Figure 8. Kinds of Parts

As stated earlier, all parts are either primitive parts, which are the basic building blocks
from which other parts are constructed, or composite parts, which are parts constructed
from other parts.

In turn, primitive parts can be either visual or nonvisual.

� Visual parts are elements of the application that the user can see at run time, such
as views. They are components of a presentation surface, such as a window, an
entry field, or a push button. The development-time representations of visual parts
on the Composition Editor's free-form surface closely match their runtime visual
forms. You can use these parts in the Composition Editor in their visual runtime
forms to create composite parts (visual editing).

� Nonvisual parts are elements of the application that are not seen by the user at run
time, such as model parts. On the Composition Editor's free-form surface, users
can manipulate these parts only as icons (iconic editing). Examples of nonvisual
parts are business logic parts, data table parts, communication access protocol
parts, and database query parts.

 Chapter 1. Learning Visual Builder application development concepts 21

Introducing the Visual Builder

The notification framework
You use the notification framework to implement event and attribute notification for
visual and nonvisual parts. With previous versions of VisualAge COBOL, events were
only predefined for IBM-supplied parts, and event routines followed specific naming
conventions. Now you can define your own parts, and process events via the
notification framework.

The notification framework contains the following entities:

� Notifier objects that support the notifier protocol defined by the CNotifier class

� Observer objects that support the observer protocol defined by the CObserver
class

� Notification IDs, which are defined for parts that have been enabled for event
notification

� Notification event objects defined by the CNotificationEvent class

Notifiers and observers
Notifier objects enable other objects in the system to register dependence upon the
state of the notifier objects' properties. To register dependence, objects add an
observer object to the notifier object by invoking the handleNotificationsFor method
on the observer object:

INVOKE anObserver "handleNotificationsFor"

USING BY VALUE aNotifier.

The CObserver class also supports removing an observer from a notifier by invoking the
stopHandlingNotificationsFor method on the observer object:

INVOKE anObserver "stopHandlingNotificationsFor"

USING BY VALUE aNotifier.

Notifier objects are responsible for publishing their supported notification events,
managing the list of observers, and notifying observers when an event occurs. To notify
observers of attribute changes or events, objects invoke the notifyObservers method
defined by the CNotifier class:

INVOKE aNotifier "notifyObservers" USING BY VALUE anEvent.

The CNotifier class defines the notifier protocol and requires its derived classes to
completely implement its interface. To ensure that all notifier objects can coexist, no
data is stored in any notifier object.

A notifier adds observers to an observer list and uses this list to notify observers in a
first-in, first-notified manner.

The CObserver class defines the protocol that accepts event signals from the notifier
object. An observer can override the processNotification method of the CObserver
class to implement the required event processing as follows:

22 IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

\ processNotification method

 IDENTIFICATION DIVISION.

METHOD-ID. "processNotification" OVERRIDE.

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

 LINKAGE SECTION.

ð1 anEvent USAGE OBJECT REFERENCE CNotificationEvent.

ð1 observer USAGE OBJECT REFERENCE.

PROCEDURE DIVISION USING BY VALUE anEvent RETURNING observer.

INVOKE anEvent "getNotificationId" RETURNING eventId.

IF eventId = ...

 END-IF

SET observer TO SELF

 GOBACK.

END METHOD "processNotification".

Because a single list of observers is kept for each notifier, all observers in the list get
called when any notification occurs within the notifier. Each observer must test to
determine if a given notification event should be processed. Normally, this is done by
checking notificationId in a CNotificationEvent object. When the address stored in
the eventId of the event is the same as the notificationId, code to process the
notification event can be executed.

Notifier objects establish the notification events they support by providing a series of
methods that return the eventIds. These methods must return a pointer to a fixed
address in the Run Unit. Observers then monitor events for eventIds that are equal to
this address.

Events are typically a notification of changes in the attributes or intrinsic data that can
be accessed in a notifier object. Attributes can represent any logical property of a part,
such as the balance of an account, the size of a shipment, or the label of a push
button. When the observer needs additional data from the notifier about an event, it can
use methods in the notifier to obtain that data.

To support the use of existing classes in a part-building tool, it is highly desirable to be
able to derive new classes from the existing classes and add all required notification
behavior in the derived class. You do this by multiply inheriting from the parent class
and the CNotifier class. You can then update the derived class to provide the required
notifier behavior and the appropriate notification IDs. Ideally, the class can also provide
the required notification behavior. Whether this can actually be done depends on the
design of the parent class.

 Notification protocol
Classes that inherit from the CNotifier class implement its protocol. This includes the
following:

� Enabling, disabling, and querying the ability to signal events.

In general, notifiers are created disabled and must be enabled before they can
signal events. This allows notifier objects to delay the setup to support notification

 Chapter 1. Learning Visual Builder application development concepts 23

Introducing the Visual Builder

until the notifier is enabled. (It also allows the Visual Builder connection objects to
initialize themselves and related connection objects.)

You can invoke methods of the CNotifier class to enable and disable notification,
as follows:

INVOKE SELF "enableNotification".

INVOKE SELF "disableNotification".

� Within the notifier object, invoking the following method every time an event of
interest occurs:

INVOKE SELF "notifyObservers" USING anEvent.

While the classes providing notification must call this method, in many cases it
makes sense that the responsibility be delegated to another class.

The CStandardNotifier class provides the concrete implementation of the notifier
protocol and provides the base support for nonvisual parts. The notifier protocol is also
supported in the subclasses of CWindow. These classes inherit from a notifier class
that supports registration of and notification to observer objects. The notification under
the CWindow classes occurs primarily using the existing handlers.

Note: Notification does not work across multiple threads.

IBM notification class hierarchy
The following diagram shows a partial hierarchy for classes in the notification
framework:

 SOMObject

 │

 ┌────────────────┼─────────────────┐

 │ │ │

 CNotifier CObserver CNotificationEvent

 │

 ┌─────────┴────────┐

 │ │

CWindow CStandardNotifier

 │

 │

CControl

Within this partial hierarchy, note the following:

� The CNotifier class defines the notifier protocol.

� The CObserver class defines the observer protocol.

� The CNotificationEvent class implements the notification event object.

� The CStandardNotifier and CWindow classes are concrete implementations of the
notifier protocol.

� Nonvisual parts would normally be derived from CStandardNotifier.

� Visual parts would normally be derived from CWindow.

24 IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

Chapter 2. What is Visual Builder?

Visual Builder is a visual programming tool that can help you create applications using
the COBOL programming language. With Visual Builder, you can create applications
with graphical user interfaces (GUI) faster and easier than you ever could using a text
editor. Visual Builder provides a powerful visual editor, the Composition Editor, which
enables you to create complete applications, often without writing code.

What are the benefits of using Visual Builder?
With Visual Builder, you can quickly create applications with advanced graphical user
interfaces (GUIs). Visual Builder is part of VisualAge COBOL, a state-of-the-art COBOL
application development product that includes a project management tool (WorkFrame),
a live-parsing editor (LPEX), and a sophisticated debugger (Debugger).

With Visual Builder, you can adopt OO technology immediately. Other benefits of using
the Visual Builder include the following:

� When you work with Visual Builder’s visual programming tools, you are creating
OO applications.

� You can also access other logic written in COBOL using Visual Builder’s support
for COBOL programs.

� You can shorten your application development cycle time considerably by creating
reusable parts.

� By encapsulating the data of a part, you can change the way a part works without
affecting its external interface. Dividing your application into parts also helps you
deploy your business logic where it is needed. Critical calculations can be moved
into shared libraries.

� By its nature, Visual Builder caters to all skill levels, so that programmers using
Visual Builder can build not only simple applications but also complex ones.

Reviewing the key concepts
Chapter 1, “Learning Visual Builder application development concepts” on page 3
describes the important concepts behind application development using Visual Builder.
In this section, we summarize some of the key concepts. Understanding these concepts
will help you take advantage of the Visual Builder’s features. The three key concepts
are parts, connections, and source code generation. With the Visual Builder, you
connect the parts and then generate the source code.

Parts

In Visual Builder, a part is a COBOL class that can send and receive events. A part has
a well-defined part interface. The part interface defines how the part can interact with
other parts.

 Chapter 2. What is Visual Builder? 25

Introducing the Visual Builder

Three kinds of features make up a part interface: attributes, actions, and events. It is
with these features that you make connections. The following list provides a brief
description of each kind of feature:

attributes The logical data, usually stored in data items. This data can represent
any property of a part, such as the balance of an account, the size of a
shipment, or the text of a push button.

actions Services or operations that a part can perform. Actions, such as placing
an order or displaying a window, can be triggered by connections from
other part’s features.

events Signals that a part can send to notify itself or other parts that a change
has occurred. When events are connected to attributes or actions of
other parts, the connections monitor these events and trigger the target
features when the events occur. For example, when a push button’s
press event is connected to an action feature of another part, the other
part’s action is invoked when the push button is clicked.

Visual Builder provides a set of base parts that have attributes, actions, and events.
These parts are included in the VAccess.vcb file, which Visual Builder loads each time
it is started. Visual Builder does not allow you to modify these parts, but you can create
composite parts. Composite parts are parts you create using the base parts provided
by with the Visual Builder. For example, you can create a composite part based on a
canvas that contains an entry field part. The composite part behavior will be similar to
the behavior of an entry field.

Connections

To define how the parts interact with each other, you make connections. Connections
are classified according to part interface features they connect. For instance, if you
connect an event to an attribute, it is called an event-to-attribute connection. The
following definitions apply to most cases in which these connections are used.
Exceptions and special cases are noted in Chapter 9, “Learning to use connections” on
page 153.

Attribute-to-attribute Connections that link two data values together.
When one changes, the other also changes.

Event-to-attribute Connections that change the value of an attribute
when a certain event occurs.

Event-to-action Connections that start an action when a certain
event occurs.

Attribute-to-action Connections that start an action whenever an
attribute’s event identifier is signaled.

Parameter Connections that provide a parameter value for an
action. The parameter value can be provided by
connecting a parameter to an attribute or an action
with a return item.

26 IBM VisualAge COBOL: Visual Builder User’s Guide

Introducing the Visual Builder

Source code generation

Visual Builder can generate COBOL code for the graphical user interface (GUI) that you
design in the Composition Editor, as well as for all of the connections that you make
between parts. It can also generate COBOL code for any new parts that you create.
You can then use the code that Visual Builder generates when you build your
application. This capability allows you to concentrate on your application logic instead of
spending time writing code for the GUI and its connections.

Besides saving you time and effort, additional advantages of letting Visual Builder
generate your code instead of writing it yourself include the following:

� Easier code modifications.

Do you want to replace a multiline entry field with a list box? Simply delete the
multiline entry field, drop the list box in its place, make any necessary connections,
and regenerate the code.

 � Fewer errors.

Because Visual Builder can generate the majority of the code for your application,
there is less opportunity for human errors, such as typographical and syntax errors,
to creep into your code. That means you spend less time debugging your code for
minor errors.

� Support for pre-existing COBOL code.

You can create part information files (.VCE) containing information about other
COBOL classes and programs. You can then import that information into Visual
Builder so that you can use those classes and programs as parts. Refer to
Appendix A, “Creating part information files” on page 223 for more information on
creating part information files (.VCE).

 Chapter 2. What is Visual Builder? 27

Introducing the Visual Builder

28 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

Part 2. Touring Visual Builder

This part begins by introducing you to the place where everything starts, Visual
Builder’s Visual Builder window. It then provides an overview of the Visual Builder
editors: the Composition Editor, the System Interface Editor, and the Part Interface
Editor.

Chapter 3. Getting acquainted with the Visual Builder window 31
Getting to know the Visual Builder Window . 31
Working with part files . 33
Importing other types of files . 36
Customizing the information area . 37
Seeing the base files . 38
Seeing where part files are located . 38
Seeing the type list . 38
Using File Allocation Table (FAT) file names 39
Setting the working directory . 40
Refreshing the display . 41

Chapter 4. Getting to know the Visual Builder editors 43
The editor symbols . 43
The Composition Editor . 43
The System Interface Editor . 51
The Part Interface Editor . 56

 Part 2. Touring Visual Builder 29

Touring Visual Builder

30 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

Chapter 3. Getting acquainted with the Visual Builder window

This chapter describes the Visual Builder window and tasks you can perform from it.
This chapter contains the following:

� Getting to know the Visual Builder window
� Working with part files
� Importing other types of files
� Customizing the information area
� Seeing the base files
� Seeing where part files are located
� Seeing the type list
� Using File Allocation Table (FAT) file names
� Setting the working directory
� Refreshing the display

Getting to know the Visual Builder Window
The Visual Builder window is shown in Figure 9.

Figure 9. Visual Builder window

This window contains the following areas:

� The Loaded Part Files list box

 Chapter 3. Getting acquainted with the Visual Builder window 31

Touring Visual Builder

Parts you create are stored in files with an extension of .VCB. These files are
called part files. You can share part files you create with other programmers so
they can reuse your parts.

This list box shows all of the part files currently loaded. Visual Builder provides one
part file: VAccess.vcb. This part file contains the base parts that Visual Builder
provides. This file is always loaded.

Note: VAccess.vcb is a read-only file. Store the parts you create in your own part
files.

Part files must be loaded into Visual Builder for you to edit or refer to the parts they
contain. Once part files are loaded, you can work on the part files and on the parts
they contain using the Visual Builder’s menu bar.

For more information about part files and the tasks you can perform on them, see
“Working with part files” on page 33.

� The Visual Parts list box

This list box displays the name of the visual part the selected part file contains.
Visual parts are parts the person using your application can see, such as frame
windows, push buttons, and sliders.

� The Nonvisual Parts list box

This list box displays the names of the nonvisual parts, the class interface parts,
program parts, and data parts the selected part file contains. Nonvisual parts are
parts your application uses to perform its functions, but the person using your
application never sees them. Refer to “Constructing the part” on page 85 for more
information on nonvisual parts.

� The Loaded Type Information list box

You can view the Loaded Type Information list box by selecting Options →Show
type list from the Visual Builder menu bar. This list box contains all types defined
in the part file(s) you have selected. Types used by a part must be loaded when
you edit that part or generate code. VAccess.vcb comes loaded with basic types.
You can define your own types in a part information file and import the file into
Visual Builder. Refer to Appendix A, “Creating part information files” on page 223
for more information on creating part information files.

 You can access the same choices available in the menu bar by moving the
mouse pointer over a list box and pressing mouse button 2 to display a
pop-up menu. The pop-up menu contains only menu choices relevant to the
contents the mouse points to in the list box .

The pop-up menu Visual Builder displays for the Loaded Part Files list box
contains only menu choices pertaining to part files.

The pop-up menu for the Visual Parts list box only affects parts selected in
the Visual Parts list box, even if parts are also selected in the Nonvisual
Parts list box, and vice versa.

32 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

To simultaneously open both a visual and a nonvisual part, you must select
Part→Open from the menu bar. If you select Open from the pop-up menu for
the Visual Parts list box, you only open a visual part. The same is true if you
select Open from the pop-up menu for the Nonvisual Parts list box.

The choices on the Part menu apply to all selected items in the Loaded Part
Files , Visual Parts , Nonvisual Parts , and Loaded Type Information list
boxes in the Visual Builder window.

Working with part files
The topics in this section describe how to perform various tasks on part files from the
Visual Builder window.

Loading part files
To give Visual Builder access to parts, you must load the contents of the part files that
contain those parts by doing the following:

1. Select File→Load in the Visual Builder window.

Visual Builder displays the window shown in Figure 10.

Figure 10. File–Load window

2. Select the file or files you want to load.

3. Select the OK push button.

 When you are just loading one file, it is quicker to double-click on the
file name instead of selecting the file name and the OK push button.

The file name or names are displayed in the Loaded Part Files list box in the
Visual Builder window. Figure 11 on page 34 shows the Visual Builder window
with multiple part files loaded.

 Chapter 3. Getting acquainted with the Visual Builder window 33

Touring Visual Builder

Figure 11. Visual Builder window with multiple part files loaded

Unloading part files
If a part file appears in the Loaded Part Files list box in the Visual Builder window,
Visual Builder has access to the parts the part file contains. If you do not want Visual
Builder to have access to those parts, you can unload the part file, with the exception of
VAccess.vcb. To unload one or more part files, do the following.

Note: Close all Visual Builder editor windows before unloading part files. In most
cases, Visual Builder does not refresh the internal data model to indicate that a
part file has been unloaded.

1. Select one or more files in the Loaded Part Files list box.

� To select multiple files in OS/2, hold down the Ctrl key while clicking on the file
names with mouse button 1.

� To select multiple files in Windows, hold down the Shift key while clicking on
the file names with mouse button 1.

To select a block of parts in the list, hold down the Shift key while clicking on the
topmost part. Then hold down the Shift key while clicking on the bottommost part.
All parts listed between the two selected parts are also selected.

 2. Select File→Unload .

34 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

The following window is displayed showing the files you selected to unload:

Figure 12. File — Unload window

At this point, you can review the files that you selected and make any changes by
deselecting any file or files that you want to remain loaded.

3. Select the Unload push button.

The window disappears and the file names are removed from the Loaded Part
Files list box.

For information about loading files, see “Loading part files” on page 33.

Selecting all part files
To select all of the part files, select Edit →Select all files . Visual Builder highlights all of
the part files listed in the Loaded Part Files list box.

At this point, you can review the list to see if you want to deselect any of the files.

Deselecting all part files
To deselect all of the part files, select Edit →Deselect all files . Visual Builder removes
the highlighting from all of the selected part files listed in the Loaded Part Files list
box.

At this point, you can review the list to see if you want to select any of the files.

 Chapter 3. Getting acquainted with the Visual Builder window 35

Touring Visual Builder

Importing other types of files
There are other types of files you can import into Visual Builder to use in your
application development. This section describes the following types of files you can
import:

� Part information files
� Version 1 components

 � Copy files

Part information files (.VCE)
Use part information files to create an interface between pre-existing COBOL code or
classes, and your visual parts. For more information on creating part information files
and the proper syntax, refer to Appendix A, “Creating part information files” on
page 223.

Once you create the file, refer to the steps in “Importing part information” on page 108
to import the part information file and create a nonvisual part. Then use this nonvisual
part as you would any other nonvisual part.

Version 1 components
If you have applications you created using the GUI Designer tool in VisualAge for
COBOL Version 1.0, you can import the .ODX file to create the appropriate .VCB file for
that component. Once imported, you can use the newly created .VCB file as a visual or
nonvisual part in Visual Builder.

To import a Version 1.0 component:

1. Start the Visual Builder.

2. Select the File→Import V1 Component menu item. The Import Version 1
Program window appears, as shown in Figure 13.

Figure 13. Import Version 1 Program window

36 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

3. Select the appropriate directory and file name for the .ODX file you want to import.
Then select the OK push button.

4. The New Part Name window appears. Use this window to enter a new part name
other than the one selected by Visual Builder. Select the OK push button to import
the file.

5. If the import is successful, the appropriate visual or nonvisual parts are created and
loaded into the Visual Builder. If the import is unsuccessful, an Import from ...
window appears listing the errors. Make appropriate changes and repeat the
process until you can successfully import the .ODX file.

Once the component is successfully imported, you can use the visual and nonvisual
parts created like any visual and nonvisual parts you construct in the Visual Builder.

 Copy files
Import copy files to use the data items specified in the copy files in your Visual Builder
application. For more information on importing copy files, refer to “Importing copy files”
on page 101.

Customizing the information area
The following options allow you to specify the kind of information Visual Builder displays
in the information area for a selected part. To use these options, select
Options →Information area and then select one of the following options:

Show parent class
Displays the name of the parent class in the information area. For example, if you
select CContainerControl when this option is selected, Visual Builder displays the
following in the information area to show CTextControl is CContainerControl’s parent
class:

parent: CTextControl

For more information on the heirarchy of classes, refer to “The part interface
architecture” on page 14.

Show description
Displays a brief description of the selected part. For example, if you select
CContainerControl when this option is selected, Visual Builder displays the following
description in the information area:

COBOL container control

Show full file names
Displays the fully qualified name of the part file in which the part is stored.

 Chapter 3. Getting acquainted with the Visual Builder window 37

Touring Visual Builder

Seeing the base files
Select Options →Show base files to display the names of Visual Builder-supplied part
files loaded in Visual Builder. If this option is selected, the file names appear in the
Loaded Part Files list box.

Seeing where part files are located
Select Options →Show full file names to see the drive and directory where each of
the part files is stored.

Seeing the type list
The type list shows the data types for the parts contained in the part file that is
selected. If no part file is selected or if the selected part file has no types defined, this
list is empty. You can add to this list by importing a part information file (.VCE) and
specifying files that contain type definitions in the VBPartDataFiles statement. Refer to
Appendix A, “Creating part information files” on page 223 for additional information on
part information files.

Once a type list is displayed, you can perform the following tasks on data types that are
selected:

� Delete data types
� Move data types to another part file
� Export data type definitions into part information files

These functions are available in the Part pull-down menu.

To display the type list, do the following:

1. Select the part file or files for which you want to see defined types.

2. Select Options →Show type list .

A list box titled Loaded Type Information is displayed at the bottom of the Visual
Builder window, as shown in Figure 14 on page 39.

38 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

Figure 14. Visual Builder window with loaded type information displayed

Using File Allocation Table (FAT) file names
Select Options →Default to FAT file names if your system uses the File Allocation
Table (FAT) file system. This option is selected by default when you first install
VisualAge COBOL. The FAT file system limits file names to a maximum of eight
characters and file name extensions to a maximum of three characters.

When you select this option, Visual Builder uses these limits to create file names and
extensions. For instance, the System Interface Editor uses the file names provided in
the Code generation files section to store generated code.

If you provide a part name longer than eight character, Visual Builder reduces the name
to eight characters. For example, suppose you create a part and name it MyNewPart1.
This name has nine characters. If you generate code for this part, the default file name

 Chapter 3. Getting acquainted with the Visual Builder window 39

Touring Visual Builder

Visual Builder uses for the files it generates have only eight characters, as does the
part file in which the part is saved.

Attention: Visual Builder does not check for existing file names when creating default
file names. If you always use the default file name Visual Builder creates on a
FAT system, Visual Builder may use a file name that already exists. This
causes the existing file to be written over. For example, if you create another
part named MyNewPart12, Visual Builder uses the same default file name it
used for MyNewPart1.

Visual Builder assigns the file name when you create the part. Deselecting the
Default to FAT file names option does not change the name of a file already
created.

Setting the working directory
Select Options →Set working directory if you want to store files created with Visual
Builder in a different directory. The default working directory is the directory in which
you started Visual Builder.

Note: This option does not appear if you start Visual Builder from a COBOL Visual
Builder project. The working directory is the directory you specified in the
Source file directory field when you created the project. This directory is the
working directory for COBOL Visual Builder projects.

When you select this option, Visual Builder displays the window shown in Figure 15:

Figure 15. Set Working Directory window

To change the working directory, do the following:

1. Type the complete path to the directory in which you want to store Visual Builder
files that you create.

The path consists of all directories that must be opened to get to the working
directory.

2. Select the OK button.

40 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

If the path you enter in the Set Working Directory window is not valid, Visual Builder
displays an error message and leaves the working directory unchanged.

Refreshing the display
You might want to ensure that the information displayed in the Visual Builder window is
current, for example, when you have loaded and unloaded several part files or moved
parts from one part file to another. If such a situation occurs, you can cause the display
to show the latest updates by selecting Edit →Refresh .

 Chapter 3. Getting acquainted with the Visual Builder window 41

Touring Visual Builder

42 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

Chapter 4. Getting to know the Visual Builder editors

This chapter takes you on a tour of the Visual Builder editors. It begins with an
overview of the editor symbols and then examines each editor.

The editor symbols
The editor symbols, located at the lower-right corner of the window, provide a fast-path
to each of the Visual Builder editors. They are as follows:

 Composition Editor
Use the Composition Editor to create the views for your application, choose the parts
that perform the logic you need, and make connections between the parts.

To learn more about the Composition Editor, see “The Composition Editor.”

 System Interface Editor
Use the System Interface Editor to specify the names of files and resources
associated with the current part.

To learn more about the System Interface Editor, see “The System Interface Editor”
on page 51.

 Part Interface Editor
Use the Part Interface Editor to define the features (attributes, actions, and events)
for your parts, along with a list of preferred features for the pop-up connections
menu. These features make up the part’s interface. You use them when you make
connections between collaborating parts. You can also promote features of nested
parts from this editor.

To learn more about the Part Interface Editor, see “The Part Interface Editor” on
page 56.

The Composition Editor
Use the Composition Editor to lay out the visual parts that make up your views, choose
the parts that perform the logic you need, and make connections between them. This
section provides an overview of the Composition Editor’s components. See Chapter 8,
“Learning to use parts” on page 107 for information about visually composing an
application.

The Composition Editor is shown in Figure 16 on page 44.

 Chapter 4. Getting to know the Visual Builder editors 43

Touring Visual Builder

Figure 16. The Composition Editor

The tool bar
The tool bar appears below the menu bar of the Composition Editor. It contains icons
that provide convenient access to functions you commonly use when you create
composite parts. These tools help you perform such tasks as the following:

� Aligning parts within your composite part
� Managing the connections between parts
� Unloading the mouse pointer
� Generating code for the part you are editing

All of the tools in the tool bar, except the Selection tool , act on the selected objects.

 All of the tools available from the tool bar are also available from the Tools
menu found on the Composition Editor’s menu bar, except for the tool used to
generate source code for your part. This tool is available in the File menu as
the Save and generate →Part source choice.

44 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

The tool bar contains the following tools:

 Generate Part Source
Generates COBOL source code for the part that you are currently editing. This tool
performs the same function as the File→Save and generate →Part source menu
choice.

 Selection tool
Changes the mouse pointer from the crosshairs, which are used when the mouse
pointer is loaded with a part, to the arrow which is used to select parts and perform
functions on them. This tool is available only if the mouse pointer is loaded.

Connection tools

 Show Connections
Displays all hidden connections to or from the selected parts. If no parts are
selected, all connections are shown.

 Hide Connections
Hides all displayed connections to or from the selected parts. If no parts are
selected, all connections are hidden.

Grid tools

 Toggle Grid Toggles the display of the part alignment grid on and
off for the selected parts. You can use separate
alignment grids for parts in the Composers category
and for the free-form surface.

 Snap To Grid Causes the selected parts to be repositioned to the
nearest grid coordinate. The grid does not need to
be visible for Snap To Grid to work.

Select the Snap On Drop and Snap On Size choices found in the
Composition Editor Options menu to automatically align to the grid all
parts that you add or size. This allows you to align parts to the grid without

 Chapter 4. Getting to know the Visual Builder editors 45

Touring Visual Builder

having to select the Snap To Grid tool for each part. Use the Snap To Grid
tool if you only want to align selected parts to the grid.

Alignment tools

 Align Left Aligns the selected parts to the left edge of the last
part selected.

 Align Center Aligns the selected parts along the vertical axis of
the last part selected.

 Align Right Aligns the selected parts to the right edge of the last
part selected.

 Align Top Aligns the selected parts to the top edge of the last
part selected.

 Align Middle Aligns the selected parts along the horizontal axis of
the last part selected.

 Align Bottom Aligns the selected parts to the bottom edge of the
last part selected.

Distribution tools

 Distribute Horizontally
Spaces the selected parts evenly between the left and right window borders.

 Distribute Vertically
Spaces the selected parts evenly between the top and bottom window borders.

For information about the horizontal and vertical distribution of visual parts within a
bounding box, see “Spacing parts within a bounding box” on page 129.

46 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

Sizing tools

 Match Width Sizes the width of the selected parts to match that of
the last part selected.

 Match Height Sizes the height of the selected parts to match that
of the last part selected.

The parts palette
The parts palette is found on the left side of the Composition Editor. It contains icons
for the parts you use most frequently.

The parts palette organizes parts into categories. The icons in the left column of the
parts palette represent the part categories. The right column of the parts palette
contains the parts you use to build your application. When you select a category in the
left column, the right column shows the parts contained within that category.

Notes:

� The information area at the bottom of the Composition Editor indicates which
category and part are currently selected on the palette or which part or connection
is currently selected on the free-form surface.

� You can add categories and parts to the parts palette, as well as delete categories
and parts from it. Refer to “Adding categories and parts to the parts palette” on
page 143 for more information.

The Visual Builder parts palette contains the following categories and parts.

 Buttons Contains the following button parts:

 CPushButton

 CRadioButton

 CCheckBox

 CNumericSpinButton

 CTextSpinButton

 CGraphicPushButton

 Chapter 4. Getting to know the Visual Builder editors 47

Touring Visual Builder

 Data entry Contains the following data entry parts:

 CStaticText

 CNumericStaticText

 CEntryField

 CNumericEntryField

 CMultiLineEdit

 CGroupBox

 COutlineBox

 CImage

 Lists Contains the following list parts:

 CListBox

 CComboBox

 CContainerControl

 CContainerColumn

 Frame Extensions Contains the following parts that you can add to a
window frame:

48 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

 CMenu

 CMenuItem

 CMenuCascade

 CMenuSeparator

 Sliders Consists of the following slider part:

 CSlider

 Composers Consists of the following parts that are used to
contain other visual parts:

 CNotebook

 CCanvas

 CFrameWindow

 Models Consists of the following parts:

 Factory

 Variable

 Other Contains the following miscellaneous parts:

 CHelpWindow

 CMessageBox

 CTimer

 Chapter 4. Getting to know the Visual Builder editors 49

Touring Visual Builder

 CAudio

 CMediaPanel

 CDDEClient

The free-form surface
The large open area in the Composition Editor (see Figure 16 on page 44) is called
the free-form surface. This is the working area for visual programming, where you
compose the various visual parts of your application and where you make connections
to the logic of your application.

You add visual parts, such as static text and push buttons, to either a frame window
part or to another part from the Composers category. Only parts from the Composers,
Models and Frame Extensions categories can be added to the free-form surface. You
add nonvisual parts (such as class interface parts) to your application by placing them
on the free-form surface, not on a frame window part or on any other part from the
Composers category. Figure 17 summarizes the which categories contains parts
allowed on the free-form surface.

You can also delete parts from the free-form surface. To do this, select one
or more parts and do one of the following:

� Press the Delete key.
� Press mouse button 2 and select Delete from the pop-up menu.

The parts are deleted from the free-form surface.

Figure 17. Placement of parts on the free-form surface

Category Allowed on free-form surface?

Buttons No

Data Entry No

Lists No

Frame Extensions Yes

Sliders No

Composers Yes

Models Yes

Other Yes

50 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

For more information about using the free-form surface, see “Working with
parts on the free-form surface” on page 118.

The System Interface Editor
The System Interface Editor enables you to specify the names of files and resources
associated with the current part. You can use this editor to do the following:

� Enter a description of the part
� Specify a different part file in which to store the part
� See the name of the part’s parent class
� Specify the target to create
� Specify the import libraries
� Specify the starting resource ID for the part
� Assign an icon resource to the part
� See the original file name
� Specify the name of the part source file
� Specify additional code files to generate and include in the build

Use your favorite text editor to create new classes and methods, write application logic,
and modify existing methods. Then use the System Interface Editor to create the
interface for the part you are currently editing.

The System Interface Editor is shown in Figure 18 on page 52.

 Chapter 4. Getting to know the Visual Builder editors 51

Touring Visual Builder

Figure 18. The System Interface Editor

If you cannot see all of the fields shown in Figure 18, use the scroll bar on the right
side of the System Interface Editor to see the remaining fields.

Note: When you are editing a data part, some of the fields are unavailable.

Entering a description of a part
Use the Description field in the System Interface Editor to enter a description of your
part. This description is used in the following places:

� If you add your part to the parts palette, the description appears in the information
area at the bottom of the Composition Editor when you select the part.

� If you export your part information into a part information file (.VCE), the description
is included in the first line.

52 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

Specifying a different part file
The Part file specification field in the System Interface Editor shows the name of the
part file (.VCB) that contains the part. If you want to move this part to another part file
while using the System Interface Editor, do the following:

1. Replace the name of the current part file with the name of another part file in which
you want to store the part.

2. Select File→Save to apply the change.

Visual Builder moves the part from the former part file to the one you just specified.
If the part file you specified does not exist, Visual Builder creates it for you.

Note: If the part file you are copying to exists, the part file must be loaded into Visual
Builder before you save the change.

Seeing the parent class of a part
The Parent class field in the System Interface Editor shows the name of the parent
class for your part. This is the class name you specified as the parent class when you
created the part.

You cannot modify the parent class name.

Specifying the target to create
Use the Build Options group to specify whether you want the part to be built as a
dynamic link library (.DLL) or an executable (.EXE).

If you choose to build a DLL, an import library file is created. Any other part using this
part as a subpart links to the DLL of this part using the import library file. Any subparts
in this part are linked into this DLL unless they are already linked into another imported
DLL.

If you choose to build an executable, all subparts in this part not included in another
imported DLL are linked into this executable.

Specifying the import libraries to include
Use the Required import libraries field to specify the import libraries required during
the build process of your part.

Specifying a starting resource ID
Beginning with the main part in the main program (.APP), Visual Builder generates
resource IDs in sequence starting with 5000. You can change this starting number. The
check box next to the field enables the starting resource ID entry field. The first time
you select the check box, Visual Builder enables the field and inserts the default
starting resource ID (5000).

Note: Resource IDs are not generated for non-visual parts.

 Chapter 4. Getting to know the Visual Builder editors 53

Touring Visual Builder

Specifying a unique icon for your part
Fill in the fields in the Builder Icon group in the System Interface Editor before you add
your part to the parts palette so you can use an icon other than the default icon

provided by Visual Builder to represent your part. The default icon is .

The Builder Icon group contains the following fields:

DLL name
The resource dynamic link library (.DLL) containing the icon you want to use. Enter
the file name only, not the extension.

Resource id
The resource ID number of the icon in the resource dynamic link library (.DLL) whose
name you entered in the DLL name field.

When you enter both the dynamic link library (.DLL) name and a valid resource ID
number, Visual Builder displays the icon that matches the resource ID number in the
area below the Resource id field. This occurs when you click on another field. This
allows you to verify that you entered the correct resource ID number.

Note: If you do not specify a dynamic link library (.DLL), Visual Builder uses the
default icon. If you specify a dynamic link library (.DLL) but Visual Builder

cannot find it, Visual Builder uses the question mark icon, .

If the question mark icon appears, make sure the following conditions are met:

� The dynamic link library (.DLL) exists and is in the current directory.
� The dynamic link library (.DLL) file name is correct.
� The resource ID for the icon (in the resource (.RC) file) exists in the dynamic link

library (.DLL).

Seeing the original file name of imported parts
Use the Original file name field to see the file name of the source of an imported part.
For instance, if you create a nonvisual part by importing a copy file, the Original file
name field contains the path and file name of the copy file.

You can not modify this field.

Specifying the names of your part source files
The Code generation files group box in the System Interface Editor contains the
COBOL code file (.CBL) field.

The file name displayed in this field is the file into which your COBOL source code is
written. This occurs when you generate code from the Visual Builder window or from
any of the editors by selecting File→Save and generate →Part source .

54 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

The field initially contains the COBOL source code (.CBL) file name based on the name
of the part you are editing. To change the file name in this field, enter a new name in
the field and select File→Save so Visual Builder uses the new file name and writes this
file into the working directory. If the file already exists, Visual Builder replaces its
contents with the code currently being generated.

Note: If you import an existing COBOL source code file as a nonvisual part and
specify the name of the existing COBOL source code file in the COBOL code
file (.CBL) field, do not generate part source for that nonvisual part. If you do,
Visual Builder generates its own COBOL source code file, which overwrites your
file.

Specifying additional code files
The User files included in generation group in the System Interface Editor allows you
to specify files you want to generate when you generate part source. These files are
including during the build process. The .CPV and .CBV file extensions in the User
declaration file and User code file fields are used because these files are not meant
to be compiled by themselves.

The group contains the following fields:

User declaration file (.CPV)
The copy (.CPY) file you want to include in the working-storage section of the class
Visual Builder generates. You must enter a file name in this field before you can
generate feature code. Attribute declarations are appended to this file.

User code file (.CBV)
The file of methods you want to include in the part source Visual Builder generates.
You must enter a file name in this field before you can generate feature code.
Feature methods are appended to this file.

Repository COPY file
The copy (.CPY) file you want to include in the repository section of the class. In this
file include any classes not defined in the part but referenced in your feature code.

Required COPY files
The names of other files you want Visual Builder to include in the working storage
section of the class when you generate part source for your application.

Visual Builder generates the COPY statements in the part source code.

 Chapter 4. Getting to know the Visual Builder editors 55

Touring Visual Builder

The Part Interface Editor
Each part Visual Builder provides has a defined part interface that allows the part to
interact with other parts. The part interface consists of features—attributes, events, and
actions—that allow you to use the part in constructing your application. An entry field,
for example, has a Contents attribute, a push button has a press event, and a frame
window has a closeWindow action.

The parts that you create must also have a defined part interface so the part can be
used by other parts. Use the Part Interface Editor to define the interface.

Other uses for the Part Interface Editor include the following:

� Viewing the interface of a part
� Modifying or extending the interface of an existing part
� Creating or altering the list of preferred features, the features displayed in the

pop-up menu for a part

The Part Interface Editor is a notebook made up of the following pages:

� The Attribute page
� The Event page
� The Action page
� The Promote page
� The Preferred page

The Attribute , Event , and Action pages all contain the same set of push buttons along
the bottom of the page:

Add with defaults
If you select the Add with defaults button, Visual Builder assumes you want to use
the default values it provides for the new attribute, action, or event. To view the
default values, select the Defaults button. After you view the default values, the
select the Clear button to clear those values.

Suppose you create a part called Employee. You design the part to contain an
attribute called Age. Visual Builder uses Integer as the default type for an attribute. In
the Attribute page, enter Age in the Attribute name field and select the Add with
defaults button. Visual Builder adds the Age attribute with the following settings:

Attribute type
Integer

Get method
getAge RETURNING Age

Set method
setAge USING Age

Event identification
AgeId

56 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

Add
Select the Add button to add the attribute, event, or action with the current settings.
Selecting the Defaults button, then the Add button produces the same results as
selecting the Add with defaults button.

Update
Select the Update button to update the attribute, action, or event with the new
settings you provide.

Delete
Select the Delete button to delete the currently selected attribute, event, or action.

Defaults
If you select the Defaults button, Visual Builder supplies default values for the new
attribute, action, or event. Select the Clear button to clear those values. Select the
Add button to use those values.

Clear
Select the Clear button to clear out the settings for the currently selected attribute,
action, or event. This does not delete the currently selected attribute, action, or
event.

The Attribute page
Use the Attribute page of the Part Interface Editor, shown in the following figure, to
define the attributes for your part.

Figure 19. The Attribute page of the Part Interface Editor

 Chapter 4. Getting to know the Visual Builder editors 57

Touring Visual Builder

You can define many attributes for a part, each with unique characteristics, such as
attribute name and attribute type . An attribute’s value is always acquired by using the
attribute’s get method. You can store data for the attribute in an instance variable of the
part class, calculate it, or acquire it from some other location. The default feature code
generated defines an instance variable used by the get and set methods to store the
data.

In addition, you can define three different kinds of behavior for your attributes, as
follows:

full attribute
Contains all of the characteristics and behaviors available for an attribute, as follows:

� A get method, which is required
� A set method, which is optional (see no-set attribute below)
� An event identifier, which is optional (see no-event attribute below)

no-set attribute
Has no set method. It can be used to initialize another attribute when it is the source
of an attribute-to-attribute connection, but it cannot be set to the value of another
attribute.

no-event attribute
Has no event identifier. Therefore, if you use a no-event attribute as the source of a
connection, it cannot signal another part because of the lack of an event identifier.
However, you can still use it as the source of connections so that it can initialize
other attributes.

Adding an attribute
To add an attribute in the Part Interface Editor, do one of the following:

� If you want to add the attribute using the default attribute type, get method, set
method, and event identification that Visual Builder provides, enter a name in the
Attribute name field and select the Add with defaults button. Visual Builder adds
the attribute to the part interface.

� If you want to see the default attribute type, get method, set method, and event
identification that Visual Builder provides before you add the attribute, select the
Defaults button. Visual Builder displays the default information for the attribute in
the fields on the right side of the Attribute page. Those fields are:

Attribute name
The name of the attribute. This name appears in the connection menu for the
part when you make connections to or from it in the Composition Editor.

Attribute type
Visual Builder uses types to generate declarations for data items in USING and
RETURNING clauses of the get and set methods for an attribute. The first time
you create an attribute for your part, the default data type that Visual Builder
uses is Integer. If you change Integer to another data type, such as
VarLengthString, the new data type becomes the default data type for any new
attributes you create until you change it to something else or close the Part
Interface Editor. When you reopen the Part Interface Editor, the default data type

58 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

for any new attributes you create reverts to Integer. It stays that way unless you
change it again when creating another attribute or when modifying an existing
attribute.

You can define your own types by importing part information files (.VCE). For
example, if you define a monetary type in your part information file with the
following declaration:

ð1 monetary PIC $(8)9.99.

you can import the part information file and use the attribute of the resulting
nonvisual part and connect it to the asNumeric attribute of the CStaticText part.
When the application runs, the current value of the attribute is displayed using
the picture clause. Refer to Appendix A, “Creating part information files” on
page 223 for more information on creating part information files.

Typically, the attributes you define correspond to instances variables of the part
class. The get and set methods you define for an attribute give other programs
access to the attribute’s value.

Get method
The method used by the part and other parts to query or get the value of the
attribute.

Set method
The method used by the part and other parts to set the value of the attribute. An
event identifier is typically signaled from within the implementation of the set
method to indicate the value of the attribute changed.

Event identification
The name of the instance variable in a connection class used to monitor events
from this part. You can create one of your own or you can use the default event
identifier Visual Builder supplies when you select either the Defaults or the Add
with defaults button. Visual Builder automatically generates a get method used
to obtain the event identifier. The name of the get method is the name of the
event identifier prefaced with get.

Use this identifier to notify this part and other parts the attribute’s value has
changed. This is typically done when the attribute is used as the source of a
connection. The connection types that use an attribute as the source of a
connection are as follows:

 – Attribute-to-attribute
 – Attribute-to-action

You are not required to specify an event identification for any attribute because
you are not required to notify other parts when the value of the attribute
changes. However, failing to do so could prevent your application from passing
necessary information from one part to another when it is needed.

The event identifier is typically signaled from within the implementation of the
attribute’s set method, causing the attribute to behave as an event. Therefore,
you do not need to specify another event with this event identifier on the Event
page of the Part Interface Editor.

 Chapter 4. Getting to know the Visual Builder editors 59

Touring Visual Builder

Description
A description of the attribute. This entry field is blank unless you enter a
description.

� If you want to add the attribute after seeing or modifying its default information or
after entering your own information, select the Add button. Visual Builder adds the
attribute to the part interface.

Changing an attribute
To change, or update, an attribute in the Part Interface Editor, do the following.

Note: You can change anything about an attribute except its name. To change an
attribute’s name, you must delete the old attribute and create a new attribute
with the name you want to use.

1. Select the attribute that you want to change from the Attribute name list box or
type its name in the Attribute name field.

2. Make the changes you want to make in the fields on the right side of the Attribute
page.

3. Select the Update button. Visual Builder updates the changes you made in its
internal data model. To save the changes, select File→Save.

If you select Update and try to close the part without selecting File→Save, Visual
Builder displays a message giving you another opportunity to save the file.

Deleting an attribute
To delete an attribute in the Part Interface Editor, do the following:

1. Select the attribute you want to delete or type its name in the Attribute name field.

2. Select the Delete button. Visual Builder deletes the attribute.

Setting defaults for an attribute
To set defaults for an attribute in the Part Interface Editor, do the following:

1. Select the attribute you want to set defaults for or type its name in the Attribute
name field.

2. Change the attribute type in the Attribute type field.

3. Select the Defaults button.

Clearing the attribute page fields
To clear the fields on the Attribute page, select the Clear button.

Visual Builder clears all of the fields on the Attribute page. This does not delete the
attribute from the part interface.

60 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

An attribute example
Suppose you create a nonvisual Customer part that inherits from Visual Builder’s
CStandardNotifier part. You also create an age attribute for which you specify the
following:

� An attribute type of VarLengthString
� An getAge get method
� A setAge set method
� An ageId event identifier

You create this attribute so other parts can access its value or so it can be passed as a
parameter value.

The feature source code Visual Builder generates for the age attribute is similar to the
following code segment:

Note: You must enter the names of the .CPV and .CBV files in the User .CPV file and
User .CBV file fields, respectively, in the System Interface Editor before
generating the feature source code.

� The declarations of the data member in the user header (.CPV) file.

\ Feature source code generation begins here...

 ð1 iAge.

ð3 iAge-Length PIC 9(9) COMP-5.

 ð3 iAge-String.

 ð5 iAge-Chars PIC X

OCCURS 1 TO 255 TIMES

DEPENDING ON iAge-Length.

\ Feature source code generation ends here.

� The get and set methods for the age attribute, as defined in the feature source
code (.CBV) file.

 Chapter 4. Getting to know the Visual Builder editors 61

Touring Visual Builder

\ Feature source code generation begins here...

 \ METHOD

 IDENTIFICATION DIVISION.

 METHOD-ID. "getAge".

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

 LINKAGE SECTION.

 ð1 Age.

ð3 Age-Length PIC 9(9) COMP-5.

 ð3 Age-String.

 ð5 Age-Chars PIC X

OCCURS 1 TO 255 TIMES

DEPENDING ON Age-Length.

ð1 rc PIC S9(9) USAGE COMP-5.

 PROCEDURE DIVISION

 RETURNING Age.

MOVE iAge-Length TO Age-length.

MOVE iAge-String TO Age-string.

 GOBACK.

END METHOD "getAge".

 \ METHOD

 IDENTIFICATION DIVISION.

 METHOD-ID. "setAge".

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

ð1 aCustomer USAGE OBJECT REFERENCE Customer.

ð1 event USAGE OBJECT REFERENCE CNotificationEvent.

ð1 ageId USAGE POINTER.

 LINKAGE SECTION.

 ð1 Age.

ð3 Age-Length PIC 9(9) COMP-5.

 ð3 Age-String.

 ð5 Age-Chars PIC X

OCCURS 1 TO 255 TIMES

DEPENDING ON Age-Length.

ð1 rc PIC S9(9) USAGE COMP-5.

PROCEDURE DIVISION USING Age.

MOVE Age-Length TO iAge-length.

MOVE Age-String TO iAge-string.

INVOKE CNotificationEvent "somNew" returning event.

SET aCustomer TO SELF.

INVOKE SELF "getAgeId"

 RETURNING ageId.

INVOKE event "initializeNotificationEvent" USING

by value ageId by value aCustomer.

INVOKE SELF "notifyObservers" using by value event.

INVOKE event "somFree".

 GOBACK.

END METHOD "setAge".

62 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

\ Feature source code generation ends here.

The Event page
Use the Event page of the Part Interface Editor, shown in the following figure, to define
the events you use to notify this part or other parts about changes you decide are
significant. For example, you might notify other parts when an attribute is set to a
certain value or when important processing is finished. In this way, someone using your
part can link to one of your part’s events and receive automatic notification of the event
whenever it is triggered.

Figure 20. The Event Page of the Part Interface Editor

If you cannot see all of the fields shown in the preceding figure, use the scroll bar on
the right side of the Part Interface Editor to see the remaining fields.

The names of the part’s events are displayed in the Event name list box. When you
create a new part, the first time you open the Part Interface Editor and turn to the
Event page, you see Visual Builder provids two events for you: the ready and destroy
event.

 Chapter 4. Getting to know the Visual Builder editors 63

Touring Visual Builder

The ready event
Visual Builder adds the ready event to every new part you create using the Part→New
menu choice in the Visual Builder window. However, this event is not added if you
import part information from a part information file (.VCE).

By connecting the ready event to a subpart of your part, you can cause an action or
method to be invoked when your application is executed. The ready event after both of
the following occur:

� All subparts have been constructed.
� All connections have been made and initialized.

For example, suppose you have a part named MyPart and you want an audio file
played every time MyPart is instantiated. By connecting the MyPart’s ready event to the
audio part’s setAudioMode action and setting the connection parameter to
MediaMode-Play, the audio file plays as soon as the part is instantiated.

The ready event is not a preferred feature by default, but you can add it to your part’s
preferred features list. For information on how to do this, see “The Preferred page” on
page 72.

Note: The behavior of the ready event is different from the create event in version 1 of
VisualAge for COBOL. After importing a version 1 application, you might need
to adjust the connections to the ready event. Only windows opened immediately
are completely initialized.

Adding an event
To add an event in the Part Interface Editor, do one of the following:

� If you want to add the event using the default event identification Visual Builder
provides, enter a name in the Event name field and select the Add with defaults
button.

Visual Builder adds the event to the part interface.

� If you want to see the default event identification Visual Builder provides before you
add the event, select the Defaults button.

Visual Builder displays the default event identification in the Event identification
field on the right side of the Event page. Here are descriptions of that field and
the other fields on the page:

Event name
The name of the event. If you add this event name to the preferred features list,
it appears in the pop-up menu for the part.

Event identification
The name of the instance variable used in connections from this event. When
prefaced with get, this defines the method used to obtain the event identifier.

Description
A description of the event. This entry field is blank unless you enter a
description.

64 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

Changing an event
To change, or update, an event, do the following:

Note: You can change anything about an event except its name. To change an
event’s name, you must delete the old event and create a new event with the
name you want to use.

1. Select the event you want to change or type its name in the Event name field.

2. Make the changes you want to make in the fields on the right side of the Event
page.

3. Select the Update button. Visual Builder saves the changes you made.

Deleting an event
To delete an event, do the following:

1. Select the event you want to delete or type its name in the Event name field.

2. Select the Delete button. Visual Builder deletes the event.

Note: If you added the event you just deleted to the preferred features list, you
must go to the Preferred page and delete it there, too.

Setting defaults for an event
To set defaults for an event, do the following:

1. Select the event you want to set defaults for or type its name in the Event name
field.

2. Select the Defaults button. Visual Builder changes the former event identification
to the default event identification in the Event identification field.

Clearing the Event page fields
To clear the fields on the Event page, select the Clear button.

Visual Builder clears all of the fields on the Event page. This does not delete an event.

An event example
Using the same example shown for the Attribute page, suppose you also create an
invalidDataEntered event for which you specify the following:

� invalidDataEntered event name
� invalidDataEnteredId event identifier

You create this event because you want to show an error message for the Customer
part whenever invalid data is entered for any of the Customer part’s attributes, such as
the customer’s age being outside a valid range. Then, in your feature source code for
the age attribute’s set method, you can call the notifyObservers method to display a
message asking for a valid age if the check fails.

The default feature code Visual Builder generates for the invalidDataEntered event is
similar to the following code segment:

 Chapter 4. Getting to know the Visual Builder editors 65

Touring Visual Builder

� The get method in the COBOL source code (.CBL) file.

\---

\ getinvalidDataEnteredID method

\---

 IDENTIFICATION DIVISION.

 METHOD-ID. getinvalidDataEnteredId.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 ð1 initFlag PIC 9 VALUE 1.

 ð1 invalidDataEnteredId USAGE POINTER.

 ð1 invalidDataEnteredIdString PIC X(35).

 LINKAGE SECTION.

 ð1 aInvalidDataEnteredId USAGE POINTER.

 PROCEDURE DIVISION RETURNING aInvalidDataEnteredId.

IF initFlag = 1 THEN

MOVE ð TO initFlag

 MOVE Z"nvp4ð2::invalidDataEnteredId"

 TO invalidDataEnteredIdString

 SET invalidDataEnteredId

TO ADDRESS OF invalidDataEnteredIdString

 END-IF

SET aInvalidDataEnteredId TO invalidDataEnteredId.

 GOBACK.

 END METHOD getinvalidDataEnteredId.

The Action page
Use the Action page of the Part Interface Editor, shown in the following figure, to
define the actions your part uses to perform specific tasks.

66 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

Figure 21. The Action page of the Part Interface Editor

Often, you will want to perform some task when a specific event occurs. For example,
you might want to update a balance attribute each time a push button’s press event is
triggered. You might create an action named updateBalance to perform this task and
connect it to the push button’s press event.

The names of the part’s actions are displayed in the list box below the Action name
field.

Adding an action
To add an action in the Part Interface Editor, do one of the following:

� If you want to add the action without parameters and without a return parameter,
enter a name in the Action name field and select the Add with defaults button.
Visual Builder adds the action to the part interface. The action name is used as the
action method name in the Action method field.

� Here are the descriptions of additional fields on the page:

Action name
The name of the action. If you add this action name to the preferred features list,
it appears in the pop-up menu for the part.

Action method
The name of the method, defined within your reusable part, that performs the
action, together with its USING and RETURNING parameters (if any).

 Chapter 4. Getting to know the Visual Builder editors 67

Touring Visual Builder

Return type
The return type of the RETURNING parameter. The default is Integer. If there is
a RETURNING parameter, the actionResult feature is available. You can
connect the actionResult feature to an attribute to store its value, or you can
connect the actionResult feature as a parameter to another method.

The default feature code generated for an action does nothing. You can, and in
most cases should, edit the default feature code to specify what you want
returned. The following list shows what is generated:

IDENTIFICATION DIVISION.

METHOD-ID. "actionName"

DATA DIVISION.

LOCAL-STORAGE SECTION.

LINKAGE SECTION.

PROCEDURE DIVISION.

 GOBACK.

END METHOD "actionName"

Description
A description of the action.

Parameter names and types
Parameters of the selected action. The names in the Parameter table are the
same as the parameter names that you specify in the Action method field.

The parameter names in the table are linked to the action name and can appear
in a pop-up menu. The purpose of the table is to allow you to specify their types.

Adding a parameter and its type

To add a parameter and its type you must first add it to the Action method field. When
you update the page, the parameter table is updated and then you update the types.

Changing parameter types

To change the parameter types in the Parameters and their types table, do the
following:

1. Click on the parameter type with mouse button 1.

2. Type the parameter type you want to use.

Note: To exit the edit mode, press Shift+Enter.

3. Select the Update button.

68 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

Changing an action
To change, or update, an action in the Part Interface Editor, do the following.

Note: You can change anything about an action except its name. To change an
action’s name, you must delete the old action and create a new action with the
name you want to use.

1. Select the action you want to change or type its name in the Action name field.

2. Make the changes you want to make in the fields on the right side of the Action
page.

3. Select the Update button. Visual Builder saves the changes you made.

Deleting an action
To delete an action in the Part Interface Editor, do the following:

1. Select the action you want to delete or type its name in the Action name field.

2. Select the Delete button. Visual Builder deletes the action.

Note: If the action you just deleted is on the Preferred Features list, you must go
to the Preferred page and delete it there, too.

Setting defaults for an action
To set defaults for an action in the Part Interface Editor, do the following:

1. Select the action you want to set defaults for or type its name in the Action name
field.

2. Select the Defaults button. Visual Builder changes the former return type to the
default return type in both the Action method and the Return type fields.

Clearing the action page fields
To clear the fields on the Action page, select the Clear button.

Visual Builder clears all of the fields on the Action page. This does not delete an
action.

The Promote page
Use the Promote page of the Part Interface Editor to specify features you want to
connect to another part when this part is embedded as a subpart within another part.
The features (attributes, events, and actions) you specify appear in the window
displayed when you select More from this part’s pop-up menu. For a complete
description of promoting a part’s features, see “Promoting a part’s features” on
page 139.

Note: The Promote page only supports visual parts. You can not promote features in
a nonvisual part.

Figure 22 on page 70 shows the Promote page:

 Chapter 4. Getting to know the Visual Builder editors 69

Touring Visual Builder

Figure 22. The Promote Page of the Part Interface Editor

Promoting a feature
To promote a feature of a part nested in your part, in the Part Interface Editor do the
following:

1. Type the feature name in the Promote feature name field.

2. Select a subpart name from the list box beneath the Subpart name field or type
the subpart name in the field. A subpart is a part nested in the part you are editing.
Visual Builder displays the name of the subpart you select in the Subpart name
field.

3. Select a feature type from the list box beneath the Feature type field or type the
feature type in the field. Visual Builder displays the type you select (attribute, event,
or action) in the Feature type field.

4. Select the feature you want to promote from the list box beneath the Promotable
feature field or type the name in the field. Visual Builder displays the feature you
select in the Promotable feature field.

5. Do one of the following:

� If you want to promote the feature using the default name Visual Builder
provides, select the Add with defaults button. Visual Builder promotes the

70 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

feature and displays the feature name in both the Promote feature name field
and in the list box below this field.

� If you want to see the default feature name Visual Builder provides before you
promote the feature, select the Defaults button. Visual Builder displays the
default name for the feature in the Promote feature name field.

� If you want to promote a feature after seeing its default name or typing another
name you prefer, select the Add button. Visual Builder promotes the feature
using the name in the Promote feature name field and displays the name in
the list box below this field.

Note: In many cases, the default feature name is too long. In such cases, use
your own feature name before pressing the Add button.

Changing a promoted feature
To update a feature you have already promoted, do the following:

1. Select the promoted feature you want to update.

2. Select those aspects of the promoted feature you want to update in the fields on
the right side of the Promote page. You can select any or all of the following:

 � Subpart name
 � Feature type
 � Promotable feature

3. Select the Update button. Visual Builder updates those aspects of the feature you
selected.

The only noticeable change is the subpart name if you selected a different one. The
subpart name shown in parentheses behind the promoted feature name changes if you
selected a different subpart. For example, suppose you promoted the press feature of
PushButton1 and then realized you should have promoted the press feature of
PushButton2. Instead of deleting the promoted feature, you can update it by changing
only its subpart.

Deleting a promoted feature
To delete a promoted feature, do the following:

1. Select the promoted feature you want to delete.

2. Select the Delete button. Visual Builder deletes the promoted feature from the list
box beneath the Promote feature name field.

Note: If you added the promoted feature that you just deleted to the preferred
features list, you must go to the Preferred page and delete it there, too.

 Chapter 4. Getting to know the Visual Builder editors 71

Touring Visual Builder

Clearing the promote page fields
To clear the fields on the Promote page, select the Clear button. Visual Builder
removes the information from all of the fields on the page. This does not delete any
features from the part interface.

The Preferred page
Use the Preferred page of the Part Interface Editor, shown in the following figure, to
specify the preferred features for your part—the features that you use most often when
connecting this part to another part. The features (attributes, events, and actions) you
specify appear in the pop-up menu displayed when you begin a connection on this part.
You can include any features that exist for your part, as well as any features your part
inherits from other parts.

Figure 23. The Preferred Page of the Part Interface Editor

In addition to these features, a pop-up menu contains the More selection. This
selection allows you to display a window that contains all of the features for this part, as
well as the features it inherits. Visual Builder provides this window in case you need a
feature not in the preferred features list.

The names of the part’s features are displayed in the list boxes named Actions ,
Attributes , and Events on the left side of the page. The preferred features are
displayed in the Preferred features list box on the right side of the page.

72 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

Adding a preferred feature
To add a preferred feature to the menu for a part, do the following:

1. Select a feature name from one of the list boxes on the left side of the page.

2. Do either of the following:

� Select the Add button at the bottom of the page.

� With the mouse pointer still over the list box in which you selected the feature
name, do the following:

a. Click mouse button 2. A pop-up menu with the Add choice appears.

b. Select Add to add the feature.

The feature name you selected is inserted into the Preferred features list box in
alphabetical order.

Removing a preferred feature
You can remove a preferred feature name from the pop-up menu for a part. Doing this
removes the feature from the menu only; it does not delete the feature.

To remove a preferred feature from the pop-up menu for a part, do the following:

1. Select the name you want to remove from the Preferred Features list box.

2. Do either of the following:

� Select the Remove button at the bottom of the page.

� With the mouse pointer still over the feature name in the Preferred features
list box, do the following:

a. Click mouse button 2. A pop-up menu appears.

b. Select Remove to remove the selected feature.

A message box is displayed to make sure you want to remove the name of this
preferred feature.

3. Select Yes to remove the feature name from the list. The feature name you
selected is removed from the list.

Removing all preferred features
You can remove all of the feature names from the pop-up menu for a part. Doing this
removes the features from the menu only; it does not delete the features. Once you
remove all preferred features from the pop-up menu, you must select More to use the
features in a connection.

To remove all of the preferred features from the pop-up menu for a part, do either of
the following:

� Select the Remove all button at the bottom of the page.

� With the mouse pointer over the Preferred Features list box, do the following:

1. Click mouse button 2. A pop-up menu appears.

 Chapter 4. Getting to know the Visual Builder editors 73

Touring Visual Builder

2. Select Remove all to remove all of the selected features.

A message box is displayed to confirm you want to remove all of the preferred features.
Select Yes to remove all of the feature names from the list. All of the feature names are
removed from the list.

Showing inherited preferred features only
To show only the preferred features your part inherits from other parts, select the
Default button.

A message box is displayed. Select Yes to display only the inherited preferred features.

A note on data parts
When you import a copy file using a part information file, a type of nonvisual part called
a data part is created. Like other nonvisual parts, you can use the System Interface
Editor to specify files and resource for the data part and you can use a modified version
of the Part Interface Editor called the Data Part Listing to view the attributes of the data
part and choose preferred attributes. The Data Part Listing contains the following
pages:

� The Attribute page

� The Preferred page

The Attribute page
The Attribute page of the Data Part Listing allows you to view the declarations in a
data part.

Figure 24. The Attribute page of the Data Part Listing

74 IBM VisualAge COBOL: Visual Builder User’s Guide

Touring Visual Builder

Each name displayed is an attribute that can be used to connect this data part to other
parts.

The Preferred page
Use the Preferred page in the same way you used the Preferred page in the Part
Interface Editor for any other part. The difference is the Preferred page in the Data
Part Listing only contains attributes listed in the Attributes list box. The Actions and
Events list boxes do not apply.

Figure 25. The Preferred page of the Data Part Listing

 Chapter 4. Getting to know the Visual Builder editors 75

Touring Visual Builder

76 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Part 3. Developing Visual Builder applications

This part provides the information you need to create a basic Visual Builder application.

Chapter 5. Starting Visual Builder . 79
Starting Visual Builder from a COBOL Visual Builder project 79
Starting Visual Builder from VisualAge COBOL 80
Starting Visual Builder from a command prompt 81

Chapter 6. Creating parts – an overview . 83
Designing the part . 83
Constructing the part . 85
Generating source and build files . 91
Building your part . 95
Using or running your part . 95
Debugging your part . 95

Chapter 7. Creating nonvisual parts . 99
Using existing COBOL code with Visual Builder 100
Defining the part interface . 103
Adding code to your part . 104

Chapter 8. Learning to use parts . 107
Working with parts in the Visual Builder Window 107
Working with parts on the free-form surface . 118
Sharing parts with others . 141
Adding categories and parts to the parts palette 143

Chapter 9. Learning to use connections . 153
Connection type summary . 158
Making the connections . 158
Manipulating connections . 165

Chapter 10. Adding menus to Visual Builder applications 173
Types of menus and menu items . 173
The Frame Extensions category . 174
Creating a menu bar . 174
Creating a pop-up menu . 179
Adding menu separators . 183
Connecting menu items to actions . 183
Building and running the part . 184

Chapter 11. Adding containers and list boxes to Visual Builder applications 185
Creating container parts . 185
Building the part . 192
Creating list box parts . 192

 Part 3. Developing Visual Builder applications 77

Developing Applications

Chapter 12. Adding notebooks to Visual Builder applications 197
Creating the project . 197
Adding a notebook part . 198
Adding notebook pages . 200
Building and running the part . 203

Chapter 13. Adding help to Visual Builder applications 205
The help subproject . 206
Editing the help source file . 206
Building the help source file . 208
Providing context-sensitive help . 208
Providing general help . 209
Providing the application Help window . 210
Providing a Help button . 211
Building and running the part . 211

Chapter 14. Integrating visual parts into a single application 213
Creating the dynamic visual parts . 213
Creating the static visual parts . 214
Adding visual parts as dynamic instances . 214

78 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Chapter 5. Starting Visual Builder

This chapter describes the different ways you can start Visual Builder.

� From a COBOL Visual Builder project

� From VisualAge COBOL

� From a command prompt

Starting Visual Builder from a COBOL Visual Builder project
This section assumes you have already created a COBOL Visual Builder project. Refer
to the Information Notebook for instructions on creating projects.

You can start Visual Builder from a COBOL Visual Builder project in the following ways:

In Windows

� To start Visual Builder and also load and open an existing part file (.VCB), open a
COBOL Visual Builder project and do either of the following:

– Double-click on the name of the part file.

– Select the part file, then select Selected →Visual from the project's menu bar.

– Click on the name of the part file with mouse button 2 and select Visual from
the pop-up menu.

� To start Visual Builder without loading and opening an existing part file, do either of
the following:

– Click on the white space in the project folder with mouse button 2 and select
Visual from the pop-up menu.

– Select Project on the menu bar and then select Visual in the pull-down menu.

Visual Builder displays the Visual Builder window, as shown in Figure 26 on
page 81. If you double-clicked on a part file to open Visual Builder, the file is
loaded and opened.

When you start Visual Builder from a COBOL Visual Builder Project, the menu bar in
the Visual Builder window and in each of the Visual Builder editor windows contains an
additional Project menu bar choice. Selecting this choice displays a list of the
WorkFrame tasks at the project scope for the project with which you are working.
Examples of tasks you might see in this list are Debug, Build, Run and Edit.

In OS/2

The following steps assume your project inherits the settings of a COBOL Visual
Builder project or it was created using the Project Smarts Visual template.

 Chapter 5. Starting Visual Builder 79

Developing Applications

1. To start Visual Builder and also load and open an existing part file (.VCB) you want
to work with, open a COBOL Visual Builder project folder and do either of the
following:

� Double-click on the name of the part file.

� Select the part file, then select Selected →Visual from the project's menu bar.

� Click on the name of the part file with mouse button 2 and select Visual from
the pop-up menu.

2. To start Visual Builder without loading and opening an existing part file, do either of
the following:

� If the COBOL Visual Builder project folder is closed, you can click on the folder
with mouse button 2 and select Visual from the pop-up menu.

� If the COBOL Visual Builder project folder is open, you can do one of the
following:

– Click on the white space in the project folder with mouse button 2 and
select Visual from the pop-up menu.

– Select Project on the menu bar and then select Visual in the pull-down
menu.

Visual Builder displays the Visual Builder window, as shown in Figure 26 on
page 81. If you double-clicked on a part file to open Visual Builder, that file is
loaded and opened.

When you start Visual Builder from a COBOL Visual Builder Project folder, the menu
bar in the Visual Builder window and in each of the Visual Builder editor windows
contains an additional Project menu bar choice. Selecting this choice displays a list of
the COBOL Visual Builder tasks at the project scope for the project with which you are
working. Examples of tasks you might see in this list are Debug, Build, and Run.

Starting Visual Builder from VisualAge COBOL
To start Visual Builder in Windows NT, do the following:

1. Select Programs from the Start button on the Taskbar. Select VisualAge COBOL
for Windows . The VisualAge COBOL for Windows submenu appears.

2. Select the Visual Builder menu item. Visual Builder displays the Visual Builder
window, as shown in Figure 26 on page 81. You need to specify a working
directory and load part files. Refer to “Getting to know the Visual Builder Window”
on page 31 to learn more about specify working directories and loading part files.

You will also need to run certain tasks like building, debugging, and executing from
the command line. Refer to the Programming Guide for more information on these
operations.

To start Visual Builder from the VisualAge COBOL folder in OS/2, do the following:

1. Select VisualAge COBOL for Windows from the OS/2 Warp button on the OS/2
Taskbar. The VisualAge COBOL submenu appears.

80 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

2. Select the Tools folder.

3. Select the COBOL Visual Builder menu item. Visual Builder displays the Visual
Builder window, as shown in Figure 26. You need to specify a working directory
and load part files. Refer to “Getting to know the Visual Builder Window” on
page 31 to learn more about specify working directories and loading part files.

You will also need to run certain tasks like building, debugging, and executing from
the command line. Refer to the Programming Guide for more information on these
operations.

Starting Visual Builder from a command prompt
To start Visual Builder from an MS/DOS command window in Windows or from an OS/2
window, do the following:

1. Open an MS/DOS command window in Windows or an OS/2 window.
2. Type the following command:

iwzbvb

3. Press the Enter key. Visual Builder displays the Visual Builder window, as shown in
Figure 26.

Figure 26. Visual Builder window

Visual Builder assumes the directory you are in when you execute the iwzbvb

command is the working directory. Part files, part source, and build files generated by

 Chapter 5. Starting Visual Builder 81

Developing Applications

Visual Builder are stored in the working directory. Refer to “Getting to know the Visual
Builder Window” on page 31 for more information on working directories and how to
change them.

82 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Chapter 6. Creating parts – an overview

This chapter gives an overall description of the steps involved in creating a single part.
These steps are similar to the steps involved in any application development cycle:
designing, editing, compiling, and debugging. As with any application development
project, good design in the beginning can help you avoid problems later on in the cycle.
The steps involved in creating a part are:

1. Designing the part

2. Constructing the part

3. Generating the part source and build files

4. Building the part

5. Using or running the part

6. Debugging the part

Applications requiring several different parts from varying sources requiring additional
steps, such as setting up subprojects. These steps are beyond the scope of this book.
For more information on organizing complex applications, refer to the Information
Notebook.

Designing the part
Designing a good part is very similar to designing a good class. In fact, a good part can
be used as a traditional class in applications that are not otherwise being built using
construction from parts. Consider the following when designing your part:

� Keep it simple.

� Keep the number of actions, events, and attributes to a reasonable size. In
practice, 10–20 part features per part is a good target.

� Minimize the dependencies on other parts and classes. Do not make nonvisual
parts dependent upon visual parts.

� Specify several actions with a small number of parameters rather than a single
action with many parameters.

� Minimize the number of connections that need to be made when using the
Composition Editor.

Before creating a new primitive part, answer the following questions:

� Is the part visual or nonvisual?

� Can it be created as a composite part?

� Do you have a good model of the part and its responsibilities?

� Is it a real-world implementation or a service part?

To design a new part, do the following:

 Chapter 6. Creating parts – an overview 83

Developing Applications

1. Determine the attributes (properties) of the part.

2. Determine the events (notifications) that the part will signal.

3. Determine the actions (behaviors) for the part.

4. After determining the part interface, investigate the available parts to see if one
already exists or to determine which class to use as a base. Determine if any
classes can be converted to parts.

You can create visual and nonvisual parts using Visual Builder. Visual parts are parts
the person using your applications sees. Examples of visual parts are windows,
buttons, and entry fields. Later chapters describe in detail how to create composite
visual parts with menus, containers, and other primitive visual parts. Nonvisual parts are
parts your application uses to perform its functions, but the person using your
application does not see them. Nonvisual parts can be categorized into four groups:

� Nonvisual parts are nonvisual parts you create with the Visual Builder. You create
the interface (features) of this part using the Part Interface Editor and you use
feature code to define the feature methods.

� Class interface parts are nonvisual parts without event notification ability. Thus,
these parts cannot send events to other parts. To create class interface parts,
create a part information file (.VCE) file that contains the class interface of COBOL
classes you have written. Then import the part information file into Visual Builder.
Refer to Appendix A, “Creating part information files” on page 223 for information
on creating part information files. Refer to “Importing other types of files” on
page 36 for more information on importing part information files.

� Program parts are collections of COBOL programs compiled and linked into a
single Dynamic Link Library (.DLL). You can define the interface to program parts
in a part information file (.VCE) file, then import the part information file into Visual
Builder. Refer to “Importing other types of files” on page 36 for more information
on importing part information files.

� Data parts are parts created by COBOL copy files you import. Once imported, the
data items become attributes you can use in connections. Refer to “Importing copy
files” on page 101 for more information on importing copy files.

Related Topics

� “Kinds of parts supported in Visual Builder” on page 21

� “Segmentation within the model” on page 7

 Naming parts
Because the names of COBOL classes come from a flat name-space, you must ensure
that your class names are unlikely to duplicate class names used by other developers.
Using a prefix on your class names is a good way to reduce the chances of duplicating
a class name. All IBM class names in the global name space begin with the letter “C”
for COBOL. In addition, avoid using "i", "a", and "an" as prefixes to your part names.
Refer to Chapter 15, “Hints and tips for using Visual Builder” on page 219 for more
information on naming restrictions.

84 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Naming actions, attributes, and events
A part feature is an element of a part’s interface. It is used as a collective term for a
part action, attribute, or event.

If you follow these simple conventions in choosing your feature names, it is easier for
users of your parts to recognize the function of a feature:

� Name actions with phrases that indicate activities to be performed, together with an
optional receiver of that activity. Examples of feature names for actions are
openWindow, hide, and setFocus.

� Name attributes with phrases that indicate the physical property they represent.
Examples of feature names for attributes are height, label, and contents.

� Name events with phrases that indicate activities that either have happened or are
about to happen. Examples of feature names for events are press, close, and
menuSelect.

Note: Names are restricted to a length of 23 characters in Visual Builder, compared to
the 30 characters normally allowed by COBOL. This allows Visual Builder to
suffix or prefix the names under certain circumstances without causing an error.

The main place that users see your action, attribute, and event names is on the
Connect pop-up menu of the Composition Editor. Because features are shown on this
pop-up menu in alphabetical order, the phrasing you use for a feature name is the only
way to distinguish between actions, attributes, and events.

It is important to choose unique names for your new actions, attributes, or events. This
prevents you from unintentionally overriding an inherited part feature. If you intend to
replace an existing part feature that your part inherits, then your new name must be the
same as the name of the part feature you are replacing. The scope within which your
feature name must be unique is your part class and all its base classes in the class
hierarchy. In addition, avoid using "i", "a", and "an" as prefixes to your feature names.
Refer to Chapter 15, “Hints and tips for using Visual Builder” on page 219 for more
information on naming restrictions.

Constructing the part
The following checklist contains the items required to implement a new part or to
convert an existing class to a part. Because parts are implemented as classes, you can
convert existing classes to parts and still use them as classes.

Make the following changes to each class to support parts:

1. To enable notification, make sure your class inherits from the appropriate notifier.

2. Add an initialization (somInit) method, and if required, a somUninit method. Visual
Builder expects the initialization method for a part to be called initialize.

3. For each event, add a get method that returns the notification ID.

4. For each attribute, add a get method that returns the notification ID.

 Chapter 6. Creating parts – an overview 85

Developing Applications

5. For each attribute, define a get method with no parameters so users can obtain the
value of the attribute.

6. If the attribute can be changed, define a set method with a single parameter
containing the new value.

7. Define any action methods. Consider reset or default actions for attributes.

8. Code to initialize each event notification ID must be added to the get method for
the event ID so that the initialization is performed during the first invocation of the
method. The ID should be set to the address of a string in WORKING-STORAGE
of the method. The string should be initialized to contain the class name and the
event name.

You can also use existing classes without converting them to parts. To do this you
need to define a class interface part to access the existing classes.

 Implementing attributes
Each property that your part exposes through its attribute interface has one or two
corresponding methods to support the attribute interface protocol for accessing the
property. The method that retrieves the value of a property is called the get method.
The method that sets the value of a property is called the set method. In addition, you
need to define an event ID and an event ID method for notification of changes to the
attribute. An example of the definition of a street attribute follows:

86 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

 \\\

\ street attribute

 \\\

 \

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 iStreet PIC X(256).

 PROCEDURE DIVISION.

\ getStreet method

 IDENTIFICATION DIVISION.

 METHOD-ID. "getStreet".

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

 LINKAGE SECTION.

ð1 Street PIC X(256).

PROCEDURE DIVISION RETURNING Street.

MOVE iStreet TO Street.

 GOBACK.

END METHOD "getStreet".

\ setStreet method

 IDENTIFICATION DIVISION.

 METHOD-ID. "setStreet".

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

ð1 aStreet USAGE OBJECT REFERENCE Street.

ð1 StreetId USAGE POINTER.

ð1 event USAGE OBJECT REFERENCE CNotificationEvent.

 LINKAGE SECTION.

ð1 Street PIC X(256).

PROCEDURE DIVISION USING Street.

MOVE Street TO iStreet.

INVOKE CNotificationEvent "somNew" RETURNING event.

SET aStreet TO SELF.

INVOKE SELF "getStreetId" RETURNING StreetId.

INVOKE event "initializeNotificationEvent" USING

BY VALUE StreetId BY VALUE aStreet.

INVOKE SELF "notifyObservers" USING BY VALUE event.

Get and set methods usually come in pairs. The exception is when a property is
read-only (such as a property that represents the serial number of the computer you
are currently using). In this case, the property has only a get method.

Always use the get and set methods to access the value of a property so that the
associated behaviors are performed. In particular, if you update the value of a property
without triggering event notification, the application might fail to operate correctly.

 Chapter 6. Creating parts – an overview 87

Developing Applications

 Get methods
Get methods return the value of a part's property. They are always accessed via an
INVOKE ... RETURNING statement that does not specify any USING parameters.

The simplest get method returns the data member that holds the value of a property.
The following getStreet method is an example of a simple get method:

\ getStreet method

 IDENTIFICATION DIVISION.

 METHOD-ID. "getStreet".

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

 LINKAGE SECTION.

ð1 Street PIC X(256).

PROCEDURE DIVISION RETURNING Street.

MOVE iStreet TO Street

 GOBACK.

END METHOD "getStreet".

 Set methods
Set methods modify the value of a part's property and notify dependent objects that the
value has changed. Set methods are always accessed using an INVOKE statement with
one parameter—the value to be set into the property.

The following setStreet method is an example of a simple set method::

\ setStreet method

 IDENTIFICATION DIVISION.

 METHOD-ID. "setStreet".

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

ð1 aStreet USAGE OBJECT REFERENCE Street.

ð1 event USAGE OBJECT REFERENCE CNotificationEvent.

 LINKAGE SECTION.

ð1 Street PIC X(256).

PROCEDURE DIVISION USING Street.

MOVE Street TO iStreet

INVOKE CNotificationEvent "somNew" RETURNING event

SET aStreet TO SELF

INVOKE event "initializeNotificationEvent"

USING BY VALUE StreetId aStreet

INVOKE SELF "notifyObservers" USING BY VALUE event

INVOKE event "somFree"

 GOBACK.

END METHOD "setStreet".

An even simpler set method can be implemented that does not signal a notification
when its property is changed. You might use such a set method when you know that a
group of properties is always changed together. In this case, only one set method out
of the group would actually signal the event. This couples the event signalling with the
entire sequence of set method calls.

88 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Set methods can also perform other operations, such as computing values for many
properties based on the value supplied or signalling an additional notification when the
value of a property crosses a threshold value.

Signal events only when the value of the property has changed. In addition, providing
the new value of the attribute in the notification event can improve the overall system
performance.

Attribute events (notification IDs)
You define notification IDs in COBOL as pointers initialized to an address that uniquely
identifies the event. It must be constant for the life of the class, and it must also be
constant for the all the object instances of the class. By convention, and as an aid to
debugging, the event ID pointer should be initialized as a null-terminated string of the
form className::eventId. The string addressed by the event ID pointer must be a dat
element in WORKING-STORAGE of the method used to get the event ID. The following
example shows a get method for a streetID event that returns such a pointer:

 IDENTIFICATION DIVISION.

 METHOD-ID. getStreetId.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 initFlag PIC 9 VALUE 1.

ð1 streetId USAGE POINTER.

ð1 streetIdString PIC X(28)

 VALUE Z"IAddress::streetId".

 LINKAGE SECTION.

ð1 outStreetId USAGE POINTER.

PROCEDURE DIVISION RETURNING outStreetId.

IF initFlag = 1 THEN

MOVE ZERO TO initFLag

SET streetId TO ADDRESS OF streetIdString.

 END-IF.

SET outStreetId TO StreetId.

END METHOD getStreetId.

 Implementing actions
Each behavior that your part exposes in its action interface has a corresponding
method to support the action protocol for that behavior. For example the street attribute
could have an initializeStreet method as follows:

 IDENTIFICATION DIVISION.

 METHOD-ID. "initializeStreet".

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

ð1 aStreet PIC X(256).

 PROCEDURE DIVISION.

MOVE SPACES TO aStreet

INVOKE SELF "setStreet" USING aStreet

 GOBACK.

END METHOD "initializeStreet".

 Chapter 6. Creating parts – an overview 89

Developing Applications

Just like other COBOL methods, actions can receive parameters and can also have a
return parameter. You can specify the return parameter and any other parameters as
part of the action interface.

The only thing unique to Visual Builder about these methods is that they should not
directly access data instances for properties; instead, use the attribute's get and set
methods to access the data instances. You need to do this because the get and set
methods often have additional behavior beyond simply accessing the value of the data
instance.

For example, the initializeStreet method described above uses the setStreet
method to set the street attribute instead of setting it directly.

Consider providing an action to reset each attribute to a default value when
implementing a part. For Boolean attributes, provide a set method (for example, a
disable action) that causes the attribute to be set to false and a set method (for
example, an enable action) with a default parameter equal to true. You can use the set
method with a default value to perform the reset action for the Boolean attribute.

Guidelines for implementing nonvisual parts
The first step associated with implementing a part is positioning the part class in the
class hierarchy.

Place your nonvisual part as shown in Figure 27 under the CStandardNotifier class
hierarchy. Inserted in this location, your part inherits certain default behavior from
CStandardNotifier and the CNotifier protocol.

An example of a CLASS-ID statement for an address class definition follows:

CLASS-ID. address INHERITS CStandardNotifier.

Once you have found your part's position in the class hierarchy, you are ready to begin
the actual building.

Creating a COBOL class for a part is not much different from creating any other
COBOL class. You just need to keep in mind the few additional guidelines presented in
this chapter for those methods that support your part's interface.

Figure 27. Class Hierarchy for Nonvisual Parts

Class Responsibility

SOMObject Base class
 CNotifier Notification protocol
 CStandardNotifier Implementation of notification protocol

New nonvisual part

90 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Generating source and build files
Once you construct a part, generate the source and build files for the part. This
sections describes the following steps:

� Generating COBOL source code for a part
� Generating feature code
� Generating build files
� Preparing generated files for compilation

Generating COBOL source code a part
You can generate source code for the part being edited from any of the Visual Builder
editors.

1. From the editor’s menu bar, select File .

2. Select Save and generate ; then select Part source .

If you are using the Composition Editor, you can select , the Generate Part
Code tool, from the tool bar. There is no difference between selecting this icon and
using the menu item described previously.

 One of the most common causes of code generation errors is changing the
names of features connected to other features. For example, suppose feature
A is connected to feature B. If you change the name of feature A and then
regenerate the source code for your part, Visual Builder displays an error.
This can also occur if you change the name of a promoted feature. To correct
the error, double-click on the connection and replace the incorrect feature
name with the correct one.

Some capabilities found in OS/2 parts are not available in Windows. If you port your
OS/2 part to Windows, there may be code generation problems.

Because Visual Builder cannot discern why the settings or features are not currently
valid, it writes a message stating items are no longer valid because the part interface
has changed. The following messages may appear:

The X part was not found.

There is a part missing.

Source: X Target: Y Source event: E Target action: A Missing parameters: Z

There is a parameter missing.

Source: X Target: Y

There is a possible data type conflict.

The X menu is not connected.

There is a menu connection missing.

 Chapter 6. Creating parts – an overview 91

Developing Applications

Source files created during part code generation
For each part processed, Visual Builder generates several source code files. As an
example, the following files are created for a part called MyPart:

MyPart.cbl A COBOL code file for part and connection classes.

MyPart.app COBOL code for main executable.

MyPart.def Export definitions for creating a dynamic link library (.DLL).

MyPart.odx Runtime initialization file.

MyPart.rc Main resource file.

MyPart.rch Items for help table.

MyPart.rci Help and accelerator tables; icons.

MyPart.rcs Items for help subtable.

MyPart.rca Items for accelerator table.

MyPart.cph Factory resource computation.

If you selected Default to FAT file names under the Options pull-down menu of the
Visual Builder window and your part name has more than eight characters, Visual
Builder creates an eight-character name for the part. Refer to “Using File Allocation
Table (FAT) file names” on page 39 for a detailed description.

Generating feature code
If you have defined attributes or actions for your part using the Part Interface Editor,
you must provide feature code and you must set the User declaration file and the
User code file fields in the System Interface Editor. The code in these files can be
written and maintained by you or you can first generate them and then modify them.
Unlike the generation of the part source files, Visual Builder appends code for selected
items to these files.

Note: Regenerate feature code carefully. Regenerating feature code already
generated causes duplicate definition errors during compilation.

The syntax of the get and set methods changed between version 2.0 and
version 2.1 of the Visual Builder. The new syntax is similar to the following:

INVOKE InterfaceManager "setHeight" USING object Height

INVOKE InterfaceManager "getHeight" USING object RETURNING Height

If you used the get and set methods in your feature code, you must update the
syntax of those methods in your feature code.

92 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Generating build files
When you select File→Save and generate →Build files , a make file is generated.
Using the MyPart example introduced earlier, the following file is created:

MyPart.mak A make file.

If you selected Default to FAT file names as a preference under the Options
pull-down menu of the Visual Builder window and your part name has more than eight
characters, Visual Builder creates an eight-character name for the generated files.
Refer to “Using File Allocation Table (FAT) file names” on page 39 for a detailed
description.

Before you generate the build file, decide on a target: an executable (.EXE) or a
dynamic link library (DLL). Set up the Visual Builder to generate a make file that builds
the desired target. For instance, if your target is a dynamic link library (DLL), select
Build as DLL in the System Interface Editor. If you target is an executable (.EXE) ,
select Build as EXE in the System Interface Editor. Refer to “Specifying the target to
create” on page 53 for more information.

Preparing generated files for compilation
Before you compile your part, make sure you have the following files:

� Copy files for all parts

� Source code (.CBL) files for all parts

� Resource files (.RCI) for all visual parts

� A make file

� An .app file for the main part

Most of these files are created when you generate part source and build files in Visual
Builder.

Final preparations for compilation and linking include the following:

WorkFrame

Specify options for the compiler and linker by opening the GUI Compile options
notebook in Windows, or the Compile options notebook in OS/2. To open the options
notebook, select GUI Compile (Windows) or Compile (OS/2) from the Options menu
in WorkFrame.

non-WorkFrame

� Specify additional libraries (COBOL libraries and DLLs) via the environment
variables DLLDEPENDS and DLLLIBS

� Specify options for the compiler and linker programs via the environment variables
PARTCOMPFLAGS and PARTLINKFLAGS

 Chapter 6. Creating parts – an overview 93

Developing Applications

Enhancing the Visual Builder make file
To add options, object files, libraries, etc., to the Visual Builder make file, set the
following environment variables:

PARTCOMPFLAGS
Options used to compile the part class

APPCOMPFLAGS
Options used to compile the main application

PARTLINKFLAGS
Options used by ilink to link the part DLL

APPLINKFLAGS
Options used by ilink to link the main EXE

CVBDEBUG
Enable debugging when set; disable when not set

EXEDEPENDS
Dependent .obj and .lib for linking of main program

EXELIBS
.obj and .lib files to add to linking of main program

DLLDEPENDS
Dependent .obj and .lib for linking of part

DLLLIBS
.obj and .lib to add to linking of part

Specifying debug options for the compiler and linker programs
You can compile and link your part with or without debugging options. If you are using
WorkFrame to build your application, select the GUI Compile menu item from the
Options menu in WorkFrame and select the appropriate options to generate debug
information.

If you are not using WorkFrame to build your application, specify the CVDEBUG
environment variable to generate debug information. You can compile as follows:

NMAKE CVBDEBUG=1 MyPart.mak

where MyPart.mak is the make file for our MyPart example. The CVBDEBUG
environment variable determines whether compilation flags are set to enable
debugging. A value of 1 indicates debug information is generated. If you do not want to
generate debug information, set the environment variable as follows:

SET CVDEBUG=

94 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Building your part
Compiling and linking a Visual Builder part is called building. You can build your part
from a COBOL Visual Builder project or from a command prompt. Before you build
your part, you must generate the build files. Refer to “Generating build files” on
page 93 for more information.

Building from a COBOL Visual Builder project
You can build your part either in the Visual Builder window or from your COBOL Visual
Builder project. Select Build from the Project menu in you COBOL Visual Builder
project or in the Visual Builder window, assuming you started the Visual Builder from
COBOL Visual Builder project. You must generate part source and build files before
building your part. Refer to “Generating source and build files” on page 91 for more
information.

Building from the command line
To build your part from the command line, use the nmake command. For example, if
you have a part file named MyPart.VCB and you generate the build file for this part,
your make file is called MyPart.mak. Then, to run the nmake program, you issue the
following command from an OS/2 window or MS/DOS command window:

nmake mypart.mak

After your part is successfully built, you have an executable in your directory which you
can run or a dynamic link library you can use as a resource.

Using or running your part
Depending on the target you selected (an executable or a dynamic link library), you can
either run your part or use it as a resource for another part or in your application. If
your target is an executable, look for the executable (.EXE) file in the working directory.

Using the MyPart example, the executable created is MyPart.EXE. To run this part,
select Project →Run from your COBOL Visual Builder project, or type MyPart on the
command line in an OS/2 window or MS/DOS command window. If your target is a
dynamic link library, look for the (.DLL) file in your COBOL Visual Builder project folder
or the working directory. Using the MyPart example, the dynamic link library created is
MyPart.dll.

Debugging your part
If your part is not performing as you expect, you can build your part with debugging
options and use the debugger to step through your code. The following sections list
some possible problems and suggestions on how to deal with them.

 Chapter 6. Creating parts – an overview 95

Developing Applications

 Workstation beeps
If your workstation beeps while you are running Visual Builder, an exception has
probably been thrown. Check for the following conditions:

� Missing resources (bitmaps or icons)
� Incorrect or incompatible part settings

No connections run in user code
You must explicitly instantiate connections and enable notification for them. Visual
Builder does this in generated code by means of the initializePart method. This
method initializes any static subparts and all connections from the part. If you
instantiate a generated part using the somNew method in your own code, be sure to call
the part’s initializePart method, as follows:

\ create screen

INVOKE pMine "initialize" USING ...

\ initialize connections

INVOKE pMine "initializePart" USING ...

//

// Now I can do something.

//

INVOKE pMine "show"

Note: Make sure you have the correct number of parameters and they are intialized.

Offset calculation for windows
If compiled application windows appear partially off the screen, be aware Visual Builder
calculates window position based on the x and y coordinates of the upper-left corner of
the window. When you create a part containing the window, Visual Builder calculates a
position offset from the upper-left corner of the scrollable free-form surface to the
upper-left corner of the window. This does not usually present a problem because
most parts are built from the upper-left corner of the free-form surface.

If you have added enough other parts to increase the size of the scrollable free-form
surface, the offset might become large enough to push a compiled window subpart off
the edge of the desktop display. To prevent this, place the window subpart immediately
to the right of the primary window part. Place nonvisual parts at the extreme right of the
free-form surface.

Cannot enter text into entry fields on Windows
The default font for Windows is taller than the default font for OS/2. This size difference
can cause problems if you drop CEntryField parts on a CCanvas part in OS/2 and then
try to use the composite part in Windows.

The default height of an entry field is calculated in OS/2 based on the size of the OS/2
font. Compiled in Windows, this entry field cannot accommodate the taller Windows
font.

96 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

If you experience this problem, either reset all CEntryField parts in the Visual Builder on
Windows to their default size from the part's contextual menu or increase the height of
the entry field on OS/2.

 Error handling
The CInterfaceManager has an errorCode method. After invoking a method in a class,
you can invoke the method getErrorCode to return an integer. Use this integer to
determine if the prior method in CInterfaceManager executed successfully by testing for
0. Use the setErrorCode method to reset the errorCode to zero.

Application terminates suddenly
If your application terminates suddenly, there are several ways to help you determine
the cause of the termination.

Check for runtime error
If you are running your application from the command line, redirect the standard
output and error to files, then read the file in a text editor. For instance, if you are
running an application called MyApp, type the following at the command line:

MyApp > My.out 2> My.err

Any COBOL run time messages are redirected into the file My.err. System messages
and results from your DISPLAY statements are redirected to My.out. You can then
use any text editor to view My.err and read any run time messages.

If you are using WorkFrame, run the application monitored and both run time
messages and standard output appear in the monitor.

Run application in debug mode
Follow these steps to enable the debugger for your application:

1. Determine which part appears to be the source of the problem.

2. Set the CVBDEBUG environment variable to 1.

3. Rebuild the part that appears to be the source of the problem. This enables the
debugger.

4. Run the debugger. The debugger stops at the program in your main .app file.

5. Select run. If the code for this part fails, the debugger encounters an exception
and the Application Exception Action window appears.

6. Select Examine/retry and open the stack monitor.

7. Click on one of your programs or methods to determine a source code line at
which the failure occurs.

8. Set breakpoints in the source accordingly.

9. Select restart from the Run menu, then step through your code.

Use this process repeatedly, if necessary, until you are able to determine the source
of the failure.

Note: Many events result in the execution of a processNotification method in a
connection class. Avoid setting breakpoints at the method-id of these

 Chapter 6. Creating parts – an overview 97

Developing Applications

methods. Instead, set breakpoints after the event identifier is tested for the
identifier relevant to the connection. If such a breakpoint is not reached
during execution, check the event of the source of the connection and confirm
it is the event you want. In the Composition Editor, click on the connection to
view information about the generated class and code in the information area
at the bottom of the window.

Type mismatch
A common cause of sudden application termination is the mismatch of interfaces
between the invoking method and the method implementation. In many cases,
compile your code using the TYPECHK option before invoking the debugger. See the
Programming Guide for more information on compiling code with the TYPECHK
option.

Tracing execution flow
Trace the execution of your feature code and supporting programs by inserting display
statements. If you are running your application from the command line, type in the
following:

MyApp > app.out

The output from the display statements executed are redirected into the file app.out.
Use a text editor to view app.out.

If you are using WorkFrame, run the application monitored and the monitor window
displays the display statements executed.

98 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Chapter 7. Creating nonvisual parts

This chapter describes how to define your own nonvisual parts. For information about
using the Composition Editor to create visual parts, see Chapter 8, “Learning to use
parts” on page 107. For more information about using the Part Interface Editor to
define part interfaces, see “The Part Interface Editor” on page 56.

Creating a nonvisual part

You create a nonvisual part by doing the following:

1. Design the part.

2. Define the part interface, either through the Part Interface Editor or by importing a
part information file. (See “Defining the part interface” on page 103.)

3. Add code to your part. You can use COBOL code written outside of Visual Builder,
or you can generate feature code in Visual Builder and modify it. (See “Adding
code to your part” on page 104.)

Using existing COBOL code

If you have previously existing COBOL code you would like to use in your part, the
following process can be more efficient:

1. Design the nonvisual part.

2. Define the part interface using part information files. Define actions to represent
each program.

3. Define the interface to data types representing your data structures using part
information files.

4. Import these part information files into Visual Builder.

Using COBOL data declarations

If you have existing COBOL data declarations you want to use in your part, it is more
efficient to use the following process:

1. Put the declaration in a copy file.

2. Import this copy file into the Visual Builder to create a data part.

3. Use the data part as you would any other nonvisual part with attributes.

 Chapter 7. Creating nonvisual parts 99

Developing Applications

Using existing COBOL code with Visual Builder
This chapter describes how you can use your existing COBOL code in applications that
you create with Visual Builder.

Defining the part interface using part information files
If COBOL code already exists for your Visual Builder application, you can more
efficiently define the part interface using part information files. This involves the
following steps:

1. Determine the part’s features.

2. Create a part information file using your favorite editor. This file can include
information for as many parts as you need.

3. In Visual Builder, import the part.

Creating a part information file
To create a part information file, add information about your part’s interface to a file
using your preferred editor. Refer to Appendix A, “Creating part information files” on
page 223 for information on creating part information files. Some important syntax
items to note are the following:

� The VBBeginPartInfo and VBEndPartInfo statements delimit the part information for
the part.

� The VBParent statement specifies the parent class for the part.

� The VBCopy statement specifies a copy file to be added to the repository phrase
when the code is generated.

� The VBPartDataFile statement specifies the part file (.VCB) holding the information
for the part.

� The VBComposerInfo statement indicates the kind of part.

� The VBEvent, VBAction, and VBAttribute statements define features for this part.

� The VBGeneratorValues to indicate you want to build this part into a dynamic link
library (DLL). As an alternative, you can specify Build as DLL in the System
Interface Editor after you import the parts.

For information about part definition syntax, refer to Appendix A, “Creating part
information files” on page 223.

100 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Importing the part
Before importing the part, you must create a part information file. To import the part,
follow these steps from the Visual Builder window:

1. From the menu bar, select File . Select Import part information .

The Enter Name for Part Information File window appears.

2. Specify the path and name of the part information file containing the information
you want to import. When the import is finished, the name of the part appears in
the Visual Builder window.

If COBOL code for your part already exists, your part is finished. If you want to change
the part interface later, do either of the following:

� Use the Part Interface Editor to edit feature specifications.

� Edit your part information file and re-import the part information. You must use this
method if you are creating a program part.

If COBOL code for your part does not exist, see “Adding code to your part” on
page 104.

Importing copy files
If you have pre-existing data structures defined in copy files and you want to use them
in your application, you can import those copy files and use them as data parts. When
you import a copy file, the 01 and 77 level data items it contains become nonvisual
parts in the Visual Builder, and can be used like any other nonvisual parts.

There are several rules copy files must conform to in order to be imported correctly.
These rules are as follows:

1. A copy file must conform to COBOL syntax rules before it is imported. A copy file
imported with errors may generate code with errors.

2. A copy file can contain only data description entries (and comments) to be used in
the data division.

3. OCCURS DEPENDING ON is not supported. Any 01 level record containing an
OCCURS DEPENDING ON is not imported.

4. Nested COPY statements are supported. Each copy file must have complete
declarations begining with either an 01 level data item or a 77 level data item.
Copy files may contain multiple 01 level or 77 level data descriptions.

5. COPY REPLACING is not supported. A copy file containing Pseudo text may
produce undesired results.

6. Level 66 items are ignored.

7. REDEFINEd data items are ignored.

8. Names must be less than 24 characters in length. If you attempt to import a 01
level data item with a name 24 characters or longer, or if it contains a lower level

 Chapter 7. Creating nonvisual parts 101

Developing Applications

data item with a name 24 characters or longer, the entire 01 level data item is not
imported.

In addition, you must pay careful attention to any types. When you connect two
features, they must have the same type. The Visual Builder does not check type
mismatches. This could lead to problems in the generated code.

The data item names used in connections are used in the generated code.
It may be useful to use your favorite editor to browse the generated code
to see how your data items are being used.

Copy files conforming to these rules can be imported as follows:

1. In the Visual Builder window, select File→Import COPY file . The Import COPY
file window appears, as shown in the following figure:

Figure 28. Import copy file window

2. Enter the name of the copy file in the Copy file entry field or select the copy file
using the File button.

3. Once you have located the proper copy file, select the OK button. The imported
copy file defines a part file (.VCB), which can be used like any other part file.

Once a file is imported, each 01 or 77 level defines a different part. These parts have
attributes defined by their data item names. Connecting to and from these attributes
amounts to a COBOL MOVE statement which moves data to and from the
corresponding data item in the instance of the part. When connecting these attributes,
you must be aware of COBOL MOVE rules. Type checking is not done; data may be
converted. Use the settings notebook to set the initial value of any attribute.

In the generated code, the data parts contain an expanded, structured, uncommented
form of each relevant data description. In the main data part, the declaration is an
instance of the entire 01 group or elementary item. In the connections to specific
attributes, this is the selected higher level group.

102 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Notes:

1. Copy files can also be used to define types via a part information file (.VCE). In
this case, the copy file can not have an 01 level data item. Types are used to
define parameters of the get or set methods in various parts. The 01 level group
item of such a variable is supplied by the code generator followed by the COPY
statement.

2. The specific copy file of a component created while importing components created
using GUI Designer of VisualAge for COBOL version 1.0 components have a
special, reserved 01 level data item. The related variables are treated as a special
case.

Defining the part interface
When you are satisfied with your part’s design, you are ready to define the part
interface to Visual Builder, as follows:

1. Define the attributes of your part.

A part’s attributes typically correlate to the class’ data members and can
additionally include derived attributes, or attributes based on the value of other
attributes.

2. Define the methods that get or set the value of those attributes.

3. Define any actions you want the part to be able to do.

A part’s actions correlate to the class’ methods.

4. Specify the event identifier used to signal a change in the value of each attribute.

You can define the part interface in either of the following ways:

� Use the Part Interface Editor to create the part interface from the Visual Builder
window and then enter each feature of the part interface individually using the
pages of the Part Interface Editor.

� Use a part information file to encode part information in a file and then create the
part and its interface by importing the information into Visual Builder. This method
might be more efficient if COBOL code already exists for your part.

Note: You must use this method for program parts.

Refer to Appendix A, “Creating part information files” on page 223 to learn how to
create a part information file.

 Chapter 7. Creating nonvisual parts 103

Developing Applications

Adding code to your part
Once you specify the part interface for your part, you add the code to make the part
work. To add code, complete the following tasks:

1. Generate feature code. If you already have COBOL code for your part and have
imported the part information, this step is not necessary.

2. Modify the feature code.

3. Add code created outside Visual Builder, if it already exists.

Generating feature code
If code does not already exist for your part, you can use Visual Builder to generate
feature code. This feature code is based on the part interface you defined earlier. For
most attributes, the generated feature code is sufficient to define get methods, set
methods, and event identifiers. For actions, you have to modify the feature code to add
the function or logic you want your part to perform.

If you use Visual Builder to generate the source code for your parts, you will find it
helpful to generate feature code separately. Each time you generate source code,
Visual Builder replaces the existing files with new ones because there is no need for
you to modify these files.

The files you usually need to modify are the feature code files. These are the files in
which you write the code to tell your application how to perform the actions you create
in the Part Interface Editor. Each time you generate feature code, Visual Builder
appends the newly generated code to the end of each existing feature code file. This is
done so you will not lose any code you have written.

In addition, you do not have to generate new code for all of your features each time
you need code for a feature. You can create a new feature in the Part Interface Editor
and then generate feature code just for the new feature. Visual Builder appends the
code for the new feature to the end of the existing files so you can modify it.

Note: If you regenerate code for a feature, be sure to remove the previous code for
that feature from the file to prevent compilation errors or unwanted results.

Adding code created outside Visual Builder
To include previously existing methods, change the file extension to .CBV. If the
methods require new instance variables, declare these in a .CPV file. If the methods
reference additional classes, declare these classes in the copy (.CPY) file. Add these
file names to the System Interface Editor for the appropriate part.

Developing code outside Visual Builder

If you prefer not to use Visual Builder to develop the code for a nonvisual part but you
want to be able to use the nonvisual part in the Composition Editor, do the following:

1. Write the code.

2. Compile it into a dynamic link library (.DLL).

104 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

3. Create an import library and rename it so it has a .imp extension.

4. Define the part interface using a part information file, including a
VBGeneratorValues:genMake('dll') statement. Use the import library name as the
part name.

5. Import the part information file. Refer to Appendix A, “Creating part information
files” on page 223 for more information on creating part information files.

When you build the visual part that needs to reference methods or programs in the
dynamic link library, add this nonvisual part. After you generate source code and build
files and then make your executable, the references to methods or programs in the
dynamic link library are resolved.

 Chapter 7. Creating nonvisual parts 105

Developing Applications

106 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Chapter 8. Learning to use parts

This chapter provides general information on using parts.

With the Composition Editor you can visually construct an application by placing parts
on the free-form surface and making connections between them.

With connections, you can construct the interactions between the parts of the
application. For information about connecting parts to each other, see Chapter 9,
“Learning to use connections” on page 153.

In Visual Builder you use the following kinds of parts:

� Visual parts, such as CPushButton, CListBox, and CEntryField, to construct the
graphical user interface (GUI) of the application.

� Nonvisual parts to represent the data or objects manipulated by the application.

Working with parts in the Visual Builder Window
The topics in this section describe how to perform various actions on parts from the
Visual Builder window.

Displaying part names
To display the names of the parts in a part file, in the Loaded Part Files list box in the
Visual Builder window, select the part files whose parts you want to see. The names of
the parts contained in the part file that you selected are displayed in the Visual Builder
window. Visual parts are displayed in the Visual Parts list box; nonvisual parts and
class interface parts are displayed in the Nonvisual Parts list box.

Once part names are displayed, you can perform actions on them, such as opening or
deleting them. If you need information about loading part files, see “Loading part files”
on page 33.

Figure 29 on page 108 shows the Visual Builder window with the names of the parts in
the VAccess.vcb file displayed:

 Chapter 8. Learning to use parts 107

Developing Applications

Figure 29. Visual Builder window with VAccess.vcb parts displayed

Selecting all parts
To select all of the parts in the selected part files, select Edit →Select all parts .

At this point, you can review the list to see if you want to deselect any of the parts. You
can do so by pressing the Ctrl key and clicking on the part name with mouse button 1.

Deselecting all parts
To deselect all of the parts in the selected part files, select Edit →Deselect all parts .

Importing part information
Using any text editor, you can create files called part information files, which are used
to import existing COBOL classes and type definitions into Visual Builder as nonvisual
parts. Part information files are normally recognizable by their .VCE extension. Refer to
Appendix A, “Creating part information files” on page 223 to learn how to create part
information files.

The Import part information function loads part information files so you can use the
parts specified in those files in Visual Builder.

To import part information, do the following:

1. Select File→Import part information . The following window is displayed:

108 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Figure 30. Import Part Information window

2. Select the part information file you want to import.

3. Select the OK button. The part information in the part information file is imported.
Any nonvisual parts, class interface parts, and program parts it contains are
displayed in the Nonvisual Parts list box. Any types or enumerations it contains
are displayed in the Loaded Type Information list box. In addition, one or more
part files might be created.

Exporting part information
Just as you can import part information from an existing part information file, you can
also export part information for any Visual Builder part into a part information file (.VCE)
file. This lets you share nonvisual and class interface parts with other programmers.
Part information files contain usage information programmers who do not have access
to the part file (.VCB) can use.

To export part information, do the following:

1. Select the part, parts, or types whose information you want to export in either the
Visual Parts list box, the Nonvisual Parts list box, the Loaded Type Information
or all three.

2. Select Part→Export interface . The following window is displayed:

 Chapter 8. Learning to use parts 109

Developing Applications

Figure 31. Part — Export Interface window

3. Type the name of the part information file (.VCE) in which you want the part
information stored in the Open file name field. If you do not enter a file name,
Visual Builder uses <partname>.VCE as the default file name. If you have multiple
items selected, the default name is exported.vce.

4. Select the OK button. The part information maintained by Visual Builder is exported
to the file name you specified in the Open file name field.

Creating a new part
This section provides only the basic steps for creating a new part. For a description of
how to define a part once it has been created, see Chapter 7, “Creating nonvisual
parts” on page 99.

To create a new part, do the following:

1. Select Part→New. A Part–New window is displayed, as follows:

110 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Figure 32. Part–New window

2. Enter the name you want to give to your part in the Class name field.

3. Enter a description of your part in the Description field. Visual Builder uses the
description you enter here in the following ways:

� If you add the part you create to the parts palette, Visual Builder displays the
part’s description in the information area at the bottom of the Composition
Editor when the part is selected.

� If you export the information about the part to a part information file, the
description is included with the other information about the part.

4. Enter the name of the part file in which you want Visual Builder to store the part in
the File name field. If the file does not already exist, Visual Builder creates it for
you. If you leave this field blank, Visual Builder creates a part file as follows:

� If you are using the File Allocation Table (FAT) file system and have selected
Options →Default to FAT file names , Visual Builder creates a part file whose
name has no more than eight characters. Without this selection, Visual Builder
attempts to create a part file whose name is the same as the name of your
part, which causes an error if your part name has more than eight characters.
Refer to “Using File Allocation Table (FAT) file names” on page 39 for detailed
information.

� If you do not select Options →Default to FAT file names , the name of the
part file is the same as the name of your part.

5. Select the type of part that you want to create in the Part type field. You can
select one of the following:

 � Visual part
 � Nonvisual part

6. Either keep the default parent class name provided by Visual Builder in the Parent
class field or change it.

Note the following:

 Chapter 8. Learning to use parts 111

Developing Applications

� A nonvisual part must have the CStandardNotifier class in its inheritance so it
can exhibit the behavior required for all parts—a part interface (attributes,
events, and actions). It must inherit this behavior from CStandardNotifier.

� A visual part must have the CFrameWindow class or CCanvas in its
inheritance so it can inherit the visual behavior common to all windows or
canvases, as well as part interface behavior, which CFrameWindow and
CCanvas inherit from CVisualPart. The default parent class for a visual part is
CFrameWindow.

� A class interface part has SOMObject for its parent class.

7. Select Open . One of the following occurs:

� If you are creating a visual part, the Composition Editor is displayed.

� If you are creating a nonvisual part, the Part Interface Editor is displayed.

8. Use the displayed editor to create your part.

 Opening parts
Use Part→Open to open parts already created. You must load the part file that
contains a part before you can open the part.

Visual Builder uses the question mark icon, , to represent the unloaded parts
on the free-form surface. If you open a part that contains other parts and the part files
that contain those other parts are not loaded, Visual Builder displays this icon.

The question mark icon indicates that most of the information about the unloaded part
is not available to Visual Builder. You can select connections between unloaded parts
and other parts to see which features are connected, but the features are not available
in the unloaded part’s pop-up menu.

You should not make any changes when there are unloaded parts or generate any
code.

If you open a part and see a question mark icon, do the following:

1. Close the part you just opened.

2. Load the part file that contains the unloaded part.

3. Reopen the part you previously opened. The question mark icon is replaced by the
part’s icon.

After loading additional part files, close and reopen editor windows. Otherwise, any
question mark icons that appear in the Composition Editor are not changed to
reflect the newly loaded part data.

If you want to add a bitmap to the folder, see “Specifying a unique icon for your part”
on page 54.

112 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

The following instructions tell you how to open one part at a time or multiple parts
simultaneously.

Opening one part

To open one part, do the following:

1. Find the name of the part you want to open by scrolling through the appropriate list
box in the Visual Builder window.

Note: If the list boxes in the Visual Builder window are empty or if you cannot find
the part, the part file that contains the part you want to open is not selected
or not loaded. See “Loading part files” on page 33 if you need help loading
part files.

The Visual Builder window with parts loaded from the file VAccess.vcb is shown in
Figure 29 on page 108.

2. Select the part you want to open.

3. Select Part on the menu bar.

4. Select Open in the pull-down menu. One of the following occurs:

� If you are opening a visual part, Visual Builder displays the Composition
Editor.

� If you are opening a nonvisual part, Visual Builder displays the Part Interface
Editor.

 A quicker way to open an existing part is to double click on the part name
within the Visual Parts or Nonvisual Parts list box.

Opening multiple parts

To open multiple parts, do the following:

1. Find the name of the first part you want to open by scrolling through the Nonvisual
Parts and Visual Parts list boxes shown in the Visual Builder window.

Note: If the list boxes in the Visual Builder window are empty, see “Loading part
files” on page 33 if you need help loading part files.

The Visual Builder window with parts loaded from the part file is shown in
Figure 29 on page 108.

2. Select the first part you want to open.

3. Do one of the following, depending on how the other parts appear in the list:

� If the other parts are adjacent in the list to the part previously selected, hold
down the Shift key and click on the last part in the group you want to select.
All parts between the first and last parts selected are now highlighted.

 Chapter 8. Learning to use parts 113

Developing Applications

� If the parts are not adjacent in the list, hold down the Ctrl key while selecting
each part.

4. Select Part on the menu bar.

5. Select Open in the pull-down menu. Visual Builder displays a separate window for
each part you selected. The window displayed is the Composition Editor for visual
parts or the Part Interface Editor for nonvisual parts.

Copying parts from one part file to another
To copy a part, do the following:

1. Select the part you want to copy in the Visual Parts or Nonvisual parts list box. If
you select more than one part or if you do not select a part, the Copy function is
not available.

2. Select Part→Copy . The following window is displayed:

Figure 33. Part — Copy window

The Source part name field shows the name of the part you selected to copy.

3. In the Target part name field, enter the name you want the part to have when you
copy it.

4. In the Target file name field, enter the name of the part file to which you want to
copy the part. If you leave this field blank, the part’s current file name is used.

5. Select the Copy button. The part is copied under the new name and stored in the
designated part file.

Moving parts to a different part file
Here is what happens to the part file into which the part or parts are being moved:

� If this part file does not exist, Visual Builder creates and loads it for you.

� If this part file already exists and is loaded, the part or parts are moved into it.

� If this part file already exists but is not loaded, Visual Builder displays a message
to warn you the unloaded part file will be overwritten by the part or parts that you
are moving into it.

114 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

To move one or more parts from one part file to another, do the following:

1. Select the part or parts that you want to move. If you do not select at least one
part, the Move function is not available.

 2. Select Part→Move .

3. Use the following instructions for moving one part or multiple parts:

Moving one part

If you selected one part, the following window is displayed:

Figure 34. Part — Move window for moving one part

The Part name field of this window shows the name of the part you selected to
move. The File name field displays the complete path of the part file that contains
the part you want to move.

Do the following:

a. In the New file name field, enter the path and name of the part file to which
you want to move the part.

b. Select the Move button.

The part is moved to the part file specified in the New file name field.

Moving multiple parts

If you selected more than one part, the following window is displayed:

Figure 35. Move Parts window for moving more than one part

 Chapter 8. Learning to use parts 115

Developing Applications

The text in the window specifies the names of the parts you selected. Do the
following:

a. In the entry field, enter the name of the part file to which you want to move the
parts. If the part file is not in your current directory, specify the complete path
for the part file.

b. Select the OK button. The parts are moved to the part file specified in the
entry field.

An alternative method of moving a part is to change the name of the part
file specified in the System Interface Editor. For more information, see
“Specifying a different part file” on page 53.

Deleting parts from a part file
To delete a part, do the following:

1. Select the part or parts you want to delete in the Visual Parts list box, Nonvisual
Parts list box, or both.

If you do not select at least one part, the Delete function is not available.

 2. Select Part→Delete .

The following window is displayed:

Figure 36. Part — Delete window

Deselect any parts you do not want to delete. Once you delete a part from a part
file, you cannot recover it unless you have another copy stored in another part file.

3. Select the Delete button.

116 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

The selected parts are deleted.

Renaming parts in part files
The Part→Rename menu choice lets you change the name a part is stored under in a
part file.

Use care when renaming parts because the name changes only in the part
file in which the part is stored. The name of the part does not change in
any other part in which this part is embedded or nested. Therefore, the
next time you open the part in which you nested the renamed part, Visual
Builder will not be able to find the renamed part.

To rename a part in a part file, do the following:

1. Select the part that you want to rename in the Visual Parts or Nonvisual Parts list
box. If you select more than one part or if you do not select a part, the Rename
function is not available.

2. Select Part→Rename . The following window is displayed:

Figure 37. Part — Rename window

The Part name field shows the name of the part you selected to rename.

3. In the New part name field, enter the new name you want to give the part.

4. Select the Rename button. The part is renamed under the new name.

 Chapter 8. Learning to use parts 117

Developing Applications

Working with parts on the free-form surface
The free-form surface is the large empty area in the Composition Editor where you
place nonvisual parts and visual parts from the Composers, Model and Other
categories.

Placing parts on the free-form surface
In the Composition Editor, you place visual, nonvisual, class interface and program
parts on the free-form surface. This section explains how to place parts that appear on
the parts palette, as well as parts that do not appear on the parts palette.

Placing a part that appears on the parts palette

1. From the left column of the parts palette, select the appropriate category. Then,
from the right column, select the part you want to add. When the mouse pointer is
moved over a place where the part can be placed, it changes to a cross-hair,
indicating it is loaded with the part.

2. Move the mouse pointer to where you want to add the part.

3. Click mouse button 1. If you hold down mouse button 1 instead of clicking it, an
outline of the part is displayed under the pointer to help you position the part. After
the part is in position, release mouse button 1.

To unload the mouse pointer at any time, do either of the following:

� Select , the Selection tool, on the tool bar.

� Select Tools →Selection tool on the menu bar.

To add several copies of the same part, select Sticky on the parts palette.
When Sticky is selected, the mouse pointer remains loaded with the part
you last selected. When Sticky is not selected, the mouse pointer
becomes unloaded after you add a part.

Placing a part that is not on the parts palette

You can place on the free-form surface any part whose part file (.VCB) is loaded by
doing the following:

1. Select Add part from the Options pull-down menu. The Add Part window appears,
which resembles the window shown in Figure 38 on page 119:

118 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Figure 38. The Add Part window

2. Click on the down arrow of the Part class drop down list. Select from the list of
available part classes. This list displays the part classes currently loaded in the
Visual Builder. If you do not see a part class you are looking for, close the Add
Part window and make sure the part file (.VCB) is loaded into the Visual Builder.

3. Type a name for the part in the Name field. This name will appear in the
information area at the bottom of the Composition Editor when you select the part
after it is placed; it is also used as the name of the part instance when you
generate your part code.

The Name field is optional. If you leave it blank, the part’s class name is used.

4. Select either the Part radio button or the Variable radio button. Select Part to add
a single instance of part. See “Creating the static visual parts” on page 214 for
more information on static parts. Select Variable if you want this part to be
dynamically created and destroyed as the application runs. Dynamic subwindows
are an example of adding a part as a variable. See “Adding visual parts as
dynamic instances” on page 214 for more information on dynamic parts.

5. Select the Add button to add the part. The Add Part window disappears and the
mouse pointer turns into the same crosshairs used for placing a part on the
free-form surface.

6. Move the crosshairs to the place where you want to add the part and click mouse
button 1.

Guidelines for placing parts on the free-form surface
Following are guidelines for placing parts on the free-form surface:

� Avoid overlaying primitive parts

You can overlay visual parts. Generally speaking, however, it is not good interface
design for one primitive part to overlay another primitive part, such as one push
button either completely or partially covering another push button. Be aware that
completely overlaying a primitive part can cause focus problems, meaning your
users might be able to see, but not select, the part.

 Chapter 8. Learning to use parts 119

Developing Applications

Partially overlaying a primitive part can cause problems, too, because your users
might not be able to see where the overlaying occurs. When they try to select the
part partially overlaid, they might be lucky and select the right spot, or they might
select the part overlaying the part they are trying to select. If you overlay primitive
parts, be sure to do it in a way in which your user can understand why the primitive
parts are overlaid and how to select them.

You cannot overlay, or cover up, nonvisual parts.

You can overlay composite visual parts, but as mentioned above, the primitive
parts a composite part contains should not be overlaid.

� Place other parts on top of parts in the Composers category

Parts included in the Composers category have a special behavior; these parts can
contain other visual parts that are placed on top of them. The parts the Composers
part contains automatically become subparts of the Composers part. For example,
if you place an entry field, a list box, and two push buttons in a canvas, the canvas
contains the other parts and they in turn become the canvas’ subparts.

Note: A subpart of a frame window takes the size of the frame window.

The following table lists each of the Visual Builder categories and specifies how
you can use the parts in each category.

� Use supplementary composite parts as subparts

Suppose you create a visual composite part that consists of a canvas on which you
have placed other visual parts, such as static text and entry fields, with each entry
field connected to a variable, as shown in Figure 40 on page 121.

Figure 39. Categories and how you can use their parts

Category Use Parts to Contain Other
Parts?

Use Parts as Subparts?

Buttons No Yes

Data entry No Yes

Lists No Yes

Frame Extensions No No

Sliders No Yes

Composers Yes Yes

Other No No

120 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Figure 40. Visual parts connected to nonvisual parts

Assume this part is not your main composite part but is instead a supplementary
composite part you want to use in your application’s user interface. Then you place
this part in your main composite part, such as in a frame window, as shown in
Figure 41. You place the supplementary composite part and work with it as one
part, not as a canvas and separate entry fields and static text. The frame window
contains the entire supplementary composite part, which becomes a subpart of the
frame window.

Figure 41. Composite part placed in frame window as subpart

One of the first things you have probably noticed is the connections for a
supplementary composite part are not displayed when that part is added to another
part. The connections and subparts are still there; you just cannot see them
because you cannot edit them directly from the Composition Editor window
containing the main composite part. Also, you cannot select the individual static
text parts, entry field parts, or their connections in the supplementary part you
nested in your main part.

 Chapter 8. Learning to use parts 121

Developing Applications

To change the connections or the default text on the static text parts, or to do
anything else to alter this part, you must edit the part indirectly, as described in
“Editing parts placed on the free-form surface” on page 138.

Selecting and deselecting parts
Before you can perform an action on a part you have placed on the free-form surface,
such as sizing it, you must first select the part. The name of the part currently selected
is displayed in the information area at the bottom of the Composition Editor. If more
than one part is selected, then \Multiple selection\ is displayed.

You cannot select parts and connections together. They are mutually exclusive.
However, if you delete a part connected to other parts, Visual Builder deletes the
connections in addition to the part.

When a part is selected, small boxes, called selection handles, are displayed on its
corners. If more than one part is selected, the one you selected last has solid selection
handles, indicating it is the anchor part. The other selected parts have hollow selection
handles as shown in the following figure:

Figure 42. Multiple parts selected with the Entry Field as the anchor part

Some parts are not sizable and, therefore, do not have any selection handles. These
parts have their background reverse colored. Parts with this behavior include menus.

The following sections describe how to select and deselect a single part and multiple
parts.

122 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Selecting a single part

To select a part you have placed on the free-form surface, click on the part with mouse
button 1. If other parts are already selected, they are deselected automatically.

Selecting multiple parts

Selecting multiple parts lets you perform the same operation on several parts at once.
To select multiple parts, do one of the following:

� Hold down the Ctrl key in OS/2 or the Shift key in Windows and click mouse
button 1 on each additional part you want to select.

� Hold down mouse button 1 instead of clicking it. Then move the mouse pointer
over each additional part you want to select. After you select the parts, release
mouse button 1. (This method works only in OS/2.)

Note: Depending on the operation you want to perform, remember to consider which
part you want to be the anchor part because that is the part you want to select
last. For example, if you select two parts because you want to match the width
of one part to the width of the other, the part you select last is the anchor part,
the part whose width is used for the operation.

Deselecting parts

To deselect a part after you have selected it, do one of the following:

� Hold down the Ctrl key in OS/2 or the Shift key in Windows and click on the
selected part with mouse button 1.

� Click mouse button 1 in a clear spot on the free-form surface.

When the selection handles disappear, you know the part is no longer selected.

To deselect multiple parts, do the following:

1. Hold down the Ctrl key in OS/2 or the Shift key in Windows.

2. Click and release mouse button 1 on a selected parts.

3. Repeat the previous step until all parts you want to deselect have been deselected.

 Manipulating parts
Once a part is added to the free-form surface, you can manipulate it in a number of
different ways. The following sections explain each of those ways.

 Chapter 8. Learning to use parts 123

Developing Applications

Displaying pop-up menus
To display the pop-up menu of a part, click on the part with mouse button 2. The
pop-up menu displays the operations you can perform on that part.

A part does not have to be selected for you to display its pop-up menu. The pop-up
menu displayed is for the part the mouse pointer is over when mouse button 2 is
clicked, even if another part is selected.

 Copying Parts
To copy parts by dragging them, do the following:

1. Select all the parts you want to copy. If you only want to copy one part, you do not
have to select it.

2. Move the mouse pointer over the part you want to copy or one of the selected
parts.

3. Hold down the Ctrl key and mouse button 2 in OS/2 or the Ctrl key and mouse
button 1 in Windows.

4. Drag a copy of the part or parts by moving the mouse pointer to a new position. An
outline of the part or parts is displayed to help you with positioning. When you are
copying multiple parts, the outlines of each part move together as a group.

5. Release the Ctrl key and mouse button when the part or parts are where you want
them to be. A copy of the part or parts appears where you positioned the outline or
outlines.

Copying parts using the clipboard

To copy parts by using the clipboard, do the following:

1. Select all the parts you want to copy.

2. From the Edit pull-down menu, select Copy . A copy of each selected part is
placed on the clipboard.

3. Select Paste from the Edit pull-down menu when you are ready to use the parts.
The mouse pointer turns to crosshairs to show it is loaded with the copied parts.

4. Position the mouse pointer where you want the parts to be copied.

5. Click mouse button 1. Copies of the parts are pasted at the position of the mouse
pointer.

Parts that you copy remain on the clipboard until you copy something else.
Therefore, you can continue to paste copies of those parts by selecting
Paste , positioning the mouse pointer, and clicking mouse button 1.

If you select Paste and then decide against pasting the parts, you can
unload the mouse pointer by either selecting the Selection tool on the tool
bar or by selecting Tools →Selection tool on the menu bar.

124 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

 Deleting Parts
To delete one or more parts, do the following:

1. Select all of the parts you want to delete. If you are deleting just one part, you do
not have to select it.

2. Position the mouse pointer over the part you want to delete or one of the selected
parts.

3. Click mouse button 2.

4. From the part pop-up menu, select Delete . The part or parts are deleted.

You can also delete a part by pressing the Delete key after selecting the part.

 Any connections between the part you are deleting and other parts are also
deleted. Visual Builder displays a message to alert you of this. However, the
Edit →Undo function also restores any connections removed when you deleted
the part.

Editing Text Strings
Some visual parts, such as push buttons and menus, have text strings. To directly edit
a part’s text string, do the following:

1. Hold down the Alt key.

2. Click mouse button 1 on the text string.

3. Edit the text string.

4. When you have finished, do either of the following:

� Click mouse button 1 anywhere outside of the text string.
 � Press Shift+Enter.

 You can also use this direct editing technique to edit the names of nonvisual
parts. The name of a nonvisual part is displayed directly below its icon.

Renaming parts on the free-form surface
When you use parts in the Composition Editor, Visual Builder gives those parts a name
based on the names given to the parts on the parts palette or the names you specify
when you place parts on the free-form surface. For example, the first push button part
that you use is named PushButton1. When you select this part, the information area at
the bottom of the Composition Editor shows the message “PushButton1 selected.” The
second push button you use is named PushButton2, the third is named PushButton3,
and so forth. These default names are assigned to help Visual Builder distinguish one
part from another, as well as the connections between parts, when you generate the
code to build your application.

 Chapter 8. Learning to use parts 125

Developing Applications

If you want to give parts names that are more descriptive or meaningful to your
application, you can do so as follows:

1. Move the mouse pointer over the part whose name you want to change.

2. Click mouse button 2 to display the pop-up menu for the part.

3. Select Change name . A Name Change Request window is displayed. Figure 43
shows a Name Change Request window for a push button part.

Figure 43. Name Change Request window for a push button part

4. Type a new name in the entry field. This name must be a valid COBOL name.

5. Select OK. Visual Builder changes the name of the part to the name that you typed
in the entry field.

You can also change a part’s name by opening the part’s settings notebook and
changing the name in the Subpart name field.

 Arranging parts
You can arrange parts on the free-form surface in a number of different ways. The
following sections explain each of those ways.

 Moving parts
To move a part, move the mouse pointer over the part, hold down mouse button 2 in
OS/2 or mouse button 1 in Windows, and move the mouse pointer to drag the part to
the new position.

You can move several parts at once by first selecting all the parts you want
to move and then dragging one of the parts as described. All of the
selected parts will move together, maintaining their position relative to each
other.

126 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Positioning parts on the grid
The free-form surface has a grid you can use to position parts. In addition, parts that
can contain other parts (for example, any Composers part, such as a frame window)
have a grid associated with them. You can use this grid to align and evenly space
subparts Composers parts contain.

To position the upper-left corner of parts to the nearest grid coordinate, do the
following:

1. Select all the parts you want to position to the grid.

Note: If the parts you select are subparts, they are positioned to the grid set up
inside the Composers part, not the grid for the free-form surface.

2. Select , the Snap To Grid tool.

 You can automatically position a part to the nearest grid coordinate when it
is added to the free-form surface or a Composers part by selecting Snap on
drop from the Options pull-down menu.

Specifying grid spacing
To specify the grid spacing, do the following:

1. From the pop-up menu of a Composers part or the free-form surface, select Set
grid spacing .

2. Specify the horizontal and vertical distance between the lines of the grid in pixels.

Showing and hiding the grid
To toggle between showing and hiding the grid for the free-form surface, do one of the
following:

� If no parts are selected, you can select , the Toggle Grid tool to toggle
the grid for the free-form surface.

� If a Composers part is selected, selecting the Toggle Grid tool toggles the grid for
the Composers part instead of the free-form surface.

Toggling between showing and hiding the grid for a Composers part

To toggle between showing and hiding the grid for a Composers part, do one of the
following:

� Select the Composers part and the select , the Toggle Grid tool.

 Chapter 8. Learning to use parts 127

Developing Applications

� From the Composers part’s pop-up menu, select Toggle Grid .

 Sizing parts
To change the size of a part, select it and use mouse button 1 to drag one of the
selection handles to the new position. An outline of the part is displayed under the
mouse pointer to show you the new size of the part.

You can size several parts at once by first selecting all the parts you want
to size.

To size a part in only one direction, press and hold the Shift key while
using mouse button 1 to size the part. Holding down the Shift key prevents
one dimension of the part from changing while you resize the other
dimension. For example, to change the width of a part but prevent its
height from changing, hold down the Shift key while changing the width.

You can also size a part to the grid coordinates by selecting Snap on size
from the Options pull-down menu.

Note: The size and position of a window subpart at run time is determined by the size
and position specified during construction. Window subparts can be moved to
the lower right while connecting to other parts.

Matching part sizes
To size parts to the same width or height of another part, do the following:

1. Select all the parts you want to size, making sure the last part you select is the
part whose size you want the others to match.

2. Select one of the following sizing tools from the tool bar:

 Match Width Match Height

The size of all the parts you selected, with the exception of the last part, changes
to match the size of the last part selected.

 Aligning parts
To align parts to the same position as another part, do the following:

1. Select all the parts you want to align, and then select the part you want the others
to be aligned with.

2. Select one of the following alignment tools from the tool bar:

 Align Left Align Top

128 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

 Align Center Align Middle

 Align Right Align Bottom

Spacing subparts within Composers parts
To evenly space subparts within their Composers part, do the following:

1. Select all the parts you want to evenly space.

2. Select one the following spacing tools from the tool bar:

 Distribute Horizontally

 Distribute Vertically

Spacing parts within a bounding box
To evenly space parts within the unseen bounding box that contains the selected parts,
do the following:

1. Select all the parts you want to evenly space. You must select a minimum of three
parts.

2. From the pop-up menu of one of the selected parts, select Layout →Distribute ,
and then one of the following:

Horizontally in bounding box
Evenly distributes the selected parts within the region bounded by the leftmost
edge and rightmost edge of the selected parts.

Vertically in bounding box
Evenly distributes the selected parts within the region bounded by the topmost
edge and bottommost edge of the selected parts.

For more information on tool bar tools, see “The tool bar” on page 44.

Changing settings for a part
The settings notebook of a part provides a way to display and set attributes and options
for the part. To ensure that initial values are set the way you expect, always explicitly
set them.

 Chapter 8. Learning to use parts 129

Developing Applications

Opening the settings notebook for one part
To open the settings notebook for a part, move the mouse pointer over the part and do
one of the following:

� Double-click mouse button 1.
� Click mouse button 2 and select Open settings from the part’s pop-up menu.

Opening settings notebooks for multiple parts
You can open the settings notebooks for multiple parts by doing the following:

1. Select the parts whose settings you want to change.
2. Move the mouse pointer over one of the selected parts.
3. Click mouse button 2.
4. Select Open settings from the pop-up menu.

Visual Builder opens a settings notebook for each of the selected parts.

Navigating through a settings notebook
You can navigate through the notebook pages in the following ways:

� To turn the pages of a notebook, use the small left- and right-arrow buttons at the
lower-right corner of each page.

� To move to a different settings category, select one of the tabs to the right of the
pages.

Note: When a category has more than one page, the page number and total
number of pages within the category are displayed at the bottom of the
page.

� If all of the category tabs do not appear on the pages of the notebook, small left-
and right-arrow push buttons are displayed to the left of the category tabs, and
small up- and down-arrow push buttons are displayed above and below the
category tabs, Use these buttons to move through the available category tabs.

About the settings pages
The following list contains a description of each of the pages a settings notebook might
contain:

General
A page for setting the name of the part, any static text that might appear on the part,
and other part-specific settings. For example, the General page for an CMenuItem
part contains a group box for setting the Command Key for the menu item. Refer to
the online help for descriptions of specific settings for parts.

Control
This page allows you to specify information for the part in its role as a control part,
such as a window ID, and whether the part is available for the user to select.

Styles
Select the styles you want initially set for the part. Some styles are mutually
exclusive.

130 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Display Type
Specify the picture clause you want to use for alphanumeric data.

Validation
Entry fields can be validated before data is returned to other parts. This page
specifies the validation rules to use.

Color
A page that allows you to change the color of the part.

Changing the color

To change the color, do the following:

1. In the Color area group box, select the area, such as foreground or background,
you want to change.

2. Do one of the following:

� If you want to specify red-green-blue values, select the RGB check box and
specify values in the fields in the RGB values group box.

� If you want to select a color by its name, deselect the RGB check box and
select a color from the Colors drop-down list box.

3. Select either the Apply button to see how this color looks for your part without
saving the change or the OK button to close the settings notebook and save the
color change.

Size/Position
This page allows you to specify the size and position of a part.

Specifying the size and position of a part

To specify the size and position of a part, do the following:

1. In the x and y fields, specify the initial X and Y coordinates for the part. These
coordinates determine the position of the part’s upper-left corner.

2. In the width and height fields, specify the number of pixels for the width and
height of the part.

Note: The size and position of non-window subparts is determined by their visual
placement in the containing part. This overrides any settings in the subpart.
Window subparts are visually positioned and sized by themselves.

Font
This page allows you to specify the font to be used for the part.

Changing the font for a part

To change the font for a part, do one of the following:

� If you know the name and size of the font you want to use, you can enter them
in their respective fields.

� If you do not know the name and size of the font you want to use or if you want
to change the style or emphasis, select the Edit button. Visual Builder displays

 Chapter 8. Learning to use parts 131

Developing Applications

a standard font dialog from which you select the name, size, style, and emphasis
you want to use for the part’s font.

Note:

1. Fonts are system dependent.

2. A change in font may require a part to be resized. At run time, an oversized
cursor prevents data entry.

Activating settings changes
After you make changes to the settings in the settings notebook, you can activate them
in the following ways:

� Select the OK button to immediately activate and save the changes you made and
to close the settings notebook.

� Select the Apply button to apply the changes you have made and keep the
settings notebook open.

This allows you to see whether you need to modify any of the changes you made.
The changes remain applied until you change them again.

Select the Cancel button to close the settings notebook. If you made changes and
selected the Apply push button, the changes are saved.

Select the Help button for descriptions of the settings in the settings notebook.

Using the generic settings notebook
When you create a part, Visual Builder provides a settings notebook for your part. The
settings notebook for your part has one page, which contains the following types of
settings:

� An entry field for each attribute with a set method

� A check box for each Boolean attribute

If your part has no attributes, the page displays a message saying that there are no
values to set.

Note: For most nonvisual parts, you can use the generic settings notebook to provide
initial values for attributes. For nonvisual data parts, provide initial values as
follows:

1. Connect the ready event of the part you are editing to the attribute of the
nonvisual data part you want to initialize. The resulting connection appears
as a dashed line because the connection is incomplete and requires a
parameter.

2. Double-click on the dashed line to open the settings window of the
connection.

3. Click on the Set parameters button. The Constant parameter settings
notebook appears.

132 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

4. Enter the appropriate value for the attribute listed.

5. Click on the OK button to save your entry and close the notebook.

6. Click on the OK button to close the settings window of the connection. The
dashed line becomes a solid line, signifying the connection is complete.

When you nest your part in another part, follow these steps to modify the attribute
settings for that particular instance of your part:

1. Place your part in the Composition Editor.

2. Move the mouse pointer over your part and click mouse button 2.

3. Select Open settings from the pop-up menu.

Visual Builder displays the settings notebook for your part.

4. Fill in the entry fields with appropriate values.

5. Click on the OK button to set those values and close the settings notebook.

Listing parts within a composite part
The Parts List window provides a way to display an ordered list of the parts nested in a
composite part. At first, parts are listed in the order they were dropped in the composite
part. If you then change the tabbing order of parts that have tabbing set, Visual Builder
rearranges the list to reflect the updated tabbing order. For more information on
tabbing, see “Setting the tabbing order” on page 135.

Note: In Windows, make sure your system palette is set to 256 colors or fewer before
trying to list parts.

To list parts nested in a composite part, do the following:

1. Open the composite part.

2. Click on the free-form surface with mouse button 2. The part’s pop-up menu
appears.

3. Select View parts list . The Parts List window opens. At first, the Parts List window

displays only the immediate subparts of the selected part. An expansion icon
appears next to each part that contains subparts of its own. To see those parts,
select the expansion icon.

The parts list for a default COBOL Visual Builder project part is shown in Figure 44 on
page 134.

 Chapter 8. Learning to use parts 133

Developing Applications

Figure 44. Parts list for a sample part

Changing depth order within a composite part
Depth order is the order in which parts are stacked on the application desktop. Parts
lower in the depth order overlay at least a portion of parts higher up. An example of this
is a push button on a canvas. The canvas appears higher (or first) in the depth order;
the push button, which lies on top of the canvas, appears lower (or later).

Visual Builder assigns the depth order as parts are dropped. Depth order is not linear,
but hierarchical, depending on the arrangement of Composers parts.

You can change the depth order of parts in a composite part with a single parent by
dragging items in the parts list. To change the depth order, do the following:

1. Open the parts list for the composite part by selecting View parts list from the
composite part’s pop–up menu. Refer to “Listing parts within a composite part” on
page 133 for more information on part lists.

2. To move more than one part, do one of the following:

� If the parts are adjacent in the list, select the first part in the group to be
moved. Then hold down the Shift key and click on the last part in the group to
be moved. All parts between the first and last parts selected are now
highlighted.

� If the parts are not adjacent in the list, select the first part. Then hold down the
Ctrl key while selecting the other parts.

If you want to move only one part, you do not need to select it first.

3. Using mouse button 2, drag the selected parts to their new location in the depth
order.

If tabbing has been set for any of the parts moved, changing the depth order also
changes the tabbing order. To find out more about tabbing order, see “Setting the
tabbing order” on page 135.

134 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Performing other operations on parts in the Parts List window
You can perform some of the same operations on parts in the parts list that you can
perform on the parts on the free-form surface. Visual Builder provides pop-up menus
that contain the enabled operations for each part in the parts list.

To perform an operation on a part in the parts list, do the following:

1. Move the mouse pointer over the part.
2. Click mouse button 2 to open the part’s pop-up menu.
3. Select the operation you want to perform.

Setting the tabbing order
The tabbing order is the order in which the input focus moves from part to part as the
user presses the Tab key. The tabbing order can also indicate the order in which the
input focus moves among parts within a tab group as the user presses the arrow keys.
Tabbing order is related to depth order, as discussed in “Changing depth order within a
composite part” on page 134.

The tabbing order can only be set or displayed for parts placed within a Composers
part. For example, if you place a row of push buttons in a frame window, you can set
the tabbing order for the push buttons. Consider the part shown in Figure 45.

Figure 45. Frame window with push buttons

The initial tabbing order is determined by the order in which you place the parts on a
Composers part. Also, the first part in the tabbing order receives the initial input focus.
For example, if the first part in the tabbing order is a push button, that push button
receives the initial input focus when the application starts.

To display the tabbing order, open a parts list for the Composers part that contains the
push buttons. Within the parts list, you can change the positions of parts in the tabbing
order.

 Chapter 8. Learning to use parts 135

Developing Applications

Changing the tabbing order
Because the order in which parts are placed on a Composers part determines the
tabbing order, you will probably need to change the order as you add or rearrange
parts. For example, suppose you decide to rearrange the three push buttons from the
example in the preceding section so that PushButton3 is between PushButton1 and
PushButton2, as shown in Figure 46.

Figure 46. Rearranged push buttons

The tabbing order of these push buttons is PushButton1, PushButton2, PushButton3,
even though PushButton3 is now between PushButton1 and PushButton2.

To change the position of a part within the tabbing order, do the following:

1. Open a parts list for the CCanvas part that contains the push buttons.

2. Move the mouse pointer to the part in the list whose position you want to change.

3. Press and hold mouse button 2.

4. Drag the part icon to its new position.

5. Release mouse button 2.

The changed tabbing order is shown in Figure 47.

Figure 47. Resequenced tabbing order

You cannot move a subpart to a new Composers part by changing the
tabbing order. You must do this by moving the parts themselves in the
Composition Editor.

136 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Setting tab stops and groups
If you want the user to be able to move the input focus to a part using the Tab and
backtab keys, do the following:

1. Select the part.
2. Open the part’s pop-up menu.
3. Select Set tabbing →Tab stop .

If you want the user to be able to move the input focus to a part with the keyboard
arrow keys, do the following:

1. Select the part.
2. Open the part’s contextual menu.
3. Select Set tabbing →Group .

All parts in the tabbing order below the part with Group selected are included in the
group.

To start another group, select Set tabbing →Group for the part you want to be the first
part in the new group. If a part has both Group and Tab stop selected, a user can tab
to the first part in the group and then use the arrow keys to move to the other parts in
the group.

Special considerations for radio buttons and entry fields

When you put radio buttons in groups, they become mutually exclusive within their
group. For example, suppose you have four consecutive radio buttons in your list and
you select Group for RadioButton1 and RadioButton3. In this case, RadioButton1 and
RadioButton2 become mutually exclusive in their group, with RadioButton3 and
RadioButton4 mutually exclusive in their group, as well. Tab stops are also set so a
user can tab between the two groups.

Consider setting a tab stop on each entry field that a user can type in to allow the user
to move the input focus from one entry field to another. Read-only entry fields do not
need a tab stop, and arrow keys only move the cursor within an entry field; only the
Tab key, backtab key, and mouse can change the input focus from one entry field to
another.

Style guidelines for setting groups and tab stops

The following are some typical style guidelines for setting groups and tab stops:

� The position of the parts in the tabbing order should be the same as the order in
which they are displayed in the window, from left to right and then top to bottom.

� Parts that are not in groups, such as entry fields and list boxes, should have
Group and Tab stop selected.

� Each group of related parts, such as check boxes and radio buttons, should be put
within an outline box or a group box. If there is only one group of related parts,
such as push buttons, you do not need to put them within an outline box or group
box. Select only Tab stop for these parts.

 Chapter 8. Learning to use parts 137

Developing Applications

� Parts that should not receive input focus, such as static text parts, should not have
either Group or Tab stop selected.

Editing parts placed on the free-form surface
Suppose you create a composite part, add it to another composite part you are
creating, and then realize that you need to change the first composite part. With Visual
Builder you do not have to start over. It provides a way for you to edit the part that
needs to be changed right from the free-form surface.

The only exception is the parent parts that Visual Builder provides. Visual Builder does
not allow you to modify these parts. This includes all of the parts in the part file
VAccess.vcb. If you place one of these parts on either a Composers part or the
free-form surface, you can modify the behavior of the part by doing the following:

� If you want to add an action to the part, consider connecting to a method that
belongs to the composite part, instead. Write a method if you need to perform an
action of limited use—that is, one that you do not anticipate using very often and
you do not want derived parts to inherit.

� If you want to add a new feature you plan to use often, create a new part derived
from the parent part. For example, to add a new feature to an CEntryField part,
create a new visual part whose parent is a canvas and contains a CEntryField part.
You can then add as many new features to your new part as you need. You can
also include features of the CEntryField part to your new part by promoting them to
your new part.

If you need to edit a part added to the part you are editing, do the following:

1. If you have not already done so, load the part file containing the part you want to
edit.

Note: See “Loading part files” on page 33 if you need information about loading
part files.

2. Move the mouse pointer over the part you want to edit.

3. Click mouse button 2. The part’s pop-up menu appears.

4. Select Edit part .

Visual Builder displays the appropriate editor for the part, as follows:

� If you are editing a visual part, Visual Builder displays the Composition Editor

� If you are editing a nonvisual, Visual Builder displays the Part Interface Editor.

5. Edit the part.

If you want to promote any of the features of the parts used to create
the composite part you are editing, doing so now keeps you from
having to edit this part again later. See “Promoting a part’s features”
on page 139 if you need more information about doing this.

138 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

6. Select File→Save to save the part.

7. Close the editor by doing one of the following:

� Double-click on the system menu icon.
 � Select File→Exit .

The editor you are using disappears and you are returned to the Composition
Editor you were using previously. However, Visual Builder has not applied the
changes you made to the part you just edited, so those changes are not visible yet.

8. Select File→Save to save the original part.

9. Close the Composition Editor for the original part that you were editing, as
described previously.

10. Reopen the original part you were editing by double-clicking on the part’s name in
the Visual Builder window.

You should now be able to see the changes you made to the part that you edited.

Promoting a part’s features
“Guidelines for placing parts on the free-form surface” on page 119 discusses the
relationship between parts in the Composers category and parts placed on top of them,
called subparts. When you create a visual part that consists of a part from the
Composers category that contains subparts, you can then place that visual part on top
of another part from the Composers category. However, if you do this, the features of
the subparts in the visual part that you created are not automatically available. You
must promote these features to use them in connections.

For example, suppose you create a visual part called Buttons whose parent class is
CCanvas. This part consists of a canvas part that contains three push button parts.
Here is what the Buttons part looks like:

Figure 48. Buttons part

Suppose you create another visual part whose parent class is CFrameWindow and then
add the Buttons part to the frame window part. Here is what the frame window part with
the Buttons part looks like:

 Chapter 8. Learning to use parts 139

Developing Applications

Figure 49. Frame window with Buttons part

Now, suppose that you want to connect the press feature of the Cancel push button to
the close feature of the frame window so the window closes whenever the Cancel push
button is selected. However, features of the push button parts are not available for
connections because the push buttons are subparts of the canvas.

When you nest a part such as Buttons, only the features of the Buttons part’s parent
classes (CCanvas, CFrameWindow, and so forth) are available in the connections
menu for the Buttons part. To use the features of the push button parts, you must
promote them to the Buttons part. You can do this either before or after you add the
Buttons part to the frame window.

To promote features of several subparts, we recommend using the
Promote page of the Part Interface Editor. For information about promoting
a part’s features from the Part Interface Editor, see “The Promote page” on
page 69.

140 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Tearing off an attribute
Select Tear-Off Attribute from a part’s pop-up menu to work with an attribute as if it
were a stand-alone part. The torn-off attribute is not actually a separate part, but a
variable that either represents the attribute itself or points to it.

When you select Tear-Off Attribute , Visual Builder displays the list of attributes for the
part you are tearing from. After you select an attribute from the list, you can drop the
torn-off attribute on the free-form surface. Visual Builder creates an attribute-to-attribute
connection between the original part and the torn-off attribute. You can then make other
connections to or from the torn-off attribute. See Chapter 9, “Learning to use
connections” on page 153 if you need information about attribute-to-attribute
connections.

You might want to tear off an attribute to do the following:

� Allow direct access from one part that is nested inside of another

� Enable direct access to an part's events and actions

Undoing and redoing changes in the Composition Editor
If you change something in the Composition Editor and then decide you should have
left things as they were, select Undo from the Edit pull-down menu to restore the part
to its previous state. You can undo as many operations as you want, up to when you
opened the Composition Editor.

If you undo an operation and then decide you did the right thing in the first place, select
Redo from the Edit pull-down menu. Redo restores the part to the state it was in
before the last Undo , including any connections deleted.

If you are not sure which operations you want to undo or redo, select Undo/Redo list
from the Edit pull-down menu to display two lists of operations, one for undoing and
one for redoing. From these lists, you can select an operation and then select the Undo
or Redo push button. The operation that you select and all of the operations listed
below it are undone or redone.

Note: Undo , Redo , and Undo/Redo list only affect operations you perform on the
free-form surface and parts palette in the Composition Editor. They have no
affect on any of the functions in the File pull-down menu, such as Save, Save
as, and Save and generate , which you cannot undo.

Sharing parts with others
The most effective parts can be reused with little effort by others that are previously not
familiar with parts' design. This chapter describes how you can distribute parts to others
for reuse in their own applications. Parts can be distributed in several ways, as follows:

� Providing part files (.VCB) for immediate use in Visual Builder. This method is
preferred for distributing visual parts.

� Providing part information files (.VCE) for import into Visual Builder. This method
works for almost any type of part but must be used to distribute program parts.

 Chapter 8. Learning to use parts 141

Developing Applications

In this chapter, the term part consumer refers to the recipient of the parts you distribute.

Providing part files (.VCB)
You can provide either visual or nonvisual parts in a part file, but this method lends
itself more to visual parts, for the following reasons:

� In the case of visual parts, part consumers can see the parts in the Composition
Editor as they would appear in a finished application.

� Part users can modify the parts.

If you want to distribute primitive visual or composite parts, you must provide part
information files (.VCE) instead. For more information, see “Providing part information
files (.VCE).”

To provide part files, do the following:

1. Using Visual Builder, create a part file containing the parts.

2. Create and assign any icons needed for the new parts.

3. Supply the following to the part user:

� A part file that contains the parts to be distributed

� Any additional code files (.CPV or .CBV) needed to compile and use the parts

� Documentation or installation instructions, including any information about how
to add the parts to Visual Builder's parts palette

To use the parts you distributed, the part user loads the part files and generates source
code.

Providing part information files (.VCE)
You can share nonvisual parts, class interface parts, or program groups through part
information files. One advantage to this method is that you can prevent the part user
from modifying the parts.

To provide part information files, do the following:

1. Create parts using Visual Builder or your favorite editor. For dynamic linking, create
a DLL and import library containing the supplied parts.

2. Create and assign any icons needed for the new parts.

3. Supply the following to the part user:

� The part information file that contains the parts to be distributed

� Any files (.CPV, .CBV, .IMP, .DLL, .RCI, .ICO, .BMP, .ODX, .RCH, .RCS,
.CPH, .DEF) needed to use the parts

� Documentation or installation instructions, including any information about how
to add the parts to Visual Builder's parts palette

142 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

To use the parts you distributed, the part user imports the part information file into
Visual Builder to create part files (.VCB). If you provided a DLL with the part information
file, no code generation or further compilation is required.

For information about coding your part information files, refer to “Describing part
interfaces in part information files” on page 223.

Providing enumerations and types
You can also use part information files to provide enumerations and types.

Visual Builder uses types to match interfaces and generate code. Types represent
ordinary data declarations. Visual Builder replaces the type name with the COBOL data
name when it generates code. You can choose between declaring the full structure in a
part information file, or declaring the higher level record items in a COPY file that is
referenced by the part information file.

Enumerations are special types that are handled a little differently by Visual Builder.
They are integer types with 88-level record items.

For information about coding enumerations and types in your part information files, refer
to “Describing part interfaces in part information files” on page 223.

Adding categories and parts to the parts palette
You can modify the parts palette at any time and from any of the Visual Builder editors
or from the Visual Builder window.

One reason to modify the parts palette is so you can quickly and easily place parts you
have created and use often on the free-form surface. Otherwise, you have to place
them by selecting Options →Add part , which requires you to know the exact class
name of the part you are adding.

Another reason to modify the parts palette is to give everyone who is working on the
same project access to the same set of standardized parts. Your company could have
a parts builder who builds these standardized parts and puts them in a category on the
parts palette for you to use.

Group parts with similar behavior in the same category. By looking at the parts palette
you can see how we grouped the parts we provided into categories based on their
behavior. For example, all parts used for data entry are in one category, all parts that
contain and display lists are in another category, and so forth.

 Chapter 8. Learning to use parts 143

Developing Applications

Preparing icons for the parts palette
Each category and part on the Visual Builder parts palette is represented by a bitmap
so you can recognize it visually. With Visual Builder, you can create and use your own
bitmaps when you extend the parts palette. If you do not, you can still extend the parts

palette and accept the default category Icon, , and the default part Icon,

 .

Preparing a resource DLL (OS/2 version only)
This example uses a Miscellaneous category and a MainWindow part, which are
stored in a sample.dll file as resources numbers 800 and 802, respectively.

To prepare bitmaps for use with Visual Builder, do the following:

1. Create your icons. One way to do this is to use the OS/2 icon editor, which is
available in the operating system toolkit.

Bitmaps used on the parts palette must be no larger than standard icons for the
display resolution being used. For VGA displays on OS/2, use the Independent
VGA form (32x32). For higher display resolutions on OS/2, use the 8514-16 colors
form (40x40).

2. Create a resource DLL that contains your icons. Use files similar to the following:

 � sample.cbl

any COBOL program

 � sample.rc

icon 800 Miscellaneous.ico
icon 801 MainWindow.ico

 � sample.def

 library sample
description 'Icons for user-extended palette'

 � sample.mak

sample.dll: sample.obj sample.def sample.res
cob2 sample.obj sample.def /dll

rc sample.res sample.dll

 sample.obj: sample.cbl
cob2 -c sample.cbl

 sample.res: sample.rc
rc -r sample.rc

144 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Once you have the files ready, type the following in a command window to build
the resource DLL:

nmake sample.mak

3. Place the resource DLL in a directory in your LIBPATH statement.

Your icons are now ready for use with Visual Builder.

Preparing a resource DLL (Windows version only)
This example uses a Miscellaneous category and a MainWindow part, which are
stored in a sample.dll file as resources numbers 800 and 802, respectively.

To prepare bitmaps for use with Visual Builder, do the following:

1. Create your icons using an icon editor.

2. Create a resource DLL that contains your icons. Use files similar to the following:

 � sample.cbl

any COBOL program

 � sample.rc

 800 icon Miscellaneous.ico
 802 icon MainWindow.ico

 � sample.mak

sample.dll: sample.obj sample.exp sample.res

cob2 /dll sample.obj sample.exp sample.res

 sample.exp: sample.obj

echo LIBRARY sample > sample.def

echo EXPORTS >> sample.def

CPPFILT -Q -B -P sample.obj >> sample.def

ilib /q /def:sample.def /gi:sample.lib

 sample.obj: sample.cbl

cob2 -c sample.cbl

 sample.res: sample.rc

 irc sample.rc

Once you have the files ready, type the following in a command window to build
the resource DLL:

nmake sample.mak

3. Place the resource DLL in a directory in your PATH statement.

Your icons are now ready for use with Visual Builder.

 Chapter 8. Learning to use parts 145

Developing Applications

Adding a category to the parts palette
Once you have prepared an icon in a resource dynamic link library (.DLL), you are
ready to extend the parts palette. To add a category to the parts palette, do the
following:

1. In the Composition Editor, select Modify palette →Add new category from the
Options pull-down menu. The Add Palette Category window is displayed as
follows:

Figure 50. The Add Palette Category window

Notice that the default category icon, , is specified. It is stored as
resource ID 15ð in the iwzbv33r.dll resource file provided with Visual Builder.

2. Enter the name you want for your category in the Category name field.

3. Enter iwzbv33r or the name of your resource dynamic link library (.DLL) in the
Module name field.

Note: Do not type the .DLL file extension in the Module name field.

4. Type 15ð or the resource ID of the icon in your resource dynamic link library (.DLL)
in the Resource ID field.

After entering the resource ID number, move the cursor to another component in
the window, such as the Module name field, if you want to see the graphic to be
used before continuing.

5. Select the OK button.

Your category with the icon specified is added to the parts palette.

146 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Note: If you do not specify a dynamic link library (.DLL), Visual Builder uses the
default icon. If you specify a dynamic link library (.DLL) but Visual Builder
cannot find it, Visual Builder uses the question mark icon,

.

If the question mark icon appears, make sure the following conditions are met:

� The dynamic link library (.DLL) exists and is in the current directory or any directory
specified in the LIBPATH (for OS/2) or PATH (for Windows) environment variable.

� The dynamic link library (.DLL) file name is correct.
� The resource ID for the icon (in the .RC file) exists in the dynamic link library

(.DLL).

Specifying a unique icon for a part
You can specify a unique icon for a part you add to the parts palette, but you must do
so before you add it to the parts palette. To give your part a unique icon, do the
following:

1. Open the part.

2. Switch to the System Interface Editor.

3. Enter the name of the dynamic link library (.DLL) file containing the icon you want
to use in the DLL Name field.

4. Enter the resource ID number for the icon in the Resource ID field.

If you enter a valid dynamic link library (.DLL) file name and resource ID number,
Visual Builder displays the icon below the Resource ID field. This enables you to
verify the icon before adding it to the parts palette.

Note: If you do not specify a dynamic link library (.DLL), Visual Builder uses the
default icon. If you specify a dynamic link library (.DLL) but Visual Builder
cannot find it, Visual Builder uses the question mark icon,

 .

If the question mark icon appears, make sure the following conditions are met:

� The dynamic link library (.DLL) exists and is in the current directory.
� The dynamic link library (.DLL) file name is correct.
� The resource ID for the icon (in the .RC file) exists in the dynamic link library

(.DLL).

5. Select File→Save to save the resource dynamic link library (.DLL) and resource ID
information in the System Interface Editor.

 Chapter 8. Learning to use parts 147

Developing Applications

Adding a part to the parts palette
You can add a part to any category on the parts palette using any of the following
methods:

� Adding a part selected in the Visual Builder window
� Adding the part you are currently editing
� Adding any part whose part file (.VCB) is loaded

Adding a part selected in the Visual Builder window
To add a part to the parts palette from the Visual Builder window, do the following:

1. Load the part file (.VCB) containing the part you want to add to the parts palette, if
it is not already loaded.

2. Select the part file (.VCB) containing the part you want to add to the parts palette.

3. Select the part you want to add.

Note: You can add multiple parts by holding down the Ctrl key and clicking on
each part you want to add.

4. Select Part→Add to palette . Visual Builder displays the Add to Palette window, as
shown in Figure 51.

Figure 51. Add to Palette window

5. Select the part you want to add.

6. Select the category you want to add the part to.

7. Select the Add button. Visual Builder adds the part to the parts palette in the
selected category.

148 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Adding the part you are currently editing
You can add the part you are currently editing to the parts palette from either the
Composition Editor, the System Interface Editor, or the Part Interface Editor. To add the
part you are currently editing to the parts palette, do the following:

1. Double-click on the name of the part in the Visual Builder window. Visual Builder
opens the part in the Part Interface Editor or the Composition Editor.

2. Select File→Add to palette . Visual Builder displays the Add to Palette window, as
shown in Figure 52.

Figure 52. The Add to Palette window

The Part name field shows the name of the part you are editing. This is the part
to be added to the parts palette. You cannot change the name of the part
displayed in this field.

3. Select the category you want to add the part to.

4. Select the Add button. Visual Builder adds the part to the category you selected on
the parts palette. To see this, switch to the Composition Editor and select the
category. The icon for the part is displayed in the parts column.

Adding any part whose part file (.VCB) is loaded
You can add any part to the parts palette as long as its part file (.VCB) is loaded in the
Visual Builder window. The following steps explain how to do this:

1. In the Composition Editor, select Modify palette →Add new part from the Options
pull-down menu. The Add to Palette window is displayed as shown in Figure 53 on
page 150.

 Chapter 8. Learning to use parts 149

Developing Applications

Figure 53. The Add to Palette window

To add a part to the parts palette, do the following:

a. Type in the part name in the Part class field or the class name of the part you
want to add.

b. Select the name of the category to which you want to add your part.

c. Select the Add button.

Your part is added to the parts palette in the specified category.

Notice the part you just added uses the same icon as the part it inherits from. If you
inherit from a part whose part file (.VCB) is not loaded or for which you have not
provided a resource dynamic link library (.DLL), Visual Builder uses the default part

icon, .

Deleting a category or part from the parts palette
To delete a part from the parts palette, do the following:

1. Select the part on the parts palette.

2. Select Modify palette →Delete category from the Options pull-down menu. The
selected part is deleted from the parts palette.

To delete a category from the parts palette, do the following:

1. Select the category on the parts palette.

2. Select Modify palette →Delete category from the Options pull-down menu. The
selected category and all of the parts in it are deleted from the parts palette.

150 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Saving parts palette changes
Visual Builder automatically saves all parts palette changes for you. When you create a
new category or part, Visual Builder stores information about the category or part in a
file named vbpalet.dat, which is stored in your startup directory (or in your target
directory, if you are using WorkFrame). This file is written automatically.

Once you add or delete categories or parts, the vbpalet.dat file is read each time you
start Visual Builder. The information this file contains causes any categories or parts
that you have added to be included on the parts palette. It also prevents any categories
or parts that you have deleted from appearing on the parts palette.

If you update the icon associated with a part, the parts palette is updated the next time
you select the category in which the icon appears.

Removing a category or part that you just added

The vbpalet.dat file also allows you to undo and redo any changes you make to the
parts palette, but only during the current Composition Editor session. For example, after
adding a category or part, you can select Edit →Undo to remove the part or category
you just added. Selecting Edit →Redo would put the part or category back on the parts
palette, again.

Once you close the Composition Editor, you can no longer undo or redo any changes.
However, you can still add categories and add parts, as well as delete categories and
parts.

 Chapter 8. Learning to use parts 151

Developing Applications

152 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Chapter 9. Learning to use connections

This chapter describes the types of connections you can make and how to make them.
Each connection description provides the following information:

� A definition of the connection
� The color of the connection
� Whether the connection is unidirectional or bidirectional
� Whether the connection requires you to supply values to complete it

Attribute-to-attribute connection

An attribute-to-attribute connection links two attribute values together. The purpose of
this type of connection is to cause the value of one attribute to change when the value
of another attribute changes.

An attribute-to-attribute connection uses a bidirectional, dark blue line with dots at either
end. The solid dot indicates the target, and the hollow dot indicates the source.

Note: In Windows NT, this connection appears with small diamonds at either end.

When your part is instantiated, the target attribute is set to the value of the source
attribute. Attribute-to-attribute connections never take parameters.

Note: Do not create attribute-to-attribute connections in which the source attribute is
not initialized before the ready event is signaled. You may get a system error in
the resulting application and the application may fail. See “The ready event” on
page 64 for more information.

In Figure 54, an attribute of the DBClass1 nonvisual part is connected to an attribute of
the entry field. This connection causes the value of the entry field's attribute to change
whenever the value of the DBClass1 attribute changes, and vice versa.

Figure 54. Attribute-to-attribute connection

The effect of attribute completeness on connections

It is important to know the completeness of attributes you are connecting. Otherwise,
you might not achieve the results you anticipate.

Figure 55 shows the results of connecting attributes with different behaviors. See “The
Attribute page” on page 57 for descriptions of the different kinds of behavior attribute
display.

 Chapter 9. Learning to use connections 153

Developing Applications

Event-to-attribute connection

An event-to-attribute connection enables the occurrence of the source event to trigger a
change in the value of the target attribute. To accomplish this, the connection calls the
attribute’s set method whenever the event occurs. If the attribute is a no-set attribute,
you cannot make the connection. If you open settings on a connection of this type, the
target of the connection appears to be an action with the same name as the target
attribute.

An event-to-attribute connection uses a unidirectional dark green arrow with the arrow
head pointing to the target. If the attribute's set method requires you to supply
parameter values, the connection line is initally dashed. This indicates the connection is
incomplete. You must provide values for the parameters to turn the connection line
solid. A solid line indicates the connection is complete. If the event contains event data,
the attribute's set method uses the event data and the connection line is solid.

You can supply the missing parameter value or override any event data present by
connecting the parameter to an attribute or action, or by supplying a constant

Figure 55. Source and target considerations for attribute types

If the source is a... And the target is a
full attribute...

And the target is a
no-set attribute...

And the target is a
no-event
attribute...

full attribute All attribute
behaviors are
available to both
the source and
target attributes.

Visual Builder
automatically
reverses the
connection.

The target attribute
cannot notify the
source attribute
when the target
attribute’s value
changes.

no-set attribute The source attribute
initializes the target
attribute. The target
attribute is updated
whenever the
source attribute’s
value changes.

This is an invalid
connection.

The source
attribute initializes
the target attribute.
The target attribute
is updated
whenever the
source attribute’s
value changes, but
the target attribute
cannot notify the
source attribute
when the target
attribute’s value
changes.

no-event attribute The source attribute
initializes the target
attribute; no event
notification occurs.

Visual Builder
automatically
reverses the
connection.

The source
attribute initializes
the target attribute;
no event
notification occurs.

154 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

parameter value. See “Supplying parameter data for incomplete connections” on
page 163 for more information.

In Figure 56, the press feature of the Refresh push button is connected to the contents
attribute of the entry field. Note the line is dashed, meaning a parameter is needed to
complete the connection. If you connect the contents attribute of the connection with a
feature of type VarLengthString of some other part, the connection is completed and
the line becomes solid.

Figure 56. Event-to-attribute connection

Event-to-action connection

An event-to-action connection causes an action to start whenever the source event
occurs.

An event-to-action connection uses a unidirectional, dark green arrow with the arrow
head pointing to the target. If the action requires you to supply parameter values, the
connection line is initally dashed. This indicates the connection is incomplete. You must
provide values for the parameters to turn the connection line solid. A solid line indicates
the connection is complete.

You can supply the missing parameter value or override any event data present by
connecting the parameter to an attribute, action, or by supplying a constant parameter
value. See “Supplying parameter data for incomplete connections” on page 163 for
more information.

Also, the action targeted by this connection can have a return parameter. If it does,
you can treat the return parameter as a no-set attribute of the connection and use it as
the source of another connection. The return parameter appears in the connection
menu for the connection as actionResult.

In Figure 57, the press feature of the Add push button is connected to the addItemEnd
action of the multiline edit control. Note the line is dashed, meaning a parameter is
needed to complete the connection. Once you supply a parameter, the line becomes
solid.

Figure 57. Event-to-action connection

 Chapter 9. Learning to use connections 155

Developing Applications

Attribute-to-action connection

An attribute-to-action connection causes an action to start whenever the event
identification that is associated with the attribute is triggered. This connection is similar
to an event-to-action connection because the connection invokes the action's method
whenever the attribute’s event is triggered, and if the method has parameters, passes
the attribute data as the first parameter.

An attribute-to-action connection uses a unidirectional, dark green arrow with the arrow
head pointing to the target. If the action requires more than one input parameter, the
connection line initially appears dashed to show it is incomplete.

The attribute’s data is passed as the first parameter of the action if no parameter is
explicitly specified. You can supply any other missing parameters or override the
attribute data present by connecting the parameter to an attribute or action, or by
supplying a constant parameter value. See “Supplying parameter data for incomplete
connections” on page 163 for more information.

The action targeted by this connection can have a return parameter. If it does, you can
treat the return parameter as a no-set attribute of the connection and use it as the
source of another connection. The return parameter appears in the connection menu for
the connection as actionResult.

In Figure 58, the contents attribute of the entry field is connected to the addItemEnd
action of the list box.

Figure 58. Attribute-to-action connection

Parameter connections

A parameter connection supplies a parameter to an action by passing either an
attribute’s data or the return data from an action. This connection looks similar to an
attribute-to-attribute connection; it uses a bidirectional line with dots at either end. The
solid dot indicates the target, and the hollow dot indicates the source. The difference
you see on your screen is parameter connections are violet instead of dark blue.

In addition, the parameter names are included in the part's pop-up menu. Therefore, if
you are in doubt about a connection you want to make, you can browse a part’s
features to see the parameter names.

The parameter is always the source of the connection because the parameter cannot
store any parameters. If you connect an attribute or action to a parameter, Visual
Builder reverses the direction of the connection to make the parameter the source.

156 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Whenever the parameter needs data, code generation supplies one, as follows:

� If the parameter is connected to an attribute, the connection calls the attribute’s get
method to get the attribute’s data and either moves the result to the parameter or
sets the parameter to the result, depending on the parameter's type.

� If the parameter is connected to an action with a result, the connection code calls
the action and either moves the result to the parameter or sets the parameter to
the result, depending on the parameter's type.

� You can supply a constant parameter value as a setting within the connection. See
“Supplying parameter data for incomplete connections” on page 163 for more
information.

If you connect a parameter to two different attributes, the first attribute you connect the
parameter to has precedence over the second. You can change this, if necessary, by
reordering the connections or deleting one of the connections.

Visual Builder uses a dashed line to give you a visual cue when a parameter
connection is needed. For example, if you connect an event to an action requiring
parameter values, the connection line between the event and the action may be
dashed. This is always the case when the event has no data. See “Supplying
parameter data for incomplete connections” on page 163 for more information.

In the Visual Builder you use types to ensure data declarations are consistent and
correct linkages are used in code generation. Make sure the source and target agree
with each other and comply with COBOL MOVE rules. To view the types available, do
one of the following ways:

� Select Options →Show type list in the Visual Builder window. As you select visual
or nonvisual parts, the types available in the selected parts appear in the Loaded
Type Information box.

� You can export the interface of a part and view the type declarations of the
attributes. To export the interface of a part, open the pop-up menu for the part in
the Visual Builder window and select Export interface . After you export the
interface in part information file, you can use your favorite text editor to view the
contents of the part information file.

You can add your own types through part information files (.VCE). Refer to
Appendix A, “Creating part information files” on page 223 for more information on
creating part information files.

If you need to make changes to a connection, you can open the settings window for a
connection to change the source, target, or direction of a connection. Refer to
“Changing settings for a connection” on page 166 for details on making changes to a
connection.

 Chapter 9. Learning to use connections 157

Developing Applications

Connection type summary
The following table summarizes the types of connections that Visual Builder provides:

If you want to... Use this
connection
type

Color Arrows Return value
allowed?

Change one data
value when
another changes

attribute-to-
attribute

Dark blue No

Change a data
value whenever
an event occurs

event-to-
attribute

Dark green OR No

Call an action
whenever an
event occurs

event-to-
action

Dark green OR Yes2

Call an action
whenever a data
value changes

attribute-to-
action

Dark green OR Yes2

Supply data to a
parameter

parameter Violet No

Making the connections
In this section, you learn how to make attribute-to-attribute, event-to-attribute,
event-to-action, and attribute-to-action connections.

Determining the source and target
A connection is directional; it has a source and a target. The direction in which you
draw the connection determines the source and target. The part on which the
connection begins is the source and the part on which it ends is the target.

When you make an event connection, Visual Builder draws an arrow on the connection
line between the two parts. The arrow points from the source to the target. If
information can pass through the connection in both directions, as it can in an
attribute-to-attribute connection, a hollow circle (OS/2) or hollow diamond (Windows)
indicates the source and a solid circle (OS/2) or solid diamond (Windows) indicates the
target.

Often, it does not matter which part you choose as the source or target, but there are
connections where direction is important.

� With an attribute-to-action, event-to-action, or event-to-attribute connection, the
event is always the source and the action or attribute is always the target. In the
case of an attribute-to-action connection, the source event is signaled when the

2 The return value is supplied by the connection’s actionResult attribute.

158 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

attribute changes value. If you try to make an action-to-attribute, action-to-event, or
attribute-to-event connection, Visual Builder automatically reverses it for you.

� For attribute-to-attribute connections, if only one of the attributes has a set method,
Visual Builder makes that attribute the target. This is done so the attribute with the
set method can be initialized when the application starts.

� When you make attribute-to-attribute connections, the order in which you choose
the source and target is important. The source and target attribute data are
probably different when your part is first initialized. If they are, Visual Builder
resolves the difference by changing the value of the target attribute to match that of
the source attribute. Thereafter, if both attributes have set methods, the connection
updates either attribute if the other changes.

Browsing a part’s features
Sometimes it is useful to browse a part’s features before using them in a connection.
For example, you might want to look at an attribute to see if it has a set method so it
can update itself when it receives new data from another attribute.

By using Browse part features , you can see all of a part’s features in one window and
browse, but not change, the information about each feature. To modify a feature, use
the Part Interface Editor. To modify a feature of a nonvisual data part, change the copy
file and reimport it. If you do change the copy file and reimport it, you must regenerate
and rebuild all the part using the new nonvisual data part.

There is an important distinction between browsing a part’s features and displaying its
features for making a connection. When you browse a part’s features, you see all of its
features, even if some of them are not available for connections. (This includes
inherited features if the base parts are loaded into Visual Builder.) When you display a
part’s connection menu, however, you see only those features available for
connections.

To browse the features of a part, do the following:

1. Move the mouse pointer over the part and click mouse button 2. Visual Builder
displays the part’s pop-up menu.

2. Select Browse part features .

Visual Builder displays a browse window containing three columns: one for actions,
one for attributes, and one for events. For example, Figure 59 on page 160 shows
the browse window Visual Builder displays for browsing the features of a push
button:

 Chapter 9. Learning to use connections 159

Developing Applications

Figure 59. Browse Part Features window

Note: When you select Browse part features for a window similar to Figure 60
on page 161 appears.

160 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Figure 60. Feature Implementation Browser window to browse the part features for a data part

3. Select the feature you want to browse.

Visual Builder displays information about the feature you select in the entry fields
below the feature columns. Different sets of entry fields are displayed depending
on whether you select an action, an attribute, or an event.

The information Visual Builder displays when you browse a part’s features is the
same as the information you would see in the Part Interface Editor. See “The Part
Interface Editor” on page 56 to learn about the information Visual Builder displays
for features.

4. To read more information about the features listed, select the Help button.

5. When you have finished browsing the features, select the Close button to close the
browse window.

 Chapter 9. Learning to use connections 161

Developing Applications

Connecting features to features
Follow these steps to connect features:

1. Position the mouse pointer over the source, the part or connection you want to
connect from, click mouse button 2, and select Connect from its pop-up menu.

A menu appears showing the names of the most commonly used attributes,
actions, and events, called the preferred features. If the source is a part, there is
usually a More selection at the bottom of the list.

If the More selection is not there, this means the list contains all of the available
features, not just the preferred ones, and there are no more features.

2. Do one of the following:

� If the feature you want appears in the list, select it.

� If the feature you want does not appear in the list, but the More selection is
available, select More and then select the feature you want from the complete
list of features.

� If the feature you want does not appear in either the preferred list or the
expanded list displayed when you select More , you can edit the part to add
the feature you need. For more information about this, see “Editing parts
placed on the free-form surface” on page 138.

Note: You can not edit parts in VAccess.vcb. To add features to a Visual
Builder-supplied part, first create your own part by placing a Visual
Builder-supplied part on a canvas. Then add the features you want or
promote the features you want to access.

 If, at this point, you decide not to complete the connection, do one
of the following:

– If a pop-up menu is displayed, move the mouse pointer away
from the connection menu and click mouse button 1.

– If a window showing all of the features is displayed, select the
Cancel button at the bottom of the window.

The menu or window disappears and the connection is not
completed.

3. Position the mouse pointer over the part or connection you want to connect to,
called the target.

While moving the mouse, notice a dashed line trails from the mouse pointer to the
source of the connection.

4. Click mouse button 1 and a pop-up menu appears, again showing a list of
features.

5. Select a name from the pop-up menu or from the More list. The same instructions
regarding the presence of More apply as described previously.

162 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

A colored connection line appears when both ends of the connection have been made.
The color indicates the connection’s type, based on the selections you made in the
pop-up menu. See “Connection type summary” on page 158 for a table showing the
colors used for each connection type.

If the line is dashed, it requires parameters, as described in the next section.

Supplying parameter data for incomplete connections
Event-to-action, attribute-to-action, and event-to-attribute connections sometimes
require parameters, or input arguments. If a connection requires parameters not yet
specified, it appears as a dashed arrow indicating it is incomplete. When you have
made all the necessary parameter connections, the connection line becomes solid
indicating the connection is complete.

Note: Do not make parameter-to-parameter connections. Visual Builder does not
prevent you from doing this, but the generated COBOL code for your application
may not be valid.

The following sections describe how to complete connections when input parameters
are required.

Supplying parameter data using a connection

One way to supply parameters is to make connections from the dashed connection
lines to the parts supplying the data to the parameters. Most of the time, the data you
need are those of attributes of other parts you are working with in the Composition
Editor. Sometimes, however, the data you need is the return data from an action.

To supply a parameter, do the following:

1. Start a new connection using the dashed connection line requiring the parameter
as the source.

2. For the target, select the attribute or actionResult feature from an action to provide
the data the parameter needs.

 When you make a connection, Visual Builder provides a visual cue to help
you position the pointer correctly. When you have the pointer directly over the
connection line, a small hollow box appears.

Figure 61 on page 164 shows an incomplete event-to-action connection. When a user
selects the Add button, its press feature notifies the addItemEnd action of the CListBox
part to add something to the list box as the last item in the list. The connection is
incomplete because the addItemEnd action has a parameter that needs input data,
which is the text to add to the list box.

 Chapter 9. Learning to use connections 163

Developing Applications

Figure 61. Incomplete connection due to missing parameter value

Figure 62 shows how a parameter connection, in which an attribute of the CEntryField
part is used to supply the input data for the parameter, completes the event-to-action
connection shown in Figure 61. The contents parameter of the connection shown in
Figure 61 is connected to the contents attribute of the CEntryField part. Therefore,
when the Add button is selected, its press feature notifies the addItemEnd action of the
CListBox part to add the contents in the CEntryField part as the last item in the list box.

Figure 62. Completing a connection using an attribute as the input data

 The return parameter, if any, of an action displays as the actionResult
attribute of the connection. For example, you can connect the actionResult
attribute to an attribute of the same part or another part.

Note: Make sure the target of the parameter connections has the same type as the
parameter. Otherwise, the generated code may be invalid.

Supplying parameter data using a literal

When connections need parameters and you want to provide these parameters as a
literal, use the settings window of the incomplete connection, as follows:

1. Select Open settings from a connection’s pop-up menu.

164 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

 A quicker way to open the settings window is to double-click on the
connection line.

The settings window of the connection is displayed.

2. Select the Set parameters button. The Constant Parameter Data Settings
window is displayed showing the parameters.

3. Enter the literal you want to use.

Enter the literal just as you would if you were coding it by hand. Visual Builder
places the literal in a MOVE statement to the parameter. For example, to provide a
value for a contents parameter, enter the text string (in quotes) you want the
parameter to receive.

4. Do one of the following:

� Select the OK button to apply the values and save them.

� Select the Apply button if you want to see what effect these values have
before saving them.

� Select the Cancel button to remove the notebook without saving any of the
parameter values you entered.

You can select Help for additional information about entering parameter values.

Note: You should only provide literals for parameters whose type represents an
elementary data item or is VarLengthString. Visual Builder does not prevent you
from entering values for any data item, but COBOL MOVE rules determine the
result in generated code.

Preventing missing or invalid parameters

When an action connection requires arguments, be sure you make the correct number
of parameter connections. Also, be sure you make the parameter connections before
you generate code for your part. If you use the return parameter of one connection as
input to another, make sure the connections appear in the correct order. See
“Manipulating connections” to learn how to reorder connections.

 Manipulating connections
Once a connection is made, you can manipulate it by doing the following:

� Changing settings for a connection
 � Reordering connections
 � Deleting connections
� Showing and hiding connections

 � Rearranging connections

 Chapter 9. Learning to use connections 165

Developing Applications

Changing settings for a connection
The settings window of a connection provides a way for you to select different features
as the source and target of the connection. If a method is the target of the connection,
this window enables you to specify or select a different method as the target.

To open the settings window for a connection, move the mouse pointer over the
connection and do one of the following:

� Double-click mouse button 1.

� Click mouse button 2 and select Open settings from the connection’s pop-up
menu.

Visual Builder displays different connection settings windows depending on whether the
target of the connection is an attribute or action. The following sections describe these
two windows.

Changing settings for attribute-to-attribute connections
The following figure shows the window Visual Builder displays when you open the
settings window for an attribute-to-attribute connection:

Figure 63. Attribute-to-attribute connection settings window

The connection settings window for an attribute-to-attribute connection contains two
columns of attributes. The left column contains the attributes belonging to the source
part. The right column contains the attributes belonging to the target part, excluding any
no-set attribute attributes.

To change the attribute to be used as either the source or target of the connection,
select an attribute from the list.

This connection settings window has the following buttons:

OK
Removes the connection settings window and puts any changes made into effect.

166 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Reverse
Reverses the order of the connection; the source part becomes the target and the
target part becomes the source.

Delete
Deletes the connection.

Cancel
Removes the connection settings window without putting any changes into effect.

Help
Provides information about the window.

Changing settings when an action is the target
When you open a settings window for a connection whose target is an action, Visual
Builder displays the following window:

Figure 64. Connection settings window with an action as the target

The connection settings window contains two columns of features. The features in the
left column belong to the source part; these features are the same type of feature as
the one currently selected for the source part. For example, if the feature selected for
the source part is an event, this column contains a list of the events belonging to the
source part, including events associated with attributes of the source part.

Likewise, the features in the right column belong to the target part; these features are
all actions or attributes with set methods.

The top line above the lists contains the features currently selected. To change the
feature to be used as either the source or target of a connection, select a feature from
the list.

 Chapter 9. Learning to use connections 167

Developing Applications

This connection settings window has the following buttons:

OK
Removes the connection settings window and puts any changes made into effect.

Cancel
Removes the connection settings window without putting any changes into effect.

Delete
Deletes the connection.

Set parameters
Opens another window in which you can specify data for parameters of the action.

Help
Provides information about the window.

 Reordering connections
If you make several connections from the same part, they run in the order in which you
made the connections. To ensure the correct flow of control when you generate the
source code, you may need to reorder the connections. If so, do the following:

1. Select the source part.

2. From the source part’s pop-up menu, select Reorder connections from .

Visual Builder displays the Reorder Connections window showing a list of your
connections.

3. With the mouse pointer over the connection you want to reorder, press and hold as
follows:

� mouse button 1 in Windows.
� mouse button 2 in OS/2.

4. Drag the connection to the place in the list where you want the connection to
occur.

5. Release the mouse button.

6. Repeat these steps until the connections are listed in the order in which you want
them to occur.

7. Close the window.

 Deleting connections
You can delete a connection in either of the following ways:

� From the connection’s pop-up menu.

Note: You do not have to select a connection to delete it using this method.

To delete a connection from its pop-up menu, do the following:

1. Click on the connection with mouse button 2 to display its pop-up menu.

2. Select the Delete button.

� From the connection’s settings window

168 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

To delete a connection from its settings window, do the following:

1. Open the settings window for the connection by doing one of the following:

– Double-clicking on the connection

– Clicking on the connection with mouse button 2 to display its pop-up
menu and selecting Open settings

2. Select the Delete button.

Showing and hiding connections

You can show and hide connections by using , the Show Connections tool,

and , the Hide Connections tool on the Tool bar. These tools show or hide
all connections the selected part or parts have as their source or target.

 If you hide connections, the Composition Editor free-form surface is less
cluttered, making it easier for you to work.

If no parts are selected, these tools show and hide all of the connections on the
free-form surface. If at least one part is selected, these tools show and hide the
connections from or to the selected part(s).

Another way to show and hide connections is to move the mouse pointer over a part,
click mouse button 2, and select the Browse connections choice from the part’s
pop-up menu, which displays a cascaded menu. The choices in the menu affect only
connections going to and from the part the mouse pointer was over when you displayed
the pop-up menu.

The Browse connections cascaded menu contains the following choices:

Show to
Shows all connections for which the part is the target.

Show from
Shows all connections for which the part is the source.

Show to/from
Shows all connections for which the part is either the source or the target.

Show all
Shows all connections that have been made, regardless of where the mouse pointer
is when you click mouse button 2.

Hide to
Hides all connections for which the part is the target.

 Chapter 9. Learning to use connections 169

Developing Applications

Hide from
Hides all connections for which the part is the source.

Hide to/from
Hides all connections for which the part is either the source or the target.

Hide all
Hides all connections that have been made, regardless of where the mouse pointer
is when you click mouse button 2.

 Rearranging connections
You can rearrange a connection by doing the following:

 � Selecting connections
 � Deselecting connections
� Changing the source and target of connections

 Selecting connections
You select connections in the same way that you select parts. When you select a
connection, three boxes called selection handles appear on it to show it is selected:
one at each end and one in the middle. You can use these boxes to change either of
the following:

� The end points of the connection, as described in “Changing the source and target
of conections” on page 171.

� The shape of the connection line by dragging the middle box to another location.
This helps you distinguish among several connection lines located close together.

Selecting a single connection

1. Move the mouse pointer over the connection you want to select.

2. Click mouse button 1 to select the connection. The connection is selected.

Selecting multiple connections in OS/2

If you want to select several connections, do one of the following:

� To select multiple connections using just the mouse, do the following:

1. Move the mouse pointer over one of the connections you want to select.

2. Hold down mouse button 1 instead of clicking it.

3. Move the mouse pointer over each connection you want to select.

The selection boxes appear on each connection the mouse pointer passes
over to show they are selected.

4. After the connections are selected, release mouse button 1.

� To select multiple connections using both the mouse and the keyboard, do the
following:

1. Hold down the Ctrl key.

170 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

2. Move the mouse pointer over a connection.

3. Click mouse button 1 while the mouse pointer is over the connection line.

4. Without releasing the Ctrl key, repeat the preceding steps until all connections
you want to select are selected.

Selecting multiple connections in Windows

To select several connections, do the following:

1. Hold down the Shift key.

2. Move the mouse pointer over a connection.

3. Click mouse button 1 while the mouse pointer is over the connection line.

4. Without releasing the Shift key, repeat the preceding steps until all connections you
want to select are selected.

 Deselecting connections
If you want to deselect a connection without selecting another part or connection, do
the following:

1. Move the mouse pointer over the connection line.

2. Hold down one of the following keys:

� In OS/2, hold down the Ctrl key.
� In Windows, hold down the Shift key.

3. Click mouse button 1.

Changing the source and target of conections
Visual Builder gives you the ability to change what a connection is pointing to (the
target) or pointing from (the source). Of course, you could always just delete the
connection and create a new one. However, the following steps show you a quicker
way to do this.

Moving either end of a connection

1. Select the connection.

2. Move the mouse pointer over the filled square appearing on the ends of the
connection.

3. Press and hold mouse button 2.

4. Move the mouse pointer to the new part or connection.

5. Release the mouse button.

Depending on the connection type, you may get a pop-up menu asking you for new
information for the connection.

 Chapter 9. Learning to use connections 171

Developing Applications

What you can change

You can change the source end of any connection. In most cases, you can also change
the target end. However, depending on the feature you connect to when you make the
change, you might get a different type of connection than the one you started with. If
you change the target part of a feature-to-action connection to a part that does not
support the target action, the connection menu appears, and you can select a new
action.

172 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Chapter 10. Adding menus to Visual Builder applications

Menus are a common navigation tool in GUI applications. You can create menu bars
and pop-up menus using Visual Builder. This chapter describes the types of menus you
can construct and guides you through the process of adding menu bars and pop-up
menus to a window. To illustrate the process, you will construct a window with a menu
bar and a pop-up menu. Figure 65 shows the completed window.

Figure 65. Window with menu bar and pop-up menu

Types of menus and menu items
In Visual Builder, you use the same set of menu parts to build several different menu
types:

Menu bars
A menu part attached to a window. It appears horizontally under the window’s title
bar.

Pop-up menus
A menu part connected to the popUp event for a part, such as an entry field. It
appears vertically when the user selects the part and presses mouse button 2.

Cascaded menus
A menu part attached to another menu part, as follows:

� If the cascaded menu part is attached to a menu bar, the cascaded menu
appears below the menu bar as a pull-down menu.

� If the cascaded menu part is attached to a pop-up menu, the cascaded menu
appears beside the pop-up menu.

 Chapter 10. Adding menus to Visual Builder applications 173

Developing Applications

The Frame Extensions category
The Frame Extensions category contains parts used to create menus. The following
parts make up this category:

 CMenu

 CMenuItem

 CMenuCascade

 CMenuSeparator

The CMenu part is the fundamental part in this category. This part serves as the basis
for all menu types. CMenu parts can contain CMenuCascade parts and CMenuItem
parts. Connections made to the CMenu part define whether the menu will be a menu
bar or a pop-up menu. The examples in this chapter describe those defining
connections.

Creating a menu bar
To begin constructing the window in Figure 65 on page 173, create a new COBOL
Visual Builder project, as described in Chapter 5, “Starting Visual Builder” on page 79.
Use the following settings for the project:

Project Title
Menu project

Source file directory
MENUPROJ

Project File name
MENUPROJ

Project Target name
MENUPROJ

Once the project is created, the WorkFrame V3.5 Project - Menu project window
appears. Double-click on the MENUPROJ.VCB part file to start Visual Builder, load the
part file, and open the Composition Editor. Creating any of the three menu types
requires the same first step: adding a CMenu part. The connections you make to the
CMenu part defines which type of menu it becomes.

174 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Adding the CMenu part
The first step in creating a menu bar is to add the CMenu part:

1. Select , the Frame Extensions category, from the left side of the parts
palette.

2. Select , the CMenu part, from the right side of the parts palette and drop
it on the free-form surface next to the window.

Adding the CMenuCascade parts
In this example, the File menu bar choice has some menu items. Follow these steps to
create menu items on the File menu cascade:

1. Select , the CMenu part, from the right side of the parts palette and drop
it on the free-form surface next to the first CMenu part.

2. Select , the CMenuItem part, from the right side of the parts palette.

3. Select Sticky from the bottom of the parts palette.

4. Move the mouse pointer over the new CMenu part and drop five CMenuItem parts
on the CMenu part.

5. Select , the Selection Tool , to unload the mouse pointer.

6. Edit the text of the menu cascade parts. To do this, select each part and press
Alt+mouse button 1. The default text is highlighted and you can enter a new name.
When you are finished typing, press Shift+Enter. The text of the part is changed.
Name the top-most menu cascade part New, the next one down Open , the third
Save, the fourth Save as , and the last one Exit .

In our example, we have four menu bar choices: File , Edit , View , and Help . To add the
four menu bar choices, do the following:

1. Select , the CMenuCascade part, from the right side of the parts palette.
The CMenuCascade part is used because all four menu bar choices contain
additional menu items. If you want to connect a menu bar choice directly to an
action, use a CMenuItem part.

 Chapter 10. Adding menus to Visual Builder applications 175

Developing Applications

2. Select Sticky from the bottom of the parts palette.

3. Move the mouse pointer over the CMenu part and drop four CMenuCascade parts
on the CMenu part.

4. Select , the Selection Tool , to unload the mouse pointer.

5. Edit the text of the menu cascade parts. To do this, select each part and press
Alt+mouse button 1. The default text is highlighted and you can enter a new name.
When you are finished typing, press Shift+Enter. The text of the part is changed.
Name the top-most menu cascade part File , the next one down Edit , the third
View , and the last one Help .

Note: The order in which you drop in parts is important. The CMenuCascade or
CMenuItem parts at the top appear on the left most side of the menu bar.
In our example, File appears on the left-most side of the menu bar, Edit
appears second from the left, View appears third from the left, and Help
appears last.

Your part should look similar to Figure 66.

Figure 66. Composition Editor window showing menu and menu cascade parts

176 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Defining the CMenu part as a menu bar
To make the menu part a menu bar:

1. Connect the this attribute of the CMenu part to the menu attribute of the frame
window part. Although the menu continues to appear vertically on the free-form
surface, this connection defines the menu part as a menu bar. Your part should
look similar to what is shown in Figure 67.

Figure 67. Composition Editor window showing menu part connected to frame window

 Because the menu bar is shown outside the frame window, be sure to
leave enough space for it below the frame window title. Otherwise, the
menu bar might overlay any other parts near the frame window title bar.

Adding menu items to a menu cascade
In this example, the File menu cascade choice has some menu items. Follow these
steps to create menu items on the File menu cascade:

1. Select , the CMenu part, from the right side of the parts palette and drop
it on the free-form surface next to the first CMenu part.

 Chapter 10. Adding menus to Visual Builder applications 177

Developing Applications

2. Select , the CMenuItem part, from the right side of the parts palette.

3. Select Sticky from the bottom of the parts palette.

4. Move the mouse pointer over the new CMenu part and drop five CMenuItem parts
on the CMenu part.

5. Select , the Selection Tool , to unload the mouse pointer.

6. Edit the text of the menu cascade parts. To do this, select each part and press
Alt+mouse button 1. The default text is highlighted and you can enter a new name.
When you are finished typing, press Shift+Enter. The text of the part is changed.
Name the top-most menu cascade part New, the next one down Open , the third
Save, the fourth Save as , and the last one Exit .

Your part should look similar to Figure 68.

Figure 68. Composition Editor window showing menu item parts in a menu part

178 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Defining a CMenu part as a pull-down menu
After adding the menu items to the new menu part, connect the this attribute of the new
CMenu part to the menu attribute of the File menu cascade part. This connection
defines the second menu part as the pull-down menu that appears when a user selects
the File menu bar choice.

Creating a pop-up menu
Pop-up menus are similar to the pop-up menus in the Visual Builder window. For
example, in the Visual Builder, move your mouse pointer over any of the three list
boxes. Click on mouse button 2 and a menu pops up. This menu is a pop-up menu. In
our example, we create a pop-up menu for a list box. To begin creating the pop-up
menu, we repeat the same first step we use to create a menu bar: add a CMenu part.

Adding a CMenu part
The first step in creating a pop-up menu is to add the CMenu part:

1. Select , the CMenu part, from the parts palette and drop it on the
free-form surface next to the window. Your part should now look similar to
Figure 69 on page 180.

 Chapter 10. Adding menus to Visual Builder applications 179

Developing Applications

Figure 69. Composition Editor window showing the addition of the third menu part

2. In our example, we are adding pop-up menus to a list box. Select , the
Lists category, from the parts the palette.

3. Select , the CListBox part, and drop one list box on the canvas of the
frame window.

4. Size and distribute the list box so it takes up about two-thirds of the space on the
canvas. Use the distribution tools on the tool bar to space the list box evenly
between the right and left edges of the frame window. Refer to “The tool bar” on
page 44 for more information on using distribution tools.

Note: In this example, we will not be filling the list box with data. We are using
the list box for illustrative purposes only. To learn how to fill a list box with
data, refer to Chapter 11, “Adding containers and list boxes to Visual
Builder applications” on page 185.

180 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Defining a CMenu part as a pop-up menu
To make the menu part a pop-up menu, connect the this attribute of the CMenu part to
the popUpMenu attribute of the frame window part. Then connect the popUp event of
the CListBox part to the show action of CMenu part. These two connections define the
CMenu part as a pop-up menu. Your part should look similar to Figure 70.

Figure 70. Composition Editor window showing menu part and connections to create a pop-up
menu for the list box

Adding menu items to a pop-up menu
In our example, we have two menu items in the pop-up menu: Edit and Delete . To add
the Edit and Delete menu items:

1. Select , the Frame Extensions category, from the left side of the parts
palette.

2. Select , the CMenuItem part, from the parts palette. We use a
CMenuItem part because we want to connect the Edit and Delete menu items to

 Chapter 10. Adding menus to Visual Builder applications 181

Developing Applications

actions. You can use the CMenuCascade part to create cascade menus on pop-up
menus.

3. Select Sticky from the bottom of the parts palette.

4. Move the mouse pointer over the new CMenu part and drop two CMenuItem parts
on the CMenu part.

5. Select , the Selection Tool , to unload the mouse pointer.

6. Edit the text of the menu item parts. To do this, select each part and press
Alt+mouse button 1. The default text is highlighted and you can enter a new name.
When you are finished typing, press Shift+Enter. The text of the part is changed.
Name the first menu item part Edit and the next one Delete .

Your part should look similar to Figure 71.

Figure 71. Composition Editor window showing menu parts and connections to create a pop-up
menu

If a pop-up menu is connected to an action that depends on the pop-up menu's event
data, first connect the popUp event of the subpart to an attribute of the part that
contains the action. Then, in the action, use the attribute to handle the event data.

182 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Adding menu separators
Menu separators are lines that appear between menu items. They provide a visual
break between menu items on the same pull-down menu or pop-up menu. In our
example, we place a menu separator between the Save As menu item and the Exit
menu item. This sets the Exit menu item apart from the other menu items. To add a
separator bar, do the following:

1. Select , the CMenuSeparator part, from the right side of the parts palette.

2. Move the mouse pointer over the second CMenu part containing the File , Open ,
Save, Save As , and File menu items. Drop the CMenuSeparator part between the
Save As and Exit menu items. A line appears between the Save As and Exit
menu items.

Connecting menu items to actions
Once you have added menu items, you can connect them to actions in this part or
other parts. For example, connect the Exit menu item so when it is selected, the
window closes, as follows:

From part, feature To part, feature

Exit, menuSelect FrameWindow,closeWindow

The menuSelect event occurs when a user selects a menu item. In this case, the user’s
selection of Exit generates a menuSelect event to perform the closeWindow action on
the frame window.

Note: You cannot promote menu item events to the part interface.

The finished part should look like Figure 72 on page 184.

 Chapter 10. Adding menus to Visual Builder applications 183

Developing Applications

Figure 72. Finished part with all connections and subparts

Building and running the part
Once you have added all the parts and completed all the connections, follow these
steps to build and run your part:

1. Select File→Save and generate →Part source . This generates the part source.

2. Select File→Save and generate →Build files . This generates the build files.

3. Select Project →Build normal . This builds the part using the part source and build
files created in the previous two steps.

4. Once the build is complete, type exit to close the project monitor window. Select
Project →Run . The window comes up similar to Figure 65 on page 173. Click on
the File menu to verify the cascade works. Then move the mouse pointer over the
list box and click on mouse button 2 to verify the pop-up menu works. Finally, click
on File→Exit to verify the closeWindow action works from the Exit menu item.

184 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Chapter 11. Adding containers and list boxes to Visual Builder
applications

Containers and list boxes are useful parts to organize large quantities of information
visually. You can use containers to organize information containing several different
properties, such as a list of employees. This chapter guides you through the
construction of two examples: a window with a container and a window with list boxes.
The completed windows appear in Figure 73 and Figure 76 on page 192.

Creating container parts
In this section, you learn the steps necessary to set up a container. A completed
window looks like Figure 73.

Figure 73. Window with an empty container part

The data required to fill the containers may be provided by nonvisual parts. Before
constructing any containers, make sure the nonvisual parts providing data to these
containers are loaded into Visual Builder. In the example used in this chapter, an
imaginary part called MyNonvisualPart is used. You can create the part using Visual
Builder after you have created the project. Refer to “Creating MyNonvisualPart” on
page 187 for details.

 Container parts
The container parts are found in the Lists category. Containers are constructed using
two parts:

 Chapter 11. Adding containers and list boxes to Visual Builder applications 185

Developing Applications

CContainerControl

CContainerColumn

The CContainer part is the base in constructing a container. A CContainer may contain
instances of CContainerColumn parts.

While your application is executing, you can add and remove objects from the
container. A container can display objects in three different formats. These formats are
are called view types and are described in “Adding a container part” on page 187. One
of these view types (detailsView) requires that you use CContainerColumn parts in
your CContainer part. Using this view, the CContainerColumn parts are associated to
attributes of the objects you want to display in the CContainer part.

For the example used in this chapter, we use a nonvisual part called MyNonvisualPart
to provide the data required to fill in a container. The nonvisual part contains the
following attributes and types:

Make VarLengthString

Model VarLengthString

Year Integer

The container we construct displays each of the three attributes in it's own column. The
following steps are detailed in the rest of this section:

1. Add a CContainer part and associate the nonvisual part to the CContainer.

2. Add three CContainerColumn parts into the CContainer part.

3. You define the first CContainerColumn part to hold data of the Make attribute of
the MyNonvisualPart part.

4. You define the second CContainerColumn part to hold data of the Model attribute
of the MyNonvisualPart part.

5. You define the last CContainerColumn part to hold data of the Year attribute of the
MyNonvisualPart part.

Creating the project
Before proceeding with our example, first create a COBOL Visual Builder project with
the following settings:

Project title
Container project

186 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Source file directory
CONTPROJ

Project file name
CONTPROJ

Project target name
CONTPROJ

Once the project is created, the IBM VisualAge COBOL Project - Container project
window appears. Double click on the CONTPROJ.VCB part file to start the Visual
Builder, load the part file, and open the Composition Editor.

 Creating MyNonvisualPart
The example described in this section uses a nonvisual part called MyNonvisualPart.
To create MyNonvisualPart, do the following:

1. Close the Composition Editor.

2. Select Part→New from the Visual Builder window.

3. Specify the Class name as MyNonvisualPart.

4. Select the Part type as Nonvisual part.

5. Select the Open button.

6. Create three attributes, Make, Model, and Year. To create the attributes, repeat the
following steps for each attribute:

a. Type the attribute name in the Attribute name field.

b. Select an attribute type from the Attribute type list. “Container parts” on
page 185 lists the types to use for each attribute.

c. Select the Add with defaults button.

7. Once you have created the three attributes, save the part. You do not have to
generate part source or build files.

Remember to load the part file containing MyNonvisualPart everytime you want to use
it.

Adding a container part
To add a container part, do the following:

1. Select , the Lists category, from the left side of the parts palette.

2. Select , the CContainerControl part, from the right side of the parts
palette and drop the part onto the default canvas.

3. Resize the container part to match Figure 74 on page 188.

 Chapter 11. Adding containers and list boxes to Visual Builder applications 187

Developing Applications

Figure 74. Composition Editor window with a container part

Setting up the container
A container displays specified attributes of an associated part. Each attribute is
assigned to a container column in the container column's settings notebook. Settings for
a container are set in the container's settings notebook, including the associated part.
This section describes how to edit the following settings in the container's settings
notebook:

 � Title attributes
 � View type
� Container item attributes

For information about container columns, see “Adding container columns” on page 190.

Setting the title attributes
You can set the title attributes of a container to display the title of the container with a
specific alignment, as well as set the title text and display a title separator. To set the
title attributes, do the following:

1. Open the settings notebook for CContainerControl.

2. On the General settings page, in the Title attributes group, type in a title for the
container in the Title field. In our example, the title is Double click on a car to

view more information.

188 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

3. To display the title and the title separator, select both Show title and Show title
separator . In our example, we display both.

4. Select an alignment button to align the title. In our example, select Left alignment.

Scroll down the General settings page to other options of the container part.

Specifying the view type
The view type determines the format the container displays information. The three view
type available are:

View-iconView
This view displays items using icons. This view appears similar to the
desktop in Windows and OS/2.

View-treeView
This view is similar to the tree view in OS/2 folders. This view displays item
along the left-hand side of the container.

View-detailsView
This view displays information similar to the details view in OS/2 and
Windows folders.

Select a view that is appropriate for your purposes. For our example, we select
View-detailsView .

Specifying the container item attributes
In the Item type field, specify the type of the information the container is going to
display. In this field, you can specify either a type, or a part name. If you specify a part
name, you must use the View-detailsView view type. In our example, specify
MyNonvisualPart.

After you make all the changes necssary, close the settings notebook. Your part should
look like Figure 75 on page 190.

 Chapter 11. Adding containers and list boxes to Visual Builder applications 189

Developing Applications

Figure 75. Composition Editor window with a container column parts in a container part

Adding container columns
If you are using the View-detailsView view type, add container columns. A container
can have one or more container columns. Each container column holds data of the type
of an attribute in the part specified in “Specifying the container item attributes” on
page 189. “Setting up a container column” on page 191 describes this set up in more
detail.

To add container columns, do the following:

1. Select , the Lists category, from the parts palette.

2. Select the Sticky check box.

3. Select , the CContainerColumn part, from the parts palette.

4. Drop as many container column parts as you need on the container part. In our
example, we need three container columns.

5. Deselect the Sticky check box.

190 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Setting up a container column
Each container column you use must be set up to display an attribute of the part you
specified in “Specifying the container item attributes” on page 189. Settings for a
container column are set in the container column's settings notebook. You can also
alter the following settings for a container column part in the container column's settings
notebook:

� Column heading and width
� Attribute to appear in the column
� Vertical and horizontal separators

To set up a container column, do the following:

1. Open the settings notebook for a container column.

2. In the Column definition group, you can specify the layout to use to display the
attribute in the column, the width of the column, and the alignment of the text in the
column. Select the Help button for more information on these fields. In our
example, make the Year column the narrowest, the Make column the second
narrowest, and expand the Model column to fill the remaining width of the
container. Use the Apply button to check the column widths without having to
close the settings notebook.

3. In the Column attribute item group, you can specify the attribute to display in the
column. The list of attributes available depends on the part you associated to the
container. The name of that part is displayed in the Item type field. You can not
alter the Item type field.

In our example, we use the following:

� The first column uses Year.

� The second column uses Make.

� The third column uses Model.

4. In the Heading definition group, you can specify the text, icon (if applicable), and
alignment of the text that appears directly above each column.

In our example, enter the following in the Text field:

� The first column uses Year.

� The second column uses Make.

� The third column uses Model.

Once you have made all the changes necessary, close the settings notebook.

Filling in the container with data
The data filling in a container is provided by a nonvisual part. This nonvisual part is
defined to the container in “Setting up the container” on page 188. The way in which
you fill in a container depends on the design you choose. Some of the possible
scenarios include:

 Chapter 11. Adding containers and list boxes to Visual Builder applications 191

Developing Applications

� The container is in the same window as the request to fill it. In this case, you need
to make sure your connections follow a precise order where the container is filled
when the data becomes available. The Employee Lookup sample follows this
paradigm.

� The container appears in it's own window and is filled with data. In this case, you
want to connect the ready event of the part containing the container to the process
that fills the container with data.

Building the part
Once you have added all the parts and completed all the connections, follow these
steps to build and run your part:

1. Select File→Save and generate →Part source . This generates the part source.

2. Select File→Save and generate →Build files . This generates the build files.

3. Select Project →Build normal . This builds the part using the part source and build
files created in the previous two steps.

4. Once the build is complete, select Project →Run . The window comes up similar to
Figure 73 on page 185.

Creating list box parts
A list box is a convenient part to use to display related information. For instance, cars
have related information: make, model, price range. In this section, you construct a
window with three list boxes. The completed window appears Figure 76.

Figure 76. Window with empty list boxes

192 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Creating the project
Begin by constructing a Visual Builder project. Use all the default options, except for the
following:

Project title
List box project

Source file directory
LBPROJ

Project file name
LBPROJ

Project target name
LBPROJ

Once you create the project, the project window appears. Double click on LBPROJ.VCB
to open the Visual Builder, load the part file (LBPROJ.VCB), and open the Composition
Editor.

Adding list boxes
To add the list box parts, do the following:

1. Select the , Lists category, from the parts palette.

2. Select the Sticky check box.

3. Select the , ListBox part, from the parts palette. Drop three list box parts
on the canvas of the frame window.

4. Unload the mouse pointer by unchecking the Sticky check box.

5. Size and position the list boxes as shown in Figure 77 on page 194 using the
alignment and distribution tools on the tool bar. Refer to “The tool bar” on page 44
for more information on using the alignment and distribution tools.

 Chapter 11. Adding containers and list boxes to Visual Builder applications 193

Developing Applications

Figure 77. Composition Editor window with list box parts

Filling in the list boxes with data
The data filling in a list box is provided by a nonvisual part. The way in which you fill in
a list box depends on the design you choose. Some of the possible scenarios include:

� The list box is in the same window as the request to fill it. In this case, you need to
make sure your connections follow a precise order where the list box is filled when
the data becomes available. The Employee Lookup sample follows this paradigm,
using a container.

� The list box appears in it's own window and is filled with data. In this case, you
want to connect the ready event of the frame window to the process that fills the
list box with data.

Building and running the part
Once you have added all the parts and completed all the connections, follow these
steps to build and run your part:

1. Select File→Save and generate →Part source . This generates the part source.

2. Select File→Save and generate →Build files . This generates the build files.

3. Select Project →Build normal . This builds the part using the part source and build
files created in the previous two steps.

194 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

4. Once the build is complete, select Project →Run . The window comes up similar to
Figure 76 on page 192.

 Chapter 11. Adding containers and list boxes to Visual Builder applications 195

Developing Applications

196 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Chapter 12. Adding notebooks to Visual Builder applications

Notebooks can help you organize detailed information about an object. For instance,
you can have a notebook represent a single employee, with several different tabs of
information categorizing information about the employee. This section guides you
through the construction of a sample notebook. The completed sample looks like
Figure 78.

Figure 78. A sample window with notebook part

Creating the project
Begin by constructing a Visual Builder project. Use all the default options, except for the
following:

Project title
Notebook example

Source file directory
NBPROJ

Project file name
NBPROJ

Project target name
NBPROJ

Once you create the project, the project window appears. Double click on
NBPROJ.VCB to open the Visual Builder, load the part file (NBPROJ.VCB), and open
the Composition Editor.

 Chapter 12. Adding notebooks to Visual Builder applications 197

Developing Applications

Adding a notebook part
For this example, we replace the default Close and Help push buttons with the
notebook part. Follow these instructions:

1. Select the canvas part on the frame window and hit the DELETE key. A message
appears asking you to confirm you want to delete the part and it's connection.
Select the OK button.

2. Select , the Composers category, from the left side of the parts palette.

3. Select , the CNotebook part, from the right side of the parts palette and
drop the part onto the canvas. Resize the notebook so that it covers the canvas
completely.

You part should look like Figure 79.

Figure 79. Composition Editor window with a notebook part

When you construct a CNotebook part, it initially comes with one CNotebookPage and
a CCanvas part on the CNotebook page. To confirm this, click mouse button 2 on the
CNotebook part. Select View parts list from the pop-up menu. The parts list for the

198 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

CNotebook part appears and the only part on the CNotebook part is a CNotebookPage
part. Click on the expansion icon (plus sign) and you see the only part on the
CNotebookPage part is a CCanvas. Being able to use the parts list of a CNotebook
part becomes important when you start adding more pages and tabs.

Specifying the notebook layout and appearance
You change the notebook’s appearance using its settings notebook. Some of the
changes you can make include changing the direction and type of binding, the type of
tabs, and the justification of the text in tabs and status text areas. To create the
notebook in our sample, do the following:

1. Double-click on the CNotebook part to open the settings notebook. The settings
notebook appears and opens to the General settings tab, which contains the
settings related to the layout of the notebook.

2. The first layout setting you can change is the orientation of the notebook. From the
Layout group, select the icon representing the orientation you want for the
notebook. In our example, we use the last layout, with the binding facing the
bottom.

3. The second layout setting you can change is the binding of the notebook. From
the Binding group, select the type of binding you want for your notebook. In our
example, we use the default.

4. The next layout setting you can change is the shape of the notebook tabs. From
the Tab shape group, select the shape you want for your tabs. In our example,
we use the default setting.

5. The next layout setting you can change is the justification of text in the tabs and in
the status text area. The status text area is at the bottom of each page which can
display one line of text. From the Justification group, select the justification you
want for the text in the status area and the text in the tab. In our example, we use
the default settings.

6. The final layout setting you can change is the format of the text in the status area.
Use the Status text template field to specify the appearance of text in the status
area of a notebook. Select the Help button of the settings notebook for a
description of how to specify a template. In our example, we use the default
settings.

7. Select the OK button to accept these options and close the settings notebook.

Your part should look like Figure 80 on page 200.

 Chapter 12. Adding notebooks to Visual Builder applications 199

Developing Applications

Figure 80. Composition Editor window with notebook part

Adding notebook pages
The first notebook page was added for you when you dropped the CNotebook part on
to the CCanvas part. You can add notebook pages from either the CNotebookPage part
or the CNotebook part.

To add notebook pages from the CNotebook part, do the following:

1. Open the pop-up menu for the CNotebook part and select Add page .

2. From the cascade menu, select either Before top page or After top page .

To add notebook pages from the CNotebookPage part, do the following:

1. Open the pop-up menu for the CNotebookPage part and select Add page . Be
careful to select the CNotebookPage part, and not the CCanvas part on top of the
CNotebookPage part.

 The easiest way to open settings for a notebook page is through the
Parts List window. Select the notebook; select View parts list from the

200 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

notebook’s contextual menu. Double-click the icon that represents the
notebook page you want to set.

2. From the cascade menu, select either Before or After .

The rest of this section guides you through setting up the notebook pages and tabs for
our example.

Setting up the notebook pages and tabs
To set up the notebook pages and tabs, do the following:

1. Open the settings notebook for the first notebook page.

2. Type in the text you want to appear on the tab into the Tab text field.

Note: If you use the default font, you are limited to about six characters. In our
example, we abbreviate Exterior Color to ExtCol.

3. Type in the text you want to appear in the status area into the Status text field. In
our example, we use the default settings.

4. Click on the Styles tab and select from the following styles:

� The autoPageSize style, to enable automatic sizing of the notebook page. In
our example, use the default setting.

� The statusTextOn style, to enable display of the status text. In our example,
use the default setting.

� The majorTab style, to give the notebook page a major tab or minorTab to
give the page a minor tab. These styles are mutually exclusive, so you cannot
have both styles chosen.

Note: The first page in a notebook must be a major tab.

5. Select the OK button to save these settings and close the settings notebook.

To continue constructing the notebook as per our example, add pages after the first
page and follow the previous steps, with the following settings:

Second page
Tab text : IntCol (abbreviation for Interior Color). Use defaults for all other
settings.

Third page
Tab text : Stereo. Use defaults for all other settings.

Fourth page
Tab text : Engine. Use defaults for all other settings.

Fifth page
Tab text : Other. Use defaults for all other settings.

You part should look like Figure 81 on page 202.

 Chapter 12. Adding notebooks to Visual Builder applications 201

Developing Applications

Figure 81. A sample window with notebook part

Adding parts to a notebook page
Each notebook page initially contains a CCanvas part. You can add Visual
Builder-supplied parts like push buttons and entry fields on the CCanvas part.
Figure 82 on page 203 contains a notebook page with Visual Builder-supplied parts.
To see examples of notebook pages, open any part settings notebook.

202 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Figure 82. A notebook page with Visual Builder-supplied parts

For our example, we add parts to the ExtCol page only, as follows:

ExtCol page

1. Drop one text static text part on the canvas. Change the text to Select
one color:.

2. Drop six radio button parts on the canvas. Change the text to Midnight
Green, Hot Red, Royal Blue, Flash Silver, Bottomless Black, and
Jewel Gold.

3. Use the distribution and alignment tools on the tool bar to distribute
and align the parts so they appear even within the canvas. For more
information on the distribution and alignment tools, refer to “The tool
bar” on page 44.

Building and running the part
Once you have added all the parts and completed all the connections, follow these
steps to build and run your part:

1. Select File→Save and generate →Part source . This generates the part source.

2. Select File→Save and generate →Build files . This generates the build files.

 Chapter 12. Adding notebooks to Visual Builder applications 203

Developing Applications

3. Select Project →Build normal . This builds the part using the part source and build
files created in the previous two steps.

4. Once the build is complete, select Project →Run . The window comes up similar to
Figure 78 on page 197. Click on tabs to verify you can open the pages. Click on
items in the page to verify they work.

204 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Chapter 13. Adding help to Visual Builder applications

Once you develop the user interface, provide the necessary help panels to complete
the user interface. In this chapter, you learn about adding different types of help panels
to your user interface:

Help Type Description

Context-sensitive help Help information for the current choice, object, or group
of choices or objects. The user can display
context-sensitive help by tabbing or cursoring to a choice
or other object and doing either of the following:

� Pressing the F1 key. You do not have to do
anything extra to make this happen. The operating
system (through the IBM Open Class Library)
handles it for you.

� Selecting the Help push button if you have provided
one. See “Providing a Help button” on page 211 for
information on how to add a Help push button.

General help Help for a specific window, explaining the purpose of the
window and how it operates.

This chapter guides you through the process of adding the two basic types of help
panels to a window. The completed window looks like Figure 83. The window contains
a Help button, which opens up general help, and several entry fields, each conected to
context-sensitive.

Figure 83. The completed window for help example

 Chapter 13. Adding help to Visual Builder applications 205

Developing Applications

The help subproject
When you create a COBOL Visual Builder project, WorkFrame creates a help
subproject. The subproject contains a help source file. This help source file contains
template code to create general or context-sensitive help. When you build your project,
a step in the build process compiles the help source file. In this chapter, you will use
this help source file to create context-sensitive and general help for the window on
Figure 83 on page 205.

Writing portable help

If you want to use your help file in both OS/2 and Windows, choose the Information
Presentation Facility (IPF) format when you construct your COBOL Visual Builder
project. For more information about creating help source code in IPF format, refer to the
IPF User's Guide.

If portability is not a concern for your Windows application, choose Rich Text Format
(RTF) when you create your COBOL Visual Buider project. For information about
creating help source code in RTF, see your Windows documentation.

Creating the help file
If you are not creating Visual Builder applications in COBOL Visual Builder projects, you
must create the help source file. Use your favorite editor to create a new file and type
in the help source. Save this file and be sure to use an .ipf extension when naming the
file. Compile this file from the command line using the Information Presentation Facility
compiler, using the ipfc command.

Editing the help source file
Before proceeding with our example, first create a COBOL Visual Builder project with
the following settings:

Project title
Help project

Source file directory
HELPPROJ

Project file name
HELPPROJ

Project target name
HELPPROJ

Once the project is created, the IBM VisualAge COBOL Project - Help project
window appears. Double click on the HELPPROJ.VCB part file to start the Visual
Builder, load the part file, and open the Composition Editor. Edit the visual part
provided to match Figure 83 on page 205. Do not build the project when you are done.
Save the part and exit out of Visual Builder.

To edit the source file provided with the COBOL Visual Builder project, do the following:

206 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

1. Double click on the help subproject: VBHELP.IWP . The help subproject window
appears.

2. Double click on VBHELP.IPF, the source file created when the COBOL Visual
Builder project was created. The COBOL Editor appears, with the following default
code:

.\ --

.\

.\ VisualAge for COBOL

.\ IPF Help FIle Template

.\

.\ --

:userdoc.

:title.Help

:docprof toc=12.

.\ -----

:h1 res=1ðð.Main Window Help

:p.

This is the Help for the Main Window.

.\ -----

:h2 res=11ð.Close Push Button

:p.

Click on the :hp2.Close:ehp2. push button to close the

window.

.\

:euserdoc.

3. Create help panels for the three entry fields using 120, 130, and 140 as the
resource IDs. Do this by adding the following text before the :euserdoc. line:

.\ -----

:h1 res=12ð.First entry field help

:p.

This is the help for the first entry field.

.\ -----

:h1 res=13ð.Second entry field help

:p.

This is the help for the second entry field.

.\ -----

:h1 res=14ð.Third entry field help

:p.

This is the help for the third entry field.

4. Select File→Save from the Editor's menu to save the file.

5. Select File→Exit from the Editor's menu to close the Editor.

In the default code, the :h1 tags are heading tags. These tags cause the IPF compiler
to create a new help panel using the text on the tag as the panel’s title. The res
parameter specifies the panel’s resource ID. For more information about creating help
source code in IPF format, refer to the IPF User's Guide.

 Chapter 13. Adding help to Visual Builder applications 207

Developing Applications

If you create RTF help, you must define resource IDs for each panel in your .rtf file.

Make a note of all panel resource IDs; you need them to set help support properly in
your visual parts. See “Providing context-sensitive help” to learn how these resource
IDs are used.

Building the help source file
To build your help from the COBOL Visual Builder project:

1. Select Project →Build Normal . The project monitor displays the status of the build
process.

2. When the build process is done, type exit in the project monitor to close it.

Note: You can't run a help subproject.

If you are not creating your application from a COBOL Visual Builder project, build your
help file from the command line. Ensure that you have the Information Presentation
Facility (IPF) compiler installed on your system. The IPF compiler comes with
VisualAge COBOL.

To build the help file, simply run the IPF compiler. For example, if you saved your help
file with the name iwzhpb.ipf, you enter the following command in the directory where
you saved your file:

ipfc iwzhpb.ipf

This command generates a file called iwzhpb.hlp.

You have now built your help file. The next step is to use the iwzhpb.hlp file to provide
context-sensitive and general help in your application.

Providing context-sensitive help
This section tells you how to provide context-sensitive help for parts in your application.
If you use the default window created by WorkFrame, the initial context-sensitive help
for the Help and OK button are already provided.

Before you begin, make sure you have a list of your help panel titles and their
corresponding resource IDs.

To provide context-sensitive help, do the following:

1. Double-click on HELPPROJ.VCB in the IBM VisualAge COBOL Project - Help
project window. The Visual Builder opens, loads HELPPROJ.VCB, and opens the
Composition Editor.

2. Open the settings notebook for the first entry field. See “Changing settings for a
part” on page 129 if you need information on how to do this.

3. Select the Control page. It is similar to Figure 84 on page 209.

208 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Figure 84. The Control page of an entry field part’s settings notebook

4. Enter the resource ID for the appropriate help panel in the Help panel ID field. In
this example, use 12ð for the first entry field help.

5. If the Enable check box is not checked, select it.

6. Select the OK button.

Repeat these steps for the other two entry fields, using the appropriate resource IDs.
The next step is to provide general help for your application.

Providing general help
This section describes how to provide general help for your application. If you are using
COBOL Visual Builder projects to construct your application, the project and part are
set up to provide general help. You can skip this section.

Before you begin, make sure you have a list of your help panel titles and their
corresponding resource IDs.

To provide general help, do the following:

1. Open the settings notebook for the CFrameWindow-based part. See “Changing
settings for a part” on page 129 if you need information on how to do this.

2. Select the Control page. It is similar to Figure 84.

3. Enter the ID for the general information help panel in the Help panel ID field. For
this example, use 1ðð for the General help for this application help panel.

4. If the Enable check box is not checked, select it.

5. Select the OK button.

 Chapter 13. Adding help to Visual Builder applications 209

Developing Applications

If you are not building your application with COBOL Visual Builder projects, the next
step is to provide a help window in which to display the help panels.

Providing the application Help window
If you do not use COBOL Visual Builder projects to create your application, you must
place a CHelpWindow part on the free-form surface to give Visual Builder a window in
which to display the help information.

The owner of the CHelpWindow part is the primary part for your application.

To add a help window to your application, do the following:

1. Select , the Other category, on the parts palette.

2. Select , the CHelpWindow part, and place it on the free-form surface.

3. Open the settings notebook for the CHelpWindow part. See “Changing settings for
a part” on page 129 if you need information on how to do this. It is similar to
Figure 85.

Figure 85. The help window’s settings notebook

4. In the Title field, enter the title of the help window.

This must be the same title you entered on the :title tag in your help source file.

5. In the Help libraries field, enter the name of the help file you compiled.

If you had created multiple help files for your application, you would enter all of
their names in this field.

210 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

6. To use IPF help in Windows, select the IPF Compatible check box.

7. Select the OK button.

Note: You must have a CHelpWindow part in the main part of your application, even
though you only use it in your subparts.

Providing a Help button
Many applications provide a help button to give users quick and easy access to the
help information the application provides. If you are using COBOL Visual Builder
projects to create your application, a Help button is already provided. You can skip this
section.

To provide a Help button in your application, do the following:

1. Select , the Buttons category, in the left-hand column on the parts
palette.

2. Select , the CPushButton part, and place it where you want it to be.

3. Change the text on the push button to Help.

4. Open the settings notebook for the push button.

5. In the General page of the settings notebook, select Display Help in the Action
on the press event group. This setting turns a regular push button into a help
push button.

6. Select the OK button to close the settings notebook.

You now have a Help button. If you have followed the steps in the preceding sections,
clicking this button causes the contextual help panel for the part with input focus to be
displayed. If no part has the focus, the main help panel for the window is displayed.
The behavior of the Help button is identical to the F1 key.

To provide a help panel for the Help button itself, follow the instructions in “Providing
context-sensitive help” on page 208.

Building and running the part
Once you have added all the parts and completed all the connections, follow these
steps to build and run your part:

1. Select File→Save and generate →Part source . This generates the part source.

2. Select File→Save and generate →Build files . This generates the build files.

3. Select Project →Build normal . This builds the part using the part source and build
files created in the previous two steps.

 Chapter 13. Adding help to Visual Builder applications 211

Developing Applications

4. Once the build is complete, select Project →Run . The window comes up similar to
Figure 76 on page 192. Click on the Help push button to verify the general help
panel appears. Then click on an entry field and hit the F1 key. Verify the proper
help panel appears.

212 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Chapter 14. Integrating visual parts into a single application

In this chapter, you create two visual parts that demonstrate how to use factories and
variables to create dynamic applications. This chapter includes the following tasks:

� Creating the dynamic visual parts

� Creating the static visual parts

� Adding visual parts as dynamic instances

– Adding and setting factory parts

– Adding and setting variable parts

– Connecting to the factory parts

– Connecting the factory parts to their corresponding variable parts

This chapter constructs a simple application with two windows. The main window
contains two push buttons and one static text field. The main window is a static part,
which means once it is destroyed, it can not be reinstantiated. The second window is
dynamic, which means it is created and destroyed, as needed, while the application
runs.

Creating the dynamic visual parts
Begin by creating the dynamic visual parts. Dynamic visual parts must be based on a
frame window part. You can create subwindows which are dynamic visual parts, such
as the one in our example.

For our sample application, create a window as a visual part and name the part
GenericGreeting . This subwindow has a push button and static text. Label the push
button part, static text part, and frame window part as shown:

Figure 86. Dynamic window

 Chapter 14. Integrating visual parts into a single application 213

Developing Applications

Creating the static visual parts
One visual part, the main window, exists statically in this example. When you use frame
window-based static visual parts note that once the user closes the window, the part is
destroyed and cannot be instantiated again until the parent window is recreated.

Create the main window part and call it MainWindow . Add two push buttons and a
static text field as shown:

Figure 87. The main window

You can add other static window parts by dropping a frame window part on the
free-form surface of this part.

Adding visual parts as dynamic instances
All the visual parts in this example, except for the main window, are created at run time
as the user requests them from a button selection. Factory parts create the dynamic
visual parts, variable parts represent the dynamic visual parts created by the factory.
Like static visual parts, dynamic visual parts are destroyed when the user closes them.
However, the existence of the factory enables the creation of a new instance of that
same part the next time the user requests it.

Factory parts create other parts. Each factory part has a type which you set to the part
it represents. The factory part works in tandem with a variable part that represents the
dynamic part instance. You can use factory parts to create both visual and nonvisual
parts. The visual parts must have a frame window part as a parent.

Factory parts have a new action to create a new instance. The new action triggers a
newObject event that can be used to connect the new instance of a part or an attribute
of the new instance of a part to other parts containing the part. Variable parts stand in
for instances created elsewhere.

Implementing dynamic parts involves the following tasks:

� Adding and setting factory parts
� Adding and setting variable parts
� Connecting to the factory parts
� Connecting the factory parts to the corresponding variable parts

214 IBM VisualAge COBOL: Visual Builder User’s Guide

Developing Applications

Adding and setting factory parts
Before you can use factory parts, you must have created the part classes to be
represented. Before you start, be sure to load the part files (.VCB) that contain those
parts into Visual Builder.

Adding the factory parts

1. Open the main window part.

2. Select , the Models category, from the left side of the parts palette.

3. Select , the CFactory part, from the right side of the parts palette.

4. Drop a CFactory part on the free-form surface.

Setting a factory part

1. Change the factory part name using the part's pop-up menu.

In this example, the CFactory part is named as follows:

GenericGreetFactory Factory creating generic greeting subwindow

2. Change the part type from the default (CStandardNotifier) to the type of the window
it creates using the part's pop-up menu and selecting Change Type .

In this example, the CFactory part has the following types:

GenericGreeting Type of the GenericGreeting part

Adding and setting variable parts
When used with factory parts, variable parts represent the newly created part instance.
Add and set variable part types by opening the variable part's pop-up menu and
selecting Change type... . For this example, add and set variable parts as follows:

1. Select , the Models category, from the left side of the parts palette.

2. Select , the variable part, from the right side of the parts palette.

3. Drop a variable part on the free-form surface.

4. Change the name of the variable using the variable part's pop-up menu to the
following:

GenericGreetVariable Name of the variable representing GenericGreeting
part

5. Change the type to the type of the window created using the variable part's pop-up
menu to the following:

Name Type
GenericGreeting Type of the GenericGreeting part

 Chapter 14. Integrating visual parts into a single application 215

Developing Applications

Connecting to the factory parts
Once you have added and set both the factory and variable parts, connect the push
button parts on the main window to the factory parts representing the dynamic
windows, as follows:

From part, feature To part, feature
CPushButton1, press GenericGreetFactory, new

Connecting the factory parts to their corresponding variable parts
Once you have set both factory and variable parts, you must connect them to the
variable part that represents them.

Connections for modeless windows

You must make connections to the modeless windows.

Now you can connect subparts of the main window to features of the variable part,
features of the part the variable represents. These connections behave in the same
way static subpart connections behave, with one difference: the behavior applies to the
instance the variable currently represents. By changing the instance, you can change
the effect of the connection.

From part, feature To part, feature
GenericGreetFactory,newEvent GenericGreetVariable,this

216 IBM VisualAge COBOL: Visual Builder User’s Guide

Extending Applications

Part 4. Extending Visual Builder applications

This part provides the information you need to extend your applications beyond the
basic functions that Visual Builder provides.

Chapter 15. Hints and tips for using Visual Builder 219

 Part 4. Extending Visual Builder applications 217

Extending Applications

218 IBM VisualAge COBOL: Visual Builder User’s Guide

Extending Applications

Chapter 15. Hints and tips for using Visual Builder

This chapter contains hints and tips that you might find useful when using Visual
Builder.

Porting your application
In general, the source of GUI applications developed either on OS/2 or on Windows
NT can be copied to the other platform, rebuilt, and executed. However, some
settings and methods of parts in VAccess.vcb are ignored. To determine if a certain
setting or method is ignored, do the following:

1. Open the Visual Builder and load a part file (.VCB).

2. Select a part and press mouse button 2.

3. select Browse part features from the pop-up menu.

4. Press the Help push button and follow the directions on the help panel to find
out more about features.

Using visual parts with nonvisual parts
You can not have a visual part be a subpart of a nonvisual part.

Using part supplied in VAccess.vcb as objects
The parts supplied in VAccess.vcb are pointers and not COBOL objects. To create a
COBOL object with behavior similar to a part supplied in VAccess.vcb, place the part
on a canvas and promote its features.

Words to avoid
The part source Visual Builder generates contains code which can contain unique
variable or parameter names. In order to avoid compilation errors, avoid using the
following terms when naming your features and parts:

 � anObject

 � iActionResult

 � windowIdIn

 � inlineVariable1

 � aSELF

 � actionResult

 � windowIdOut

 � inlineVariable2

 Chapter 15. Hints and tips for using Visual Builder 219

Extending Applications

220 IBM VisualAge COBOL: Visual Builder User’s Guide

 Part 5. Appendixes

 Part 5. Appendixes 221

222 IBM VisualAge COBOL: Visual Builder User’s Guide

Appendix A. Creating part information files

This appendix describes the syntax of part information files.

Describing part interfaces in part information files
You can describe the interface information that Visual Builder needs by using the Part
Interface Editor or by creating files containing the interface information and importing
these files into Visual Builder. This chapter describes the format of the statements used
to describe the interface information.

You include the statements describing the interface in a part information file, which has
a .VCE file extension. All interface information code lines begin with //VB in column 1.
Between statements, lines that do not start with //VB are ignored and can be use for
comments. You can arrange statements on a single line or continue them on multiple
lines by using the //VB: continuation statement.

General rules for entering part information
The following rules apply to all interface information statements:

1. The interface information statements must be entered exactly as shown in this
chapter. You should pay particular attention to using the correct case, because the
Visual Builder's interpretation of the statements is case-sensitive.

2. All part, enumeration, and type definition names must be unique.

3. A single file can contain multiple part, enumeration, and type definitions.

4. You must completely specify one type of information before you begin to specify
another. For example, you should not put a //VBBeginEnumeration: statement
between //VBBeginPartInfo: and //VBEndPartInfo: statements. If you do, you will
not be able to successfully import the part information.

5. The interface information for a specific part, enumeration, or type definition must be
contained in a single file. The file extension required for a VisualAge COBOL part
information file is .VCE.

6. If you omit a field from a statement, and wish to code a subsequent field, then you
must account for the missing field by including a comma(,) in the statement, with
no value. For example, you can use the //VBComposerInfo: statement to specify
different types of support information, only one of which is required. The following
statements are acceptable:

 //VBComposerInfo: VisualPart

 //VBComposerInfo: VisualPart,8ð3,cobov33r,

 //VBComposerInfo: VisualPart,,,

The following statement is not acceptable:

 Appendix A. Creating part information files 223

 //VBComposerInfo: VisualPart,cobov33r

The individual statement descriptions will tell you when missing keywords must be
accounted for by commas.

Part and class information syntax
This section describes the interface information for parts used by Visual Builder. Syntax
descriptions appear in the recommended order of occurrence in a file. The following
rules apply to the interface information for parts:

1. To specify a part, use a block delimited by //VBBeginPartInfo: and
//VBEndPartInfo: statements.

2. The name on the //VBBeginPartInfo: statement and the name on the
//VBEndPartInfo: statement must match.

3. All feature names (attributes, events, actions) within a part hierarchy must be
unique. If duplicate feature names exist, the information for the derived part is used
and the information for the base part is ignored for that specific feature.

4. All part names must be unique and must be valid COBOL class names.

5. Attribute, event and action information statements can appear more than once for a
specific part, but all other information statements must appear only once.

6. The valid part information statements for a part specification are:

 //VBParent:

 //VBCopy:

 //VBPartDataFile:

 //VBLibFile:

 //VBComposerInfo:

 //VBEvent:

 //VBAttribute:

 //VBAction:

 //VBPreferredFeatures:

 //VB:

For information about how to read these syntax diagrams, see “How to read the syntax
diagrams” on page xii.

VBBeginPartInfo statement for a part
The first statement describing the interface is the //VBBeginPartInfo: statement. This
statement specifies the part name and the part description.

55─ ─//VBBeginPartInfo:──part_name─ ──┬ ┬──────────────── ───────────────────────5%
└ ┘──,"description"

part_name
Valid and unique COBOL class name that implements the part interface.

224 IBM VisualAge COBOL: Visual Builder User’s Guide

description
Optional part description.

VBParent statement for a part
The //VBParents: statement describes the part's parent part. The attributes, actions, and
events defined by the parent part are inherited. The part class hierarchy must include
the CStandardNotifier class for nonvisual parts.

55─ ──┬ ┬────────────────────────── ──5%
 └ ┘ ─//VBParent:──parent_name─

parent_name
Valid and unique COBOL class name.

VBCopy statement for a part
The //VBCopy: statement specifies the COPY file to be used in the REPOSITORY paragraph
to specify external class references.

 ┌ ┐─,──────────────
55─ ─//VBCopy:─ ───

6
┴─copy_file_name─ ───5%

copy_file_name
Name of copy file.

VBPartDataFile statement for a part
The //VBPartDataFile: statement specifies the file in which to save the part information.
If you do not use this statement the imported file name is used with a .VCB extension.

55─ ──┬ ┬────────────────────────────── ──5%
 └ ┘ ─//VBPartDataFile:──file_name─

file_name
File name in which to save the part interface information.

VBLibFile statement for a part
The //VBLibFile: statement specifies either the .OBJ file for the part, or the import library
for the .DLL file that contains the part. Visual Builder uses this information to link to
other parts. It does this by adding the file name to the dependency list and the ilink
command in the make file generated for applications using the part.

55─ ──┬ ┬───────────────────────── ───5%
 └ ┘ ─//VBLibFile:──file_name─

file_name
Name of the .OBJ file that will contain the compiled nonvisual part, or of the import
library (.IMP or .LIB) for the .DLL file that contains the compiled nonvisual part.

 Appendix A. Creating part information files 225

VBComposerInfo statement for a part
The part //VBComposerInfo: statement specifies the information needed to support
visual and nonvisual parts.

55─ ─//VBComposerInfo:─ ──┬ ┬─VisualPart──── ─────────────────────────────────────5
 ├ ┤─NonvisualPart─
 ├ ┤─Class─────────
 └ ┘─Programs──────

5─ ──┬ ┬───────────────────────────────── ──────────────────────────────────────5%
 └ ┘ ─,──resource_id──,──resource_dll─

resource_id
Optional resource number of the icon to be used to represent the part. If you
specify this, you must also specify the resource DLL name.

resource_dll
Resource DLL name containing the icon to be used. Do not include the .DLL
extension.

VBEvent statement for a part
The //VBEvent: statement specifies the event information. This information includes the
event name, event description, method to get the event ID, method to get the event
data, and the get method return parameter name. Use this statement to describe
events implemented by the part that are useful in making connections. Do not use the
//VBEvent: statement to describe events that occur as a result of attribute changes;
specify this information on the //VBAttribute statement:.

55─ ─//VBEvent:──event_name─ ─,─ ──┬ ┬─────────────── ─,──method_to_get_id─────────5
└ ┘──"description"

5─ ──┬ ┬─── ────────────────────────────5%
 └ ┘──,─method_to_get_event_data──,──parm_name─

event_name
Event name to be used by the Visual Builder user interface.

description
Optional event description.

method_to_get_id
COBOL method to get the event ID.

method_to_get_event_data
COBOL method to get the event data.

parm_name
get method's return parameter. A parameter has the form:

ð1 aParm aType.

where aType is either a type provided by Visual Builder, or a type loaded into
Visual Builder. The type definition information to load the type into Visual Builder

226 IBM VisualAge COBOL: Visual Builder User’s Guide

may be contained in the same file, or it may be loaded separately. Multiple
parameters must be separated by a blank.

VBAttribute statement for a part
The //VBAttribute: statement specifies the attribute information. This information
includes the attribute name, attribute description, get method name, get method return
parameter name, set method name, set method return parameter name, and event ID.
Use this statement to describe attributes implemented by the part that are useful in
making connections.

55─ ─//VBAttribute:──attribute_name─ ─,─ ──┬ ┬─────────────── ─────────────────────5
└ ┘──"description"

5─ ─,──get_method_name──,──get_method_parm─────────────────────────────────────5

5─ ──┬ ┬─── ──────────────5%
 └ ┘─,──set_method_name──,──set_method_parm─ ──┬ ┬─────────────
 └ ┘ ─,──event_id─

attribute_name
Attribute name to be used by the Visual Builder user interface.

description
Optional attribute description.

get_method_name
COBOL method to get the attribute data.

get_method_parm
Get method's return parameter. A parameter has the form:

ð1 aParm aType.

aType is either a type provided by Visual Builder, or a type loaded into Visual
Builder. The type definition information to load the type into Visual Builder may be
contained in the same file, or it may be loaded separately. Multiple parameters
must be separated by a blank.

set_method_name
Optional COBOL method to set the attribute data.

set_method_parm
Set method's set parameter. A parameter has the form:

ð1 aParm aType.

aType is either a type provided by Visual Builder, or a type loaded into Visual
Builder. The type definition information to load the type into Visual Builder may be
contained in the same file, or it may be loaded separately. Multiple parameters
must be separated by a blank.

event_id
Optional event ID associated with the attribute.

 Appendix A. Creating part information files 227

VBAction statement for a part
The //VBAction: statement specifies the action information. This information includes the
action name, action description, action parameters and return parameters. Use this
statement to describe actions implemented by the part that are useful in making
connections.

55──//VBAction:──action_name──5

5─ ──┬ ┬─── ────────5%
 └ ┘ ─,─ ──┬ ┬─────────────── ──┬ ┬─────────────────────────────────────

└ ┘──"description" └ ┘ ─,─ ──┬ ┬──────────── ──┬ ┬──────────────
 └ ┘─parameters─ └ ┘──,return_parm

action_name
Action name to be used by the Visual Builder user interface.

description
Optional action description.

parameters
Parameters for the action. A parameter has the form:

ð1 aParm aType.

aType is either a type provided by Visual Builder, or a type loaded into Visual
Builder. The type definition information to load the type into Visual Builder may be
contained in the same file, or it may be loaded separately. Multiple parameters
must be separated by a blank.

return_parm
Return parameter name.

VBGeneratorValues statement for a part
The //VBGeneratorValues: statement specifies the files to include during code
generation and the build options to use during the build process.

 ┌ ┐─,──────────────────────────────────────
55─ ─//VBGeneratorValues:─ ───

6
┴┬ ┬────────────────────────────────────── ────────5%

 ├ ┤─genCBL──("──source_name──")──────────
 ├ ┤─userCPY──("──repository_copy──")─────
 ├ ┤─userCBV──("──feature_source──")──────
 ├ ┤─userCPV──("──feature_declaration──")─
 ├ ┤─startingResId──(──start_ID──)────────
 └ ┘ ─genMake─ ──┬ ┬─"exe"─ ──────────────────
 └ ┘─"dll"─

source_name
Name of the part source file.

repository_copy
Name of copy file to include in the repository section of the class.

228 IBM VisualAge COBOL: Visual Builder User’s Guide

feature_source
Name of the file containing methods to include in the part source.

feature_declaration
Name of the copy file to include in the working storage section of the class.

start_ID
Starting resource ID.

VBPreferredFeatures statement for a part
The //VBPreferredFeatures: statement specifies the preferred part features. If you do
not use this statement, the parent part's preferred list is used. If you do use this
statement, the parent part's preferred list is not inherited, and you must specify the
complete list of preferred features for this part.

 ┌ ┐─,────────────────
55─ ─//VBPreferredFeatures:─ ───

6
┴┬ ┬─action_name──── ────────────────────────────5%

 ├ ┤─attribute_name─
 └ ┘─event_name─────

action_name
Preferred action name.

attribute_name
Preferred attribute name.

event_name
Preferred event name.

VB statement for a part
The //VB: statement allows interface information to be continued on the next statement
line. This can be useful when a single statement exceeds a reasonable length.

55─ ──┬ ┬─────── ───5%
 └ ┘ ─//VB:─

VBEndPartInfo statement for a part
The //VBEndPartInfo: statement specifies the end of the part interface information.

55──//VBEndPartInfo:──part_name──5%

part_name
COBOL class name matching the previous //VBBeginPartInfo: statement.

Part information file example
The following example shows a part information file for a sample nonvisual part:

 Appendix A. Creating part information files 229

//VBBeginPartInfo: sampnonvis,"A sample non-visual part"

 //VBParents: CStandardNotifier

 //VBPartDataFile: sampnv.vcb

 //VBComposerInfo: nonvisual

 //VBEvent: ready,"ready"

 //VB: ,getReadyId

 //VBEvent: destroy,"destroy"

 //VB: ,getDestroyId

 //VBEvent: ChangeData,

//VB: "This is a sample event"

 //VB: ,getChangeDataId

 //VBAction: getCurrentDate,

//VB: "This action returns the current date as a string"

//VB: ,,ð1 Tday VarLengthString.

 //VBAction: getData,

//VB: "This action is passed an integer and returns current date"

//VB: ,ð1 DIndex Integer.

//VB: ð1 Counter Integer.

//VB: ,ð1 Results VarLengthString.

 //VBAttribute: ThisTime,

//VB: "This holds the current time as an integer"

//VB: ,getThisTime,ð1 ThisTime Integer.

//VB: ,setThisTime,ð1 ThisTime Integer.

 //VB: ,ThisTimeId

 //VBAttribute: LastName,

//VB: "This holds the last name of the person as a string"

//VB: ,getLastName,ð1 LastName VarLengthString.

//VB: ,setLastName,ð1 LastName VarLengthString.

 //VB: ,LastNameId

 //VBAttribute: Age,

//VB: "This holds the age of the person as an integer"

//VB: ,getAge,ð1 Age Integer.

//VB: ,setAge,ð1 Age Integer.

 //VB: ,AgeId

//VBPreferredFeatures: Age, LastName

 //VBEndPartInfo: sampnonvis

Enumeration information syntax
This section describes the interface information for enumerations used by Visual
Builder. Syntax descriptions appear in the recommended order of occurrence in a file.
The following rules apply to the interface information for enumerations:

1. To specify an enumeration, use a block delimited by //VBBeginEnumeration: and
//VBEndEnumeration: statements.

2. The name on the //VBBeginEnumeration: statement and the name on the
//VBEndEnumeration: statement must match.

3. All enumeration names must be unique and must be valid COBOL class names.

4. Each information statement can appear only once.

5. The valid enumeration information statements for an enumeration specification are:

230 IBM VisualAge COBOL: Visual Builder User’s Guide

 //VBCopy:

 //VBPartDataFile:

 //VBComposerInfo:

 //VB:

For information about how to read these syntax diagrams, see “How to read the syntax
diagrams” on page xii

 VBBeginEnumeration statement
The first statement describing the interface is the //VBBeginEnumeration: statement.
This statement specifies the enumeration name and description.

55─ ─//VBBeginEnumeration:──enum_name─ ──┬ ┬──────────────── ──┬ ┬────────────── ──5%
└ ┘──,"description" └ ┘──,declaration

enum_name
Fully qualified enumeration name.

description
Optional enumeration description.

declaration
Optional enumeration declaration. If the declaration is omitted then the enumeration
specification must include a //VBCopy: statement.

VBCopy statement for an enumeration
The //VBCopy: statement describes the copybook that contains the definition of the
enumeration.

 ┌ ┐─,──────────────
55─ ─//VBCopy:─ ───

6
┴─copy_file_name─ ───5%

copy_file_name
The copybook containing the enumeration definition 88-level record items.

VBPartDataFile statement for an enumeration
The //VBPartDataFile: statement specifies the file in which to save the enumeration
information. If you do not use this statement the imported file name is used with a .VCB
extension.

55─ ──┬ ┬────────────────────────────── ──5%
 └ ┘ ─//VBPartDataFile:──file_name─

file_name
File name in which to save the enumeration interface information.

 Appendix A. Creating part information files 231

VB statement for an enumeration
The //VB: statement allows interface information to be continued on the next statement
line. This can be useful when specifying 88-level items. You can put each 88-level item
on a separate //VB: statement.

55─ ──┬ ┬─────── ───5%
 └ ┘ ─//VB:─

 VBEndEnumeration statement
The //VBEndEnumeration: statement specifies the end of the enumeration interface
information.

55──//VBEndEnumeration:──enum_name───5%

enum_name
Enumeration name matching the previous //VBBeginEnumeration statement:.

Enumeration information example
The following example shows a basic enumeration definition:

//VBBeginEnumeration: DataStatus,"Codes for date retrieval",

//VB: ð1 DataStatus PIC 9(9) COMP-5.

//VB: 88 DataStatus-NOTFOUND VALUE ð.

 //VB: 88 DataStatus-FOUND VALUE 1.

 //VB: 88 DataStatus-ERROR VALUE 9.

 //VBEndEnumeration: DataStatus

If the associated part definition for the program specifies the following action
information:

//VBAction: getRecord,"Get a record",

//VB: ð1 aRec Name. ð1 aFlag DataStatus.

then the Visual Builder generates the following code:

 LOCAL-STORAGE SECTION.

 ð1 aRec.

 COPY "record.cpy"

ð1 aFlag PIC 9(9) COMP-5.

88 aFlag-NOTFOUND VALUE ð.

 88 aFlag-FOUND VALUE 1.

 88 aFLAG-ERROR VALUE 9.
...

CALL "getRecord" USING aRec, aFlag.

Type definition information syntax
This section describes the interface information for type definitions used by Visual
Builder. Syntax descriptions appear in the recommended order of occurrence in a file.
The following rules apply to the interface information for types:

232 IBM VisualAge COBOL: Visual Builder User’s Guide

1. To specify a type, use a block delimited by //VBBeginTypeInfo: and
//VBEndTypeInfo: statements.

2. The name on the //VBBeginTypeInfo: statement and the name on the
//VBEndTypeInfo: statement must match.

3. Each information statement can appear only once.

4. The valid type information statements for a type specification are:

 //VBCopy:

 //VBPartDataFile:

 //VB:

For information about how to read these syntax diagrams, see “How to read the syntax
diagrams” on page xii

 VBBeginTypeInfo statement
The first statement describing the interface is the //VBBeginTypeInfo: statement. This
statement specifies the type definition name and description.

55─ ─//VBBeginTypeInfo:──typedef_name─ ──┬ ┬──────────────── ──┬ ┬────────────── ──5%
└ ┘──,"description" └ ┘──,declaration

typedef_name
Type definition name used by Visual Builder.

description
Optional type definition description.

declaration
Optional type declaration. This is a normal COBOL declaration, without column rule
restrictions. If the declaration is omitted then the type specification must include a
//VBCopy: statement.

VBCopy statement for a type definition
The //VBCopy: statement describes the copybook that contains the higher level items of
the type definition.

55─ ─//VBCopy:──copy_file_name──5%

copy_file_name
The copybook containing the type definition.

VBPartDataFile statement for a type
The //VBPartDataFile: statement specifies the file in which to save the type information.
If you do not use this statement the imported file name is used with a .VCB extension.

55─ ──┬ ┬────────────────────────────── ──5%
 └ ┘ ─//VBPartDataFile:──file_name─

 Appendix A. Creating part information files 233

file_name
File name in which to save the type information.

VB statement for a type definition
The //VB: statement allows interface information to be continued on the next statement
line. This can be useful when a single statement exceeds a reasonable length. For
example, you can use this statement to keep each line under 80 characters.

55─ ──┬ ┬─────── ───5%
 └ ┘ ─//VB:─

 VBEndTypeInfo statement
The //VBEndTypeInfo: statement specifies the end of the type definition interface
information.

55──//VBEndTypeInfo:──typedef_name───5%

typedef_name
Type definition name matching the previous //VBBeginType: statement.

Type information example
The following example shows a basic type definition:

//VBBeginTypeInfo: Name,"Name type example",

 //VB: ð1 Name.

 //VB: ð3 Name-FIRST-NAME PIC X(15).

//VB: ð3 Name-MIDDLE-INITIAL PIC X(1).

 //VB: ð3 Name-LAST-NAME PIC X(15).

 //VBEndTypeInfo: Name

The type information provided is used by Visual Builder to generate code for actions.
With the following action information specified in the associated part definition for the
program:

//VBAction: getName,"Return the name",,ð1 NT Name.

the Visual Builder generates the following code:

 LOCAL-STORAGE SECTION.

 ð1 NT.

 ð3 NT-FIRST-NAME PIC X(15).

ð3 NT-MIDDLE-INITIAL PIC X(1).

 ð3 NT-LAST-NAME PIC X(15).
...

CALL "getName" RETURNING NT.

You can also specify type definitions using COPY files. Using a COPY file the previous
type definition becomes:

234 IBM VisualAge COBOL: Visual Builder User’s Guide

//VBBeginTypeInfo: Name,"Name type example"

 //VBCopy: NameType.cpy

 //VBEndTypeInfo: Name

where NameType.cpy contains:

 ð3 NT-FIRST-NAME PIC X(15).

ð3 NT-MIDDLE-NAME PIC X(1).

 ð3 NT-LAST-NAME PIC X(15).

In this case the generated code is:

 LOCAL-STORAGE SECTION.

 ð1 NT.

 COPY "NameType.cpy".
...

 Appendix A. Creating part information files 235

236 IBM VisualAge COBOL: Visual Builder User’s Guide

abstract class �Composition Editor

 Glossary

This glossary defines terms and abbreviations that are
used in this book. If you do not find the term you are
looking for, refer to the IBM Dictionary of Computing,
New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Standard Dictionary for Information
Systems ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI). Copies
may be purchased from the American National
Standards Institute, 1430 Broadway, New York, New
York 10018.

A
abstract class . A class that provides common behavior
across a set of subclasses but is not itself designed to
have instances that work. An abstract class represents a
concept; classes derived from it represent
implementations of the concept.

action . A specification of a function that a part can
perform. The Visual Builder uses action specifications to
connect parts. Actions are resolved to method
invocations in the generated code.

attribute . A specification of a property of a part. For
example, a customer part could have a name attribute
and an address attribute. An attribute can itself be a part
with its own behavior and attributes.

The Visual Builder uses attribute specifications to
connect parts. Attributes are resolved to get and set
methods in generated code.

attribute-to-action connection . A connection that
starts an action whenever an attribute's value changes.
It is similar to an event-to-action connection because the
attribute's event ID is used to notify the action when the
value of the attribute changes.

attribute-to-attribute connection . A connection from
an attribute of one part to an attribute of another part.
When one attribute is updated, the other attribute is
updated automatically.

B
behavior . The set of external characteristics that an
object exhibits.

bounding box . An imaginary area encompassing three
or more parts selected on the free-form surface.

C
caller . An object that invokes a method in another
object or calls a program.

category . In the Composition Editor, a selectable
grouping of parts represented by an icon in the left-most
column of the parts palette. Selecting a category
displays the parts belonging to that category in the next
column.

class . An aggregate that can contain methods and
data. Classes can be defined hierarchically, allowing one
class to be a parent of another.

class hierarchy . A tree-like structure showing
relationships among object classes. It places one
abstract class at the top and one or more layers of less
abstract classes below it.

class library . A collection of classes.

client area object . An intermediate window between a
frame window (CFrameWindow) and its controls and
other child windows.

client object . An object that requests services from
other objects.

Common User Access (CUA) . An IBM architecture for
designing graphical user interfaces using a set of
standard components and terminology.

composite part . A part that is composed of a part and
one or more subparts. A composite part can contain
visual parts, nonvisual parts, or both.

Composition Editor . A view that is used to build a
graphical user interface and to make connections
between parts.

 Glossary 237

concrete class �instance data

concrete class . A subclass of an abstract class that is
a specialization of the abstract class.

connection . A relationship between parts that
associates attributes, events, and actions of one part to
those of another part. The Visual Builder generates the
code that then implements these connections.

construction from parts . A software development
technology in which applications are assembled from
existing and reusable software components, known as
parts.

cursored emphasis . When the selection cursor is on a
choice, that choice has cursored emphasis.

D
data abstraction . A data type with a private
representation and a public set of operations. The
COBOL language uses the concept of classes to
implement data abstraction.

declaration . A description that makes an external
object or function available to a function or a block.

derivation . The creation of a new class from a parent
class.

dynamic link library (DLL) . In OS/2, a library
containing data and code objects that can be used by
programs or applications during loading or at run time.
Although they are not part of the program's executable
(.EXE) file, they are sometimes required for an .EXE file
to run properly.

E
encapsulation . The hiding of a software object's
internal representation. The object provides an interface
that queries and manipulates the data without exposing
its underlying structure.

event . A specification of a notification from a part.

event-to-action connection . A connection that causes
an action to be performed when an event occurs.

event-to-attribute connection . A connection that
results in the change of the value of an attribute when a
certain event occurs.

F
feature . A major component of a software product that
can be installed separately. In Visual Builder, an action,
attribute, or event that is available from a part's part
interface and that other parts can connect to.

full attribute . An attribute that has all of the behaviors
and characteristics that an attribute can have: a data
member, a get method, a set method, and an event
identifier.

free-form surface . The large open area of the
Composition Editor window. The free-form surface holds
the visual parts contained in the views you build and
representations of the nonvisual parts (models) that your
application includes.

G
get method . The method used to obtain the data in an
attribute.

graphical user interface (GUI) . A type of interface that
enables users to communicate with a program by
manipulating graphical features, rather than by entering
commands. Typically, a graphical user interface includes
a combination of graphics, pointing devices, menu bars
and other menus, overlapping windows, and icons.

H
handles . Small squares that appear on the corners of a
selected visual part in the visual builder. Handles are
used to resize parts.

I
inheritance . A mechanism by which a class can use
the attributes and methods defined in more abstract
classes related to it (its parent classes). An
object-oriented programming technique that allows you
to use existing classes as parents for creating other
classes.

instance data . Private data that belongs to a given
object and is hidden from direct access by all other
objects. Data members can only be accessed by the
methods of the defining class and its subclasses.

238 IBM VisualAge COBOL: Visual Builder User’s Guide

legacy code �parent class

L
legacy code . Existing code that a user might have.
Legacy applications often have character-based,
nongraphical user interfaces.

loaded . The state of the mouse pointer between the
time you select a part from the parts palette and deposit
the part on the free-form surface.

M
main part . The part that users see when they start an
application. This is the part from which the .app file for
the application is generated.

The main part is a special kind of composite part.

method . A procedure that is included in a class. A
method has access to instance data of its class.

method invoke . A communication from one object to
another that requests the receiving object to execute a
method.

A method invocation consists of a method name that
indicates the requested method, the parameters to be
used in executing the method, and, if required, a return
variable.

method name . The component of a method call that
specifies the requested operation.

model . A nonvisual part that represents the state and
behavior of a object, such as a customer or an account.

module definition file . A file that describes the code
segments within a load module.

N
nonvisual part . A part that has no visual
representation at run time. A nonvisual part typically
represents some real-world object that exists in the
business environment.

no-event attribute . An attribute that does not have an
event identifier.

no-set attribute . An attribute that does not have a set
method.

notebook part . A visual part that resembles a bound
notebook containing pages separated into sections by

tabbed divider pages. A user can turn the pages of a
notebook or select the tabs to move from one section to
another.

O
object . A computer representation of something that a
user can work with to perform a task. An object can
appear as text or an icon. A collection of data and
methods that operate on that data, which together
represent a logical entity in the system. In
object-oriented programming, objects are grouped into
classes that share common data definitions and
methods. Each object in the class is said to be an
instance of the class. An instance of a class. It can
represent a person, place, thing, event, or concept. Each
instance has the same properties, attributes, and
methods as other instances of the class, though it has
unique values assigned to its attributes.

object class . A template for defining the attributes and
methods of an object. An object class can contain other
object classes. An individual representation of an object
class is called an object.

object-oriented programming . A programming
approach based on the concepts of data abstraction and
inheritance. Unlike procedural programming techniques,
object-oriented programming concentrates on those data
objects that comprise the problem and how they are
manipulated, not on how something is accomplished.

observer . An object that receives notification from a
notifier object.

operation . A method or service that can be requested
of an object.

P
parent class . A class from which other classes or parts
are derived. A parent class may itself be derived from
another parent class.

parameter connection . A connection that satisfies a
parameter of an action or method by supplying either an
attribute's value or the return value of an action or
method. The parameter is always the source of the
connection.

parent class . The class from which another part or
class inherits data, methods, or both.

 Glossary 239

parameter �System Interface Editor

parameter . A data element in the USING clause of a
method call. Arguments provide additional information
that the invoked method can use to perform the
requested operation.

part . A self-contained software object with a
standardized public interface, consisting of a set of
external features (actions, attributes, and events) that
allow the part to interact with other parts. A part is
implemented as a class that supports the CNotifier
protocol and has a part interface defined.

part event . A representation of a change that occurs to
a part. The events on a part's interface enable other
interested parts to receive notification when something
about the part changes. For example, a push button
generates an event signaling that it has been clicked,
which might cause another part to display a window.

part event ID . The data item used to identify which
notification is being signaled.

part interface . A set of external features that allows a
part to interact with other parts. A part's interface is
made up of three characteristics: attributes, actions, and
events.

Part Interface Editor . An editor that the application
developer uses to create and modify attributes, actions,
and events, which together make up the interface of a
part.

parts palette . The parts palette holds a collection of
visual and nonvisual parts used in building additional
parts for an application. The parts palette is organized
into categories. Application developers can add parts to
the palette for use in defining applications or other parts.

preferred features . A subset of the part's features that
appear in a pop-up connection menu. Generally, they
are the features used most often.

primary selection . In the Composition Editor, the part
used as a base for an action that affects several parts.
For example, an alignment tool will align all selected
parts with the primary selection. Primary selection is
indicated by closed (solid) selection handles, while the
other selected parts have open selection handles.

program . That part of a file containing a set of
instructions conforming to COBOL language syntax. A
self-contained, executable module. Multiple copies of the
same program can be run in different processes.

promote . Features of a subpart are made accessible
through features of the containing part.

process . A collection of code, data, and other system
resources, including at least one thread of execution,
that performs a data processing task.

property . A unique characteristic of a part.

R
receiver . The object that receives a method invocation.

resource file . A file that contains data used by an
application, such as text strings and icons.

S
selection handles . In the Composition Editor, small
squares that appear on the corners of a selected visual
part. Selection handles are used to resize parts.

server . A computer that provides services to multiple
users or workstations in a network; for example, a file
server, a print server, or a mail server.

service . A specific behavior that an object is
responsible for exhibiting.

set method . The method used to update the data of an
attribute.

settings view . A view of a part that provides a way to
display and set the attributes and options associated
with the part.

sticky . In the Composition Editor, the mode that
enables you to add multiple parts of the same class (for
example, three push buttons) without going back and
forth between the parts palette and the free-form
surface.

subpart . A part instance contained in a part.

System Interface Editor . The editor you use to specify
the names of files that Visual Builder writes to when you
generate code. You can also use this editor to do the
following:

� Enter a description of the part

� Specify a different .VCB file in which to store the
part

� See the name of the part's parent class

240 IBM VisualAge COBOL: Visual Builder User’s Guide

thread �window

� Specify a .lib file for the part

� Specify a resource DLL and ID to assign an icon to
the part

� Specify other files that you want to include when
you build your application

T
thread . A unit of execution within a process.

tool bar . The strip of icons along the top of the
free-form surface. The tool bar contains tools to help you
construct composite parts.

U
unloaded . The state of the mouse pointer before you
select a part from the parts palette and after you deposit
a part on the free-form surface. In addition, you can
unload the mouse pointer by pressing the Esc key.

user interface (UI) . The hardware, software, or both
that enable a user to interact with a computer. The term
user interface normally refers to the visual presentation
and its underlying software with which a user interacts.

V
view . A visual part, such as a window, push button, or
entry field. A visual representation that can display and
change the underlying model objects of an application.
Views are both the end result of developing an
application and the basic unit of composition of user
interfaces.

visual part . A part that has a visual representation at
run time. Visual parts, such as windows, push buttons,
and entry fields, make up the user interface of an
application.

visual programming tool . A tool that provides a
means for specifying programs graphically. Application
programmers write applications by manipulating
graphical representations of components.

W
white space . Space characters, tab characters,
form-feed characters, and new-line characters.

window . A rectangular area of the screen with visible
boundaries in which information is displayed. Windows
can overlap on the screen, giving it the appearance of
one window being on top of another. In the Composition
Editor, a window is a part that can be used as a
container for other visual parts, such as push buttons.

 Glossary 241

242 IBM VisualAge COBOL: Visual Builder User’s Guide

 Related information

The following publications can help you find more
information on OO software design and Common User
Access (CUA) user interface design.

� Booch, Grady. Object Oriented Design with
Applications.

This book explores OO concepts and design. It
shows you, through various techniques and
examples, how to develop applications using OO.

It is available through Benjamin/Cummings,
Redwood City, California. Its ISBN number is
0-8053-0091-0.

� Cox, Brad J. Object-Oriented Programming: An
Evolutionary Approach.

This book explores OO programming. It shows you
how to build reusable objects through examples and
provides a comparison between OO programming
and traditional programming.

It is available through the Addison-Wesley
Publishing Company, Reading, Massachusetts. Its
ISBN number is 0-201-10393-1.

User Interface

� Object-Oriented Interface Design - IBM Common
User Access Guidelines.

This book describes the guidelines that define the
Common User Access user interface. The Common
User Access user interface is an OO graphical user
interface that provides a consistent look and feel for
products that adopt the CUA interface as their
standard.

It is available through QUE Corporation, Carmel,
Indiana. Its ISBN number is 1-56529-170-0.

� Rubenstein, R. and Hersch, H. The Human Factor:
Designing Computer Systems For People.

This book discusses user-centered design in its full
scope: task analysis, prototyping, empirical
evaluating, interface techniques, and guidelines.

It is available through Digital Press, Maynard,
Massachusetts.

 Related information 243

244 IBM VisualAge COBOL: Visual Builder User’s Guide

 Index

A
action

adding 67
changing in Part Interface Editor 69
changing settings when target 167
connecting menu items 183
defining on Action page 66
definition 11
deleting in Part Interface Editor 69
description 19
description of 26
example 89
implementing 89
naming 85
setting defaults, Part Interface Editor 69
updating in Part Interface Editor 69

Action page, defining actions 66
activating settings changes 132
adding

action 67
attribute in Part Interface Editor 58
categories and parts to parts palette,

introduction 143
category to parts palette, steps 146
CMenu part 175
CMenuCascade parts 175
code created outside Visual Builder 104
code to part 104
container column 190
container part to a part 187
event 64
help 205
Help push button 211
menu bar 174
menu items 177
menu items to pop-up menu 181
menu separators 183
menus to your application 173
notebook 198
notebook pages 200
notebook parts 197
object factory parts 215
object factory parts, introduction 215
parameters and types 68
part to parts palette 148

adding (continued)
part when editing 149
part, VCB file loaded 149
parts to notebook page 202
preferred feature 73
selected part, Visual Builder window 148
several copies of same part 118
static visual parts 214
variable parts 215
visual parts as dynamic instances 214

Align bottom tool 129
Align center tool 129
Align left tool 128
Align middle tool 129
Align right tool 129
Align top tool 128
aligning

parts on free-form surface 128
alignment tools 46
all part files

deselecting 35
selecting 35

application
adding help 205
basic, developing 77
build, files 55
compiling and linking 95
compiling and linking from a Visual Builder

project 95
compiling and linking from the command line 95
composing parts, Composition Editor 43
generating source code 91
help window 210
integrating visual parts into single application 213
Visual Builder, extending 217
yours, adding menus 173

application segmentation 3
architecture characteristics 15
arranging

parts, introduction 126
attribute

adding in Part Interface Editor 58
changing 60
completeness, effect on connections 153
defining get method 88
defining set method 88

 Index 245

attribute (continued)
definition 11
deleting 60
description 16, 60
description of 26
event identification 59
example 61
get method 59
implementing 86
name 58
naming 85
no-event 58
no-set 58
notification ID 89
set method 59
setting defaults, Part Interface Editor 60
tearing off 141
type 58
type as source in connections 59
updating 60

Attribute page fields, clearing 60
attribute type 58
attribute-to-action connection 156
attribute-to-attribute connection

changing settings 166
definition 153

B
base files, displaying 38
benefits of using parts 10
benefits of using Visual Builder 25
books, additional 243
bounding box, spacing parts 129
browsing features 159
building 95

IPF help file 208
part, files 55

business logic segment description 4
Buttons category 47

C
cascaded menus 173
category

adding to parts palette, introduction 143
adding to parts palette, steps 146
deleting from parts palette 150
removing from parts palette, just added 151
saving changes on parts palette 151

category (continued)
Visual Builder, table 120

changing
(renaming) part name, free-form surface 125
(sizing) parts, free-form surface 128
actions in Part Interface Editor 69
activating settings 132
arranging parts, introduction 126
attribute 60
color 131
depth order, composite part 134
event 65
font for part 131
group 137
parameter names and types 68
part size (matching) 128
parts on free-form surface 138
parts palette, saving 151
promoted feature 71
redoing 141
settings for connection 166
settings for part 129
settings, action as target 167
settings, attribute-to-attribute connections 166
source and target of connection 171
tab order 135, 136
tab stop 137
undoing 141

charts
types of connections, summary 158
Visual Builder categories 120

class
positioning a part 90
relationship to part 12
VB continuation statement 229
VBAction statement 228
VBAttribute statement 227
VBBeginPartInfo statement 224
VBComposerInfo statement 226
VBCopy statement 225
VBEndPartInfo statement 229
VBEvent statement 226
VBGeneratorValues statement 228
VBLibFile statement 225
VBParents statement 225
VBPartDataFile statement 225
VBPreferredFeatures statement 229

clearing
Action page fields 69
Attribute page fields 60

246 IBM VisualAge COBOL: Visual Builder User’s Guide

clearing (continued)
Event page fields 65
Promote page fields 72

clipboard, copying part 124
CMenu part, adding 175
CMenuCascade parts, adding 175
COBOL code

data declarations 99
existing 99

COBOL code, existing, using with Visual Builder 100
COBOL menu (VisualAge for OS/2), starting Visual

Builder 80
COBOL menu (VisualAge for Windows), starting Visual

Builder 80
COBOL source code

generating feature code 92
individual parts, generating for 91

COBOL Visual Builder project, starting Visual
Builder 79

COBOL window (OS/2), starting Visual Builder from 81
code

adding to part 104
adding, created outside Visual Builder 104
source, sample of help 207
steps for developing outside Visual Builder 104

code generation files, naming in System Interface
Editor 54

color area, group box 131
Color page 131
color, changing 131
colors list box 131
compilation, preparing generated files 93
compiler program

linker programs, debug options 94
compiling application 95
Composers category 49
Composers parts

spacing subparts 129
toggling grid, showing and hiding 127

composing parts for application, Composition Editor 43
composite part

changing depth order 134
listing parts 133
supplementary, as subpart 120

composite part example 9
Composition Editor

free-form surface 50
introducing 43
undoing and redoing changes 141

concepts
connections 26
parts 25
source code generation 27
Visual Builder 25

connecting
features to features 162
incomplete, supplying parameter values 163
menu bar to window 181
menu items to actions 183
object factory parts 216
object factory parts to variables 216

connecting parts 13
connection

attribute completeness’ effect 153
attribute type as source 59
attribute-to-action 156
attribute-to-attribute 153
changing source and target 171
concepts 26
deleting 168
deselecting 171
event-to-action 155
event-to-attribute 154
hiding 169
making 158
manipulating 165
modeless window 216
moving end points 171
parameter 156
rearranging 170
reorder 168
selecting 170
selecting multiple ones in OS/2 170
selecting multiple ones in Windows 171
selecting one 170
settings, changing 166
showing 169
source and target 158
supplying parameter value 163
types, description of 26
types, introduction 153
types, summary 158
using 153

connection menu for part, adding preferred feature 73
connection menu for part, removing all preferred

features 73
connection menu for part, removing preferred

feature 73

 Index 247

constant value, using to supply parameter value 164
constructing

containers and notebooks 185
part 85

construction checklist for part 85
construction from parts

architecture characteristics 15
introduction 8
origin of technology 9

construction from parts definition 8
container

adding columns 190
columns, setting up for icons 191
constructing 185
item attributes 189
part, adding to a part 187
parts, creating 185
setting up 188
setting values 188
title, setting 188
view type 189

container columns, adding 190
context-sensitive help, providing 208
Control settings page 130
copy files rules 101
copy files, importing 101
copying part

dragging parts 124
one part file to another 114
with clipboard 124

creating
basic application 77
container parts 185
help file 206
help file (IPF) 208
list box parts 192
new part 110
nonvisual parts 99
part information file 100
part, adding code 104
part, generating feature code 104
parts, overview 99
parts, overview of 83
pop-up menu 179
source files, part code generation 92

customizing information area 37

D
data access segment description 4
Data entry category 48
Data Part Listing

Attribute page for a data part 74
Preferred page for a data part 75

data type (default), int 58
data type of attribute 58
debug mode, run application in 97
debug options for compiler and linker programs 94
debugging

application 97
connections 96
entry fields 96
parts 95
tracing execution flow for 98
workstation beeps 96

debugging parts 95
default data type 58
defaults, setting for attributes in Part Interface Editor 60
defaults, setting for events, Part Interface Editor 65
defining

actions on Action page 66
CMenu part as menu bar 177
CMenu part as pull-down menu 179
part interface using part information files 100
parts 99

defining get method 88
defining set method 88
definition of Visual Builder 25
deleting

action in Part Interface Editor 69
attribute 60
category from parts palette, steps 150
connections 168
event 65
part from parts palette, steps 150
parts from free-form surface 125
parts from part file 116
promoted feature 71

dependency manager 6
depth order, changing in composite part 134
deriving new part from parent part 138
description of attribute 60
description of part, System Interface Editor 52
deselecting

all part files 35
all parts 108
connections 171

248 IBM VisualAge COBOL: Visual Builder User’s Guide

deselecting (continued)
parts 123
parts, introduction 122

design guidelines 83
determining source and target of connection 158
developing basic application 77
developing code outside Visual Builder, steps 104
directory, setting working 40
Display type settings page 131
display, refreshing 41
displaying

base files 38
full file names 38
inherited preferred features only 74
part names 107
pop-up menu 124
type list 38

Distribute horizontally tool 129
Distribute vertically tool 129
distribution tools on tool bar 46
DLL, resource, preparing for OS/2 144
DLL, resource, preparing for Windows 145
dragging parts to copy 124

E
editing

adding part to parts palette 149
help source file 206
parts on free-form surface 138
text strings 125

editing a data part 74
editor symbols, fast-path 43
end points of a connection, moving 171
enhancing make files 94
entry field

read-only 137
setting tab stop 137

enumeration
VB continuation statement 232
VBBeginEnumeration statement 231
VBCopy statement 231
VBEndEnumeration statement 232
VBPartDataFile statement 231

environment variables 94
error handling 97
event

adding 64
adding parameters 68
changing 65

event (continued)
changing parameter names and types 68
definition 11
deleting 65
description 19, 64
description of 26
example 65
identier, name 64
name 64
naming 85
Ready event 64
setting defaults, Part Interface Editor 65

event identification, attribute 59
Event page, adding event 64
Event page, clearing fields 65
event-to-action connection 155
event-to-attribute connection 154
example

action 19, 89
application segmentation 8
attribute 16
composite part 9
defining types in part information file 59
event notification 6, 19
get method 88
nonvisual part 9
notification ID 89
primitive part 9
set method 88
visual part 9

examples
adding menus 173
attribute 61
building help 211
event 65
ready event 64

existing COBOL code 99
existing COBOL data declarations 99
exporting part information 109
extending

Visual Builder applications 217

F
factories

description 214
dynamic windows 214
parts, adding 215
parts, adding and setting, introduction 215
parts, adding with variable parts 215

 Index 249

factories (continued)
parts, connecting to 216
parts, connecting to variables 216
parts, setting 215

fast-path, editor symbols 43
FAT file names 39
feature

connecting features to 162
deleting promoted one 71
Part Interface Editor 56
part’s, browsing 159
part’s, promoting 139
preferred, adding 73
preferred, removing 73
Promote page 69
promoting in Part Interface Editor 70
removing all preferred ones 73
showing inherited preferred features only 74
System Interface Editor 51

fields
clearing for Attribute page 60
clearing on Action page 69
clearing on Event page 65

file allocation table (FAT) file names 39
files

base, displaying 38
code generation, naming in System Interface

Editor 54
part build 55
source, created, generation of build files 93
source, created, part code generation 92
storing parts, VCB file 33

Font page 131
font, changing for part 131
Frame extensions category 48
free-form surface

deleting parts 125
editing part 138
introduction 50
placing part, introduction 118
placing parts on when not on parts palette 118
renaming parts 125
sizing parts 128

full attribute 58
full file names, showing 38

G
general help, providing 209

General settings page 130
generating

build files, source files created 93
COBOL source code for individual parts 91
feature code 92, 104
part code, source files created 92
preparing files for compilation 93
source code for parts 91
source code, concepts 27

generic settings notebook 132
get method, attribute 59
get method, defining 88
grid

hiding 127
positioning parts 127
showing 127
spacing 127
toggling 127
tools 45

group box
color area 131

group, setting 137
groups of radio buttons 137
groups, style guidelines 137
guidelines

placing parts 119
setting groups and tab stops 137

H
handleNotificationsFor method

overview 22
help

adding 205
application help window 210
context-sensitive 208
creating file for 206
general 209
Help push button, adding 211
sample source code 207
writing file for portability 206

help example, building 211
help file

building in IPF 208
creating for help 206

Help push button, adding 211
help source file, editing 206
help subproject 206
help window, application, providing 210

250 IBM VisualAge COBOL: Visual Builder User’s Guide

hiding
Composers part (toggle to showing) 127
connections 169
grid 127

highlighting conventions xiv
hints for using Visual Builder 219

I
icon

preparing for parts palette 144
unique, for part added to parts palette 147
unique, for part in System Interface Editor 54

icon container columns, setting up 191
iconic editing 21
implementation object 7
implementing actions 89
implementing attributes 86
import

part information 108
parts 101
version 1 component 36

import libraries, specifying in System Interface
Editor 53

importing copy files 101
importing other types of files 36
incomplete connections, supplying parameter

values 163
information area

customizing 37
inherited preferred features, showing only 74
INotificationEvent class

position in class hierarchy 24
INotifier class

overview 22
position in class hierarchy 24

int, default data type 58
integrating visual parts into single application 213
introduction

adding and removing categories and parts from parts
palette 143

adding and setting object factory parts 215
adding categories and parts to parts palette 143
arranging parts 126
Composition Editor 43
connection types 153
Part Interface Editor 56
parts palette 47
placing parts on free-form surface 118
selecting and deselecting parts 122

introduction (continued)
starting Visual Builder 79
System Interface Editor 51
tool bar 44
Visual Builder editors, introduction 43
Visual Builder window 31

invalid parameters 165
IObserver class

position in class hierarchy 24

K
key concepts about parts 25
key concepts about Visual Builder 25
keywords xiii

L
layout, notebook 199
learning to use parts 107
linker programs, debug options 94
linking application 95
list box

colors 131
parts, creating 192

list, type, showing 38
listing parts in composite part 133
Lists category 48
loaded VCB file, adding part 149
loading part files 33

M
Main what!!!!!?????

generating COBOL feature code 92
generation, source files created 93

making connections 158
manipulating

connections 165
parts 123

Match height tool 128
matching

part sizes 128
menu

adding menu bar 174
adding separators 183
adding to your application 173
and menu items, types of 173

menu bar
adding to 174

 Index 251

menu bar (continued)
connecting to window 181

menu bars 173
menu items, adding 177
menu items, connecting actions 183
menu separators, adding 183
missing parameters 165
model-view separation 5
model, definition of 4
modeless window connections 216
Models category 49
mouse pointer, unloading 118
moving

end points of connection 171
part to different part file 114
part to different part file in System Interface

Editor 53
part, free-form surface 126
through settings notebook 130

MS/DOS command window (Windows), starting Visual
Builder from 81

multiple parts
parts, selecting 123
sizing 128

N
name

code generation files, specifying in System Interface
Editor 54

FAT file names 39
name of attribute 58
naming

feature 85
part 84

navigating through settings notebook 130
new part from parent part 138
no-event attribute 58
no-set attribute 58
nonvisual part

adding code 104
creating 99
defining interface 103
generating feature code 104
iconic editing 21
implementing actions 89
implementing attributes 86

nonvisual part example 9
notation, syntax xii

notebook
adding 198
adding pages 200
adding parts 197
constructing 185
generic settings 132
layout 199
page, adding parts 202
page, setting up 201
settings for multiple parts 130
settings, opening 130
tab, setting up 201

notification
class hierarchy 24
overview 22
protocol description 23

notification framework 6
notification ID for attribute 89
notifier protocol

overview 22
notifyObservers method

overview 22

O
object technology overview 3
observer protocol

overview 22
offset calculations for windows 96
opening

multiple parts 113
one part 113
parts 112
settings notebook for multiple parts 130
settings notebook for part 130

optional words xii
order, tab, setting 135
original file name of imported parts, displaying in System

Interface Editor 54
origins of object technology 3
OS/2

deselecting connections 171
preparing resource DLL 144
selecting multiple connections 170

Other category 49
overlaying parts 119
overview

adding and removing categories and parts from parts
palette 143

connection types 153

252 IBM VisualAge COBOL: Visual Builder User’s Guide

overview (continued)
creating parts 99
visual construction 107

overview of creating parts 83

P
page

Action 66
Color 131
Control settings 130
Display Type settings 131
Font 131
General settings 130
Promote, features 69
Promote, promoting features in Part Interface

Editor 70
Size/Position 131
Styles settings 130
Validation 131

page and tab for notebook, setting up 201
pages

adding notebook 200
settings, descriptions 130

parameter connections 156
parameters

connections 156
missing 165
not valid 165
value, supplying using connection 163
value, supplying using constant value 164
values, supplying for incomplete connections 163

parent class of part, displaying in System Interface
Editor 53

parent part, new part derived from 138
part

add when editing 149
adding code 104
adding to notebook page 202
adding to parts palette 148
adding to parts palette, introduction 143
aligning, free-form surface 128
arranging, introduction 126
behavior description 19
benefits of using 10
browsing features of 159
changing depth order 134
changing font 131
changing settings 129
changing tab order 136

part (continued)
Composers, toggling grid, showing and hiding 127
composing with Composition Editor 43
concepts 25
connecting 13
constructing 85
construction checklist 85
container, adding to a part 187
container, creating 185
copying by dragging 124
copying from one part file to another 114
copying with clipboard 124
creating new, basic steps 110
creating, overview 99
debugging 95
defining 99
defining interface 103
definitions 12
deleting from part file 116
deleting from parts palette, steps 150
deleting, free-form surface 125
description 11
description, entering in System Interface Editor 52
deselecting 123
deselecting all 108
design guidelines 83
displaying names 107
displaying pop-up menu 124
editing text strings 125
exporting information 109
features, promoting 139
fonts 131
generating feature code 104
generating source code 91
guidelines for placing on free-form surface 119
implementing actions 89
implementing attributes 86
importing 101
information, importing 108
interface, defining using part information files 100
kinds supported 21
learning to use 107
list box, creating 192
listing in composite part 133
manipulating 123
moving to different part file 114
moving to different part file in System Interface

Editor 53
moving, free-form surface 126
naming 84

 Index 253

part (continued)
new, from parent part 138
notebook, adding 197
notification description 19
object factory, connecting to variables 216
object factory, setting 215
opening 112
opening multiple ones 113
opening one 113
opening settings notebook 130
opening settings notebook for multiple parts 130
overlaying 119
parent class, displaying in System Interface

Editor 53
pasting with clipboard 124
performing operations, Parts List window 135
placing on free-form surface, introduction 118
placing when not on parts palette 118
positioning in class hierarchy 90
positioning on grid 127
property description 16
relationship to class 12
removing from parts palette, just added 151
renaming in part file 117
renaming, free-form surface 125
same, adding several copies 118
saving changes on parts palette 151
selected, adding to Visual Builder window 148
selecting all 108
selecting multiple 123
selecting single 123
selecting, intoduction 122
sharing 141
size and position 131
sizes, matching 128
sizing more than one 128
sizing, free-form surface 128
sources 13
spacing in bounding box 129
sub-, spacing in Composers parts 129
supplementary composite, as subpart 120
unique icon for parts palette 147
unique icon, System Interface Editor 54
variable, adding 215
variables, connecting to object factory parts 216
VB continuation statement 229
VBAction statement 228
VBAttribute statement 227
VBBeginPartInfo statement 224
VBComposerInfo statement 226

part (continued)
VBCopy statement 225
VBEndPartInfo statement 229
VBEvent statement 226
VBGeneratorValues statement 228
VBLibFile statement 225
VBParens statement 225
VBPartDataFile statement 225
VBPreferredFeatures statement 229
Visual Builder categories, table 120
Visual Builder window 107
visual, as dynamic instances 214
visual, integrating into single application 213

part code generation, source files created 92
part definition 8
part files

deselecting all 35
loading 33
seeing where located 38
selecting all 35
sharing 142
unloading 34

part information file
creating 100
sharing 142
sharing enumerations and types 143
using to define part interface 100

Part Interface Editor
Action page 66
adding attributes 58
Attribute page 57
deleting an action 69
description of buttons on 56
Event page 63
introduction 56
Preferred page 72
Promote page 69
promoting features 70
setting defaults for actions 69
setting defaults for attributes 60
setting defaults for events 65

parts
placing on free-form surface 118

Parts List window, performing operations on parts 135
parts palette

adding categories and parts, introduction 143
adding category, steps 146
adding part 148
adding part, VCB file loaded 149
Buttons category 47

254 IBM VisualAge COBOL: Visual Builder User’s Guide

parts palette (continued)
Composers category 49
Data entry category 48
Frame extensions category 48
introduction 47
Lists category 48
Models category 49
Other category 49
preparing icons 144
saving changes 151
Sliders category 49
sticky 118
unique icon for part 147

pasting part with clipboard 124
placing

parts on free-form surface 118
parts on free-form surface, introduction 118
parts when not on parts palette 118

pop-up menu, creating 179
pop-up menu, displaying 124
pop-up menus 173
porting applications 219
position and size of part 131
positioning a part in the class hierarchy 90
positioning parts

(aligning), free-form surface 128
(arranging) parts, introduction 126
parts on grid 127

preferred features
adding 73
removing 73
removing all 73
showing inherited only 74

preparing
generated files for compilation 93
icons for parts palette 144
resource DLL for OS/2 144
resource DLL, Windows 145

preparing generated files for compilation 93
prerequisite knowledge xi
primitive part example 9
project, COBOL Visual Builder, starting Visual

Builder 79
Promote page

features 69
promoting features in Part Interface Editor 70

Promote page, changing promoted features 71
promoted features

changing 71
deleting 71

promoted features (continued)
updating 71

promoting
part’s features 139

promoting features in Part Interface Editor 70
public interface

definition 11
pull-down menu, defining 179
push button

Help, adding 211
putting parts on free-form surface, introduction 118

R
radio buttons in groups 137
ready event 64
ready event, example 64
real-world object 7
rearranging connections 170
red-green-blue values 131
redoing changes 141
refreshing display 41
related information 243
relationship between parts and classes 12
removing

all preferred features 73
categories and parts from parts palette,

introduction 143
category or part just added 151
preferred feature 73

renaming
part in part file 117
part on free-form surface 125

reordering connections 168
required words xii
resource DLL

preparing, OS/2 144
preparing, Windows 145

resource ID
starting, System Interface Editor 53

RGB values 131
rules for importing copy files 101
rules for syntax notation xii
run application in debug mode 97
running your part 95

S
sample application

adding and setting object factory parts,
introduction 215

 Index 255

sample application (continued)
adding menu bar 174
adding object factory parts 215
adding variable parts 215
adding visual parts as dynamic instances 214
combining all visual parts 213
connecting menu bar to window 181
connecting menu items 183
connecting object factory parts to variables 216
connecting to object factory parts 216
creating dynamic visual parts 213
creating static visual parts 214
modeless windows, connections 216
setting object factory part 215

sample help source code 207
saving changes, parts palette 151
selecting

all part files 35
all parts 108
connections 170
multiple connections, in OS/2 170
multiple connections, in Windows 171
multiple part 123
parts, introduction 122
single connection 170
single part 123

separation of model from view 5
service object 8
set method, attribute 59
set method, defining 88
setting

group 137
object factory parts 215
object factory parts, introduction 215
tab stop 137
working directory 40

setting container title 188
setting defaults

actions, Part Interface Editor 69
attributes, Part Interface Editor 60
events, Part Interface Editor 65

setting tab
order 135
stop for each entry field 137

setting up
containers 188
icon container columns 191
page and tab for notebook 201

settings
activating changes 132

settings (continued)
changing for attribute-to-attribute connections 166
changing, action as target 167
for connection, changing 166
part, changing 129

settings notebook
generic 132
navigating 130
opening for multiple parts 130
opening for part 130

settings pages, descriptions 130
sharing part files 142
sharing part information file 142
sharing parts 141
showing

Composers part (toggle to hiding) 127
connections 169
full file names 38
grid 127
inherited preferred features only 74
part names 107
type list 38

single part, selecting 123
size and position of part 131
Size/Position page 131
sizes, part, matching 128
sizing

more than one part 128
parts, free-form surface 128

sizing tools on tool bar 47
Sliders category 49
source code

COBOL, generating feature code 92
COBOL, generating for individual parts 91
generating for parts 91
sample help 207

source code generation
concepts 27

source files
created, generation of build files 93

source files, created, part code generation 92
source of connection

changing 171
determining 158

sources of parts 13
spacing

grid 127
parts in bounding box 129
subparts in Composers parts 129

256 IBM VisualAge COBOL: Visual Builder User’s Guide

special notices ix
specifying

container item attributes 189
container view type 189
debug options for compiler and linker programs 94
files for part build 55
fonts 131
grid spacing 127
names of code generation files in System Interface

Editor 54
notebook layout 199
size and position of part 131
starting resource ID in System Interface Editor 53
unique icon for part added to parts palette 147
unique icon for part in System Interface Editor 54

stacked words xii
starting

Visual Builder, COBOL Visual Builder project 79
Visual Builder, COBOL window (OS/2) 81
Visual Builder, introduction 79
Visual Builder, MS/DOS command window

(Windows) 81
Visual Builder, VisualAge COBOL menu (OS/2) 80
Visual Builder, VisualAge COBOL menu

(Windows) 80
starting resource ID, System Interface Editor 53
static visual parts, creating 214
steps

creating new parts 110
developing code outside Visual Builder 104
to add a CMenu part 175
to add a CMenuCascade part 175
to add menu bar 174
to create pop-up menu 179

sticky selected 118
stopHandlingNotificationsFor method

overview 22
storing parts in files, VCB file 33
style guidelines for groups and tab stops 137
Styles settings page 130
subpart

spacing in Composers parts 129
subpart, definition of 13
summary of connection types 158
supplementary composite parts, as subparts 120
supplying

parameter value using connection 163
parameter value using constant value 164
parameter values for incomplete connections 163

symbols
editors, fast-path 43

symbols for syntax notation xii
syntax notation

COBOL keywords xii
description of xii
repeat arrows xii
rules for xii
symbols used in xii

System Interface Editor
entering description of part 52
features 51
import libraries, specifying 53
introduction 51
moving part to different part file 53
naming code generation files 54
original files of imported parts, seeing 54
parent class of part, seeing 53
starting resource ID 53
target, specifying 53
unique icon for part 54

T
tab and page for notebook, setting up 201
tab order

changing 136
setting 135

tab stop
setting 137
setting for entry field 137

tab stops, style guidelines 137
table

types of connections, summary 158
Visual Builder categories 120

target of connection
changing 171
determining 158

target, specifying in System Interface Editor 53
tearing off attributes 141
text strings, editing 125
tips for using Visual Builder 219
toggling (showing and hiding) grid 127
toggling grid, showing and hiding Composers part 127
tool bar

Align bottom tool 129
Align center tool 129
Align left tool 128
Align middle tool 129
Align right tool 129

 Index 257

tool bar (continued)
Align top tool 128
alignment tools 46
connection tools 45
Distribute horizontally tool 129
Distribute vertically tool 129
distribution tools 46
grid tools 45
introduction 44
Match height tool 128
sizing tools 47

tools
Align bottom 129
Align center 129
Align left 128
Align middle 129
Align right 129
Align top 128
alignment 46
connection 45
Distribute horizontally 129
Distribute vertically 129
distribution 46
grid 45
Match height 128
sizing tools 47

tracing Visual Builder connections, setting up 94
trademarks ix
type definiton

VB continuation statement 234
VBBeginTypeInfo statement 233
VBCopy statement 233
VBEndTypeInfo statement 234
VBPartDataFile statement 233

type list, showing 38
types

connection, introduction 153
menus and menu items 173

U
undoing changes 141
unique icon for part added to parts palette 147
unloading mouse pointer 118
unloading part files 34
updating

actions in Part Interface Editor 69
attribute 60
event 65
promoted feature 71

user interface segment description 4
using existing COBOL code 99
using existing COBOL data declarations 99
using parts, learning 107
using your part 95

V
Validation page 131
values, setting for container 188
variables

parts, connecting object factory parts to 216
VB continuation statement

Class 229
Enumeration 232
Part 229
Type definition 234

VBAction statement
Class 228
Part 228

VBAttribute statement
Class 227
Part 227

VBBeginEnumeration statement
Enumeration 231

VBBeginPartInfo statement
Class 224
Part 224

VBBeginType statement
Type definition 233

VBComposerInfo statement
Class 226
Part 226

VBCopy statement
Class 225
Enumeration 231
Part 225
Type definition 233

VBEndEnumeration statement
Enumeration 232

VBEndPartInfo statement
Class 229
Part 229

VBEndType statement
Type definition 234

VBEvent statement
Class 226
Part 226

VBLibFile statement
Class 225

258 IBM VisualAge COBOL: Visual Builder User’s Guide

VBLibFile statement (continued)
Part 225

VBParents statement
Class 225
Part 225

VBPartDataFile statement
Class 225
Enumeration 231
Part 225
Type definition 233

VBPreferredFeatures statement
Class 228
Part 228

VCB files
adding part, VCB file loaded 149
copying part from one part file to another 114
deleting part 116
moving part to different part file 114
renaming part 117
storing parts in files 33

version 1 component, importing 36
view object 7
view, definition of 4
Visual Builder

adding code created outside of 104
applications, extending 217
benefits 25
definition 25
developing basic application 77
editors, introducing 43
hints and tips for using 219
key concepts 25
starting from COBOL window 81
starting from MS/DOS command window

(Windows) 81
starting, COBOL Visual Builder project 79
starting, introduction 79
starting, VisualAge COBOL menu (OS/2) 80
starting, VisualAge COBOL menu (Windows) 80
table of categories 120
using existing COBOL code 100

Visual Builder project, compiling and linking
applications 94

Visual Builder window
adding selected part 148
introduction 31
parts 107

visual construction, overview 107
visual editing 21

visual part
adding as dynamic instances 214
integrating into single application 213
visual editing 21

visual part example 9
VisualAge COBOL menu (OS/2), starting Visual

Builder 80
VisualAge COBOL menu (Windows), starting Visual

Builder 80

W
window

application help 210
COBOL (OS/2), starting Visual Builder from 81
connecting menu bar 181
modeless, connections 216
MS/DOS command window (Windows), starting

Visual Builder from 81
Visual Builder window 31
Visual Builder, adding selected part 148
Visual Builder, parts 107

window with menus 173
Windows

deselecting connections 171
preparing resource DLL 145
selecting multiple connections 171

working directory, setting 40
working with parts, Visual Builder window 107
writing portable help 206

 Index 259

We'd Like to Hear from You

IBM VisualAge COBOL
Visual Builder User’s Guide

Publication No. SC26-9053-02

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form from a
country other than the United States, give it to your local IBM branch office or IBM
representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

– IBMMail: USIB2VVG at IBMMAIL
– IBMLink: COBPUBS at STLVM27

 – Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the information is
presented. To request additional publications, or to comment on other IBM information or the
function of IBM products, please give your comments to your IBM representative or to your IBM
authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

IBM VisualAge COBOL
Visual Builder User’s Guide

Publication No. SC26-9053-02

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? Ø Yes Ø No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø
Grammatically correct and
consistent Ø Ø Ø Ø Ø
Graphically well designed Ø Ø Ø Ø Ø
Overall satisfaction Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-9053-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department J58
International Business Machines Corporation
PO BOX 49023
SAN JOSE CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-9053-02

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9ð53-ð2

Spine information:

IBM IBM VisualAge COBOL Visual Builder User’s Guide

