

VisualAge COBOL IBM

Getting Started on OS/2
Version 2.2

 GC26-9051-02

VisualAge COBOL IBM

Getting Started on OS/2
Version 2.2

 GC26-9051-02

 Note!

Before using this information and the product it supports, be sure to read the general infor-
mation under “Notices” on page vii.

Third Edition (April 1998)

This edition applies to Version 2.2 of VisualAge COBOL (Program Number 5639-B92) and to all subsequent releases
and modifications until otherwise indicated in new editions. This edition also obsoletes and replaces VisualAge
COBOL for OS/2: Introducing Redeveloper, GC26-8749. Make sure you are using the correct edition for the level of
the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

A form for reader's comments appears at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, Department W92/H3
P.O. Box 49023
San Jose, California, 95161-9023

 U.S.A.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Trademarks . viii

About This Book . ix

Before You Begin . 1
Hardware and Software Requirements . 1
Choosing Basic or Shared Installation . 6

Which Procedure Should I Choose? . 7
Installing on LAN-Connected Workstations . 7

If You are a LAN User: . 7
If You are a LAN Administrator: . 8
Restricting Users from Changing the Compiler Options Default Tool 8

Installing VisualAge COBOL . 9

Introducing VisualAge COBOL . 11
Working in a Project Environment . 11
Editing Source Code . 12
Creating GUI Applications . 12
Creating COBOL Logic . 13
Debugging Workstation Applications . 14
Accessing IMS Databases . 15
Redeveloping Legacy Code . 16

What is Application Understanding? . 16
What is Program Conversion? . 17
What is Program Structuring? . 17
What is Program Understanding? . 18
What is Year 2000 Impact Analysis? . 18

Analyzing Program Performance . 19
Developing CICS Host Applications from Your Workstation 19

Working with Host Applications . 21
Using Remote E/C/D . 21
Before You Begin Using Remote E/C/D . 22

Configure Your Host and Workstation for Communications 22
Perform Remote E/C/D Setup . 22

Creating Your First VisualAge COBOL Application 23
Creating a Non-GUI Project . 24
Creating the Application . 27
Building the Application . 28
Running the Application . 30

Creating a Simple Visual Builder Application 31
Creating the To-Do List Application . 31

 Copyright IBM Corp. 1995, 1998 iii

Creating a Visual Project . 32
Starting Visual Builder . 32
Placing Parts in the Application Window . 34
Resizing and Aligning the Parts . 36
Connecting the Parts . 39
Generating the COBOL Code for your Application 43
Building the Application . 43
Running the Application . 43
Exiting the Composition Editor and Visual Builder 44

Expanding the Simple Visual Builder Application 45
Expanding the To-Do List Application . 45

Opening the To-Do List Part . 46
Enabling the Add Push Button . 46
Adding and Aligning New Parts . 48
Creating a Nonvisual Part . 49
Defining Your System Interface . 51
Generating Your Code . 51
Updating Feature Source . 52
Connecting the Parts . 53
Generating the COBOL Code for Your Application 56
Building the Application . 56
Running the Application . 56
Exiting the Visual Builder . 56

Redeveloping Legacy COBOL Applications 57
Initiating Redevelopment Actions . 57
Understanding Your Applications . 58

Scanning the JCL Libraries . 59
Retrieving the JCL Scanned Output . 60
Loading the Database with the JCL Scan Output 61
Viewing the Contents of Your Inventory Database 61
Updating Your Inventory Database . 64
Application Understanding Hints and Tips 65

Reengineering Your Programs . 65
Converting Your Programs . 66

Viewing the Conversion Log . 66
Program Conversion and Reserved Words 67

Structuring Unstructured Programs . 67
Analyzing Your Program for Structuring . 67
Preparing Your Program to Improve Structuring 68
Structuring Your Program . 69
Modularizing Your Program . 70
Testing Your Program . 71

Understanding Your Programs . 71
Selecting Programs for Program Understanding Analysis 72
Creating SYSADATA . 72
Displaying a Flow Graph . 73

iv Getting Started

Displaying a Smart Listing . 73
Analyzing the Year-2000 Impact on Your Programs 73

Generating Year 2000 Impact Analysis Reports 75
More Information about Year 2000 Impact Analysis 75

Using VisualAge COBOL in the Analysis and Maintenance Process 75

Appendix A. Comparison of Workstation and Mainframe Concepts 77

Appendix B. Getting Support for Using VisualAge COBOL 79
Getting Product Support . 79
Getting Consulting Services . 80
Getting Education and Training . 80

VisualAge COBOL Glossary . 81

Index . 87

 Contents v

vi Getting Started

 Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any refer-
ence to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Subject to IBM's valid intellectual
property or other legally protectable rights, any functionally equivalent product, program,
or service may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those expressly
designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

500 Columbus Avenue
 Thornwood, NY 10594
 U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs and
other programs (including this one) and (2) the mutual use of the information that has
been exchanged, should contact:

 IBM Corporation
555 Bailey Avenue, W92/H3
P.O. Box 49023
San Jose, CA 95161-9023

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

 Copyright IBM Corp. 1995, 1998 vii

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks
of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

AIX
CICS
DB2
DB2/2
DFSMS/MVS
IBM
IMS
IMS/ESA
Language Environment

MQSeries
MVS
MVS/ESA
OS/2
OS/390
S/390
System Object Model
VisualAge

viii Getting Started

About This Book

This manual helps you install and learn to use VisualAge COBOL.

� “Before You Begin” on page 1 lists the hardware and software requirements for
installing and using VisualAge COBOL and summarizes the installation process.

� “Introducing VisualAge COBOL” on page 11 introduces VisualAge COBOL and its
components.

� “Creating Your First VisualAge COBOL Application” on page 23 guides you
through creating a simple non-GUI project.

� “Creating a Simple Visual Builder Application” on page 31 introduces you to the
Visual Builder where, from a Project environment, you'll use the Composition Editor
to create a visual application, adding parts in a frame window, connecting the
parts, building, and running the application.

� In “Expanding the Simple Visual Builder Application” on page 45 you'll expand this
visual application to include a nonvisual part. You'll generate feature code from the
nonvisual part, which you'll updated using the Code Assistant tool.

� “Redeveloping Legacy COBOL Applications” on page 57 introduces you the fea-
tures in VisualAge COBOL that help you keep your legacy code abreast of today's
technology.

� Appendix A, “Comparison of Workstation and Mainframe Concepts” on page 77
helps you relate workstation and host terms and concepts.

� Appendix B, “Getting Support for Using VisualAge COBOL” on page 79 provides
information on product services and support.

This book assumes familiarity with OS/2.

 Copyright IBM Corp. 1995, 1998 ix

x Getting Started

Hardware and Software Requirements

Before You Begin

Important! Before you install VisualAge COBOL:

� Make sure that your workstation meets the hardware and software requirements
described in “Hardware and Software Requirements” below.

� Review the information in the readme file. It contains the very latest product infor-
mation that might not appear in any other documentation.

� Determine if you have a previous version of VisualAge COBOL installed.

You cannot install VisualAge COBOL over an existing version or release of
VisualAge COBOL. You must deinstall it. If you install VisualAge COBOL over a
previous version or release, you can get unpredictable results.

 Important!

If you have created projects on the desktop with a previous release of
VisualAge COBOL, move those projects into a folder on the desktop before
uninstalling your current release of VisualAge COBOL.

Projects left on the desktop will lose inheritance information, which may impact
the ability to migrate them to VisualAge COBOL Version 2.2.

� Decide which installation procedure you should use. The different procedures are
described in “Choosing Basic or Shared Installation” on page 6.

Note: The default root installation directory for VisualAge COBOL is IBMCOBOL . We
refer to IBMCOBOL throughout this manual as the root (or target installation) directory.
If you installed VisualAge COBOL in a directory other than IBMCOBOL, specify the
directory you named when performing tasks that refer to IBMCOBOL.

Hardware and Software Requirements
 Processor

486-based 66 MHz processor (minimum)
Pentium-based processor or higher (recommended)

Program Understanding or Visual Builder:
Pentium-based 100 MHz processor (minimum)

 Operating System

IBM OS/2 Warp Version 4.0 (FixPak 5 is recommended)
IBM OS/2 Warp Server Version 4.0 (FixPak 5 is recommended)

 Memory

24 megabytes (MB) RAM (minimum) 32 MB RAM (recommended)

Program Understanding or Visual Builder:
64 MB RAM or higher (recommended)

 Copyright IBM Corp. 1995, 1998 1

Hardware and Software Requirements

Hard Disk Space

� Basic Installation (all files on local workstation):

– Full product: 300 MB
– Swap space: 40 MB

The tools and information are broken down into separate components. You can
reduce the space required by selectively installing components, The Installation
Utility displays the amount of disk space required for the components you selected.
Or, you can perform a shared install.

 � Shared Installation:

– 280 MB of shared files on the LAN server
– 20 MB on the local workstation

For connection to a Local Area Network

A LAN adapter supported by the operating system is required, for example:

� IBM Token-Ring Network Adapter/A
� IBM Token-Ring Network 16/4 Adapter/A
� A suitable Ethernet network adapter
� Other suitable compatible adapters

For host communications

A communications adapter supported by the operating system is required

 Other Software

This section lists the software required for specific applications. It also includes require-
ments for VisualAge COBOL components that require other software.

2 Getting Started

Hardware and Software Requirements

Table 1 (Page 1 of 4). Software Requirements

Application Requirements

DB2 � For stand-alone DB2 workstation applications:

One of the following:
– DB2 Universal Developer's Edition V5.0 (comprised of the DB2 SDK plus the

developer licenses and media for DB2 Universal Database Personal Edition,
Workgroup Edition, and Enterprise Edition, and DB2 Connect Personal
Edition and Enterprise Edition)

– DB2 Personal Developer's Edition V5.0 (comprised of the DB2 SDK plus the
developer licenses and media for the DB2 Personal Edition plus DB2
Connect Personal Edition on OS/2 and Win95/NT)

– DB2 for OS/2 V2.1.2 Server plus the DB2 SDK for OS/2 V2.1
– DB2 for OS/2 V2.1.2 Single-User plus FixPak 8120 plus the DB2 SDK for

OS/2 V2.1
– Database Server for OS/2 Warp Version 4.0 plus FixPak 8122 (comprised of

DB2 for OS/2 V2.1 Server plus the DB2 SDK for OS/2 V2.1)
� For remote access or LAN-based DB2 applications, see the Configuration tab in

the Information Notebook and click on Configuring for remote host develop-
ment .

To determine the service level of your installed DB2 for OS/2 product, type
SYSLEVEL at an OS/2 command prompt.

For more information, use one of the following addresses:

� World Wide Web:
 http://www.software.ibm.com/data/
 http://www.software.ibm.com/data/db2/library/

 � CompuServe
GO IBMDB2

� Anonymous FTP Site
ftp.software.ibm.com in the directory ps/products/db2

CICS Server � For developing and running production applications:

One of the following:
– CICS Transaction Server for OS/2 Warp, Version 4.1 (which contains CICS

for OS/2 Version 3.1)
– Transaction Server for OS/2 Warp, Version 4.0 (which contains CICS for

OS/2 Version 3.0)
� For developing host applications:

– VisualAge CICS Enterprise Application Development (provided with
VisualAge COBOL Enterprise)

CICS Client CICS Clients Version 2.0 or later

Note: This is also required for Transaction Assistant (TA) to execute an application
that contains code generated by TA.

MQSeries One of the following:

� MQSeries for OS/2 Warp Version 5.0
� MQSeries for OS/2 Version 2.0.1
� MQSeries Client for OS/2 (shipped with the above product)

 Before You Begin 3

Hardware and Software Requirements

Table 1 (Page 2 of 4). Software Requirements

Application Requirements

Host Data Access
(via APPC) using
SMARTdata Utilities
(SdU)

� On the workstation:

One of the following:
– IBM Communications Manager/2 Version 1.11
– IBM Communications Server for OS/2 Warp Version 4.0
– IBM eNetwork Communications Server for OS/2 Warp Version 5.0

� On the host:
– DFSMS/MVS Version 1.2.0 (5695-DF1) is required on your host

Oracle** Oracle7 or Oracle8

Sybase** Sybase System 10

Application Understanding,
Program Understanding,
Data Assistant, or
Year 2000 Analysis Tool

One of the following:

� DB2 for OS/2 Single-User Version 2.1 plus FixPak 8120
� DB2 SDK for OS/2 Version 2.1 plus FixPak 8120
� Database Server for OS/2 Warp Version 4 plus FixPak 8122
� DB2 Universal Database Version 5

Note: For Application Understanding to interact with your host from the workstation
you must install the VisualAge COBOL Remote Edit/Compile/Debug component.

Remote IMS DL/I
through APPC

You need the following:

� On the OS/390 host:
– IMS/ESA Database Manager Version 5 Release 1 (5695-176) plus enabling

PTF, or, IMS/ESA Database Manager Version 6 Release 1 (5655-158)
– One of the following:

- OS/390 Release 3 Language Environment feature (5645-001)
- IBM Language Environment for MVS & VM Release 5 (5688-198)

� On the MVS host:
– IMS/ESA Database Manager Version 5 Release 1 (5695-176) plus enabling

PTF, or, IMS/ESA Database Manager Version 6 Release 1 (5655-158)
– IBM Language Environment for MVS & VM Release 5 (5688-198)

� On the OS/2 workstation:

One of the following:
– IBM Communications Manager/2 Version 1.11
– IBM Communications Server for OS/2 Warp Version 4.0
– IBM eNetwork Communications Server for OS/2 Warp Version 5.0

4 Getting Started

Hardware and Software Requirements

Table 1 (Page 3 of 4). Software Requirements

Application Requirements

Remote Edit/Compile/Debug
function using TCP/IP

� On the OS/390 Host:
– IBM COBOL for OS/390 & VM Version 2 Release 1 (5648-A25) Full Function

Offering plus Debug Tool PTFs for APARs PQ6202 and PQ8277 and the
PTF for APAR PQ13212

with OS/390 Release 3 Language Environment feature (5645-001)

OR

IBM COBOL for MVS & VM Version 1 Release 2 (5688-197) Full Function
Offering plus Debug Tool PTFs for APARs PQ6202 and PQ8277 and the
PTF for APAR PQ13211

with IBM Language Environment for MVS & VM Release 5 (5688-198)
– TCP/IP Version 3 Release 2 for MVS/ESA (5655-HAL) (TCP/IP Version 3

Release 3 is not recommended)
– DFSMS/MVS Version 1.2.0 (5695-DF1) with the Network File System

Feature (minimum) or DFSMS/MVS Version 1.3.0 (5695-DF1) with the
Network File System Feature and the PTF for APAR OW25973 (recom-
mended)

� On the MVS Host:
– IBM COBOL for MVS & VM Version 1 Release 2 (5688-197) Full Function

Offering plus Debug Tool PTFs for APARs PQ6202 and PQ8277 and the
PTF for APAR PQ13211

– IBM Language Environment for MVS & VM Release 5 (5688-198)
– TCP/IP Version 3 Release 2 for MVS/ESA (5655-HAL) (TCP/IP Version 3

Release 3 is not recommended)
– DFSMS/MVS Version 1.2.0 (5695-DF1) with the Network File Feature

(minimum) or DFSMS/MVS Version 1.3.0 (5695-DF1) with the Network File
System Feature and the PTF for APAR OW25973 (recommended)

� On the OS/2 Workstation:
– IBM TCP/IP for OS/2 Version 2.0
– IBM TCP/IP for OS/2 Version 2.0 NFS kit with CSD UN57064 and the fix for

APAR PQ00835

 Before You Begin 5

Table 1 (Page 4 of 4). Software Requirements

Application Requirements

Remote Edit/Compile/Debug
function using APPC

� On the OS/390 Host:
– IBM COBOL for OS/390 & VM Version 2 Release 1 (5648-A25) Full Function

Offering plus Debug Tool PTFs for APARs PQ6202 and PQ8277 and the
PTF for APAR PQ13212

with OS/390 Release 3 Language Environment feature (5645-001)

OR

IBM COBOL for MVS & VM Version 1 Release 2 (5688-197) Full Function
Offering plus Debug Tool PTFs for APARs PQ6202 and PQ8277 and the
PTF for APAR PQ13211

with IBM Language Environment for MVS & VM Release 5 (5688-198)
– DFSMS/MVS Version 1.3.0 (5695-DF1) and the PTFs for APARs OW20884,

OW27760, OW27934
� On the MVS Host:

– IBM COBOL for MVS & VM Version 1 Release 2 (5688-197) Full Function
Offering plus Debug Tool PTFs for APARs PQ6202 and PQ8277 and the
PTF for APAR PQ13211

– IBM Language Environment for MVS & VM Release 5 (5688-198)
– DFSMS/MVS Version 1.3.0 (5695-DF1) and the PTFs for APARs OW20884,

OW27760, OW27934
� On the OS/2 Workstation:

– IBM Communication Manager/2 Version 1.11

HTML-formatted
Information

Netscape Navigator for OS/2 Version 2.02

Choosing Basic or Shared Installation
There are two main ways you can install VisualAge COBOL: basic or shared. The
install command is different for each, but the steps you follow are the same.

 � Basic installation

This procedure installs all files for the components you select to your hard drive.
The drawback to a basic installation is that you need a large amount of disk space.
The command for basic installation is install .

 � Shared installation

For the components you select, this procedure installs only those files that must be
local to your hard drive. The rest of the files remain on the CD-ROM or on a LAN
server, and you access them from the CD-ROM or server. A shared installation for
all components requires approximately 30 MB of disk space. The command for
shared installation is shrdinst .

If You Run Shared Installation from a CD-ROM
There are some drawbacks to a shared installation from the CD-ROM:

6 Getting Started

Installing on LAN-Connected Workstations

� You cannot apply corrective service (CSDs) or fix packs to the CD-ROM. If you
want to apply fixes to VisualAge COBOL components, you must use basic installa-
tion.

� VisualAge COBOL performance from the CD-ROM may be slower than from your
hard drive. The speed of accessing and transferring information is usually consid-
erably slower from the CD-ROM than from your hard drive.

Which Procedure Should I Choose?
Use basic installation if:

� You want to maintain files locally on your hard drive and you have enough space
on your hard drive.

� You are concerned about performance for shared installation from the CD-ROM.

Use shared installation if:

� You want to minimize the disk space used on your hard drive.
� You want to maintain common files on a LAN server for the team to use.
� The LAN administrator has restricted access to the Compiler Options Default Tool.

Installing on LAN-Connected Workstations
If your workstations are connected to a LAN, you can put the VisualAge COBOL instal-
lation files on a LAN server and then install from the server to the individual client work-
stations. Installing from the server is faster than installing from the CD-ROM, and
several client workstations can install at the same time or only necessary files, with the
remainder left to reside on the server (a shared installation). Note that most of the
problems associated with shared installation from the CD-ROM do not affect shared
installation from a LAN. In addition, with a shared installation, you can ensure that all
clients are using the same versions of the common files.

Important: When you install VisualAge COBOL across multiple workstations, make
sure you observe the license agreement as described in the License Information
booklet.

If You are a LAN User:
You need to know what kind of installation is available from the server (ask your LAN
administrator). If both basic and shared are available, decide which you prefer. Then
follow the same steps as you would for installing to a single workstation. You can run
the install program either attended or unattended using a response file. For more infor-
mation, see the INSTALL.TXT file on the VisualAge COBOL CD-ROM.

You cannot install VisualAge COBOL to a remote drive on the LAN because certain
files are not accessible when rebooting your system.

Important Information for Shared Install! If you are adding components, (compo-
nents that you did not initially install), make sure you have access to the LAN directory
where the VisualAge COBOL installation files reside. If not, VisualAge COBOL will

 Before You Begin 7

Restricting Access to Default Tool

attempt to install on the drive where the local files from the shared install reside.
VisualAge COBOL will then issue an error message stating the drive is not ready.

If You are a LAN Administrator:
You first need to decide whether to set up the server for basic installation, shared
installation, or both. Follow the steps below to put the appropriate installation files on
the server. Clients can choose basic or shared installation.

This procedure does not require changes to the server's CONFIG.SYS file.

1. Create a directory on the server that LAN users can access (for example,
IBMCOBOL).

2. Change to the LAN directory that you have just created.

3. Use XCOPY to copy all the files from the CD-ROM to the server. The syntax for
XCOPY is:

 xcopy d:\\ /s

where d is the CD-ROM drive.

4. Notify LAN users of where the installation files are located.

You can also install VisualAge COBOL directly on the LAN server following the
instructions as you would for a single workstation.

Restricting Users from Changing the Compiler Options Default Tool
If you are allowing users to perform a shared installation, you must decide whether to
allow them to change fixed compiler options from the Compiler Options Default Tool.
To restrict access to this tool, decide which compiler options to set so that users cannot
change them after installation.

To invoke the tool, from the task bar, select VisualAge COBOL →Tools →Compiler
Default Option Tool .

Use the tool to set the default value of the compiler options when they are not specified
in the compiler invocation or on CBL or PROCESS statements in the COBOL source
file. Do not use the tool to set or change compiler options for a specific compilation.

You may:

� Accept the defaults provided by clicking on OK.

� Accept the changes you have made by clicking on OK.

� If you made changes, but decide to change back to the defaults provided, and stay
within the tool, click on Default . This resets to the existing default options.

� If you made changes, but decide to change back to the defaults provided, and
want to exit out of the tool, click on Cancel .

8 Getting Started

To restrict users from using the tool:

1. Remove and copy from the IBMCOBOL\BIN directory to a different directory the
following files:

DIAMOND.EXE

IWZQDMND.EXE

By removing these files, the object for the Compiler Default Options Tool will not be
created in the Tools folder. Users will not see the tool after installation.

2. Remove and copy from the IBMCOBOL directory to a different directory the fol-
lowing files:

IBMCOBOL.ICF

IBMCOBOL.PKG

INSTALL.CMD

3. Copy SHRDINST.CMD to INSTALL.CMD . Your users are now restricted to shared
installations only. Users can now use INSTALL to perform a shared installation.

Installing VisualAge COBOL
To install VisualAge COBOL, switch to your CD-ROM drive and type install for a
regular install, or shrdinst for a shared install.

If you get an error messages during the installation procedure, select the Help button.

For detailed installation information, see the INSTALL.TXT file on the VisualAge
COBOL CD-ROM.

 Before You Begin 9

10 Getting Started

Introducing VisualAge COBOL

Introducing VisualAge COBOL

VisualAge COBOL is a COBOL development environment for creating applications on
workstations running OS/2 or Windows NT. It offers the best of both traditional and
cutting-edge COBOL programming.

VisualAge COBOL provides a set of visual tools to edit, compile, and debug your pro-
grams, integrated in a project environment. When you set up your application project,
these tools are available from the pop-up menus of your files. The files can reside on
either your workstation or the host.

The VisualAge COBOL remote functions lets you work with your host applications from
your workstation. It provides a seamless workstation environment for the development
of host programs. From the workstation, you can edit, compile, and debug COBOL
applications on the host, even applications using DL/I calls. Files are directly loaded
from the host to the workstation without the need for explicit downloading and work-
station naming and mapping. Communication to the host is provided using TCP/IP or
Advanced Program-to-Program Communication (APPC).

Not only does VisualAge COBOL offer the tools you need to efficiently and quickly
develop applications of the future, it enables you to pull your legacy applications in to
the future with you. You do not have to scrape your old applications and write new
code. Using VisualAge COBOL, you can analyze your applications to develop
migration plans, study your program code to find what ails it, convert older levels of
code to the latest COBOL standards, structure unstructured code, and develop detailed
report identifying potential year-2000 problems.

Working in a Project Environment
With the VisualAge COBOL project environment, your tools and files are integrated into
a single development environment, where you can work with your files directly rather
than accessing them through individual tools. For example, when you want to edit your
source code, you select the icon representing the file and invoke the edit action from
the file icon's pop-up menu. You can concentrate on the file itself since you can rely on
the project to provide context-sensitive actions for your files.

With VisualAge COBOL, you organize your code by grouping related files into projects.
A COBOL project is the complete set of data and actions you need to build a single
target, such as a dynamic link library (DLL) or executable (EXE).

VisualAge COBOL provides pre-configured COBOL projects. When you create your
own COBOL projects, you get a complete set of actions, types, and environment vari-
able settings pre-configured for your particular project type. This means that you get an
environment with the tools and actions already set up for you.

For more information, see “Creating Your First VisualAge COBOL Application” on
page 23.

 Copyright IBM Corp. 1995, 1998 11

Introducing VisualAge COBOL

Editing Source Code
The COBOL Editor provides language-sensitive editing for your files. Different COBOL
constructs, such as comments, are shown in different colors. In addition, context-
sensitive help is available for most COBOL language elements. COBOL keywords are
highlighted and by pressing F1, you get help for that particular language element.

Aside from standard editing functions, you can create GUI code, generate SQL state-
ments, and generate calls to invoke CICS transactions.

Code Assistant
Generates code to access the data and attributes of your graphical user inter-
face parts. Code Assistant is only available if you have installed the Visual
Builder. Code Assistant works with files with CBV and CPV extensions. The
Visual Builder must be running to access Code Assistant.

Data Assistant
Simplifies the process of constructing embedded SQL statements. SQL
statements generated by Data Assistant can be compiled and executed in
OS/2, Windows, and host COBOL programs. Data Assistant is only available
for non-GUI applications.

Transaction Assistant
Generates a COBOL CALL to ECICALL and a parameter list, based on your
input, for invoking CICS transactions. ECICALL uses the parameter list to
make the actual ECI call. Transaction Assistant is only available for non-GUI
applications.

The COBOL Editor displays certain tool bar icons and menu choices for the coding
assistants only when you need them. The tool bar icons and menu choices for the
Data and Transaction Assistants come up only if you are editing a COBOL file (CBL), a
copy file (CPY), a DB2 file (SQB), or a CICS file (CCP).

Creating GUI Applications
The COBOL Visual Builder enables you to create COBOL GUI applications.

The Visual Builder is based on a “construction from parts” paradigm. It consists of the:

Composition Editor
Use the Composition Editor to create the views for your application,
choose the parts that perform the logic you need, and make con-
nections between the parts.

System Interface Editor
Use the System Interface Editor to specify the names of files and
resources associated with the current part.

Part Interface Editor
Use the Part Interface Editor to define the features (attributes,
actions, and events) for your parts, along with a list of preferred fea-
tures for the pop-up connections menu. These features make up the

12 Getting Started

Introducing VisualAge COBOL

part’s interface. You use them when you make connections between
collaborating parts. You can also promote features of subparts from
this editor.

For more information, see “Creating a Simple Visual Builder Application” on page 31.

Creating COBOL Logic
VisualAge COBOL supports development of new COBOL applications that are targeted
for the workstation environment.

Compiler and Run-Time Environment

The VisualAge COBOL compiler and run-time environment supports the high subset of
ANSI 85 COBOL functions, just like the other IBM COBOL products. Your applications
can be compiled and run on supported platforms, whether they are created on a
mainframe, an AIX workstation, or a personal computer with OS/2 or Windows NT.

Although the IBM COBOL language is practically the same across platforms, there are
some minor differences between IBM COBOL for OS/390 & VM and VisualAge
COBOL. These differences are documented in the Summary of Differences: Host
COBOL and Workstation COBOL topics in the VisualAge COBOL Programming Guide
and the IBM COBOL Language Reference.. Porting considerations are described in
“Porting Applications between Platforms” in the VisualAge COBOL Programming Guide.

COBOL Millennium Language Extensions (MLE)

MLE is IBM's patent-pending technology that provides support for automated date win-
dowing to help you address the year 2000 challenge. MLE uses a windowing approach
to identify and convert date data from a two-digit year to four-digit year. Provided
through IBM extensions to the COBOL language, MLE gives you a mechanism to indi-
cate to the compiler which dates should be windowed. It's a compiler-assisted solution
for your windowed dates.

For more information, see COBOL Millennium Language Extensions Guide.

Object-Oriented Extensions

VisualAge COBOL's object-oriented language extensions are a syntax extension to
COBOL that implement a complete object-oriented paradigm. These object-oriented
extensions allow you to define object classes and subclass objects, to instantiate
objects, and to have objects inherit characteristics from other objects.

VisualAge COBOL creates language-neutral objects that interoperate with objects
created in other object-oriented languages enabled for IBM's System Object Model*
(SOM*). This is provided through VisualAge COBOL's Direct-to-SOM capability.

 Introducing VisualAge COBOL 13

Introducing VisualAge COBOL

DB2 Co-Processor

The DB2 co-processor eliminates the DB2 precompiling step, resulting in better opti-
mization of EXEC SQL statements. The DB2 support is fully integrated with the com-
piler. Your source program containing embedded SQL statements is handled by the
compiler without your having to use a separate precompiler. When the compiler
encounters SQL statements and at significant points in the source program, the DB2
co-processor processes the SQL statements by taking appropriate actions and indi-
cating to the compiler what native COBOL statements to generate at that point.

Distributed Data Access

VisualAge COBOL also provides a set of functions that enable your applications to
handle data across distributed environments. The services include:

Local VSAM record file system

Access to remote VSAM record files using the file processing capabilities of
COBOL

Copy, sort, and merge functions for both record and byte files

Access to local and remote DB2, CICS, Oracle, and Sybase database using native,
SQL support

Access to local and remote databases that support ODBC.

Data managed by Btrieve** using the file processing capabilities of COBOL.

Local sequential, relative, and indexed files using the STL (a VisualAge COBOL
access method) file system that supports full ANSI 85 COBOL standard file I/O
language.

These services complement their counterpart services on the mainframe, enabling you
to create client/server and cooperative processing applications using the IBM COBOL
language. Your applications can also call the utilities directly using the application pro-
gramming interfaces (APIs) that come with the utilities.

Debugging Workstation Applications
The interactive debugger helps detect and diagnose errors in code developed with
VisualAge COBOL. Using the interactive debugger, you can:

Step Through or Run a Program
You can step through your program one line at a time, or you can run the program
until a breakpoint is encountered, the program is halted, or the program ends.

You can also select the way the interactive debugger steps through a program. If it
is a call, the program's run can be halted when the call is complete, at the first state-
ment in the called program, or at the return statement of the current program. The
interactive debugger can also step over any program for which debugging is not
available, for example, library and system routines.

14 Getting Started

Introducing VisualAge COBOL

Set Breakpoints
You can control how your program executes by setting breakpoints. A breakpoint
stops the execution of your program at a specific location or when a specific event
occurs.

For year 2000 projects, you can specify that execution halts on all date fields. Used
in conjunction with MLE, “Creating COBOL Logic” on page 13, and Year 2000
Impact Analysis, “What is Year 2000 Impact Analysis?” on page 18, you have a pow-
erful tool to meet the year 2000 challenge.

View the Program Source Code
You can view the source code of the program you are debugging. You can view it
as a source, disassembly (assembler instructions), or mixed (a combination of source
and disassembled code).

Monitor Variables
You can display and change the variables during debugging.

Monitor the Registers
You can view all the processor and coprocessor registers for a particular thread.

Monitor the Call Stack
You can display all of the active programs, the remaining stack size, the stack frame
size, and the return address. When the state of the program changes, such as when
you execute the program or you update displayed data, the debugger changes the
information displayed to reflect the current state.

Monitor Storage
You can monitor variables in a storage window. For example, if you are monitoring a
pointer, as the pointer changes, the storage window changes to show the new
location referenced by the pointer.

Accessing IMS Databases
Remote DL/I provides access to IMS full function databases and GSAM databases from
programs using DL/I calls running on a workstation. Remote DL/I provides the support
to develop and test mainframe COBOL programs on a workstation that use DL/I calls in
IMS batch applications that access IMS full function databases and GSAM databases.

With VisualAge COBOL's Remote DL/I support, you can develop, compile and test
COBOL programs that run in an IMS batch environment that use CBLTDLI calls on the
workstation. Additionally, you can develop, compile, and test CICS COBOL programs
that use CBLTLI calls to access IMS full function databases.

Note:

� Remote DL/I does not provide access to IMS message queues or IMS fast path
databases.

� Remote DL/I runs using only S/390 data types as input and output. It does not
provide any data conversion function.

 Introducing VisualAge COBOL 15

Introducing VisualAge COBOL

Remote DL/I uses APPC and an IMS batch environment to provide the remote DL/I call
support. When Remote DL/I is first initialized on the workstation, you are prompted for
your TSO userid and password, which are used when the remote job is started on
MVS. APPC is used by Remote DL/I to start a job on MVS, which brings up an IMS
batch environment. Once the IMS batch environment is available, remote DL/I calls
can be processed. The DL/I calls on the workstation are sent to the IMS batch environ-
ment environment and executed. The results of the DL/I call are then sent back to the
program running on the workstation.

Redeveloping Legacy Code
VisualAge COBOL can help you analyze, understand, and maintain legacy COBOL pro-
grams and applications. With VisualAge COBOL, you can reengineer existing pro-
grams to produce applications better suited for future tasks.

VisualAge COBOL helps you maintain COBOL program code and applications by:

� Helping you understand the resources, structure, and flow of an application.

� Helping you convert COBOL programs to later ANSI standards of COBOL.

� Helping you structure your unstructured COBOL programs.

� Helping you understand the structure, logic, and flow of a program.

� Helping you identify places in you code where two-digit dates could cause you
trouble when processing dates later than 1999.

With VisualAge COBOL, COBOL program code and applications can be analyzed both
before and after converting.

Support for legacy code includes:

� Application Understanding , which helps you understand your existing MVS and
VSE inventory of applications.

� Program Conversion , which helps you convert older COBOL programs to higher
levels of COBOL.

� Program Structuring , which helps you structure your unstructured COBOL pro-
grams.

� Program Understanding , which helps you understand the logic and flow of your
COBOL programs.

� Year 2000 Analysis , which helps you locate occurrences of two digit year fields in
your programs.

What is Application Understanding?
When maintaining applications, it is useful to understand how they are constructed,
where they are used, and what files they process. Application Understanding helps you
do this by extracting key information from your existing inventory of JCL and presenting
this information to you in easy to understand graphic windows.

16 Getting Started

Introducing VisualAge COBOL

Key information about your applications is gathered by scanning your JCL. The informa-
tion extracted by Application Understanding's host JCL scanner is downloaded and
loaded into a DB2 database on your workstation. A scanner is provided for both MVS
and VSE.

Through a workstation graphical interface, you can see the content of your applications
and the resources that they use. For example, you can view all the jobs and jobsteps
that process a particular file or execute a particular program, or you can see all the jobs
that make up an application or all the job steps in a given job. You can follow the JCL
connections in your applications. For example, if you are viewing a job, you can
expand the view to see the job steps and then expand it again to see the DD statements
of a job step. You can go from one view directly to another.

What is Program Conversion?
Program Conversion helps streamline the maintenance of COBOL programs by helping
you convert your program code to higher levels of COBOL. The objective of Program
Conversion is to extend the life of your COBOL programs by making them easier to
convert. You can convert programs written to the ANSI COBOL Level 68 or 74
standard to programs that meet the ANSI COBOL Level 84 Standard.

Program Conversion in VisualAge COBOL is based on the technology that is currently
available in the current IBM COBOL and CICS/VS Command Level Conversion AID.

Input Languages: Use VisualAge COBOL to automate the conversion of valid
COBOL programs written in any of the following languages:

 � DOS/VS COBOL
� OS/VS COBOL LANGLVL(1)
� OS/VS COBOL LANGLVL(2)
� VS COBOL II Release 1 and Release 2
� VS COBOL II Release 3 (CMPR2)

Output Languages: You can convert any of the input languages listed above to any
of the following output languages:

� VS COBOL II Release 4
� COBOL for MVS & VM, VisualAge COBOL
� COBOL Set for AIX

Program Conversion eliminates user-defined name and reserved word conflicts, flags
language elements it cannot convert, and produces a log of information that helps you
assess the conversion and to track statistics about converting your COBOL inventory.

What is Program Structuring?
Use Program Structuring to analyze programs and optimize their structure. Program
Structuring structures your programs and produces reports that help you understand the
structured output program, how it relates to the input program, and help with possible
modularization.

 Introducing VisualAge COBOL 17

Introducing VisualAge COBOL

What is Program Understanding?
Program Understanding helps you understand complex COBOL software programs.
You can analyze and extract information about an entire set of programs and examine
this information on the workstation using a workstation graphical user interface to show
both graphical and textual views of the physical design of the programs.

Graphically, you can explore various views of the physical design of programs. At the
highest level, you can discover the relationships between the programs that compose
the entire application. A mid-level view displays the calling structure between the rou-
tines within a program or executable, including routines external to a program. At the
lowest level, you can examine the internal control flow of each program.

By default, multiple views are linked. A linked view depicts the association between the
compiled source code and the graphical control flow representations of the program.

Program Understanding presents hypertext cross-reference information that details
program usage, data structures, symbol usage, and COPY library usage. You can use
the expanded source code browser view as a launching pad for navigation within and
across programs.

You can request dataflow analysis on any user defined variable at any point in the
program. You can also view all instructions that use the selected variable.

Program Understanding technology can:

� Provide complete user defined high-, medium-, and low-level information about
large-scale software applications.

� Provide dataflow analysis.

� Provide program slicing to view business logic.

� Reduce the time application programmers need to become familiar with large-scale
applications.

� Facilitate the migration of applications to the latest technology, such as
client/server computing.

� Reduce errors that occur when maintenance tasks are performed manually on
complex applications.

� Improve the productivity of software maintenance programmers.

What is Year 2000 Impact Analysis?
VisualAge COBOL Year 2000 Impact Analysis helps tackle the 2000 challenge by
assisting you in locating occurrences of various kinds of year-related fields in your pro-
grams and examine them on the workstation.

Using the Cross Compilation Unit Analysis, you can propagate impact analysis informa-
tion between programs.

18 Getting Started

Introducing VisualAge COBOL

Analyzing Program Performance
The Performance Analyzer helps you understand your program's flow and tune your
program's performance.

It traces the execution of your application and allows you to analyze the call-return path
of your COBOL programs as well as the paragraphs within your programs. The gener-
ated trace file contains trace analysis data that can be graphically displayed in dia-
grams. Using these diagrams, you can improve the performance of an application,
examine occurrences that produce faults, and in general, understand what happens
when your application runs.

The Performance Analyzer does not replace static analyzers or debug tools, but it can
complement them by helping you understand aspects of the application that would oth-
erwise be difficult or impossible to see.

For instance, you can:

Time and tune applications
The Performance Analyzer time stamps each trace event using a high resolution
clock (about 838 nanoseconds per clock tick). As a result, the trace file con-
tains a detailed record of when each traced function was called and when it
returned.

The trace data also shows how long each function runs. This helps you find hot
spots, the areas within an application where a disproportionate amount of time
was spent.

Locate program hangs and deadlocks
The Performance Analyzer provides a complete history of events leading up to
the point where a program stops. You can view the function call stack from
anywhere in the application.

Trace multithreaded interactions
When multithreaded applications are traced, you can look at the sequencing of
functions across threads in some of the diagrams. This highlights problems
within critical areas of the application.

Trace the complete application
Not only does the analyzer trace procedures in the EXE file, but it traces the
entry points to system calls and application DLLs.

Developing CICS Host Applications from Your Workstation
Included with VisualAge COBOL is the VisualAge CICS Enterprise Application Develop-
ment offering, which enables complex transaction management applications to be
developed and tested using the function available in VisualAge COBOL. VisualAge
CICS Enterprise mirrors the enterprise environment for transaction systems on a typical
desktop computer. It provides the capability to use the power of the workstation
together with networks, which can be local area or wide area, stand-alone or host-
attached.

 Introducing VisualAge COBOL 19

Introducing VisualAge COBOL

With VisualAge CICS Enterprise, you can:

� Communicate between application programs and local and remote workstations,
terminals, subsystems, printers, and other devices

� Add additional CICS resources while debugging and testing transactions.

� Use the standard CICS distributed features all in one desk-top computer namely,
Distributed link, Transaction routing, Function shipping and Distributed Transaction
Processing over MRO or ISC

� Enable a non-CICS application to call a VisualAge CICS program synchronously or
asynchronously, using External Call Interface (ECI)

� Enable programs in one CICS system to have requests to address resources (such
as files or queues) in any other connected CICS system executed on that system.

� Use the performance analyzing function to provide information that will assist in the
resolution of application performance issues including a high level application trace
and probe

� Use IBM's leading commercial messaging MQSeries (TM) software

20 Getting Started

Working with Host Applications

The VisualAge COBOL Remote Edit/Compile/Debug component (Remote E/C/D) pro-
vides a workstation environment for performing the edit, compile, and debug tasks
associated with host COBOL application development. It also serves as the basis for
the Application Understanding component to access the host.

Application parts, such as COBOL source code, COBOL copy books, and host JCL, are
kept in PDS or PDSE data sets on the host. You access and work with these files
through an MVS project. If you keep your source, copy files, or JCL in a library system
on the host, you must copy them from the host library to a PDS to make them available
for MVS project actions. Also, the names you see on the workstation for your host
PDSs and PDS members depend on how you defined your MVS drives during Remote
E/C/D setup.

Using Remote E/C/D
Using Remote E/C/D, you can:

Access host data sets in COBOL MVS projects
After completing the required configuration, you can connect to PDS or PDSE data-
sets and include members in your project. You can then access your host files as if
they were workstation files.

Edit host files with the COBOL editor
You can edit remote files using the COBOL editor, which enables you to use the
language-sensitive editing capability of the COBOL editor on host COBOL programs.

Compile on the workstation to check syntax
From the workstation, you can run a syntax-check compile on your source files to
ensure they compile error free before submitting them for compile on the host.

Submit batch jobs to the host
You can submit jobs directly from your project without logging on to your host.

Monitor the status of batch jobs on the host
From your workstation, you can monitor the status of jobs submitted to the host, as
well as look at job output.

Execute TSO commands on the host
You can open a TSO command prompt window from your project, allowing TSO
commands to be submitted to the host.

Debug programs executing on the host
With the Debug Tool, you can debug applications running in the OS/390 or MVS
environments. The supported environments are batch (JES), TSO, CICS, and IMS
(BTS). The debugging sessions are cooperative; thus, the user interface for the
session resides on the workstation. The Debug Tool runs on the host with your
application. The Debug Tool and workstation interface communicate with each other
through APPC or TCP/IP.

 Copyright IBM Corp. 1995, 1998 21

You can start or submit the following actions from your workstation, but the activity
must be done on the host:

� Preprocessing, compiling and link-editing via batch job submission
� Running applications for debugging

You can find detailed information about using Remote E/C/D on the MVS Projects
page of the Information Notebook .

Before You Begin Using Remote E/C/D
Before you can start using Remote E/C/D, the following must be completed:

1. Configure the Host and your workstation for TCP/IP or APPC communications

2. Perform Remote E/C/D setup

Your host system administrator will configure the host. You, or your workstation
support personnel, will setup your workstation.

Before configuring your host system, ensure you have the appropriate software
prerequisits installed on your host and workstation. For details, see “Other Software”
on page 2.

Configure Your Host and Workstation for Communications
After installing VisualAge COBOL, you (or your host administrator) can navigate through
a browser-driven scenario that builds the appropriate configuration steps, customized
for your specific requirements and environment. From the task bar, select VisualAge
COBOL→Information Notebook . Then, click the Configuration tab and double click
on Configuring for remote host development .

Perform Remote E/C/D Setup
After completing the configuration necessary for your host, you then need to set up
your workstation before you can use Remote E/C/D. With Remote E/C/D setup, you
provide user-specific information required to complete the host and workstation commu-
nication. For example, you'll provide your TSO userid, define which host data sets you
want to access and how you access them, and indicate whether you have optional soft-
ware that enables some advanced features.

To complete the Remote E/C/D setup, you edit the MVSINFO.DAT file provided in the
IBMCOBOL\MACROS directory. You can edit the file directly, or invoke the MVS Setup
action from your MVS project, which opens the MVSINFO.DAT file.

Details on the information you need to collect before setting up Remote E/C/D, instruc-
tion on how to perform the setup, and steps to verify the communications are correct
are included on the Configuration page of the Information Notebook .

22 Getting Started

Creating a VisualAge COBOL Application

Creating Your First VisualAge COBOL Application

This chapter guides you through creating your first VisualAge COBOL application. The
steps you follow here teach you the basic principles that you use for further applications
that you create.

Your first step in developing an application with VisualAge COBOL is to set up a
project. The VisualAge COBOL development paradigm centers around the concept of
a COBOL project, which is a container of your application files, such as COBOL source
files, copy files, listings, object code, and executable files. Projects are set up to
enable you to perform actions on those application files. The actions vary depending
on the type of file. For example, edit is an action appropriate for a COBOL source file.
However, the edit action would not be appropriate for an executable file.

With VisualAge COBOL, your can work with the following types of applications:

Non-GUI Applications
Enables you to create applications using basic COBOL language features.

Visual Builder Applications
Enables you to create applications with a graphic user interface (GUI).
Using a "construction from parts" paradigm, you create applications by
dropping parts onto a palette and then adding connections to define the
actions for those parts. For more complex applications, you then add user
code to complete the application.

Remote Host Applications
Using the Remote Edit/Compile/Debug feature of VisualAge COBOL, you
can work with your host applications from the workstation, without having to
download the applications or data to the workstation.

The Hello Application you create in this chapter is a non-GUI application, which con-
tains a COBOL source file (a component) from which you build (compile and link) the
running COBOL program (a target). When you finish, you have an application that dis-
plays a customized greeting.

Figure 1 on page 24 shows you what the application's interface looks like when you
have finished.

Note: A complete Hello Application is provided in the samples folder. You can use
the Hello Application sample to get an idea of how your Hello Application will run.

 Copyright IBM Corp. 1995, 1998 23

Creating a VisualAge COBOL Application

Figure 1. Hello Application. A COBOL application you can build using VisualAge COBOL.

The main steps you follow are:

� Creating the project
� Coding the application
� Building the application
� Running the application

Creating a Non-GUI Project
To create a new project, you use Project Smarts. Project Smarts contains notebook
pages on which you define the type of project you want to create and other information
needed to create the project. By default your project files are placed in a folder on your
desktop, COBOL Projects. You open existing project files contained in this folder by
double-clicking on the project's IWP file.

To create a non-GUI project do the following:

1. Select VisualAge COBOL → Accessing COBOL Projects from the Task Bar.
The dialog box for creating new projects or opening existing project opens.

Note: The first time you create a new project, the COBOL Projects folder is
created on your desktop.

2. Select Create new project . The Project Smarts window opens.

3. On the Projects page, you indicate the type of project you want to create. Select
COBOL Non-GUI Project .

4. Click Next . The Location page opens.

24 Getting Started

Creating a VisualAge COBOL Application

Figure 2. Location page for creating new projects.

5. On the Location page:

� Enter a title for your project; in this case, enter the name Hello Application.
The title shows in the title bar of the project.

� Enter the directory where you want to put your source files. In this case, enter
E:\HELLOAPP, substituting the actual drive you'll be using in place of E. The
HELLOAPP subdirectory is created after completing this page.

� Accept the default specification for Where to create the project file.

The project file (.IWP) contains general project information and settings. Asso-
ciated with the .IWP file is the .IWO file, which contains the options settings for
the actions you can invoke on files in your project. The .IWP and .IWO files
must be in the same directory and they must have the same filename. They
do not need to be the same directory as the project source files.

� In the Project file name field, enter the filename. For this project enter,
HELLOAPP.

Click Next . The Target page opens.

6. On the Target page, indicate the name of the target file. The target file (usually an
.EXE or .DLL) is generated when you build the application. For this application,
use the default HELLOAPP. The default target file is assigned based on the first
eight characters in the Project Title field on the Location page.

7. Click Done . A window opens confirming that the project was created successfully.

8. Click OK. The Hello Application project opens. Also, the project files
(HELLOAPP.IWP and HELLOAPP.IWO) are added to the COBOL Projects folder
on your desktop.

 Creating Your First VisualAge COBOL Application 25

Creating a VisualAge COBOL Application

The project window includes:

.1/System menu
Contains menu items for manipulating (minimizing, maximizing, or closing) the
window that contains your project.

.2/Project toolbar
Contains buttons for frequently used actions.

The left side of the project toolbar contains the Monitor button, which displays
the project monitor window where the output of monitored actions is displayed
(such as compile and link). It also contains a button that opens the How Do I
help for COBOL projects.

The right-hand side of the project toolbar contains buttons for launching
frequently-used actions like Build, Debug, and Run.

.3/Menu bar
Contains menu items to launch project-scoped and file-scoped actions, bring
up the project's settings notebook, set options, and link to online books and
How Do Help.

Project lists all the project-scoped actions available to the project. The menu
also contains actions to open or create another project, to close the project
view, and to exit the project.

Selected contains the actions that apply to any selected file (or subproject).
The menu changes depending on the type of file selected.

Both project-scoped and file-scoped actions are also accessible from the
pop-up menus.

View contains controls for opening different views on the project, including
the project's settings notebook. It also contains view options for the project
toolbar and information area.

Options includes a list of the actions for which you can change option set-
tings. When you select an action from this menu, the options dialog for the
action displays.

Help contains items for referencing project online help and other VisualAge
COBOL information..

.4/Filter
Enables you to select which files display in the project container. The drop-
down list box lists all the masks that are available to the project. To use
multiple file masks, separate them with a semicolon.

.5/Container
Displays the project files and any subprojects.

26 Getting Started

Creating the Application

Figure 3. The project window

Now that you have created your project, you can create the files you need for the appli-
cation as explained in “Creating the Application”

Creating the Application
Once you have created a new project, you have a set of actions available for the files
you create for your program.

Note: This section is included to explain how to create COBOL source files and
enable the language-sensitive editing feature. If you're familiar with these concepts,
you can copy HELLOAPP.CBL from the SAMPLES\HELLOAPP subdirectory where you
installed VisualAge COBOL to the directory where you have stored your source files for
this tutorial. Then, skip this step and continue with “Building the Application” on
page 28.

To create the COBOL source file for the Hello Application project:

1. From the project menu-bar, select Project → Edit . The live parsing editor opens
with a default document titled Editor - Untitled Document 1.

To enable the COBOL language-sensitive editing features:

� From the Editor menu-bar, select Options → Profiles → Change profile .
The Change profile window opens.

� In the Change profile window, click on the drop-down arrow to the right of the
Language Profile drop-down combination box. Locate the item cbl ; you
might have to scroll to find it. Click on cbl to select it.

� Click on OK. The COBOL language-sensitive editing features are enabled.

 Creating Your First VisualAge COBOL Application 27

Building the Application

2. Enter the following source code:

Identification division.

Program-ID. Helloapp.

Data division.

Working-storage section.

ð1 Program-work-fields.

 ð5 Input-name Pic x(3ð).

 ð5 Output-name Pic x(37).

ð1 Program-flags.

 ð5 Loop-flag Pic 9(ð1).

 88 Loop-done Value 1.

Procedure division.

 Initialize program-work-fields

 Program-flags.

Perform until loop-done

Display " "

Display "Enter a name or Q to quit:"

 Accept input-name

If function upper-case (input-name) = "Q"

Set loop-done to true

 Else

Move spaces to output-name

Move "Hello, " to output-name (1:7)

Move input-name to output-name (8:3ð)

 Display output-name

 End-if

 End-perform.

 Goback.

3. When you have finished entering the source code, save the file by selecting File-
Save from the menu bar. Ensure that the Directory list box shows HELLOAPP as
the selected directory. Enter HELLOAPP.CBL in the File Name field and click OK.
Then close the COBOL Editor by selecting File → Exit from the editor menu bar.

4. Press F5 to refresh the project window. The HELLOAPP.CBL file should appear.

You are now ready to build the application.

Building the Application
When you build your application, the target file that you specify is created. For the
Hello Application, you have a single COBOL source object, which you build into a
running COBOL program.

1. From the tool bar, click on , the Build Normal icon.

28 Getting Started

Building the Application

The target, an executable file titled HELLOAPP.EXE, is created from the COBOL
source file. A monitor window opens titled Editor - Project Monitor - Hello Applica-
tion and displays the progress of the build.

Figure 4. Hello Application - Project Monitor Window

If errors are detected during the build step, the monitor displays the return code
and compiler error messages. Scroll up to the message lines that include the
drive, path names, and source file name (HELLOAPP.CBL) as well as the error
message text. Double-click on a message line.

The COBOL Editor displays, showing the line in the HELLOAPP.CBL source file
where the error occurred. Correct the error and save the file. Rebuild the file and
check the results in the monitor window.

For multiple errors messages, you can select Actions → Select all messages ,
and then Actions → Process selected messages to display the source files with
all the messages.

Note: Some linker error messages also contain drive, path, and file names. You
can only double-click on compiler error messages to fix errors in the source
program.

2. Close the Editor window. New files appear in the WorkFrame V3.5 Project -
Hello Application window,

You are now ready to run the Hello Application.

 Creating Your First VisualAge COBOL Application 29

Running the Application

Running the Application
You can run your application from your Hello Application project. From the tool bar,

click on , the Run icon.

A workstation window displays and runs your program, prompting you for a name.

Figure 5. Hello Application. The Hello Application in action....

30 Getting Started

Creating a Visual Builder Application

Creating a Simple Visual Builder Application

This chapter takes you through an example of how you use Visual Builder to develop
an application for creating and maintaining a simple to-do list. Figure 6 shows what the
application looks like when it is finished.

Figure 6. Finished To-Do List Application

A complete TODOLIST application is provided in the samples folder. The TODOLIST
sample includes additional connections, which are not included in the To-Do List appli-
cation that you'll create in this chapter. It also includes the date function, which is
explained in “Expanding the Simple Visual Builder Application” on page 45. You can
use the TODOLIST sample to get an idea of how your To-Do List application will run.

Creating the To-Do List Application
Creating the To-Do List application consists of the following steps:

1. Creating a visual project
2. Starting the Visual Builder
3. Creating a new visual part
4. Placing parts in the application window
5. Resizing and aligning the parts
6. Connecting the parts
7. Generating the COBOL code for your application
8. Building the application
9. Running the application

10. Exiting the Composition Editor and Visual Builder

 Copyright IBM Corp. 1995, 1998 31

Creating a Visual Builder Application

Creating a Visual Project
For this tutorial, we'll organize the files in a Visual Builder project. To create a project,
follow the steps in “Creating Your First VisualAge COBOL Application” on page 23,
except:

� On the Project page select COBOL Visual Builder Project .

� On the Location page specify:

– TODOLIST as the Project title.
– D:\VISUAL\TODOLIST as the Source file directory.
– TODOLIST as the Project file name.

� On the Target page accept the default TODOLIST as the target file name.

� Click on Done . A message displays indicating your project was created success-
fully. Click OK. The WorkFrame V3.5 Project - TODOLIST window opens.

Starting Visual Builder
The TODOLIST project contains the following files:

READ.ME
A file explaining the basics for creating a visual project

TODOLIST.VCB
The TODOLIST visual part.

VBHELP.IWO/VBHELP.IWP
Subproject files, which contain a skeleton help source file (VBHELP.IPF). Project
Smarts creates the HELPDIR subdirectory under VISUAL\TODOLIST for the help
source file.

To start the Visual Builder, double-click on the TODOLIST.VCB icon in the TODOLIST
project. The Visual Builder window and the Composition Editor window open.

32 Getting Started

Creating a Visual Builder Application

Figure 7. Visual Builder's Composition Editor

Areas to note in the Composition Editor are:

.1/Tool Bar
Enables you to invoke frequently used actions by clicking on the icon.

.2/Parts Palette
The left column of the part palette contains the categories of parts (such as
buttons and list boxes). The right column contains the parts available for the
category selected.

Each category contains a collection of similar or related parts. You drop parts on
the free-form surface or on top of other parts, like a canvas (which is component
of your visual part).

.3/Free-Form Surface
The area on which you place parts, such as a canvas or nonvisual parts.

.4/Visual Part
A frame window with a canvas and two push buttons. As you create your appli-
cations, you'll add more parts (such as push buttons and static text) to this
canvas.

Close Push Button —When running the application, clicking the Close push
button closes the window. It has no affect in the Composition Editor. The solid
green arrow pointing to the To-Do List frame is the completed connection that
closes the To-Do List application when a user presses the Close push button.
You learn how to connect parts later in this tutorial.

Help Push Button —When running the application, pressing the Help push button
causes a help window to display for the To-Do List application.

 Creating a Simple Visual Builder Application 33

Creating a Visual Builder Application

The help file (VBHELP.HLP) is created from the supplied help source file
(VBHELP.IPF) when you build the To-Do List application.

The settings of the Help push button determine which help panel displays based
on a specific resource ID. For example, double-click on the Help push button to
open the settings notebook. On the Control tab, Help panel id specifies 100 as
the resource ID for the Help push button. If you edit VBHelp.IPF, you see that
res=1ðð is included on the Main Window Help panel.

The TODOLIST part also contains a subpart titled CHelpWindow2, which is outside of the
TODOLIST frame window on the free-form surface. This subpart represents the actual
help window and it's where you define the help libraries. (If you double-click on
CHelpWindow2, the setting notebook opens. The default help library is VBHELP.HLP).

Before you place any parts in the frame window, first edit its title.

Changing the title of the To-Do List frame window

The new visual part that you just created is a CFrameWindow part, titled Window Title.
This will be the To-Do List application title bar. Change the title of this window by doing
the following:

1. Position the cursor over the title bar.
2. Press the ALT key and click with mouse button 1.
3. Enter a new title (such as My To-Do List)
4. Click anywhere on the To-Do List canvas part.

You are now ready to place parts (such as push buttons and static text) in the applica-
tion window.

Placing Parts in the Application Window
To select parts to place in the application window, you:

� Select the parts category from the left-hand column of the parts palette.
� Select the part from the right-hand column of the parts palette.
� Move the mouse pointer to the free-form surface and click on the spot where you

want to place the part.

Note: You don't need to drag the part from the parts palette to the free-form
surface. You just point and click.

Placing a static text part in the window

The To-Do List application needs two static text fields. Follow these steps to place the
first static text part in the To-Do List application window:

1. Select (the Data entry category) from the icons on the left-hand side of the
parts palette.

34 Getting Started

Creating a Visual Builder Application

2. Select (the COBOL Text StaticText icon) from the icons on the right-hand
side of the parts palette. When you move the mouse pointer over the free-form
surface, you see that it has changed to crosshairs. This means the mouse pointer
is loaded with the COBOL Text StaticText part.

3. Place the crosshairs in the upper-left corner of the To-Do List application window’s
client area and click mouse button 1. A static text part is placed in the window.

4. Change the name of the static text part to: To-Do Item:

Use the same method for changing text that you learned previously when you
changed the title of the To-Do List frame window.

Placing an entry field in the window

The To-Do List application needs an entry field so the user can type in new To-Do
items.

1. Select (the COBOL Text Entry Field icon) from the icons on the right-hand
side of the parts palette. (The COBOL Text Entry Field icon is also contained on
the Data entry category set of icons.)

2. Place the crosshairs beneath the first static text, indented a few spaces to the right,
and click mouse button 1. The entry field is placed beneath the static text.

Placing another static text in the window

Follow these steps to position and modify the second static text:

1. Place the second static text in the To-Do List frame window under the entry field,
but aligned with the first static text. Use the same method for placing a static text
that you learned previously when you placed the first static text in the To-Do List
frame window.

2. Change the name of the static text to: To-Do List: Use the same method for
changing text that you learned when you changed the title of the To-Do List Appli-
cation frame window.

Placing a list box in the window

Because the to-do list will consist of a list of text strings, you want to store that list in a
COBOL ListBox. To place a list box in the To-Do List frame window:

1. Select (the Lists category) from the icons on the left-hand side of the parts
palette.

2. Select (the COBOL ListBox icon) from the icons that Visual Builder displays
on the right-hand side of the parts palette.

3. Place the crosshairs below the second static text, aligned with the entry field, and
click mouse button 1. The list box is placed beneath the second static text.

 Creating a Simple Visual Builder Application 35

Creating a Visual Builder Application

Placing the push buttons in the window

The To-Do List application needs two additional push buttons, one for adding items to
the list and one for removing items from the list. To place two push buttons in the
frame window:

1. Select (the Buttons category) from the icons on the left-hand side of the
parts palette.

2. Select (the COBOL PushButton icon) from the icons on the right-hand side
of the parts palette.

3. Place the crosshairs between the Help and Close push buttons and click mouse
button 1. The first push button is placed in the window.

4. Change the name of the new push button to Remove. Also, to help identify subparts
once you begin connecting parts, rename the subpart to removepb. Double-click on
the Remove push button to display the Settings notebook. On the General page,
change the Subpart name to removepb and change the Label to Remove. Click on
OK.

5. Select the COBOL PushButton icon again.

6. Place the crosshairs to the left of the Help push button and click mouse button 1.
The second push button is placed in the window.

7. Change the name of the push button to Add and the Subpart name to addpb.

Note: If you place the push buttons slightly out of alignment with the existing push
buttons, that's OK. We'll align and size the push buttons in the next step.

Resizing and Aligning the Parts
Now that you have placed all of the parts you need in the To-Do List window, you can
resize and align them. When you have finished, your frame window should look like
Figure 6 on page 31.

Dragging and dropping parts in the frame window

Before you align the parts, you might want to drag and drop some of them to put them
in closer proximity to each other. For example, you might want the static texts to be
closer to the parts that they label. Follow these steps to drag and drop the parts in the
application window:

Note: The following instructions are written for dragging and dropping multiple parts
simultaneously. If you just want to drag and drop one part at a time, select the
part and continue with step 3.

1. Select the first part you want to drag.

2. While holding down mouse button 1, move the mouse pointer to the second part
you want to move. The selection handles on the first part become outlined, and
black selection handles appear on the four corners of the second part. This means
both parts are selected, but the second part is the anchor part. Therefore, any

36 Getting Started

Creating a Visual Builder Application

sizing actions performed using the tool bar cause the first part to match the anchor
part for the sizing action selected.

3. Move the mouse pointer over one of the parts that you selected to drag.

4. Press and hold mouse button 2 and move the mouse cursor. Visual Builder dis-
plays an outline of the parts that you are dragging.

5. Move the outline to the place where you want to drop the parts and release the
mouse button. The parts are moved to their new location.

Resizing the frame window (optional)

At this point, the parts in the frame window might be closer to the left window border
than to the right window border (depending on where you've placed the parts). Follow
these steps to resize the frame window:

1. Select the application window by clicking mouse button 1 on the title bar.

2. Move the mouse pointer over the selection handle on the lower-right corner of the
frame window.

3. Press and hold mouse button 1.

4. Resize the frame window by dragging the mouse pointer towards the left until the
right border of the frame window is approximately the same distance from the entry
field and list box as the left border is.

To size the frame window in only one direction, either horizontally or vertically, hold
down the Shift key while dragging the mouse pointer.

Matching the width of the list box to the width of the entry field

Follow these steps to match the width of the list box to the width of the entry field:

1. Using the multiple selection technique you learned in Dragging and dropping parts
in the frame window, select the list box and then the entry field, making the entry
field the anchor part. (The last part you select becomes the anchor part.)

2. Select (the Match Width tool) from the icons on the tool bar, located beneath
the menu bar. The width of the list box changes to match that of the entry field.

Sizing and aligning the push buttons

After changing the text for each push button, you'll notice the push buttons have dif-
ferent widths and heights, and aren't aligned.

Using the techniques you learned in the preceding steps, select all four push buttons,
using the Remove push button as the anchor part.

� Match the width of the push buttons. Select (the Match Width tool).

 Creating a Simple Visual Builder Application 37

Creating a Visual Builder Application

While all four push buttons are still selected, let's match their height and align them
in the frame window.

� Match the height of the push buttons. Select (the Match Height tool).

� Match the top edges of the push buttons. Select (the Align Top tool).

� Space the push buttons evenly across the frame window. Select (the Dis-
tribute Horizontally tool).

Centering the entry field and list box within the frame window

The entry field and list box need to be centered within the application window. Follow
these steps to center them:

1. Select the entry field.

2. Select (the Distribute Horizontally tool) from the icons on the tool bar. Visual
Builder centers the entry field between the left and right borders of the frame
window.

3. Select the list box and then the entry field, making the entry field the anchor part.
Use the multiple part selection technique you learned previously.

4. Select (the Align Left tool) from the icons on the tool bar. The list box is
aligned with the entry field.

Aligning the static text so their left edges are even

The two static text parts need to be aligned evenly. Follow these steps to align them:

1. Select both static text parts (making either one the anchor part). Use the multiple
part selection technique you learned previously.

2. Select (the Align Left tool) from the icons on the tool bar. The first static text
part is aligned evenly with the second static text part.

Your To-Do List window should now look like the one shown below.

38 Getting Started

Creating a Visual Builder Application

Figure 8. The TODOLIST with all its parts.

Connecting the Parts
The next step in developing your To-Do List application is to code the logic behind the
parts. The COBOL program behind your To-Do List application follows the event-driven
programming model.

An event-driven program runs segments of logic in response to events. It has entry
and exit points that correspond to many events that can happen with respect to the
program. When you run an event-driven program, all logic in your application waits for
certain events to happen, such as when a user clicks the Add push button. Once a
selected even occurs, only the logic for that event is performed, then the application
waits for the next event. (With procedural programming, the program has one entry
point of entry and exit. The program follows each step in the program logic sequentially
until it reaches the end of the logic.)

The Visual Builder helps you code the event logic. Each part you place on your To-Do
List canvas has a connections menu, from which you select the event to which your
logic will respond.

When connecting parts, you follow these basic steps:

1. Select the part and right mouse click to display the connections menu
2. Select the event that triggers an action on that part
3. Select the part affected when that event occurs
4. Select the action to occur

For the To-Do List, you need to connect the push buttons to the list box and entry field.
You'll add connections that will move the text that a user enters in the To-Do Item entry
field to the end of the To-Do List list box when the Add push button is pressed. You'll
also add connections to remove one item from the To-Do List list box when the
Remove push button is pressed.

 Creating a Simple Visual Builder Application 39

Creating a Visual Builder Application

Connecting the Add push button to the list box

The connection between the Add push button and the list box provides the information
your application needs to add items to the list box.

1. With the mouse pointer over the Add push button, click mouse button 2. A pop-up
menu displays.

2. Select Connect . A cascaded menu of the Add push button displays.

3. Select press . Selecting press means you want something to happen whenever a
user presses this push button. The mouse pointer changes to look like a spider,
indicating that it is ready for you to select another part.

4. Move the mouse pointer to the list box and click mouse button 1. A pop-up menu
displays.

5. Select addItemEnd . Selecting addItemEnd means you want new items to be
added to the end of the to-do list whenever a user presses the Add push button.
The connection is shown in Figure 9.

Figure 9. The connection between the Add push button and the list box

The line connecting the Add push button to the list box is dark green. It points
from the push button to the list box, showing that the event that occurs when the
push button is pressed causes the list box to perform an action.

The dashed line means the connection is incomplete. The connection is supposed
to add something to the list box when the Add push button is clicked, but you have
not yet supplied what needs to be added. You'll do that in the next step.

6. Move the mouse pointer to the dashed connection line between the Add push
button and the list box. Click mouse button 2.

7. Select Connect → Item .

8. Move the mouse pointer over the entry field, and click mouse button 1.

40 Getting Started

Creating a Visual Builder Application

9. Select contents . Selecting contents means you want to move the text that a user
enters in the entry field to the Item parameter of addItemEnd. This text string is
added to the end of the to-do list whenever addItemEnd is called, which occurs
whenever the Add push button is clicked. The completed connection is shown in
Figure 10 on page 41.

Figure 10. The completed connection for the Add push button

The completed connections indicate that the entry field contains the data to be
added to the end of the list box when the user presses the Add push button.

The line connecting the entry field to the connection between the Add push button
and the list box is violet. This is the parameter connection. The open circle end
indicates that the contents attribute of the entry field is the source for the param-
eter to the addItemEnd action.

The solid circle touches the connection line between the Add push button and list
box. The Item parameter of the addItemEnd action is the target of the connection.
When the Item parameter needs a value, which occurs when a user presses on the
Add button, the connection invokes the get member function of the entry field’s
contents attribute. The value of that attribute (the text in the entry field) is returned
and moved to the Item parameter and the addItemEnd action puts the text string in
the list box.

Notice that both of the connection lines are solid. This means the connection
between the Add push button and the list box now has the information it needs to
perform its function, so the connection is complete.

Connecting the Remove push button to the list box

The connection between the Remove push button and the list box programs your appli-
cation to remove items from the list box.

1. With the mouse pointer over the Remove push button, click mouse button 2.

2. Select Connect → Press .

 Creating a Simple Visual Builder Application 41

Creating a Visual Builder Application

3. Move the mouse pointer to the list box and click mouse button 1.

 4. Select removeOne .

Selecting removeOne means you want your application to remove one item in the
to-do list whenever a user presses the Remove push button. Once again, the con-
nection is incomplete.

5. Move the mouse pointer to the connection between the Remove push button and
the list box and click mouse button 2.

6. Select Connect → itemIndex .

7. Move the mouse pointer over the list box and click mouse button 1.

 8. Select firstSelected .

Selecting firstSelected means you want to move the index of the first selected item
in the list box to the ItemIndex parameter of the removeOne action. The
removeOne action uses this index to determine which item to remove whenever
the Remove push button is clicked.

Making this connection completes your application. It should now look like this:

Figure 11. The completed To-Do List application

Now that you have made all of the connections, the next step is to generate your
COBOL source code.

42 Getting Started

Creating a Visual Builder Application

Generating the COBOL Code for your Application
Before you can build your application, you must first generate source code and build
files.

Generating the source code for your visual part

To generate the COBOL source code for your visual part, from the toolbar, select
(Generate Part Source).

Important: Visual Builder generates several files in the working directory
(VISUAL\TODOLIST). Do not edit or move these files; they are used by Visual Builder
and your project.

Generating the build files

To generate the build file, select File → Save and generate → Build files .

You have now generated the COBOL code for your application. The next step is to
build the application.

Building the Application
Building your application consists of compiling and linking it. You'll build the application
from your Visual Builder project that you created in the first step:

1. In your project, press F5 to refresh it.

2. From the toolbar, click on , the Build Normal icon.

Subprojects are built first, in this case VBHELP, which generates its make files in
the HELPDIR subdirectory under VISUAL\TODOLIST. Then, the main project
(TODOLIST) is built. The build action generates an executable, binary resource,
several object files and some additional temporary files.

Now you can run your application.

Running the Application
To run your application from your Visual Builder project, from the toolbar, click on ,
the Run icon.

Once your application is running, experiment with it to make sure it works as designed.
You'll notice that when you input text into the To-Do Item entry field and press Add, the
text is added to the To-Do List entry box. However, the text remains in the entry field.
You'll learn how to clear the entry field, as well as enable and disable the Add push
button in “Expanding the Simple Visual Builder Application” on page 45.

 Creating a Simple Visual Builder Application 43

Creating a Visual Builder Application

Exiting the Composition Editor and Visual Builder
You've created a simple Visual Builder application! If you want to expand on the To-Do
List application, continue to the next tutorial. Do not close the Visual Builder or Compo-
sition Editor.

If you'd like to continue at another time, exit the Visual Builder and Composition Editor
now. To exit, select File → Exit .

Note: You must exit Visual Builder before you can shut down the operating system.
Otherwise, the operating system might not shut down completely, requiring you
to turn the computer off.

44 Getting Started

Expanding the TODOLIST

Expanding the Simple Visual Builder Application

This chapter explains how to expand the To-Do List application, which you created in
the previous section, to include user-supplied code contained in a nonvisual part. You
will create a nonvisual part contained in the TODOLIST part. You will use the Part
Interface Editor and System Interface Editor to generate feature code (skeleton COBOL
code) in which you'll add code (using Code Assistant) that will generate the current date
in the To-Do List Application.

You'll also add connections that will make the Add push button available (or unavail-
able), based on the content in the To-Do Item entry field. Figure 12 shows what the
application looks like when it is finished.

Figure 12. Expanding the To-Do List Application. Using the Date push button to display the date.

Expanding the To-Do List Application
Expanding the To-Do List application consists of the following steps:

1. Opening the To-Do List part
2. Enabling the Add push button
3. Adding and aligning new parts
4. Resizing and aligning the parts
5. Creating a nonvisual part
6. Defining your system interface
7. Generating your code
8. Updating feature source
9. Connecting the parts

10. Generating the COBOL code
11. Building the application
12. Running the application
13. Exiting the Composition Editor and Visual Builder

 Copyright IBM Corp. 1995, 1998 45

Expanding the TODOLIST

Opening the To-Do List Part
If you're continuing with the TODOLIST application from “Creating a Simple Visual
Builder Application” on page 31, skip this step. If not, open the TODOLIST part:

1. Double-click on the COBOL Projects folder on your desktop. The TODOLIST -
Icon View window opens. This is your TODOLIST project.

2. Double-click on the TODOLIST.VCB icon in the project view. The Visual Builder
and the Composition Editor with your TODOLIST part open.

Now you're ready to continue with the To-Do List Application.

Enabling the Add Push Button
To fine tune the TODOLIST application, you'll probably want to make the Add push
button unavailable, depending on whether text is entered in the To-Do Item entry field.
Let's also clear the entry field of the To-Do Item after pressing the Add push button.
You'll need to do the following:

1. Make the Add push button unavailable (since, initially, the text entry field is blank).
2. Make the ADD push button available once text is entered into the entry field.
3. Clear the entry field once the Add push button is clicked.
4. Make the Add push button unavailable once the Add push button is clicked.

Notice that steps 3 and 4 are driven by the same event (clicking the Add push button).
When you have multiple actions occurring as a result of a single event, you must code
the connections in the same sequence as the actions occur.

Making the Add push button unavailable

To disable the Add push button, you need to do the following:

1. Double-click on the Add push button.
2. Click on the Control notebook tab.
3. On the Control notebook page, click on the enable check box to remove the

check mark. (The push button is available (checked) by default.)
4. Click on OK.

Making the Add push button available when text is entered in the entry field

To enable the Add push button once you enter an item in the To-Do Item entry field, you
need to add a connection between the entry field and the Add push button. Do the
following:

1. With the mouse pointer over the entry field, click mouse button 2.

2. Select Connect → More... .

3. Under the event column, select change .

 4. Select OK

5. Move the mouse pointer to the Add push button and click mouse button 1.

46 Getting Started

Expanding the TODOLIST

6. Select enable . Selecting the enable action means that when something is
changed in the entry field (for example, inputting text), the Add push button is avail-
able.

Removing the entry field text

After you enter a To-Do Item in the entry field and press the Add push button, you
should clear the text from the entry field. Do the following:

1. With the mouse pointer over the Add push button, click mouse button 2.

2. Select Connect → press .

3. Move the mouse pointer to the entry field and click mouse button 1.

4. Select Contents . A dashed line shows the connection between the Add push
button and the entry field.

5. Double-click on the dashed connection line. The Event-to-action connection -
setting dialog displays.

6. Click on the Set parameters button. The Parameters Data Settings notebook dis-
plays.

7. In the Contents field enter a blank space. (This will “empty” the entry field when
the Add push button is pressed.)

8. Click on OK to close the Parameter Data Settings notebook.

9. Click on OK to close Event-to-action dialog.

Making the Add push button unavailable

Once again you need to disable the Add push button, after adding the To-Do Item to
the To-Do List. Do the following:

1. With the mouse pointer over the Add push button, click mouse button 2.

2. Select Connect → press .

3. Move the mouse pointer to the Add push button and click mouse button 1.

 4. Select Disable .

Now, the Add push button will not be available after clicking on it.

The connections are shown in Figure 13 on page 48.

 Expanding the Simple Visual Builder Application 47

Expanding the TODOLIST

Figure 13. The connections so far...

Note: We changed the shape of the connections between the Add push button and
entry field to make it easier for you to see. You can do this by selecting the connection
and dragging the middle selection handles.

Adding and Aligning New Parts
To display the current date, you will need to add the following parts in the frame
window:

� A push button, labeled Date
� Static Text for the Date label.
� Static Text where the application will display the date

In the To-Do List part, add the following in the frame window:

1. Add a static text field to the top of the window and change the text to Date.

2. Add another static text field to the right of the Date field. Double-click on the field
to display the settings notebook. On the General page, remove CStaticText4 from
the Text field and change the Limit field value to 16. (The application will display
the date into this blank static text field.)

Click on OK. Selection handles show the location of the blank static text field.
(You might want to move the blank static text field closer to the Date static text.)

3. Align the two text fields using the Align Top icon.

4. Align the Date static text field with the To-Do Item static text field.

5. Add a push button between the Add and Remove push buttons and change the
text to Date. You'll probably need to move the existing push buttons to make room
for the Date push button.

48 Getting Started

Expanding the TODOLIST

6. Select all five buttons, using Remove as the anchor part. Using the toolbar icons,
match their height and width, align them, and then distribute them horizontally
across the frame window.

When you have finished, your frame window should look like this:

Figure 14. Adding the Date button and static text

You've added and aligned the new parts. Before you can connect them, you need to
create a nonvisual part that will define an action to get the date.

Creating a Nonvisual Part
Now, you need to add data processing to your application. To perform data proc-
essing, you should use a nonvisual part, in which you'll add code to generate the
system date. After creating a nonvisual part and updating code generated by the
Visual Builder, we'll connect the nonvisual part to the main TODOLIST visual part.

To create a nonvisual part do the following:

1. From the main Visual Builder window (Visual Builder - TODOLIST), select Part →
New from file menu.

2. In the Part - New window, enter theDate as the class name.

3. Click on the drop-down arrow next to Part type and select Nonvisual part .

4. Click on Open . The Part Interface Editor opens for the nonvisual part, theDate.

 Expanding the Simple Visual Builder Application 49

Expanding the TODOLIST

Figure 15. The Part-New Window. Creating a nonvisual part using the Part-New window

When working with a nonvisual part, the Part Interface Editor is the default editor.

 Defining Features
To define a feature (an attribute, action, or event) for your part, you use the Visual
Builder's Part Interface Editor. For additional details on the Part Interface Editor, see
the Visual Builder User's Guide.

Attribute Page
On the Part Interface Editor Attribute Page we'll define a data item that will have a
set and get method. Do the following:

1. Enter Today in the Attribute Name field.

2. Click on the arrow next to the Attribute Type field. Scroll down and click on
VarLengthString , which is the data type that the static text field uses and
that's where we'll connect the date data.

3. Click on Defaults . The Visual Builder displays the default set and get
methods, which are the full method definition used in the generated feature
code. The default Event identification is also displayed.

4. Click on Add to add Today as an attribute of the nonvisual part, theDate.

Visual Builder creates the getToday and setToday methods.

Action Page
On the Action Page we'll define a method that will determine the date from the
system, format it, and set the value of the attribute, Today. Do the following:

1. Click on the Action notebook tab.

2. Enter setDate in the Action name field.

3. Click on Defaults .

4. Click on Add .

50 Getting Started

Expanding the TODOLIST

Preferred Page
The Preferred page allows you to specify which features are displayed on the cas-
caded menu when making connections.

1. Under Actions , select setDate and click on Add . The setDate action is added
to the Preferred Features list.

2. Under Attributes , select Today and click on Add . The Today attribute is
added to the Preferred Features list.

Now you need to define the files that will contain the code for this action (and other
features) and will be included when you build the TODOLIST application.

Defining Your System Interface
Feature source is code that Visual Builder generates based on specifications in the Part
Interface Editor and System Interface Editor. The first step in generating feature source
is to define the file names for the feature code using the Visual Builder's System Inter-
face Editor.

Defining users files

To define user files, click on (the System Interface Editor icon) at the bottom right
corner of the Part Interface Editor. The System Interface Editor displays.

Input the following under User files included in generation:

� theDate.cpv for the User declaration file (.cpv)

� theDate.cbv for the User code file (.cbv)

You'll notice the Part file specification contains the path location of the theDate part.
And, the COBOL code file (.cbl) defaults to match the part name (theDate).

Generating Your Code
Now you need to generate the code for your nonvisual part. You need to generate
both feature source, which you'll update with your own code, and part source.

Generating the feature source

To generate the feature source, from the System Interface Editor:

1. Select File → Save and generate → Feature source . The theDate - Generate
feature source code window opens.

2. Select Generate All . An informational message opens saying the feature code
generation is complete. Click on OK.

Any subsequent generations produce feature code that is appended to the selected
features. Thus, when generating feature code for other methods you define, use
Generate selected to avoid appending duplicate feature code to existing files.

 Expanding the Simple Visual Builder Application 51

Expanding the TODOLIST

3. Visual Builder generates the following files:

theDate.cbv The COBOL feature code source file
theDate.cpv The COBOL copy file

Generating the part source

To generate part source, select File → Save and generate → Part source .

Updating Feature Source
When you generated the feature source in the previous step, Visual Builder created a
skeleton COBOL file for the theDate part based on the information you included in the
Part Interface Editor and System Interface Editor. To generate the system date, you
need to add some additional code to the LOCAL-STORAGE section and PROCEDURE
DIVISION of the setDate method in the THEDATE.CBV file. You can use the Code
Assistant tool to edit the file.

1. From the main Visual Builder window (Visual Builder - TODOLIST), select theDate
in the Nonvisual Parts list.

2. Select Part → Code Assistant . The Code Assistant window opens.

3. Click on setDate in the upper part of the Code Assistant window. The method
setDate appears in the code panel of the window.

4. Add the following code to the LOCAL-STORAGE SECTION of the setDate method:

ð1 tempdate PIC X(8).

ð1 sep PIC X VALUE "-".

ð1 temp2 PIC X(1ð).

ð1 Tempday.

ð3 Tempday-Length PIC 9(9) COMP-5.

 ð3 Tempday-String.

 ð5 Tempday-Chars PIC X

OCCURS 1 TO 255 TIMES

DEPENDING ON Tempday-Length.

Figure 16 on page 53 shows what the setDate method will look like before
entering your code.

52 Getting Started

Expanding the TODOLIST

Figure 16. Using Code Assistant to update feature code

5. Scroll down a bit and add the following code to the PROCEDURE DIVISION of the
setDate method:

Move function current-date(1:8) to tempdate.

String tempdate(5:2) sep tempdate(7:2) sep tempdate(1:4)

delimited by spaces into temp2.

Move 1ð To Tempday-Length.

Move Temp2 To Tempday-String.

Invoke self "setToday" using Tempday.

6. Save the file and close the Code Assistant window. Now, you're ready to use the
part.

Connecting the Parts
Back in the Composition Editor for the TODOLIST visual part, you'll need to add the
nonvisual part to the TODOLIST free-form surface and connect the Date push button to
the blank static text field.

Adding theDate nonvisual part

To add the nonvisual part to the TODOLIST:

1. From the TODOLIST Composition Editor, select Options → Add part .

2. In the Add Part window, click on the arrow beside the Part Class field. Select
theDate .

3. Click on Add .

 Expanding the Simple Visual Builder Application 53

Expanding the TODOLIST

4. Move the mouse pointer any where on the free-form surface and click mouse
button 1. The nonvisual object theDate2 is added to the main TODOLIST visual
part. Now, when the TODOLIST part is instantiated, it creates the instance
theDate2 of the theDate part.

Figure 17. The Add Part Window. Adding the nonvisual part to the main visual part

Connecting the nonvisual part to the main part

You now need to connect the nonvisual part to the main TODOLIST part.

1. Click with mouse button 2 on the free-form surface.

2. Select Connect →Ready . Move the mouse pointer to the nonvisual object,
theDate2 .

3. Click mouse button 1. A pop-up menu shows the methods you added to the Pre-
ferred Features list in the Part Interface Editor.

4. Click on the setDate method. A solid line connects the free-form surface with the
theDate2 nonvisual object.

Connecting the ready event of the TODOLIST part with the setDate method means that
when you run the application, as soon as the visual part (TODOLIST) is constructed
and initialized, ready to run, it calls the setDate method in the nonvisual part to calcu-
late the current date and store it in the attribute, Today.

Connecting the Date push button to the blank static text field

1. Connect the press event of the Date button to the label action of the blank static
text field.

2. Then, connect the contents parameter of that connection to the Today attribute of
the theDate part.

Selecting the Today attribute means that you want to pass the system date, as returned
by the getToday method to the contents parameter of the label action. The date is
displayed in the static text field whenever the getToday action is called, which occurs
whenever the Date push button is clicked.

54 Getting Started

Expanding the TODOLIST

The completed connection is shown in Figure 18 on page 55. (Your connection lines
might be slightly different.)

Figure 18. The completed connection for the TODOLIST part

The connection between the Date push button and blank static text field is green. The
connection between the theDate2 object and this green line is violet. The hollow circle
leads to the theDate object, showing that a feature of the theDate nonvisual part (the
attribute Today) is the source of the connection. The solid circle leads to the con-
nection line, indicating that the contents parameter is the target of the connection. (You
can verify this by clicking on the connections. The features connected appear in the
information area of the Composition Editor.)

When you press the Date push button, the application calls the getToday method in the
nonvisual part and passes the string, returned as a parameter, to set the label of the
static text field. When the contents parameter needs a value, it invokes the getToday
method of theDate2, which returns Today. The value is passed as a parameter to the
label action of the static text field. The label action then displays the current date in the
static text field.

Now that you have made the connections, you need to generate the COBOL code.

 Expanding the Simple Visual Builder Application 55

Expanding the TODOLIST

Generating the COBOL Code for Your Application
As with the “Creating a Simple Visual Builder Application” on page 31, you need to get
your application ready to build.

Generating the source code for your visual part

To generate the COBOL source code for your visual part, select File → Save and gen-
erate → Part source .

Generating the build files

To generate the make file, select File → Save and generate → Build files .

Building the Application
From the toolbar, click on , the Build Normal icon.

You have now built your application; the next step is to run your application.

Note: Typos or syntax errors in the feature source will cause compilation errors.

Running the Application
From the toolbar, click on , the Run icon.

Once your application is running, experiment with it to make sure it works as designed.

Exiting the Visual Builder
To exit the Visual Builder, close down the following windows (if they are still open):

� Visual Builder (Visual Builder - TODOLIST)
� TODOLIST project (TODOLIST - Icon view)

56 Getting Started

Redeveloping Legacy COBOL Applications

This chapter explains how to start redeveloping your legacy applications and programs.
Redevelopment refers to the effort required to maintain legacy code or to upgrade old
code to take advantage of the latest in programming technology. VisualAge COBOL
redevelopment support helps you:

� Understand your applications: View the details of your application inventory.

� Convert your programs: Convert your old code to the latest levels of COBOL.

� Structure your programs: Structure unstructured programs.

� Understand your programs: View the flow and logic within a program or set of pro-
grams.

� Determine year-2000 impact: Find two-digit years in your program or set of pro-
grams.

The remainder of this chapter helps you to get started using the redevelopment support
in VisualAge COBOL. For detailed information about this support, see the online help
and online tutorials. The online tutorials are available through the Information Notebook
in the VisualAge COBOL window and provide step-by-step lessons to help you learn
how to use VisualAge COBOL to:

� Understand your applications
� Convert and structure your programs
� Understand your programs

Initiating Redevelopment Actions
You can request redevelopment actions from within the following types of projects:

� COBOL non-GUI project
� MVS project without W/S extensions
� MVS project with W/S extensions

You can also request some redevelopment actions independently of a project. We
recommended using COBOL projects and selecting redevelopment actions from within
the projects, but if you want to use redevelopment support without using a project,
VisualAge COBOL provides stand-alone operation for some redevelopment support. To
operate independently of a project:

1. From the VisualAge COBOL window, select the Tools icon to display the
VisualAge COBOL Tools window.

2. Select the component that you want to run: Application Understanding or Program
Conversion and Structuring.

 Copyright IBM Corp. 1995, 1998 57

Understanding Your Applications

Understanding Your Applications
Application Understanding helps you understand your inventory of applications. By
scanning and analyzing your JCL, it helps you identify the jobs, job steps, procedures,
and data that make up your applications. You can see the data sets and other
resources used by your applications as well as their characteristics of all your applica-
tion resources.

To use Application Understanding you must have selected it as an option during
VisualAge COBOL installation. Additionally, to scan the JCL, you must have installed
the Scan program on the host. The Scan program is distributed with VisualAge
COBOL; its installation instructions are in the VisualAge COBOL installation
instructions, INSTALL.TXT, on the VisualAge COBOL CD-ROM and are available from
the Configuration page of the Information Notebook. Additionally, if you are planning to
use VisualAge COBOL's Remote Edit/Compile/Debug during application understanding,
you must have installed and configured the Remote support. More information about
the use of Remote Edit/Compile/Debug is provided in “Scanning the JCL Libraries” on
page 59.

 Setup

Before using Application Understanding for the first time or if you have deleted and
reinstalled Application Understanding, you must setup your local workstation data-
base for use by Application Understanding. (This database is referred to as the
inventory database because it can contain all of the information from your entire
inventory of application JCL.)

Having installed IBM DB2 Universal Database (UDB), setup your inventory data-
base as follows:

1. From the VisualAge COBOL window, select the Tools icon to display the
VisualAge COBOL Tools window.

2. Select the Application Understanding Migration/Setup icon to perform the
setup automatically.

As depicted in Figure 19 on page 59, using VisualAge COBOL to understand your
applications includes:

1. “Scanning the JCL Libraries” on page 59.
2. “Retrieving the JCL Scanned Output” on page 60.
3. “Loading the Database with the JCL Scan Output” on page 61.
4. “Viewing the Contents of Your Inventory Database” on page 61.
5. “Updating Your Inventory Database” on page 64.

58 Getting Started

Understanding Your Applications

Figure 19. Analyzing your applications

Each of these steps are discussed below.

Scanning the JCL Libraries

 To view the data about your applications, you must scan the JCL on the host,
download (retrieve) the scan output to your workstation, and load this output into your
inventory database. You can initiate all these tasks through VisualAge COBOL on the
workstation, or you can do all of the tasks manually.

There are two ways to initiate the host JCL scanner:

� From a project on the workstation using remote processing.
� From the host, using sample JCL provided with VisualAge COBOL.

Preparing for Remote Processing

If you plan to scan your JCL on MVS from your workstation, Remote
Edit/COMPILE/Debug needs to be in installed and configured. Detailed instructions
for installing Remote Edit/Compile/Debug and detailed configuration instructions are
provided on the Configuration page of the Information Notebook in the VisualAge
COBOL window.

If you are scanning JCL on MVS and have set up the host-workstation connection, you
can initiate the scanner as described below. You do not have to be logged on to MVS.

1. From a project window, select Project →Open Application Understanding from
the menu bar to display the Application Understanding window.

2. Select Options →Connect to MVS from the menu bar if you are not already com-
municating with the host.

 Redeveloping Legacy COBOL Applications 59

Understanding Your Applications

VisualAge COBOL displays messages in a command window. Each time you see
the message "Press any key to continue", do so.

 Errors?

If you see error messages, the host-workstation setup may have a problem.
Check to see whether you have set up the host-workstation connection as
described in Remote Host Development with IBM COBOL: requirements and
configuration.

3. Select Options →JCL Scan from the menu bar to display the Scan Request
window.

4. In the Application Understanding Scan Request window, type the necessary
information in the entry boxes. This information identifies where to locate the JCL
members to scan, where to put the results of the scan, and where to put the log
from the scan.

5. Select Scan JCL .

Note: The JCL scan request runs on MVS using the sample CLIST supplied with
VisualAge COBOL. The TIME and REGION resource allocations must be large
enough to accommodate the number of members to be scanned in a single exe-
cution of this job (depending on the number of PROCs per job and the size of the
jobs, you may need to adjust these values). There is an upper limit of 3000
members (JCL scanned and PROC members called) that can be processed in a
single run of the scan.

Retrieving the JCL Scanned Output

 After the JCL library has been successfully scanned, you can download the
host data sets containing the scan output to your workstation. Doing this allows you to
later load the contents into your inventory database.

There are two ways to retrieve the output from the JCL scanner:

� Use remote processing from a project on the workstation.
� Use a suitable host-to-workstation download utility.

Preparing for Remote Processing

If you are downloading from MVS and have not set up the host-workstation con-
nection, you need to set this up as described in Remote Host Development with
IBM COBOL: requirements and configuration, which is available on the Configura-
tion page of the Information Notebook in the VisualAge COBOL window. If you are
downloading from VSE, you need to use a suitable host-workstation download
utility.

If you are downloading from MVS and have set up the host-workstation connection, you
can download the scanner output as described below:

60 Getting Started

Understanding Your Applications

1. If you are not already remotely accessing the host through VisualAge COBOL:

a. From a project window, select Project →Open Application Understanding
from the menu bar to display the Application Understanding window.

b. Select Options →Connect to MVS from the menu bar and follow the on-
screen messages to connect to MVS.

2. Select Options →Retrieve from the menu bar of the Application Understanding
window to display the Retrieve Request window.

3. In the Application Understanding Retrieve Request window, enter the location of
the scanned output on the host and the destination of that output on the work-
station.

4. Select Find to select the file to be retrieved from the list of files created. The fields
are automatically filled in.

5. Select Retrieve to begin downloading the data set.

Loading the Database with the JCL Scan Output

 You populate your inventory database by loading it with the JCL scan output.
This allows you to use Application Understanding's query and search functions to
display and understand your application inventory.

Note: Before you can load the JCL scan output, you must have successfully scanned
a JCL library and retrieved the output to your workstation.

To load the database with the JCL scan output:

1. From a project window, select the CDI file you want to load; then select
Selected →Load Database from the menu bar to display the JCL Load Request
window.

2. Enter the name and location of the retrieved file and select Load in the Applica-
tion Understanding JCL Load Request window to load the JCL scan output file.

Viewing the Contents of Your Inventory Database

 You can view your application inventories to see which JCL objects they use and
the characteristics of each object. Application Understanding displays JCL objects such
as jobs, DD statements, or programs, and their characteristics. Using these character-
istics and displaying different Application Understanding views, you can determine
whether an object is unique to an application or is shared.

When you open Application Understanding, it displays any or all of the following:

� Inventory Groups – select this icon to view and select the specific applications
you want to study. The user creates this object by grouping the jobs in an applica-
tion.

 Redeveloping Legacy COBOL Applications 61

Understanding Your Applications

� Job Inventory – select this icon to view information about the jobs that make up
the applications you have selected.

� Procedure Inventory – select this icon to view information about the procedures
that make up the applications you have selected.

� DD Statement Inventory – select this icon to view information about the DD state-
ments in the applications you have selected.

� Dataset Inventory – select this icon to view information about the data used in the
applications you have selected.

� Executable Inventory – select this icon to view information about the executables
used in the applications you have selected.

� Program Unit Inventory – select this icon to view information about the program
units that make up the applications you have selected.

� Source Module Inventory – select this icon to view information about the source
modules that make up the applications you have selected.

� Library Inventory – select this icon to view information about the libraries used in
the applications you have selected.

� Cycles – select this icon to view how often an application is run, for example,
daily, weekly, or monthly. The user specifies the Cycle value for each application.

Because your applications are usually extensive, with much information, Application
Understanding lets you filter the information in the inventory database by setting a qual-
ifier for an Inventory window. Then, when you open an Inventory window, Application
Understanding displays only the information defined by your filter.

 Recommendation

Use filters particularly when viewing DD statements and data sets. These catego-
ries can contain a very large number of objects, but the filters enable you display
information about selected statements only.

Opening an Inventory Window
Application Understanding lets you select which JCL objects you want to view and then
displays an Inventory window containing the information for those objects. For
example, you can select to view the Job Inventory, and Application Understanding dis-
plays an Inventory window describing the characteristics from the Job statements that
meet your filter criteria.

To display an Inventory window:

From the project window, select the CDI file you want to view; then select
Selected →Open from the menu bar.

Application Understanding displays an Inventory window of the JCL objects from that
file.

62 Getting Started

Understanding Your Applications

You can specify which of JCL objects you want to appear in the Inventory window by
setting a qualifier.

Setting a Qualifier
Set qualifiers to selectively filter what information is to be displayed in an Inventory
window. This allows you to view only the JCL objects and information that are of
interest to you. You can set separate qualifiers for each inventory of objects. Once
you set a qualifier, you can view it by selecting the Details view in the Application
Understanding window.

To set a qualifier:

1. From the project window, select the CDI file for which you want to set; then select
Selected →Qualifier from the menu bar.

2. Type an SQL Qualify statement into the Qualify dialog box

This tells the database what to display in the window.

Basic syntax:

attribute operator attribute value

for example:

JCJ_JCJ_LIB_NM LIKE 'MYLIB%'

Lets you open an inventory window containing the jobs located in the library.
whose names start with MYLIB.

Note: The Qualify statement is not case sensitive, but the value may be. For
more information about the SQL Qualifier statement, see the online help.

 3. Select OK.

The qualify statement is saved and used in all sessions until you change it.

Opening a Structure View of JCL Objects
Open a Structure window to better understand structure of a JCL object. For example,
to see what jobs are in an inventory group or what job steps are in a job. You may
want to select a particular subset of an object and see if it is used anywhere else.

To open a Structure view of a JCL object:

1. From the project window, select the CDI file you want to view; then Select
Selected →Open from the menu bar.

2. Select an Inventory object.

3. Select Select →Open from the menu bar to display the Inventory window.

4. In the Inventory window, select the JCL object whose structure you want to view.

5. Select Selected →Open→ Structure from the menu bar of the Inventory window.
from the menu bar.

A structure window opens showing the relationship among the JCL objects in the
selected inventory.

 Redeveloping Legacy COBOL Applications 63

Understanding Your Applications

6. Select the + (plus) to expand a level or select on the - (minus) to contract a level.

Note: Select an object in the structure to see additional related JCL objects.

Updating Your Inventory Database

 As you use your inventory database, you may want to make adjustments to the
database by manually adding or deleting JCL objects.

Creating a New JCL Object
You may create a new instance of an object for any of the inventory objects.

To create a new JCL object:

1. From a project window, select the CDI file to which you want to add an object; then
select Selected →Open from the menu bar.

2. From the Application Understanding window, open an Inventory window for the
type of JCL object you want to create. For example, if you want to add a proce-
dure, select Procedure Inventory .

3. In the Inventory window, select Edit →Create from the menu bar.

A definition notebook opens containing attributes that describe the JCL object.

4. Enter the attribute values as needed, then select OK.

Note: Attributes marked with an asterisk (*) are called Key attributes and cannot
be modified once saved in the inventory database. If any one of these attributes
contains an incorrect value, the object must be deleted and re-added to correct the
value.

Note: Close then reopen the window to see the new object.

Deleting a JCL Object
You clean up your database by manually deleting unwanted JCL objects from the
inventory database. When deleting an object, you are deleting all relationships associ-
ated with the deleted JCL object. The JCL object is also deleted from the inventory
database.

To delete a JCL object:

1. From a project window, select the CDI file containing the object you want to delete;
then select Selected →Open from the menu bar.

2. Select the object you want to delete.

3. Select Edit →Delete from the menu bar.

4. Select Yes to delete the JCL object.

Note: Close then reopen the window to see that the object was deleted.

64 Getting Started

Reengineering Your Programs

Application Understanding Hints and Tips
Each time you create or delete a JCL object manually in an Application Understanding
inventory window, you must close the window and reopen it to refresh it. If you are
unable to reopen the window, you may need to close Application Understanding and
restart it.

If you receive SQL error message SQL1035N, the inventory database is currently in
use. For example, when attempting to drop and recreate the inventory database, you
may need to reboot your system.

Reengineering Your Programs
You can reengineer your legacy COBOL programs to take advantage of the latest in
COBOL technology and to make them easier to understand, maintain, and update.

As depicted in Figure 20, using VisualAge COBOL to reengineer your programs
includes:

1. “Converting Your Programs” on page 66
2. “Analyzing Your Program for Structuring” on page 67
3. “Preparing Your Program to Improve Structuring” on page 68
4. “Structuring Your Program” on page 69
5. “Modularizing Your Program” on page 70
6. “Testing Your Program” on page 71

Figure 20. Steps for reengineering COBOL programs

Note that some of these steps are optional, depending on your reengineering scenario.

 Redeveloping Legacy COBOL Applications 65

Viewing the Conversion Log

Converting Your Programs

 To use Program Conversion, you must have selected the Program Conver-
sion and Structuring option during the installation of VisualAge COBOL.

Note: If you want to generate a COBOL program that runs on VSE, you must first set
the environment variable ECFVSE to '1'.

To convert a COBOL program from a lower level to a higher level of COBOL:

1. From a project window, select the program that you want to convert; then select
Selected →Convert Options to display the conversion options.

Options include the file name of the program to convert, the COBOL language level
used in that program, the name and location of the converted file, names and
locations of any copy files, indication of whether the program contains CICS com-
mands, and other conversion parameters and formatting options.

 Suggestion

Use the same directory for your conversion output as you use for source for
your project. This lets you continue to use project facilities to process these
new files.

2. Specify the options that apply to your program, and then select Convert .

VisualAge COBOL converts your program, storing the converted file in the directory
you specified in the convert options and creating a conversion log. These files are
stored in your project if you specified the same directory for conversion output as
you did for the source of your project.

The report generated as a result of conversion is automatically displayed.

3. To use the same options for subsequent conversions, select the file you want to
convert from the project, and then select Selected →Convert from the menu bar.

Viewing the Conversion Log
You can open the Program Conversion Log to view information about all programs that
have been converted up to the present date.

To open the Program Conversion Log, select Project →Open Convert Log from the
task bar of the project.

The Program Conversion Log includes information on the following:

Status page
Shows the status of each converted program, including the date each was
most recently converted.

Options page
Shows the options used for each converted program.

66 Getting Started

Analyzing Your Program for Structuring.

File page
Lists a cross reference of which data files are used by which COBOL pro-
grams, indicating those that do not need conversion and those that will
need to be defined or checked for migration.

Copy Programs (CopyLIB) page
Provides a cross reference of which copy files are used by which COBOL
programs; can be sorted by copy names or by program names. This page
is only available if you convert a program containing COPY statements.

Calls page
Provides a cross reference of which call statements are used by which
COBOL programs; can be sorted by call names or by program names. This
page is only available if you convert a program that has CALL statements.

Program Conversion also produces a Convert Results file, which provides a detailed
report of the converted COBOL program. This file has the same name as the con-
verted program but an extension of CRS. To view the Results file, select it from the
project window, then select Selected →Edit from the task bar.

Program Conversion and Reserved Words
Because older levels of COBOL did not have the following reserved words which are
part of later COBOL standards, Program Conversion does not support them:

If you use these words in your source program, the output program will not execute
successfully.

 AUTOMATIC
 CLASS-ID
 COMP-5
 COMPUTATIONAL-5
 END-INVOKE
 INHERITS
 INVOKE
 LOCAL-STORAGE
 METACLASS
 METHOD

 METHOD-ID
 OBJECT
 OVERRIDE
 PREVIOUS
 RECURSIVE
 REPOSITORY
 RETURNING
 SELF
 SUPER

Structuring Unstructured Programs
Use Program Structuring to structure previously unstructured programs. Program
Structuring helps you analyze your existing program to determine how to best structure
it and then structures it based, in part, on formatting options you specify. (To use
Program Structuring, you must have selected the Program Conversion and Structuring
option during the installation of VisualAge COBOL.)

Analyzing Your Program for Structuring

 To analyze a COBOL program for structuring:

 Redeveloping Legacy COBOL Applications 67

1. From a project, select the COBOL program you want to analyze; then select
Selected →Analyze/Structure from the menu bar.

VisualAge COBOL opens the Analyze/Structure options notebook.

2. Use the notebook to specify the options you want for structure analysis. You can
specify characteristics of the input and the output files, location of any copy files,
specification of CICS usage, and other structure and formatting requirements.

Note: Request modularization information if you think you will want to modularize
you program. Refer to “Modularizing Your Program” on page 70 for more details
on requesting information and modularizing your program.

3. Select Analyze to start the analysis.

VisualAge COBOL analyzes your program and stores the information:

� As the Reengineering Report.
� As Expert Advice.
� In the Complexity log.

4. To use the same options for subsequent structure analysis request, select a
COBOL file from the project, then select Selected →Analyze on the menu bar.

VisualAge COBOL displays a dialog box allowing you to use your previous options
as your defaults or to specify other options. It then analyzes your program.

The reports generated as a result of the analysis are displayed as icon objects in the
project. You can view the information in the reports by selecting the report icon in the
project window.

Preparing Your Program to Improve Structuring

 In about 25% of typical COBOL programs, some manual preparation of the
input program before structuring helps you increase the benefits of structuring.

During Program Structuring analysis, VisualAge COBOL generates a Reengineering
Report. This report contains a detailed analysis of the PERFORM logic in your input
program, a set of program complexity metrics, advice to help modularize the output
program, sections describing various properties of the output program, CICS HANDLE
analysis for programs containing CICS HANDLE commands, and any messages that
you should examine before structuring your program.

VisualAge COBOL also provides Expert Advice that explains how to prepare your
program for structuring. This advice is provided for programs with complex performed
procedures (Group I) or procedures that have multiple entries and/or exits (Group II).

You can use Expert Advice after you have analyzed or structured a program. To open
Expert Advice:

1. Open the Restructuring report by selecting on its icon in the project window.

68 Getting Started

Structuring Your Program

2. Select Open as Expert Advice from Expert Advice on the menu bar, or select
Expert Advice on the Properties page.

Expert Advice provide advice for the following Group I and Group II PERFORM state-
ments:

Characteristic Advice
Multiple exits based on the type of multiple exits
Multiple entries based on the type of multiple entries
Perform overlaps shows range of PERFORM overlaps
End precedes begin reported if the THRU label lexically precedes the initial label for

a procedure
Same final label range of code that has the same final label
Reinvocation pointer to a line of code that is potentially recursive
Lower level shows range of PERFORM procedure that has complex usage

or multiple entries/exits

Use the Reengineering Report, along with the Expert Advice, to improve your program's
design and decrease its complexity before structuring.

Structuring Your Program

 To structure a COBOL program:

1. From a project, select the program you want to structure; then select
Selected →Analyze/Structure Options to display the structure options.

These options include the input and output names and locations of the program
being structured, identification of any copy files, indication of whether the program
contains CICS commands, and other structuring parameters and formatting
options.

2. Specify the options that apply to your program, and then select Structure .

VisualAge COBOL structures your program, storing the new file in the directory you
specified in the structure options and updating the Complexity Metrics log.

3. To use the same options for subsequent structure requests, select the file you want
to structure from the project, and then select Selected →Structure from the menu
bar.

VisualAge COBOL displays a dialog box allowing you to use your default options or
to specify different options before structuring your program.

Note: Structuring removes GOTO statements and may introduce new variables.

Note: Reserved words not supported during program structuring are the same ones
listed in “Program Conversion and Reserved Words” on page 67.

The reports generated after structuring are displayed as objects in the project. You can
view the information in the reports by selecting the report icons. These reports include:

� Updated Reengineering Report including Expert Advice.

 Redeveloping Legacy COBOL Applications 69

Modularizing Your Program

� Updated Complexity Metrics Log summarizing complexity metrics for all analyzed
and structured programs.

� Cross Reference Browser to browse both the input program and the structured
output program simultaneously.

� Structure Chart displaying the flow of control through the newly structured program.

Modularizing Your Program

 After you restructure your program, use the modularization advice in the Reen-
gineering Report to find out which procedures represent the best candidates for mod-
ularization. Modularization can reduce the size of the program and its overall
complexity by breaking your program into several smaller physical units.

To include modularization advice in your Reengineering Report, set the
Analyze/Structure options in the Analyze/Structure Options notebook as follows:

1. Select the Reporting tab.

2. Make sure the Perform modularization analysis box is checked.

3. Click in the Minimum setting entry box under Modularization statement to set the
minimum number of lines a PERFORM should contain to be considered for mod-
ularization in the report.

4. Click in the Maximum entry box to set the maximum number of lines a PERFORM
should contain to be considered for modularization in the report.

5. After setting the options, select Structure in the Analyze/Structure options note-
book to structure your program and generate the Reengineering Report.

You can then look at the Reengineering Report to see the modularization advice:

1. Select the report icon in the project.

VisualAge COBOL displays the report. This display contains a detailed analysis of
your program and instructions on how to use this information.

2. Click on the Mod Advice tab to open the modularization advice page.

3. To see modularization statistics, select Statistics table .

You can use the modularization advice to manually modularize your program. Modulari-
zation advice is not provided for programs containing CICS HANDLE commands.

70 Getting Started

Understanding Your Programs

Testing Your Program

 After reengineering your program, verify that it is equivalent in function to the
input program.

You can use tools like IBM VisualAge COBOL, Test for OS/2 or IBM WITT Year2000 to
regression test your programs.

Understanding Your Programs
Program Understanding helps you understand the control and data flow of your pro-
grams. It analyzes the SYSADATA files produced during compilation and graphically
displays the information from this analysis.

To use Program Understanding, you must have selected the Program Understanding
option during the installation of VisualAge COBOL.

Program Understanding does not support IMPLICIT transfers of control to COBOL
declaratives. It does, however, support EXPLICIT transfers of control. Because
Program Understanding is designed to process legacy code, it does not support anal-
ysis of programs containing Object Oriented COBOL class or method definitions.

As depicted in Figure 21, using VisualAge COBOL to understand your programs
includes:

1. “Selecting Programs for Program Understanding Analysis” on page 72.
2. “Creating SYSADATA” on page 72.
3. “Displaying a Flow Graph” on page 73.
4. “Displaying a Smart Listing” on page 73.

Figure 21. Steps for displaying graphical views using Program Understanding

 Redeveloping Legacy COBOL Applications 71

Creating SYSADATA

Selecting Programs for Program Understanding Analysis

 From the project window, select the programs you want to view with Program
Understanding. If you have not generated SYSADATA for the programs, you must do
so before requesting a Program Understanding show action. Program Understanding
can process SYSADATA produced during the compilation of files with the following
extensions:

� CBL - COBOL source code
� CVT - COBOL code produced by Program Conversion
� SCB - COBOL code produced by Program Structuring

When you request the first view of a SYSADATA file, Program Understanding develops
additional analysis information and stores it in an EU file. Subsequently, you can select
either the SYSADATA file or the EU file when requesting that Program Understanding
show either the flow graph or the smart listing. Whenever you update your
SYSADATA, you need to select that SYSADATA file for the next show action to gen-
erate a new EU file.

Note: Program Understanding generates the same EU file from the SYSADATA for
both Show Flow Graph and Show Smart Listing; so you can use the same EU file for
subsequent show actions.

 Creating SYSADATA

 You can create SYSADATA by compiling the programs using the ADATA option
either on your workstation or on the MVS host. If you compile on the MVS host,
provide access the binary SYSADATA files from your project using either Remote
Edit/Compile/Debug in VisualAge COBOL or a download utility.

Note: A SYSADATA file in binary and must be accessed in binary. If you are using
Remote Edit/Compile/Debug, assure that it was configured for binary data. Refer to the
Configuration page of the Information Notebook for details on configuring Remote
Edit/Compile/Debug. If you are using a download utility, be sure that it handles binary
data correctly.

If your host compiler cannot produce SYSADATA, you can download your MVS host
programs to your workstation first, then compile them on your workstation with the
ADATA option.

 Recommendation

Use the ANALYZE option during SYSADATA generation. This option allows better
analysis of programs containing CICS or SQL statements. Note, that when
ANALYZE is specified, no executable code is generated.

72 Getting Started

Analyzing the Year-2000 Impact on Your Programs

Displaying a Flow Graph

 Use the Show Flow Graph action to display programs graphically so you can
see control and data flow and cross-program impacts.

To view a flow graph:

1. From a project, select the programs you want to view. You can select the pro-
grams' SYSADATA or EU files.

2. Select Selected →Show Flow Graph from the menu bar.

VisualAge COBOL displays the programs graphically, illustrating control and data flow.

Displaying a Smart Listing

 Use the Show Smart Listing action to display the source code in listing format
and in a tree structure. It also displays formatted data declarations.

To view a smart listing:

1. From a project, select the program you want to view. You can select the programs'
SYSADATA or EU files.

2. Select Selected →Show Smart Listing from the menu bar.

VisualAge COBOL displays the expanded source for the program. This display shows
the expanded source as a listing and in a tree structure with navigational aids. It also
shows details of any data declarations you select.

Analyzing the Year-2000 Impact on Your Programs
Use Year 2000 Impact Analysis to understand how your program handles dates and to
determine the impact that the second millennium will have on your code. Impact Anal-
ysis generates formatted reports that assist you to locate two-digit year fields in your
programs.

To perform year 2000 impact analysis, you must have selected the Program Under-
standing option during the installation of VisualAge COBOL.

Because Impact Analysis is designed to process legacy code, it does not support pro-
grams containing OO statements.

Impact Analysis can generate two types of reports:

� Formatted report for an individual program.

� Formatted reports for several programs, including cross compilation unit analysis
that uses the information gathered from one program unit analysis in the analysis
of other program units.

 Redeveloping Legacy COBOL Applications 73

Analyzing the Year-2000 Impact on Your Programs

As depicted in Figure 22 on page 75, to use VisualAge COBOL to identify two-digit
year fields in your programs:

1. Select the programs to be analyzed for possible occurrences of two-digit
year fields, then compile the source with the ANALYZE and SYSADATA options to
produce SYSADATA files, which are input to Impact Analysis. These are the same
SYSADATA files used in Program Understanding. Refer to “Creating SYSADATA”
on page 72 for details on creating and using SYSADATA.

2. Make a copy of the sample seed file provided with Impact Analysis on the
VisualAge COBOL CD-ROM. Modify the seed file, making changes related to
knowledge of the programs to be analyzed. For example, make required changes
to reflect local naming and coding practices, file formats, and tables

What is a seed file?

It's a way to specify what is known about dates in a program. Impact Analysis
follows the data flow from known dates and finds new dates. You can specify
known dates, the seeds, in many ways. For example, by variable name
pattern or fields in an input file.

3. Run Impact Analysis, using the modified seed file, to generate impact anal-
ysis reports. Refer to “Generating Year 2000 Impact Analysis Reports” on page 75
for details on running Impact Analysis.

4. Use the output from that run to further modify the seed file with the new
knowledge gained.

5. Repeat the process of running the analysis and modifying the seed file to
ensure greater accuracy of the results. Cross compilation unit analysis can assist
in this process in order to achieve more accurate results.

74 Getting Started

Figure 22. Steps for performing Year 2000 Impact Analysis

Generating Year 2000 Impact Analysis Reports

 To create Impact Analysis reports:

1. From a project, select Project →Open Year 2000 Analysis from the menu bar to
display the Year 2000 Analysis window.

2. Supply names and locations of seed files and SYSADATA files, and Target Direc-
tory for output reports as requested.

3. Select Begin Analysis to start the analysis and generate the report.

4. Repeat this process, refining the seed files to produce more accurate and detailed
reports.

More Information about Year 2000 Impact Analysis
VisualAge COBOL provides a scenario that illustrates how to use Impact Analysis to
discover two-digit years in a program. Use the Information Notebook to display this
scenario.

Using VisualAge COBOL in the Analysis and Maintenance Process
The analysis and maintenance process generally begins with an evaluation of your
applications to find the most suitable choices for redevelopment. You can use the
Application Understanding to identify good redevelopment candidates and to predict the
impact of changes you might want to make.

Your maintenance work might involve upgrading from older COBOL versions to the
ANSI X3.23-1985 standard (the American National Standard for Programming Lan-
guage COBOL, also known as ISO International Standard 1989-1985). Program Con-

 Redeveloping Legacy COBOL Applications 75

version automates much of the upgrade process by converting most of the COBOL
syntax for you and converting EXEC CICS commands. Program Structure helps you
clean up code, identify dead code, and structure code, which reduces a program's size
and makes the code easier to maintain.

You can use Program Understanding to analyze and understand your programs, and
you can use Year 2000 Analysis to locate two-digit year fields that may cause a
problem when the program starts processing dates later than 1999.

A Common Scenario for Modifying a Program to Meet New User Requirements:
To modify a program to meet new user requirements:

1. Identify impact of affected application program:

a. Use Application Understanding to identify programs and datasets affected by
the new user-requirement for the current production environment.

b. Use Application Understanding to identify other applications that may use the
same datasets to be changed.

c. If needed, convert the affected programs to a more current level of COBOL,
using Program Conversion.

d. If needed, structure affected programs that are not structured using Program
Conversion.

e. Using Program Understanding, learn about each COBOL program that makes
up the affected application.

f. If you need to update your programs to meet the year-2000 challenge, use
Year 2000 Impact Analysis to identify those areas of the code that need
changing.

 2. Make changes:

a. Edit, compile, debug the programs identified as impacted by the fix, using
other VisualAge COBOL actions.

b. Use MLE support in the VisualAge COBOL compiler to implement changes for
year 2000.

c. Test the programs identified as impacted by the fix, using other VisualAge
COBOL actions.

d. Promote to production.

76 Getting Started

Comparison of Workstation and Mainframe Concepts

Appendix A. Comparison of Workstation and Mainframe Concepts

If workstation concepts are new to you, but you are familiar with the mainframe environ-
ment, this topic might help you.

The following table provides a comparison of workstation and mainframe concepts. In
most cases, a term-to-term comparison is not possible.

Table 2 (Page 1 of 2). Comparison of workstation and mainframe concepts

Workstation Concept Mainframe Concept

File : A unit of stored information for text, data,
programs, etc.

member : In OS/390 and MVS, a data set is
the major unit of data storage and retrieval. A
member is a partition of a partitioned data set.

Batch file (.BAT) and Command file (.CMD):
a file containing operating system commands
organized for sequential processing. In work-
station programs, command files are much like
JCL.

A command file can also function similarly to
a CLIST (in OS/390 or MVS) or an EXEC (in
VM).

JCL : Stands for job control language, which is
used to identify a job to an operating system
and to describe the job's requirements.

A CLIST is a list of commands and statements
designed to perform a specific function for the
user, and an EXEC is a user-written command
file that contains CMS commands and exe-
cution of control statements, such as
branches.

Dynamic link library (DLL) file: This file con-
tains executable code and data which is bound
to a program at load or run time, rather than
during linking. The code and data in a DLL
can be shared by several applications at the
same time.

DLL files are much like pre-loaded subpro-
grams in the link pack area on MVS and
OS/390 or in a shared segment on VM.

Environment variables : These are any
number of variables that describe the way an
operating system is going to run and the
devices it is going to recognize. For example,
in a WorkFrame project, an environment vari-
able is an operating system variable like PATH
and DPATH, and other environment variables
that are defined using the OS/2 SET command
such as TMP.

SYS1.PARMLIB and a STEPLIB or PARMLIB
statement in JCL perform function similar to
workstation environment variables, in that they
provide global values or settings, and provide
search information.

Executable (.EXE) file : This is a file that con-
tains a program's executable code.

Load module, statically-linked program,
statically-linked load module : All or part of a
computer program in a form suitable for
loading into main storage for execution. A
load module is usually the output of a linkage
editor.

Module definition (.DEF) file : Directives to
the linkage editor on how to build the execut-
able file.

Linkage editor input statements : Directives
to the linkage editor, such as INCLUDE and
NAME, on how to build the load module.

 Copyright IBM Corp. 1995, 1998 77

Comparison of Workstation and Mainframe Concepts

Table 2 (Page 2 of 2). Comparison of workstation and mainframe concepts

Workstation Concept Mainframe Concept

Make: An action that invokes the make utility,
a tool that automates the process of updating
project files. This includes compiling and
linking programs.

Any automated way of controlling compiling
and link-editing.

workstation desktop : A graphical way of
accessing your tools and files. It fills the entire
screen and holds the objects with which you
can interact to perform operations on the oper-
ating system.

No exact equivalent. The closest equivalent
on the mainframe are menu-driven tools such
as ISPF or Office Vision.

78 Getting Started

VisualAge COBOL Support

Appendix B. Getting Support for Using VisualAge COBOL

You or your company may need more assistance in using VisualAge COBOL. IBM
provides support, consulting services, and education for using VisualAge COBOL and
the IBM COBOL family of products.

Getting Product Support
There are several ways for you to get product support for VisualAge COBOL: voice
support, CompuServe, mail, fixes, World Wide Web, and FAX.

� Voice support : Voice support provides assistance for a variety of incidents, such
as installation problems and defect reporting. There may be a fee associated with
voice support. You may pay for the call on a per incident basis; elect to use bul-
letin board services (BBS), CompuServe, or the Internet; or purchase an annual
contract for voice support. However, if IBM determines that the defect is in the
IBM code, you are not charged for the incident.

To report a problem, call 1-800-237-5511 or 1-800-992-4777. These phone
numbers are available Monday through Friday, 8:00 a.m. to 5:00 p.m., your time
zone.

� CompuServe : If you have access to CompuServe, you can enter your comments
about COBOL. At the ! command prompt enter, GO IBMLANG. Place your mes-
sages or comments regarding COBOL in “Section 11, COBOL Language.” Note
that if you want a guaranteed response to a problem, call 1-800-237-5511.

If you want to email a Defect Report Form through CompuServe, you can find the
form in the Library area. To submit, send it to the Personal Systems Support
Family at 76711.61ð@CompuServe.com.

For CompuServe membership information, call 1-800-848-8199 and request Repre-
sentative 239.

� Fixes : You can access fixes from the following sources.

– Call 1-800-237-5511 to request packaged fixes in the form of a CD-ROM.

– Download the fixes from the FTP site at:
ftp://ftp.software.ibm.com/ps/products/cobol/fixes

– Access fixes from your respective bulletin board services (BBS).

– Access the World Wide Web and go to the IBM COBOL Family page:

1. Enter the Uniform Resource Locator (URL):
http://www.software.ibm.com/ad/cobol/cobol.htm

2. Click on the Support button.

 Copyright IBM Corp. 1995, 1998 79

VisualAge COBOL Support

� Mail : Mail your comments to:

IBM Corporation
Personal Systems Support Family
Internal Zip 2901
11400 Burnett Road
Austin, Texas 78758

� FAX: You can also fax the Defect Report Form to IBM at 1-800-426-8602. To
receive a copy of this form, call 1-800-992-4777, Monday through Friday, 8:00 a.m.
to 5:00 p.m., your time zone.

For support in other countries, contact your local IBM-authorized sales representative.

Getting Consulting Services
IBM provides service offerings for VisualAge COBOL as well as the rest of the IBM
COBOL family of products. For more information about consulting services in the
United States, call 1-800-IBM-3333, ext. STAR703. To arrange for an IBM represen-
tative to discuss your specific COBOL services requirements, call 1-800-IBM-4YOU.
For consulting services in other countries, contact your local IBM-authorized sales rep-
resentative.

If you have access to the World Wide Web, you can access the IBM COBOL Family
page as follows:

1. Enter the Uniform Resource Locator (URL):
http://www.software.ibm.com/ad/cobol/cobol.htm

2. Click on the Support button.

Getting Education and Training
IBM provides education and training for VisualAge COBOL as well as the rest of the
IBM COBOL family of products. You can request information or enroll in courses in
one of the following ways:

� For more information about the course offerings in the United States and Canada,
call 1-800-IBM-8322. For education and training in other countries, call
001-520-574-4500. These phone numbers are available Monday through Friday,
8:00 a.m. to 8:00 p.m., Eastern Standard Time (EST).

� If you have access to the World Wide Web, you can access the IBM COBOL
Family page as follows:

1. Enter the Uniform Resource Locator (URL):
http://www.sofware.ibm.com/ad/cobol/cobol.htm

2. Click on the Education button.

80 Getting Started

Glossary

VisualAge COBOL Glossary

A
action . In a project, a tool or function that can be used
to manipulate a project's files, or build a project's target.

advanced program-to-program communication. .
Communications protocol between the workstation and
the host. SdU for remote edit and compile, including the
debug tool, uses the APPC communications protocol.

analyze . In Program Structuring, a function that helps
you determine which programs require structuring.
VisualAge COBOL analyzes an input program's struc-
tural properties. It produces a Reengineering Report
and appends to the Complexity Metrics Log.

application . (1) The use to which an information proc-
essing system is put; for example, a payroll application,
an airline reservation application, a network application.
(2) A collection of software components used to perform
specific types of user-oriented work on a computer. (3)
In the Visual Builder, a GUI project whose target is built
as an EXE instead of a DLL.

attribute . (1) In Application Understanding, a character-
istic of a component. (2) In DB2/2, a characteristic of
data contained in a column or row, such as length, data
type, or data.

B
block . In Program Understanding, the largest detect-
able sequence of statements of either data declarations
or procedural statements.

build . An action that invokes the Build tool to create
the project's target. The Build tool manages the
project's makefile and builds dependencies between
projects in a project hierarchy.

build actions . A series of actions that are invoked to
build a project's target. These actions are set in the
Build options window, or in MakeMake.

C
CICS HANDLE commands . A Customer Information
Control System (CICS) command that lets application
programs intercept and process exception conditions
including user-specified conditions and abnormal termi-
nation.

class . The entity that defines common behavior and
implementation for zero, one, or more objects. The
objects that share the same implementation are consid-
ered to be objects of the same class.

complex performed procedures . A procedure has
complex usage if the combination of its invocations
(through PERFORM, GO TO, or fall-through), together
with its internal control flow require Program Structuring
to integrate the procedure into the places from which it is
invoked in order to structure it. A procedure that has
complex usage is also called a Group I procedure.

Complexity Metrics Log . In Program Structuring, a file
that contains a summary of the complexity metrics of all
programs analyzed or structured. This report provides a
useful management tool to help evaluate the maintain-
ability of entire libraries (or systems) of COBOL pro-
grams. During each Analysis or Structure run, the
complexity metrics are appended to this summary.

component . (1) a functional grouping of related files.
(2) In the Visual Builder, a GUI project whose target is
built as a DLL instead of an EXE. (3) In Application
Understanding, one of the types of information about
JCL that you can use to add, modify, or query.

convert . A function in Program Conversion that con-
verts down-level COBOL source code to the more
current level of COBOL.

Conversion Log . A Program Conversion file that con-
tains a history of all workstation programs that have
been converted.

copy files . A file or library member containing a
sequence of code that is included in the source program
at compile time using the COPY statement. The file can
be created by the user, supplied by COBOL, or supplied
by another product.

cycle . The frequency in which a job runs.

 Copyright IBM Corp. 1995, 1998 81

Glossary

D
data set . In MVS, a named collection of related data
records that is stored and retrieved by an assigned
name.

desktop . A metaphor for a computer's working
environment— the screen layout, the menu bar, and the
program icons associated with the machine's operating
environment.

DLL . See dynamic link library.

dynamic link library (DLL) . A file containing execut-
able code and data bound to a program at load time or
run time, rather than during linking. The code and data
in a dynamic link library can be shared by several appli-
cations simultaneously.

E
event . A representation of a change that occurs to a
part. For example, a push button generates an event,
as in signalling that it has been pressed.

EXE. See executable file.

executable file . A file that contains a program's exe-
cutable code.

F
file-scoped action . An action that applies only to a file
or a group of files, rather than to the project as a whole.

filter . A mask, usually a regular expression, a
logical-OR, a logical-AND, or logical-NOT.

G
graphical user interface . A type of computer interface
consisting of a visual metaphor of a real-world scene,
often of a desk top. Within that scene are icons, repres-
enting actual objects, that the user can access and
manipulate with a pointing device.

GUI. Acronym for graphical user interface.

I
information area . An area of a window in which infor-
mation about the object or choice that the cursor is on is
displayed. The information area can also contain a
message about the normal completion of a process.
The information area is usually located at the bottom of
the window.

information line . The information area of a window.

Input COBOL Report . In Program Structuring, a listing
of the input COBOL program with line numbers are
attached to each statement. You can use the line
numbers as you investigate the control flow properties of
the input program documented in the Reengineering
Report.

Inventory window . A type of window in Application
Understanding. The inventory window contains the set of
all components in the database represented by the
selected component icon.

inventory database . The database on the workstation
used by Application Understanding to store the JCL scan
output.

L
link . To interconnect items of data or portions of one or
more computer programs, for example, linking object
programs by a linkage editor to produce an executable
file. Also called object module.

M
make . An action in which a project's target is built from
a makefile by a make utility.

makefile . A text file containing a list of your applica-
tion's files. The make utility uses makefile to maintain
application files and dependencies.

MakeMake . The makefile generation utility used in
VisualAge COBOL projects.

make utility . A tool that automates the process of
updating project files. The make utility compares the
modification dates for one set of files (the targets) with
those of another set of files (the dependent files, such as
source files). If any dependent files have changed more

82 Getting Started

Glossary

recently than the target files, the make utility runs a
series of commands to bring the targets up-to-date.

message line . A type of status area for the COBOL
Editor.

modularize . In Program Structuring, to break up a
large program into a main program and one or more
separately compilable sub-programs.

Monitor . A window that displays output from monitored
actions. The Monitor window is attached to the project
view.

multiple entries . A statement that can generate more
than one entry within the same procedure. Such state-
ments are:

� GO TO statements outside the procedure whose
targets lie strictly within the procedure.

� ENTRY statements within the procedure.

multiple exits . A statement that can generate more
than one exit within the same procedure: Such state-
ments are:

� GO TO statements within the procedure whose
targets lie outside of the procedure

� GOBACK statements within the procedure
� STOP RUN statements within the procedure
� EXIT PROGRAM statements within the procedure
� CALL statements whose call-literal is named in the

list of non-return calls.

N
node . In Program Understanding, a graphical represen-
tation of one or more blocks. See block.

O
object . An entity that has state (its data values) and
operations (its methods). An object is a way to
encapsulate state and behavior.

object code . Output from a compiler or assembler that
is itself executable machine code or is suitable for proc-
essing to produce executable machine code.

object program . A set or group of executable machine
language instructions or other material designed to
interact with data to provide problem solutions. In this

context, an object program is generally the machine lan-
guage result of the operation of a COBOL compiler on a
source program.

P
parent project . A project that contains other projects.

part . In the Visual Builder, the graphic representations
of GUI controls that you use to create a GUI, for
example, a push button part.

procedure . In MVS, a named collection of job steps
that can be included in a job.

program unit . In MVS, the name of a compilable block
of code that gains control when the compiled program is
run.

project . The complete set of data and actions required
to build a target, such as a dynamic link library (DLL) or
other executable (EXE).

project hierarchy . A project tree that represents
dependencies between projects. The project paradigm
requires that one project should be created for every
target. Dependencies between projects and their targets
should be expressed in a project hierarchy. That is, if a
project's build depends on the target of another project,
the dependent project should contain the project it
depends on. The dependent project is then said to nest
the other project. This enables the Build tool to perform
Builds in a depth-first search manner from anywhere in
the project hierarchy.

project-scoped action . An action that applies to a
project as a whole, or to a project's specially designated
files. Specially designated project files are the project's
makefile and target. An example of a project-scoped
action is Debug, which is invoked on the project's target.

Q
qualifier . In DB2/2, a short identifier used to filter data
from the database. All objects such as tables or queries
in DB2/2 are prefixed with a unique qualifier that allows
them to be grouped, named, and displayed under a par-
ticular category or userid, for example
(USERID.QUERYNAME). The object can be viewed
only if the correct qualifier is specified.

 VisualAge COBOL Glossary 83

Glossary

R
Reengineering Report . In Program Structuring, the
results of an analysis of the PERFORM logic and control
flow, and input program complexity metrics. This report
can help you evaluate the complexity and maintainability
of the input program. From this, you can determine
whether the program requires structuring.

routine . The largest collection of nodes or blocks iden-
tified by a callable entry node.

S
scan output . The results of a request for Application
Understanding to analyze MVS JCL libraries for informa-
tion.

scanner . The portion of Application Understanding
residing on the MVS host that extracts data from JCL
libraries in order to provide information about production
applications and the components that comprise them.

Set window . A window in Application Understanding
that contains the set of all components in the database
represented by the selected component icon.

SOM. See System Object Model.

source directory . A directory where a project's files
are physically stored. A project may have many source
directories.

source type . A list of the kinds of files to which an
action applies. The Build tool and MakeMake utility use
the source and target types of build actions to determine
the order in which the actions should be run to produce
the project's target.

status area . The area of a window that displays infor-
mation indicating the state of the current view of an
object. The status area is usually located just below the
title bar and menu bar.

sub-program . In COBOL, synonym for called program.
A called program is a program that is the object of a
CALL statement combined at object time with the calling
program to produce a run unit.

subproject . A project contained by another project.
Nesting expresses a dependency of the main project on

the sub-project's target. This dependency is managed
by the Build utility.

System Object Model (SOM) . IBM's object-oriented
programming technology for building, packaging, and
manipulating class libraries. SOM conforms to the
Object Management Group's (OMG) Common Object
Request Broker Architecture (CORBA) standards.

T
target . In a project, the file that is produced as a result
of a project build. For example, an EXE or a DLL.

target directory . Directory in which a target will be
built. Usually defaults to the source directory. This is
the first source directory listed on the Locations page of
the project's settings notebook.

target type . A list of files that only apply to actions that
participate in a project build, such as Compile and Link.
The Build tool and MakeMake utility use the source and
target types of build actions to determine the order in
which the actions should be run to produce the project's
target.

template . An object that you can use as a model to
create other objects. When you drag and drop a tem-
plate, you create a copy of the original object. The new
object has the same settings and contents as the ori-
ginal template object.

thread . In an operating system, the smallest unit of
operation to be performed within a process.

token highlighting . In the COBOL Editor, a feature
that enables you to view the token types of the program-
ming language in different colors and fonts. It makes
the structure of the program more visible.

U
user interface . A hardware, software, or both that
allows a user to interact with and perform operations on
a system, program,or device.

V
view . In an operating system, the appearance of the
contents of an open object.

84 Getting Started

Glossary

W
window . An area of the screen with visible boundaries
within which information is displayed. A window can be
smaller than or the same size as the screen. Windows
can appear to overlap on the screen.

working directory . The directory where files that are

copied or dragged into the project are stored. Actions
are also executed in this directory, so this directory is
where many output files are placed. Compare with
source directory.

 VisualAge COBOL Glossary 85

Glossary

86 Getting Started

 Index

A
actions

for redeveloping legacy code 57
addItemEnd event 40
administrator tasks 8
Analyze/Structure options notebook 68
analyzing your program 67
Application Understanding 64

creating a new object 64
deleting an object 64
inventory database 64
Inventory window 62
JCL object 61
qualifiers 63
structure view 63

Application Understanding inventory database
viewing contents 62

B
build files 43
buttons 33, 36

C
canvas, in visual builder 33
CCCA technology 17
CICS transactions 12
co-processor, DB2 14
COBOL/SF technology 17
Code Assistant

description 12
updating feature source 52

coding applications, visual builder 39
compiler options, making non-overidable 8
compiler, overview 13
compiling an application 43
complex PERFORMs 68
Complexity log 68
composition editor 33

changing window title 34
connecting user code 53

configuring for Remote E/C/D 22
connection lines 40
consulting services 80

contents parameter 40
conversion reports 66
convert log 66
Convert Results file 67
converting source code 17
converting your program 66
creating a new object in Application Understanding 64

D
Data Assistant 12
DB2 co-processor 14
Debug Tool, remote debugging 21
debugger

description 14
for remote E/C/D 21

deleting an Application Understanding object 64
disk space requirements 1
DL/I, accessing remotely 15

E
editing

creating a new file 27
description 12

education 80
entry field, defining 35
EU files 72
event-driving programming 39
Expert Advice 68

F
feature source 51
firstSelected parameter 42
fixes, access 79
Flow Graph 73
free-form surface, in visual builder 33

G
glossary 81
GUI applications 12

 Copyright IBM Corp. 1995, 1998 87

H
hard disk requirements 1
hardware requirements 1
help files in visual builder projects 32
host, accessing 21

I
IMS, accessing remotely 15
installing

command 6
shared install 6
using a LAN

description 7
preparing the server 8

interactive debugger 14
inventory database 58
inventory database, modifying 64
Inventory window 62

J
JCL object 61
JCL, retrieving scanned output 60
JCL, scanning 59

L
LAN installation 7
linking an application 43
list box, defining 35
loading inventory database

with JCL Scan output 61

M
mainframe concepts, compared with workstation 77
maintaining legacy code 75
memory requirements 1
MLE 13
modifying Application Understanding inventory

database 64
MVS, accessing 21

N
nonvisual parts, creating 49

O
object, JCL 61
Open a structure view in Application Understanding 63
opening an Inventory window 62
operating system requirements 1
OS/390, accessing 21

P
Part Interface Editor

input into feature source 51
when creating a nonvisual part 49

parts
aligning 36
changing settings 36
completing connections 40
connecting parts 39
creating in visual builder 34
in visual builder project 32
nonvisual, creating 49

parts palette 33
performance, improving 19
PERFORMs, complex 68
populating inventory database 59
preinstallation tasks 1
press event 40
Program Conversion and Structuring

structuring unstructured programs 67
Program Conversion, accessing 66
Program Structuring

advice 68
preparing for 68
Reengineering Report 68

Program Understanding
producing SYSADATA 72
selecting executables 72
show flow graph 73
show smart listing 73
SYSADATA 71
using 71

project
building a target 28
correcting syntax errors 29
creating 23
running a target 30
visual, creating 32

Project Smarts 24
Projects file, creating 24
push buttons 33

88 Getting Started

pushbuttons 36

Q
qualifiers, setting in Application Understanding 63

R
RAM, minimum requirements 1
redeveloping legacy code

invoking actions 57
overview 16
Year 2000 Impact Analysis 73
Year 2000 Impact Analysis reports 75

redeveloping legacy programs
reengineering programs 65
structuring programs 67

reengineering programs 65
Reengineering Report 68
remote DL/I 15
remote E/C/D 21
requirements 1
retrieving JCL scanned output 60
running an application 43

S
sample application

building 23
running 30
source code 27

scanning JCL libraries 59
server, setting up as installation base 8
service 79
set qualifier in Application Understanding 63
setting notebook, visual parts 36
shared installation

description 6
from CD-ROM 6

Show Flow Graph 73
Show Smart Listing 73
Smart Listing 73
SMARTdata UTILITIES 14
software requirements 1
source code

generating for visual builder 43
SQL statements 12
starting redevelopment components 57
static text, defining 34

Structure view in Application Understanding 63
structuring unstructured programs 67
structuring your program 17, 70
syntax errors, correcting 29
SYSADATA 72
SYSADATA used with Program Understanding 71
System Interface Editor 51

T
testing your program 71
title bar, changing text in 34
Transaction Assistant 12

U
understanding applications 58
user code

adding to feature source 52
connecting 53

V
VCB file, opening 46
Visual Builder

aligning parts 36
building applications 43
changing settings 36
completing connections 40
connecting parts 39
defining a list box 35
feature source 51
generating source code 43
overview 12
running applications 43
working with parts 34

visual builder projects
composition editor 33
creating 32
parts 33

W
workstation concepts, compared with mainframe 77

X
XCOPY command 8

 Index 89

Y
Year 2000

Impact Analysis overview 18
MLE 13
using Impact Analysis 73

Year 2000 Impact Analysis
generating reports 75
overview 18
using 73

90 Getting Started

We'd Like to Hear from You

VisualAge COBOL
Getting Started on OS/2
Version 2.2

Publication No. GC26-9051-02

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form from a
country other than the United States, give it to your local IBM branch office or IBM represen-
tative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

– IBMMail: USIB2VVG at IBMMAIL
– IBMLink: COBPUBS at STLVM27

 – Internet: COBPUBS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the information is
presented. To request additional publications, or to comment on other IBM information or the
function of IBM products, please give your comments to your IBM representative or to your IBM
authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

VisualAge COBOL
Getting Started on OS/2
Version 2.2

Publication No. GC26-9051-02

How satisfied are you with the information in this book?

May we contact you to discuss your comments? Yes No

Would you like to receive our response by E-Mail?

Your E-mail address

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø
Grammatically correct and con-
sistent Ø Ø Ø Ø Ø
Graphically well designed Ø Ø Ø Ø Ø
Overall satisfaction Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
GC26-9051-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department W92/H3
PO Box 49023
San Jose, CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

GC26-9051-02

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

IBM VisualAge COBOL

GC26-9051 Getting Started on OS/2
GC26-8944 Getting Started on Windows
SC26-9046 Language Reference
SC26-9050 Programming Guide
SC26-9053 Visual Builder User's Guide

GC26-9ð51-ð2

Spine information:

IBM VisualAge COBOL Getting Started Version 2.2

