

SMARTdata UTILITIES

A Data Language Reference for
Data Description and Conversion

SC26-7092-01

IBM SMARTdata UTILITIES

A Data Language Reference for
Data Description and Conversion

SC26-7092-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page ix.

| Second Edition, April, 1997

| This edition replaces and makes obsolete the previous edition, SC26-7092-00. The technical changes are indicated by
| a vertical bar to the left of a change.

| This edition applies to all platforms supported by SMARTdata UTILITIES Version 1 Release 2 and Version 2 Release
| 1, and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using

the correct edition for the level of the product.

Publications are not stocked at the address below. Requests for IBM publications should be made to your IBM repre-
sentative or the IBM branch office serving your locality.

You can order by calling IBM Software Manufacturing Solutions at 1-800-879-2755.

A form for reader comments is provided at the back of this publication. If the form has been removed, address your
comments to:

International Business Machines Corporation
RCF Processing Department

 G26/050
5600 Cottle Road
SAN JOSE, CA 95193-0000

 U.S.A.

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Trademarks and service marks . x

About This Book . xi
What You Should Know . xi
Notation . xi
Conventions . xii

Bibliography . xv

Summary of Changes . xvii
| April 1997 . xvii

Chapter 1. Understanding ADL Concepts . 1
Components . 1

Representation Domain . 2
ADL Module . 2
DD&C ADL Declaration Translator . 3
The DD&C Conversion Plan Builder . 3
DD&C Conversion Executor . 3

Example of ADL Use . 5
ADL Syntax . 6

Statements . 7
Comments . 7
Literals . 7
Identifiers . 7
INCLUDE Statement . 8

Data Types . 8
Field Data Types . 9
ADL Constructor Data Types . 10
Data Type Attributes . 11

Declarations . 12
DECLARE Statements . 12
DEFAULT Statements . 12
CONSTANT Statements . 13
SUBTYPE Statements . 13
Data Declaration Statements . 14

Plans . 15
PLAN Statements . 15
Assignment Statements . 15
CALL Statements . 16
Workspace Variables and Storage Allocation 17
Exception Handling . 17

Chapter 2. Common Elements . 19

 Copyright IBM Corp. 1993, 1997 iii

Constants . 19
<character> . 20
<comparison predicate> . 21
<condition> . 23
<identifier> . 25
<literal> . 26
<module> . 29
<parse unit> . 30
<positional identifier> . 31
<predicate> . 32
<qualified identifier> . 33
<token> . 36
<value expression> . 38
<when clause> . 38

Chapter 3. Statements . 39
<assignment statement> . 39
<BEGIN statement> . 40
<CALL statement> . 41
<CONSTANT statement> . 42
<data declaration statement> . 44
<DECLARE statement> . 46
<DEFAULT statement> . 47
<END statement> . 49
<INCLUDE statement> . 50
<OTHERWISE statement> . 51
<PLAN statement> . 52
<REJECT statement> . 54
<SKIP statement> . 55
<SUBTYPE statement> . 57
<WHEN statement> . 59

Chapter 4. Data Declarations . 61
<ARRAY> . 61
<ASIS> . 67
<BINARY> . 69
<BIT> . 76
<BITPRE> . 79
<BOOLEAN> . 81
<CASE> . 82
<CHAR> . 85
<CHARPRE> . 89
<CHARSFX> . 92
<ENUMERATION> . 94
<FLOAT> . 96
<PACKED> . 102
<SEQUENCE> . 105
<subtype instance> . 107

iv SdU A Data Language Reference for DD&C

<ZONED> . 109

Chapter 5. Attributes . 113
<BLNENC attribute> . 113
<BYTRVS attribute> . 114
<CCSID attribute> . 115
<COMPLEX attribute> . 117
<CONSTRAINED attribute> . 118
<DMNHIGH attribute> . 119
<DMNLOW attribute> . 120
<DMNLST attribute> . 121
<DMNMAX attribute> . 122
<DMNSIZE attribute> . 123
<FIT attribute> . 124
<FORM attribute> . 125
<HELP attribute> . 126
<HIGH attribute> . 127
<JUSTIFY attribute> . 128
<LENGTH attribute> . 129
<LOW attribute> . 131
<MAXALC attribute> . 132
<MAXLEN attribute> . 133
<NOTE attribute> . 134
<PREBYTRVS attribute> . 135
<PRECISION attribute> . 136
<PRELEN attribute> . 137
<PRESIGNED attribute> . 138
<RADIX attribute> . 139
<SCALE attribute> . 140
<SGNCNV attribute> . 141
<SGNLOC attribute> . 144
<SGNMNS attribute> . 146
<SGNPLS attribute> . 147
<SGNUNS attribute> . 148
<SIGNED attribute> . 149
<SKIP attribute> . 150
<TITLE attribute> . 151
<UNITLEN attribute> . 152
<ZONENC attribute> . 153

Chapter 6. Functions . 155
<LENGTH function> . 155

Chapter 7. Conversion of Data Types . 157
General Conversion Rules . 157
Rules for Field Lengths . 158

Maximum Field Length . 159
Actual Field Length . 159

 Contents v

ARRAY to ARRAY . 161
ASIS to Constructor . 162
ASIS to Field Data Types . 163
BINARY, FLOAT, PACKED, and ZONED to ENUMERATION 164
BIT to BIT . 164
BIT to BITPRE . 165
BITPRE to BIT . 166
BITPRE to BITPRE . 166
BOOLEAN to BOOLEAN . 167
CASE to CASE . 167
CHARxxx to CHARxxx . 168

CHARxxx to CHAR . 168
CHARxxx to CHARPRE . 170
CHARxxx to CHARSFX . 170

Constructor to ASIS . 171
ENUMERATION to BINARY, FLOAT, PACKED, and ZONED 171
ENUMERATION to ENUMERATION . 172
Field Data Types to ASIS . 173
Numeric Conversions . 174

General Numeric Conversion Rules . 183
Design Notes . 186
Specific Numeric Conversion Rules . 190

SEQUENCE to SEQUENCE . 195

Appendix A. Scenarios . 197
Scenario 1: Calling a Conversion Plan . 197
Scenario 2: Generalizing a Conversion Plan . 199
Scenario 3: Calling a User-Written Program From a Plan 200
Scenario 4: Converting File Records by Calling ADL Plans 203
Scenario 5: Access Method Conversion of File Records 205
Scenario 6: View File Conversion of File Records 208
Scenario 7: Selecting and Reordering Fields of Records 210
Scenario 8: Updating File Records Using Workspace Variables 212
Scenario 9: Converting Record Keys . 214
Scenario 10: Converting Files of Text Records 216
Scenario 11: Defining Default Plans . 217
Scenario 12: Multiformat Files . 219
Scenario 13: Converting Program Call Parameters 222

Appendix B. The DD&C User Exit . 225

Appendix C. List of CCSID Values . 227

Appendix D. Implementation Differences of ADL 231

Appendix E. Bachus Naur Form Summary 233

Glossary . 259

vi SdU A Data Language Reference for DD&C

Index . 263

 Contents vii

viii SdU A Data Language Reference for DD&C

 Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any refer-
ence to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Subject to IBM's valid intellectual
property or other legally protectable rights, any functionally equivalent product, program,
or service may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those expressly
designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to :

IBM Director of Licensing
 IBM Corporation

500 Columbus Avenue
 Thornwood, NY 10594
 U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs and
other programs (including this one) and (2) the mutual use of the information that has
been exchanged, should contact:

 IBM Corporation
Information Enabling Requests

 Dept. M13
5600 Cottle Road
San Jose, CA 95193

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

 Copyright IBM Corp. 1993, 1997 ix

Trademarks and service marks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of the
IBM Corporation in the United States or other countries or both:

 AIX
 IBM
 MVS/ESA
 Operating System/2
 Operating System/400
 OS/2
 OS/400
 VM/ESA

| The following terms are trademarks of other companies:

| Windows| Microsoft Corp.
| Windows 95| Microsoft Corp.
| Windows NT| Microsoft Corp.

x SdU A Data Language Reference for DD&C

About This Book

This reference is written for application programmers who want to use A Data Lan-
guage (ADL) data description language to produce specifications of data to be con-
verted. It explains how to use ADL to define the data encodings of various systems
and programming languages. It also describes how to define the plans that convert
data from one format into another.

The first part of the book explains the ADL concepts. The subsequent chapters explain
the elements of the ADL declarations and plans and how they are used to describe
data types. You are shown how to convert between various numeric and alpha-
numeric data types. Appendix A gives some examples of ways to use ADL for data
conversion.

Other appendixes explain the use of the DD&C User Exit, list the CCSID values used in
converting data between languages of different countries, describe the formal ADL
specification upon which this DD&C version of ADL is based, and demonstrate the
Bachus Naur Form Syntax used in this book.

What You Should Know
This book assumes that you are familiar with Data Description and Conversion (DD&C)
and that you have knowledge of the physical representation of data in the programming
environments you intend to use.

 Notation
The syntactic notation used in this book to describe ADL is an extended Backus Naur
(or Normal) Form (BNF), as follows:

� Angle brackets (<>) enclose the identifier of a syntactic variable.

� ADL keywords are specified in uppercase.

� Syntactic units are specified as symbols, words, or literals.

� The symbol ::= means “is defined as”.

� The symbol | indicates an alternative.

� Ellipses (...) indicate elements that can be repeated one or more times.

� Square brackets ([]) indicate a group of one or more optional elements.

� Braces ({ }) indicate a group of one or more elements. For example:

{A | B | C } D can be one of the following:

A D

B D

C D

� The symbol m..n specifies a single integer value within the range m to n inclusive.
Using 1..3 as an example, 1 is the first valid value in the range and 3 is the last
valid value in the range.

 Copyright IBM Corp. 1993, 1997 xi

� The symbol ! following a group, as in {A B}!, or an optional group, as in [A B]!,
indicates an unordered list in which each of the elements in the group is specified
once. For example, {A B}! can consist of:

A B

B A

Optional elements need not be specified. For example, {[A] [B]}! can consist of:

A

B

A B

B A

(neither of the two elements)

If two or more optional groups are alternatives, all the elements of an optional
group must be specified. For example, [A B]! | [A C]! can be one of the following:

A B

B A

A C

C A

(neither of the two elements)

If you specify a list within a list, all items can be specified in any order. The fol-
lowing are examples of BNF notation that allow A B C D to be specified in any
order:

{A B {C D}! }!

{{A B}! C D}!

{{A B}! {C D}!}!

{A {B C}! D}!

{A B C D}!

� Expressions enclosed in brackets or braces are evaluated first, before they are
considered in relation to surrounding expressions.

� In an expression containing ellipses, a range, or alternatives, the priority of evalu-
ation is range, ellipses, alternatives.

In the BNF syntax, a production symbol <A> is defined to contain a production symbol
 if occurs somewhere in the expansion of <A>. If <A> contains , then <A>
is the containing production symbol for .

A production symbol <A> immediately contains a production symbol if <A> contains
 and if occurs in the first expansion of <A>.

 Conventions
The following conventions are used in this book:

1. The syntactic elements of ADL are specified in terms of:

Function The element's purpose.

Syntax The BNF definition of the element's syntax.

xii SdU A Data Language Reference for DD&C

Syntax rules Additional syntactic constraints not expressed in BNF that the
element must satisfy.

General rules Sequence of actions that define the semantics of the language.

Examples Sample ADL descriptions that illustrate the syntactic elements
described.

2. The term space refers to a contiguous sequence of storage locations in which data
is represented.

3. Numeric expressions used in ADL rules or descriptions conform to the following
conventions:

� Operators are used between two values to indicate a mathematical operation
between the two. Operators cannot be placed at the end of an expression.

� Valid operators in numeric expressions are:

+ Addition
— Subtraction
* Multiplication
/ Division
** Exponentiation.

� Except for the prefix operators – (unary minus), which indicates the negative
value of a variable, +, which indicates a positive value, operators cannot be
placed as the first character in an expression.

� Numeric expressions are evaluated from left to right. The precedence rule in
evaluating numeric expressions is according to the priorities and governing
rules in Table 1.

– Expressions enclosed in parentheses () are evaluated first, before they
are considered in relation to surrounding operators.

– Priority 1 has the highest priority and priority 3 the lowest.

– All operators at the same priority level have the same priority.

– For priority level 1, if two or more operators appear in the same
expression, the order of priority is from right to left within the expression,
that is, the rightmost exponentiation or unary minus operator has the
highest priority, the next operator from the right has the next highest pri-
ority, and so on.

Table 1. Precedence rules for numeric expressions

Priority Operator

1 **, unary -

2 *, /

3 +, -

 About This Book xiii

– For all other priority levels, if two or more operators of the same level
appear in an expression, the order of priority is from left to right within the
expression.

� The following functions are also used:

CEIL The ceiling integer value of a number. The value of this func-
tion is the smallest integer value that is greater than or equal to
the number.

FLOOR The floor integer value of a number. The value of this function
is the largest integer value that is less than or equal to the
number.

MIN The value of this function is the lowest of the arguments speci-
fied.

MOD The value of this function is the remainder of the first argument
divided by the second argument.

For Y > 0 and X >= 0:

MOD(X,Y) = X - (Y \ FLOOR(X/Y))

For Y > 0 and X < 0:

MOD(X,Y) = X - (Y \ CEIL(X/Y))

PRODUCT The number or quantity that results from a multiplication of the
arguments of the function.

� The keyword name of an attribute must be specified whenever reference is
made to the current value of the attribute. For example, the current value of
the <PRECISION attribute> is indicated by PRECISION in the following
expression:

(2\\PRECISION)-1

xiv SdU A Data Language Reference for DD&C

 Bibliography

You can order books by calling IBM Software Manufacturing Solutions at
1-800-879-2755.

| Table 2. SMARTdata UTILITIES for Windows Publications

| Publication Title| Order Number

| SMARTdata UTILITIES for Windows Set| SBOF-6135

| SMARTdata UTILITIES for Windows Distributed FileManager User's Guide| SC26-7134

| SMARTdata UTILITIES Data Description and Conversion| SC26-7091

| SMARTdata UTILITIES VSAM Application Programming Interface Reference| SC26-7133

| SMARTdata UTILITIES A Data Language Reference for Data Description and Con-
| version
| SC26-7092

Table 3. SMARTdata UTILITIES for AIX Publications

Publication Title Order Number

SMARTdata UTILITIES for AIX Set SBOF-6132

SMARTdata UTILITIES for AIX: VSAM in a Distributed Environment SC26-7064

SMARTdata UTILITIES: SMARTsort for OS/2 and AIX SC26-7099

SMARTdata UTILITIES for AIX: Data Description and Conversion SC26-7066

SMARTdata UTILITIES A Data Language Reference for Data Description and Con-
version

SC26-7092

Table 4. SMARTdata UTILITIES for OS/2 Publications

Publication Title Order Number

SMARTdata UTILITIES for OS/2 Set SBOF-6131

SMARTdata UTILITIES for OS/2: VSAM in a Distributed Environment SC26-7063

SMARTdata UTILITIES: SMARTsort for OS/2 and AIX SC26-7099

SMARTdata UTILITIES for OS/2: Data Description and Conversion SC26-7091

SMARTdata UTILITIES A Data Language Reference for Data Description and Con-
version

SC26-7092

 Copyright IBM Corp. 1993, 1997 xv

Table 5. Other Publications

Publication Title Order Number

DDM Architecture: Specifications for ADL SC21-8286

Character Data Representation Architecture, Level 2 SC09-1390

IBM Systems Journal: Volume 31, No. 3, 1992 G321-5483

IBM Dictionary of Computing SC20-1699

Compilers—Principles, Techniques, and Tools: by the Addison—Wesley Publishing
Company

IEEE Standard for Binary Floating—Point Arithmetic: ANSI/IEEE STANDARD 754-1985

INTEL 387 DX User

IBM Distributed Data Management: General Information GC21-9527

IBM Distributed Data Management: Reference Guide SC21-9526

Using Distributed Data Management for the IBM Personal Computer SC21-9643

AS/400 Communications: Distributed Data Management Guide SC21-9600

CICS/Distributed Data Management: User's Guide SC33-0695

IBM 4680 Store Systems: Distributed Data Management: User's Guide SC30-4915

DFSMS/MVS Version 1 Release 2 Distributed FileManager/MVS Guide and Refer-
ence

SC26-4915

AIX SNA Server/6000: Configuration Reference SC31-7014

AIX SNA Server/6000: User's Guide SC31-7002

AIX DCE Administration Guide SC23-2475

Encina Server Administration: System Administrator's Guide and Reference SC23-2461

Encina Structured File Server Administrator's Guide and Reference for AIX SC23-2468

xvi SdU A Data Language Reference for DD&C

Summary of Changes

| This section summarizes changes made for this edition of the publication.

| April 1997
| The basic information for OS/2 and AIX has not changed. There have been minor
| changes to support the Windows release.

 Copyright IBM Corp. 1993, 1997 xvii

xviii SdU A Data Language Reference for DD&C

Chapter 1. Understanding ADL Concepts

| A Data Language (ADL) assists in performing data conversion between disparate oper-
| ating systems in a shared data environment. It can be used to describe the way data is
| encoded in various programming languages and in formats used by various operating
| systems. Using ADL with Data Description and Conversion (DD&C), modules can be
| created to bridge the differences between data types and data encodings defined by a
| variety of programming languages.

For example, an MVS system whose programs are written in COBOL can communicate
with an AIX or OS/2 system whose programs are coded in C language only when the
data encodings can be understood by both systems. Figure 1 illustrates the difficulties
of interlanguage and intersystem communication. It is the differences in programming
languages and data types that make data conversion and ADL necessary.

C Data Description

struct
{

long salary;
char name [5];

} RECORD;

OS/2 C Data Representation

COBOL Data Description

01 RECORD.
05 SALARY PICTURE 9(4) USAGE IS COMP -3.
05 NAME PICTURE X(4) USAGE DISPLAY.

MVS COBOL Data Representation

E0 122E 00

SALARY SALARYNAME NAME

00 0C00 D14A D64F C545 4000 00

Figure 1. An example of the diversity of data encodings. For even a simple data structure, the data encodings used
by different programming languages for different systems can vary widely. Many programming languages support the
declaration of much more complex data structures.

 Components
An ADL module consists of declarations and plans . Each ADL declaration provides a
complete and consistent description of how data is encoded in a particular represen-
tation domain . Different declarations can exist in a module for the same data, with
each description appropriate to a single representation domain. An ADL plan combines
these alternative descriptions to create a conversion plan between two types of data
encodings.

 Copyright IBM Corp. 1993, 1997 1

This manual tells you how to write ADL declarations to describe data formats, and how
to write ADL plans that describe how to convert data from one format to another.

Following are descriptions of the components involved in data conversion. Refer to
Figure 2 on page 4 for a visual representation of how the components fit into the total
picture.

 Representation Domain
A representation domain is defined by the ways the data types of a programming lan-
guage are encoded in an implementation of the programming language for a particular
machine architecture. Different implementations of a programming language result in
different representation domains. Different representation domains usually represent
different types of systems as well as different programming languages.

 ADL Module
An ADL module contains the declarations that describe the data and the plans that
describe how to convert the data from the format of one representation domain to that
of another.

Declarations Declarations describe how the data is encoded in a particular
implementation of a programming language in a representation
domain. Using the description of ADL provided in this book, you
can create ADL descriptions of data from existing programming
language descriptions. For example, the ADL description of a
SEQUENCE of fields can be derived from the COBOL description
of a STRUCTURE. However, the representation of a COBOL
STRUCTURE by a particular COBOL implementation must also
be known. To create ADL data descriptions, therefore, you
require detailed knowledge about how data is encoded in any
particular representation domain.

ViewRec describes the data format after conversion has been
performed.

BaseRec describes the data format before conversion.

Plans An ADL plan describes how to convert data from the format of
the source data to the format of the target data, as described in
their respective data declarations.

The getplan and putplan are always described from the point of
view of the local system.

getplan describes the conversion of data from the remote to
the local format.

putplan describes the conversion of data from the local to
remote format.

A conversion plan can be carried out whenever data is to be
transported between the exporting and importing representation
domains. The data may be stored in a file or database between

2 SdU A Data Language Reference for DD&C

the time it is exported by one program and the time it is imported
by another program. That data can be imported by programs
from different representation domains, as long as a conversion
plan exists for the representation domains involved.

A number of scenarios are described in Appendix A, “Scenarios”
on page 197, including some that include using CALL statements
to use conversion plans. Refer to Chapter 3 for a detailed
description of the CALL statement.

DD&C ADL Declaration Translator
The declaration translator is invoked to parse declaration source files to create the
ADLDCLSPC and ADLPLNSPC spaces. It can also generate the source text state-
ments from existing ADLDCLSPC and ADLPLNSPC spaces.

FMTPRS (Parse) The FMTPRS function parses the ADL data descriptions and
ADL plans to produce the binary encodings of the source
files. These will be used to perform data conversion. The
encoded ADL statements are stored in areas of memory
called ADLDCLSPC and ADLPLNSPC. These spaces are
subsequently passed as input to the Conversion Plan
Builder component of DD&C.

FMTGEN (Generate) The FMTGEN function generates ADL text from ADL decla-
ration spaces and ADL plan spaces. This function can be
used as a tool to check the contents of the spaces when
they are to be updated or an error is suspected.

The DD&C Conversion Plan Builder
The conversion plan builder uses the ADLDCLSPC and ADLPLNSPC as input to create
a conversion plan. It uses the plan to map the conversion of the source data format to
the format required by the target system.

DD&C Conversion Executor
When invoked, the conversion executor performs the actual data conversion, using as
input the original data from the target system and the conversion plan that was created
by the conversion plan builder. The resulting converted data is then available to the
source system.

 Chapter 1. Understanding ADL Concepts 3

converted
data

ADL Module

MVS SystemOS/2 System

Storage

Storage

ADLDCLSPC

ADLPLNSPC

ADLDCLSPC

DD&C ADL
Declaration Translator

A

DD&C
Conversion
Plan Builder

DD&C
Conversion

Executor

Conversion
Plans

Data
Description A

Data
Description B

Plan A

getplan
B to A

putplan
A to B view rec base rec

Representation Domain X
Program A

Representation Domain Y
Program B

original
data

original
data

Figure 2. Components involved in DD&C data conversion

4 SdU A Data Language Reference for DD&C

Example of ADL Use
The following example uses an MVS COBOL system and an OS/2 C language system
to demonstrate how you use ADL to define the data formats.

The data:

12ððð, "JOE"

might be described in an MVS COBOL program as:

ð1 RECORD.

ð5 SALARY PICTURE 9(4) USAGE IS COMP -3.

ð5 NAME PICTURE X(4) USAGE DISPLAY.

and in a C program as follows:

struct

 {

 long salary;

 char name[5];

 } RECORD;

The following steps are necessary to convert records stored in an MVS system to an
appropriate format for OS/2:

.1/ For both data descriptions, the record layout must first be described in ADL. This
is done using two data declaration statements:

� BaseRec, describing the original MVS data record
� ViewRec, describing the data record for OS/2

The BaseRec data declaration is as follows:

DECLARE

BEGIN;

 BaseRec: SEQUENCE

 BEGIN;

salary: PACKED PRECISION(5);

name: CHAR LENGTH(4) CCSID(5ðð);

 END;

END;

The ViewRec data declaration is as follows:

DECLARE

BEGIN;

 ViewRec: SEQUENCE

 BEGIN;

salary: BINARY PRECISION(31) BYTRVS(TRUE) ;

name: CHARSFX MAXALC(TRUE) MAXLEN(5) CCSID(437);

 END;

END;

 Chapter 1. Understanding ADL Concepts 5

Both the COBOL and the C records are represented as SEQUENCEs in ADL.
Each SEQUENCE contains two fields. Since ADL can be used to describe many
different data representations, each field is described using both its data type
(CHAR, PACKED, CHARSFX, and BINARY in the example) and a number of
attributes, which define the fields for each ADL data type more precisely.

.2/ To convert the records, an ADL plan must be defined. The plan describes how
the records are converted from one format to the other. As DD&C contains the
necessary conversion routines to convert ADL fields and structures, the plan
describes the conversion at an abstract level only.

/\ Conversion specification from base to view \/

getPlan: PLAN (BaseRec: INPUT, ViewRec: OUTPUT)

 BEGIN;

ViewRec <- BaseRec;

 END;

The plan consists of a reference to the declarations of the base and view record,
and one assignment statement (ViewRec <- BaseRec). This assignment state-
ment instructs DD&C to perform conversion of the structures.

For each field of the view record, the base record is searched for a field with the
same name. If found, the field is converted.

In this example, the record consists of a character field and a numeric field. Con-
version is performed separately for each data type:

� On the MVS system, the numeric field is represented as a packed field,
whereas in OS/2 it is stored as a 4-byte binary number in byte-reversed
format.

� The representation of each character of the character field is different on
both systems. On the MVS system, characters are represented in an
EBCDIC code page, whereas on OS/2, an ASCII code page is used. Also,
the structure of the character field is different. On the MVS system, the
string is padded with blanks, whereas on OS/2 the string is null-terminated
according to the C convention.

.3/ The Parse function of the ADL declaration translator API is called to compile the
ADL source text into a declaration space and a plan space. These spaces are
input for the conversion plan builder component, which is then called to produce
a conversion plan space. This space is used by the conversion plan executor
component to convert the records.

 ADL Syntax
The declarations and plans of an ADL module are specified as text in a source file.
This text consists of a sequence of statements constructed according to the rules of
ADL syntax. Following is an overview of ADL concepts and terminology as they are
used in Chapter 2 through Chapter 7.

6 SdU A Data Language Reference for DD&C

 Statements
Each ADL statement has a body, and a terminator. Some types of statements can also
have identifiers. For example, in the statement:

parts_count: BINARY PRECISION(15) SCALE(ð);

 where:

the identifier is parts_count

the body is BINARY PRECISION(A1) SCALE(ð)

the terminator is ;

you can use spaces and comments between the identifiers, keywords and punctuation
of ADL statements. However, none are required except when they are used to sepa-
rate identifiers and keywords from other tokens.

 Comments
Comments can be placed in ADL text anywhere where a space could be placed. Com-
ments consist of the character sequence:

/\ comment \/

The body of the comment can include any sequence of characters allowed by the
source file's coded character set identifier (CCSID), including non-syntactic characters.
However, the character sequence \/ cannot appear within a comment. Likewise, the
sequence /* cannot appear within a comment.

 Literals
You can specify literals appropriate to each of the data types defined by ADL as ADL
tokens, including:

 � numeric literals
 � boolean literals
 � character literals

The body of a character literal can include any sequence of characters allowed by the
system's CCSID (including non-syntactic characters).

 Identifiers
You can specify user-defined identifiers for all types of ADL statements. These identi-
fiers assign a name to a statement so that it can be referenced by other statements.
Identifiers consist of a sequence of uppercase or lowercase letters, numbers, and the
special characters question mark (?), percent (%), ampersand (&), and underscore (_).

Each identifier must be unique in the statement in which you use it, but you can use the
same identifier in different contexts in other statements.

Contexts in which you can use an identifier include:

� Within a module, the identifiers of all DECLARE statements must be unique.

� Within a module, the identifiers of all PLAN statements must be unique.

 Chapter 1. Understanding ADL Concepts 7

� Within a declaration, the identifiers of all constants and subtypes, and the fully-
qualified identifiers of all data declarations must be unique.

� Within a sequence or case declaration, the identifiers of all data declarations must
be unique.

� Within a plan statement, the identifiers of all statements must be unique.

� Within a declare statement, no fully-qualified identifier of a data declaration can be
the same as the partly-qualified identifier of another data declaration.

Some ADL statements support references to constants, subtypes, or data declarations.
These references are specified in terms of the identifiers associated with the referenced
entity. Whenever there is a possibility of ambiguity in a reference, you must specify it
with enough high level identifiers as qualifiers to eliminate the ambiguity. The qualifiers
are specified in the same sequence as the nested contexts and are separated by
periods (.).

For example, given the hierarchy:

A

 B

 C

 D

 E

 C

 F

If an ADL statement refers to A.B.C, then at least B.C must be specified to avoid any
ambiguity with E.C.

 INCLUDE Statement
The INCLUDE statement is a special type of ADL statement.

An ADL INCLUDE statement can be specified anywhere an ADL statement is allowed.
The INCLUDE statement names a file containing ADL text. The included ADL text
must be valid in the context of the type of statement in which it is specified. For
example, CONSTANT statements cannot be included in a plan statement.

The included ADL text can itself contain INCLUDE statements, but there is a limit to the
number of loops of INCLUDE statements that can be specified.

 Data Types
There are many different methods used to encode numeric, character and other types
of data. Each instance of a data type is represented by an encoded string of bits. It is
the programming language and system environment that determines the method of
encoding data in a bit string. ADL uses a set of attributes to define the data types that
correspond to the methods of encoding data used by various programming languages.
Data attributes are described in detail in Chapter 5, “Attributes” on page 113. The data
types are described in the following topics. Not all ADL data types incorporate all of the

8 SdU A Data Language Reference for DD&C

attributes described below. Likewise, not all programming languages require the use of
all the data types.

Field Data Types
ADL defines the following data types for describing how field data is encoded:

ASIS A string of bits whose encoding is unknown or inconvertible by an
ADL module.

BINARY A fixed-length string of bits that encodes a fixed precision number
as a base 2 integer. Among the attributes that can be specified
are the precision, scaling factor, and radix of the encoded
number, and whether its encoding is byte reversed.

BIT A string of bits whose encoding is application defined.

BITPRE A variable-length string of bits whose encoding is application
defined. The actual length of the string is specified by a length
field that precedes the bit string.

BOOLEAN A bit string that encodes either TRUE or FALSE.

CHAR A string of bits that encodes characters.

CHARPRE A variable-length string of bits that encodes characters. The
actual length of the string is specified by a prefix that precedes
the string of bits.

CHARSFX A variable-length string of bits that encodes characters. The
actual length of the string is determined by scanning for a suffix
string of bits used as a terminator.

ENUMERATION The binary encoding of one of a set of integers, where each
integer is associated with an identifier as a constant.

FLOAT A fixed-length string of bits that encodes an approximate number
by means of a characteristic and a significand. The FORM attri-
bute specifies the format of the encoded string, and implies its
length.

PACKED A fixed-length string of bits that encodes a number by means of a
sequence of hexadecimal representations of decimal digits.
Among the attributes that can be specified are the precision and
scaling of the field.

ZONED A fixed-length string of bits that encodes a number by means of a
sequence of hexadecimal representations of decimal digits and
zones. Among the attributes that can be specified are the preci-
sion and scaling of the field.

 Chapter 1. Understanding ADL Concepts 9

ADL Constructor Data Types
ADL defines the following constructor data types that specify how data elements are
combined to form more complex entities:

SEQUENCE A collection of fields and constructors, each encoded according
to its ADL data type.

The elements of a SEQUENCE can be of any ADL field data
type or constructor data type. Also, the SKIP statement can be
used to skip bits between the elements of a SEQUENCE to
account for the data alignments methods of various programming
languages, or to account for filler fields allowed by some pro-
gramming languages.

ARRAY A collection whose elements are uniquely associated with one or
more integer values, called the dimensions of the array.

Each dimension of an array is declared in terms of either the
lowest and the highest integer values, or the lowest integer value
and the number of elements in the dimension. These values can
be specified as numeric literals or by references to other vari-
ables. In the latter case, the overall size of the array can vary for
each instance of the array, or the array can contain slots for all
possible elements with only elements within the specified bounds
containing data.

The elements of an array must all be the same length, but they
need not be of the same data type. If an ARRAY of type CASE
is declared, all elements of the array can be of the same data
type, but vary from instance to instance of the array. Alterna-
tively, each element can be of a different data type if each
element is a SEQUENCE containing its own discriminant field.

CASE A set of alternative data declarations, one of which determines
the interpretation of a string of bits, depending on the value of
one or more discriminant fields.

A CASE contains an ordered set of WHEN statements and an
optional OTHERWISE statement. Each WHEN statement con-
sists of a condition to be tested and either a data declaration or a
SKIP statement. The condition to be tested is specified by predi-
cates connected by the logical operators AND, OR, and NOT.

A WHEN statement or an OTHERWISE statement consists of a
data declaration, a SKIP statement, or a REJECT statement:

� The data declaration of an OTHERWISE statement can be of
any ADL field or constructor type.

� The SKIP statement can be specified to indicate that only
filler data exists.

� The REJECT statement can be specified to reject the input
data and terminate the conversion plan.

10 SdU A Data Language Reference for DD&C

If an OTHERWISE statement is specified for a CASE, it is
selected if no condition of a WHEN statement evaluates to
TRUE. If no OTHERWISE statement is specified in a CASE, and
no WHEN statement condition evaluates to TRUE, then no
instance of the CASE exists.

Data Type Attributes
The attributes of ADL data types specify how data is actually encoded within a repre-
sentation domain. That is, the encoding of a data item is described by specifying an
ADL data type and selected values of its attributes. For example, the byte reversal
attribute (BYTRVS) of a BINARY field specifies how the bytes of the binary encoding
are ordered.

You can specify values for all of the attributes of a data type when declaring a field of
that type, but this is both tedious and error prone. Therefore, for each data type, ADL
specifies:

� Attributes that assume a default value if a value is not specified. ADL defines
default values for each of these attributes. However, you can change the defaults
for all uses of an attribute in a declaration by using the DEFAULT statement. This
makes it possible for one programmer to specify the required set of defaults for a
given representation domain and for other programmers to adopt those defaults by
using the INCLUDE statement.

� Attributes that are ignored if a value is not specified.

The following rules define the relationships between system-defined attributes, user-
defined attributes, and the attributes specified in a data declaration statement. For
each data type and each attribute of this data type, the following sequence of priorities
applies:

1. The attribute is defined in the data declaration statement.

2. The data type is a subtype instance and the attribute is defined in the SUBTYPE
declaration.

3. The data type is a subtype instance of another subtype. In this case, step through
the chain of subtypes and take the first occurrence of the attribute.

4. There is a DEFAULT statement for this data type and attribute.

5. There is an ADL-defined value for this data type and attribute.

If none of these conditions apply, the attribute is undefined.

If two mutually exclusive attributes for a data type are specified at different levels of
priority, then the attribute at the higher level is used.

 Chapter 1. Understanding ADL Concepts 11

 Declarations
A declaration describes data in terms of the data types and encoding methods of a
single representation domain. A declaration consists of a DECLARE statement that
contains:

� DEFAULT statements that set the default attributes of ADL types.

� CONSTANT statements that associate an identifier with an ADL literal. The identi-
fier associated with a CONSTANT statement can be referenced by SUBTYPE
statements and data declaration statements in the declaration section.

� SUBTYPE statements that declare subtypes of ADL types. The identifier associ-
ated with a SUBTYPE statement can be referenced by all SUBTYPE statements
and data declaration statements in the declaration.

� Data declaration statements that describe application data. The identifier associ-
ated with a data declaration statement can be referenced by other statements in
declarations and plans.

 DECLARE Statements
Each declaration of a module is specified by using a DECLARE statement, such as:

ProgramA: DECLARE

 BEGIN;

 DEFAULT statements

 SUBTYPE statements

 CONSTANT statements

Data declaration statement

 END;

where ProgramA is a name assigned to the declaration and declaration statements are
specified between BEGIN and END statements.

 DEFAULT Statements
A value can be specified for a defaultable attribute of an ADL data type by using a
DEFAULT statement, such as:

DEFAULT BINARY

 BYTRVS(FALSE)

 RADIX(1ð)

 SIGNED(FALSE);

which specifies default values for the BYTRVS, RADIX, and SIGNED attributes of the
ADL BINARY data type.

Each ADL data type whose attributes are to be defaulted must have a separate
DEFAULT statement.

The defaults established by a DEFAULT statement for an attribute apply to the entire
declaration.

12 SdU A Data Language Reference for DD&C

Only one DEFAULT statement can be specified for an ADL type. If a DEFAULT state-
ment is not specified for an ADL type, then the default ADL attributes for that type are
used.

If a data declaration specifies attributes that are mutually exclusive with the attributes
specified in their respective DEFAULT statement, the attributes on the data declaration
statement take precedence over the default ones.

 CONSTANT Statements
A literal is a specification of a data value in ADL text. ADL defines how literals are to
be specified for numeric, character, boolean, and other ADL data types. Literals are
used to specify the values of attributes, in assignment statements, and in predicates.
However, it is often desirable to associate an identifier with a literal and then refer to
the identifier whenever the value of the literal is required. This is accomplished by
means of a CONSTANT statement, such as:

base: CONSTANT 1ð;

population: BINARY RADIX(base)...;

where base is associated with the literal value 10, and the RADIX attribute is set to the
value 10 by referring to the identifier base.

 SUBTYPE Statements
The SUBTYPE statement can be used to declare a subtype of an ADL type or of
another subtype. A data item can then be declared to be an instance of the subtype.

Subtypes of both field and constructor types can be defined. Field subtypes allow the
subtype identifier to be associated with a specific ADL type and an associated set of
attributes. For example, in:

partno: SUBTYPE OF PACKED

PRECISION(9) SIGNED(FALSE) TITLE('Part Number');

some other identifier can be declared to be an instance of the partno subtype, as in:

assembly: partno TITLE('Part Number of the whole assembly.');

In this case, assembly is declared to be an instance of the partno subtype and thereby
of the ADL PACKED type with the PRECISION(9) attribute. However, assembly specifies
its own TITLE attribute, overriding the TITLE attribute specified for the partno subtype.

Subtypes of constructors are similar, but their instances also inherit the components of
the constructor subtype. In the following example, name is the identifier of a subtype of
the ADL SEQUENCE constructor type. This subtype declares name to have the compo-
nents last, first, and initial. namerec is a SEQUENCE consisting of a set of
names, each of which includes last, first, and initial components.

 Chapter 1. Understanding ADL Concepts 13

name: SUBTYPE OF SEQUENCE TITLE('General Name Structure')

 BEGIN;

last: CHAR LENGTH(12);

first: CHAR LENGTH(12);

 initial: CHAR;

 END;

namerec: SEQUENCE TITLE('Employee Contacts Record')

 BEGIN;

 employee: name;

 spouse: name;

 broker: name;

 attorney: name;

 parole_officer: name;

 clergy: name;

 END;

Two kinds of subtypes can be defined. One kind of subtype is related to the data types
of other programming languages. Subtypes can be assigned identifiers similar to the
data type names of a programming language, with attributes specified as required by
the representation domain. For example, a subtype named short could be defined by
a C representation domain to match the way a C implementation represents instances
of the C short data type. A programmer specifying ADL declarations for that represen-
tation domain can then declare data to be of the short subtype, as in:

short: SUBTYPE OF BINARY

 BYTRVS(TRUE)

 PRECISION(15);

counter: short;

All declared instances of the short subtype are represented in 16 bits and encoded
with byte reversal. counter is declared to be an instance of the subtype short, and
therefore of the ADL BINARY type.

Application specific subtypes can also be defined. For example, if name is declared as
a subtype, then a personnel record could declare employee_name, spouse_name, and
child_name to all be instances of the name subtype. If the same application subtypes
are required in several declare statements, they can be specified in an ADL text file that
is included in those declaration statements.

Data Declaration Statements
The application data exported and imported by programs is described by data declara-
tion statements, such as:

retail_price: ZONED PRECISION(5) SCALE(2);

where retail_price is the identifier associated with all instances of the data, ZONED

specifies the data is of the ADL ZONED data type, and PRECISION and SCALE are attri-
butes of the instances.

14 SdU A Data Language Reference for DD&C

 Plans
A plan statement specifies a program for converting data from one form to another,
where both forms are described by data declaration statements. These programs can
be invoked whenever data becomes available for the input parameters of the plan and
converted data is required.

 PLAN Statements
Each plan of a module is specified by a PLAN statement, for example:

ReadPlan: PLAN (A: INPUT, B: OUTPUT)

 BEGIN;

 assignment statements

 CALL statements

 END;

where ReadPlan is a name assigned to the plan, A and B are the INPUT and OUTPUT
parameters of the plan, and the assignment and CALL statements of the plan are spec-
ified between BEGIN and END statements.

The names specified in the parameter list of the plan are references to data declara-
tions. A plan assumes that these declarations describe the data areas passed to the
plan as parameters when the plan is called. The caller of the plan passes a data area
containing original data and a data area to receive converted data. The assignment
statements of the plan move and convert data from the fields of the original data area
to the converted data area.

The LENGTH and CCSID attributes can be specified as attributes of INPUT parame-
ters, and the MAXLEN and CCSID attributes can be specified as attributes of OUTPUT
parameters. These attributes provide additional information about the parameters that
can be used within the plan. For example, the MAXLEN attribute of an OUTPUT attri-
bute specifies the maximum length of the data that can be returned by the plan. These
attributes can be specified as literals or as references to other parameters. This allows
their values to be specified by the caller of the plan.

 Assignment Statements
The assignment statements of a plan cause data to be moved from a source variable,
typically an INPUT parameter, to a target variable, typically an OUTPUT parameter.
When the source and target are both fields, the data types of the source and target,
along with their accompanying attributes, are compared. It may be that the two data
types are compatible and that no conversion is required. If necessary, however, the
data of the source field must be converted to the type and attributes of the target field.

For fields, DD&C supports the following conversions:

� From source to target fields of the same type, DD&C performs whatever conver-
sions are required by the attributes of the source and target.

� Any numeric type can be converted to any other numeric type.

� ENUMERATION data types can be converted to or from BINARY.

 Chapter 1. Understanding ADL Concepts 15

� Any character type can be converted to any other character type if the character
data representation architecture (CDRA) has defined conversions from the source
CCSID to the target CCSID.

� Any data type can be converted to or from the ASIS data type. In these cases, the
source and target fields are treated as bit strings and moved, with padding or trun-
cation. The results may or may not be valid data for the target field.

For constructors, DD&C supports the following conversions:

� When the source and target are both ARRAYs, the dimension list attributes of the
source and target are compared to determine if they are compatible. Both arrays
must have the same number of dimensions, and both arrays must have the same
number of elements in each dimension. Conversions are performed as each
source element is assigned to a target element.

� When the source and target are both SEQUENCEs, the identifier of each element
of the target is used to locate a matching identifier of the source. Conversions are
performed as the data of the source element is assigned to the target element.
The target elements need not be in the same order as the source elements, and
not all target elements need be selected. Because of this, the target declaration
can both select and reorder source elements.

� When the source and target are both CASEs, the condition clauses of the WHEN
statements of the source are evaluated to determine which data declaration applies
to the source data. The identifier of the selected WHEN statement is then used to
locate a WHEN statement of the target CASE with a matching identifier, and its
data declaration applies to the target data. Conversions are performed as the
source data is assigned to the target. If no source WHEN statement is selected,
then the OTHERWISE statement of both the source and target are selected.

If a target data declaration includes a WHEN clause, then the condition specified must
be TRUE or an exception occurs, thereby causing the plan to be terminated. This
allows the plan to act as a filter on the input data passed to it. For example, if the
source data is being read from a file, then only data that passes through the filter is
converted and passed to the caller of the plan. Thus, only a subset of the file's data is
actually presented to the reader of the file. And if the target is a file to which data is
being written, then only data that passes through the filter is written to the file.

 CALL Statements
A CALL statement calls a named program external to the program containing the con-
version plan and passes it a list of parameters. The called program can operate on the
input parameters passed to it and return values in the output parameters for further use
by the conversion plan.

While CALL statements can be used for any application purpose, the anticipated use of
CALL statements is to convert data that cannot otherwise be described or converted by
ADL.

16 SdU A Data Language Reference for DD&C

Workspace Variables and Storage Allocation
Associated with each data declaration statement of an ADL module is a block of
storage onto which the declared variable is mapped. If the declared variable is speci-
fied in the parameter list of a PLAN statement, then the corresponding block of storage
has been allocated by the caller of the plan, either as input to the plan or as an area for
output from the plan. This kind of variable is called a parameter variable. Otherwise,
the block is contained in a workspace allocated by the module. This kind of variable is
called a workspace variable.

When subsequently initializing the conversion plan, the conversion executor creates a
module workspace. This module workspace remains in existence until execution of the
conversion plan is complete. This means that workspace variables persist over several
calls to convert the same or different conversion plans of a conversion plan space.
Workspace variables can therefore be seen as global variables for each conversion
with a conversion plan. You should therefore always ensure that workspace variables
are correctly initialized before they are used.

Since there is only one persisting module workspace, all references by plans or decla-
rations to workspace variables are to the same workspace blocks. This allows work-
space variables to be used for communications between invocations of different plans
or between different invocations of the same plan.

 Exception Handling
A variety of conditions can cause an exception to occur when running a conversion
plan. All exceptions result in the conversion plan being terminated and the error code
being returned to it's caller. ADL defines an ADL communications area (FMTADLCA)
that contains this diagnostic information.

 Chapter 1. Understanding ADL Concepts 17

18 SdU A Data Language Reference for DD&C

 Chapter 2. Common Elements

This chapter describes the syntax and semantics of elements that are common to many
ADL statements. The elements are described in alphabetical order.

 Constants
The following shows the function, syntax, rules, and examples:

 Function
Specify the constants used in the DD&C implementation of ADL.

 Syntax
 <max7> ::= 127

 <max8> ::= 255

 <max15> ::= 32,767

 <max28> ::= 268,435,455

 <max31> ::= 2,147,483,647

 <min7> ::= -128

 <min31> ::= -2,147,483,648

 Syntax rules
None.

 General rules
None.

 Examples
None.

 Copyright IBM Corp. 1993, 1997 19

 <character >

The following shows the function, syntax, rules, and examples:

 Function
Specify character units.

 Syntax
 <character> ::=
 <digit> |

 <letter> |

<special character> |

 <underscore> |

 <space>

 <digit> ::=
ð | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 <letter> ::=
<upper case letter> | <lower case letter>

 <upper case letter> ::=
A | B | C | D | E | F | G | H | I |

J | K | L | M | N | O | P | Q | R |

S | T | U | V | W | X | Y | Z

 <lower case letter> ::=
a | b | c | d | e | f | g | h | i |

j | k | l | m | n | o | p | q | r |

s | t | u | v | w | x | y | z

 <special character> ::=
. | , | : | ; | ? | (|) | ' | " |

/ | - | & | + | % | = | \ | > | <

 <underscore> ::= _

 <source character> ::=

 Syntax rule
A <source character> is any character allowed by the <CCSID attribute> of the ADL
source file.

 General rules
None.

 Examples
None.

20 SdU A Data Language Reference for DD&C

 <comparison predicate >

The following shows the function, syntax, rules, and examples:

 Function
Specify a comparison of two values.

 Syntax
 <comparison predicate> ::=
 <value expression>

 <comparison operator>

 <value expression>

 <comparison operator> ::=
= | < | > | <> | <= | >=

 Syntax rules
The data types of the first <value expression> and the second <value expression> are
comparable. The <value expression>s are comparable if the result of the second
<value expression> can be converted to the data types of the result of the first <value
expression> as defined by the matrix in Figure 6 on page 158.

 General rules
1. Let x denote the value of the first <value expression> and let y denote the value of

the second <value expression>.

“x <comparison operator> y” is either TRUE or FALSE:

“x = y” is TRUE if and only if x and y are equal.
“x < y” is TRUE if and only if x is less than y.
“x > y” is TRUE if and only if x is greater than y.
“x <> y” is TRUE if and only if x and y are not equal.
“x <= y” is TRUE if and only if x is not greater than y.
“x >= y” is TRUE if and only if x is not less than y.

2. It is only possible to compare ADL data types that belong to the same class.

In DD&C, four classes of ADL data types are defined. ADL data types not
belonging to any of the following classes cannot be used for comparison purposes:

a. Character data types.

This class consists of the ADL data types CHAR, CHARPRE, CHARSFX,
<character literal>, and <encoded hex literal>. For this class, only the
<comparison operator>s = and <> are allowed.

Comparisons are performed as follows:

1) For CHARPRE, only the character specified by its prefix length field is
used. The prefix does not participate in the comparison.

2) For CHARSFX, the character preceding the suffix is used. The suffix
does not participate in the comparison.

 Chapter 2. Common Elements 21

3) If the lengths of the two <value expression>s are not equal, then the
shorter <value expression> is considered to be extended on the right with
space characters defined by the <CCSID attribute> of the shorter <value
expression>.

4) The comparison is performed from left to right, comparing the individual
characters of the <value expression>s. If all such individual comparisons
are equal, then the two <value expression>s are equal; otherwise, the
result of the comparison of the <value expression>s is defined to be
unequal.

b. Numeric data types.

This class consists of the ADL data types BINARY, ENUMERATION,
PACKED, ZONED, <positive integer>, and <signed integer>.

The attributes of these data types must have the value COMPLEX(FALSE).

Only numeric values that can be expressed as a 32-bit signed integer are
allowed.

Comparison of numeric values is always exact, without truncation or rounding.
If an operand has SCALE not equal to zero, comparison can lead to an over-
flow situation under certain circumstances.

 c. Bit fields.

This class consists of the ADL data types ASIS, BIT, BITPRE, <bit literal>, and
<hex literal>. The comparison rules are:

1) If the lengths of the two <value expression>s are not equal, the shorter
<value expression> is considered to be extended on the right with B'0'
bits.

2) The comparison is performed from left to right, comparing the individual
bits of the <value expression>. If all such individual comparisons are
equal, then the two <value expression>s are equal; otherwise, the result of
the comparison of the <value expression>s is defined to be the result of
comparing the first unequal bit encountered.

3) A bit value of B'1' is greater than a bit value of B'0'.

 d. Boolean fields

This class consists of the ADL data types <BOOLEAN> and <boolean literal>.

A truth value of TRUE is greater than a truth value of FALSE.

 Examples
1. empno = 123456
2. salary > 10000
3. legalspeed <= 55
4. name <> 'Elaine'

22 SdU A Data Language Reference for DD&C

 <condition >

The following shows the function, syntax, rules, and examples:

 Function
Specify a condition that is TRUE or FALSE depending on the result of applying boolean
operators to specified conditions.

 Syntax
 <condition> ::=

<boolean term> |

<condition> OR <boolean term>

 <boolean term> ::=
<boolean factor> |

<boolean term> AND <boolean factor>

 <boolean factor> ::=
 [NOT]<boolean primary>

 <boolean primary> ::=
<boolean literal> |

<qualified identifier> |

 <predicate> |

 (<condition>)

 Syntax rule
If a <qualified identifier> is specified for the <boolean primary>, the <qualified identifier>
refers to a BOOLEAN field.

 General rules
1. The result is derived by the application of the specified boolean operators (AND,

OR, NOT) to the conditions that result from the application of each specified
<predicate> to a given field. If boolean operators are not specified, then the result
of the <condition> is the result of the specified <predicate>.

2. NOT(TRUE) is FALSE, and NOT(FALSE) is TRUE.

3. AND and OR operators are defined in the following truth table:

4. Expressions within parentheses are evaluated first and when the order of evalu-
ation is not specified by parentheses, <predicate>s are evaluated first, NOT applied

Values Results

A B A and B A or B

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

 Chapter 2. Common Elements 23

before AND, AND applied before OR, and operators at the same precedence level
applied from left to right.

 Examples
None.

24 SdU A Data Language Reference for DD&C

 <identifier >

The following shows the function, syntax, rules, and examples:

 Function
Specify an identifier for an entity.

 Syntax
 <identifier> ::=
 <identifier string>

| " <identifier string> "

 <identifier string> ::=
{<letter> | <digit> | <identifier character>}...

 <identifier character> ::=
? | % | & | <underscore>

 Syntax rules
1. An <identifier> consists of a maximum of <max8> characters.

2. If an <identifier string> matches an ADL key word, then it must be enclosed within
double quotation marks (").

3. The same <identifier> that is used to identify a <data declaration statement> cannot
be used to define a <CONSTANT> data type.

4. At least one character of an <identifier> must be a <letter> or an <identifier
character>.

5. The case of a <letter> is significant when specified in an identifier. For example,
abc and aBc are different <identifier>s.

 General rules
None.

 Examples
1. The following are valid application-defined identifiers:

empser EmpSer go123 “BINARY” 123GO

 empser empser emp%ser &123GO emp_ser

2. The following are not valid application-defined identifiers:

empser# #EmpSer 1234 EMPLOYEE-SERIAL-NUMBER

 Chapter 2. Common Elements 25

 <literal >

The following shows the function, syntax, rules, and examples:

 Function
Specify a string of characters representing a value.

 Syntax
 <literal> ::=

<character literal> |

 <noncharacter literal>

 <character literal> ::=
<character string>[<separator><character string>]...

 [<CCSID attribute>]

 <character string> ::=
'[<source character> | <quote representation>]...'

 <quote representation> ::= ''

 <noncharacter literal> ::=
<bit literal> |

<signed integer> |

<positive integer> |

<hex literal> |

<boolean literal> |

<encoded hex literal>

 <bit literal> ::=
{b | B}<bit string> [<separator><bit string>]...

 <bit string> ::= '[ð | 1]...'

 <signed integer> ::= [+ | -] <digit>...

 <positive integer> ::= [+] <digit>...

 <hex literal> ::=
{x | X}<hex string> [<separator><hex string>]...

 <hex string> ::= '[<hex digit>]...'

 <encoded hex literal> ::= <hex literal> <CCSID attribute>

 <hex digit> ::= <digit> | A | B | C | D | E | F

 <boolean literal> ::= FALSE | TRUE

 Syntax rules
1. If the <CCSID attribute> is specified for a <character literal>, it must match the

CCSID of the source file.

2. An even number of <hex digit>s must be specified for an <encoded hex literal>.

26 SdU A Data Language Reference for DD&C

 General rules
1. For <bit literal>s,

a. The data type is BIT with ADL defined default attributes.

b. The length is the number of bits that the <bit literal> contains. The maximum
length of a <bit literal> in DD&C is 32760 bits.

c. The value is the sequence of bits that the <bit literal> contains.

d. If a <bit literal> is specified as a sequence of <bit string>s, the <bit string>s are
concatenated to form a single <bit string> without any intervening apostrophes
(').

2. For <boolean literal>s,

a. The data type is BOOLEAN with ADL-defined default attributes.

b. The value is TRUE or FALSE.

3. For <character literal>s,

a. The data type is CHAR with ADL-defined default attributes.

b. The length is the number of bytes in the string. Each <quote representation>
in a <character literal> represents a single quotation mark character in both the
value and the length of the <character literal>. The maximum length of a
<character literal> in DD&C is 32760 single-byte characters.

c. The value is the sequence of characters the <character literal> contains.

d. If a <character literal> is specified as a sequence of <character string>s, the
<character string>s are concatenated to form a single <character string>
without any intervening apostrophes (').

e. A <character literal> cannot contain a <newline> token.

f. If no CCSID is specified with the <character literal>, the system CCSID is
taken as the CCSID value of the <character literal>. The system CCSID is the
CCSID derived from the code page used by the OS/2 process in which the
Parse function of DD&C (FMTPRS) is running.

g. Any CCSID value specified must be a constant greater than 0.

4. For <encoded hex literal>s,

a. The data type is CHAR with ADL-defined default attributes.

b. The length is the number of bytes in the string. The maximum length of an
<encoded hex literal> in DD&C is 32760 single-byte characters.

c. The value is the sequence of characters represented by the hexadecimal digits
the <encoded hex literal> contains, in the CCSID specified.

d. If an <encoded hex literal> is specified as a sequence of <hex string>s, the
<hex string>s are concatenated to form a single <hex string> without any inter-
vening apostrophes (').

e. Any CCSID value specified must be a constant greater than 0.

 Chapter 2. Common Elements 27

5. For <hex literal>s,

a. The data type is ASIS with ADL-defined default attributes.

b. The length is the number of bits represented by the hexadecimal digits the
<hex literal> contains. The maximum length of a <hex literal> in DD&C is
32760 nibbles.

c. The value is the sequence of hexadecimal digits that the <hex literal> contains.

d. If a <hex literal> is specified as a sequence of <hex string>s, the <hex string>s
are concatenated to form a single <hex string> without any intervening apos-
trophes (').

6. For <positive integer>s and <signed integer>s:

| a. The data type is BINARY with ADL-defined default attributes. Use BYTRVS
| (TRUE) for OS/2 and Windows, and BYTRVS(FALSE) for AIX.

b. The value must be in the range between <min31> and <max31>.

c. A positive sign is assumed if a plus (+) is not specified.

d. The numeric value is derived from the normal mathematical interpretation of
signed positional decimal notation.

 Examples
1. Examples of valid literals are:

55 'abcd' B'ð11ðð11ðð1' 'abcd' CCSID(5ðð)

TRUE 'it''s' x'A98B' x'21' CCSID(437)

2. The following is a single character literal broken into segments:

'Whose woods these are, I think I know '

'His house is in the village, though. '

'He will not see me stopping here '

'To watch his woods fill up with snow. '

28 SdU A Data Language Reference for DD&C

 <module >

The following shows the function, syntax, rules, and examples:

 Function
Specify an ADL module.

 Syntax
 <module> ::= <Parse unit>...

The term <module> as used in DD&C is not part of the formal ADL language specifica-
tion. A module is a collection of one or more <parse unit>s.

 Syntax rule
At least one <DECLARE statement> and one <PLAN statement> must be specified in a
<module>.

 General rules
1. Two classes of data storage are associated with a <module>:

a. Data storage passed as arguments to the parameters of a plan, called param-
eter variables.

b. Data storage allocated and managed by the <module>, called workspace vari-
ables.

2. Parameter variables are allocated and managed by the caller of the plan. Work-
space variables are allocated as required by the variables declared in the
<DECLARE statement>s of the <module>. For every such variable that is not ref-
erenced as a <parameter> of a plan, a single area of storage is allocated for each
processing thread that invokes the PLANs of the <module>. All invocations of any
of the plans of the <module> by the same thread must be provided with access to
this area.

 Examples
See Appendix A, “Scenarios” on page 197.

 Chapter 2. Common Elements 29

 <parse unit >

The following shows the function, syntax, rules, and examples:

 Function
Specify an ADL parse unit. A parse unit is defined as the amount of ADL text that is
parsed with one call of the parse function of DD&C. It consists of declarations, plans or
both.

 Syntax
 <parse unit> ::= {<DECLARE statement> | <PLAN statement>}...

 Syntax rule
At least one <DECLARE statement> or one <PLAN statement> must be specified in a
<parse unit>.

 General Rules
None.

 Example
Each ADL source file, together with all included ADL files, is a <parse unit>.

30 SdU A Data Language Reference for DD&C

 <positional identifier >

The following shows the function, syntax, rules, and examples:

 Function
Specify an entity in terms of its position within its containing entity.

 Syntax
 <positional identifier> ::= " <digit>... "

 Syntax rules
None.

 General rules
1. A <positional identifier> is implicitly associated with all <DECLARE statement>s and

with all entities contained within a <DECLARE statement>, <SEQUENCE>, or
<CASE>, starting with 1 for each, and increasing by 1 for each entity it contains up
to <max31>. A <positional identifier> is not assigned to a <SKIP statement>,
however.

2. The position of a <DECLARE statement> depends on the order in which
ADLDCLSPC objects are specified in the parameter list of the Conversion Plan
Builder component. The first <DECLARE statement> of the first ADLDCLSPC in
the list is assigned the position 1. If the first ADLDCLSPC object contains n
<DECLARE statement>s, therefore, the first <DECLARE statement> of the second
ADLDCLSPC object has the position n+1.

3. A <positional identifier> can only be referred to from within a <PLAN statement>.

 Examples
1. The <positional identifier> of the first entity in a DECLARE statement is “1”.

2. The <positional identifier> of the second entity in a module is “2”.

 Chapter 2. Common Elements 31

 <predicate >

The following shows the function, syntax, rules, and examples:

 Function
Specify a condition that can be evaluated to give a value of TRUE or FALSE.

 Syntax
 <predicate> ::=
 <comparison predicate>

 Syntax rules
None.

 General rules
None.

 Examples
None.

32 SdU A Data Language Reference for DD&C

 <qualified identifier >

The following shows the function, syntax, rules, and examples:

 Function
Specify the qualified identifier of an entity.

 Syntax
 <qualified identifier> ::=
 <qualifier list>

 <qualifier list> ::=
 [<qualifier>.]...<qualifier>

 <qualifier> ::=
<identifier> | <positional identifier>

 Syntax rules
1. <qualifier>s must be specified in the order defined by the “containing” relationship

of entities.

2. The highest level of <qualifier> of a <qualified identifier> is the <identifier> of a
<DECLARE statement>.

3. A partially-qualified name with high-level or intermediate-level <qualifier>s missing
can be specified if it is unambiguous within its containing module.

4. If a <qualified identifier> consists of <positional identifier>s only, then it must be
fully qualified.

5. A <positional identifier> can only be used in PLAN statements, not in DECLARE
statements.

 General rules
1. A reference to a <qualified identifier> refers to the value associated with the

<qualified identifier>.

2. An identifier can only be used to construct a <qualified identifier> if it can itself be
referenced.

3. If a <qualified identifier> begins with the name of a <DECLARE statement>, only
this <DECLARE statement> is searched for the <qualified identifier>.

4. The <qualified identifier> of a data declaration cannot be the same as the fully-
qualified identifier of another data declaration. Therefore, the following declaration:

d: DECLARE BEGIN;

 SEQUENCE BEGIN;

 a: BINARY;

d: SEQUENCE BEGIN;

 a:FLOAT;

 END;

 END;

END;

 Chapter 2. Common Elements 33

is not valid, since d.a can be either a fully-qualified identifier or part of the fully-
qualified identifier d.d.a.

5. A reference to a data declaration inside an array declaration is only allowed from
within the array. The reference always applies to the current element of the array.
For example:

CHAR CCSID(b);

ARRAY OF

 b: BINARY;

is not allowed.

In contrast:

ARRAY OF SEQUENCE

 BEGIN;

 b: BINARY;

CHAR CCSID(b);

 END;

is allowed and each character field of the array can have a different CCSID.

 Examples
1. An <identifier> must be specified with enough high level <qualifier>s to eliminate

any ambiguity. See “Identifiers” on page 7 for an example.

2. The following are examples of <qualified identifier>s:

PersonnelRecord.name

PersonnelRecord.children.dateOfBirth

SoftballRecord.Team.Wins

3. Inventory and Desk are declared as follows:

Inventory: SUBTYPE OF

 SEQUENCE BEGIN;

 ItemNumber: BINARY;

WoodType: CHAR LENGTH(2ð);

 END;

Furniture: SEQUENCE BEGIN;

 Desk: Inventory;

 END;

The qualified names for the fields in Furniture are:

Furniture.Desk.ItemNumber

Furniture.Desk.WoodType

4. The following construction is not valid:

a: b: SEQUENCE BEGIN;

 c: BINARY;

d: CHAR CCSID(c);

 END;

because the reference to the data type for the CCSID value is not unique—it could
be a reference to “a.c” or “b.c”.

34 SdU A Data Language Reference for DD&C

The following construction is not valid for the same reason:

sub: SUBTYPE OF

 SEQUENCE BEGIN;

 c: BINARY;

d: CHAR CCSID(c);

 END;

a: b: sub;

 Chapter 2. Common Elements 35

 <token >

The following shows the function, syntax, rules, and examples:

 Function
Specify lexical units.

 Syntax
 <token> ::=

<nondelimiter token> | <delimiter token>

 <nondelimiter token> ::=
<qualified identifier> |

<key word> |

 <noncharacter literal>

 <delimiter token> ::=
<character literal> |

 <special symbol>

 <special symbol> ::=
' | \ | . | , | : | ; | = | + | - | (|) |

> | < | <> | >= | <= | /\ | \/ | <arrow>

 <separator> ::=
{<comment> | <space> | <new line> | <tab>}...

 <comment> ::=
/\ <source character>... \/

 <space> ::=
See “Syntax rules” on page 37.

 <new line> ::=
See “Syntax rules” on page 37.

 <tab> ::=
See “Syntax rules” on page 37.

36 SdU A Data Language Reference for DD&C

 <key word> ::=
ALGEBRAIC | AND | ARRAY | ASIS | BEGIN |

 BINARY | BIT | BITPRE | BLNENC | BOOLEAN |

 BYTRVS | CALL | CASE | CCSID | CHAR |

CHARPRE | CHARSFX | COMPLEX | CONSTANT | CONSTRAINED |

DECLARE | DEFAULT | DGTLSTBYT | DMNHIGH | DMNLOW |

DMNLST | DMNMAX | DMNSIZE | END | ENUMERATION |

 ESCAPE | EXACT | FALSE | FB32 | FB64 |

 FB8ð | FH32 | FH64 | FH128 | FI128 |

 FIT | FLOAT | FORM | FRSBYT | HELP |

 HIGH | INCLUDE | INPUT | JUSTIFY | LEFT |

 LENGTH | LOGICAL | LOW | LSTBIT | LSTBYT |

 MAXALC | MAXLEN | NOT | NOTE | OF |

OR | OTHERWISE | OUTPUT | PACKED | PLAN |

PREBYTRVS | PRECISION | PRELEN | PRESIGNED | RADIX |

 REJECT | RIGHT | ROUND | SCALE | SEQUENCE |

 SGNLOC | SGNMNS | SGNPLS | SGNUNS | SIGNED |

 SKIP | SUBSTR | SUBTYPE | THEN | TITLE |

 TRUE | TRUNCATE | UNITLEN | WHEN | ZONED |

ZONENC | ZONFRSBYT | ZONLSTBYT

 <arrow> ::=
 <-

 <terminator> ::= ;

 Syntax rules
1. The encoding of all <token>s (including <space>, <new line>, and <tab>) is deter-

mined by the <CCSID attribute> of the ADL text. The <CCSID attribute> is speci-
fied outside of the ADL text.

2. A <token>, other than a <character literal>, cannot include a <space>.

3. Any <token> can be followed by a <separator>.

4. A <nondelimiter token> can be followed by either a <delimiter token> or a
<separator>. If the syntax does not allow a <nondelimiter token> to be followed by
a <delimiter token>, then that <nondelimiter token> shall be followed by a
<separator>.

5. The character string “/*” is not allowed within a <comment>. “*/” is only allowed as
the terminator of a <comment>.

 General rules
All lines of input are considered to be a continuous string.

 Examples
None.

 Chapter 2. Common Elements 37

 <value expression >

The following shows the function, syntax, rules, and examples:

 Function
Specify an expression that can be evaluated to return a value.

 Syntax
 <value expression> ::=
 <value specification>

 <value specification> ::=
 <literal> |

<constant identifier> |

<qualified identifier> |

 <LENGTH function>

 Syntax rules
If a <qualified identifier> is specified, it must refer to a <field>.

 General rules
1. Expressions within parentheses are evaluated first.

 Examples
None.

 <when clause >

The following shows the function, syntax, rules, and examples:

 Function
Specify a condition that must be TRUE.

 Syntax
 <WHEN clause> ::=
 WHEN <condition>

 Syntax rules
None.

 General rules
None.

 Examples
None.

38 SdU A Data Language Reference for DD&C

 Chapter 3. Statements

This chapter describes, in alphabetical order, the statements of ADL.

 <assignment statement >

The following shows the function, syntax, rules, and examples:

 Function
Specify the assignment of a <value expression> to a variable. The result of evaluating
the <value expression> is called the source of the assignment, and the variable is
called the target of the assignment.

 Syntax
 <assignment statement> ::=
 [<identifier>:]

 <qualified identifier>

 <arrow>

 <value expression>

 <terminator>

 Syntax rule
The <qualified identifier> at the left of the <arrow> must not be that of an <INPUT
parameter>.

 General rules
1. If an <identifier> is specified, it cannot be referenced.

2. If the data type and attributes of the source do not match the data type and attri-
butes of the target, the value of the source is converted to the data type and attri-
butes of the target.

3. Conversions are performed if, and only if, they are allowed by the matrix in
Figure 6 on page 158.

4. The result of the assignment must not exceed the MAXLEN of the target or of any
component of the target.

 Examples
See Appendix A, “Scenarios” on page 197.

 Copyright IBM Corp. 1993, 1997 39

 <BEGIN statement >

The following shows the function, syntax, rules, and examples:

 Function
Specify the beginning of a sequence of statements.

 Syntax
 <BEGIN statement> ::=
 [<identifier>:]

 BEGIN

 <terminator>

 Syntax rule
For every <BEGIN statement>, an <END statement> must be specified to terminate the
sequence of statements.

 General rule
If an <identifier> is specified, it cannot be referenced.

 Examples
None.

40 SdU A Data Language Reference for DD&C

 <CALL statement >

The following shows the function, syntax, rules, and examples:

 Function
Call a named program external to the program containing the conversion plan and pass
arguments to its parameters. The called program can operate on the input parameters
passed to it and return values in the output parameters for further use by the conver-
sion plan.

 Syntax
 <CALL statement> ::=
 [<identifier>:]

 CALL

 <program name>

 <argument list>

 <terminator>

 <program name> ::= <character literal>

 <argument list> ::=
 (<argument>{[,<argument>]...})

 <argument> ::= <value expression>

 Syntax rule
See Appendix B, “The DD&C User Exit” on page 225 for details of the exact syntax of
the <character literal> allowed as the program name in the CALL statement.

 General rules
1. If an <identifier> is specified, it cannot be referenced.

2. In addition to the arguments specified, an argument is passed by the <CALL
statement> to provide an area for a condition token to be returned. See
Appendix B, “The DD&C User Exit” on page 225

3. On return from the called program, test the returned condition token and if any
exception with a severity code greater than 1 (warning) has been set by the called
program, the calling plan is terminated.

4. If workspace variables or input plan parameters are used as plan parameter attri-
bute values, they are evaluated before calling any user exit. This implies that
changing the value of a workspace variable or input plan parameter with a user exit
does not affect the value of the plan parameter attribute.

 Examples
See Appendix A, “Scenarios” on page 197.

 Chapter 3. Statements 41

 <CONSTANT statement >

The following shows the function, syntax, rules, and examples:

 Function
Specify the declaration of a constant.

 Syntax
 <CONSTANT statement> ::=

<constant identifier> :

 CONSTANT

{<literal> | <constant identifier>}

 <terminator>

 <constant identifier> ::=
 <identifier> |

ALGEBRAIC | DGTLSTBYT | EXACT | FB32 |

FB64 | FB8ð | FH32 | FH64 | FH128 | FI128 |

FRSBYT | LEFT | LOGICAL | LSTBIT | LSTBYT |

RIGHT | ROUND | TRUNCATE | ZONFRSBYT | ZONLSTBYT

 Syntax rules
None.

 General rules
1. The value of the <literal> is associated with the <identifier> specified.

2. If CONSTANT(<constant identifier>) is specified, it must not result in a loop.

3. See “Identifiers” on page 7 for the rules that apply to the uniqueness of identifiers.

4. The following constants are defined by ADL for use as attribute values:

42 SdU A Data Language Reference for DD&C

 LSTBIT: CONSTANT ð; /\ Value of <BLNENC attribute> \/

 ROUND: CONSTANT ð; /\ Value of <FIT attribute> \/

 TRUNCATE: CONSTANT 1; /\ Value of <FIT attribute> \/

 EXACT: CONSTANT 2; /\ Value of <FIT attribute> \/

 FB32: CONSTANT ð; /\ Value of <FORM attribute> \/

 FB64: CONSTANT 1; /\ Value of <FORM attribute> \/

 FB8ð: CONSTANT 2; /\ Value of <FORM attribute> \/

 FH32: CONSTANT 3; /\ Value of <FORM attribute> \/

 FH64: CONSTANT 4; /\ Value of <FORM attribute> \/

 FH128: CONSTANT 5; /\ Value of <FORM attribute> \/

 FI128: CONSTANT 6; /\ Value of <FORM attribute> \/

 LEFT: CONSTANT ð; /\ Value of <JUSTIFY attribute> \/

 RIGHT: CONSTANT 1; /\ Value of <JUSTIFY attribute> \/

 DGTLSTBYT: CONSTANT ð; /\ Value of <SGNLOC attribute> \/

 ZONFRSBYT: CONSTANT 1; /\ Value of <SGNLOC attribute> \/

 ZONLSTBYT: CONSTANT 2; /\ Value of <SGNLOC attribute> \/

 FRSBYT: CONSTANT 3; /\ Value of <SGNLOC attribute> \/

 LSTBYT: CONSTANT 4; /\ Value of <SGNLOC attribute> \/

 ALGEBRAIC: CONSTANT ð; /\ Value of <SGNCNV attribute> \/

 LOGICAL: CONSTANT 1; /\ Value of <SGNCNV attribute> \/

ADL-defined <constant identifier>s having the same value (such as ALGEBRAIC
and LEFT) are interchangeable when used to represent attribute values. It is
strongly recommended that only those <constant identifier>s described in the
“Syntax” section of each attribute specification are used.

 Examples
1. Declare speedlimit to be a constant with the value of 55.

speedlimit: CONSTANT 55;

2. Constants can be declared using other constants. For example:

a: CONSTANT b;

b: CONSTANT 1ð;

If a constant is referenced from within a plan statement, the constant is ambiguous
if more than one occurrence of the constant's declaration is found. If, for example,
a second declaration statement contains:

b: CONSTANT 'aa';

then a reference to b from within a plan is ambiguous. A reference to a from within
a plan is valid, however, because a is only declared once and can be resolved
within the same declaration.

 Chapter 3. Statements 43

<data declaration statement >

The following shows the function, syntax, rules, and examples:

 Function
Specify the declaration for one or more instances of data.

 Syntax
 <data declaration statement> ::=
 [<identifier>:]... <data>

 <data> ::=
 <constructor> |

{<subtype instance> <terminator>} |

 {<field> <terminator>}

 <constructor> ::=
 <ARRAY> |

 <CASE> |

 <SEQUENCE>

 <field> ::=
 <ASIS> |

 <BINARY> |

 <BIT> |

 <BITPRE> |

 <BOOLEAN> |

 <CHAR> |

 <CHARPRE> |

 <CHARSFX> |

 <ENUMERATION> |

 <FLOAT> |

 <PACKED> |

 <ZONED>

 Syntax rules
None.

 General rules
1. If a <data declaration statement> specifies an attribute or attributes which are

mutually exclusive with the attributes specified in the <DEFAULT statement> for the
specified data type, the attribute or attributes on the <data declaration statement>
take precedence over the default ones.

2. If multiple <identifier>s are specified, the <data> declaration applies to each of
them separately. If specified in the declaration of the elements of a
<SEQUENCE>, the <data> declarations apply only to the elements in the order in
which the <identifier>s are specified.

3. <data declaration statement>s that are contained within a constructor or SUBTYPE
statement can only contain one variable-length field, which must be positioned at
the end of the constructor or <SUBTYPE statement>. Therefore, MAXALC(FALSE)

44 SdU A Data Language Reference for DD&C

is allowed for this last field and all constructors that include this field. For all other
fields, MAXALC(TRUE) is required.

 Examples
1. Declare a character string of length 5:

x: CHAR LENGTH(5);

2. Declare a sequence of unnamed fields:

s: SEQUENCE BEGIN;

 CHAR LENGTH(5);

 BINARY PRECISION(15);

 END;

In this case, the CHAR field is assigned a <positional identifier> of

"1" within SEQUENCE s

and the BINARY field is assigned a <positional identifier> of

"2" within SEQUENCE s.

 Chapter 3. Statements 45

 <DECLARE statement >

The following shows the function, syntax, rules, and examples:

 Function
Specify the descriptions of a set of data values.

 Syntax
 <DECLARE statement> ::=
 [<identifier>:]

 DECLARE

<DECLARE attributes list>

 <BEGIN statement>

 {

[<DEFAULT statement>] |

[<CONSTANT statement>] |

[<SUBTYPE statement>] |

<data declaration statement>

 }...

 <END statement>

 <DECLARE attributes list> ::=
 {

 [<NOTE attribute>]

 [<HELP attribute>]

 [<TITLE attribute>]

 }!

 Syntax rules
None.

 General rule
1. Within a <DECLARE statement>, only data declarations that lie with the scope of

the current <DECLARE statement> can be referenced.

2. See “Identifiers” on page 7 for the rules that apply to the uniqueness of identifiers.

 Examples
See Appendix A, “Scenarios” on page 197.

46 SdU A Data Language Reference for DD&C

 <DEFAULT statement >

The following shows the function, syntax, rules, and examples:

 Function
Specify the default values of attributes of a particular data type. These attribute values
are to be used if attributes are not otherwise specified in a <data declaration
statement> of a data type.

 Syntax
 <DEFAULT statement> ::=
 [<identifier>:]

 DEFAULT

 {

{ARRAY <ARRAY defaulted attributes list>} |

{ASIS <ASIS defaulted attributes list>} |

{BINARY <BINARY defaulted attributes list>} |

{BIT <BIT defaulted attributes list>} |

{BITPRE <BITPRE defaulted attributes list>} |

{BOOLEAN <BOOLEAN defaulted attributes list>} |

{CASE <CASE defaulted attributes list>} |

{CHAR <CHAR defaulted attributes list>} |

{CHARPRE <CHARPRE defaulted attributes list>} |

{CHARSFX <CHARSFX defaulted attributes list>} |

{ENUMERATION <ENUMERATION defaulted attributes list>} | .

{FLOAT <FLOAT defaulted attributes list>} |

{PACKED <PACKED defaulted attributes list>} |

{ZONED <ZONED defaulted attributes list>}

 }

 <terminator>

 Syntax rules
The values of all attributes in a <DEFAULT statement> must be specified by a <literal>
or <constant identifier>.

 General rules
1. If an <identifier> is specified, it cannot be referenced.

2. The scope of a <DEFAULT statement> for a data type is the entire <DECLARE
statement>, regardless of its position within the <DECLARE statement>.

3. Only one <DEFAULT statement> is allowed for each data type.

4. If a <DEFAULT statement> is not specified for an ADL data type, the following
<DEFAULT statement> for that data type is used:

 Chapter 3. Statements 47

DEFAULT ARRAY DMNLOW(1) MAXALC(TRUE) SKIP(ð);

DEFAULT ASIS LENGTH(8) UNITLEN(1);

DEFAULT BINARY BYTRVS(FALSE) COMPLEX(FALSE) CONSTRAINED(FALSE)

FIT(ROUND) PRECISION(31) RADIX(2) SCALE(ð)

 SGNCNV(LOGICAL) SIGNED(TRUE);

DEFAULT BIT LENGTH(1);

DEFAULT BITPRE MAXALC(TRUE) MAXLEN(8) PREBYTRVS(FALSE) PRELEN(16)

 PRESIGNED(TRUE);

DEFAULT BOOLEAN BLNENC(LSTBIT) BYTRVS(FALSE) LENGTH(8);

DEFAULT CASE MAXALC(TRUE);

DEFAULT CHAR CCSID(ð) JUSTIFY(LEFT) LENGTH(1) UNITLEN(8);

DEFAULT CHARPRE CCSID(ð) MAXALC(TRUE) MAXLEN(1) PREBYTRVS(FALSE)

PRELEN(16) PRESIGNED(TRUE) UNITLEN(8);

DEFAULT CHARSFX CCSID(ð) MAXALC(TRUE) MAXLEN(1) UNITLEN(8);

DEFAULT ENUMERATION BYTRVS(FALSE) LENGTH(8)

 SGNCNV(LOGICAL) SIGNED(FALSE);

DEFAULT FLOAT BYTRVS(FALSE) COMPLEX(FALSE) FIT(ROUND) FORM(FB32)

 RADIX(2);

DEFAULT PACKED COMPLEX(FALSE) CONSTRAINED(FALSE) FIT(ROUND)

PRECISION(15) SCALE(ð) SGNLOC(DGTLSTBYT) SGNMNS(x'D')

 SGNPLS(x'C') SIGNED(TRUE);

DEFAULT ZONED COMPLEX(FALSE) CONSTRAINED(FALSE) FIT(ROUND)

PRECISION(15) SCALE(ð) SGNLOC(ZONLSTBYT)

SGNMNS(x'D') SGNPLS(x'C') SIGNED(TRUE) ZONENC(x'F') ;

 Examples
1. In the following example, c takes default attributes from the <DEFAULT statement>

for BINARY.

DEFAULT BINARY BYTRVS(TRUE) PRECISION(31)

 SGNCNV(ALGEBRAIC) FIT(ROUND);

c: BINARY PRECISION(15);

Thus the complete declaration of c is:

BINARY BYTRVS(TRUE) COMPLEX(FALSE) CONSTRAINED(FALSE)

RADIX(2) SCALE(ð) SIGNED(TRUE) PRECISION(15) SGNCNV(ALGEBRAIC)

 FIT(ROUND);

Note: The value of the PRECISION attribute specified in the <data declaration
statement> for c overrides the value specified in the <DEFAULT statement>.

2. For ZONED fields, the SGNLOC(ZONLSTBYT | ZONFRSBYT), SGNMNS, and
SGNPLS attributes are mutually exclusive with the SGNLOC(FRSBYT | LSTBYT)
and CCSID attributes.

DEFAULT ZONED COMPLEX(FALSE) ZONENC(x'F') FIT(ROUND)

CONSTRAINED(FALSE) SCALE(ð) SGNLOC(ZONLSTBYT)

SGNMNS(x'D') SGNPLS(x'C') PRECISION(15) SIGNED(TRUE);

s: ZONED SGNLOC(FRSBYT) CCSID(ð);

Thus the complete declaration of s is:

48 SdU A Data Language Reference for DD&C

ZONED COMPLEX(FALSE) ZONENC(x'F') FIT(ROUND)

CONSTRAINED(FALSE) SCALE(ð) SGNLOC(FRSBYT)

CCSID(ð) PRECISION(15) SIGNED(TRUE);

Note: s takes the SGNLOC(FRSBYT) and CCSID(0) attribute values, while the
SGNLOC(ZONLSTBYT), SGNMNS(X'D'), and SGNPLS(X'C') attributes and
values from the <DEFAULT statement> for <ZONED> are ignored.

 <END statement >

The following shows the function, syntax, rules, and examples:

 Function
Specify the end of a sequence of statements.

 Syntax
 <END statement> ::=
 [<identifier>:]

 END

 <terminator>

 Syntax rule
An <END statement> can be specified only at the termination of a sequence of state-
ments begun by a <BEGIN statement>.

 General rule
If an <identifier> is specified, it cannot be referenced.

 Examples
None.

 Chapter 3. Statements 49

 <INCLUDE statement >

The following shows the function, syntax, rules, and examples:

 Function
Include the ADL text contained in a named file.

 Syntax
 <INCLUDE statement> ::=
 INCLUDE

 <file name>

 <terminator>

 <file name> ::=
 <character literal>

 Syntax rules
1. The named file must contain only ADL text.

2. The included text may contain <INCLUDE statement>s. The maximum number of
nested <INCLUDE statements> allowed in DD&C is 32.

3. The <file name> specified must be the local identifier for that file.

4. The <INCLUDE statement> can appear wherever it is valid for any other ADL state-
ments to appear.

5. Included text must not result in a loop of included texts.

 General rules
1. The included text replaces the <INCLUDE statement> in the source text of the

<parse unit>.

2. A <comment> is not allowed within an <INCLUDE statement>.

3. The current directory is always searched first for the <file name> to be included.
Thereafter, the environment variable ADLINC determines the directories to search
for the <file name> to be included. If the search path contains network drives and
a network error occurs during the search, the search continues without reporting
the error.

 Example
Include ADL text describing PersonnelRecord:

 INCLUDE 'PERSONNEL.DCL.RECORD';

50 SdU A Data Language Reference for DD&C

 <OTHERWISE statement >

The following shows the function, syntax, rules, and examples:

 Function
Specify the declaration to be used or the action to be performed if no <WHEN
statement> of a CASE evaluates to TRUE.

 Syntax
 <OTHERWISE statement> ::=
 [<identifier>:]

 <OTHERWISE clause>

 <OTHERWISE clause> ::=
 OTHERWISE

 {

<data declaration statement> |

<REJECT statement> |

<SKIP statement> |

 <terminator>

 }

 Syntax rules
If a <data declaration statement> is included in an <OTHERWISE statement>, only one
optional identifier is allowed for the <data declaration statement>.

 General rules
1. If an <identifier> is specified, it is ignored.

2. If OTHERWISE <terminator> is specified, no data exists.

3. If a <SKIP statement> is specified in the <OTHERWISE clause>, no data exists.
However, if MAXALC(TRUE) is specified, space exists.

4. If the <REJECT statement> is specified, the 20—CASE rejected exception occurs.

 Examples
See “Examples” on page 83 for an example of the <OTHERWISE statement> used in
the CASE declaration.

 Chapter 3. Statements 51

 <PLAN statement >

The following shows the function, syntax, rules, and examples:

 Function
Specify a plan for converting a set of data values from one representation to another.

 Syntax
 <PLAN statement> ::=
 <identifier>:

 PLAN

 <parameter list>

 <BEGIN statement>

{<assignment statement> | <CALL statement>}...

 <END statement>

 <parameter list> ::=
 (<parameter>[,<parameter>]...)

 <parameter> ::=
{<INPUT parameter> | <OUTPUT parameter>}

 <INPUT parameter> ::=
 <qualified identifier>

 [: INPUT

 {

 [<LENGTH attribute>]

 [<CCSID attribute>]

 }!

]

 <OUTPUT parameter> ::=
 <qualified identifier>

 : OUTPUT

 {

 [<MAXLEN attribute>]

 [<CCSID attribute>]

 }!

 Syntax rules
1. A <qualified identifier> specified in a <parameter> must be that of a <data declara-

tion statement>.

2. The value of <MAXLEN attribute> and <LENGTH attribute> must be greater than
zero. These attributes specify the actual buffer size in bytes passed to the Conver-
sion Plan Executor component of DD&C.

3. Constants cannot be used as plan parameters.

 General rules
1. The statements contained within a PLAN are executed in the order specified by the

<PLAN statement>.

52 SdU A Data Language Reference for DD&C

2. If neither INPUT nor OUTPUT is specified for a <parameter>, INPUT is assumed.

3. Multiple assignments to the same <qualified identifier> or its components result in
only the final assignment being effective.

4. If the <LENGTH attribute> is specified on an <INPUT parameter>, its value is equal
to the declared length of the data in bytes. Otherwise,

� If the value is less than the declared length of the data, the 16—Input area
too short exception occurs.

� If the value is greater than the declared length of the data, the excess data is
ignored.

5. If the <MAXLEN attribute> is specified on an <OUTPUT parameter>, its value shall
be greater than or equal to the declared length of the data in bytes. Otherwise, the
17—Output area too short exception occurs.

6. For every <qualified identifier> specified in the <parameter list> of a <PLAN
statement>, the caller of the plan must specify the address of an area at which a
value is located or at which a value can be returned. The <data declaration
statement> associated with the <qualified identifier> provides a template that deter-
mines how this area is to be interpreted.

7. If the <qualified identifier> specified in the <parameter list> is that of a
<constructor>, the value specified must be a composite value whose components
are declared by the components of the <constructor>.

8. In addition to the parameters specified in the <parameter list>, the caller of the plan
must specify the address in which the condition token is to be returned. The ADL
communications area (FMTADLCA) of the condition token is described in
SMARTdata UTILITIES Data Description and Conversion.

9. Variable plan-parameter attributes can only be input parameters or workspace vari-
ables, not output parameters. They are evaluated once only, when execution of
the plan begins. If, for example, the attribute value is a parameter in a CALL state-
ment and a user-written program changes the value, this has the following conse-
quences:

� The parameter value changes for subsequent calls or assignment statements.

� The plan parameter value remains unchanged.

10. See “Identifiers” on page 7 for the rules that apply to the uniqueness of identifiers.

11. The maximum allowed number of input and output plan parameters is <max8>.

 Examples
See Appendix A, “Scenarios” on page 197.

 Chapter 3. Statements 53

 <REJECT statement >

The following shows the function, syntax, rules, and examples:

 Function
Specify that the 20—CASE rejected exception occurs when specified on a <WHEN
statement> or <OTHERWISE statement>.

 Syntax
 <REJECT statement> ::=
 [<identifier>:]

 REJECT <terminator>

 Syntax rules
None.

 General rules
If an <identifier> is specified, it is ignored.

 Examples
1. Declare a case where if the C1 is chosen, the plan is terminated due to bad data:

 s: SEQUENCE

 BEGIN;

 a: CHAR;

 CASE BEGIN;

c1: WHEN a = '1'

 THEN REJECT;

c2: WHEN a = '2'

THEN x: BINARY SCALE(5) PRECISION(15);

OTHERWISE y: FLOAT;

 END;

 END;

2. Declare a case where if the <OTHERWISE statement> is chosen, the plan is termi-
nated:

 s: SEQUENCE

 BEGIN;

 a: CHAR;

 CASE BEGIN;

c1: WHEN a = '1'

THEN y: FLOAT;

c2: WHEN a = '2'

THEN x: BINARY SCALE(5) PRECISION(15);

 OTHERWISE REJECT;

 END;

 END;

54 SdU A Data Language Reference for DD&C

 <SKIP statement >

The following shows the function, syntax, rules, and examples:

 Function
Specify the number of bits to be skipped in the data of a constructor.

 Syntax
 <SKIP statement> ::=
 [<identifier>:]

SKIP({<positive integer> | <constant identifier>})

 <terminator>

 Syntax rules
None.

 General rules
1. If a <constant identifier> is specified, it must be one whose value is a <positive

integer>.

2. If an <identifier> is specified, it cannot be referenced.

3. If you specify the AUTOSKIP compiler option, <SKIP statement>s are generated
automatically according to the ADL alignment rules. When this option is not speci-
fied, <SKIP statement>s must be inserted in the appropriate places in the ADL
source code. The ADL declaration translator component of DD&C checks that this
has been done and returns an error if the alignment of a field is incorrect.

 Examples
1. Declare a sequence with 16 slack bits between B and C:

A : SEQUENCE BEGIN;

B : CHAR LENGTH(2);

 SKIP(16);

C : BINARY PRECISION(31);

 END;

0

B

slack
bits

B C C C C

byte 1 2 3 4 5 6 7 8

A

2. Declare a sequence, F1, with 6 slack bits at the beginning of the sequence:

 Chapter 3. Statements 55

F1 : SEQUENCE BEGIN;

 SKIP(6);

F2 : BIT LENGTH(1ð);

F3 : CHAR;

 END;

0byte

slack
bits F2

F1

F3

1 2 3

56 SdU A Data Language Reference for DD&C

 <SUBTYPE statement >

The following shows the function, syntax, rules, and examples:

 Function
Declare a subtype of an ADL type or of another subtype. A subtype specifies the attri-
butes and components of all instances of the subtype. A subtype inherits the compo-
nents and attributes of the type that declares it, but it can override those attributes.

 Syntax
 <SUBTYPE statement> ::=
 <subtype identifier>:

 SUBTYPE

 OF

 {

 <constructor> |

{<field> <terminator>} |

{<subtype instance> <terminator>}

 }

 <subtype identifier> ::= <identifier>

 Syntax rule
If a <subtype instance> is specified, the referenced subtype must not result in a loop of
subtype references.

 General rule
See “Identifiers” on page 7 for the rules that apply to the uniqueness of identifiers.

 Examples
1. Specify name as a subtype of <SEQUENCE>:

 name:

SUBTYPE OF SEQUENCE

 BEGIN;

lastname: CHAR LENGTH(12);

firstname: CHAR LENGTH(12);

 initial: CHAR;

 END;

2. Specify address as a subtype of <SEQUENCE>:

address: SUBTYPE OF SEQUENCE

 BEGIN;

street: CHAR LENGTH(3ð);

city: CHAR LENGTH(15);

state: CHAR LENGTH(2);

zip: CHAR LENGTH(1ð);

 END;

3. Declare card to be a sequence containing instances of name and address. If
<identifier>s are specified for the name and address components of card, the

 Chapter 3. Statements 57

<identifier>s alias and drop replace name and address in the fully-qualified names
of the components of name and address.

card: SEQUENCE

 BEGIN;

 alias: name;

 drop: address;

 END;

The qualified names of the fields in card are:

card.alias.lastname

card.alias.firstname

card.alias.initial

card.drop.street

card.drop.city

card.drop.state

card.drop.zip

4. Declare a subtype of a subtype:

fixnum: SUBTYPE OF BINARY;

partscount: SUBTYPE OF fixnum PRECISION(15);

5. Declare a subtype of a case:

answer: SUBTYPE OF CASE

 BEGIN;

WHEN a = '1'

THEN b: CHAR LENGTH(4);

WHEN a = '2'

THEN c: BINARY;

OTHERWISE d: FLOAT;

 END;

x: SEQUENCE

 BEGIN;

 a: CHAR;

 answer;

 END;

58 SdU A Data Language Reference for DD&C

 <WHEN statement >

The following shows the function, syntax, rules, and examples:

 Function
Specify in a CASE declaration the conditions under which a <THEN clause> is to be
selected.

 Syntax
 <WHEN statement> ::=
 [<identifier>:]

 <WHEN clause>

 <THEN clause>

 <THEN clause> ::=
 THEN

 {

<data declaration statement> |

<REJECT statement> |

<SKIP statement> |

 <terminator>

 }

 Syntax rule
If a <data declaration statement> is included in an <OTHERWISE statement>, only one
optional identifier is allowed for the <data declaration statement>.

 General rules
1. If THEN <terminator> is specified in the <THEN clause>, no data exists.

2. If a <SKIP statement> is specified in the <THEN clause>, no data exists. However,
if MAXALC(TRUE) is specified, space must exist.

3. If the <REJECT statement> is specified, the 20—CASE rejected exception occurs.

 Examples
See “Examples” on page 83 for an example of the <WHEN statement> used in the
CASE declaration.

 Chapter 3. Statements 59

60 SdU A Data Language Reference for DD&C

<ARRAY>

 Chapter 4. Data Declarations

This chapter describes, in alphabetical order, the data types that can be declared in
ADL.

 <ARRAY>

The following shows the function, syntax, rules, and examples:

 Function
An array is a collection whose elements are uniquely associated with the integer values
of one or more attributes. By geometric analogy, these attributes are called
dimensions, but their actual meaning is determined by the application.

Each element of an array has its own value, and is associated with a unique combina-
tion of dimension, or attribute, values. The array as a whole allows elements to exist at
all possible combinations of values within the defined range of each dimension.

The elements of an array are addressable through integer values specified for each
dimension. As an example, consider an array of two dimensions, where one dimension
has integer values from -a to +b and the other dimension has integer values from -c to
+d. A given element of the array, such as x in the following figure, is addressed by the
integer values m and n, where m is in the range -a to +b and n is in the range -c to +d.
Higher-order arrays have more dimensions and their elements are addressed by more
integer values.

n x

+d

-c

m-a +b

The dimensions of an array are defined and addressed as an ordered list.

The range of a dimension of an array can be described in terms of either its
<DMNLOW attribute> and <DMNHIGH attribute> or its <DMNLOW attribute> and
<DMNSIZE attribute>.

 Copyright IBM Corp. 1993, 1997 61

<ARRAY>

The total number of elements E in an array is the product of the ei of its dimensions:

E = PRODUCT(ei)

Where:

i is from 1 to n
ei is the extent of the ith dimension.

When an array is mapped onto a linear address space, the dimensions of the array
must also be linear. For a one-dimensional array X with indexes in the range -1 to 2,
this is straightforward. The memory mapping is X(-1) X(0) X(+1) X(+2).

Multidimensional arrays are mapped onto a linear address space by iterating the
indexes of each low order dimension through their ranges for each higher order dimen-
sion.

The elements of an array are mapped to memory as contiguous fields. They are
mapped such that the last dimension varies the fastest.

� A 3-element by 5-element two-dimensional array named A is stored linearly in
memory as follows:

� A 2-element one-dimensional array, X, consisting of the sequence A,B, is stored
linearly in memory as follows:

The <DMNLOW attribute> and <DMNHIGH attribute> or <DMNLOW attribute> and
<DMNSIZE attribute> of each dimension of an array can be specified by a signed
integer or by reference to a field containing a signed integer value.

When an array is defined without reference fields, each program that exports or imports
the array must know the values of the <DMNLOW attribute>, <DMNHIGH attribute>,
and <DMNSIZE attribute> of the array.

When an array is defined with reference fields, a combination of the <DMNLOW
attribute>, <DMNHIGH attribute>, and <DMNSIZE attribute> values for each variable
dimension can also be included in the data. Then, when the data is imported by
another program, the locations of each element can be determined again.

Thus, when describing the dimensions of an array, the following must be specified for
each dimension:

a(1,1) a(1,2) a(1,3) a(1,4) a(1,5)

a(2,1) a(2,2) a(2,3) a(2,4) a(2,5)

a(3,1) a(3,2) a(3,3) a(3,4) a(3,5)

x(1).A x(1).B x(2).A x(2).B

62 SdU A Data Language Reference for DD&C

<ARRAY>

55─ ──┬ ┬──────────────── ──┬ ┬─<DMNHIGH attr.>─ ──┬ ┬──────────────── ─5%
 └ ┘─<DMNLOW attr.>─ └ ┘─<DMNSIZE attr.>─ └ ┘─<DMNMAX attr.>─

Where:

� If not specified, the single <DMNLOW attribute> value specified with the ARRAY,
SUBTYPE, or DEFAULT statement is used, following the normal hierarchy of attri-
butes.

� Either the <DMNHIGH attribute> or <DMNSIZE attribute> is required

� Either an integer value or a field reference must be specified for the <DMNLOW
attribute>, <DMNHIGH attribute>, or <DMNSIZE attribute>

� The <DMNMAX attribute> must be specified if either the <DMNSIZE attribute> is
specified and is variable, or both the <DMNLOW attribute> and <DMNHIGH
attribute> are specified and at least one of them is variable.

A further consideration for arrays defined with reference fields is whether space is allo-
cated for the maximum number of elements in each dimension, MAXALC(TRUE), or for
only the actual number of elements in each dimension, MAXALC(FALSE).

� A two-dimensional, MAXALC(TRUE) array specified with reference fields is
mapped into memory as follows:

DEFAULT ARRAY DMNLOW(1) MAXALC(TRUE) SKIP(ð);

xmp1: SEQUENCE

 BEGIN;

 s: BINARY;

 t: BINARY;

 z: ARRAY DMNLST(DMNHIGH(s) DMNMAX(4),

 DMNHIGH(t) DMNMAX(4))

 OF BINARY;

 END;

active active inactive inactive active

s = 2 t = 2 z(1,1) z(1,2) z(1,3) z(1,4) z(2,1)

active inactive inactive inactive inactive inactive inactive

z(2,2) z(2,3) z(2,4) z(3,1) z(3,2) z(3,3) z(3,4)

active active active active

z(4,1) z(4,2) z(4,3) z(4,4)

Note: z(1,1) z(1,2) z(2,1) z(2,2) contain the active elements for this array as
defined by the <DMNHIGH attribute>s. z(1,3) z(1,4) z(2,3) z(2,4) z(3,1)
z(3,2) z(3,3) z(3,4) z(4,1) z(4,2) z(4,3) z(4,4) are inactive elements which

 Chapter 4. Data Declarations 63

<ARRAY>

exist as defined by the <DMNMAX attribute>s and MAXALC(TRUE) speci-
fied for the array.

Contrary to the above example, if MAXALC(FALSE) is specified, only the required
space for a dimension of an array defined with reference fields is allocated.

� A two-dimensional, MAXALC(FALSE) array specified with reference fields is
mapped into memory as follows:

DEFAULT ARRAY DMNLOW(1) MAXALC(TRUE) SKIP(ð);

xmp2: SEQUENCE

 BEGIN;

 s: BINARY;

 t: BINARY;

z: ARRAY MAXALC(FALSE) DMNLST(DMNHIGH(s) DMNMAX(4),

 DMNHIGH(t) DMNMAX(4))

 OF BINARY;

 END;

Note: z(1,1) z(1,2) z(2,1) z(2,2) contain active elements as defined by the
<DMNHIGH attribute>s and MAXALC(FALSE) specified for the array.

An algorithm is available for addressing individual elements within an array. For an
array (A) with (i) dimensions (d)

A(d1, d2, ... di)

the algorithm for addressing individual elements within an array is:

((..((d1e2 + d2)e3 + d3)

e4 + ... + di-1)ei + di) \ (s + SKIP)

+ base - (..((DMNLOW1e2 + DMNLOW2)

e3 + DMNLOW3)e4 + ... + DMNLOWi-1)

ei + DMNLOWi) \ (s + SKIP)

where:

 d = dimension

s = size of element

 e = extent

base = relative offset of start of array from start of data

 DMNLOW = low bound of subscript (obtained from DMNLOW attribute)

SKIP = bits skipped before each element except the first element

(obtained from the SKIP attribute)

The value for en is determined according to the array type.

� For a MAXALC(TRUE) array,

en = <DMNMAX attribute>

� For a MAXALC(FALSE) or an array defined without reference fields,
– if the high bound of the array is given,

active active active active

s = 2 t = 2 z(1,1) z(1,2) z(2,1) z(2,2)

64 SdU A Data Language Reference for DD&C

<ARRAY>

en = <DMNHIGH attribute> - <DMNLOW attribute> + 1

– if the size of the array is given,

en = <DMNSIZE attribute>

where

en = extent of the nth dimension

n = dimension number

If, for all the dimensions, the values for the <DMNHIGH attribute>, <DMNLOW
attribute>, or <DMNSIZE attribute> are signed integer or constants, the second part of
the algorithm can be calculated at conversion plan build time. However, if an attribute
contains a reference, the referenced value is obtained at conversion time.

If DMNLOW is equal to zero, the array element address reference simplifies to:

((..((d1e2 + d2)e3 + d3)

e4 + ... + dn-1)en + dn) \ (s + SKIP) + base

 Syntax
 <ARRAY> ::=
 ARRAY

<ARRAY attributes list>

 OF

 {

 {<field><terminator>} |

 <CASE> |

 <SEQUENCE> |

 {<subtype instance><terminator>}

 }

 <ARRAY attributes list> ::=
 {

 <DMNLST attribute>

<ARRAY defaulted attributes list>

<ARRAY optional attributes list>

 }!

 <ARRAY defaulted attributes list> ::=
 {

 [<DMNLOW attribute>]

 [<MAXALC attribute>]

 [<SKIP attribute>]

 }!

 <ARRAY optional attributes list> ::=
 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 Chapter 4. Data Declarations 65

<ARRAY>

 Syntax rules
1. The attributes of the <ARRAY defaulted attributes list> are specified in the ARRAY

<DEFAULT statement> or the <ARRAY> <data declaration statement>.

2. An array of <subtype instance> is not specified if the <subtype instance> is a
subtype of ARRAY.

3. All elements of an ARRAY have the same length.

 General rules
1. The length of an array in bits is the product of the number of elements in the array

(E) times the length in bits of each element, plus (E-1) times the <SKIP attribute>
of the array.

2. The minimum alignment of ARRAY elements is byte alignment.

3. If MAXALC(TRUE) is specified and any attribute of the <DMNLST attribute>s has a
<qualified identifier> for a value, space is allocated for the maximum number of
elements (as defined by the <DMNMAX attribute>) in each dimension. The actual
number of active elements in each dimension is specified by the reference field.

4. If MAXALC(FALSE) is specified and any attribute of the <DMNLST attribute>s has
a <qualified identifier> for a value, space is allocated as defined by the attributes of
each dimension in the <DMNLST attribute>s.

 Examples
1. Declare an array of twelve numbers for the number of days in each month in a

year.

MonthsInYr: ARRAY DMNLST(DMNSIZE(12))

OF BINARY PRECISION(15);

2. Declare an array to specify which seats of an airplane have been reserved. The
number of rows and the number of seats per row are specified as reference fields
to account for different airplane configurations. The maximum number of rows in
an airplane is 50 and the maximum number of seats in a row is 10.

PlaneReservations:

 SEQUENCE BEGIN;

rows: BINARY PRECISION(15);

seats: BINARY PRECISION(15);

ReservedSeats: ARRAY DMNLST(DMNMAX(5ð) DMNSIZE(rows),

 DMNMAX(1ð) DMNSIZE(seats))

 OF BOOLEAN;

 END;

66 SdU A Data Language Reference for DD&C

<ASIS>

 <ASIS>

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of the ASIS type. The actual type of this data is unknown.

The length of an ASIS field in bits is specified with the LENGTH attribute multiplied by
UNITLEN. The value of the LENGTH attribute can be an integer literal or a reference
to another field. If specified by an integer literal, all instances of the variable are of the
same length. But if specified by reference to another field, then each instance can be
of a different length. In this case, however, the maximum length of the string must also
be specified, along with an indication of whether storage has been allocated for the
maximum length or only for the current length.

 Syntax
 <ASIS> ::=
 ASIS

<ASIS attributes list>

 <ASIS attributes list> ::=
 {

<ASIS defaulted attributes list>

<ASIS optional attributes list>

 }!

 <ASIS defaulted attributes list> ::=
 [

LENGTH({1..<max ASIS> | <constant identifier>})

UNITLEN({1 | 8 | 16 | <constant identifier>})

]! |

 [

 LENGTH(\)

MAXLEN({1..<max ASIS> | <constant identifier>})

UNITLEN({1 | 8 | 16 | <constant identifier>})]

]! |

 [

 LENGTH(<qualified identifier>)

 <MAXALC attribute>

MAXLEN({1..<max ASIS> | <constant identifier>})

UNITLEN({1 | 8 | 16 | <constant identifier>})]

]!

 <ASIS optional attributes list> ::=
 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 <max ASIS> ::=
See Syntax Rule 3 on page 68.

 Chapter 4. Data Declarations 67

<ASIS>

 Syntax rules
1. A field is declared an ASIS field if its type cannot be expressed in ADL.

2. A field is declared an ASIS field if its data value is not to be converted in
<assignment statement>s.

3. The LENGTH or MAXLEN of an ASIS field is specified in terms of units whose
length in bits is specified by UNITLEN. The length of an ASIS field in bits is deter-
mined by (LENGTH * UNITLEN), and the greatest value that can be specified for
LENGTH is determined by (<max31> / UNITLEN). The maximum length of an
ASIS field in bits is determined by (MAXLEN * UNITLEN), and the greatest value
that can be specified for MAXLEN is determined by (<max31> / UNITLEN).

4. If LENGTH(<qualified identifier>) is specified, the referenced field must be BINARY,
PACKED, or ZONED with SCALE(0) and COMPLEX(FALSE) and a maximum
value of <max ASIS>.

5. LENGTH(*) can be specified only for the last element of all containing
<constructor>s.

6. LENGTH(*) cannot be specified for any element of an ARRAY.

 General rules
1. If LENGTH(*) is specified, the length of the ASIS field is the number of bits from

the position of the ASIS field in the data to the end of the data. The length in bits
of the ASIS field is the “actual field length”, as defined in “Actual Field Length” on
page 159. In particular, for LENGTH(*) this is the largest multiple of the UNITLEN
value that fits within the data.

2. The minimum alignment of an <ASIS> field is bit alignment.

 Examples
1. Declare a program pointer field arrptr:

Note: Since pointers cannot be declared in ADL, arrptr is defined as an <ASIS>
data type.

DEFAULT ASIS LENGTH(8) UNITLEN(1);

arrptr: ASIS LENGTH(32);

2. Declare dontcare to be a 50-bit field in which no conversions are to take place:

DEFAULT ASIS LENGTH(8) UNITLEN(1);

dontcare: ASIS LENGTH(5ð);

68 SdU A Data Language Reference for DD&C

<BINARY>

 <BINARY>

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of the BINARY type—a fixed-point, binary-encoded numeric field.

1. A fixed-point, binary-encoded number is represented as a bit string, as shown in
Figure 3 on page 71.

� For an unsigned number (SIGNED(FALSE)), all bits are used to express the
binary encoding of the absolute value of the number.

� For a signed number (SIGNED(TRUE)), the first bit represents the sign, and
the remaining bits represent the binary encoding of the number. Positive
numbers are represented in true binary notation with the sign bit set to zero.
Negative numbers are represented in two's complement notation with a 1 in
the sign bit position. The two's complement of a number is obtained by
inverting each bit and adding a 1 in the low order bit position.

2. The length of the bit string is specified by the <LENGTH attribute>.

 3. For RADIX(2):

a. The maximum number of significant digits in a BINARY field is specified by the
<PRECISION attribute> for CONSTRAINED(TRUE); otherwise, it is implied by
the <LENGTH attribute>. Binary precision is indicated by RADIX(2).

b. Binary scaling is indicated by RADIX(2) and the scaling factor is specified as a
power of 2. The actual value of a fixed-point number is given by the formula:

Actual_Value = Stored_Value \ 2\\(-SCALE)

If the scaling factor is negative, then the actual value is greater than the stored
value.

 c. Stored_value

� If CONSTRAINED(TRUE) is specified:

– For signed numbers, the range is -(2**PRECISION) to
(2**PRECISION)-1.

– For unsigned numbers, the range is 0 to (2**PRECISION)-1.

� If CONSTRAINED(FALSE) is specified:

– For signed numbers, the range is -(2**(LENGTH-1)) to
(2**(LENGTH-1))-1.

– For unsigned numbers, the range is 0 to (2**LENGTH)-1.

 d. Actual_value

� If CONSTRAINED(TRUE) is specified:

– For signed numbers, the range is -(2**PRECISION)*(2**(-SCALE)) to
((2**PRECISION)-1)*(2**(-SCALE)).

 Chapter 4. Data Declarations 69

<BINARY>

– For unsigned numbers, the range is 0 to
((2**PRECISION)-1)*(2**(-SCALE)).

� If CONSTRAINED(FALSE) is specified:

– For signed numbers, the range is -(2**(LENGTH-1))*(2**(-SCALE)) to
((2**(LENGTH-1))-1)*(2**(-SCALE)).

– For unsigned numbers, the range is 0 to
((2**LENGTH)-1)*(2**(-SCALE)).

e. A decimal fraction can be represented exactly in a RADIX(2) BINARY field
only if it is a sum of powers of two and all its significant bits can be encoded in
the stored value.

 4. For RADIX(10):

a. The maximum number of decimal digits that can be encoded in a BINARY field
is specified by the <PRECISION attribute> for CONSTRAINED(TRUE); other-
wise, it is implied by the <LENGTH attribute>.

b. Decimal scaling is indicated by RADIX(10) and the scaling factor is specified
as a power of 10. The actual value of a fixed-point number is given by the
formula:

Actual_Value = Stored_Value \ 1ð\\(-SCALE)

If the scaling factor is negative, then the actual value is greater than the stored
value. For example, if decimal 123 is stored in RADIX(10) and it has a scaling
factor of -3, then the actual value is 123000. If the scaling factor is positive,
then the actual value is equal or less than the stored value. For example, if
decimal 123 is stored and it has a scaling factor of 3, then .123 is the actual
value.

 c. Stored_value

� If CONSTRAINED(TRUE) is specified:

– For signed numbers, the range is -((10**PRECISION)-1) to
(10**PRECISION)-1.

– For unsigned numbers, the range is 0 to (10**PRECISION)-1.

� If CONSTRAINED(FALSE) is specified:

– For signed numbers, the range is -(2**(LENGTH-1)) to
(2**(LENGTH-1))-1.

– For unsigned numbers, the range is 0 to (2**LENGTH)-1.

 d. Actual_value

� If CONSTRAINED(TRUE) is specified:

– For signed numbers, the range is
-((10**PRECISION)-1)*(10**(-SCALE)) to
((10**PRECISION)-1)*(10**-SCALE).

70 SdU A Data Language Reference for DD&C

<BINARY>

– For unsigned numbers, the range is 0 to
((10**PRECISION)-1)*(10**(-SCALE)).

� If CONSTRAINED(FALSE) is specified:

– For signed numbers, the range is -(2**(LENGTH-1))*(10**(-SCALE))
to ((2**(LENGTH-1))-1)*(10**(-SCALE)).

– For unsigned numbers, the range is 0 to
((2**LENGTH)-1)*(10**(-SCALE)).

e. A decimal fraction can be stored exactly for RADIX(10) fields only if it is a sum
of the powers of 10, and all its significant bits can be encoded in the stored
value.

DEFAULT BINARY BYTRVS(FALSE) COMPLEX(FALSE) CONSTRAINED(FALSE)
RADIX(2) SCALE(0) SIGNED(TRUE) PRECISION(31)
SGNCNV(ALGEBRAIC) FIT(ROUND);

X: BINARY RADIX(10) PRECISION(7) SCALE(3) CONSTRAINED(TRUE);
Is represented by the 32-bit, signed, <BINARY> field:

s o o o o o o o p

Where the bits are labeled as follows:

Sign bit (1 bit)
Overflow bits.
7 additional bits that can be used to increase the range of
specifiable integers if CONSTRAINED(FALSE) is specified.
Bits in which the significant digits of the value are stored
as an integer.
24 bits required to represent a value up to 9999.999

s
o

p

Figure 3. Layout of a signed BINARY field

 Syntax
 <BINARY> ::=
 BINARY

<BINARY attributes list>

 <BINARY attributes list> ::=
 {

<BINARY defaulted attributes list>

<BINARY optional attributes list>

 }!

 Chapter 4. Data Declarations 71

<BINARY>

 <BINARY defaulted attributes list> ::=
 {

 [<BYTRVS attribute>]

 [<COMPLEX attribute>]

 [<CONSTRAINED attribute>]

 [<FIT attribute>]

 [<PRECISION attribute>]

 [<RADIX attribute>]

 [<SCALE attribute>]

 [<SGNCNV attribute>]

 [<SIGNED attribute>]

 }!

 <BINARY optional attributes list> ::=
 {

 [<HELP attribute>]

[LENGTH({1..32 | <constant identifier>})]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 Syntax rules
1. For RADIX(2) fields:

� SCALE multiplied by -1 specifies the scaling factor of the field as a power of 2.

� If SIGNED(TRUE) is specified, LENGTH is greater than or equal to
PRECISION+1.

� If SIGNED(FALSE) is specified, LENGTH is greater than or equal to PRECI-
SION and PRECISION is greater than or equal to 1.

2. For RADIX(10) fields:

� SCALE multiplied by -1 specifies the scaling factor of the field as a power of
10.

� If SIGNED(TRUE) is specified, LENGTH is greater than or equal to CEIL(
PRECISION * 3.32) + 1.

� If SIGNED(FALSE) is specified, LENGTH is greater than or equal to CEIL(
PRECISION * 3.32).

� PRECISION is greater than or equal to 1.

 General rules
1. If the <LENGTH attribute> is not specified, it is determined from the specified PRE-

CISION:

72 SdU A Data Language Reference for DD&C

<BINARY>

Unsigned BINARY Numbers

 RADIX(1ð) PRECISION RADIX(2) PRECISION LENGTH

 ------------------- ------------------ -----------

1 - 4 1 - 16 16

5 - 9 17 - 32 32

Signed BINARY Numbers

 RADIX(1ð) PRECISION RADIX(2) PRECISION LENGTH

 ------------------- ------------------ -----------

1 - 4 ð - 15 16

5 - 9 16 - 31 32

2. For RADIX(10), the number of bits required to encode the specified number of sig-
nificant digits is determined by the CEIL(PRECISION * 3.32).

3. The minimum alignment of an BINARY field is byte alignment.

4. If COMPLEX(TRUE) is specified, the total length of the field is the sum of the
lengths of the two parts of the complex number (Real and Imaginary), plus any skip
space necessary to ensure that the second part of the number is byte-aligned.

 Examples
In the following examples, the bits of a BINARY field are defined by:

s = sign bit
o = overflow bit
p = precision bit

 RADIX(2) examples

1. Signed RADIX(2) BINARY field:

DEFAULT BINARY BYTRVS(FALSE) COMPLEX(FALSE) CONSTRAINED(FALSE)

RADIX(2) SCALE(ð) SIGNED(TRUE) PRECISION(31)

 SGNCNV(ALGEBRAIC) FIT(ROUND);

x: BINARY PRECISION(15);

bit s
1

p
1

p
1

p
1

p
1

p
1

p
1

p
1

p
1

p
1

p
1

p
1

p
0

p
0

p
0

p
0

Field low bound = -32768

Field high bound = 32767

Scale factor = 2\\(-ð) = 1

Stored value = X'FFFð' = -16

Actual value = -16 \ 1 = -16

2. Unsigned RADIX(2) BINARY field:

DEFAULT BINARY BYTRVS(FALSE) COMPLEX(FALSE) CONSTRAINED(FALSE)

RADIX(2) SCALE(ð) SIGNED(TRUE) PRECISION(31)

 SGNCNV(ALGEBRAIC) FIT(ROUND);

x: BINARY PRECISION(16) SIGNED(FALSE);

bit p
1

p
1

p
1

p
1

p
1

p
1

p
1

p
1

p
1

p
1

p
1

p
1

p
0

p
0

p
0

p
0

 Chapter 4. Data Declarations 73

<BINARY>

Field low bound = ð

Field high bound = 65535

Scale factor = 2\\(-ð) = 1

Stored Value = X'FFFð' = 65,52ð

Actual Value = 65,52ð \ 1 = 65,52ð

3. Signed RADIX(2) BINARY field with precision less than length. The overflow bits
in this field cannot be used to store significant digits.

DEFAULT BINARY BYTRVS(FALSE) COMPLEX(FALSE) CONSTRAINED(FALSE)

RADIX(2) SCALE(ð) SIGNED(TRUE) PRECISION(31)

 SGNCNV(ALGEBRAIC) FIT(ROUND);

x: BINARY PRECISION(11) CONSTRAINED(TRUE);

bit s
0

o
0

o
0

o
0

o
0

p
1

p
1

p
1

p
1

p
1

p
0

p
0

p
0

p
1

p
1

p
0

Field low bound = -2ð48

Field high bound = 2ð47

Scale factor = 2\\(-ð) = 1

Stored value = X'ð7C6' = 1,99ð

Actual value = 1,99ð \ 1 = 1,99ð

4. Unsigned RADIX(2) BINARY field with precision less than length. The overflow
bits in this field can be used to store significant digits.

DEFAULT BINARY BYTRVS(FALSE) COMPLEX(FALSE) CONSTRAINED(FALSE)

RADIX(2) SCALE(ð) SIGNED(TRUE) PRECISION(31)

 SGNCNV(ALGEBRAIC) FIT(ROUND);

X: BINARY PRECISION(11) SCALE(5) SIGNED(FALSE);

bit o
0

o
0

o
0

o
0

o
0

p
0

p
0

p
0

p
1

p
0

p
1

p
1

p
0

p
0

p
0

p
0

Field low bound = ð

Field high bound = 2ð47.96875

Scale factor = 2\\(-5) = ð.ð3125

Stored value = X'ðBð' = 176

Actual value = 176 \ ð.ð3125 = 5.5ðððð

5. Unsigned RADIX(2) BINARY number with precision less than length and scale
greater than precision. The overflow bits in this field can be used to store signif-
icant digits.

DEFAULT BINARY BYTRVS(FALSE) COMPLEX(FALSE) CONSTRAINED(FALSE)

RADIX(2) SCALE(ð) SIGNED(TRUE) PRECISION(31)

 SGNCNV(ALGEBRAIC) FIT(ROUND);

X: BINARY PRECISION(6) SCALE(8);

bit s
1

o
1

o
1

o
0

o
1

o
0

o
0

o
0

o
1

o
0

p
1

p
1

p
0

p
0

p
0

p
0

74 SdU A Data Language Reference for DD&C

<BINARY>

Field low bound = -128.ðððððððð

Field high bound = 127.996ð9375

Scale factor = 2\\(-8) = ð.ðð39ð625

Stored value = X'E8Bð' = -5968

Actual value = -(5968 \ ð.ðð39ð625) = -23.3125ðððð

 RADIX(10) examples

1. Signed RADIX(10) BINARY field with a scale less than zero.

DEFAULT BINARY BYTRVS(FALSE) COMPLEX(FALSE) CONSTRAINED(FALSE)

RADIX(2) SCALE(ð) SIGNED(TRUE) PRECISION(31)

 SGNCNV(ALGEBRAIC) FIT(ROUND);

X: BINARY PRECISION(3) LENGTH(16) SCALE(-4)

 RADIX(1ð) CONSTRAINED(TRUE);

bit s
0

o
0

o
0

o
0

o
0

o
0

p
0

p
0

p
0

p
1

p
0

p
0

p
0

p
0

p
0

p
0

Field low bound = -999ðððð

Field high bound = 999ðððð

Scale factor = 1ð\\(-(-4)) = 1ðððð

If x is assigned the actual value 64ðððð decimal, then

stored_integer_value = actual_value \ RADIX\\SCALE

stored_integer_value = 64ðððð \ 1ð-4 = 64

stored_integer_value = 64 = X'ðð4ð'

Actual value = stored_integer_value \ scale_factor

Actual value = 64 \ 1ðððð = 64ðððð

2. Signed RADIX(10) BINARY field with scale greater than zero.

DEFAULT BINARY BYTRVS(FALSE) COMPLEX(FALSE) CONSTRAINED(FALSE)

RADIX(2) SCALE(ð) SIGNED(TRUE) PRECISION(31)

 SGNCNV(ALGEBRAIC) FIT(ROUND);

X: BINARY LENGTH(16) PRECISION(4) SCALE(2)

 RADIX(1ð) CONSTRAINED(TRUE);

bit s
0

o
0

p
0

p
0

p
0

p
0

p
0

p
0

p
0

p
1

p
1

p
0

p
0

p
0

p
1

p
1

Field Low Bound = -99.99

Field High Bound = 99.99

Scale Factor = 1ð\\(-(2)) = ð.ð1

If x is assigned the actual value ð.99 decimal, then

stored_integer_value = actual_value \ RADIX\\SCALE

stored_integer_value = ð.99 \ 1ð\\2 = 99

stored_integer_value = 99 = X'ðð63'

Actual Value = stored_integer_value \ scale_factor

Actual Value = 99 \ ð.ð1 = ð.99

 Chapter 4. Data Declarations 75

<BIT>

 <BIT>

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of the BIT string type.

The length of a BIT string in bits is specified by the LENGTH attribute. The first bit is at
ordinal position 1, and the last bit is at the ordinal position specified by the LENGTH
attribute. The value of the LENGTH attribute can be specified by an integer literal or by
reference to another field. If specified by an integer literal, all instances of the variable
are of the same length. But if specified by reference to another field, then each
instance can be of a different length. In this case, however, the maximum length of the
string must also be specified, along with an indication of whether storage has been
allocated for the maximum length or only for the current length.

 Syntax
 <BIT> ::=
 BIT

<BIT attributes list>

 <BIT attributes list> ::=
 {

<BIT defaulted attributes list>

<BIT optional attributes list>

 }!

 <BIT defaulted attributes list> ::=
[LENGTH({1..<max31> | <constant identifier>})] |

 [

 LENGTH(\)

MAXLEN({1..<max31> | <constant identifier>})

]! |

 [

 LENGTH(<qualified identifier>)

 <MAXALC attribute>

MAXLEN({1..<max31> | <constant identifier>})

]!

 <BIT optional attributes list> ::=
 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 Syntax rules
1. If LENGTH(<qualified identifier>) is specified, the referenced field is BINARY,

PACKED, or ZONED with SCALE(0) and COMPLEX(FALSE) and a maximum
value of <max31>.

76 SdU A Data Language Reference for DD&C

<BIT>

2. LENGTH(*) can be specified only for the last element of all containing
<constructor>s.

3. LENGTH(*) cannot be specified for any element of an ARRAY.

 General rules
1. The field length is the actual field length, as described in “Actual Field Length” on

page 159.

2. The minimum alignment of a BIT field is bit alignment.

 Examples
1. Declare a mask of 5 bits that is located in the next byte:

a: SEQUENCE;

 BEGIN;

field: BIT LENGTH(3);

 SKIP(5);

mask: BIT LENGTH(5);

 SKIP(3);

 END;

0bit

byte

0

1

1 12

2

23

3

34 45 56 67 7

field skipped bits mask

a

skipped
bits

2. Declare a mask of 4 bits that is located following the last bit of the preceding field:

b: SEQUENCE;

 BEGIN;

field: BIT LENGTH(3);

mask: BIT LENGTH(4);

 SKIP(1);

 END;

0 1

1

2

2

3 4 5 6 7

field

bit

byte

mask

b

3. Declare flags of three bits that is located following the last bit of the preceding
field. Note that two slack bits follow flags since the items field consists of charac-
ters represented by bytes.

 Chapter 4. Data Declarations 77

<BIT>

ControlBlock: SEQUENCE

TITLE('This is a dummy control block')

 BEGIN;

count: BINARY PRECISION(3) LENGTH(3) SIGNED(FALSE);

flags: BIT LENGTH(3);

 SKIP(2);

items: CHAR LENGTH(8);

 END;

0 1

1

2

2 10

3 4 5 6 7

count

bit

byte

flags

ControlBlock

items

78 SdU A Data Language Reference for DD&C

<BITPRE>

 <BITPRE>

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of the BITPRE type, a variable-length bit string with a BINARY
prefix.

Since each instance can be a different length, the maximum length of the BITPRE
string must also be specified, along with an indication of whether storage has been
allocated for the maximum length or only for the current length.

 Syntax
 <BITPRE> ::=
 BITPRE

<BITPRE attributes list>

 <BITPRE attributes list> ::=
 {

<BITPRE defaulted attributes list>

<BITPRE optional attributes list>

 }!

 <BITPRE defaulted attributes list> ::=
 {

 [<MAXALC attribute>]

 [

 MAXLEN

 ({

1..<max BITPRE> |

 <constant identifier>

 })

]

 [<PREBYTRVS attribute>]

 [<PRELEN attribute>]

 [<PRESIGNED attribute>]

 }!

 <BITPRE optional attributes list> ::=
 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 Syntax rule
The <MAXLEN attribute> does not include the length of the prefix.

 Chapter 4. Data Declarations 79

<BITPRE>

 General rules
1. The maximum length of a BITPRE field is determined by MAXLEN. The greatest

value (<max BITPRE>) that can be specified for MAXLEN is determined by
(2**(PRELEN-1)-1).

2. The prefix is encoded as a BINARY number with the attributes COMPLEX(FALSE)
CONSTRAINED(FALSE) RADIX(2) SCALE(0) SGNCNV(LOGICAL) FIT(ROUND)
and the attributes PREBYTRVS, PRESIGNED, and PRELEN specified for the
BITPRE data type. PRECISION is the maximum value allowed for the specified
LENGTH and SIGNED values.

3. The actual length in bits of the variable-length bit string is specified by the length
prefix integer that immediately precedes the bit string.

4. The amount of space for a BITPRE field with MAXALC(TRUE) is MAXLEN +
PRELEN.

5. The amount of space for a BITPRE field with MAXALC(FALSE) is PRELEN plus
the actual length of the bit string.

6. The minimum alignment of an BITPRE field is byte alignment.

7. The value of the prefix does not include the length of the prefix.

 Examples
Declare X to be a variable-length bit string with a maximum length of 128 bits in which
space will only be allocated for the current instance.

X: BITPRE MAXLEN(128) MAXALC(FALSE);

80 SdU A Data Language Reference for DD&C

<BOOLEAN >

 <BOOLEAN >

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of the BOOLEAN type.

 Syntax
 <BOOLEAN> ::=
 BOOLEAN

<BOOLEAN attributes list>

 <BOOLEAN attributes list> ::=
 {

<BOOLEAN defaulted attributes list>

<BOOLEAN optional attributes list>

 }!

 <BOOLEAN defaulted attributes list> ::=
 {

 [<BLNENC attribute>]

 [<BYTRVS attribute>]

[LENGTH({1..64 | <constant identifier>})]

 }!

 <BOOLEAN optional attributes list> ::=
 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 Syntax rules
None

 General rules
� The minimum alignment of a BOOLEAN field is byte alignment.

� See “<BLNENC attribute>” on page 113 for details of how to specify the attributes
of a BOOLEAN value.

 Examples
Declare living to be a BOOLEAN value where TRUE is encoded in a 32-bit string:

DEFAULT BOOLEAN BLNENC(LSTBIT) BYTRVS(FALSE) LENGTH(8);

living: BOOLEAN LENGTH(32);

 Chapter 4. Data Declarations 81

<CASE>

 <CASE>

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of the CASE type, an ordered collection of selections for the decla-
ration of data.

 Syntax
 <CASE> ::=
 CASE

<CASE attributes list>

 <BEGIN statement>

 <WHEN statement>...

 [<OTHERWISE statement>]

 <END statement>

 <CASE attributes list> ::=
 {

<CASE defaulted attributes list>

<CASE optional attributes list>

 }!

 <CASE defaulted attributes list> ::=
 [<MAXALC attribute>]

 <CASE optional attributes list> ::=
 {

 [<LENGTH attribute>]

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 Syntax rules
1. The <LENGTH attribute> must be specified if the space occupied by the <CASE>

exceeds the space occupied by any of the alternatives of the <CASE>.

2. You must ensure the validity of an <identifier> referenced in a <CASE statement>.
For example:

x: BINARY

a: CASE BEGIN;

b: WHEN x = 1 THEN d: CHAR;

c: WHEN x = 2 THEN d: FLOAT;

 END;

A reference to d or a.d is ambiguous—at least b.d or c.d must be used. When
referring to b.d or c.d, it is the responsibility of the user and the application
program calling DD&C to ensure that only valid data is referenced.

82 SdU A Data Language Reference for DD&C

<CASE>

 General rules
1. The <condition>s of the <WHEN statement>s of the CASE are evaluated in the

order in which the <WHEN statement>s are specified within the <CASE>. When
the evaluation of one of them returns TRUE, the <THEN clause> of that <WHEN
statement> is selected. All subsequent <WHEN statement>s and the
<OTHERWISE statement> in the CASE declaration are ignored.

2. If no <WHEN clause> evaluates to TRUE, the <OTHERWISE statement> is
selected.

3. A null data declaration exists if there is no data to describe. A CASE results in a
null data declaration if one of the following is selected:

 a. THEN <terminator>.
 b. OTHERWISE <terminator>.

c. OTHERWISE <SKIP statement>.
d. All <WHEN statement>s evaluating to FALSE and no <OTHERWISE

statement>.

4. If MAXALC(TRUE) is specified, space is allocated to hold the largest variant.

5. If MAXALC(FALSE) is specified, space is allocated to hold the selected variant.

6. If MAXALC(TRUE) is specified, space for the largest variant is allocated which can
be the number of bits specified in the <SKIP statement>.

7. The minimum alignment of an CASE field is byte alignment.

8. See “Identifiers” on page 7 for the rules that apply to the uniqueness of identifiers.

 Examples
1. Declare a sequence that has a discriminant field named a and variant fields whose

declaration depends on the value of a.

 x: SEQUENCE

 BEGIN;

 a: CHAR;

 CASE BEGIN;

c1: WHEN a = '1'

THEN w: CHAR LENGTH(4);

c2: WHEN a = '2'

THEN z: BINARY SCALE(5) PRECISION(15);

OTHERWISE y: FLOAT;

 END;

 END;

2. Declare a sequence that has two discriminant fields (a and b).

 Chapter 4. Data Declarations 83

<CASE>

 Y: SEQUENCE

 BEGIN;

 a: CHAR;

 b: BOOLEAN;

 CASE BEGIN;

c1: WHEN a = '1'

THEN c: CHAR LENGTH(4);

c2: WHEN b = TRUE

THEN d: BINARY SCALE(5) PRECISION(15);

OTHERWISE e: FLOAT;

 END;

 END;

3. Declare a sequence that has a discriminant field named a.

Note: There is no declaration for the first <WHEN statement>. If this first <WHEN
statement> evaluates to true, c1 results in a null declaration.

 Y: SEQUENCE

 BEGIN;

 a: CHAR;

 CASE BEGIN;

c1: WHEN a = '1'

 THEN ;

c2: WHEN a = '4'

THEN d: BINARY SCALE(5) PRECISION(15);

OTHERWISE e: FLOAT;

 END;

 END;

4. Declare a case with a discriminant field that is dependent on itself:

ValidCase: CASE

 BEGIN;

c1: WHEN x.a = '1'

THEN x: SEQUENCE

 BEGIN;

 a: CHAR;

b: BINARY PRECISION(15);

 END;

c2: WHEN y.a = '2'

THEN y: SEQUENCE

 BEGIN;

 a: CHAR;

b: CHAR LENGTH(2);

 END;

 END;

84 SdU A Data Language Reference for DD&C

<CHAR>

 <CHAR>

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of the CHAR type, a string of characters.

The length of a CHAR field can be specified directly by the <LENGTH attribute> or
indirectly by the <LOW attribute> and the <HIGH attribute>. The unit of measure for a
CHAR field is characters; the UNITLEN attribute specifies the number of bits per char-
acter (8 or 16).

In either case, the attribute values can be specified by an integer literal or by reference
to another field. If specified by an integer literal, all instances of the variable are of the
same length. But if specified by reference to another field, then each instance can be
of a different length. In this case, however, the maximum length of the string must also
be specified, along with an indication of whether storage has been allocated for the
maximum length or only for the current length.

Characters are encoded in the string as specified by the coded character set identifier
(CCSID) attribute. For each CCSID, the IBM Character Data Representation Architec-
ture (CDRA) defines what characters can be encoded and how they are encoded. A
variety of single-byte, double-byte, and mixed character sets are accommodated by
CDRA.

 Syntax
 <CHAR> ::=
 CHAR

<CHAR attributes list>

 <CHAR attributes list> ::=
 {

<CHAR defaulted attributes list>

<CHAR optional attributes list>

 }!

 <CHAR defaulted attributes list> ::=
 {

 [<CCSID attribute>]

 [<JUSTIFY attribute>]

<CHAR length attributes list>

 }!

 Chapter 4. Data Declarations 85

<CHAR>

 <CHAR length attributes list> ::=
 [

<CHAR LENGTH asterisk attributes list> |

<CHAR LENGTH fixed attributes list> |

<CHAR LENGTH identifier attributes list> |

<CHAR HIGHLOW1 attributes list> |

<CHAR HIGHLOW2 attributes list> |

<CHAR HIGHLOW3 attributes list> |

<CHAR HIGHLOW4 attributes list>

]

 <CHAR LENGTH asterisk attributes list> ::=
 [

 LENGTH(\)

MAXLEN({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

 <CHAR length fixed attributes list> ::=
 [

LENGTH({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

 <CHAR LENGTH identifier attributes list> ::=
 [

 LENGTH(<qualified identifier>)

 <MAXALC attribute>

MAXLEN({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

 <CHAR HIGHLOW1 attributes list> ::=
 [

HIGH({1..<max CHAR> | <constant identifier>})

LOW({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

 <CHAR HIGHLOW2 attributes list> ::=
 [

HIGH({1..<max CHAR> | <constant identifier>})

 LOW(<qualified identifier>)

 <MAXALC attribute>

MAXLEN({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

86 SdU A Data Language Reference for DD&C

<CHAR>

 <CHAR HIGHLOW3 attributes list> ::=
 [

 HIGH(<qualified identifier>)

LOW({1..<max CHAR> | <constant identifier>})

 <MAXALC attribute>

MAXLEN({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

 <CHAR HIGHLOW4 attributes list> ::=
 [

 HIGH(<qualified identifier>)

 LOW(<qualified identifier>)

 <MAXALC attribute>

MAXLEN({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

 <CHAR optional attributes list> ::=
 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 <max CHAR> ::=
See Syntax Rule 2.

 Syntax rules
1. HIGH is greater than or equal to LOW-1.

2. The LENGTH or MAXLEN of a CHAR field is specified in terms of units whose
length in bits is specified by UNITLEN. The length of a CHAR field in bits is deter-
mined by (LENGTH * UNITLEN), and the greatest value that can be specified for
LENGTH is determined by (<max31> / UNITLEN). The maximum length of a
CHAR field in bits is determined by (MAXLEN * UNITLEN), and the greatest value
that can be specified for MAXLEN is determined by (<max31> / UNITLEN).

3. If a <qualified identifier> is specified for the <LENGTH attribute>, <HIGH attribute>,
or <LOW attribute>, the referenced field is BINARY, PACKED, or ZONED with
SCALE(0) and COMPLEX(FALSE) and with a maximum value of <max CHAR>.

4. LENGTH(*) can be specified only for the last element of all containing
<constructor>s.

5. LENGTH(*) cannot be specified for any element of an ARRAY.

 General rules
1. If the <CCSID attribute> is specified, it applies only to the field being described and

not to the attributes of the field being declared. The length in bits of the CHAR
field is the actual field length, as defined in “Actual Field Length” on page 159. In
particular, for LENGTH(*), this is the largest multiple of the UNITLEN value that fits
within the data.

 Chapter 4. Data Declarations 87

<CHAR>

2. The minimum alignment of a CHAR field is byte alignment.

3. If the <LOW attribute> and <HIGH attribute> are specified, the length in bits of the
CHAR field equals

((HIGH - LOW + 1) \ UNITLEN).

 Examples
1. Declare lastname to be a character string of length (20) that is encoded as defined

by CCSID 500.

lastname: CHAR LENGTH(2ð) CCSID(5ðð);

2. Declare stretch to be a character string that begins at position 15 and ends at
position 300.

stretch: CHAR HIGH(3ðð) LOW(15);

3. Declare a to be a character string that begins and ends at positions defined with
reference fields.

a: SEQUENCE

 BEGIN;

 b: BINARY;

 c: PACKED;

d: CHAR HIGH(b) LOW(c) MAXLEN(1ðð) MAXALC(FALSE);

 END;

4. The following ADL declarations are equivalent:

CHAR LENGTH(1ð) UNITLEN(8);

CHAR LOW(1) HIGH(1ð) UNITLEN(8);

CHAR LOW(11) HIGH(15) UNITLEN(16);

88 SdU A Data Language Reference for DD&C

<CHARPRE>

 <CHARPRE>

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of the CHARPRE type, a variable-length string of characters with a
BINARY length prefix.

Figure 4 shows the possible representations of CHARPRE strings.

Since each instance can be a different length, the maximum length of the CHARPRE
string must also be specified, along with an indication of whether storage has been
allocated for the maximum length or only for the current length. The characters of the
string are encoded as specified by the CCSID attribute.

previous field 1pcccccccccccccccccccccccccccc

previous field 1pccccccccccccccccccccccccccccnnnnnnnn next field

Variable-length with prefix length and MAXALC(FALSE)

Variable-length with prefix length and MAXALC(TRUE)

LEGEND:
ccc . . . specifies a string of characters
1p specifies a length prefix
nnn . . . specifies a string of unused byte

Figure 4. Variable-length character strings with length prefixes

 Syntax
 <CHARPRE> ::=
 CHARPRE

<CHARPRE attributes list>

 <CHARPRE attributes list> ::=
 {

<CHARPRE defaulted attributes list>

<CHARPRE optional attributes list>

 }!

 Chapter 4. Data Declarations 89

<CHARPRE>

 <CHARPRE defaulted attributes list> ::=
 {

 [<CCSID attribute>]

 [<MAXALC attribute>]

 [

 MAXLEN

 ({

1..<max CHARPRE> |

 <constant identifier>

 })

]

 [<PREBYTRVS attribute>]

 [<PRELEN attribute>]

 [<PRESIGNED attribute>]

[UNITLEN({8 | 16 | <constant identifier>})]

 }!

 <CHARPRE optional attributes list> ::=
 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 <max CHARPRE> ::=
See Syntax Rule 1.

 Syntax rules
The <MAXLEN attribute> does not include the length of the prefix.

 General rules
1. The MAXLEN of a CHARPRE field is specified in terms of units whose length in

bits is specified by UNITLEN. The maximum length of a CHARPRE field in bits is
determined by (MAXLEN * UNITLEN), and the greatest value that can be specified
for MAXLEN is determined by (2**(PRELEN-1)-1).

2. The prefix is encoded as a BINARY number with the attributes COMPLEX(FALSE)
CONSTRAINED(FALSE) RADIX(2) SCALE(0) SGNCNV(LOGICAL) FIT(ROUND)
and the attributes PREBYTRVS, PRESIGNED, and PRELEN specified for the
BITPRE data type. PRECISION is the maximum value allowed for the specified
LENGTH and SIGNED values.

3. If the <CCSID attribute> is specified, it applies only to the value of the field being
described and not to the attributes of the field being declared.

4. The value of the prefix does not include the length of the prefix.

5. If MAXALC(TRUE) is specified, the actual length in bits of the data portion of a
CHARPRE field is determined by (MAXLEN * UNITLEN). If the prefix value is less
than MAXLEN, trailing bytes exist after the active data.

6. If MAXALC(FALSE) is specified, the actual length in bits of the data portion of a
CHARPRE field is determined by the value in the prefix times UNITLEN.

90 SdU A Data Language Reference for DD&C

<CHARPRE>

7. The minimum alignment of a CHARPRE field is byte alignment.

 Examples
Declare TextField to be a variable-length character string with a maximum length of
32767 characters. The character string is prefixed by a length field that specifies the
actual length of the character string. Only space for the actual number of characters is
allocated.

TextField: CHARPRE MAXLEN(32767) MAXALC(FALSE);

 Chapter 4. Data Declarations 91

<CHARSFX>

 <CHARSFX>

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of the CHARSFX type, a variable-length character string that is
terminated by a suffix.

Since each instance can be a different length, the maximum length of the CHARSFX
string must also be specified, along with an indication of whether storage has been
allocated for the maximum length or only for the current length. The characters of the
string are encoded as specified by the CCSID attribute. The suffix value depends on
the CCSID attribute specified. For a single-byte or mixed-byte character string, the
suffix is X'00'. For a double-byte character string, it is X'0000'.

Figure 5 shows the possible representations of CHARSFX strings.

previous field ccccccccccccccccccccccccccccs

previous field ccccccccccccccccccccccccccccsnnnnnnnn next field

Variable-length with suffix and MAXALC(FALSE)

Variable-length with suffix and MAXALC(TRUE)

LEGEND:
ccc . . . specifies a string of characters
s specifies a suffix
nnn . . . specifies a string of unused byte

Figure 5. Variable-length character strings with a suffix

 Syntax
 <CHARSFX> ::=
 CHARSFX

<CHARSFX attributes list>

 <CHARSFX attributes list> ::=
 {

<CHARSFX defaulted attributes list>

<CHARSFX optional attributes list>

 }!

92 SdU A Data Language Reference for DD&C

<CHARSFX>

 <CHARSFX defaulted attributes list> ::=
 {

 [<CCSID attribute>]

 [<MAXALC attribute>]

 [

 MAXLEN

 ({

1..<max CHARSFX> |

 <constant identifier>

 })

]

[UNITLEN({8 | 16 | <constant identifier>})]

 }!

 <CHARSFX optional attributes list> ::=
 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 <max CHARSFX> ::=
See Syntax Rule 2.

 Syntax rules
1. The <MAXLEN attribute> specified includes the length of the suffix.

2. The MAXLEN of a CHARSFX field is specified in terms of units whose length in
bits is specified by UNITLEN. The maximum length of a CHARSFX field in bits is
determined by (MAXLEN * UNITLEN), and the greatest value that can be specified
for MAXLEN is determined by (<max31> / UNITLEN).

 General rules
1. If the <CCSID attribute> is specified, it applies only to the value of the field being

described and not to the attributes of the field being declared.

2. The actual length in bits of the data portion of a CHARSFX field is determined by
the number of bytes encountered prior to the suffix times 8.

3. The minimum alignment of a CHARSFX field is byte alignment.

 Examples
Declare DataLine to be a variable-length character string with a maximum length of 100
characters.

Note: The storage allocation for this string is 101 bytes.

DataLine: CHARSFX MAXLEN(1ð1);

 Chapter 4. Data Declarations 93

<ENUMERATION>

 <ENUMERATION>

The following shows the function, syntax, rules, and examples:

 Function
Declare a set of identifiers to be associated with constant integers.

 Syntax
 <ENUMERATION> ::=
 ENUMERATION

<ENUMERATION attributes list>

 <enumeration list>

 <ENUMERATION attributes list> ::=
 {

<ENUMERATION defaulted attributes list>

<ENUMERATION optional attributes list>

 }!

 <ENUMERATION defaulted attributes list> ::=
 {

 [<BYTRVS attribute>]

[LENGTH({8 | 16 | 32 | <constant identifier>})]

 [<SGNCNV attribute>]

 [<SIGNED attribute>]

 }!

 <ENUMERATION optional attributes list> ::=
 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 <enumeration list> ::=
(<enumeration value>[, <enumeration value>]...)

 <enumeration value> ::=
<enumeration identifier>[:<signed integer>]

 <enumeration identifier> ::=
 <identifier>

 Syntax rules
1. If a <signed integer> is not specified for the first <enumeration value>, a value of 0

is assumed.

2. The enumeration values of <ENUMERATION statements> must be mutually exclu-
sive.

3. If a <signed integer> is not specified for a subsequent <enumeration value>, a
value of 1 plus the value of the previous <enumeration value> is assumed.

4. The range of enumerated values is:

94 SdU A Data Language Reference for DD&C

<ENUMERATION>

Table 6. Range of enumerated values

LENGTH SIGNED PRECISION MINIMUM MAXIMUM

 8 TRUE 7 -128 +127

 8 FALSE 8 0 255

16 TRUE 15 -32768 +32767

16 FALSE 16 0 65535

32 TRUE 31 -2,147,483,648 +2,147,483,647

32 FALSE 32 0 2,147,483,647

 General rules
1. The value of each <enumeration identifier> in the declaration is stored as an

<integer literal>.

2. The ENUMERATION encoding is of the BINARY type, with COMPLEX(FALSE),
CONSTRAINED(FALSE), FIT(ROUND), RADIX(2), SCALE(0), and with the attri-
butes specified for the ENUMERATION data type. The PRECISION is the
maximum value for the given LENGTH and SIGNED values.

3. The minimum alignment of an ENUMERATION field is byte alignment.

 Examples
1. Declare color to be an enumeration consisting of red, green, blue, and yellow:

color: ENUMERATION(red, green, blue, yellow);

The values associated with each are:

red = ð, green = 1, blue = 2, yellow = 3

2. Declare animals to be an enumeration consisting of cat, dog, monkey, elephant
where monkey is to take on the value of 4:

animal: ENUMERATION(cat, dog, monkey:4, elephant);

The values associated with each are: cat = 0, dog = 1, monkey = 4, elephant = 5

3. Declare family to be an enumeration consisting of grandmother, mother, me,
daughter, and granddaughter, zeroed on me:

family: ENUMERATION(grandmother:-2, mother, me, daughter, granddaughter);

The values associated with each are: grandmother = -2, mother = -1, me = 0,
daughter = 1, granddaughter = 2

 Chapter 4. Data Declarations 95

<FLOAT>

 <FLOAT>

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of the FLOAT type, a floating-point numeric field.

A floating-point number is a bit string characterized by three components: a sign, a
signed exponent, and a significand. A floating-point number is represented in storage
in one of the formats specified by the <FORM attribute>. Its numerical value, V, may
be derived from its stored representation as follows:

e = C-b

V = (S\(B\\e))\((-1)\\s)

where the terms of these expressions are defined as follows:

Term Definition

Sign (s) The high-order bit in the stored representation of the number.
The value of the number is considered to be positive or nega-
tive depending on whether the sign is zero or one, respec-
tively.

Exponent (e) The component of a floating-point number that normally signi-
fies the integer power to which the base is raised in deter-
mining the value of the represented number. The exponent is
not stored directly, but is first converted to a characteristic .

Base (B) The number to which the exponent is applied when deter-
mining the numerical value of a floating-point number. The
base used depends on the format.

Characteristic (C) The sum of the exponent and a constant (bias) chosen to
make the range of the stored representation of the exponent
non-negative. The characteristic is stored in the bits imme-
diately following the sign. The length of the characteristic
depends on the format.

Bias (b) A constant that is added to the exponent in order to create the
unsigned characteristic which is stored to represent the expo-
nent. The bias used depends on the format.

Significand (S) The component of a floating-point number that specifies the
value to be multiplied by the base raised to the power of the
exponent. The length and interpretation of the significand
depends on the format.

Different formats of the FLOAT data type accommodate either
binary or hexadecimal representations of floating-point
numbers.

96 SdU A Data Language Reference for DD&C

<FLOAT>

HEXADECIMAL Formats: In hexadecimal floating-point numbers, the significand con-
sists of an implicit leading zero bit to the left of its implied binary point and a fraction
field to the right. The significand is stored following the characteristic in the represen-
tation of the number.

A value that is stored in the significand can be normalized to represent it with the
greatest precision possible for a given format. Normalization is done by taking the
value in hexadecimal form and shifting left or right until the first digit to the right of the
hexadecimal point is nonzero and all digits to the left of the hexadecimal point are zero.
The exponent is reduced by the number of hexadecimal digits that were shifted left or
increased by the number of hexadecimal digits that were shifted right. The result is
stored in the significand.

Up to three leftmost bits of the significand of a normalized hexadecimal floating-point
number may be zeros, since the nonzero test applies to the entire leftmost hexadecimal
digit. Thus, the guaranteed binary precision is three less than the maximum binary
precision.

There are two values that represent zero: +0 and -0. A true zero is a floating-point
number with a zero sign, characteristic, and significand.

There are three formats of hexadecimal floating-point numbers:

Table 7. Hexadecimal floating-point formats

FORMAT FORM SIGN CHARACTERISTIC BIAS SIGNIFICAND LENGTH

single FH32 1 bit 7 bits 64 6 hex digits 32 bits

double FH64 1 bit 7 bits 64 14 hex digits 64 bits

extended FH128 1 bit 7 bits 64 28 hex digits 128 bits

Single-precision hexadecimal floating-point numbers, FORM(FH32), are represented as
follows:

sign characteristic significand

0 1 8 31

Double-precision hexadecimal floating-point numbers, FORM(FH64), are represented as
follows:

sign characteristic significand

0 1 8 63

Extended-precision hexadecimal floating-point numbers, FORM(FH128), are repres-
ented as follows:

 Chapter 4. Data Declarations 97

<FLOAT>

low-order rightmost 14 hex digits of
characteristic 28 hex digit significand

high-order leftmost 14 hex digits of
characteristic 28 hex digit significand

sign

sign

64

0

65

1

72

8

127

63

The characteristic and sign of the high-order part are the characteristic and sign of the
extended floating-point number. If the high-order part is normalized, the extended
number is considered normalized. When an extended floating-point number is operated
on, the sign of the low-order part is set to the same as that of the high-order part, and,
unless the result is a true 0, the characteristic of the low-order part is made 14 less
than that of the high-order part. If the subtraction of 14 from the high-order part is less
than zero, the low-order characteristic is made 128 larger than the correct value. When
an extended floating-point field is initialized, the low-order part may be set to a true
zero if the low-order significand is zero. The preceding guarantees that both parts of
the extended floating-point field are valid long floating-point numbers and can each be
used as a long floating-point field.

BINARY Formats: In binary floating-point numbers, the significand consists of an
explicit or implicit integer bit to the left of its implied binary point and fraction bits to the
right. The significand is stored following the characteristic in the representation of the
number.

A value is normalized in order to represent it with the greatest precision possible for a
given format. Normalization is done by taking the value in binary form and shifting left
or right until a single binary one is to the left of the binary point. The exponent is
reduced by the number of bits which were shifted left or increased by the number of
bits which were shifted right. The resulting normalized significand is stored according
to the format.

A denormalized value occurs when a normalized value would require an exponent
value smaller than the minimum exponent for the format. In this case, the value is
shifted left until the exponent equals the minimum exponent for the format. The
resulting denormalized significand is stored according to the format of the number. The
integer bit is zero and the stored significand may have leading zeros. The character-
istic is set to zero to signal that this number is denormalized.

There are two values which represent zero: +0 and -0.

The following special values can also be expressed:

Infinity Infinity is indicated by a reserved characteristic of (2**b)-1
and the fraction bits of the significand equal to zero.

98 SdU A Data Language Reference for DD&C

<FLOAT>

Not a Number (NaN) The value of the floating-point is indicated to be a NaN by a
reserved characteristic of (2**b)-1 and the fraction bits of the
significand not equal to zero.

There are four formats for binary floating-point numbers:

Table 8. Binary floating-point formats

FORMAT FORM SIGN CHARACTER-
ISTIC

BIAS SIGNIFI-
CAND

LENGTH PRECISION

single FB32 1 bit 8 bits 127 23 bits 32 bits 24 bits

double FB64 1 bit 11 bits 1023 52 bits 64 bits 53 bits

extended FB80 1 bit 15 bits 16383 64 bits 80 bits 64 bits

OS/2
extended

FI128 1 bit 15 bits 16383 64 bits 128 bits 64 bits

Single-precision binary floating-point numbers, FORM(FB32), are represented as
follows:

sign characteristic significand

0 1 9 31

In the single format, the integer bit of the significand is implicit and not stored. The
implied binary point is to the left of the first bit of the stored significand.

Double-precision binary floating-point numbers, FORM(FB64), are represented as
follows:

sign characteristic significand

0 1 12 63

In the double format, the integer bit of the significand is implicit and not stored. The
implied binary point is to the left of the first bit of the stored significand.

Extended-precision binary floating-point numbers, FORM(FB80), are represented as
follows:

sign characteristic significand

0 1 16 79

In the extended format, the integer bit of the significand is explicit and is the first bit in
the stored significand. If the integer bit is one, the number is normalized. If the integer
bit is zero, the number is denormalized. The implied binary point is to the left of the
second bit of the stored significand.

 Chapter 4. Data Declarations 99

<FLOAT>

OS/2 extended-precision binary floating-point numbers, FORM(FI128), are represented
as follows:

sign characteristic significand unused

0 1 16 12779

In the OS/2 extended format, the integer bit of the significand is explicit and is the first
bit in the stored significand. If the integer bit is one, the number is normalized. If the
integer bit is zero, the number is denormalized. The implied binary point is to the left of
the second bit of the stored significand.

The <PRECISION attribute> specifies the maximum number of significant digits of
interest in the field. When PRECISION is less than the implied length, the entire
significand is still used. Thus, PRECISION does not affect the format or value of the
stored floating-point field.

 Syntax
 <FLOAT> ::=
 FLOAT

<FLOAT attributes list>

 <FLOAT attributes list> ::=
 {

<FLOAT defaulted attributes list>

<FLOAT optional attributes list>

 }!

 <FLOAT defaulted attributes list> ::=
 {

 [<BYTRVS attribute>]

 [<COMPLEX attribute>]

 [<FIT attribute>]

 [<FORM attribute>]

 [<RADIX attribute>]

 }!

 <FLOAT optional attributes list> ::=
 {

 [<HELP attribute>]

 [<PRECISION attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 Syntax rules
None.

 General rules
1. The default and maximum precision that can be specified is determined by the fol-

lowing table:

100 SdU A Data Language Reference for DD&C

<FLOAT>

2. PRECISION must be less than or equal to the maximum precision of the form
selected.

3. The minimum alignment of a FLOAT field is byte alignment.

4. If COMPLEX(TRUE) is specified, the length of the field is double the length of the
same field specified with COMPLEX(FALSE).

Table 9. <FLOAT> maximum precision

FORM RADIX(2) RADIX(10)

FH32 24 binary digits 6 decimal digits

FH64 56 binary digits 16 decimal digits

FH128 112 binary digits 33 decimal digits

FB32 24 binary digits 7 decimal digits

FB64 53 binary digits 15 decimal digits

FB80 64 binary digits 19 decimal digits

FI128 64 binary digits 19 decimal digits

 Examples
1. Declare ElectronCharge to be a binary floating-point number represented with a

length of 64 bits.

ElectronCharge: FLOAT FORM(FB64);

2. A normalized single-precision hexadecimal FLOAT field:

x : FLOAT FORM(FH32);

The stored value of x is X'416ððððð'

6.ð is stored as a normalized FLOAT number.

s = sign = ð

C = characteristic = x'41' = 65

e = exponent = C - bias = 65 - 64 = 1

S = significand = x'6ððððð' = ð.375

x = (-1)\\ð \ ð.375 \ 16\\1 = 6.ð

3. A normalized single-precision binary FLOAT field:

x : FLOAT FORM(FB32);

The stored value of x is x'4ðCððððð' = 6.ð

s = sign = ð

C = characteristic = B'1ðððððð1' = X'81' = 129

e = exponent = C - bias = 129 - 127 = 2

since ð < C < 255, the number is normalized and

S = significand = 1 + B'1ðððððððððððððððððððððð' = 1 + ð.5 = 1.5

x = (-1)\\ð \ 1.5 \ 2\\2 = 1 \ 1.5 \ 4 = 6.ð

 Chapter 4. Data Declarations 101

<PACKED>

 <PACKED>

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of the PACKED type, a packed decimal numeric field.

1. A packed decimal field is a sequence of 4-bit strings representing decimal digits
(0-9) followed by an optional 4-bit sign position. If needed, the field is extended on
the left to a multiple of 8 bits length.

2. If a sign position exists, SIGNED(TRUE) is specified and the representation of the
PACKED field is defined by the <SGNLOC attribute> with the <SGNPLS attribute>
and <SGNMNS attribute> or the <SGNUNS attribute>.

3. If a sign position does not exist, SIGNED(FALSE) is specified and the whole field
represents the number.

4. The maximum number of significant digits in a PACKED field is specified by the
<PRECISION attribute>, but if PRECISION is even, the number of digits stored in a
PACKED field is one greater than PRECISION.

5. Numbers are stored in PACKED fields as integers. The actual value depends on
the <SCALE attribute>, as defined by:

Actual_Value = Stored_Integer_Value\(1ð\\(-SCALE))

If the scaling factor is negative, then the actual value is greater than the stored
value. For example, if decimal 123 is stored and it has a scaling factor of -3, then
the actual value is 123000. If the scaling factor is positive, then the actual value is
equal to or less than the stored value. For example, if decimal 123 is stored and it
has a scaling factor of 3, then .123 is the actual value.

 Syntax
 <PACKED> ::=
 PACKED

<PACKED attributes list>

 <PACKED attributes list> ::=
 {

<PACKED defaulted attributes list>

<PACKED optional attributes list>

 }!

 <PACKED defaulted attributes list> ::=
 {

 [<COMPLEX attribute>]

 [<CONSTRAINED attribute>]

 [<FIT attribute>]

[PRECISION({1..31 | <constant identifier>})]

[SCALE({-128..127 | <constant identifier>})]

<PACKED SIGNED attributes list>

 }!

102 SdU A Data Language Reference for DD&C

<PACKED>

 <PACKED SIGNED attributes list> ::=
 [

 SIGNED(TRUE)

<PACKED SGNLOC attributes list>

]! |

 [SIGNED(FALSE)]

 <PACKED SGNLOC attributes list> ::=
 SGNLOC(DGTLSTBYT)

 {

 [

 <SGNMNS attribute>

 <SGNPLS attribute>

]! |

 [<SGNUNS attribute>]

 }

 <PACKED optional attributes list> ::=
 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 Syntax rules
None.

 General rules
1. The length in bits of a PACKED field is specified as follows:

a. For SGNLOC(DGTLSTBYT) and an odd PRECISION, the length of the field in
bits is equal to (PRECISION+1)*4.

b. For SGNLOC(DGTLSTBYT) and an even PRECISION, the length of the field
in bits equals (PRECISION+2)*4.

c. If SIGNED(FALSE) is specified and the PRECISION is odd, the length of the
field in bits equals (PRECISION +1)*4.

d. If SIGNED(FALSE) is specified and the PRECISION is even, the length of the
field in bits equals PRECISION*4.

2. The minimum alignment of a PACKED field is byte alignment.

3. If COMPLEX(TRUE) is specified, the length of the field is double the length of the
same field specified with COMPLEX(FALSE).

 Examples
The following legend applies to the examples that follow:

p Precision digit
s Sign digit
o Overflow digit
f Fraction digit

 Chapter 4. Data Declarations 103

<PACKED>

1. A packed decimal field with scale, precision, and sign

X: PACKED PRECISION(7) SCALE(2);

2. A packed decimal field with negative scaling:

X: PACKED PRECISION(4) SCALE(-5);

The number stored is:

The value is:

17 \ 1ððððð = 17ððððð

3. A packed decimal field with positive scaling:

X: PACKED PRECISION(4) SCALE(5);

The number stored is:

The value is:

17 \ ð.ðððð1 = ð.ððð17

byte 0 1 2 3

p p p p p fp fp s

byte 0 1 2

o p p p p s

byte 0 1 2

0 0 0 1 7 C

byte 0 1 2

o p p p p s

byte 0 1 2

0 0 0 1 7 C

104 SdU A Data Language Reference for DD&C

<SEQUENCE>

 <SEQUENCE>

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of the SEQUENCE type, an ordered collection of fields and
constructors.

 Syntax
 <SEQUENCE> ::=
 SEQUENCE

<SEQUENCE attributes list>

 <BEGIN statement>

{<data declaration statement> | <SKIP statement>}...

 <END statement>

 <SEQUENCE attributes list> ::=
<SEQUENCE optional attributes list>

 <SEQUENCE optional attributes list> ::=
 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 Syntax rules
None.

 General rules
1. The elements of a SEQUENCE are mapped contiguously onto a bit string.

2. Unused bits required for proper alignment of certain data types are specified by the
<SKIP statement>.

3. The minimum alignment of an SEQUENCE field is byte alignment.

4. See “Identifiers” on page 7 for the rules that apply to the uniqueness of identifiers.

 Examples
1. Declare name to be a sequence with the components: lastname, firstname, and

initial .

name: SEQUENCE

 BEGIN;

lastname: CHAR LENGTH(12);

firstname: CHAR LENGTH(12);

 initial: CHAR;

 END;

The qualified names of the fields in name are:

name.lastname name.firstname name.initial

 Chapter 4. Data Declarations 105

<SEQUENCE>

2. Declare address to be a sequence with the components: street, city, state, and
zip.

address: SEQUENCE

 BEGIN;

street: CHAR LENGTH(3ð);

city: CHAR LENGTH(15);

state: CHAR LENGTH(2);

zip: CHAR LENGTH(1ð);

 END;

The qualified names of the fields in address are:

address.street address.city address.state address.zip

106 SdU A Data Language Reference for DD&C

<subtype instance >

 <subtype instance >

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of a user-defined subtype.

 Syntax
 <subtype instance> ::=
 <subtype identifier>

<subtype instance attributes list>

 <subtype instance attributes list> ::=
 {

<ARRAY attributes list> |

<ASIS attributes list> |

<BIT attributes list> |

<BITPRE attributes list> |

<BOOLEAN attributes list> |

<CASE attributes list> |

<CHAR attributes list> |

<CHARPRE attributes list> |

<CHARSFX attributes list> |

<BINARY attributes list> |

<ENUMERATION attributes list> |

<FLOAT attributes list> |

<PACKED attributes list> |

<SEQUENCE attributes list> |

<ZONED attributes list>

 }

 Syntax rules
The attribute list specified is of the ADL type specified in the <SUBTYPE statement>
associated with the <subtype instance> either directly or through inheritance.

 General rules
1. The attributes specified override the values of the attributes with the same key

words specified in the <SUBTYPE statement> identified by the <subtype identifier>.

2. Any attributes not specified in the <subtype instance> declaration are inherited from
the <SUBTYPE statement>.

3. If an <identifier> is specified for the <subtype instance> <data declaration
statement>, the <identifier> replaces the <identifier> specified in the <SUBTYPE
statement> in the fully-qualified names.

 Chapter 4. Data Declarations 107

<subtype instance >

 Examples
1. Declare a sequence that includes an instance of GameBoard :

piece: SUBTYPE OF ENUMERATION LENGTH(16)

(king, queen, knight, bishop, rook, pawn);

GameBoard: SUBTYPE OF ARRAY DMNLST(DMNSIZE(8), DMNSIZE(8))

 OF piece;

game: SEQUENCE

NOTE('This sequence defines the state of '

'a chess game that is being played.')

 BEGIN;

 move: ENUMERATION(white,black);

 incheck: BOOLEAN;

 checkmate: BOOLEAN;

castled: ARRAY DMNLST(DMNSIZE(2))

 OF BOOLEAN;

 ChessBoard: GameBoard;

 END;

2. Declare A to be a subtype of the array type with two dimensions.

A: SUBTYPE OF ARRAY DMNLST(DMNSIZE(4), DMNSIZE(7))

OF CHAR LENGTH(4);

Declare B to be an

instance of A with dimensions of 3 and 5:

B: A DMNLST(DMNSIZE(3), DMNSIZE(5));

Note: The whole DMNLST attribute can be overridden, but not the description of
individual dimensions.

108 SdU A Data Language Reference for DD&C

<ZONED>

 <ZONED>

The following shows the function, syntax, rules, and examples:

 Function
Declare an instance of the ZONED type, a zoned decimal numeric field.

1. A zoned decimal field is a sequence of bytes, each of which contains a represen-
tation of a decimal digit (0 to 9) in its rightmost 4 bits, and each of which normally
contains a zone encoding in its leftmost 4 bits. The zone encoding is typically that
which would cause the byte to print as a numeric character. For example, the digit
9 could be encoded as X'F9', which represents the value 9 and would print as the
character “9” in CCSID(500).

If the field is signed, one of several variations on the above occurs:

� The sign can consist of a separate byte, which appears at the left end or right
end of the numeric field, depending on the value specified for the <SGNLOC
attribute>. The sign is the character plus (+) or minus (-), as appropriate.

� The sign can be encoded in place of the zone portion of the leftmost or right-
most digit, also depending on the value specified for the <SGNLOC attribute>.

2. The encoding of all zones is specified by the <ZONENC attribute>.

3. If a sign position exists, SIGNED(TRUE) is specified and its representation is
defined by the <SGNLOC attribute>, <SGNPLS attribute>, and the <SGNMNS
attribute>.

4. If a sign position does not exist, SIGNED(FALSE) is specified and the whole field
represents the number.

5. The maximum number of significant digits in a ZONED field is specified by the
<PRECISION attribute>.

6. Numbers are stored in ZONED fields as integers. The actual value depends on
the <SCALE attribute>, as defined by:

Actual_Value = Stored_Integer_Value\(1ð\\(-SCALE))

If the scaling factor is negative, then the actual value is greater than the stored
value. For example, if decimal 123 is stored and it has a scaling factor of -3, then
the actual value is 123000. If the scaling factor is positive, then the actual value is
equal or less than the stored value. For example, if decimal 123 is stored and it
has a scaling factor of 3, then .123 is the actual value.

 Syntax
 <ZONED> ::=
 ZONED

<ZONED attributes list>

 Chapter 4. Data Declarations 109

<ZONED>

 <ZONED attributes list> ::=
 {

<ZONED defaulted attributes list>

<ZONED optional attributes list>

 }!

 <ZONED defaulted attributes list> ::=
 {

 [<COMPLEX attribute>]

 [<CONSTRAINED attribute>]

 [<FIT attribute>]

[PRECISION({1..31 | <constant identifier>})]

[SCALE({-128..127 | <constant identifier>})]

<ZONED SIGNED attributes list>

 [<ZONENC attribute>]

 }!

 <ZONED SIGNED attributes list> ::=
 [

 SIGNED(TRUE)

<ZONED SGNLOC attributes list>

]! |

 [SIGNED(FALSE)]

 <ZONED SGNLOC attributes list> ::=
 [

SGNLOC({ZONLSTBYT | ZONFRSBYT})

 <SGNMNS attribute>

 <SGNPLS attribute>

]! |

 [

SGNLOC({LSTBYT | FRSBYT})

 <CCSID attribute>

]!

 <ZONED optional attributes list> ::=
 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 Syntax rules
None.

 General rules
1. The length of a ZONED field in bits is:

a. PRECISION*8 if SIGNED(FALSE) is specified.

b. PRECISION*8 if SGNLOC(ZONFRSBYT) or SGNLOC(ZONLSTBYT) is speci-
fied.

c. (PRECISION*8)+8 if SGNLOC(FRSBYT) or SGNLOC(LSTBYT) is specified.

110 SdU A Data Language Reference for DD&C

<ZONED>

2. The minimum alignment of a ZONED field is byte alignment.

3. The <CCSID attribute> applies to the sign character only.

4. If COMPLEX(TRUE) is specified, the length of the field is double the length of the
same field specified with COMPLEX(FALSE).

 Examples
The following legend applies to the examples below:

p Precision nibble
z Zone nibble
s Sign nibble
f Fraction nibble

1. ZONED with scale, precision, and sign

X: ZONED PRECISION(4) SCALE(2);

2. ZONED with negative scale:

X: ZONED PRECISION(3) SCALE(-5);

The number stored is:

The value is:

17 \ 1ððððð = 17ððððð

3. ZONED with scale greater than precision

X: ZONED PRECISION(3) SCALE(5);

The number stored is:

byte 0 1 2 3

z p z p z fp s fp

byte 0 1 2

z p z p s p

byte 0 1 2

F 0 F 1 C 7

byte 0 1 2

z p z p s p

byte 0 1 2

F 0 F 1 C 7

 Chapter 4. Data Declarations 111

The value is:

17 \ ð.ðððð1 = ð.ððð17

4. A ZONED number of precision 3 and scale 0: The value of the number is positive
123:

 Equivalent

 Character

SIGNED SGNLOC SGNMNS SGNPLS ZONENC Hex Encoding Literal

FALSE X'F' X'F1F2F3' '123'

TRUE ZONLSTBYT X'D' X'C' X'F' X'F1F2C3' '12C'

TRUE ZONFRSBYT X'D' X'C' X'F' X'C1F2F3' 'A23'

TRUE LSTBYT X'F' X'F1F2F34E' '123+'

TRUE FRSBYT X'F' X'4EF1F2F3' '+123'

112 SdU A Data Language Reference for DD&C

 Chapter 5. Attributes

This chapter describes, in alphabetical order, the attributes that can be specified for
ADL data types.

 <BLNENC attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify how a BOOLEAN field is encoded.

 Syntax
 <BLNENC attribute> ::=

BLNENC ({<constant identifier> | <positive integer> })

 Syntax rules
The attribute value is the value of the ADL constant LSTBIT.

 General rules
LSTBIT

True - Last bit on
False - Last bit off

i ... i i i i x

Note:

x Boolean encoding
i Ignored bits

 Examples
None.

 Copyright IBM Corp. 1993, 1997 113

 <BYTRVS attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify whether a field is encoded in byte reversed order.

When data is byte reversed, each byte is moved to position ((M+1)-N) in the data repre-
sentation, where

� N is the original position of a given byte.
� M is the total length of the data representation in bytes.
� Bytes are numbered from index 1.

 Syntax
 <BYTRVS attribute> ::=

BYTRVS ({<boolean literal> | <constant identifier>})

 Syntax rules
If BYTRVS(<constant identifier>) is specified, the <constant identifier> must be that of a
<CONSTANT statement> whose value is a <boolean literal>.

 General rules
1. BYTRVS(TRUE) must not be specified for a field less than 8 bits in length.

2. For a field of 8 bits in length, BYTRVS(TRUE) does not affect the representation of
the field.

3. BYTRVS(TRUE) must not be specified for a field that is not a multiple of 8 bits.

 Examples
1. If the 16-bit value X'1234' is stored in byte-reversed format at a location called

NUM, its format is:

2. If the 32-bit value X'12345678' is stored in byte-reversed format at a location
called NUM, its format is:

NUM NUM plus 1

34 12

NUM NUM plus 1 NUM plus 2 NUM plus 3

78 56 34 12

114 SdU A Data Language Reference for DD&C

 <CCSID attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the coded character set identifier (CCSID) of a field, as defined by the IBM
Character Data Representation Architecture (CDRA).

 Syntax
 <CCSID attribute> ::=
 CCSID

 ({

<positive integer> |

<constant identifier> |

 <qualified identifier>

 })

 Syntax rules
1. The range of valid values for the <CCSID attribute> is 0 to 65535.

2. The hierarchy of CCSID attributes is as follows (low to high):

� A <data declaration statement>

� If the <data declaration statement> is a subtype instance, the referenced
subtype declaration. This can be a chain of subtype declarations if the first
subtype declaration is itself a subtype instance.

� A PLAN parameter specification

� A <DEFAULT statement> of the data type.

� The system CCSID, during runtime of the Conversion Plan Executor compo-
nent.

If, according to this hierarchy, the first CCSID attribute found is in the <data decla-
ration statement> of either the data type itself or a subtype instance and is equal to
zero, then the remaining CCSID attributes found in the subtype instance chain of
the data type are not evaluated. Starting with the PLAN parameter specification,
the remaining hierarchy of CCSID attributes remains unchanged.

3. If CCSID(<constant identifier>) is specified, the <constant identifier> must be that of
a <CONSTANT statement> with a value that is in the range of the valid values of
the attribute.

4. If CCSID(<qualified identifier>) is specified, the <identifier> must name a field from
which the value of the attribute is taken. The value must be one of the following:

� A BINARY field with the attributes SCALE(0) and COMPLEX(FALSE).
� A PACKED field with the attributes SCALE(0) and COMPLEX(FALSE).
� A ZONED field with the attributes SCALE(0) and COMPLEX(FALSE).

 Chapter 5. Attributes 115

 General rules
1. If CCSID(0) is specified for a lower level entity in the hierarchy, the CCSID attribute

is inherited from the next higher level of the hierarchy.

2. If CCSID(65535) is specified, the encoding of a string is undefined.

 Examples
Declare poem to be a character string in CCSID 500:

poem: CHAR LENGTH(4ð) CCSID(5ðð);

116 SdU A Data Language Reference for DD&C

 <COMPLEX attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify whether a numeric field consists of two adjacent fields with the same attributes,
with the first field representing the real component of the complex number, and the
second field representing the coefficient of the imaginary component of the complex
number.

number

Imaginary PartReal Part

 Syntax
 <COMPLEX attribute> ::=
 COMPLEX

({<boolean literal> | <constant identifier>})

 Syntax rules
If COMPLEX(<constant identifier>) is specified, the <constant identifier> must be that of
a <CONSTANT statement> whose value is a <boolean literal>.

 General rules
If COMPLEX(TRUE) is specified, all attributes of the number (such as PRECISION and
LENGTH) apply to both the Real and Imaginary parts of the complex number sepa-
rately.

 Examples
Declare number to be a fixed binary field that is complex.

number: BINARY PRECISION(15) COMPLEX(TRUE);

 Chapter 5. Attributes 117

 <CONSTRAINED attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify whether the values that can be assigned to a field must be constrained to the
range implied by the <RADIX attribute>, <SCALE attribute>, and <PRECISION
attribute> of the field.

 Syntax
 <CONSTRAINED attribute> ::=
 CONSTRAINED

({<boolean literal> | <constant identifier>})

 Syntax rules
1. If CONSTRAINED(<constant identifier>) is specified, the <constant identifier> must

be that of a <CONSTANT statement> whose value is a <boolean literal>.

2. If CONSTRAINED(TRUE) is specified, the field value must be within the range
implied by the <RADIX attribute>, <PRECISION attribute>, and the <SCALE
attribute>.

3. IF CONSTRAINED(FALSE) is specified, then any value that can be represented by
the field is valid, and all other values are made to fit the field. Truncation of the
most significant digits, rounding or truncation of the least significant digits, or both,
can occur.

 General rules
None.

 Examples
1. Declare a fixed binary field to be constrained.

number: BINARY PRECISION(2) CONSTRAINED(TRUE) RADIX(1ð);

The values of the number are constrained to the range -99 to 99.

2. Declare a constrained field:

X: BINARY RADIX(1ð) LENGTH(16) PRECISION(3) CONSTRAINED(TRUE);

only values in the range -999 to +999 can be assigned to the field, regardless of
the fact that a signed binary field 16 bits in length can actually represent values in
the range -32768 to +32767

3. Declare a constrained field:

X: PACKED PRECISION(2) CONSTRAINED(TRUE);

only values in the range -99 to +99 can be assigned to the field, regardless of the
fact that storage is available for an additional significant digit.

118 SdU A Data Language Reference for DD&C

 <DMNHIGH attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the highest subscript value for a dimension of an array.

 Syntax
 <DMNHIGH attribute> ::=
 DMNHIGH

 ({

<signed integer> |

<constant identifier> |

 <qualified identifier>

 })

 Syntax rules
1. The range of valid values for the <DMNHIGH attribute> is <min31> to <max31>.

2. If DMNHIGH(<constant identifier>) is specified, the <constant identifier> must be
that of a <CONSTANT statement> whose value is in the range of the valid values
of the attribute.

3. If DMNHIGH(<qualified identifier>) is specified, the <qualified identifier> must name
a field from which the value of the attribute is taken. The value must be greater
than zero and one of the following fields:

� A BINARY field with the attributes SCALE(0) and COMPLEX(FALSE).
� A PACKED field with the attributes SCALE(0) and COMPLEX(FALSE).
� A ZONED field with the attributes SCALE(0) and COMPLEX(FALSE).

 General rules
None.

 Examples
Refer to the examples under “<ARRAY>” on page 61.

 Chapter 5. Attributes 119

 <DMNLOW attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the lowest subscript value for a dimension of an array.

 Syntax
 <DMNLOW attribute> ::=
 DMNLOW

 ({

<signed integer> |

<constant identifier> |

 <qualified identifier>

 })

 Syntax rules
1. The range of valid values for the <DMNLOW attribute> is <min31> to <max31>.

2. If DMNLOW(<constant identifier>) is specified, the <constant identifier> must be
that of a <CONSTANT statement> whose value is in the range of the valid values
of the attribute.

3. If DMNLOW(<qualified identifier>) is specified, the <identifier> must name a field
from which the value of the attribute is taken. The value must be one of the fol-
lowing:

� A BINARY field with the attributes SCALE(0) and COMPLEX(FALSE).
� A PACKED field with the attributes SCALE(0) and COMPLEX(FALSE).
� A ZONED field with the attributes SCALE(0) and COMPLEX(FALSE).

 General rules
None.

 Examples
Refer to the examples under “<ARRAY>” on page 61.

120 SdU A Data Language Reference for DD&C

 <DMNLST attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the attributes of each dimension of an array.

 Syntax
 <DMNLST attribute> ::=

DMNLST (<dimension> [{, <dimension>}...])

 <dimension> ::=
 {

 [<DMNLOW attribute>]

 {

<DMNHIGH attribute> |

 <DMNSIZE attribute>

 }

 [<DMNMAX attribute>]

 }!

 Syntax rules
1. The <DMNMAX attribute> must be specified if either the <DMNSIZE attribute> is

specified and is variable, or both the <DMNLOW attribute> and <DMNHIGH
attribute> are specified and at least one of them is variable.

2. The <DMNHIGH attribute> must be greater than or equal to the <DMNLOW
attribute>.

3. The number of elements in an ARRAY, implied by DMNHIGH and DMNLOW, must
be less than or equal to DMNMAX.

4. The number of elements in an ARRAY, specified by DMNSIZE, must be less than
or equal to DMNMAX.

5. The value of (DMNHIGH - DMNLOW + 1) must be less than or equal to <max31>.

 General rules
None.

 Examples
Refer to the examples under “<ARRAY>” on page 61.

 Chapter 5. Attributes 121

 <DMNMAX attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the maximum number of elements in a dimension of an array.

 Syntax
 <DMNMAX attribute> ::=

DMNMAX({<positive integer> | <constant identifier>})

 Syntax rules
1. The range of valid values is 1 to <max31>.

2. If DMNMAX(<constant identifier>) is specified, the <constant identifier> must be
that of a <CONSTANT statement> whose value is in the range of the valid values
of the attribute.

 General rules
None.

 Examples
Refer to the examples under “<ARRAY>” on page 61.

122 SdU A Data Language Reference for DD&C

 <DMNSIZE attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the number of elements in a dimension of an array.

 Syntax
 <DMNSIZE attribute> ::=
 DMNSIZE

 ({

<signed integer> |

<constant identifier> |

 <qualified identifier>

 })

 Syntax rules
1. The range of valid values is 0 to <max31>.

2. If DMNSIZE(<constant identifier>) is specified, the <constant identifier> must be
that of a <CONSTANT statement> whose value is in the range of the valid values
of the attribute.

3. If a DMNSIZE(<qualified identifier>) is specified, the <identifier> must name a field
from which the value of the attribute is taken. The value must be one of the fol-
lowing:

� A BINARY field with the attributes SCALE(0) and COMPLEX(FALSE).
� A PACKED field with the attributes SCALE(0) and COMPLEX(FALSE).
� A ZONED field with the attributes SCALE(0) and COMPLEX(FALSE).

 General rules
None.

 Examples
Refer to the examples under “<ARRAY>” on page 61.

 Chapter 5. Attributes 123

 <FIT attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify how to assign a numeric value into a target field.

 Syntax
 <FIT attribute> ::=

FIT ({<constant identifier> | <positive integer> })

 Syntax rules
The attribute value must be the value of the ADL constant ROUND, TRUNCATE, or
EXACT:

1. If FIT(ROUND) is specified, the least significant binary or decimal digits of the
value are rounded to fit.

2. If FIT(TRUNCATE) is specified, the least significant binary or decimal digits of the
value are truncated to fit.

3. If FIT(EXACT) is specified, there is no loss of the least significant binary or decimal
digits.

 General rules
None.

 Examples
Declare a 32-bit binary number which should be truncated to fit.

x: BINARY FIT(TRUNCATE);

124 SdU A Data Language Reference for DD&C

 <FORM attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the form of a floating point number. See “<FLOAT>” on page 96 for a
description of these formats.

 Syntax
 <FORM attribute> ::=

FORM ({<constant identifier> | <positive integer> })

 Syntax rules
The attribute value must be the value of the ADL constant FB32, FB64, FB80, FH32,
FH64, FH128 or FI128.

 General rules
None.

 Examples
Declare a 32-bit binary floating-point number.

x: FLOAT FORM(FB32);

 Chapter 5. Attributes 125

 <HELP attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify an extended description of an entity for presentation to end users.

 Syntax
 <HELP attribute> ::=
 HELP

 ({

<character literal> |

<encoded hex literal> |

 <constant identifier>

 })

 Syntax rules
1. The maximum length of HELP is <max15> bytes.

2. If HELP(<constant identifier>) is specified, the <constant identifier> must be that of
a <CONSTANT statement> whose value is a <character literal> or <encoded hex
literal>.

 General rules
None.

 Examples
None.

126 SdU A Data Language Reference for DD&C

 <HIGH attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the integer value that is associated with the last position of a character string.

 Syntax
 <HIGH attribute> ::=
 HIGH

 ({

<positive integer> |

<constant identifier> |

 <qualified identifier>

 })

 Syntax rules
1. The range of valid values is 1 to <max31>.

2. If HIGH(<qualified identifier>) is specified, the <identifier> must name a field from
which the value of the attribute is taken. The value must be one of the following:

� A BINARY field with the attributes SCALE(0) and COMPLEX(FALSE).
� A PACKED field with the attributes SCALE(0) and COMPLEX(FALSE).
� A ZONED field with the attributes SCALE(0) and COMPLEX(FALSE).

3. If HIGH(<constant identifier>) is specified, the <constant identifier> must be that of
a <CONSTANT statement> whose value is in the range of the valid values of the
attribute.

 General rules
None.

 Examples
See the examples under “<CHAR>” on page 85.

 Chapter 5. Attributes 127

 <JUSTIFY attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify whether a character string assigned to a CHAR field is to be padded or trun-
cated on the left or on the right.

 Syntax
 <JUSTIFY attribute> ::=

JUSTIFY ({<constant identifier> | <positive integer> })

 Syntax rules
1. The attribute value must be the value of the ADL constant LEFT or RIGHT.

2. If JUSTIFY(LEFT) is specified, padding or truncation occurs on the right.

3. If JUSTIFY(RIGHT) is specified, padding or truncation occurs on the left.

 General rules
None.

 Examples

 Source Target
 Length Content Length JUSTIFY(LEFT) JUSTIFY(RIGHT)

 3 'ABC' 4 'ABC ' ' ABC'

3 'AB ' 4 'AB ' ' AB '

3 ' BC' 4 ' BC ' ' BC'

 4 'ABCD' 4 'ABCD' 'ABCD'

 4 ' BCD' 4 ' BCD' ' BCD'

 4 'ABC ' 4 'ABC ' 'ABC '

 5 'ABCDE' 4 'ABCD' 'BCDE'

 5 ' BCDE' 4 ' BCD' 'BCDE'

 5 'ABCD ' 4 'ABCD' 'BCD '

128 SdU A Data Language Reference for DD&C

 <LENGTH attribute >

The following shows the function, syntax, rules, and examples:

 Function
If the <LENGTH attribute> is used with data types or default statements, it specifies the
maximum number of units occupied by the field. The unit of measurement varies
according to the field being described.

If the <LENGTH attribute> is used with input plan parameters, it specifies the actual
buffer size passed to the Conversion Plan Executor component.

 Syntax
 <LENGTH attribute> ::=
 LENGTH

 ({

<signed integer> |

<constant identifier> |

<qualified identifier> |

 \

 })

 Syntax rules
1. The range of valid values for the <LENGTH attribute> depends on the ADL type

being described.

2. The length in bits of each unit of an ASIS, CHAR, CHARPRE, or CHARSFX field is
specified by the UNITLEN attribute.

3. The length in bits of each unit of a BINARY, BIT, FLOAT, BOOLEAN, or ENUMER-
ATION field is the total number of bits occupied by the representation of the field.

4. If the <LENGTH attribute> is specified with an input plan parameter, the length is
specified in bytes.

5. If LENGTH(<constant identifier>) is specified, the <constant identifier> must be that
of a <CONSTANT statement> whose value is in the range of the valid lengths of
the data type.

6. If LENGTH(<qualified identifier>) is specified, the <identifier> must name a variable
from which the value of the attribute is taken. The value must be one of the fol-
lowing:

� A BINARY field with the attributes SCALE(0) and COMPLEX(FALSE).
� A PACKED field with the attributes SCALE(0) and COMPLEX(FALSE).
� A ZONED field with the attributes SCALE(0) and COMPLEX(FALSE).

7. LENGTH(*), LENGTH(-1), or LENGTH with a <constant identifier> having the value
-1 can be specified only in an ASIS, BIT, or CHAR field, where the length is a
multiple of the UNITLEN value from the position of the field in the data to the end
of the data.

 Chapter 5. Attributes 129

 General rules
None.

 Examples
None.

130 SdU A Data Language Reference for DD&C

 <LOW attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the integer value that is associated with the first position of a character string.

 Syntax
 <LOW attribute> ::=
 LOW

 ({

<positive integer> |

<constant identifier> |

 <qualified identifier>

 })

 Syntax rules
1. The range of valid values is 1 to <max31>.

2. If LOW(<qualified identifier>) is specified, the <identifier> must name a field from
which the value of the attribute is taken. The value must be one of the following:

� A BINARY field with the attributes SCALE(0) and COMPLEX(FALSE).
� A PACKED field with the attributes SCALE(0) and COMPLEX(FALSE).
� A ZONED field with the attributes SCALE(0) and COMPLEX(FALSE).

3. If LOW(<constant identifier>) is specified, the <constant identifier> must be that of a
<CONSTANT statement> whose value is in the range of the valid values of the
attribute.

 General rules
None.

 Examples
See the examples under “<CHAR>” on page 85.

 Chapter 5. Attributes 131

 <MAXALC attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify whether space for the maximum number of units occupied by a field is allo-
cated.

 Syntax
 <MAXALC attribute> ::=

MAXALC ({<boolean literal> | <constant identifier>})

 Syntax rules
1. If MAXALC(<constant identifier>) is specified, the <constant identifier> must be that

of a <CONSTANT statement> whose value is a <boolean literal>.

2. If MAXALC(TRUE) is specified, subsequent data may be aligned on the proper
boundary of a field specified by the field, by using the <SKIP statement> following
the data item.

 General rules
Data declaration statements that are contained within a constructor or SUBTYPE state-
ment can only contain one variable-length field, which must be positioned at the end of
the constructor or SUBTYPE statement. Therefore, MAXALC(FALSE) is allowed for
this last field and all constructors that include this field. For all other fields,
MAXALC(TRUE) is required.

 Examples
None.

132 SdU A Data Language Reference for DD&C

 <MAXLEN attribute >

The following shows the function, syntax, rules, and examples:

 Function
If the <MAXLEN attribute> is used with data types or default statements, it specifies the
maximum number of units occupied by the field. The unit of measurement varies
according to the type of field being described.

If the <MAXLEN attribute> is used with output plan parameters, it specifies the actual
buffer size passed to the Conversion Plan Executor component.

 Syntax
 <MAXLEN attribute> ::=
 MAXLEN

 ({

<positive integer> |

<constant identifier> |

 <qualified identifier>

 })

 Syntax rules
1. The range of valid values for the <MAXLEN attribute> depends on the ADL type

being described.

2. The length in bits of each unit of an ASIS, CHAR, CHARPRE, or CHARSFX field is
specified by the UNITLEN attribute.

3. The unit of measurement for BIT and BITPRE fields is bits.

4. If the <MAXLEN attribute> is specified with an output plan parameter, the length is
specified in bytes.

5. If MAXLEN(<constant identifier>) is specified, the <constant identifier> must be that
of a <CONSTANT statement> whose value is in the range of the valid values of the
attribute.

6. The <MAXLEN attribute> does not include the prefix for CHARPRE or BITPRE
fields.

7. The <MAXLEN attribute> includes the suffix for CHARSFX fields.

8. If MAXLEN(<qualified identifier>) is specified, the <qualified identifier> must name a
field from which the value of the attribute is taken. The value must be one of the
following:

� A BINARY field with the attributes SCALE(0) and COMPLEX(FALSE).
� A PACKED field with the attributes SCALE(0) and COMPLEX(FALSE).
� A ZONED field with the attributes SCALE(0) and COMPLEX(FALSE).

 General rules
None.

 Chapter 5. Attributes 133

 Examples
None.

 <NOTE attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify programming commentary about an ADL entity.

 Syntax
 <NOTE attribute> ::=
 NOTE

 ({

<character literal> |

<encoded hex literal> |

 <constant identifier>

 })

 Syntax rules
1. The maximum length of the <NOTE attribute> is <max15> bytes.

2. If NOTE(<constant identifier>) is specified, the <constant identifier> must be that of
a <CONSTANT statement> whose value is a <character literal> or an <encoded
hex literal>.

 General rules
None.

 Examples
None.

134 SdU A Data Language Reference for DD&C

 <PREBYTRVS attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify whether the length prefix of a CHARPRE or BITPRE field is byte reversed in
memory.

See “<BYTRVS attribute>” on page 114.

 Syntax
 <PREBYTRVS attribute> ::=

PREBYTRVS ({<boolean literal> | <constant identifier>})

 Syntax rules
If PREBYTRVS(<constant identifier>) is specified, the <constant identifier> must be that
of a <CONSTANT statement> whose value is a <boolean literal>.

 General rules
None.

 Examples
None.

 Chapter 5. Attributes 135

 <PRECISION attribute >

The following shows the function, syntax, rules, and examples:

 Function
For BINARY, PACKED, and ZONED fields, specify the maximum number of significant
binary or decimal digits of interest in a field.

For FLOAT fields, specify the maximum number of significant digits of interest in a field.
The <PRECISION attribute> does not affect the form or value of the stored floating-
point number.

 Syntax
 <PRECISION attribute> ::=
 PRECISION

({<positive integer> | <constant identifier>})

 Syntax rules
1. The <PRECISION attribute> is specified in:

� bits for BINARY and FLOAT fields for which RADIX(2) is specified or implied.

� decimal digits for BINARY, FLOAT, PACKED, and ZONED fields for which
RADIX(10) is specified or implied.

2. If PRECISION(<constant identifier>) is specified, the <constant identifier> must be
that of a <CONSTANT statement> whose value is in the range of valid value of the
attribute for the data type.

 General rules
None.

 Examples
1. Declare number to be an unsigned ZONED field with a precision of 6 significant

digits:

number: ZONED PRECISION(6) SIGNED(FALSE);

2. Declare electron to be a floating-point binary field represented with a precision of
52 significant bits:

electron: FLOAT FORM(FB64) PRECISION(52);

3. Declare population to be an unsigned BINARY field represented with a precision
of 32 significant bits:

population: BINARY SIGNED(FALSE) PRECISION(32);

4. Declare weight to be a PACKED field represented in 5 significant decimal digits.

weight: PACKED PRECISION(5);

136 SdU A Data Language Reference for DD&C

 <PRELEN attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the length in bits of the BINARY prefix that specifies the length of a CHARPRE
or BITPRE field.

 Syntax
 <PRELEN attribute> ::=

PRELEN ({8 | 16 | 32 | <constant identifier>})

 Syntax rules
If PRELEN(<constant identifier>) is specified, the <constant identifier> must be that of a
<CONSTANT statement> whose value is 8, 16, or 32.

 General rules
None.

 Examples
None.

 Chapter 5. Attributes 137

 <PRESIGNED attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify whether the length prefix of a BITPRE or CHARPRE field includes a sign posi-
tion in its representation.

 Syntax
 <PRESIGNED attribute> ::=

PRESIGNED ({<boolean literal> | <constant identifier>})

 Syntax rules
1. If PRESIGNED(<constant identifier>) is specified, the <constant identifier> must be

that of a <CONSTANT statement> whose value is a <boolean literal>.

2. If PRESIGNED(TRUE) is specified, a position for the sign exists within the repre-
sentation.

3. If PRESIGNED(FALSE) is specified, a position for the sign does NOT exist within
the representation.

 General rules
None.

 Examples
None.

138 SdU A Data Language Reference for DD&C

 <RADIX attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the number system base assumed by the <SCALE attribute> and <PRECISION
attribute> for a BINARY field. The <RADIX attribute>, together with the <PRECISION
attribute> and the <SCALE attribute> determines the range of values that can be stored
for a field.

Specify the number system base assumed by the <PRECISION attribute> of a FLOAT
field.

 Syntax
 <RADIX attribute> ::=

RADIX ({2 | 1ð | <constant identifier>})

 Syntax rules
If RADIX(<constant identifier>) is specified, the <constant identifier> must be that of a
<CONSTANT statement> whose value is 2 or 10.

 General rules
None.

 Examples
None.

 Chapter 5. Attributes 139

 <SCALE attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the scaling factor of a fixed-point numeric field.

The <SCALE attribute> along with the <RADIX attribute> determines the scaling factor
to use to find the actual value of a number. The scaling factor is:

RADIX\\-SCALE

Note: <PACKED> and <ZONED> fields are implicitly radix 10 numbers.

 Syntax
 <SCALE attribute> ::=

SCALE({<signed integer> | <constant identifier>})

 Syntax rules
1. The <SCALE attribute> is specified in:

� bits for BINARY fields for which RADIX(2) is specified or implied.

� decimal digits for BINARY, FLOAT, PACKED, and ZONED fields for which
RADIX(10) is specified or implied.

2. The range of valid values for the <SCALE attribute> is <min7> to <max7>.

3. If SCALE(<constant identifier>) is specified, the <constant identifier> must be that
of a <CONSTANT statement> whose value is in the range <min7> to <max7>.

 General rules
None.

 Examples
None.

140 SdU A Data Language Reference for DD&C

 <SGNCNV attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify how the sign of a BINARY field or an ENUMERATION field is to be determined.

 Syntax
 <SGNCNV attribute> ::=

SGNCNV ({<constant identifier> | <positive integer> })

 Syntax rules
The attribute value is the value of the ADL constant ALGEBRAIC or LOGICAL.

 General rules
1. If the source field and the target field are both signed, then ignore the target field's

<SGNCNV attribute>, and set the sign of the target field to the same sign as the
source field.

2. If the source field and the target field are both unsigned, then ignore the target
field's <SGNCNV attribute>.

3. If the source field is signed and the target field is unsigned, then:

a. If SGNCNV(ALGEBRAIC) is specified for the target field, then

� Assign the absolute value of the source field to the target field.

� If the source field is negative, exception 12—Assignment of negative
value to unsigned field occurs.

b. If SGNCNV(LOGICAL) is specified for the target field, then

1) If the target field is the same length as the source field, do a bit copy of
the source field to the target field.

2) If the target field is longer than the source field, do a bit copy of the
source field to the low-order portion of the target field and replicate the
sign bit of the source in the remaining high-order bits of the target field.

3) If the target field is shorter than the source field, bit copy the low order
bits to the target field.

4. If the source field is unsigned and the target field is signed, then:

a. If SGNCNV(ALGEBRAIC) is specified for the target field, assume that the
source field is positive and set the sign of the target field to positive.

b. If SGNCNV(LOGICAL) is specified for the target field, then

1) If target field is the same length as source field, do a bit copy of target to
source (that is, preserve the bit pattern).

 Chapter 5. Attributes 141

2) If target field is longer than the source field, extend the source field with
zeros to the length of the target field, and then perform a bit copy to the
target.

3) If target field is shorter than the source field, bit copy the low-order bits to
the target field.

Signed to unsigned with SGNCNV(LOGICAL):

1. Given the following ADL declaration and assignment statements,

x1: BINARY LENGTH(32) PRECISION(31) SIGNED(TRUE);

y1: BINARY LENGTH(32) PRECISION(32) SIGNED(FALSE) SGNCNV(LOGICAL);

x1 <- -1;

y1 <- x1;

then,

x1 = x'FFFFFFFF',

y1 = x'FFFFFFFF', and

y1 = 4294967295 as an unsigned integer.

2. Given the following ADL declaration and assignment statements,

x1: BINARY LENGTH(32) PRECISION(31) SIGNED(TRUE);

y1: BINARY LENGTH(8) PRECISION(8) SIGNED(FALSE) SGNCNV(LOGICAL);

x1 <- -1;

y1 <- x1;

then,

x1 = x'FFFFFFFF',

y1 = x'FF', and

y1 = 255 as an unsigned integer.

3. Given the following ADL declaration and assignment statements,

x1: BINARY LENGTH(8) PRECISION(7) SIGNED(TRUE);

y1: BINARY LENGTH(32) PRECISION(32) SIGNED(FALSE) SGNCNV(LOGICAL);

x1 <- -128 as signed integer

y1 <- x1;

then,

x1 = x'8ð',

y1 = x'FFFFFF8ð', and

y1 = 4294967168 as an unsigned integer.

4. Given the following ADL declaration and assignment statements,

x1: BINARY LENGTH(32) PRECISION(31) SIGNED(TRUE);

y1: BINARY LENGTH(8) PRECISION(8) SIGNED(FALSE) SGNCNV(LOGICAL);

x1 <- -128;

y1 <- x1;

then,

x1 = x'FFFFFF8ð',

y1 = x'8ð', and

y1 = 128 as an unsigned integer.

142 SdU A Data Language Reference for DD&C

Unsigned to signed with SGNCNV(LOGICAL):

1. Given the following ADL declaration and assignment statements,

x1: BINARY LENGTH(32) PRECISION(32) SIGNED(FALSE);

y1: BINARY LENGTH(32) PRECISION(31) SIGNED(TRUE) SGNCNV(LOGICAL);

x1 <- 4294967295;

y1 <- x1;

then,

x1 = x'FFFFFFFF',

y1 = x'FFFFFFFF', and

y1 = -1 as a signed integer.

2. Given the following ADL declaration and assignment statements,

x1: BINARY LENGTH(32) PRECISION(32) SIGNED(FALSE);

y1: BINARY LENGTH(8) PRECISION(7) SIGNED(TRUE) SGNCNV(LOGICAL);

x1 <- 4294967295;

y1 <- x1;

then,

x1 = x'FFFFFFFF',

y1 = x'FF', and

y1 = -1 as a signed integer.

3. Given the following ADL declaration and assignment statements,

x1: BINARY LENGTH(8) PRECISION(8) SIGNED(FALSE);

y1: BINARY LENGTH(32) PRECISION(31) SIGNED(TRUE) SGNCNV(LOGICAL);

x1 <- 255;

y1 <- x1;

then,

x1 = x'FF',

y1 = x'ððððððFF', and

y1 = 255 as a signed integer.

4. Given the following ADL declaration and assignment statements,

x1: BINARY LENGTH(32) PRECISION(32) SIGNED(FALSE);

y1: BINARY LENGTH(8) PRECISION(7) SIGNED(TRUE) SGNCNV(LOGICAL);

x1 <- 4294967168;

y1 <- x1;

then,

x1 = x'FFFFFF8ð',

y1 = x'8ð', and

y1 = -128 as a signed integer.

 Chapter 5. Attributes 143

 <SGNLOC attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the location of the sign in the representation of a PACKED or ZONED number.

 Syntax
 <SGNLOC attribute> ::=

SGNLOC ({<constant identifier> | <positive integer> })

 Syntax rules
The attribute value is the value of the ADL constant DGTLSTBYT, ZONFRSBYT,
ZONLSTBYT, FRSBYT, or LSTBYT.

1. For PACKED fields, the following can be specified:

� DGTLSTBYT - last nibble of last byte.

2. For ZONED fields, the following can be specified:

� ZONLSTBYT - first nibble of last byte.

� ZONFRSBYT - first nibble of first byte.

� FRSBYT - first byte, containing a character '+' or '-' in the specified CCSID.

byte 0 1 2 3

D D D D D D D S

Note:

D Digit (4 bits)
S Sign (4 bits)

byte 0 1 2 3

Z D Z D Z D S D

Note:

Z Zone (4 bits)
D Digit (4 bits)
S Sign (4 bits)

byte 0 1 2 3

S D Z D Z D Z D

Note:

Z Zone (4 bits)
D Digit (4 bits)
S Sign (4 bits)

144 SdU A Data Language Reference for DD&C

� LSTBYT - last byte, containing a character '+' or '-' in the specified CCSID.

byte 0 1 2 3

ssss ssss Z D Z D Z D

Note:

Z Zone (4 bits)
D Digit (4 bits)
s Sign according to CCSID

byte 0 1 2 3

Z D Z D Z D ssss ssss

Note:

Z Zone (4 bits)
D Digit (4 bits)
s Sign according to CCSID

 General rules
None.

 Examples
None.

 Chapter 5. Attributes 145

 <SGNMNS attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the hexidecimal values that can be used to represent the sign of a negative
number when either:

ZONED fields are specified, if SGNLOC(ZONLSTBYT, ZONFRSBYT), or
PACKED fields are specified, if SGNLOC(DGTLSTBYT).

 Syntax
 <SGNMNS attribute> ::=

SGNMNS ({<hex literal> | <constant identifier>})

 Syntax rules
1. The values specified for the <SGNPLS attribute>, <SGNMNS attribute>, and

<SGNUNS attribute> must be mutually exclusive.

2. The first <hex digit> specified in the <hex literal> is the preferred sign. The pre-
ferred sign is the sign generated by arithmetic operations of a given system.

3. <hex literal> has a maximum length of 8 nibbles (32 bits).

4. If SGNMNS(<constant identifier>) is specified, the <constant identifier> must be that
of a <CONSTANT statement> whose value is a <hex literal>.

 General rules
None.

 Examples
None.

146 SdU A Data Language Reference for DD&C

 <SGNPLS attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the hexidecimal values that can be used to represent the sign of a positive
number when either:

ZONED fields are specified, if SGNLOC(ZONLSTBYT, ZONFRSBYT), or
PACKED fields are specified, if SGNLOC(DGTLSTBYT).

 Syntax
 <SGNPLS attribute> ::=

SGNPLS ({<hex literal> | <constant identifier>})

 Syntax rules
1. The values specified for the <SGNPLS attribute>, <SGNMNS attribute>, and

<SGNUNS attribute> must be mutually exclusive.

2. The first <hex digit> specified in the <hex literal> is the preferred sign. The pre-
ferred sign is the sign generated by arithmetic operations of a given system.

3. <hex literal> has a maximum length of 8 nibbles (32 bits).

4. If SGNPLS(<constant identifier>) is specified, the <constant identifier> must be that
of a <CONSTANT statement> whose value is a <hex literal>.

 General rules
None.

 Examples
None.

 Chapter 5. Attributes 147

 <SGNUNS attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the hexadecimal values that can be used when no sign has been specified, for
PACKED numbers with a sign position, if SGNLOC(DGTLSTBYT) specified.

 Syntax
 <SGNUNS attribute> ::=

SGNUNS ({<hex literal> | <constant identifier>})

 Syntax rules
1. The values specified for the <SGNPLS attribute>, <SGNMNS attribute>, and

<SGNUNS attribute> must be mutually exclusive.

2. The first <hex digit> specified in the <hex literal> is the preferred sign. The pre-
ferred value is the value generated by arithmetic operations of a given system.

3. <hex literal> has a maximum length of 8 nibbles (32 bits).

4. If (<constant identifier>) is specified, the <constant identifier> must be that of a
<CONSTANT statement> whose value is a <hex literal>.

 General rules
None.

 Examples
None.

148 SdU A Data Language Reference for DD&C

 <SIGNED attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify whether a BINARY, PACKED, or ZONED field includes a sign position in its
representation.

 Syntax
 <SIGNED attribute> ::=

SIGNED ({<boolean literal> | <constant identifier>})

 Syntax rules
1. If SIGNED(<constant identifier>) is specified, the <constant identifier> must be that

of a <CONSTANT statement> whose value is a <boolean literal>.

2. If SIGNED(TRUE) is specified, a position for the sign exists within the represen-
tation.

3. If SIGNED(FALSE) is specified, a position for the sign does NOT exist within the
representation.

 General rules
None.

 Examples
None.

 Chapter 5. Attributes 149

 <SKIP attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify how many bits are to be skipped before the beginning of each element of an
array.

 Syntax
 <SKIP attribute> ::=

SKIP ({<positive integer> | <constant identifier>})

 Syntax rules
1. The range of valid values for the <SKIP attribute> is 0 to <max31>.

2. The <SKIP attribute> does not apply to the first element of an ARRAY.

3. The <SKIP attribute> specifies the number of bits skipped before each succeeding
element of the ARRAY.

4. If SKIP(<constant identifier>) is specified, the <constant identifier> must be that of a
<CONSTANT statement> whose value is in the range of the valid values of the
attribute.

 General rules
None.

 Examples
Declare an array that contains 3 slack bits before each element:

element 1

element 2

skip

0byte 1 2 3

skip

element 3
arr

arr: ARRAY SKIP(3) DMNLST(DMNLOW(1) DMNSIZE(3))
OF BIT LENGTH(5);

150 SdU A Data Language Reference for DD&C

 <TITLE attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify a short description of an entity.

 Syntax
 <TITLE attribute> ::=
 TITLE

 ({

<character literal> |

<encoded hex literal> |

 <constant identifier>

 })

 Syntax rules
1. The maximum length of TITLE is <max8> bytes.

2. If TITLE(<constant identifier>) is specified, the <constant identifier> must be that of
a <CONSTANT statement> whose value is a <character literal> or <encoded hex
literal>.

 General rules
None.

 Examples
None.

 Chapter 5. Attributes 151

 <UNITLEN attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the length of each unit of an ASIS, CHAR, CHARPRE, or CHARSFX field.

 Syntax
 <UNITLEN attribute> ::=

UNITLEN({ 1 | 8 | 16 | <constant identifier>})

 Syntax rules
If UNITLEN(<constant identifier>) is specified, the <constant identifier> must be that of a
<CONSTANT statement> whose value is 1, 8, or 16.

 General rules
None.

 Examples
None.

152 SdU A Data Language Reference for DD&C

 <ZONENC attribute >

The following shows the function, syntax, rules, and examples:

 Function
Specify the encoding of the zone portion of a <ZONED> field for all bytes except the
sign.

 Syntax
 <ZONENC attribute> ::=

ZONENC ({<hex literal> | <constant identifier>})

 Syntax rules
1. The range of valid values is X'0' to X'F'.

2. If ZONENC(<constant identifier>) is specified, the <constant identifier> must be that
of a <CONSTANT statement> whose value is a <hex literal>.

 General rules
None.

 Examples
1. x is a <ZONED> field that is printable in EBCDIC.

x: ZONED PRECISION(3) SGNLOC(FRSBYT) CCSID(5ðð);

2. y is a <ZONED> field that is printable in ASCII.

y: ZONED PRECISION(3) SGNLOC(FRSBYT) ZONENC(x'3') CCSID(437);

3. z is a <ZONED> field that can be processed by 80386 machine instructions.

z: ZONED PRECISION(3) SGNLOC(FRSBYT) ZONENC(x'ð') CCSID(437);

 Chapter 5. Attributes 153

154 SdU A Data Language Reference for DD&C

 Chapter 6. Functions

This chapter describes the LENGTH function that can be specified in ADL <assignment
statements>.

 <LENGTH function >

The following shows the function, syntax, rules, and examples:

 Function
Returns the actual field length of a data type, constructor, constant identifier, or literal.
For the definition of “actual field length”, refer to Actual Field Length.

 Syntax
<LENGTH function> ::=
LENGTH ({<literal> |

<constant identifier> |

 <qualified identifier>

 })

 Syntax rules
None.

 General rules
| 1. The result of the <LENGTH function> is a BINARY value with BYTRVS(TRUE) for
| OS/2 or Windows, or BYTRVS(FALSE) for AIX. The other attributes are the

BINARY attributes. The result is specified in bytes if the field is CHAR, CHARPRE,
CHARSFX, an encoded hex literal, or a character literal. Otherwise, the result of
the <LENGTH function> is specified in bits (even for constructors composed exclu-
sively of CHAR, CHARPRE, or CHARSFX fields).

2. The range of values returned is 0 to <max31> bits or 0 to <max28> bytes.

 Examples
See Appendix A, “Scenarios” on page 197.

 Copyright IBM Corp. 1993, 1997 155

156 SdU A Data Language Reference for DD&C

Chapter 7. Conversion of Data Types

Assignment statements, expressions, or comparisons of a plan cause data to be moved
between declared variables of a module. If the data type and attribute of the source
variable do not match the data type and attribute of the target variable, data conver-
sions may be required. This chapter defines the rules that ADL conforms to when per-
forming these conversions.

General Conversion Rules
The following rules apply to all of the conversions described in this chapter unless they
are explicitly overridden for a particular conversion.

� All of the conversions between data types identified in Figure 6, and only those
conversions, are supported.

� All supported conversions between data types are performed as defined in the fol-
lowing subsections of this book.

� The 1—Conversion not supported exception occurs for all assignments that
require data conversions not supported by ADL.

 Copyright IBM Corp. 1993, 1997 157

Figure 6. ADL data-type conversion matrix.

X Conversion supported by DD&C

blank Conversion not supported by DD&C

Rules for Field Lengths
When describing conversion rules, information about the length of a field is often used.
In an ADL source file, field lengths can be specified in a number of places:

 � Default statements
 � Subtype statements
� Data declaration statements

 � Plan parameters.

158 SdU A Data Language Reference for DD&C

Two length definitions are used:

1. The maximum field length . This is defined either with the MAXLEN attribute in a
DECLARE statement or as the constant length of the field.

2. The actual field length . This is defined by the contents of a concrete buffer that
contains information in the structure of the ADL field.

The actual field length need not be specified in a DECLARE statement. The maximum
field length must, however, always be specified. The actual field length is always less
than or equal to the maximum field length.

Maximum Field Length
Depending on the data type, the length in bits is defined as shown in Table 10.

Table 10. Determining the maximum field length

Field type Maximum length

Fixed-length fields Equal to the length of the field.

ARRAY The length of an array with the maximum number of ele-
ments and the last element with its maximum length.

ASIS, CHAR, CHARSFX MAXLEN * UNITLEN

BIT MAXLEN

BITPRE PRELEN + MAXLEN

CASE Length of the alternative with the largest maximum
length, or the value of LENGTH if the LENGTH attribute
is specified and MAXALC is TRUE.

CHARPRE PRELEN + (MAXLEN * UNITLEN).

SEQUENCE The sum of all member data type lengths, including SKIP
statements, and the maximum length of the last element.

Actual Field Length
The following definition also applies to terms such as “actual constructor length”, “actual
source length”, and “actual target length”:

1. If the data type has a constant length, for example FLOAT FORM(FB8ð), then the
constant length is the actual data type length. In this example, it is 80 bits.

2. If the length of the storage allocated for the data type is fixed but the length of the
information itself can vary, for example BITPRE MAXALC(TRUE) MAXLEN(1ðð)

PRELEN(32), there are two possibilities:

� If the field is not a target field, the actual data type length is calculated as
shown in Table 11.

 Chapter 7. Conversion of Data Types 159

� If the field is a target field, the prefix value is updated during conversion.
Therefore, the actual length before the conversion is equal to the maximum
length (132 bits in the example).

3. If the storage allocated for the data type has a variable length, for example:

BITPRE MAXALC(FALSE) MAXLEN(1ðð) PRELEN(32)

The following cases apply:

� If the field is not a target field, the actual data type length is calculated in the
same way as described in Table 11.

� If the field is a target field, the prefix value is updated during conversion.
Therefore, the actual target length is the minimum of the maximal length and
either of the following:

LENGTH \ 8 - data type offset - 1

MAXLEN \ 8 - data type offset - 1

Where LENGTH and MAXLEN are plan parameter attributes (if the field is con-
tained in a plan parameter) and the plan parameter has a LENGTH or
MAXLEN plan parameter attribute. This formula relies on the fact that
variable-length fields can only appear at the end of their containing structures.

4. If the data type has a length that extends to the end of the record, for example:

CHAR LENGTH(\) MAXLEN(8ð) UNITLEN(8)

The actual field length then depends on whether the data type is contained in a
plan parameter and whether the length of the outermost containing constructor is
specified with a LENGTH plan parameter attribute, as in the case of an input
parameter, or a MAXLEN plan parameter attribute, as in the case of an output
parameter. In this case:

� The actual data type length is the minimum of the maximal length and either
FLOOR((LENGTH * 8 - data type offset - 1) / UNITLEN) * UNITLEN or
FLOOR((MAXLEN * 8 - data type offset - 1) / UNITLEN) * UNITLEN, where
LENGTH and MAXLEN are plan parameter attributes.

Table 11. Determining the actual field length

Field type Actual length

ARRAY The length of the array with the given number of ele-
ments and having the last element with its actual length.

ASIS, CHAR, CHARSFX LENGTH * UNITLEN

BIT LENGTH

BITPRE PRELEN + LENGTH

CASE Actual length of the currently valid alternative.

CHARPRE PRELEN + (LENGTH * UNITLEN)

SEQUENCE Sum of all member data type lengths, including SKIP
statements and the actual length of the last element.

160 SdU A Data Language Reference for DD&C

� Otherwise, the actual field length is the maximum length. In the previous
example, the field has a length of 640 bits.

ARRAY to ARRAY
These are the general rules:

1. If the target array does not have the same number of dimensions as the source
array, then the 8—Nonconformable arrays exception occurs.

2. For each dimension of the source array:

a. The low bound of the source dimension (LOW) is taken from:

1) The <DMNLOW attribute> of the dimension

2) A field referenced by the <DMNLOW attribute> of the dimension

3) The <DMNLOW attribute> of the <ARRAY> declaration

4) Or, the <DMNLOW attribute> specified in a <DEFAULT statement> for
arrays.

b. The high bound of the source dimension (HIGH) is taken from:

1) The <DMNHIGH attribute> of the dimension

2) A field referenced by the <DMNHIGH attribute> of the dimension

3) Or, the formula

source HIGH = source LOW + source SIZE - 1

c. The size of the source dimension (SIZE) is taken from:

1) The <DMNSIZE attribute> of the dimension

2) A field referenced by the <DMNSIZE attribute> of the dimension

3) Or, the formula

source SIZE = source HIGH - source LOW + 1

3. For each dimension of the target array:

a. Determine the values of target LOW, target HIGH, and target SIZE, as speci-
fied in Table 12 on page 162.

b. If the source SIZE does not equal the target SIZE, then the
8—Nonconformable arrays exception occurs. This rule covers all cases of
array assignment to a target array dimension defined without reference fields.

c. If the source SIZE is greater than the <DMNMAX attribute> of the target, then
the 8—Nonconformable arrays exception occurs. This rule covers all cases
of array assignment to a target array dimension defined with reference fields.

d. On completion of an <assignment statement>, if any target <field> is refer-
enced by an array dimension specification, the required value for its refer-
enced use is assigned to that field. This is done at the end of an assignment
to ensure values are not changed by other operations of an <assignment
statement>. Refer to Table 12 on page 162.

 Chapter 7. Conversion of Data Types 161

4. The elements of the source array are assigned to the elements of the target array
such that the relative position of an element within each dimension is preserved.
The association of elements with specific source array indexes in each dimension
is not be preserved.

5. Conversion of the elements of the source array to the representation required by
the elements of the target array follows the conversion matrix specified in Figure 6
on page 158.

Table 12. Target array dimension considerations

Target <DMNLOW attribute> specified by I I I I R R R R

Target <DMNHIGH attribute> specified by I R — — I R — —

Target <DMNSIZE attribute> specified by — — I R — — I R

Target LOW = target DMNLOW X X X X

Target LOW = target DMNHIGH - source SIZE + 1 X

Target LOW = source LOW X X

Target LOW = source HIGH - target DMNSIZE + 1 X

Target HIGH = target DMNHIGH X X

Target HIGH = target LOW + source SIZE - 1 X X

Target SIZE = target DMNSIZE X X

Target SIZE = source SIZE X X X X

Target SIZE = target HIGH - target LOW + 1 X X

Note:

1. In the condition values:

I Indicates a constant specified or defaulted for the attribute.
R Indicates a reference to another field.
— Indicates a condition that cannot occur.

2. X indicates that an action is taken. Where several actions are possible, they are performed in the sequence
specified by the action rows of the table. Actions can be dependent on previously selected actions.

ASIS to Constructor
These are the general rules:

1. An ASIS-to-constructor conversion is a bit-string copy starting with the leftmost bit
(bit 1) of the source field and the target constructor for the lengths of the source
field and the target constructor.

2. The length of the constructor is the actual constructor length, as defined in “Actual
Field Length” on page 159.

3. If the source field is longer than the target constructor, the source data is truncated
to the length of the target constructor.

4. If the source field is shorter than the target constructor, the source data is padded
to the right with B'0' to the length of the target constructor.

162 SdU A Data Language Reference for DD&C

5. If reference fields are specified in the constructor, the reference fields are not
updated after the bit-string copy.

ASIS to Field Data Types
These are the general rules:

1. An ASIS-to-field conversion is a bit-string copy starting with the leftmost bit (bit 1)
of the source field and the target field for the lengths of the source field and the
target field.

2. The target is considered to be a bit string, where:

a. If the target field is ASIS or BIT:

Refer to Table 13 on page 165 for target length determinations.

b. If the target field is BINARY:

1) The target length is obtained from LENGTH, if present.
2) The target length is inferred from PRECISION.

c. If the target field is BITPRE or CHARPRE:

1) If MAXALC(TRUE) is specified for the target, the target length equals
target(PRELEN + MAXLEN * UNITLEN).

2) If MAXALC(FALSE) is specified for the target, the target length equals the
minimum of the following two values:

� target PRELEN + CEIL(source(LENGTH * UNITLEN) / target
UNITLEN) * target UNITLEN

� actual target length.

The ASIS field is copied only into the value field of the target data type.
The prefix field of the target data type is then updated with the correct
length.

d. If the target field is BOOLEAN, ENUMERATION, or FLOAT: the target length
is obtained from its LENGTH attribute or implied length.

e. If the target field is CHAR:

1) Refer to “BIT to BIT” on page 164 for the length of the target if the
<LENGTH attribute> is used.

2) Refer to Table 12 on page 162 for the length of the target if the <HIGH
attribute> and <LOW attribute> are used.

3) The obtained length of the target must be multiplied by UNITLEN to obtain
its bit-string length.

f. If the target field is CHARSFX:

1) If MAXALC(TRUE) is specified for the target, the target length equals the
target (MAXLEN * UNITLEN).

 Chapter 7. Conversion of Data Types 163

2) If MAXALC(FALSE) is specified for the target, the target length equals the
minimum of the following two values:

� CEIL(length of suffix + source(LENGTH * UNITLEN) / target
UNITLEN) * target UNITLEN

� actual target length.

3) When all bits of the string have been copied to the target, a suffix is
appended indicating the length of the target.

g. If the target field is PACKED, refer to “General rules” on page 103 for the
determination of the length.

h. If the target field is ZONED, refer to “General rules” on page 110 for the deter-
mination of the length.

3. Refer to “BIT to BIT” for further conversion rules.

4. If the target is CHAR and reference fields were used in the target, refer to
Table 16 on page 170 for update rules.

5. If the source field includes a reference to another field and either the value of the
LENGTH attribute is greater than that of the MAXLEN attribute or the remaining
buffer size is too small, the 27—Invalid LENGTH value of ASIS, BIT or BITPRE
field exception occurs.

BINARY, FLOAT, PACKED, and ZONED to ENUMERATION
These are the general rules:

1. If the source is a PACKED or ZONED field, the source is converted to a BINARY
field following the rules specified for that conversion.

2. The value of the source BINARY field is compared with the values associated with
the <enumeration identifier>s of the target ENUMERATION field.

a. If a match is found, the value of the source BINARY field is converted to the
attributes of the target ENUMERATION field.

b. If no match is found, the 10—Invalid ENUMERATION value exception occurs.

BIT to BIT
These are the general rules:

1. The actual length of the source is defined in “Actual Field Length” on page 159.

2. This conversion is a bit-string copy starting with the leftmost bit (bit 1) of the source
and target fields for the lengths of the source and target fields.

3. If the target is BIT, Table 13 on page 165 specifies how much space is available
for the target.

4. If the bit length of the source is longer than the target field, the source data is
truncated on the right to the length of the target field.

164 SdU A Data Language Reference for DD&C

5. If the bit length of the source is shorter than the target field, the source data is
padded to the right with B'0' to the length of the target field.

6. If reference fields were used in the target, Table 13 specifies how the target length
reference fields are updated at the end of an assignment statement. Interpret the
values “source UNITLEN” and “target UNITLEN” as having the value 1.

Table 13. Determination of target ASIS, BIT length fields, and length reference field updates

Target <LENGTH attribute> specified by I * R R

Target <MAXALC attribute> value — — T F

Target length = target LENGTH X

Target length = target MAXLEN X

Target length = MIN((actual target length / target UNITLEN), CEIL(actual source
length / target UNITLEN))

X X

Update referenced length field with MIN((actual target length / target UNITLEN),
CEIL(actual source length / target UNITLEN))

X X

Note:

1. In the condition values:

I Indicates a constant specified or defaulted for the attribute.
R Indicates a reference to another field.
* Indicates LENGTH(*).
— Indicates a condition that cannot occur.
T Indicates a “TRUE” value.
F Indicates a “FALSE” value.

2. X indicates that an action is taken. Where several actions are possible, they are performed in the
sequence specified by the action rows of the table. Actions can be dependent on previously selected
actions.

BIT to BITPRE
These are the general rules:

1. The actual length of the source is defined in “Actual Field Length” on page 159.

2. If MAXALC(TRUE) is specified for the target, the target field length equals the
target MAXLEN plus PRELEN.

3. If MAXALC(FALSE) is specified for the target, the target field length equals
MIN(actual source length + target PRELEN, actual target length).

4. A BIT-to-BITPRE conversion is a bit-string copy starting with the leftmost bit (bit 1)
of the source and target fields for the lengths of the source and target fields.

5. If the source field is longer than the length of the target field, the source data is
truncated to the length of the target field.

6. The length of the bit string copied into the target field is encoded in the prefix of
the target field, as specified by its PRELEN and PREBYTRVS attributes.

7. If the source field includes a reference to another field and either the value of the
LENGTH attribute is greater than that of the MAXLEN attribute or the remaining

 Chapter 7. Conversion of Data Types 165

buffer size is too small, the 27—Invalid LENGTH value of ASIS, BIT, or BITPRE
field exception occurs.

BITPRE to BIT
These are the general rules:

1. A BITPRE-to-BIT conversion is a bit-string copy starting with the leftmost bit (bit 1)
of the source data portion of the field and target field for the lengths of the source
and target fields.

2. The length of the source is obtained from the prefix of the source field, which is
encoded as specified by its PRELEN and PREBYTRVS attributes.

3. Table 13 on page 165 specifies how the length of the target is obtained.

4. If the bit length of the source is longer than the target field, the source data is
truncated on the right to the length of the target field.

5. If the bit length of the source is shorter than the target field, the source data is
padded to the right with B'0' to the length of the target field.

6. If reference fields were used in the target, Table 13 on page 165 specifies how, at
the end of an assignment statement, the reference fields of the target are updated.

7. If the source field includes a reference to another field and either the value of the
LENGTH attribute is greater than that of the MAXLEN attribute or the remaining
buffer size is too small, the 27—Invalid LENGTH value of ASIS, BIT, or BITPRE
field exception occurs.

BITPRE to BITPRE
These are the general rules:

1. A BITPRE-to-BITPRE conversion is a bit-string copy starting with the leftmost bit
(bit 1) of the source and target fields for the lengths of the source data and the
target field.

a. The length of the source data is taken from the prefix of the source field, which
is encoded as specified by its PRELEN and PREBYTRVS attributes.

b. If MAXALC(TRUE) is specified for the target, the target length equals the
target MAXLEN plus PRELEN.

c. If MAXALC(FALSE) is specified for the target, the target field length is the
minimum of the following values:

� actual source length - source PRELEN + target PRELEN

� actual target length.

2. If the source data is longer than the length of the target field, the source data is
truncated to the length of the target field.

3. The length of the bit string copied into the target field is encoded in the prefix of
the target field, as specified by its PRELEN and PREBYTRVS attributes.

166 SdU A Data Language Reference for DD&C

4. If the source field includes a reference to another field and either the value of the
LENGTH attribute is greater than that of the MAXLEN attribute or the remaining
buffer size is too small, the 27—Invalid LENGTH value of ASIS, BIT, or BITPRE
field exception occurs.

BOOLEAN to BOOLEAN
This is the general rule:

 General rule
The value of the source field (FALSE or TRUE), encoded as specified by the attributes
of the source BOOLEAN field, is converted to the corresponding encoding, as specified
by the attributes of the target BOOLEAN field. Only the significant bit is copied (see
“<BLNENC attribute>” on page 113).

CASE to CASE
These are the general rules:

1. The <condition>s of the source <WHEN statement>s are evaluated in the order in
which the <WHEN statement>s are specified in the source CASE until one of the
evaluations returns TRUE:

a. The <WHEN statement> of the target CASE with the same statement
<identifier> or <positional identifier> is then selected.

b. Conversion of data from the declaration specified by the selected source
<WHEN statement> to the declaration specified by the selected target <WHEN
statement> follows the general rules specified in “General Conversion Rules”
on page 157.

c. If no <WHEN statement> is found in the target CASE with the same statement
<identifier> or <positional identifier>, then the 24—Target CASE mismatch
exception occurs.

d. On completion of the <assignment statement>, the <condition> of the selected
<WHEN statement> must evaluate to TRUE and the <condition> of all target
<WHEN statement>s preceding the selected target <WHEN statement> must
evaluate to FALSE. Otherwise, the 6—Target CASE failure exception occurs.

2. If no source <WHEN statement> evaluates to TRUE, the <OTHERWISE
statement> of both the source and target CASE is selected:

a. If no <OTHERWISE statement> is specified on the source or target and all
respective <WHEN statement>s evaluate to FALSE, the plan is terminated and
the 20—CASE rejected exception occurs.

b. Conversion of data from the declaration specified by the source <OTHERWISE
statement> to the declaration specified by the target <OTHERWISE statement>
follows the general rules specified in “General Conversion Rules” on
page 157.

 Chapter 7. Conversion of Data Types 167

c. On completion of the <assignment statement>, the condition of all target
<WHEN statement>s must evaluate to FALSE. Otherwise, the 6—Target
CASE failure exception occurs.

CHARxxx to CHARxxx
These are the general rules:

1. The characters of the source data are converted from the encodings specified by
the source CCSID to the encodings specified by CDRA for the target CCSID.

a. If the source or target CCSID is not defined by CDRA, the 4—Undefined
CCSID exception occurs.

b. If the source or target CCSID is not supported, the 2—CCSID not supported
exception occurs.

c. If the conversion between the source CCSID and the target CCSID is invalid,
the 3—Invalid CCSID pair exception occurs.

CHARxxx to CHAR
These are the general rules:

1. Table 14 on page 169 specifies the rules for obtaining the target length if the
<LENGTH attribute> is specified.

2. Table 15 on page 169 specifies the rules for obtaining the target length if the
<HIGH attribute> and <LOW ATTRIBUTE> are specified.

3. If JUSTIFY(LEFT) is specified for the target,

a. If the converted data is greater than the target length, the converted data is
truncated on the right to the length of the target.

b. If the converted data is shorter than the target length, the converted data is
padded to the right with the space character defined by CDRA for the target
CCSID.

c. The converted data is copied left-aligned to the target data area.

4. If JUSTIFY(RIGHT) is specified for the target,

a. If the converted data is shorter than the target length, the converted data is
padded to the left with the space character defined by CDRA for the target
CCSID.

b. If the converted data is greater than the target length, the converted data is
truncated on the left to the length of the target.

c. The converted data is copied right-aligned to the target data area.

5. If reference fields were used in the target, Table 16 on page 170 specifies how, at
the end of an assignment statement, the length reference fields of the target are
updated.

168 SdU A Data Language Reference for DD&C

Table 14. CHARxxx-to-CHAR target length considerations with the LENGTH attribute

Target <LENGTH attribute> specified by I * R R

Target <MAXALC attribute> value — — T F

Target length = target LENGTH X

Target length = target MAXLEN X

Target length = MIN((actual target length / target UNITLEN), CEIL((actual source
length - source PRELEN) / target UNITLEN))

X X

Note:

1. In the condition values,

I Indicates a constant specified or defaulted for the attribute.
R Indicates a reference to another field.
* Indicates LENGTH(*).
— Indicates a condition that cannot occur.
T Indicates a “TRUE” value.
F Indicates a “FALSE” value.

2. X indicates that an action is taken. Actions are performed in the sequence specified by the action rows
of the table. Actions can be dependent on previously selected actions.

Table 15. CHARxxx-to-CHAR target length considerations with the HIGH and LOW attributes

Target <HIGH attribute> value I R I R

Target <LOW attribute> value I I R R

Target high = target HIGH X X

Target low = default value for target LOW, or 1 if target default value for LOW
does not exist.

X

Target high = target LOW + source length - 1 X X

Target low = target LOW X X

Target low = target HIGH - source length + 1 X

Target length = target HIGH - target LOW +1 X X X X

Note:

1. In the condition values,

I Indicates a constant specified or defaulted for the attribute.
R Indicates a reference to another field.

2. X indicates that an action is taken. Where several actions are possible, they are performed in the
sequence specified by the action rows of the table. Actions can be dependent on previously selected
actions.

 Chapter 7. Conversion of Data Types 169

Table 16. CHARxxx-to-CHAR target reference field update considerations

Target <LENGTH attribute> value R R — — —

Target <MAXALC attribute> value T F — — —

Target <HIGH attribute> value — — R I R

Target <LOW attribute> value — — I R R

Update referenced length field with MIN((actual target length / target UNITLEN),
CEIL((actual source length - source PRELEN) / target UNITLEN))

X X

Update HIGH(qualifier) to its derived value. X X

Update LOW(qualifier) to its derived value. X X

Note:

1. In the condition values,

I Indicates a constant specified or defaulted for the attribute.
R Indicates a reference to another field.
— Indicates a condition that cannot occur.
T Indicates a “TRUE” value.
F Indicates a “FALSE” value.

2. X indicates that an action is taken. Where several actions are possible, they are performed in the sequence
specified by the action rows of the table. Actions can be dependent on previously selected actions.

CHARxxx to CHARPRE
These are the general rules:

1. If MAXALC(TRUE) is specified for the target, the target length equals the target
MAXLEN.

2. If MAXALC(FALSE) is specified for the target, the target length equals the
minimum of the following two values (source PRELEN and source suffix length are
set to zero if they do not apply for the source data type):

� CEIL((actual source length - source PRELEN - source suffix length) / target
UNITLEN) * target UNITLEN + target PRELEN

� Actual target length.

3. If the length of the converted source is greater than the target length, the data is
truncated on the right to the target length.

4. The length of the character string copied into the target field is encoded in the
prefix of the target field, as specified by its <PRELEN attribute>, <PREBYTRVS
attribute>, and <UNITLEN attribute>.

5. The converted data is copied left-aligned to the target data portion of the field.

CHARxxx to CHARSFX
These are the general rules:

1. If MAXALC(TRUE) is specified for the target, the target length equals the target
MAXLEN.

170 SdU A Data Language Reference for DD&C

2. If MAXALC(FALSE) is specified for the target, the target length equals the
minimum of the following two values (source PRELEN and source suffix length are
set to zero if they do not apply for the source data type):

� CEIL((actual source length - source PRELEN - source suffix length + target
suffix length) / target UNITLEN) * target UNITLEN

� Actual target length.

3. If the length of the converted source is greater than the target length, the data is
truncated on the right to the target length.

4. If the CCSID of the target string is single byte or mixed byte, a suffix X'00' is
appended. If the CCSID of the target string is double byte, a suffix X'0000' is
appended.

5. The converted data is copied left-aligned to the target data area.

Constructor to ASIS
These are the general rules:

1. The length of the constructor is the inferred length of the constructor.

2. Table 13 on page 165 specifies how the length of the target is obtained.

3. A constructor-to-ASIS conversion is a bit-string copy starting with the leftmost bits
(bit 1) of the source constructor and the target field for the lengths of the source
constructor and target field.

4. If the bit length of the source constructor is longer than the target field, the source
data is truncated on the right to the length of the target field.

5. If the bit length of the source constructor is shorter than the target field, the source
data is padded to the right with B'0' to the length of the target field.

6. If reference fields were used in the target, Table 13 on page 165 specifies how, at
the end of an assignment statement, the reference fields of the target are updated.

ENUMERATION to BINARY, FLOAT, PACKED, and ZONED
These are the general rules:

1. The value of the source field is assumed to be a BINARY field whose length is
specified by the <LENGTH attribute> specified in the source declaration, with
SCALE(0) and RADIX(2).

2. The source value is converted to the attributes of the target field as specified for
BINARY-to-BINARY, BINARY-to-PACKED, BINARY-to-FLOAT, or
BINARY-to-ZONED conversions.

 Chapter 7. Conversion of Data Types 171

ENUMERATION to ENUMERATION
These are the general rules:

1. The binary value of the source field is used to determine the <enumeration
identifier> of the source declaration associated with that value. If no <enumeration
identifier> of the source declaration can be associated with the value of the source
field, the 10—Invalid ENUMERATION value exception occurs.

2. The <enumeration identifier> of the source field is compared to the <enumeration
identifier>s of the target declaration of the field.

3. If the <enumeration identifier> of the source matches one of the <enumeration
identifier>s of the target, the binary value associated with the matching
<enumeration identifier> of the target is used as the value of the field.

4. If the <enumeration identifier> of the source does not match an <enumeration
identifier> of the target, the 9—ENUMERATION mismatch exception occurs.

 Examples
 1.

� Specify color in the base record to be:

color: ENUMERATION(red:1, green:3, blue:5, white:7);

The values associated with each are:

red=1, green=3, blue=5, white=7

� Specify color in the view record to be:

color: ENUMERATION(red:1, green:3, blue, white);

The values associated with each are:

red=1, green=3, blue=4, white=5

� The identifiers are matched during conversions resulting in:

base view

red is matched with red and the target value is 1

green is matched with green and the target value is 3

blue is matched with blue and the target value is 4

white is matched with white and the target value is 5

 2.

� Specify animal in the base record to be:

animal: ENUMERATION(cat:1, dog:3, monkey:5, elephant:7);

The values associated with each are:

cat=1, dog=3, monkey=5, elephant=7

� Specify animal in the view record to be:

animal: ENUMERATION(monkey, elephant, cat, dog);

The values associated with each are:

172 SdU A Data Language Reference for DD&C

monkey=ð elephant=1 cat=2 dog=3

� The identifiers are matched during conversions resulting in:

base view

cat is matched with cat and the target value is 2

dog is matched with dog and the target value is 3

monkey is matched with monkey and the target value is ð

elephant is matched with elephant and the target value is 1

Field Data Types to ASIS
These are the general rules:

1. A field data type-to-ASIS conversion consists of copying the encoded bits of the
source field to the target ASIS field starting with the leftmost bits (bit 1) of the
source field and the target field for the lengths of the source field and target field.

2. The target is considered to be a bit-string where:

a. If the source field is ASIS or BIT:

Refer to Table 13 on page 165 for target length determinations.

b. If the source field is BINARY:

1) The target length is obtained from LENGTH, if present.
2) The target length is inferred from PRECISION.

c. If the source field is BITPRE or CHARPRE, the value field, but not the prefix
field of the BITPRE or CHARPRE field, is copied to the ASIS field:

1) If MAXALC(TRUE) is specified for the target, the target length equals the
target (MAXLEN * UNITLEN).

2) If MAXALC(FALSE) is specified for the target, the target length equals the
minimum of the following values:

� CEIL((actual source length - source PRELEN) / target UNITLEN) *
target UNITLEN

� FLOOR(actual target length / target UNITLEN) * target UNITLEN.

d. If the source field is BOOLEAN, ENUMERATION, or FLOAT: the target length
is obtained from the source LENGTH attribute or implied length.

e. If the source field is CHAR:

1) Refer to Table 14 on page 169 for the length of the target if the
<LENGTH attribute> is used.

2) Refer to Table 15 on page 169 for the length of the target if the <HIGH
attribute> and <LOW attribute> are used.

3) The obtained length of the target is multiplied by the source UNITLEN to
get its bit-string length.

f. If the source field is CHARSFX:

 Chapter 7. Conversion of Data Types 173

1) If MAXALC(TRUE) is specified for the target, the target length equals the
target (MAXLEN * UNITLEN).

2) If MAXALC(FALSE) is specified for the target, the target length equals the
minimum of the following values:

� CEIL((actual source length - source suffix length) / target UNITLEN) *
target UNITLEN

� FLOOR(actual target length / target UNITLEN) * target UNITLEN

3) All characters up to, but not including, the suffix are copied to the target.

g. If the source field is PACKED, refer to “General rules” on page 103 for the
determination of the length.

h. If the source field is ZONED, refer to “General rules” on page 110 for the
determination of the length.

3. Refer to “BIT to BIT” on page 164 for further conversion rules.

4. If reference fields were used in the target, Table 13 on page 165 specifies how, at
the end of an assignment statement, the reference fields of the target are updated.

5. If the bit-string encoding of the source field is longer than the bit length of the
target field, the source data is truncated on the right to the length of the target field.

6. If the bit-string encoding of the source field is shorter than the bit length of the
target field, the source data is padded to the right with B'0' to the length of the
target field.

 Numeric Conversions
This section describes the mathematical basis for the numeric conversions.

References to binary FLOAT types are to FLOAT types with FORM(FB32 | FB64 |
FB80 | FI128).

References to hexadecimal FLOAT types are to FLOAT types with FORM(FH32 | FH64
| FH128).

Value of fixed-point numbers
The value represented by a fixed-point (ADL type BINARY, PACKED or ZONED)
number is given by:

(ð1) N = V\(R\\-S)

= V/(R\\S), where

N = the effective value being represented.

V = the integral value which is stored in the representation

 of N.

R = the radix of the representation of N, as specified by

N's RADIX attribute if N is of type BINARY; otherwise

implicitly equal to 1ð.

S = the scale of the representation of N, as specified by

N's SCALE attribute.

174 SdU A Data Language Reference for DD&C

Thus for an unsigned BINARY number with a stored value of, say, B'11', the following
values of N may result:

 When R = 2 When R = 1ð
S = 2 N = 3\(1/4) = .75 N = 3\(1/1ðð) = .ð3

S = 1 N = 3\(1/2) = 1.5 N = 3\(1/1ð) = .3

S = ð N = 3\1 = 3 N = 3\1 = 3

S = -1 N = 3\2 = 6 N = 3\1ð = 3ð

S = -2 N = 3\4 = 12 N = 3\1ðð = 3ðð

S = -3 N = 3\8 = 24 N = 3\1ððð = 3ððð

In each case the scale factor, as given by R**-S, defines the weight assigned to the
low-order digit in the stored values. For S=2, the stored value indicates the number of
quarters when R equals 2, and the number of hundredths when R equals 10.

It is important to remember that the stored value for a BINARY number is, appropri-
ately, encoded in binary—even though the RADIX attribute may specify 10.

Value of hexadecimal-FLOAT numbers
The value represented by a hexadecimal-FLOAT number is given by:

(ð2) N = F\(16\\e)

 = F\(16\\(C-b))

= F\(16\\(C-64)), where:

N = the effective value being represented.

F = the value which is stored in the significand of N.

F is understood to have an implicit radix point

immediately to its left, with the result that:

|F| < 1

e = the exponent. Equivalent to C-b, where:

C = the characteristic stored in the representation of N.

b = 64, the bias.

A hexadecimal-FLOAT number is considered to be normalized if the leftmost
hexadecimal digit of the significand is nonzero (assuming N to be nonzero); that is:

(ð3) (1/16) <= |F| < 1

Value of binary-FLOAT numbers
The following material deals with numeric values only; it does not deal with “Not a
Number” (NaN) or infinity.

Normalized numbers: A normalized binary-FLOAT number has a nonzero character-
istic, and the value represented is given by:

 Chapter 7. Conversion of Data Types 175

(ð4) N = F\(2\\e)

= F\(2\\(C-b)), where:

N = The effective value being represented.

F = The significand of N. F is composed of a 1, followed

by an implicit radix point, followed by a fraction; with

the result that:

1 <= |F| < 2

If the field is extended-precision, then the entire

significand, including the leading 1, is stored

left-justified in the field's significand bits.

If the field is not extended-precision, then only the

fractional part is stored, also left-justified, and

the implicit radix point stands immediately to the

 left.

e = The exponent. Equivalent to C-b, where:

C = the characteristic stored in the representation of N.

b = 127, when single-precision.

b = 1ð23, when double-precision.

b = 16383, when extended-precision.

Denormal numbers: A Denormal binary-FLOAT number has a zero characteristic,
and the value represented is given by:

(ð5) N = F\(2\\e)

= F\(2\\(C-b)), where:

N = The effective value being represented.

F = The significand of N. F is composed of an implicit

radix point, followed by a stored fraction; with the

 result that:

|F| < 1

e = The exponent. Equivalent to C-b, where:

C = the characteristic stored in the representation of N.

b = 127, when single-precision.

b = 1ð23, when double-precision.

b = 16383, when extended-precision.

A denormal binary-FLOAT number with a zero-significand represents a zero.

Fixed-point to fixed-point conversions
The objective of a numeric conversion is to set the stored value of the target field in
such a way that the target's effective value, Nt, is as near as possible to the source
field's effective value, Ns. That is:

(ð6) Nt º Ns
Substituting from (ð1):

(ð7) Vt\(Rt\\-St) º Vs\(Rs\\-Ss)

Solving for Vt, the value to be stored in the target:

(ð8) Vt º Vs\((Rt\\St)/(Rs\\Ss))

The reasons why approximations (06), (07), and (08) may not be exact is that not all
conversions can be exact. Consider a source BINARY such that:

176 SdU A Data Language Reference for DD&C

Rs = 1ð Ss = 1 Vs = 15

 Then,

Ns = 1.5, from (ð1).

If this source BINARY is converted to radix-2 BINARY targets with various scales we
get:

--- Vt from (ð8) -- Nt from (ð1)

St = 2 º 15\(4/1ð) = 6 1.5

St = 1 º 15\(2/1ð) = 3 1.5

St = ð º 15\(1/1ð) = 1.5 1 or 2

St = -1 º 15\(1/2ð) = .75 ð or 2

St = -2 º 15\(1/4ð) = .375 ð

Notice that when St equals 2 or 1 the corresponding Vt represents the number of quar-
ters or halves, respectively, and Nt equals Ns exactly. In the other three cases, the
requirement that Vt be an integer necessitates truncation or rounding, with various
degrees of correspondence between Nt and Ns.

Another way to view the situation is that, for St equal to 0, -1, or -2, Vt represents the
number of 1s, 2s, or 4s, respectively, and fractional values cannot be represented.

The preceding example demonstrates how digits may be lost from the right-hand end of
Vt. Notice that digits may be lost from the left-hand end if the target precision, Pt, as
given by the target's PRECISION attribute, is insufficient to accommodate the results
given by (08). For example:

Rs = 1ð Rt = 1ð

 Ss = 2 St = 2

Vs = 123425 Pt = 4

Ns = 1234.25, from (ð1).

Then,

(ð9) Vt º 123425\((1ð\\2)/(1ð\\2)) = 123425, from (ð8).
But, because Pt equals 4, the results of (ð9) must

be of the form MOD(x,1ð\\4), yielding:

MOD(123425,1ð\\4) = MOD(123425,1ðððð) = 3425

Applying (ð1) for Vt = 3425 gives the result:

Nt = 34.25

In the case of unconstrained targets, the width of Vt may not be limited by the target's
PRECISION attribute.

Rounding and truncation of fixed-point numbers: That (08) must be an approxi-
mation is due to the fact that in the computer environment numbers are constricted to
finite-length representations, and, in some cases, the attributes of source and target
numbers may necessarily be inexact, as shown in the examples.

The purpose of this section is to derive from approximation (08) an unambiguous
equation which exactly describes fixed-point to fixed-point conversions. To this end,
four new variables are introduced:

 Chapter 7. Conversion of Data Types 177

Vi An intermediate stored value derived directly from (08). It is introduced to help
make clear how truncation and rounding are accomplished.

Wt The effective width of the target. This variable is introduced to accommodate
high-order truncation.

Bwt The effective base against which Wt is applied. Its value is either 2 or 10.

H The half-round term that determines whether the low-order end of the target is
truncated or rounded. Its value is either .5 or zero, depending on the FIT attri-
bute of the target.

The derivation of an equality to replace approximation (08) is:

(1ð) Vi = Vs\((Rt\\St)/(Rs\\Ss)), from (ð8).

(11) Vt = MOD(FLOOR(Vi+H),(Bwt\\Wt)), when Vi >= ð.

Vt = MOD(CEIL(Vi-H),(Bwt\\Wt)), when Vi < ð.

Equation (10) accepts the results of (08) without constraints. Equation (11) applies the
constraints. The first argument to the MOD function ensures that the stored target
value is an integer, rounded or truncated if necessary. Application of the MOD function
ensures that the stored target value will, if necessary, be truncated on the left to the
proper width.

It remains to show how Wt, Bwt and H receive their values. All ADL attributes used are
those of the target:

Wt—is equal to:

� The PRECISION attribute when the target is:

 – BINARY CONSTRAINED(TRUE)
 – PACKED CONSTRAINED(TRUE)

– PACKED CONSTRAINED(FALSE) SIGNED(TRUE) with odd PRECISION
– PACKED CONSTRAINED(FALSE) SIGNED(FALSE) with even PRECI-

SION
 – ZONED

� The PRECISION attribute + 1 when the target is:

– PACKED CONSTRAINED(FALSE) SIGNED(TRUE) with even PRECI-
SION

– PACKED CONSTRAINED(FALSE) SIGNED(FALSE) with odd PRECISION

� The LENGTH attribute when the target is:

– BINARY CONSTRAINED(FALSE) SIGNED(FALSE)

� The LENGTH attribute - 1 when the target is:

– BINARY CONSTRAINED(FALSE) SIGNED(TRUE)

Bwt—is equal to:

� The RADIX attribute when the target is:

 – BINARY CONSTRAINED(TRUE)

178 SdU A Data Language Reference for DD&C

� 2 when the target is:

 – BINARY CONSTRAINED(FALSE)

� 10 when the target is:

 – PACKED
 – ZONED

H —is equal to:

� Zero when FIT(TRUNCATE)

� 0.5 when FIT(ROUND) or FIT(EXACT)

Hexadecimal-FLOAT to fixed-point conversions
This conversion is similar to the fixed-point-to-fixed-point conversions:

(12) Nt º Ns
Substituting from (ð1) for the target and from (ð2) for the

 source:

(13) Vt\(Rt\\-St) º Fs\(16\\es)

Solving for Vt, the value to be stored in the target:

(14) Vt º Fs\(16\\es)\(Rt\\St)

Since the attributes specified for the target may preclude an exact

conversion, provision is made for truncation and

rounding, as is done for conversion between fixed-point numbers:

(15) Vi = Fs\(16\\es)\(Rt\\St), from (14).

then, using equation (11) to apply constraints:

Vt = MOD(FLOOR(Vi+H),(Bwt\\Wt)), when Vi >= ð.

Vt = MOD(CEIL(Vi-H),(Bwt\\Wt)), when Vi < ð.

The variables H, Bwt, and Wt receive their values as previously described in “Rounding
and truncation of fixed-point numbers” on page 177.

Fixed-point to hexadecimal-FLOAT conversions
This derivation is for nonzero values and is intended to yield a normalized target. The
conversion is complicated somewhat by the fact that two values must be stored in the
target—the significand and the characteristic. Portions of the following treatment are
expressed in terms of absolute values in order to facilitate the use of logarithms:

 Chapter 7. Conversion of Data Types 179

(16) |Nt| º |Ns|

Substituting from (ð2) for the target:

(17) |Ft\(16\\et)| º |Ns|, where:

Ns = Vs\(Rs\\-Ss), from (ð1).

Temporarily letting Ft equal 16\\-1 (the minimum

normalized significand) and taking the base-16 logarithm:

(18) -1+et º log16(|Ns|)

(19) et º log16(|Ns|)+1

Since the exponent must be an integer, set it as:

(2ð) et = FLOOR(log16(|Ns|)+1)

Application of (2ð) implies that Ft may no longer be

equal to 16\\-1, but lies in the range:

(1/16) <= Ft < 1

The final approximation of Ft, with consideration for

the sign, is determined by:

Ft\(16\\et) º Ns, from (17).

(21) Ft º Ns\(16\\-et)

This produces an exact expression for the target exponent, et, and an approximation of
the target significand, Ft; both are expressed as functions of the effective source value,
Ns. The next step is to determine the stored target characteristic, Ct, and an exact
expression for Ft, allowing for possible rounding or truncation to the target significand
width.

The characteristic is:

(22) Ct = et+64

Using Fi as an intermediate value, the final expression of the target significand is
derived by:

Fi = Ns\(16\\-et), from (21).

(23) Ft = FLOOR((Fi\(16\\Wt))+H) \ (16\\-Wt), when Fi > ð.

Ft = CEIL((Fi\(16\\Wt))-H) \ (16\\-Wt), when Fi < ð.

 where:

Wt = 6, for single precision.

Wt = 14, for double precision.

Wt = 28, for extended precision.

H = ð, when FIT(TRUNCATE).

H = ð.5, when FIT(ROUND) or FIT(EXACT).

The expression within the FLOOR or CEIL function effectively moves the radix point
right, to the width of the target significand, and rounds the integer part of the result.
The FLOOR or CEIL function then truncates any remaining fraction. The FLOOR or
CEIL function is then multiplied by a factor that effectively moves the radix point back to
the left.

Finally, it should be noted that an exception can occur if Ct falls outside the range -128
through 127.

180 SdU A Data Language Reference for DD&C

Binary-FLOAT to fixed-point conversions
The following material deals with numeric values only; it does not deal with “Not a
Number” (NaN) or infinity.

This conversion is similar to the fixed-point-to-fixed-point conversions:

(24) Nt º Ns
Substituting from (ð1) for the target and from (ð4) or (ð5)

for the source:

(25) Vt\(Rt\\-St) º Fs\(2\\es)

Solving for Vt, the value to be stored in the target:

(26) Vt º Fs\(2\\es)\(Rt\\St)

Since the attributes specified for the target may preclude an exact conversion, provision
is made for truncation and rounding, as is done for conversion between fixed-point
numbers:

(27) Vi = Fs\(2\\es)\(Rt\\St), from (26).

then, using equation (11) to apply constraints:

Vt = MOD(FLOOR(Vi+H),(Bwt\\Wt)), when Vi >= ð.

Vt = MOD(CEIL(Vi-H),(Bwt\\Wt)), when Vi < ð.

The variables H, Bwt, and Wt receive their values as previously described in “Rounding
and truncation of fixed-point numbers” on page 177.

Notice that when the source is normalized, and not of extended-precision, the
significand includes an implicit integer 1, which is not stored. Otherwise the 1 is
explicit, and is stored.

When the source is denormal, the significand consists solely of the stored fraction.

Fixed-point to binary-FLOAT conversions
The following deals with nonzero values only; it does not deal with “Not a number”
(NaN) or infinity.

The conversion is complicated by the fact that two values must be stored in the
target—the significand and the characteristic. Portions of the following are expressed in
terms of absolute values in order to facilitate the use of logarithms:

 Chapter 7. Conversion of Data Types 181

(28) |Nt| º |Ns|

Substituting from (ð4) for the target:

(29) |Ft\(2\\et)| º |Ns|, where:

Ns = Vs\(Rs\\-Ss), from (ð1).

Temporarily letting Ft equal 1 (the minimum

normalized significand) and taking the base-2 logarithm:

(3ð) et º log2(|Ns|)

Since the exponent must be an integer, we set it as:

(31) et = FLOOR(log2(|Ns|))

Application of (31) implies that Ft may no longer be

equal to 1, but lies in the range:

1 <= Ft < 2

The final approximation of Ft, with consideration for

the sign, is determined by:

Ft\(2\\et) º Ns, from (29).

(32) Ft º Ns\(2\\-et)

This derives an exact expression for the target exponent, et, and an approximation of
the target significand, Ft; both are expressed as functions of the effective source value,
Ns. The next step is to determine the stored target characteristic, Ct, and an exact
expression for Ft, allowing for possible rounding or truncation to the target significand
width.

The characteristic is easily dealt with:

(33) Ct = et+127, for single-precision.

Ct = et+1ð23, for double-precision.

Ct = et+16383, for extended-precision.

Using Fi as an intermediate value, the final expression of the target significand is
derived by:

Fi = Ns\(2\\-et), from (32).

(34) Ft = FLOOR((Fi\(2\\Wt))+H) \ (2\\-Wt), when Fi > ð.

Ft = CEIL((Fi\(2\\Wt))-H) \ (2\\-Wt), when Fi < ð.

 where:

Wt = 23, for single precision.

Wt = 52, for double precision.

Wt = 63, for extended precision.

H = ð, when FIT(TRUNCATE).

H = ð.5, when FIT(ROUND).

The expression within the FLOOR or CEIL function effectively moves the radix point
right, to the width of the target significand, and rounds the integer part of the result.
The FLOOR or CEIL function then truncates any remaining fraction. The FLOOR or
CEIL function is then multiplied by a factor that effectively moves the radix point back to
the left.

For a single precision target, an exception can occur if Ct is greater than 254. Also, if
Ct is less than 1, then prior to application of (34):

� Fi should be divided by 2**(1-Ct).

182 SdU A Data Language Reference for DD&C

� Ct should be set to zero.

The result will be a denormal number, or zero.

Finally, only the fractional part of Ft should be stored in the target, except in the case of
extended precision, where the integer digit is also stored.

General Numeric Conversion Rules
The following sections list rules for general conversions.

Rules for retrieval of source values
� The stored value of a fixed-point field is retrieved from all digit positions across the

full width of the field. All fixed-point source fields are treated as unconstrained.

� The stored significand of a floating-point field is retrieved from all bits across the
full width of the significand, even though the field's PRECISION attribute may
specify a precision smaller than the maximum for the field's length.

Rules for “Not a Number” (NaN), infinity, and negative zero
If the source field is a binary-FLOAT then:

1. If the target field is not a binary-FLOAT then:

a. If the source value is “Not a Number” (NaN) then:

� Set the target value to zero.

� Exception 14—Unable to convert “Not a Number” (NaN) occurs.

b. If the source value is infinity then:

� Set the target value to zero.

� Exception 15—Unable to convert infinity occurs.

c. If the source value is negative zero, then set the target value to zero.

2. If the target field is a binary-FLOAT, then encode the source value in the target
field.

Rules for the BYTRVS attribute
There can be no general rule for handling this attribute. BYTRVS processing will
depend on the environment in which the conversions are done and the instruction set
used.

Rules for floating-point overflow and underflow
1. If the target field is a hexadecimal-FLOAT field, then:

a. If a conversion results in an exponent less than -64 then:

� Set the target characteristic to zero.

� Store the target significand that results from the conversion.

� Set exception 13—Floating-point underflow.

 Chapter 7. Conversion of Data Types 183

b. If a conversion results in an exponent greater than 63 then:

� Set the target characteristic to 127.

� Store the target significand that results from the conversion.

� Set exception 5—Floating-point overflow .

2. If the target field is a binary-FLOAT field, then:

a. If a conversion results in an exponent greater than:

� 127, for a single-precision target,
� 1023, for a double-precision target, or
� 16383, for an extended-precision target,

then:

� Set the target field to “Not a Number” (NaN).

� Exception 5—Floating-point overflow occurs.

Rules for the COMPLEX attribute
1. If COMPLEX(TRUE) is specified for the source field then:

a. If COMPLEX(TRUE) is specified for the target field then:

� The real part of the source field is assigned to the real part of the target
field.

� The imaginary part of the source field is assigned to the imaginary part of
the target field.

b. If COMPLEX(FALSE) is specified for the target field then:

� Set the target field to zero.

� Set exception 18—Assignment of complex to scalar .

2. If COMPLEX(FALSE) is specified for the source field then:

a. If COMPLEX(FALSE) is specified for the target field, then assign the source
field to the target field.

b. If COMPLEX(TRUE) is specified for the target field then:

� Assign the source field to the real part of the target field.
� Set the imaginary part of the target field to zero.

Rules for target FIT attribute
If a conversion results in loss of low-order digits then:

1. If FIT(TRUNCATE) is specified for the target field, then store the result in the target
field.

2. If FIT(ROUND) is specified for the target field, then round and store the result in
the target field.

3. If FIT(EXACT) is specified for the target field then:

a. If the target is a fixed-point field then:

184 SdU A Data Language Reference for DD&C

� Round and store the result in the target field.

� Exception 22—Fixed-point fit violation occurs.

b. If the target is a floating-point field then:

� Round and store the result in the target field.

� Exception 19—Floating-point fit violation occurs.

Rules for target CONSTRAINED attribute
1. If CONSTRAINED(FALSE) is specified for the target field then:

a. If the number of significant digits required in the stored value exceeds the
number of digits available in the full width of the field then:

� Truncate the value to the full width, discarding excess high-order digits,
and store the result.

� Exception 11—Fixed-point overflow occurs.

2. If CONSTRAINED(TRUE) is specified for the target field then:

a. If the number of significant digits required in the stored value exceeds the
number of digits available in the full width of the field then:

� Truncate the value to the full width, discarding excess high-order digits,
and store the result.

� Exception 11—Fixed-point overflow occurs.

b. Else if the number of significant digits required in the stored value exceeds the
number of digits specified by the PRECISION attribute then:

� Store all significant digits.

� Exception 21—Fixed-point constraint violation occurs.

Note: Note for BINARY Targets

If RADIX(10) is specified for a BINARY field, the number of significant digits cannot be
determined just by counting bits. The PRECISION attribute refers to equivalent decimal
digits, and the equivalent number of significant digits must be determined by examining
the magnitude of the stored value.

PRECISION(3) means that the absolute stored value should not exceed 999, for
example.

Rules for signs
Rules for signed and unsigned numbers:

 Definitions

� A signed number is:

– A BINARY field with SIGNED(TRUE) specified.
– A FLOAT field.
– A PACKED field with SIGNED(TRUE), SGNMNS, and SGNPLS specified.

 Chapter 7. Conversion of Data Types 185

– A ZONED field with SIGNED(TRUE) specified.

� An unsigned number is:

– A BINARY field with SIGNED(FALSE) specified.
– A PACKED field with SIGNED(TRUE) and SGNUNS specified.
– A PACKED field with SIGNED(FALSE) specified.
– A ZONED field with SIGNED(FALSE) specified.

 Rules

1. If the source field and the target field are both of the BINARY or ENUMERATION
data types, see the General Rules of “<SGNCNV attribute>” on page 141.

2. If a signed number is assigned to a signed number, then the equivalent sign of the
source is encoded in the target, as appropriate for the target's data type and sign-
related attributes.

3. If a signed number is assigned to an unsigned number then:

� The absolute value of the source is assigned to the target.

� If the source value is negative, the 12—Assignment of negative value to
unsigned field . exception occurs.

4. If an unsigned number is assigned to an unsigned number, then there are no sign
considerations.

5. If an unsigned number is assigned to a signed number, then the source is treated
as positive, and the target is made set positive as appropriate for the target's data
type and sign-related attributes.

 Design Notes
The algorithms in this section, when dealing with BINARY data fields, require that
stored values from negative sources be complemented to positive before processing.
Subsequent encoding of the target should correspond with the sign of the source.

Conversion between fixed-point fields of like radix
The following explains conversion between fixed-point fields of like radix:

All cases except BINARY-RADIX(10) to BINARY-RADIX(10): The following is appli-
cable to conversions between two BINARY fields, where RADIX(2) is specified for both
fields, or between any combination of PACKED or ZONED fields. It is not applicable to
conversions between two BINARY fields, where RADIX(10) is specified for both fields.

Recall approximation (08), which yields the raw target stored value, Vt:

Vt º Vs\((Rt\\St)/(Rs\\Ss))

When Rt is equal to Rs, the expression can be reduced to:

Vt º Vs\(Rt\\(St-Ss))

It is apparent that Vt can be generated by performing shift operations on Vs:

186 SdU A Data Language Reference for DD&C

1. Move the digits of Vs to an intermediate field, X. The width of X should be the
greater of the effective widths of the source and target fields. The effective width
of a field is determined as shown for Wt in “Rounding and truncation of fixed-point
numbers” on page 177. Vs should be right-justified in X.

2. Shift X (St-Ss) digits; left if positive, right if negative. Zeros should be shifted in.
Take note of any digits shifted out.

3. If any nonzero digits are shifted out of the right-hand end, then the target's FIT
attribute becomes a concern:

� If FIT(EXACT) is specified, then a fixed-point fit violation has occurred.

� If FIT(EXACT) or FIT(ROUND) is specified, then X should be rounded, based
on the value of the last digit shifted out.

4. If any nonzero digits are shifted out of the left-hand end, or if there are any
nonzero digits to the left of the target's effective width, then a fixed-point overflow
has occurred.

5. If there are any nonzero digits to the left of the target's PRECISION, and
CONSTRAINED(TRUE) has been specified for the target, then a fixed-point con-
straint violation has occurred.

6. Truncate X on the left to the target's effective width. What remains are the digits
for Vt.

7. Do not forget to properly encode the digits of X when moving them to the target
field.

BINARY-RADIX(10) to BINARY-RADIX(10): The difficulty with this case is that the
stored value is encoded in binary, even though RADIX(10) is specified. The result is a
base-10 scaling applied to a base-2 number, and just shifting Vs will not work. Vs must
first be converted to a base-10 encoding, then shifted, then converted back to a base-2
encoding:

1. Convert Vs to a base-10 encoded intermediate field, X, 20 digits wide.

2. Shift X (St-Ss) digits; left if positive, right if negative. Zeros should be shifted in.
Take note of any digits shifted out.

3. If any nonzero digits are shifted out of the right-hand end, then the target's FIT
attribute becomes a concern:

� If FIT(EXACT) is specified, then a fixed-point fit violation has occurred.

� If FIT(EXACT) or FIT(ROUND) is specified, then X should be rounded, based
on the value of the last digit shifted out.

4. If any nonzero digits are shifted out of the left-hand end, or if there are any
nonzero digits to the left of the target's effective width, then a fixed-point overflow
has occurred.

5. If there are any nonzero digits to the left of the target's PRECISION, and
CONSTRAINED(TRUE) has been specified for the target, then a fixed-point con-
straint violation has occurred.

 Chapter 7. Conversion of Data Types 187

6. Convert X to a base-2 encoded (binary) intermediate field, Y, using as many
resultant digits as are necessary.

7. Truncate Y on the left to the target's effective binary width, as given by:

� The LENGTH attribute when SIGNED(FALSE) is specified.

� The LENGTH attribute - 1 when SIGNED(TRUE) is specified.

8. If any nonzero digits are lost as a result of the truncation, then a fixed-point over-
flow has occurred.

9. Y contains the digits for Vt.

Conversion from hexadecimal-FLOAT to BINARY
This conversion can also be viewed as a shifting operation:

When target is BINARY RADIX(2)

1. Move the digits of the source significand to an intermediate field, X. The width of X
should be the greater of the effective widths of the source and target fields. The
effective width of the target field may be determined as shown for Wt in “Rounding
and truncation of fixed-point numbers” on page 177. The effective width of the
source field is equal to:

� 24, if the source is single-precision.

� 56, if the source is double-precision.

� 112, if the source is extended-precision.

The digits of the source significand should be right-justified in X, and, if the source
is extended-precision, should not include the digits from the secondary character-
istic.

2. Set the following variables:

Rs = 2, this will be used as a radix in a simulated binary.

Ss = 4\(Y-es), a scale, where:

Y = 6, if the source is single-precision.

Y = 14, if the source is double-precision.

Y = 28, if the source is extended-precision.

es = the source exponent.

3. Shift X (St-Ss) digits; left if positive, right if negative. Zeros should be shifted in.
Take note of any digits shifted out.

4. If any nonzero digits are shifted out of the right-hand end, then the target's FIT
attribute becomes a concern:

� If FIT(EXACT) is specified, then a fixed-point fit violation has occurred.

� If FIT(EXACT) or FIT(ROUND) is specified, then X should be rounded, based
on the value of the last digit shifted out.

5. If any nonzero digits are shifted out of the left-hand end, or if there are any
nonzero digits to the left of the target's effective width, then a fixed-point overflow
has occurred.

188 SdU A Data Language Reference for DD&C

6. If there are any nonzero digits to the left of the target's PRECISION, and
CONSTRAINED(TRUE) has been specified for the target, then a fixed-point con-
straint violation has occurred.

7. Truncate X on the left to the target's effective width. What remains are the digits
for Vt.

Conversion from BINARY to Hexadecimal-FLOAT
This conversion can also be viewed as a shifting operation:

When source is BINARY RADIX(2)

1. Move the bits of Vs to an intermediate 68-bit field, X. Vs should be left-justified in
X.

2. Set the following variables:

Y = MOD(|Ss|,4)

Z = (Ss+Y)/4

et = Wt-Z, where:

Wt = 6, if the target is single-precision.

Wt = 14, if the target is double-precision.

Wt = 28, if the target is extended-precision.

Ss = the source scale.

3. Repetitively shift X left until the first (Wt+Y) bits are nonzero. Note the number of
shifts required.

 4. Set:

et = et - the number of shifts required.

Now et is equal to the target exponent.

5. If et is less than -64, then a floating-point underflow has occurred.

6. If et is greater than 63, then a floating-point overflow has occurred.

7. Shift X to the right Z bits.

8. Truncate X on the right, to the width (Wt*4).

9. If any nonzero bits are lost as a result of the truncation, then the target's FIT attri-
bute becomes a concern:

� If FIT(EXACT) is specified, then a floating-point fit violation has occurred.

� If FIT(EXACT) or FIT(ROUND) is specified, then X should be rounded, based
on the value of the left-most bit lost as a result of the truncation.

10. X contains the bits for the target significand.

11. If the target is extended-precision, do not forget to leave space for the secondary
characteristic when moving X to the target.

 Chapter 7. Conversion of Data Types 189

Specific Numeric Conversion Rules
The following sections list rules for specific conversions.

Rules for BINARY to BINARY
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

 Design notes

� “Conversion between fixed-point fields of like radix” on page 186.

Rules for BINARY to hexadecimal-FLOAT
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for floating-point overflow and underflow” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for signs” on page 185.

 Design notes

� “Conversion from BINARY to Hexadecimal-FLOAT” on page 189.

Rules for BINARY to binary-FLOAT
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for floating-point overflow and underflow” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for signs” on page 185.

Rules for BINARY to PACKED
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

 Design notes

� “Conversion between fixed-point fields of like radix” on page 186.

190 SdU A Data Language Reference for DD&C

Rules for BINARY to ZONED
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

 Design notes

� “Conversion between fixed-point fields of like radix” on page 186.

Rules for hexadecimal-FLOAT to BINARY
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

 Design notes

� “Conversion from hexadecimal-FLOAT to BINARY” on page 188.

Rules for hexadecimal-FLOAT to Hexadecimal-FLOAT
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for signs” on page 185.

Rules for hexadecimal-FLOAT to binary-FLOAT
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for floating-point overflow and underflow” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for signs” on page 185.

Rules for hexadecimal-FLOAT to PACKED
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

Rules for hexadecimal-FLOAT to ZONED
� “Rules for the COMPLEX attribute” on page 184

 Chapter 7. Conversion of Data Types 191

� “Rules for retrieval of source values” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

Rules for binary-FLOAT to BINARY
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for “Not a Number” (NaN), infinity, and negative zero” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

Rules for binary-FLOAT to hexadecimal-FLOAT
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for “Not a Number” (NaN), infinity, and negative zero” on page 183
� “Rules for floating-point overflow and underflow” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for signs” on page 185.

Rules for binary-FLOAT to binary-FLOAT
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for floating-point overflow and underflow” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for signs” on page 185.

Rules for binary-FLOAT to PACKED
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for “Not a Number” (NaN), infinity, and negative zero” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

Rules for binary-FLOAT to ZONED
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for “Not a Number” (NaN), infinity, and negative zero” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185

192 SdU A Data Language Reference for DD&C

� “Rules for signs” on page 185.

Rules for PACKED to BINARY
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

 Design notes

� “Conversion between fixed-point fields of like radix” on page 186.

Rules for PACKED to hexadecimal-FLOAT
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for floating-point overflow and underflow” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for signs” on page 185.

Rules for PACKED to binary-FLOAT
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for floating-point overflow and underflow” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for signs” on page 185.

Rules for PACKED to PACKED
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

 Design notes

� “Conversion between fixed-point fields of like radix” on page 186.

Rules for PACKED to ZONED
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

 Chapter 7. Conversion of Data Types 193

 Design notes

� “Conversion between fixed-point fields of like radix” on page 186.

Rules for ZONED to BINARY
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

 Design notes

� “Conversion between fixed-point fields of like radix” on page 186.

Rules for ZONED to hexadecimal-FLOAT
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for floating-point overflow and underflow” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for signs” on page 185.

Rules for ZONED to binary-FLOAT
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for the BYTRVS attribute” on page 183
� “Rules for floating-point overflow and underflow” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for signs” on page 185.

Rules for ZONED to PACKED
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

 Design notes

� “Conversion between fixed-point fields of like radix” on page 186.

Rules for ZONED to ZONED
� “Rules for the COMPLEX attribute” on page 184
� “Rules for retrieval of source values” on page 183
� “Rules for target FIT attribute” on page 184
� “Rules for target CONSTRAINED attribute” on page 185
� “Rules for signs” on page 185.

194 SdU A Data Language Reference for DD&C

 Design notes

� “Conversion between fixed-point fields of like radix” on page 186.

SEQUENCE to SEQUENCE
These are the general rules:

1. The elements of the target are matched with the elements of the source on a quali-
fied name basis.

2. If a qualified name of the target is not found on the source, set exception
23—Sequence element not found .

3. Conversions of the elements of the source sequence to the representations
required by the elements of the target sequence follow the general rules specified
in Figure 6 on page 158.

4. The naming of elements of the target SEQUENCE is optional. If the target element
is named, then the source SEQUENCE is searched for an element with the same
name. An exception occurs at Conversion Plan Builder time if no such element is
found.

If the target element is not named, then sequence is searched for an element in
the same position as the target element. If there is no element with this position,
or if the source element is with this position is named, then an exception occurs at
Conversion Plan Builder time.

 Chapter 7. Conversion of Data Types 195

196 SdU A Data Language Reference for DD&C

 Appendix A. Scenarios

This appendix presents a variety of scenarios showing ADL modules and ways in which
they can be used. These scenarios are not intended to include all features of the lan-
guage, only those related to key concepts or uses.

Scenario 1: Calling a Conversion Plan
In this scenario, a PL/I application program calls an ADL conversion plan to perform
conversions not available through PL/I. This is illustrated by Figure 7 on page 198.
Why this conversion is required, and what the PL/I program does with the resulting
data, are not of concern in this scenario. Many such conversions are available through
ADL modules that are not available through other programming languages.

The ADL module converts a PL/I variable-length, EBCDIC-encoded character string into
a PL/I fixed-length, ASCII-encoded character string with a suffix byte terminating the
active data of the string.

The pertinent segment of the PL/I program is:

DCL X CHAR (1ððð) VARYING;

DCL Y CHAR (1ðð1) /\ ADL CHARSFX \/;

X = 'some variable-length value';

CALL CNVCHR(X,Y);

The required ADL module is:

DECLARE BEGIN;

X: CHARPRE MAXLEN(1ððð) CCSID(5ðð);

END;

DECLARE BEGIN;

Y: CHARSFX MAXLEN(1ðð1) CCSID(437);

END;

CNVCHR1: PLAN (X: INPUT, Y: OUTPUT)

 BEGIN;

 Y <- X;

 END;

 Copyright IBM Corp. 1993, 1997 197

A PL/I Program

X

Y

CALL CNVCHR (X, Y);

Y X;

An ADL conversion plan called CNVCHR

Figure 7. Calling a Conversion Plan

198 SdU A Data Language Reference for DD&C

Scenario 2: Generalizing a Conversion Plan
The ADL module of the previous scenario can be generalized to handle variable-length
inputs and outputs and varying CCSIDs. The caller of the CNVCHR plan is then
required to provide additional information as CALL parameters.

The pertinent segment of the PL/I program is:

DCL X CHAR (1ððð) VARYING;

DCL Y CHAR (1ðð1) /\ ADL CHARSFX \/;

DCL XCCSID FIXED BINARY(31);

DCL YMAXLEN FIXED BINARY(31);

DCL YCCSID FIXED BINARY(31);

X = 'some variable-length value';

XCCSID =5ðð;

YMAXLEN = 1ðð1;

YCCSID = 437;

CALL CNVCHR(XCCSID, X, YMAXLEN, YCCSID, Y);

The required ADL module is:

DECLARE BEGIN;

 X: CHARPRE;

 XCCSID: BINARY;

 YMAXLEN: BINARY;

 YCCSID: BINARY;

END;

DECLARE BEGIN;

 Y: CHARSFX;

END;

CNVCHR2: PLAN (

 XCCSID: INPUT,

 X: INPUT CCSID(XCCSID),

 YMAXLEN: INPUT,

 YCCSID: INPUT,

Y: OUTPUT MAXLEN(YMAXLEN) CCSID(YCCSID))

 BEGIN;

Y <- X;

 END;

 Appendix A. Scenarios 199

Scenario 3: Calling a User-Written Program From a Plan
An ADL plan can call programs written in other programming languages to perform
functions not available through ADL. One such function is the conversion of data that
ADL cannot describe and convert. Other reasons for ADL plans to call user-written
programs are presented in other scenarios.

In this scenario, illustrated by Figure 8 on page 202, a record contains a field that is of
the WEIRD data type, which cannot be described by ADL. This field is to be converted
to the STRANGE data type, which cannot be described by ADL either. Since ADL
cannot describe either WEIRD or STRANGE data, these fields are described as ASIS
data in ADL. And since ADL cannot perform conversions between the WEIRD and
STRANGE types, a user-provided conversion program, CNVW2S, must be called to
perform these conversions.

The pertinent segment of a PL/I program follows. How the PL/I program obtained the
WEIRD data and what it will do with the STRANGE data are not of concern to this
scenario.

DCL 1 X,

2 A FIXED BINARY(31),

2 B CHAR(1ððð) /\ ADL ASIS NOTE('real data type is WEIRD') \/,

2 C CHAR(5ð) /\ ADL CCSID(5ðð) \/;

DCL 1 Y,

2 A FIXED DECIMAL(9),

2 B CHAR(1ððð) /\ ADL ASIS NOTE('real data type is STRANGE') \/,

2 C CHAR(5ð) /\ ADL CCSID(437) \/;

X.A = 57;

X.B = REPEAT('1A2B3C4D5E'X,1ðð); /\ the value of something WEIRD \/

X.C = 'anything in CCSID 5ðð';

CALL CNVREC(X,Y);

And the required ADL module is the following:

200 SdU A Data Language Reference for DD&C

DECLARE BEGIN;

X: SEQUENCE BEGIN;

A: BINARY PRECISION(31);

B: ASIS LENGTH(1ðð) UNITLEN(8) NOTE('real data type is WEIRD');

C: CHAR LENGTH(5ð) CCSID(5ðð);

 END;

END;

DECLARE BEGIN;

Y: SEQUENCE BEGIN;

A: PACKED PRECISION(9);

B: ASIS LENGTH(1ðð) UNITLEN(8) NOTE('real data type is STRANGE');

C: CHAR LENGTH(5ð) CCSID(437);

 END;

END;

| BEGIN;

| Y.A <- X.A;

| CALL '<USERDLL><CNVW2S>' (Y.B, X.B); /\ OS/2 and Windows \/

| /\ For AIX, use the following syntax instead of the CALL above \/

| /\ CALL '<ddc/userexit:/u/userid/userexit><cnvw2s>' (Y.B,X.B); \/

| Y.C <- X.C;

| END;

 Appendix A. Scenarios 201

A PL/I Program

X

Y A

A

B

B

C

C

CALL CNVCHR (X, Y);

Y. A - X.A;
CALL ’CNVW2S’ (X.B, Y.B);
Y.C - X.C;

Converts WEIRD type data into
STRANGE type data.

An ADL conversion plan called CNVCHR

A user-written conversion program

Y.B

X.B

Figure 8. Calling a user-written program from a conversion plan

202 SdU A Data Language Reference for DD&C

Scenario 4: Converting File Records by Calling ADL Plans
In this scenario, illustrated by Figure 9 on page 204, pgmA, of one representation
domain, creates fileA and writes a set of records to it, each consisting of fields a, b, and
c. If pgmB, of a different representation domain, is to read, process, and update those
records, then the record fields must be encoded in formats a', b', and c', respectively.
Therefore, the records must be converted as they are read from fileA, and they must be
converted as they are rewritten to fileA. In this scenario, pgmB requests the read and
write operations on fileA and calls ADL conversion plans to perform any necessary con-
versions.

The following ADL module, containing the pgmA and pgmB declarations of the fileA
records and the getPlan and putPlan, is separately processed to produce the callable
getPlan and putPlan programs.

DECLARE BEGIN; /\ declarations corresponding to pgmA variables \/

Arec: SEQUENCE BEGIN;

a: BINARY PRECISION(31) RADIX(2);

b: CHAR LENGTH(1ð) CCSID(5ðð);

c: PACKED PRECISION(5);

 END;

 END;

DECLARE BEGIN; /\ declarations corresponding to pgmB variables \/

Brec: SEQUENCE BEGIN;

a: BINARY PRECISION(5) RADIX(1ð) CONSTRAINED(TRUE);

b: CHAR LENGTH(1ð) CCSID(437);

c: ZONED PRECISION(5);

 END;

 END;

getPlan: PLAN (Arec: INPUT,

 Brec: OUTPUT)

 BEGIN;

Brec <- Arec;

 END;

putPlan: PLAN (Brec: INPUT,

 Arec: OUTPUT)

 BEGIN;

Arec <- Brec;

 END;

 Appendix A. Scenarios 203

WRITE fileA
FROM Arec

WRITE fileA
FROM Arec

READ fileA
INTO Arec

CALL getPlan
(Arec, Brec)

CALL putPlan
(Brec, Arec)

pgmA fileA

getPlan

putPlan

Arec

Arec

Brec

Arec

Update Brec

pgmB

Access Method Write Service

Access Method Write Service

Access Method Write Service

a

a

a

a

a

a’ a’

a’

a’

a

b

b

b

b

b

b’ b’

b’

b’

b

c

c

c

c

c

c’ c’

c’

c’

c

process

conversions

conversions

Figure 9. Converting file records by calling ADL plans

204 SdU A Data Language Reference for DD&C

Scenario 5: Access Method Conversion of File Records
This scenario, illustrated by Figure 10 on page 207, shows an alternative to the calling
of ADL plans by application programs. The goal here is for all programs that access
fileA records to view its records encoded as the programs require them, as if those
records were in the same representation domain as the accessing programs. Since the
access method services of the file system must be used to read and write the records
anyway, the Access Method services can call the ADL conversion plans as the records
are read or written. Thus, to pgmB, working with fileA is no different than working with
files in its own representation domain.

As in the previous scenario, the ADL module containing the declarations of pgmA and
pgmB and the getPlan and putPlan ADL plans is separately processed to produce the
callable getPlan and putPlan programs.

The primary advantage of this approach over that of the previous scenario is that fileA
can be accessed by programs of still other representation domains without making any
changes to those programs, thereby enhancing their portability between systems.
However, the parameter lists of all ADL plans to be called by Access Method Services
must conform to the argument lists provided by the access method services.

The following is a scenario of a module whose plans can be called by access method
services. Note that in addition to the input and output records, the access method ser-
vices also provide additional information about the records, including:

� The length of the input record. This allows the final field of the record to be of
variable length, where the actual length is determined by the length of the stored
record.

� The CCSID of the input record. This allows the declaration of character fields to
be independent of the CCSID that is actually used for the record.

� The maximum allowed length of the output record.

� The required CCSID of the output record.

In addition to an OUTPUT parameter for the output record, an OUTPUT parameter is
also defined to inform access method services of the actual length of the output record.

 Appendix A. Scenarios 205

DECLARE BEGIN; /\ declarations corresponding to pgmA variables \/

Arec: SEQUENCE BEGIN;

a: BINARY PRECISION(31) RADIX(2);

b: CHAR LENGTH(1ð) CCSID(ð);

c: PACKED PRECISION(5);

 END;

 Ainlen: BINARY PRECISION(31);

 Ainccsid: BINARY PRECISION(31);

Aoutmaxlen: BINARY PRECISION(31);

 Aoutccsid: BINARY PRECISION(31);

 Aoutlen: BINARY PRECISION(31);

END;

DECLARE BEGIN; /\ declarations corresponding to pgmB variables \/

Brec: SEQUENCE BEGIN;

a: BINARY PRECISION(5) RADIX(1ð) CONSTRAINED(TRUE);

b: CHAR LENGTH(1ð) CCSID(ð);

c: ZONED PRECISION(5);

 END;

 Binlen: BINARY PRECISION(31);

 Binccsid: BINARY PRECISION(31);

Boutmaxlen: BINARY PRECISION(31);

 Boutccsid: BINARY PRECISION(31);

 Boutlen: BINARY PRECISION(31);

END;

getPlan: PLAN (Ainlen: INPUT,

 Ainccsid: INPUT,

Arec: INPUT LENGTH(Ainlen) CCSID(Ainccsid),

 Aoutmaxlen: INPUT,

 Aoutccsid: INPUT,

Brec: OUTPUT MAXLEN(Aoutmaxlen) CCSID(Aoutccsid),

 Boutlen: OUTPUT)

 BEGIN;

Brec <- Arec;

Boutlen <- LENGTH(Brec);

 END;

putPlan: PLAN (Binlen: INPUT,

 Binccsid: INPUT,

Brec: INPUT LENGTH(Binlen) CCSID(Binccsid),

 Boutmaxlen: INPUT,

 Boutccsid: INPUT,

Arec: OUTPUT MAXLEN(Boutmaxlen) CCSID(Boutccsid),

 Aoutlen: OUTPUT)

 BEGIN;

Arec <- Brec;

Aoutlen <- LENGTH(Arec);

 END;

206 SdU A Data Language Reference for DD&C

WRITE fileA
FROM Arec

READ fileA
INTO Brec

WRITE fileA
FROM Brec

Updated Brec

getPlan

fileApgmA

pgmB

Brec

Arec

putPlan

Access Method Write Service

Access Method Write Service
Call putPlan

Access Method Write Service
Call putPlan

a

a

a

a

a’

a’

a’

a’

b

b

b

b

b’

b’

b’

b’

c

c

c

c

c’

c’

c’

c’

conversions

process

conversions

Figure 10. Access method conversion of file records

 Appendix A. Scenarios 207

Scenario 6: View File Conversion of File Records
Using the same ADL module as in the previous scenario, conversions can be requested
not by access method services, but by a pseudo-file, called a VIEW, whose purpose is
to manage the creation, use, and integrity of ADL conversion programs. This is illus-
trated by Figure 11 on page 209. While this scenario may or may not apply to data
other than file data, it serves to illustrate an important aspect of ADL; namely that the
declarations and plans of a module can be managed as separate entities and brought
together only when it is necessary to create conversion programs, as in Figure 12 on
page 210.

The ADL declaration of fileA's records can be stored as an attribute of fileA and easily
accessed whenever it is required by the data description utility (DDU) and whenever it
is needed to create a view file. Similarly, the ADL declaration of viewB's view of fileA's
record can be stored as an attribute of viewB. If a programmer defines ADL plans, they
too can be stored as attributes of viewB, but if none are defined, then generic ADL
plans for file record conversion can be supplied by default.

Other benefits can also be derived from the concept of view files, such as the manage-
ment and use of keyed access paths to file records, but these are outside the scope of
this scenario.

208 SdU A Data Language Reference for DD&C

WRITE fileA
FROM Arec

READ fileA
INTO Brec

WRITE viewB
FROM Brec

getPlan

viewB

fileApgmA

pgmB

Brec

Arec

putPlan

Access Method Write Service

Access Method Write Service
CALL viewB.getPlan

CALL viewB.putPlan
Access Method Write Service

a

a

a

a

a’

a’

a’

a’

b

b

b

b

b’

b’

b’

b’

c

c

c

c

c’

c’

c’

c’

conversions

process

conversions

Figure 11. View file conversion of file records

 Appendix A. Scenarios 209

ADL
declaration

of view
records

ADL
declaration

of file
records

file
records

no data

Data DataAttributes Attributes
VIEW FILE

ADL Module

ADL
plans of

view

Executable
plans of

view

Figure 12. Assembling an ADL module from file and view attributes

Scenario 7: Selecting and Reordering Fields of Records
In this scenario, pgmB does not require all of the fields written to fileA by pgmA, and
pgmB needs the fields it selects in a different order than provided by pgmA. In the
following module, only the declaration of Brec differs from earlier scenarios. Here, the
Brec SEQUENCE includes only the fields required by pgmB, in the order required by
pgmB. No changes are needed to the ADL plans, although they result in different con-
version programs because of the changes to Brec. In the getPlan, the assignment of
Arec to Brec causes A.c and A.a to be copied with conversions to their Brec counter-
parts. Field A.b is ignored. And in the PutPlan, the assignment of Brec to Arec causes
B.c and B.a to be copied with conversions to their Arec counterparts. However, since
field A.rec.b is not matched by a field named B.rec.b, an exception is raised and the
PutPlan is terminated. This prevents the file from being contaminated with incomplete
records. Thus, field selection is not allowed when writing or updating file records.

210 SdU A Data Language Reference for DD&C

DECLARE BEGIN; /\ declarations corresponding to pgmA variables \/

Arec: SEQUENCE BEGIN;

a: BINARY PRECISION(31) RADIX(2);

b: CHAR LENGTH(1ð) CCSID(ð);

c: PACKED PRECISION(5);

 END;

 Ainlen: BINARY PRECISION(31);

 Ainccsid: BINARY PRECISION(31);

Aoutmaxlen: BINARY PRECISION(31);

 Aoutccsid: BINARY PRECISION(31);

 Aoutlen: BINARY PRECISION(31);

END;

DECLARE BEGIN; /\ declarations corresponding to pgmB variables \/

Brec: SEQUENCE BEGIN;

c: ZONED PRECISION(5);

a: BINARY PRECISION(5) RADIX(1ð) CONSTRAINED(TRUE);

 END;

 Binlen: BINARY PRECISION(31);

 Binccsid: BINARY PRECISION(31);

Boutmaxlen: BINARY PRECISION(31);

 Boutccsid: BINARY PRECISION(31);

 Boutlen: BINARY PRECISION(31);

END;

getPlan: PLAN (Ainlen: INPUT,

 Ainccsid: INPUT,

Arec: INPUT LENGTH(Ainlen) CCSID(Ainccsid),

 Aoutmaxlen: INPUT,

 Aoutccsid: INPUT,

Brec: OUTPUT MAXLEN(Aoutmaxlen) CCSID(Aoutccsid),

 Boutlen: OUTPUT)

 BEGIN;

Brec <- Arec;

Boutlen <- LENGTH(Brec);

 END;

putPlan: PLAN (Binlen: INPUT,

 Binccsid: INPUT,

Brec: INPUT LENGTH(Binlen) CCSID(Binccsid),

 Boutmaxlen: INPUT,

 Boutccsid: INPUT,

Arec: OUTPUT MAXLEN(Boutmaxlen) CCSID(Boutccsid),

 Aoutlen: OUTPUT)

 BEGIN;

Arec <- Brec;

Aoutlen <- LENGTH(Arec);

 END;

 Appendix A. Scenarios 211

Scenario 8: Updating File Records Using Workspace Variables
In this scenario, pgmB reads the records of fileA and updates only selected fields of
each record. The getPlan converts all Arec fields to their corresponding Brec fields,
including Arec fields that will not be updated by pgmB. If a standard putPlan is used,
then all Brec fields are converted to their corresponding Arec fields, including those that
were not updated by pgmB. Thus, the non-update fields are converted once for use by
pgmB and then reconverted for replacement in fileA. However, not all conversions are
fully reversible. For example, not all CCSID pairs allow conversions in both directions,
and some numeric conversions lose precision in conversions and the conversions are,
therefore, not reversible. Therefore, the non-update fields have been corrupted from
their original values.

In this module, a special getPlan and a special putPlan are provided to prevent the
corruption of non-updated fields. The getPlan copies the original values of the non-
updated fields into ADL workspace variables aHold and bHold, and the putPlan uses
the workspace values to restore the original values of the non-updated fields.

212 SdU A Data Language Reference for DD&C

DECLARE BEGIN; /\ declarations corresponding to pgmA variables \/

Arec: SEQUENCE BEGIN;

a: BINARY PRECISION(31) RADIX(2);

b: CHAR LENGTH(1ð) CCSID(ð);

c: PACKED PRECISION(5);

 END;

aHold: BINARY PRECISION(31) RADIX(2); /\ Used as workspace variable \/

bHold: CHAR LENGTH(1ð) CCSID(ð); /\ Used as workspace variable \/

 Ainlen: BINARY PRECISION(31);

 Ainccsid: BINARY PRECISION(31);

Aoutmaxlen: BINARY PRECISION(31);

 Aoutccsid: BINARY PRECISION(31);

 Aoutlen: BINARY PRECISION(31);

END;

DECLARE BEGIN; /\ declarations corresponding to pgmB variables \/

 Brec: SEQUENCE

BEGIN; /\ fields a and b are not updated \/

a: BINARY PRECISION(5) RADIX(1ð) CONSTRAINED(TRUE);

b: CHAR LENGTH(1ð) CCSID(ð);

c: ZONED PRECISION(5);

 END;

 Binlen: BINARY PRECISION(31);

 Binccsid: BINARY PRECISION(31);

Boutmaxlen: BINARY PRECISION(31);

 Boutccsid: BINARY PRECISION(31);

 Boutlen: BINARY PRECISION(31);

END;

getPlan: PLAN (Ainlen: INPUT,

 Ainccsid: INPUT,

Arec: INPUT LENGTH(Ainlen) CCSID(Ainccsid),

 Aoutmaxlen: INPUT,

 Aoutccsid: INPUT,

| aHold: OUTPUT,

| bHold: OUTPUT,

Brec: OUTPUT MAXLEN(Aoutmaxlen) CCSID(Aoutccsid),

 Boutlen: OUTPUT)

 BEGIN;

/\ Using workspace variables: \/

aHold <- Arec.a; /\ Save original value of Arec.a \/

bHold <- Arec.b; /\ Save original value of Arec.b \/

Brec <- Arec;

Boutlen <- LENGTH(Brec);

 END;

 Appendix A. Scenarios 213

putPlan: PLAN (Binlen: INPUT,

 Binccsid: INPUT,

Brec: INPUT LENGTH(Binlen) CCSID(Binccsid),

 Boutmaxlen: INPUT,

 Boutccsid: INPUT,

| aHold: INPUT,

| bHold: INPUT,

Arec: OUTPUT MAXLEN(Boutmaxlen) CCSID(Boutccsid),

 Aoutlen: OUTPUT)

 BEGIN;

/\ Using workspace variables: \/

Arec.a <- aHold; /\ Restore original value of Arec.a \/

Arec.b <- bHold; /\ Restore original value of Arec.b \/

Arec.c <- Brec.c;

Aoutlen <- LENGTH(Arec);

 END;

Scenario 9: Converting Record Keys
Many files have an index that associates the values of certain key fields with individual
records of the file. Programs can then access records randomly by specifying the key
of each record or they can access them consecutively by ascending or descending key
values. Programs accessing records randomly by key specify key values in terms of
their own representation domain, and these keys must be converted to the represen-
tation domain of the file. Programs can also request that the keys of particular records
be returned to them, and these keys must be converted from the representation domain
of the file to that of the program.

In this scenario, an ADL module provides both record and key declarations for the file's
representation domain and the program's representation domain. It also provides plans
for converting records and keys.

214 SdU A Data Language Reference for DD&C

DECLARE BEGIN; /\ declarations corresponding to fileA fields \/

Arec: SEQUENCE BEGIN;

a: BINARY PRECISION(31) RADIX(2);

b: CHAR LENGTH(1ð) CCSID(ð);

c: PACKED PRECISION(5);

 END;

Akey: SEQUENCE BEGIN;

a: BINARY PRECISION(31) RADIX(2);

c: PACKED PRECISION(5);

 END;

 Ainlen: BINARY PRECISION(31);

 Ainccsid: BINARY PRECISION(31);

Aoutmaxlen: BINARY PRECISION(31);

 Aoutccsid: BINARY PRECISION(31);

 Aoutlen: BINARY PRECISION(31);

END;

DECLARE BEGIN; /\ declarations corresponding to pgmB variables \/

 Brec: SEQUENCE

BEGIN; /\ fields a and b are not updated \/

a: BINARY PRECISION(5) RADIX(1ð) CONSTRAINED(TRUE);

b: CHAR LENGTH(1ð) CCSID(ð);

c: ZONED PRECISION(5);

 END;

 Bkey: SEQUENCE

 BEGIN;

a: BINARY PRECISION(5) RADIX(1ð) CONSTRAINED(TRUE);

c: ZONED PRECISION(5);

 END;

 Binlen: BINARY PRECISION(31);

 Binccsid: BINARY PRECISION(31);

Boutmaxlen: BINARY PRECISION(31);

 Boutccsid: BINARY PRECISION(31);

 Boutlen: BINARY PRECISION(31);

END;

getPlan: PLAN (Ainlen: INPUT,

 Ainccsid: INPUT,

Arec: INPUT LENGTH(Ainlen) CCSID(Ainccsid),

 Aoutmaxlen: INPUT,

 Aoutccsid: INPUT,

Brec: OUTPUT MAXLEN(Aoutmaxlen) CCSID(Aoutccsid),

 Boutlen: OUTPUT)

 BEGIN;

Brec <- Arec;

Boutlen <- LENGTH(Brec);

 END;

putPlan: PLAN (Binlen: INPUT,

 Binccsid: INPUT,

Brec: INPUT LENGTH(Binlen) CCSID(Binccsid),

 Boutmaxlen: INPUT,

 Boutccsid: INPUT,

Arec: OUTPUT MAXLEN(Boutmaxlen) CCSID(Boutccsid),

 Aoutlen: OUTPUT)

 BEGIN;

Arec <- Brec;

Aoutlen <- LENGTH(Arec);

 END;

 Appendix A. Scenarios 215

/\ The following plan converts keys specified by pgmB to fileA \/

keyPlan: PLAN (Binlen: INPUT,

 Binccsid: INPUT,

Bkey: INPUT LENGTH(Binlen) CCSID(Binccsid),

 Boutmaxlen: INPUT,

 Boutccsid: INPUT,

Akey: OUTPUT MAXLEN(Boutmaxlen) CCSID(Boutccsid),

 Aoutlen: OUTPUT)

 BEGIN;

Akey <- Bkey;

Aoutlen <- LENGTH(Akey);

 END;

/\ The following plan converts keys fed back to pgmB from fileA \/

kfbPlan: PLAN (Ainlen: INPUT,

 Ainccsid: INPUT,

Akey: INPUT LENGTH(Ainlen) CCSID(Ainccsid),

 Aoutmaxlen: INPUT,

 Aoutccsid: INPUT,

Bkey: OUTPUT MAXLEN(Aoutmaxlen) CCSID(Aoutccsid),

 Boutlen: OUTPUT)

 BEGIN;

Bkey <- Akey;

Boutlen <- LENGTH(Bkey);

 END;

Scenario 10: Converting Files of Text Records
If a file consists solely of text records, as many do, then the following ADL module can
be used to convert the text from one CCSID to another CCSID. Note that the same
ADL plans are used as for more complex records.

216 SdU A Data Language Reference for DD&C

DECLARE BEGIN; /\ declarations corresponding to pgmA variables \/

Arec: CHAR LENGTH(\) MAXLEN(1ðð);

 Ainlen: BINARY PRECISION(31);

 Ainccsid: BINARY PRECISION(31);

Aoutmaxlen: BINARY PRECISION(31);

 Aoutccsid: BINARY PRECISION(31);

 Aoutlen: BINARY PRECISION(31);

END;

DECLARE BEGIN;

Brec: CHAR LENGTH(\) MAXLEN(1ðð);

 Binlen: BINARY PRECISION(31);

 Binccsid: BINARY PRECISION(31);

Boutmaxlen: BINARY PRECISION(31);

 Boutccsid: BINARY PRECISION(31);

 Boutlen: BINARY PRECISION(31);

END;

getPlan: PLAN (Ainlen: INPUT,

 Ainccsid: INPUT,

Arec: INPUT LENGTH(Ainlen) CCSID(Ainccsid),

 Aoutmaxlen: INPUT,

 Aoutccsid: INPUT,

Brec: OUTPUT MAXLEN(Aoutmaxlen) CCSID(Aoutccsid),

 Boutlen: OUTPUT)

 BEGIN;

Brec <- Arec;

Boutlen <- LENGTH(Brec);

 END;

putPlan: PLAN (Binlen: INPUT,

 Binccsid: INPUT,

Brec: INPUT LENGTH(Binlen) CCSID(Binccsid),

 Boutmaxlen: INPUT,

 Boutccsid: INPUT,

Arec: OUTPUT MAXLEN(Boutmaxlen) CCSID(Boutccsid),

 Aoutlen: OUTPUT)

 BEGIN;

Arec <- Brec;

Aoutlen <- LENGTH(Arec);

 END;

Scenario 11: Defining Default Plans
As has been seen in many of the preceding scenarios, standard ADL plans can be
used for most get and put operations on file records. Specialized plans are only
required when additional functions are required. Therefore, it would be desirable to be
able to define a set of plans that could be used when user-written plans are not pro-
vided; and indeed to eliminate the need for most user-written plans.

The concept of <positional identifier>s was incorporated in ADL for this purpose. If the
DECLARE statements for the representation domains of a file and a view are included
in a module in precisely that order, then they can be referred to as the first DECLARE
statement and the second DECLARE statement, or with positional identifiers 1 and 2,

 Appendix A. Scenarios 217

respectively. And if the SEQUENCE declaration of the record appears as the first dec-
laration in each DECLARE statement, then their fully qualified positional identifiers are
"1"."1" and "2"."1", respectively.

DECLARE BEGIN; /\ declarations corresponding to pgmA variables \/

/\ <positional identifier> "1" within the module\/

Arec: SEQUENCE BEGIN;

a: BINARY PRECISION(31) RADIX(2);

b: CHAR LENGTH(1ð) CCSID(ð);

c: PACKED PRECISION(5);

 END;

 inlen: BINARY PRECISION(31);

 inccsid: BINARY PRECISION(31);

outmaxlen: BINARY PRECISION(31);

 outccsid: BINARY PRECISION(31);

 outlen: BINARY PRECISION(31);

END;

DECLARE BEGIN; /\ declarations corresponding to pgmB variables \/

/\ <positional identifier> "2" within the module\/

Brec: SEQUENCE BEGIN;

a: BINARY PRECISION(5) RADIX(1ð) CONSTRAINED(TRUE);

b: CHAR LENGTH(1ð) CCSID(ð);

c: ZONED PRECISION(5);

 END;

 inlen: BINARY PRECISION(31);

 inccsid: BINARY PRECISION(31);

outmaxlen: BINARY PRECISION(31);

 outccsid: BINARY PRECISION(31);

 outlen: BINARY PRECISION(31);

END;

getPlan: PLAN ("1".inlen: INPUT,

 "1".inccsid: INPUT,

 "1"."1": INPUT

 LENGTH("1".inlen)

 CCSID("1".inccsid),

 "1".outmaxlen: INPUT,

 "1".outccsid: INPUT,

 "2"."1": OUTPUT

 MAXLEN("1".outmaxlen)

 CCSID("1".outccsid),

 "2".outlen: OUTPUT)

 BEGIN;

"2"."1" <- "1"."1";

"2".outlen <- LENGTH("2"."1");

 END;

putPlan: PLAN ("2".inlen: INPUT,

 "2".inccsid: INPUT,

 "2"."1": INPUT

 LENGTH("2".inlen)

 CCSID("2".inccsid),

 "2".outmaxlen: INPUT,

 "2".outccsid: INPUT,

 "1"."1": OUTPUT

 MAXLEN("2".outmaxlen)

 CCSID("2".outccsid),

 "1".outlen: OUTPUT)

 BEGIN;

"1"."1" <- "2"."1";

"1".outlen <- LENGTH("1"."1");

 END;

218 SdU A Data Language Reference for DD&C

Scenario 12: Multiformat Files
In this scenario, pgmA has written records of two different formats to fileA. The order
and frequency of these records is unpredictable by readers of the file, but each record
has a discriminator field that serves to identify its format. The ADL declaration of the
records of fileA clearly must accommodate both record formats and must include a
facility for discriminating between them. Similarly, each view of the file must also
accommodate them such that ADL plans only convert like formats.

In the following declarations, the ADL CASE data type is used to distinguish between
the record formats. No change is needed to the ADL conversion plans. The assign-
ment of Arec to Brec determines the format of an Arec record, matches it with the
equivalent format of the Brec record, and performs appropriate conversions.

 Appendix A. Scenarios 219

DECLARE BEGIN; /\ declarations corresponding to pgmA variables \/

Arec: CASE BEGIN;

WHEN rf1.a = 1

 THEN

rf1: SEQUENCE BEGIN;

a: BINARY PRECISION(31) RADIX(2);

b: CHAR LENGTH(1ð) CCSID(ð);

c: PACKED PRECISION(5);

 END;

WHEN rf2.a = 2

 THEN

rf2: SEQUENCE BEGIN;

a: BINARY PRECISION(31) RADIX(2);

b: CHAR LENGTH(1ð) CCSID(ð);

c: BIT LENGTH(24);

 END;

 END;

 inlen: BINARY PRECISION(31);

 inccsid: BINARY PRECISION(31);

outmaxlen: BINARY PRECISION(31);

 outccsid: BINARY PRECISION(31);

 outlen: BINARY PRECISION(31);

END;

DECLARE BEGIN; /\ declarations corresponding to pgmB variables \/

Brec: CASE BEGIN;

WHEN rf1.a = 1

 THEN

rf1: SEQUENCE BEGIN;

a: BINARY PRECISION(5) RADIX(1ð) CONSTRAINED(TRUE);

b: CHAR LENGTH(1ð) CCSID(ð);

c: ZONED PRECISION(5);

 END;

WHEN rf2.a = 2

 THEN

rf2: SEQUENCE BEGIN;

a: BINARY PRECISION(5) RADIX(1ð) CONSTRAINED(TRUE);

b: CHAR LENGTH(1ð) CCSID(ð);

c: BIT LENGTH(24);

 END;

 END;

 inlen: BINARY PRECISION(31);

 inccsid: BINARY PRECISION(31);

outmaxlen: BINARY PRECISION(31);

 outccsid: BINARY PRECISION(31);

 outlen: BINARY PRECISION(31);

END;

220 SdU A Data Language Reference for DD&C

getPlan: PLAN ("1".inlen: INPUT,

 "1".inccsid: INPUT,

 "1"."1": INPUT

 LENGTH("1".inlen)

 CCSID("1".inccsid),

 "1".outmaxlen: INPUT,

 "1".outccsid: INPUT,

 "2"."1": OUTPUT

 MAXLEN("1".outmaxlen)

 CCSID("1".outccsid),

 "2".outlen: OUTPUT)

 BEGIN;

"2"."1" <- "1"."1";

"2".outlen <- LENGTH("2"."1");

 END;

putPlan: PLAN ("2".inlen: INPUT,

 "2".inccsid: INPUT,

 "2"."1": INPUT

 LENGTH("2".inlen)

 CCSID("2".inccsid),

 "2".outmaxlen: INPUT,

 "2".outccsid: INPUT,

 "1"."1": OUTPUT

 MAXLEN("2".outmaxlen)

 CCSID("2".outccsid),

 "1".outlen: OUTPUT)

 BEGIN;

"1"."1" <- "2"."1";

"1".outlen <- LENGTH("1"."1");

 END;

 Appendix A. Scenarios 221

Scenario 13: Converting Program Call Parameters
In this scenario, illustrated by Figure 13 on page 224, a program, pgmA, of one repre-
sentation domain, needs to call a program, pgmB , of another representation domain.
However, the encodings of the arguments specified by pgmA do not match the
encodings of the parameters required by pgmB. The following ADL module can be
defined by programmers or by appropriate software engineering tools to convert argu-
ments as they flow to pgmB, and to convert values to be returned to pgmA.

A: DECLARE BEGIN; /\ declarations corresponding to pgmA variables \/

a: BINARY PRECISION(31) RADIX(2);

b: CHAR LENGTH(1ð) CCSID(5ðð);

END;

C: DECLARE BEGIN; /\ declarations corresponding to pgmA variables \/

c: PACKED PRECISION(5);

d: ARRAY DMNLST(DMNSIZE(5)) OF PACKED PRECISION(9);

 END;

B: DECLARE BEGIN; /\ declarations corresponding to pgmB variables \/

a: BINARY PRECISION(5) RADIX(1ð) CONSTRAINED(TRUE);

b: CHAR LENGTH(1ð) CCSID(437);

c: ZONED PRECISION(5);

d: ARRAY DMNLST(DMNSIZE(5)) OF ZONED PRECISION(9);

 END;

gluePlan: PLAN (A.a: INPUT,

 A.b: INPUT,

 C.c: OUTPUT,

 C.d: OUTPUT)

 BEGIN;

B.a <- A.a;

B.b <- A.b;

/\ Use the following CALL statement for OS/2 and Windows \/

CALL '<USERDLL><pgmB>' (B.a, B.b, B.c, B.d);

/\ Replace above CALL statement for AIX platform as follows \/

/\ CALL '<search path><pgmB>' (B.a, B.b, B.c, B.d);

C.c <- B.c;

C.d <- B.d;

 END;

In this scenario,

� pgmA calls the ADL plan, named gluePlan, passing it the addresses of input
parameters A.a and A.b, and of output parameters A.c and A.d.

� The module workspace includes space for local variables B.a, B.b, B.c and B.d

� gluePlan assigns input parameters A.a and A.b to B.a and B.b, respectively,
thereby converting them to the encodings required by pgmB.

� gluePlan calls pgmB, passing it the converted input parameters and providing it
with addressability to local variables corresponding to pgmB's encodings of its
output parameters.

222 SdU A Data Language Reference for DD&C

� On return from pgmB, gluePlan assigns output parameters B.c and B.d to its output
parameters, A.c and A.d, respectively, thereby converting them to the encodings
required by pgmA.

� gluePlan returns to its caller, pgmA.

 Appendix A. Scenarios 223

Local pgmA variables
pgmA

gluePlan

PLAN (A.a: INPUT,
A.b: INPUT,
A.c: OUTPUT,
A.d: OUTPUT)

CALL gluePlan (a, b, c, d)

Local gluePlan variables

a

b

c

d

B.a

B.a

A.c

CALL ’pgmB’ (B.a,
B.b,
B.c,
B.d);

B.b

A.d

pgmB

Parameter List: (a, b, c, d);

- Processes input parameters
a and b to produce values
assigned to output
parameters c and d.

A.a;

B.c;

returns control to its caller

returns control to its caller

converts values returned by
pgmB to pgmA encodings

converts pgmA variables to
pgmB encodings

These variables are
represented as required
by pgmB.

Addressability to selected
gluePlan variables is
passed to pgmB.

Addressability to selected
variables of pgmA is passed
to program gluePlan.

These variables are
represented as required
by pgmA.

A.b;

B.d;

B.b

B.c

B.d

Figure 13. Data conversions during program calls

224 SdU A Data Language Reference for DD&C

Appendix B. The DD&C User Exit

DD&C provides a user-exit facility that allows you to call your own programs from within
ADL source files. The following describes the conventions you must use when making
calls to your own programs.

The calling conventions for the DD&C user exit are as follows:

1. To call your program, you insert a <CALL statement> in the ADL source file.

2. The program name must be an ADL <character literal>.

| 3. For OS/2 and Windows, your program must be coded as a function contained in a
| dynamic link library (DLL). You must specify both the library name and the func-
| tion name to load the correct DLL and execute the DLL function. Therefore, the
| character literal in the CALL statement must have the following format:

| <libraryname><functionname>

| Where:

| libraryname Is the filename of the user-provided DLL, without the “.DLL”
| extension.

| Alternatively, you can specify the fully-qualified filename of the
| DLL, complete with the path and the “.DLL” extension.

| The library name must be enclosed within angle brackets (< >).

| functionname Is the name of the function to call in the DLL.

| The function name must be enclosed within angle brackets
| (< >).

| Examples of valid CALL statements are:

| CALL '<MYDLL><MyFunction>' (parameter1, parameter2); /\ OS/2 and Windows \/

| or

| CALL '<C:\MYPATH\MYDLL.DLL><MyFunction>' (parameter1, parameter2); /\ AIX \/

4. For AIX, your program should be an executable file and it may be either a share or
nonshare object. You must specify both the search path name and the object file
name to load the correct program and execute the function. Therefore, the char-
acter literal in the CALL statement must have the following format:

<search path name><object file name>

where search path name is a string containing one or more directory path names
separated by a colon. If the object file name is not found, the search continues,
using the search path specified. The first instance of the object file name found is
used.

The search path name must be enclosed within angle brackets (< >).

The object file name is the name of the object file to be loaded. If the object file
name contains no / (slash) symbols, it is treated as a base name, and should be in

 Copyright IBM Corp. 1993, 1997 225

one of the directories listed in the search path name. If the object file name is not
a base name (if it contains at least one / character), the name is used as it is, and
no library path searches are performed to locate the object file (essentially, search
path name will get ignored).

The object file name must be enclosed within angle brackets (< >).

Examples of valid CALL statements are:

 CALL '</u/myid/tools:/ddc/tools><myuserexit>' (parm1, parm2);
 or

 CALL '</usr/include>'</ddc/tools/myuserexit>' (parm1, parm2);

The user-provided program is called at conversion plan execution time. SMARTdata
UTILITIES Data Description and Conversion describes the format of the call to the
user-provided program and includes an example of a user-exit program.

226 SdU A Data Language Reference for DD&C

Appendix C. List of CCSID Values

The following table lists the CCSID values that can be specified in DD&C. This list is
updated periodically.

Note: Not all combinations of CCSID values are possible.

CCSID Description

37 COM EUROPE EBCDIC
 256 NETHERLAND EBCDIC

259 SYMBOLS SET 7
 273 AUS/GERM EBCDIC
 277 DEN/NORWAY EBCDIC

 278 FIN/SWEDEN EBCDIC
 280 ITALIAN EBCDIC
 282 PORTUGAL EBCDIC
 284 SPANISH EBCDIC
 285 UK EBCDIC

286 AUS/GER 3270 EBCD
 290 JAPANESE EBCDIC
 297 FRENCH EBCDIC

300 JAPAN DB PC-DATA
301 JAPAN DB PC-DATA

367 US ANSI X3.4 ASCI
 420 ARABIC EBCDIC
 421 MAGHR/FREN EBCDIC
 423 GREEK EBCDIC
 424 HEBREW EBCDIC

 437 USA PC-DATA
 500 INTL EBCDIC
 803 HEBREW EBCDIC
 813 GREEK/LATIN ASCII

819 ISO 8859-1 ASCII

 833 KOREAN EBCDIC
834 KOREAN DB EBCDIC
835 T-CHINESE DB EBCD

 836 S-CHINESE EBCDIC
 837 S-CHINESE EBCDIC

 838 THAILAND EBCDIC
839 THAI DB EBCDIC

 850 LATIN-1 PC-DATA
 851 GREEK PC-DATA
 852 ROECE PC-DATA

 853 TURKISH PC-DATA
 855 CYRILLIC PC-DATA
 856 HEBREW PC-DATA
 857 TURKISH PC-DATA
 860 PORTUGESE PC-DATA

CCSID Description

 861 ICELAND PC-DATA
 862 HEBREW PC-DATA
 863 CANADA PC-DATA
 864 ARABIC PC-DATA
 865 DEN/NORWAY PC-DAT

 866 CYRILLIC PC-DATA
 868 URDU PC-DATA
 869 GREEK PC-DATA
 870 ROECE EBCDIC
 871 ICELAND EBCDIC

 874 THAI PC-DISPLAY
 875 GREEK EBCDIC
 880 CYRILLIC EBCDIC

891 KOREA SB PC-DATA
895 JAPAN 7-BIT LATIN

896 JAPAN 7-BIT KATAK
897 JAPAN SB PC-DATA
899 SYMBOLS - PC

 903 S-CHINESE PC-DATA
 904 T-CHINESE PC-DATA

 905 TURKEY EBCDIC
912 ISO 8859-2 ASCII
915 ISO 8859-5 ASCII
916 ISO 8859-8 ASCII

 918 URDU EBCDIC

920 ISO 8859-9 ASCII
926 KOREA DB PC-DATA

 927 T-CHINESE PC-DATA
 928 S-CHINESE PC-DATA

929 THAI DB PC-DATA

930 JAPAN MIX EBCDIC
931 JAPAN MIX EBCDIC
932 JAPAN MIX PC-DATA
933 KOREA MIX EBCDIC
934 KOREA MIX PC-DATA

935 S-CHINESE MIX EBC
 936 S-CHINESE PC-DATA

937 T-CHINESE MIX EBC
938 T-CHINESE MIX PC
939 JAPAN MIX EBCDIC

 Copyright IBM Corp. 1993, 1997 227

CCSID Description

942 JAPAN MIX PC-DATA
944 KOREA MIX PC-DATA

 946 S-CHINESE PC-DATA
 948 T-CHINESE PC-DATA

949 KOREA KS PC-DATA

951 IBM KS PC-DATA
 1008 ARABIC ISO/ASCII

1010 FRENCH ISO-7 ASCI
1011 GERM ISO-7 ASCII
1012 ITALY ISO-7 ASCII

1013 UK ISO-7 ASCII
1014 SPAIN ISO-7 ASCII
1015 PORTUGAL ISO7 ASC
1016 NOR ISO-7 ASCII
1017 DENMK ISO-7 ASCII

1018 FIN/SWE ISO-7 ASC
 1019 BELG/NETH ASCII
 1020 CANADA ISO-7
 1021 SWISS ISO-7
 1023 SPAIN ISO-7

 1025 CYRILLIC EBCDIC
1026 TURKEY LATIN-5 EB
1027 JAPAN LATIN EBCD

 1040 KOREA PC-DATA
 1041 JAPAN PC-DATA

 1042 S-CHINESE PC-DATA
 1043 T-CHINESE PC-DATA

1046 ARABIC - PC
1047 LATIN OPEN SYS EB

 1051 HP EMULATION

1088 KOREA KS PC-DATA
1089 ARABIC ISO 8859-6

 1097 FARSI EBCDIC
1098 FARSI - PC

 1100 MULTI EMULATION

1101 BRITISH ISO-7 NRC
1102 DUTCH ISO-7 NRC
1103 FINNISH ISO-7 NRC
1104 FRENCH ISO-7 NRC
1105 NOR/DAN ISO-7 NRC

1106 SWEDISH ISO-7 NRC
1107 NOR/DAN ISO-7 NRC

 4133 USA EBCDIC
 4369 AUS/GERMAN EBCDIC
 4370 BELGIUM EBCDIC

CCSID Description

 4371 BRAZIL EBCDIC
 4372 CANADA EBCDIC
 4373 DEN/NORWAY EBCDIC
 4374 FIN/SWEDEN EBCDIC
 4376 ITALY EBCDIC

 4378 PORTUGAL EBCDIC
 4380 LATIN EBCDIC
 4381 UK EBCDIC

4386 JAPAN EBCDIC SB
 4393 FRANCE EBCDIC

4396 JAPAN EBCDIC DB
 4516 ARABIC EBCDIC

4519 GREEK EBCDIC 3174
 4520 HEBREW EBCDIC
 4533 SWISS PC-DATA

4596 LATIN AMER EBCDIC
4929 KOREA SB EBCDIC
4932 S-CHIN SB EBCDIC
4934 THAI SB EBCDIC

 4946 LATIN-1 PC-DATA

 4947 GREEK PC-DATA
 4948 LATIN-2 PC-DATA
 4949 TURKEY PC-DATA
 4951 CYRILLIC PC-DATA
 4952 HEBREW PC-DATA

 4953 TURKEY PC-DATA
 4960 ARABIC PC-DATA
 4964 URDU PC-DATA
 4965 GREEK PC-DATA

4966 ROECE LATIN-2 EBC

 4967 ICELAND EBCDIC
4970 THAI SB PC-DATA

 4976 CYRILLIC EBCDIC
4993 JAPAN SB PC-DATA

 5014 URDU EBCDIC

5026 JAPAN MIX EBCDIC
5028 JAPAN MIX PC-DATA
5029 KOREA MIX EBCDIC
5031 S-CH MIXED EBCDIC

 5033 T-CHINESE EBCDIC

5035 JAPAN MIX EBCDIC
5045 KOREA KS PC-DATA
5047 KOREA KS PC DATA
5143 LATIN OPEN SYS

 8229 INTL EBCDIC

228 SdU A Data Language Reference for DD&C

CCSID Description

 8448 INTL EBCDIC
 8476 SPAIN EBCDIC
 8489 FRANCE EBCDIC
 8612 ARABIC EBCDIC
 8629 AUS/GERM PC-DATA

 8692 AUS/GERMAN EBCDIC
9025 KOREA SB EBCDIC
9026 KOREA DB EBCDIC

 9047 CYRILLIC PC-DATA
 9056 ARABIC PC-DATA

 9060 URDU PC-DATA
9089 JAPAN PC-DATA SB
9122 JAPAN MIX EBCDIC
9124 JAPAN MIX PC-DATA
9125 KOREA MIX EBCDIC

 12325 CANADA EBCDIC
 12544 FRANCE EBCDIC
 12725 FRANCE PC-DATA
 12788 ITALY EBCDIC
 13152 ARABIC PC-DATA

13218 JAPAN MIX EBCDIC
13219 JAPAN MIX EBCDIC
13221 KOREA MIX EBCDIC

 16421 CANADA EBCDIC
 16821 ITALY PC-DATA

 16884 FIN/SWEDEN EBCDIC
 20517 PORTUGAL EBCDIC
 20917 UK PC-DATA
 20980 DEN/NORWAY EBCDIC
 24613 INTL EBCDIC

24877 JAPAN DB PC-DISPL
 25013 USA PC-DISPLAY
 25076 DEN/NORWAY EBCDIC
 25426 LATIN-1 PC-DISP
 25427 GREECE PC-DISPLAY

 25428 LATIN-2 PC-DISP
 25429 TURKEY PC-DISPLAY
 25431 CYRILLIC PC-DISP
 25432 HEBREW PC-DISPLAY
 25433 TURKEY PC-DISPLAY

 25436 PORTUGAL PC-DISP
 25437 ICELAND PC-DISP
 25438 HEBREW PC-DISPLAY
 25439 CANADA PC-DISPLAY
 25440 ARABIC PC-DISPLAY

CCSID Description

 25441 DEN/NOR PC-DISP
 25442 CYRILLIC PC-DISP
 25444 URDU PC-DISPLAY
 25445 GREECE PC-DISPLAY
 25450 THAILAND PC-DISP

25467 KOREA SB PC-DISP
25473 JAPAN SB PC-DISP
25479 S-CHIN SB PC-DISP

 25480 T-CHINESE PC-DISP
25502 KOREA DB PC-DISP

 25503 T-CHINESE PC-DISP
 25504 S-CHINESE PC-DISP
 25505 THAILAND PC-DISP
 25508 JAPAN PC-DISPLAY
 25510 KOREA PC-DISPLAY

 25512 S-CHINESE PC-DISP
 25514 T-CHINESE PC-DISP
 25518 JAPAN PC-DISPLAY
 25520 KOREA PC-DISPLAY
 25522 S-CHINESE PC-DISP

 25524 T-CHINESE PC-DISP
25525 KOREA KS PC-DISP
25527 KOREA KS PC-DISP
25616 KOREA SB PC-DISP

 25617 JAPAN PC-DISPLAY

 25618 S-CHINESE PC-DISP
 25619 T-CHINESE PC-DISP

25664 KOREA KS PC-DISP
 28709 T-CHINESE EBCDIC
 29109 USA PC-DISPLAY

 29172 BRAZIL EBCDIC
 29522 LATIN-1 PC-DISP
 29523 GREECE PC-DISPLAY
 29524 ROECE PC-DISPLAY
 29525 TURKEY PC-DISPLAY

 29527 CYRILLIC PC-DISP
 29528 HEBREW PC-DISPLAY
 29529 TURKEY PC-DISPLAY
 29532 PORTUGAL PC-DISP
 29533 ICELAND PC-DISP

 29534 HEBREW PC-DISPLAY
 29535 CANADA PC-DISPLAY
 29536 ARABIC PC-DISPLAY
 29537 DEN/NOR PC-DISP
 29540 URDU PC-DISPLAY

 Appendix C. List of CCSID Values 229

CCSID Description

 29541 GREECE PC-DISPLAY
 29546 THAILAND PC-DISP
 29614 JAPAN PC-DISPLAY
 29616 KOREA PC-DISPLAY
 29618 S-CHINESE PC-DISP

 29620 T-CHINESE PC-DISP
29621 KOREA KS MIX PC
29623 KOREA KS PC-DISP

 29712 KOREA PC-DISPLAY
 29713 JAPAN PC-DISPLAY

 29714 S-CHINESE PC-DISP
 29715 T-CHINESE PC-DISP

29760 KOREA KS PC-DISP
32805 JAPAN LATIN EBCDC

 33058 JAPAN EBCDIC

 33205 SWISS PC-DISPLAY
 33268 UK/PORTUGAL EBCDC
 33618 LATIN-1 PC-DISP
 33619 GREECE PC-DISPLAY
 33620 ROECE PC-DISPLAY

 33621 TURKEY PC-DISPLAY
 33623 CYRILLIC PC-DISP
 33624 HEBREW PC-DISPLAY
 33632 ARABIC PC-DISPLAY
 33636 URDU PC-DISPLAY

 33637 GREECE PC-DISPLAY
 33665 JAPAN PC-DISPLAY

33698 JAPAN KAT/KAN EBC
33699 JAPAN LAT/KAN EBC

 33700 JAPAN PC-DISPLAY

33717 KOREA KS PC-DISP
 37301 AUS/GERM PC-DISP
 37364 BELGIUM EBCDIC
 37719 CYRILLIC PC-DISP
 37728 ARABIC PC-DISPLAY

 37732 URDU PC-DISPLAY
37761 JAPAN SB PC-DISP

 37796 JAPAN PC-DISPLAY
37813 KOREA KS PC-DISP

 41397 FRANCE PC-DISPLAY

 41460 SWISS EBCDIC
 41824 ARABIC PC-DISPLAY
 41828 URDU PC-DISPLAY
 45493 ITALY PC-DISPLAY
 45556 SWISS EBCDIC

CCSID Description

 45920 ARABIC PC-DISPLAY
 49589 UK PC-DISPLAY
 49652 BELGIUM EBCDIC
 53748 INTL EBCDIC

61696 GLOBAL SB EBCDIC

61697 GLOBAL SB PC-DATA
 61698 GLOBAL PC-DISPLAY

61699 GLBL ISO-8 ASCII
61700 GLBL ISO-7 ASCII
61710 GLOBAL USE ASCII

61711 GLOBAL USE EBCDIC
61712 GLOBAL USE EBCDIC

230 SdU A Data Language Reference for DD&C

Appendix D. Implementation Differences of ADL

This book describes the DD&C implementation of the ADL language, which is part of
the Distributed Data Management (DDM) architecture.

There are some differences between the DD&C implementation of the ADL program-
ming language and the formal specification published as the Distributed Data Manage-
ment Architecture: Specifications for A Data Language. This appendix describes those
differences for those who are familiar with the formal specification.

The following is true for the implementation of ADL described in this book.

1. The <DEC> floating point numbers are not supported as attributes for FLOAT.

2. The optional <WHEN clause> for data declarations is not supported.

3. Wherever a limit of <max34> is given in the formal specifications, this is replaced
by <max31>. For example, the maximum length of a bit string is <max31>.

4. The IN, BETWEEN, and LIKE predicates are not supported.

5. The SUBSTR function is not supported.

6. The ARRAY, BINARY, BITPRE, BOOLEAN, CASE, and SEQUENCE data types
are all byte-aligned.

7. The SFXENC attribute is not supported. Instead, the suffix value is obtained from
the CCSID type. For further information, see “<CHARSFX>” on page 92.

8. A character literal cannot contain a <newline> token.

9. The maximum length of a bit literal is 32760 bits.

10. The maximum length of character literals and encoded hex literals is 32760 single-
byte characters.

11. The maximum length of hexadecimal literals is 32760 nibbles.

12. Subscript lists are not supported. This implies that a reference to a data declara-
tion inside an array declaration can only be made from within this array.

13. No optional identifier is allowed for the INCLUDE statement, which can appear
between any two ADL tokens. No comment is allowed in an INCLUDE statement.
The include name must be a character literal.

14. The maximum number of nested INCLUDE statements is 32.

15. The meaning of the term ADL module has been modified:

� A module is the collection of all ADL declaration and plan spaces provided as
inputs to a single call of the DD&C Conversion Plan Builder component.
Workspace variables are contained within a module.

� A parse unit is the root of the ADL syntax and contains DECLARE statements
and PLAN statements.

 Copyright IBM Corp. 1993, 1997 231

In the ADL specifications, this is the definition used for a module, except that
with DD&C, a parse unit must contain at least one DECLARE statement and
one PLAN statement.

One module can therefore consist of several parse units.

16. A <positional identifier> is not assigned to SKIP statements.

17. The parse function of DD&C does not check whether any of the variables or con-
stants used in an ADL plan are defined in a DECLARE statement. This task is
performed by the Conversion Plan Builder component.

18. The size and complexity of the ADL source text is restricted by the stack size of
the application program calling the Parse function of the ADL declaration translator.

19. The maximum possible record size is <max31> bits.

20. The maximum length of a BINARY data type is 32 bits.

21. The maximum number of plan parameters allowed for each plan is <max8> input
parameters and <max8> output parameters.

232 SdU A Data Language Reference for DD&C

Appendix E. Bachus Naur Form Summary

<argument> ::= <value expression>

<argument list> ::=

 (<argument>{[,<argument>]...})

 <ARRAY> ::=

 ARRAY

<ARRAY attributes list>

 OF

 {

 {<field><terminator>} |

 <CASE> |

 <SEQUENCE> |

 {<subtype instance><terminator>}

 }

<ARRAY attributes list> ::=

 {

 <DMNLST attribute>

<ARRAY defaulted attributes list>

<ARRAY optional attributes list>

 }!

<ARRAY defaulted attributes list> ::=

 {

 [<DMNLOW attribute>]

 [<MAXALC attribute>]

 [<SKIP attribute>]

 }!

<ARRAY optional attributes list> ::=

 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 <arrow> ::=

 <-

 <ASIS> ::=

 ASIS

<ASIS attributes list>

 Copyright IBM Corp. 1993, 1997 233

<ASIS attributes list> ::=

 {

<ASIS defaulted attributes list>

<ASIS optional attributes list>

 }!

<ASIS defaulted attributes list> ::=

 [

LENGTH({1..<max ASIS> | <constant identifier>})

UNITLEN({1 | 8 | 16 | <constant identifier>})

]! |

 [

 LENGTH(\)

MAXLEN({1..<max ASIS> | <constant identifier>})

UNITLEN({1 | 8 | 16 | <constant identifier>})]

]! |

 [

 LENGTH(<qualified identifier>)

 <MAXALC attribute>

MAXLEN({1..<max ASIS> | <constant identifier>})

UNITLEN({1 | 8 | 16 | <constant identifier>})]

]!

<ASIS optional attributes list> ::=

 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

<assignment statement> ::=

 [<identifier>:]

 <qualified identifier>

 <arrow>

 <value expression>

 <terminator>

<BEGIN statement> ::=

 [<identifier>:]

 BEGIN

 <terminator>

 <BINARY> ::=

 BINARY

<BINARY attributes list>

234 SdU A Data Language Reference for DD&C

<BINARY attributes list> ::=

 {

<BINARY defaulted attributes list>

<BINARY optional attributes list>

 }!

<BINARY defaulted attributes list> ::=

 {

 [<BYTRVS attribute>]

 [<COMPLEX attribute>]

 [<CONSTRAINED attribute>]

 [<FIT attribute>]

 [<PRECISION attribute>]

 [<RADIX attribute>]

 [<SCALE attribute>]

 [<SGNCNV attribute>]

 [<SIGNED attribute>]

 }!

<BINARY optional attributes list> ::=

 {

 [<HELP attribute>]

[LENGTH({1..32 | <constant identifier>})]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 <BIT> ::=

 BIT

<BIT attributes list>

<BIT attributes list> ::=

 {

<BIT defaulted attributes list>

<BIT optional attributes list>

 }!

<BIT defaulted attributes list> ::=

[LENGTH({1..<max31> | <constant identifier>})] |

 [

 LENGTH(\)

MAXLEN({1..<max31> | <constant identifier>})

]! |

 [

 LENGTH(<qualified identifier>)

 <MAXALC attribute>

MAXLEN({1..<max31> | <constant identifier>})

]!

 Appendix E. Bachus Naur Form Summary 235

<bit literal> ::=

{b | B}<bit string> [<separator><bit string>]...

<BIT optional attributes list> ::=

 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

<bit string> ::= '[ð | 1]...'

 <BITPRE> ::=

 BITPRE

<BITPRE attributes list>

<BITPRE attributes list> ::=

 {

<BITPRE defaulted attributes list>

<BITPRE optional attributes list>

 }!

<BITPRE defaulted attributes list> ::=

 {

 [<MAXALC attribute>]

 [

 MAXLEN

 ({

1..<max BITPRE> |

 <constant identifier>

 })

]

 [<PREBYTRVS attribute>]

 [<PRELEN attribute>]

 [<PRESIGNED attribute>]

 }!

<BITPRE optional attributes list> ::=

 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

<BLNENC attribute> ::=

BLNENC ({<constant identifier> | <positive integer> })

236 SdU A Data Language Reference for DD&C

 <BOOLEAN> ::=

 BOOLEAN

<BOOLEAN attributes list>

<BOOLEAN attributes list> ::=

 {

<BOOLEAN defaulted attributes list>

<BOOLEAN optional attributes list>

 }!

<BOOLEAN defaulted attributes list> ::=

 {

 [<BLNENC attribute>]

 [<BYTRVS attribute>]

[LENGTH({1..64 | <constant identifier>})]

 }!

<boolean factor> ::=

 [NOT]<boolean primary>

<boolean literal> ::= FALSE | TRUE

<BOOLEAN optional attributes list> ::=

 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

<boolean primary> ::=

<boolean literal> |

<qualified identifier> |

 <predicate> |

 (<condition>)

<boolean term> ::=

<boolean factor> |

<boolean term> AND <boolean factor>

<BYTRVS attribute> ::=

BYTRVS ({<boolean literal> | <constant identifier>})

 Appendix E. Bachus Naur Form Summary 237

<CALL statement> ::=

 [<identifier>:]

 CALL

 <program name>

 <argument list>

 <terminator>

 <CASE> ::=

 CASE

<CASE attributes list>

 <BEGIN statement>

 <WHEN statement>...

 [<OTHERWISE statement>]

 <END statement>

<CASE attributes list> ::=

 {

<CASE defaulted attributes list>

<CASE optional attributes list>

 }!

<CASE defaulted attributes list> ::=

 [<MAXALC attribute>]

<CASE optional attributes list> ::=

 {

 [<LENGTH attribute>]

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

<CCSID attribute> ::=

 CCSID

 ({

<positive integer> |

<constant identifier> |

 <qualified identifier>

 })

 <CHAR> ::=

 CHAR

<CHAR attributes list>

238 SdU A Data Language Reference for DD&C

<CHAR attributes list> ::=

 {

<CHAR defaulted attributes list>

<CHAR optional attributes list>

 }!

<CHAR defaulted attributes list> ::=

 {

 [<CCSID attribute>]

 [<JUSTIFY attribute>]

<CHAR length attributes list>

 }!

<CHAR HIGHLOW1 attributes list> ::=

 [

HIGH({1..<max CHAR> | <constant identifier>})

LOW({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

<CHAR HIGHLOW2 attributes list> ::=

 [

HIGH({1..<max CHAR> | <constant identifier>})

 LOW(<qualified identifier>)

 <MAXALC attribute>

MAXLEN({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

<CHAR HIGHLOW3 attributes list> ::=

 [

 HIGH(<qualified identifier>)

LOW({1..<max CHAR> | <constant identifier>})

 <MAXALC attribute>

MAXLEN({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

<CHAR HIGHLOW4 attributes list> ::=

 [

 HIGH(<qualified identifier>)

 LOW(<qualified identifier>)

 <MAXALC attribute>

MAXLEN({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

 Appendix E. Bachus Naur Form Summary 239

<CHAR LENGTH asterisk attributes list> ::=

 [

 LENGTH(\)

MAXLEN({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

<CHAR length attributes list> ::=

 [

<CHAR LENGTH asterisk attributes list> |

<CHAR LENGTH fixed attributes list> |

<CHAR LENGTH identifier attributes list> |

<CHAR HIGHLOW1 attributes list> |

<CHAR HIGHLOW2 attributes list> |

<CHAR HIGHLOW3 attributes list> |

<CHAR HIGHLOW4 attributes list>

]

<CHAR length fixed attributes list> ::=

 [

LENGTH({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

<CHAR LENGTH identifier attributes list> ::=

 [

 LENGTH(<qualified identifier>)

 <MAXALC attribute>

MAXLEN({1..<max CHAR> | <constant identifier>})

UNITLEN({8 | 16 | <constant identifier>})

]!

<CHAR optional attributes list> ::=

 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 <character> ::=

 <digit> |

 <letter> |

<special character> |

 <underscore> |

 <space>

240 SdU A Data Language Reference for DD&C

<character literal> ::=

<character string>[<separator><character string>]...

 [<CCSID attribute>]

<character string> ::=

'[<source character> | <quote representation>]...'

 <CHARPRE> ::=

 CHARPRE

<CHARPRE attributes list>

<CHARPRE attributes list> ::=

 {

<CHARPRE defaulted attributes list>

<CHARPRE optional attributes list>

 }!

<CHARPRE defaulted attributes list> ::=

 {

 [<CCSID attribute>]

 [<MAXALC attribute>]

 [

 MAXLEN

 ({

1..<max CHARPRE> |

 <constant identifier>

 })

]

 [<PREBYTRVS attribute>]

 [<PRELEN attribute>]

 [<PRESIGNED attribute>]

[UNITLEN({8 | 16 | <constant identifier>})]

 }!

<CHARPRE optional attributes list> ::=

 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 <CHARSFX> ::=

 CHARSFX

<CHARSFX attributes list>

 Appendix E. Bachus Naur Form Summary 241

<CHARSFX attributes list> ::=

 {

<CHARSFX defaulted attributes list>

<CHARSFX optional attributes list>

 }!

<CHARSFX defaulted attributes list> ::=

 {

 [<CCSID attribute>]

 [<MAXALC attribute>]

 [

 MAXLEN

 ({

1..<max CHARSFX> |

 <constant identifier>

 })

]

[UNITLEN({8 | 16 | <constant identifier>})]

 }!

<CHARSFX optional attributes list> ::=

 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 <comment> ::=

/\ <source character>... \/

<comparison operator> ::=

= | < | > | <> | <= | >=

<comparison predicate> ::=

 <value expression>

 <comparison operator>

 <value expression>

<parse unit> ::= {<DECLARE statement> | <PLAN statement>}...

<COMPLEX attribute> ::=

 COMPLEX

({<boolean literal> | <constant identifier>})

 <condition> ::=

<boolean term> |

<condition> OR <boolean term>

242 SdU A Data Language Reference for DD&C

<constant identifier> ::=

 <identifier> |

ALGEBRAIC | DGTLSTBYT | EXACT | FB32 |

FB64 | FB8ð | FH32 | FH64 | FH128 | FI128 |

FRSBYT | LEFT | LOGICAL | LSTBIT | LSTBYT |

RIGHT | ROUND | TRUNCATE | ZONFRSBYT | ZONLSTBYT

<CONSTANT statement> ::=

<constant identifier> :

 CONSTANT

{<literal> | <constant identifier>}

 <terminator>

<CONSTRAINED attribute> ::=

 CONSTRAINED

({<boolean literal> | <constant identifier>})

 <constructor> ::=

 <ARRAY> |

 <CASE> |

 <SEQUENCE>

 <data> ::=

 <constructor> |

{<subtype instance> <terminator>} |

 {<field> <terminator>}

<data declaration statement> ::=

 [<identifier>:]... <data>

<DECLARE attributes list> ::=

 {

 [<NOTE attribute>]

 [<HELP attribute>]

 [<TITLE attribute>]

 }!

<DECLARE statement> ::=

 [<identifier>:]

 DECLARE

<DECLARE attributes list>

 <BEGIN statement>

 {

[<DEFAULT statement>] |

[<CONSTANT statement>] |

[<SUBTYPE statement>] |

<data declaration statement>

 }...

 <END statement>

 Appendix E. Bachus Naur Form Summary 243

<DEFAULT statement> ::=

 [<identifier>:]

 DEFAULT

 {

{ARRAY <ARRAY defaulted attributes list>} |

{ASIS <ASIS defaulted attributes list>} |

{BINARY <BINARY defaulted attributes list>} |

{BIT <BIT defaulted attributes list>} |

{BITPRE <BITPRE defaulted attributes list>} |

{BOOLEAN <BOOLEAN defaulted attributes list>} |

{CASE <CASE defaulted attributes list>} |

{CHAR <CHAR defaulted attributes list>} |

{CHARPRE <CHARPRE defaulted attributes list>} |

{CHARSFX <CHARSFX defaulted attributes list>} |

{ENUMERATION <ENUMERATION defaulted attributes list>} | .

{FLOAT <FLOAT defaulted attributes list>} |

{PACKED <PACKED defaulted attributes list>} |

{ZONED <ZONED defaulted attributes list>}

 }

 <terminator>

<delimiter token> ::=

<character literal> |

 <special symbol>

 <digit> ::=

ð | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 <dimension> ::=

 {

 [<DMNLOW attribute>]

 {

<DMNHIGH attribute> |

 <DMNSIZE attribute>

 }

 [<DMNMAX attribute>]

 }!

<DMNHIGH attribute> ::=

 DMNHIGH

 ({

<signed integer> |

<constant identifier> |

 <qualified identifier>

 })

244 SdU A Data Language Reference for DD&C

<DMNLOW attribute> ::=

 DMNLOW

 ({

<signed integer> |

<constant identifier> |

 <qualified identifier>

 })

<DMNLST attribute> ::=

DMNLST (<dimension> [{, <dimension>}...])

<DMNMAX attribute> ::=

DMNMAX({<positive integer> | <constant identifier>})

<DMNSIZE attribute> ::=

 DMNSIZE

 ({

<signed integer> |

<constant identifier> |

 <qualified identifier>

 })

<encoded hex literal> ::= <hex literal> <CCSID attribute>

<END statement> ::=

 [<identifier>:]

 END

 <terminator>

 <ENUMERATION> ::=

 ENUMERATION

<ENUMERATION attributes list>

 <enumeration list>

<ENUMERATION attributes list> ::=

 {

<ENUMERATION defaulted attributes list>

<ENUMERATION optional attributes list>

 }!

<ENUMERATION defaulted attributes list> ::=

 {

 [<BYTRVS attribute>]

[LENGTH({8 | 16 | 32 | <constant identifier>})]

 [<SGNCNV attribute>]

 [<SIGNED attribute>]

 }!

 Appendix E. Bachus Naur Form Summary 245

<enumeration identifier> ::=

 <identifier>

<enumeration list> ::=

(<enumeration value>[, <enumeration value>]...)

<ENUMERATION optional attributes list> ::=

 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

<enumeration value> ::=

<enumeration identifier>[:<signed integer>]

<escape character> ::= <value specification>

 <field> ::=

 <ASIS> |

 <BINARY> |

 <BIT> |

 <BITPRE> |

 <BOOLEAN> |

 <CHAR> |

 <CHARPRE> |

 <CHARSFX> |

 <ENUMERATION> |

 <FLOAT> |

 <PACKED> |

 <ZONED>

<file name> ::=

 <character literal>

<FIT attribute> ::=

FIT ({<constant identifier> | <positive integer> })

 <FLOAT> ::=

 FLOAT

<FLOAT attributes list>

<FLOAT attributes list> ::=

 {

<FLOAT defaulted attributes list>

<FLOAT optional attributes list>

 }!

246 SdU A Data Language Reference for DD&C

<FLOAT defaulted attributes list> ::=

 {

 [<BYTRVS attribute>]

 [<COMPLEX attribute>]

 [<FIT attribute>]

 [<FORM attribute>]

 [<RADIX attribute>]

 }!

<FLOAT optional attributes list> ::=

 {

 [<HELP attribute>]

 [<PRECISION attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

<FORM attribute> ::=

FORM ({<constant identifier> | <positive integer> })

<HELP attribute> ::=

 HELP

 ({

<character literal> |

<encoded hex literal> |

 <constant identifier>

 })

<hex digit> ::= <digit> | A | B | C | D | E | F

<hex literal> ::=

{x | X}<hex string> [<separator><hex string>]...

<hex string> ::= '[<hex digit>]...'

<HIGH attribute> ::=

 HIGH

 ({

<positive integer> |

<constant identifier> |

 <qualified identifier>

 })

 <identifier> ::=

 <identifier string>

| " <identifier string> "

 <identifier string> ::=

{<letter> | <digit> | <identifier character>}...

 Appendix E. Bachus Naur Form Summary 247

<identifier character> ::=

? | % | & | <underscore>

<INCLUDE statement> ::=

 INCLUDE

 <file name>

 <terminator>

<INPUT parameter> ::=

 <qualified identifier>

 [: INPUT

 {

 [<LENGTH attribute>]

 [<CCSID attribute>]

 }!

]

<JUSTIFY attribute> ::=

JUSTIFY ({<constant identifier> | <positive integer> })

<key word> ::=

ALGEBRAIC | AND | ARRAY | ASIS | BEGIN

| BINARY | BIT | BITPRE | BLNENC

| BOOLEAN | BYTRVS | CALL | CASE | CCSID

| CHAR | CHARPRE | CHARSFX | COMPLEX | CONSTANT

| CONSTRAINED | DECLARE | DEFAULT | DGTLSTBYT | DMNHIGH

| DMNLOW | DMNLST | DMNMAX | DMNSIZE | END

| ENUMERATION | ESCAPE | EXACT | FALSE | FB32

| FB64 | FB8ð | FH32 | FH64 | FH128

| FI128 | FIT | FLOAT | FORM | FRSBYT

| HELP | HIGH | INCLUDE | INPUT

| JUSTIFY | LEFT | LENGTH | LOGICAL

| LOW | LSTBIT | LSTBYT | MAXALC | MAXLEN

| NOT | NOTE | OF | OR | OTHERWISE

| OUTPUT | PACKED | PLAN | PREBYTRVS | PRECISION

| PRELEN | RADIX | REJECT | RIGHT

| ROUND| SCALE | SEQUENCE | SGNLOC | SGNMNS

| SGNPLS | SGNUNS | SIGNED | SKIP | SUBSTR

| SUBTYPE | THEN | TITLE | TRUE | TRUNCATE

| UNITLEN | WHEN | ZONED | ZONENC | ZONFRSBYT

 | ZONLSTBYT

248 SdU A Data Language Reference for DD&C

<LENGTH attribute> ::=

 LENGTH

 ({

<signed integer> |

<constant identifier> |

<qualified identifier> |

 \

 })

 <LENGTH function> ::=

LENGTH ({<literal> | <constant identifier> | <qualified identifier> })

 <letter> ::=

<upper case letter> | <lower case letter>

 <literal> ::=

<character literal> |

 <noncharacter literal>

<LOW attribute> ::=

 LOW

 ({

<positive integer> |

<constant identifier> |

 <qualified identifier>

 })

<lower case letter> ::=

a | b | c | d | e | f | g | h | i |

j | k | l | m | n | o | p | q | r |

s | t | u | v | w | x | y | z

<max ASIS> ::=

See Syntax Rule 3 on page 68.

<max CHAR> ::=

See Syntax Rule 2 on page 87.

<max CHARPRE> ::=

See Syntax Rule 1 on page 9ð.

<max CHARSFX> ::=

See Syntax Rule 2 on page 93.

<MAXALC attribute> ::=

MAXALC ({<boolean literal> | <constant identifier>})

 Appendix E. Bachus Naur Form Summary 249

<MAXLEN attribute> ::=

 MAXLEN

 ({

<positive integer> |

<constant identifier> |

 <qualified identifier>

 })

<max15> ::= 32,767

<max28> ::= 268,435,455

<max31> ::= 2,147,483,647

 <max7> ::= 127

 <max8> ::= 255

<min31> ::= -2,147,483,648

 <min7> ::= -128

<new line> ::=

See “Syntax rules” on page 37.

<noncharacter literal> ::=

<bit literal> |

<signed integer> |

<positive integer> |

<hex literal> |

<boolean literal> |

<encoded hex literal>

<nondelimiter token> ::=

<qualified identifier> |

<key word> |

 <noncharacter literal>

<NOTE attribute> ::=

 NOTE

 ({

<character literal> |

<encoded hex literal> |

 <constant identifier>

 })

250 SdU A Data Language Reference for DD&C

<OTHERWISE clause> ::=

 OTHERWISE

 {

<data declaration statement> |

<REJECT statement> |

<SKIP statement> |

 <terminator>

 }

<OTHERWISE statement> ::=

 [<identifier>:]

 <OTHERWISE clause>

<OUTPUT parameter> ::=

 <qualified identifier>

 : OUTPUT

 {

 [<MAXLEN attribute>]

 [<CCSID attribute>]

 }!

 <PACKED> ::=

 PACKED

<PACKED attributes list>

<PACKED attributes list> ::=

 {

<PACKED defaulted attributes list>

<PACKED optional attributes list>

 }!

<PACKED defaulted attributes list> ::=

 {

 [<COMPLEX attribute>]

 [<CONSTRAINED attribute>]

 [<FIT attribute>]

[PRECISION({1..31 | <constant identifier>})]

[SCALE({-128..127 | <constant identifier>})]

<PACKED SIGNED attributes list>

 }!

<PACKED optional attributes list> ::=

 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 Appendix E. Bachus Naur Form Summary 251

<PACKED SGNLOC attributes list> ::=

 SGNLOC(DGTLSTBYT)

 {

 [

 <SGNMNS attribute>

 <SGNPLS attribute>

]! |

 [<SGNUNS attribute>]

 }

<PACKED SIGNED attributes list> ::=

 [

 SIGNED(TRUE)

<PACKED SGNLOC attributes list>

]! |

 [SIGNED(FALSE)]

 <parameter> ::=

{<INPUT parameter> | <OUTPUT parameter>}

<parameter list> ::=

 (<parameter>[,<parameter>]...)

<pattern> ::= <value specification>

<PLAN statement> ::=

 <identifier>:

 PLAN

 <parameter list>

 <BEGIN statement>

{<assignment statement> | <CALL statement>}...

 <END statement>

<positional identifier> ::= " <digit>... "

<positive integer> ::= [+] <digit>...

<PREBYTRVS attribute> ::=

PREBYTRVS ({<boolean literal> | <constant identifier>})

<PRECISION attribute> ::=

 PRECISION

({<positive integer> | <constant identifier>})

 <predicate> ::=

 <comparison predicate>

252 SdU A Data Language Reference for DD&C

<PRELEN attribute> ::=

PRELEN ({8 | 16 | 32 | <constant identifier>})

<PRESIGNED attribute> ::=

PRESIGNED ({<boolean literal> | <constant identifier>})

<program name> ::= <character literal>

<qualified identifier> ::=

 <qualifier list>

 <qualifier> ::=

<identifier> | <positional identifier>

<qualifier list> ::=

 [<qualifier>.]...<qualifier>

<quote representation> ::= ''

<RADIX attribute> ::=

RADIX ({2 | 1ð | <constant identifier>})

<REJECT statement> ::=

 [<identifier>:]

 REJECT <terminator>

<SCALE attribute> ::=

SCALE({<signed integer> | <constant identifier>})

 <separator> ::=

{<comment> | <space> | <new line> | <tab>}...

 <SEQUENCE> ::=

 SEQUENCE

<SEQUENCE attributes list>

 <BEGIN statement>

{<data declaration statement> | <SKIP statement>}...

 <END statement>

<SEQUENCE attributes list> ::=

<SEQUENCE optional attributes list>

<SEQUENCE optional attributes list> ::=

 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

 Appendix E. Bachus Naur Form Summary 253

<SGNCNV attribute> ::=

SGNCNV ({<constant identifier> | <positive integer> })

<SGNLOC attribute> ::=

SGNLOC ({<constant identifier> | <positive integer> })

<SGNMNS attribute> ::=

SGNMNS ({<hex literal> | <constant identifier>})

<SGNPLS attribute> ::=

SGNPLS ({<hex literal> | <constant identifier>})

<SGNUNS attribute> ::=

SGNUNS ({<hex literal> | <constant identifier>})

<SIGNED attribute> ::=

SIGNED ({<boolean literal> | <constant identifier>})

<signed integer> ::= [+ | -] <digit>...

<SKIP attribute> ::=

SKIP ({<positive integer> | <constant identifier>})

<SKIP statement> ::=

 [<identifier>:]

SKIP({<positive integer> | <constant identifier>})

 <terminator>

<source character> ::=

See “Syntax rule” on page 2ð.

 <space> ::=

See “Syntax rules” on page 37.

<special character> ::=

. | , | : | ; | ? | (|) | ' | " |

/ | - | & | + | % | = | \ | > | <

<special symbol> ::=

' | \ | . | , | : | ; | = | + | - | (|) |

> | < | <> | >= | <= | /\ | \/ | <arrow>

<subtype identifier> ::= <identifier>

<subtype instance> ::=

 <subtype identifier>

<subtype instance attributes list>

254 SdU A Data Language Reference for DD&C

<subtype instance attributes list> ::=

 {

<ARRAY attributes list> |

<ASIS attributes list> |

<BIT attributes list> |

<BITPRE attributes list> |

<BOOLEAN attributes list> |

<CASE attributes list> |

<CHAR attributes list> |

<CHARPRE attributes list> |

<CHARSFX attributes list> |

<BINARY attributes list> |

<ENUMERATION attributes list> |

<FLOAT attributes list> |

<PACKED attributes list> |

<SEQUENCE attributes list> |

<ZONED attributes list>

 }

<SUBTYPE statement> ::=

 <subtype identifier>:

 SUBTYPE

 OF

 {

 <constructor> |

{<field> <terminator>} |

{<subtype instance> <terminator>}

 }

 <tab> ::=

See “Syntax rules” on page 37.

<terminator> ::= ;

<THEN clause> ::=

 THEN

 {

<data declaration statement> |

<REJECT statement> |

<SKIP statement> |

 <terminator>

 }

 Appendix E. Bachus Naur Form Summary 255

<TITLE attribute> ::=

 TITLE

 ({

<character literal> |

<encoded hex literal> |

 <constant identifier>

 })

 <token> ::=

<nondelimiter token> | <delimiter token>

<underscore> ::= _

<UNITLEN attribute> ::=

UNITLEN({ 1 | 8 | 16 | <constant identifier>})

<upper case letter> ::=

A | B | C | D | E | F | G | H | I |

J | K | L | M | N | O | P | Q | R |

S | T | U | V | W | X | Y | Z

<value expression> ::=

<value specification> |

 (<value expression>)

<value specification> ::=

 <literal> |

<constant identifier> |

<qualified identifier> |

 <LENGTH function>

<WHEN clause> ::=

 WHEN <condition>

<WHEN statement> ::=

 [<identifier>:]

 <WHEN clause>

 <THEN clause>

 <ZONED> ::=

 ZONED

<ZONED attributes list>

<ZONED attributes list> ::=

 {

<ZONED defaulted attributes list>

<ZONED optional attributes list>

 }!

256 SdU A Data Language Reference for DD&C

<ZONED defaulted attributes list> ::=

 {

 [<COMPLEX attribute>]

 [<CONSTRAINED attribute>]

 [<FIT attribute>]

[PRECISION({1..31 | <constant identifier>})]

[SCALE({-128..127 | <constant identifier>})]

<ZONED SIGNED attributes list>

 [<ZONENC attribute>]

 }!

<ZONED optional attributes list> ::=

 {

 [<HELP attribute>]

 [<NOTE attribute>]

 [<TITLE attribute>]

 }!

<ZONED SGNLOC attributes list> ::=

 [

SGNLOC({ZONLSTBYT | ZONFRSBYT})

 <SGNMNS attribute>

 <SGNPLS attribute>

]! |

 [

SGNLOC({LSTBYT | FRSBYT})

 <CCSID attribute>

]!

<ZONED SIGNED attributes list> ::=

 [

 SIGNED(TRUE)

<ZONED SGNLOC attributes list>

]! |

 [SIGNED(FALSE)]

<ZONENC attribute> ::=

ZONENC ({<hex literal> | <constant identifier>})

 Appendix E. Bachus Naur Form Summary 257

258 SdU A Data Language Reference for DD&C

 Glossary

This glossary defines many of the terms and abbrevi-
ations used in this manual. If you do not find the term
you are looking for, please refer to the index or to the
Dictionary of Computing, SC20-1699.

A Data Language . A language for describing the fields,
arrays, etc. of data records in a programming environ-
ment so the records can be transparently accessed by
other programming environments.

abend . Abnormal end of task.

access method . The part of the DDM architecture
which accepts commands to access and process the
records of a file.

ADL . A Data Language

ADLCA . ADL Communications Area, which contains
control information for exception handling.

alternate index file . A file that has a different key path
over a base file. The base file can be a keyed, direct, or
sequential file.

API. Application Programming Interface

array . An object consisting of an ordered collection of
homogeneous objects mapped onto N dimensions.

attribute . An object that specifies information about
another object, such as the length of a character string,
field or the date at which a record was last accessed.

Backus Naur Form . BNF

BNF. The metalanguage, Backus Naur Form.

case . An ordered collection of selections for the decla-
ration of a field.

CCS. Common Communication Support.

CCSID. Coded Character Set Identifier.

CDRA. Character Data Representation Architecture.

character string . A string of bytes containing charac-
ters encoded as specified by its CCSID attribute.

CM. Communications Manager

complete path name . The specifications for a file
which includes the drive (if OS/2), directory, filename
and file extension.

constructor . A data type that consists of zero or more
instances of other data types. ADL examples of
constructors are ARRAYs, CASEs, AND SEQUENCESs.

CPGID. Code Page Global Identifier.

CTOK. Condition Token. A 12-byte area in which infor-
mation about the execution of a called program is
returned by that program.

CUA. Common User Access.

data conversion . A set of programs that convert data
according to defined data descriptions. For example,
characters can be converted from EBCDIC to ASCII, and
numeric data can be converted from System /370
packed decimal to IEEE floating point or ASCII character
(or vice versa).

data description . Specification of the layout of data.
The data description of data stored in a file can be
viewed as a file attribute.

data security . The protection of data against unauthor-
ized disclosure, transfer, modifications or destruction,
whether accidental or intentional.

data set . The major unit of data storage and retrieval.
It consists of a collection of data in one of several pre-
scribed arrangements which is described by control
information that the system has access to.

data stream . All data transmitted through a data
channel in a single read or write operation.

DBCS. Double Byte Character Set - characters that are
encoded in two bytes.

DD&C. Data Description and Conversion. An architec-
ture extension to DDM.

DDM. A set of interfaces that gives users access to
data files that reside on remote systems connected by a
communication network. The DDM interfaces enable an
application program to retrieve, add, update and delete
data records in a file existing on a remote system. The
DDM interfaces can be used to communicate between
systems that have different architectures.

 Copyright IBM Corp. 1993, 1997 259

deadlock . Unresolved contention for the use of a
resource. Each element in a process is waiting for an
action by, or a response from, the other.

declaration . An ADL statement specifying the type,
attributes, and entities of a record or an object.

DFM client . Translates requests from the source
system for access to file data on a remote system into a
standard architected DDM request.

DFM server . A DFM component that accepts remote
requests to access data and translates the requests into
data management requests on the target system.

direct file . A file that is organized so that there is a
relationship between the contents of the records and
their positions.

discriminant . A field that can be tested by a WHEN
statement of a CASE to determine if the data declaration
clause of the WHEN statement is to be selected.

Distributed Data Management (DDM) . Architecture for
accessing distributed data located in files and distributed
relational databases.

Distributed File Management (DFM) . Strategy for a
set of programming facilities that implement the file
aspects of the DDM architecture on those systems which
represent distributed environments.

intersystem communication . Communication between
different systems by means of SNA facilities.

DRBA . Distributed relational data base access.

element . An instance of a data type that is a compo-
nent of a constructor data type.

entity . A record or an object.

fixed-point number . An object representing a number
whose precision and scale are fixed.

floating-point number . An object representing a
number with fixed precision and floating scale.

FSD. File System Driver.

HLL . High Level Language

HPFS. High Performance File System.

IFS. Installable File System.

keyed file . A file organization that supports keyed
access to the records of the file.

LAN . Local Area Network.

Local Area Network . LAN

LDM. Local Data Management.

LDMI. Local Data Management Interface.

local file . A file that resides on the same system as the
application program that is accessing it.

LU. Logical unit.

mixed character string . A character string consisting
of both SBCS and DBCS characters.

module . A set of data declarations and plans used to
convert data.

object . An instance of a type, such as a field of a
record or an attribute of a field.

parse unit . The amount of ADL text that is parsed with
one call of the parse function of DD&C. It consists of
declarations, plans or both.

PL. Programming Language

plan . A program for converting data from one represen-
tation to another.

protocol . A set of rules to be followed by communi-
cation systems.

RACF. Resource Access Control Facility. An external
security management facility.

record . The basic unit of data stored in a file and trans-
ferred between DDM source and target servers. An
instance of a field or constructor type.

record file . Record files consist of data fields organized
into records that can be accessed as a set of bytes.

remote file . A file that resides on a system other than
the system where the application program requesting
access to the file resides.

Remote Record Access Support . The DFM function
that allows VSAM applications to access remote file
data.

260 SdU A Data Language Reference for DD&C

SBCS. Single Byte Character Set - characters that are
encoded in one byte.

SCM. Source Communications Manager. The DDM
layer responsible for interfacing with the local communi-
cations facilities. It coordinates the sending and
receiving of data on the source system.

sequence . An object consisting of an ordered collection
of heterogeneous objects.

sequential file . A file in which records are arranged in
exactly the same sequence as they were stored into the
file.

SNA. Systems Network Architecture.

source system . A system that requests access to data
on another system. In a client/server relationship, it is
the client system.

Stream Agent . The DDM program responsible for
transformation of data between the stream oriented API
requests and the DDM byte requests.

subtype . In the type hierarchy, a lower level type which
inherits characteristics and attributes from a higher level
type.

supertype . In the type hierarchy, a higher level type
from which a subtype inherits its characteristics and attri-
butes.

Systems Network Architecture (SNA) . The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information

units through and controlling the configuration and oper-
ation of networks.

target system . The system that contains data that is
being accessed by another system. In a client/server
relationship, it is the server system.

target system data . Data considered to be owned and
maintained according to the rules and functions pre-
scribed by the data manager on the target system.

TP. Transaction Program

user exit . A point in an IBM-supplied program at which
a user-exit routine may be given control.

type . A set of representable values encapsulated by a
set of operations on those values. Each programming
language defines its own set of data types, such as the
PIC data types of COBOL or the integer data type of C.

type domain . The set of programs and objects that
process or store data of the same set of programming
language data types and representations. Examples of
type domains are MVS COBOL and OS/2 C.

type manager . A facility for a single type domain
capable of:

� Mapping programming language data descriptions
into ADL.

� Mapping the ADL of another type domain into ADL
of its own type domain.

� Mapping ADL into programming language data
descriptions.

VTAM. Virtual Telecommunications Access Method.

 Glossary 261

262 SdU A Data Language Reference for DD&C

 Index

A
access method, definition 259
ADL communications area (FMTADLCA) 17, 53
ADL declaration translator component

AUTOSKIP option of 55
introduction to 3

ADL exception, at Conversion Plan Builder time 195
ALGEBRAIC

in <key word> 37
in <SGNCNV attribute> 141
in section: <SGNCNV attribute> 141

AND
in <boolean term> 23
in <key word> 37
in section: <condition> 23

API functions of DD&C
FMTGEN (generate) 3
FMTPRS (parse) 3

<argument>
defined 41
in <argument list> 41

<argument list>
defined 41
in <CALL statement> 41

ARRAY
defined 65
in <ARRAY> 65
in <constructor> 44
in <DEFAULT statement> 47
in <key word> 37
in section: <ARRAY> 66
in section: <ASIS> 68
in section: <BIT> 77
in section: <CHAR> 87
in section: <DMNLST attribute> 121
in section: <qualified identifier> 33
in section: <SKIP attribute> 150
in section: ARRAY-to-ARRAY 161

<ARRAY attributes list>
defined 65
in <ARRAY> 65
in <subtype instance attributes list> 107

<ARRAY defaulted attributes list>
defined 65
in <ARRAY attributes list> 65

<ARRAY defaulted attributes list> (continued)
in <DEFAULT statement> 47
in section: <ARRAY> 66

<ARRAY optional attributes list>
defined 65
in <ARRAY attributes list> 65

<arrow>
defined 37
in <assignment statement> 39
in section: <assignment statement> 39

ASIS
defined 67
in <ASIS> 67
in <DEFAULT statement> 47
in <field> 44
in <key word> 37
in section: <ASIS> 67, 68
in section: <LENGTH attribute> 129
in section: <literal> 28
in section: <MAXLEN attribute> 133
in section: <UNITLEN attribute> 152
in section: ASIS-to-constructor 162
in section: ASIS-to-field data types 163
in section: BIT-to-BIT 165
in section: Constructor-to-ASIS 171
in section: field data types-to-ASIS 173

<ASIS attributes list>
defined 67
in <ASIS> 67
in <subtype instance attributes list> 107

<ASIS defaulted attributes list>
defined 67
in <ASIS attributes list> 67
in <DEFAULT statement> 47

<ASIS optional attributes list>
defined 67
in <ASIS attributes list> 67

<assignment statement>
defined 39
in <PLAN statement> 52
in section: <ASIS> 68
in section: ARRAY-to-ARRAY 161
in section: CASE-to-CASE 167

<assignment statements>
in section: Functions 155

AUTOSKIP option of DD&C 55

 Copyright IBM Corp. 1993, 1997 263

B
BEGIN

in <BEGIN statement> 40
in <key word> 37

<BEGIN statement>
defined 40
in <CASE> 82
in <DECLARE statement> 46
in <PLAN statement> 52
in <SEQUENCE> 105
in section: <BEGIN statement> 40
in section: <END statement> 49

BETWEEN
in <key word> 37

BINARY
defined 71
in <BINARY> 71
in <DEFAULT statement> 47
in <field> 44
in <key word> 37
in section: <ASIS> 68
in section: <BINARY> 69, 75
in section: <BIT> 76
in section: <BITPRE> 79
in section: <CCSID attribute> 115
in section: <CHAR> 87
in section: <CHARPRE> 89
in section: <data declaration statement> 45
in section: <DEFAULT statement> 48
in section: <DMNHIGH attribute> 119
in section: <DMNLOW attribute> 120
in section: <DMNSIZE attribute> 123
in section: <FLOAT> 98
in section: <HIGH attribute> 127
in section: <LENGTH attribute> 129
in section: <literal> 28
in section: <LOW attribute> 131
in section: <MAXLEN attribute> 133
in section: <PRECISION attribute> 136
in section: <PRELEN attribute> 137
in section: <RADIX attribute> 139
in section: <SCALE attribute> 140
in section: <SGNCNV attribute> 141
in section: <SIGNED attribute> 149
in section: ASIS-to-field data types 163
in section: BINARY, PACKED,

ZONED-to-ENUMERATION 164
in section: ENUMERATION-to-BINARY, PACKED,

ZONED 171

BINARY (continued)
in section: field data types-to-ASIS 173
in section: Numeric conversions 174—194

<BINARY attributes list>
defined 71
in <BINARY> 71
in <subtype instance attributes list> 107

<BINARY defaulted attributes list>
defined 72
in <BINARY attributes list> 71
in <DEFAULT statement> 47

<BINARY optional attributes list>
defined 72
in <BINARY attributes list> 71

BIT
defined 76
in <BIT> 76
in <DEFAULT statement> 47
in <field> 44
in <key word> 37
in section: <BIT> 76
in section: <LENGTH attribute> 129
in section: <literal> 27
in section: <MAXLEN attribute> 133
in section: ASIS-to-field data types 163
in section: BIT-to-BIT 164
in section: BIT-to-BITPRE 165
in section: BITPRE-to-BIT 166
in section: field data types-to-ASIS 173

<BIT attributes list>
defined 76
in <BIT> 76
in <subtype instance attributes list> 107

<BIT defaulted attributes list>
defined 76
in <BIT attributes list> 76
in <DEFAULT statement> 47

<bit literal>
defined 26
in <noncharacter literal> 26
in section: <literal> 27

<BIT optional attributes list>
defined 76
in <BIT attributes list> 76

<bit string>
defined 26
in <bit literal> 26
in section: <literal> 27

BITPRE
defined 79

264 SdU A Data Language Reference for DD&C

BITPRE (continued)
in <BITPRE> 79
in <DEFAULT statement> 47
in <field> 44
in <key word> 37
in section: <BITPRE> 79
in section: <MAXLEN attribute> 133
in section: <PREBYTRVS attribute> 135
in section: <PRELEN attribute> 137
in section: <PRESIGNED attribute> 138
in section: ASIS-to-field data types 163
in section: BIT-to-BITPRE 165
in section: BITPRE-to-BIT 166
in section: BITPRE-to-BITPRE 166
in section: field data types-to-ASIS 173

<BITPRE attributes list>
defined 79
in <BITPRE> 79
in <subtype instance attributes list> 107

<BITPRE defaulted attributes list>
defined 79
in <BITPRE attributes list> 79
in <DEFAULT statement> 47

<BITPRE optional attributes list>
defined 79
in <BITPRE attributes list> 79

BLNENC
in <BLNENC attribute> 113
in <key word> 37

<BLNENC attribute>
defined 113
in <BOOLEAN defaulted attributes list> 81

BOOLEAN
defined 81
in <BOOLEAN> 81
in <DEFAULT statement> 47
in <field> 44
in <key word> 37
in section: <BLNENC attribute> 113
in section: <BOOLEAN> 81
in section: <condition> 23
in section: <LENGTH attribute> 129
in section: <literal> 27
in section: ASIS-to-field data types 163
in section: BOOLEAN-to-BOOLEAN 167
in section: field data types-to-ASIS 173

<BOOLEAN attributes list>
defined 81
in <BOOLEAN> 81
in <subtype instance attributes list> 107

<BOOLEAN defaulted attributes list>
defined 81
in <BOOLEAN attributes list> 81
in <DEFAULT statement> 47

<boolean factor>
defined 23
in <boolean term> 23

<boolean literal>
defined 26
in <boolean primary> 23
in <BYTRVS attribute> 114
in <COMPLEX attribute> 117
in <CONSTRAINED attribute> 118
in <MAXALC attribute> 132
in <noncharacter literal> 26
in <PREBYTRVS attribute> 135
in <PRESIGNED attribute> 138
in <SIGNED attribute> 149
in section: <BYTRVS attribute> 114
in section: <COMPLEX attribute> 117
in section: <CONSTRAINED attribute> 118
in section: <literal> 27
in section: <MAXALC attribute> 132
in section: <PREBYTRVS attribute> 135
in section: <PRESIGNED attribute> 138
in section: <SIGNED attribute> 149

<BOOLEAN optional attributes list>
defined 81
in <BOOLEAN attributes list> 81

<boolean primary>
defined 23
in <boolean factor> 23
in section: <condition> 23

<boolean term>
defined 23
in <boolean term> 23
in <condition> 23

buffer size, passed to Conversion Plan Executor 129,
133

BYTRVS
in <BYTRVS attribute> 114
in <key word> 37
in section: <BYTRVS attribute> 114

<BYTRVS attribute>
defined 114
in <BINARY defaulted attributes list> 72
in <BOOLEAN defaulted attributes list> 81
in <ENUMERATION defaulted attributes list> 94
in <FLOAT defaulted attributes list> 100

 Index 265

C
CALL

in <CALL statement> 41
in <key word> 37

<CALL statement>
defined 41
in <PLAN statement> 52
in section: <CALL statement> 41

calling conventions for user exit 225
CASE

defined 82
in <ARRAY> 65
in <CASE> 82
in <constructor> 44
in <DEFAULT statement> 47
in <key word> 37
in section: <CASE> 82
in section: <LENGTH attribute> 129
in section: <OTHERWISE statement> 51
in section: <positional identifier> 31
in section: <qualified identifier> 33
in section: <WHEN statement> 59
in section: CASE-to-CASE 167

<CASE attributes list>
defined 82
in <CASE> 82
in <subtype instance attributes list> 107

<CASE defaulted attributes list>
defined 82
in <CASE attributes list> 82
in <DEFAULT statement> 47

<CASE optional attributes list>
defined 82
in <CASE attributes list> 82

CCSID
in <CCSID attribute> 115
in <key word> 37
in section: <CCSID attribute> 115
in section: <CHAR> 85
in section: <CHARPRE> 89
in section: <CHARSFX> 92
in section: <DEFAULT statement> 48
in section: <literal> 26
in section: <SGNLOC attribute> 144
in section: <ZONED> 109
in section: CHARxxx-to-CHARxxx 168

<CCSID attribute>
defined 115
in <CHAR defaulted attributes list> 85

<CCSID attribute> (continued)
in <character literal> 26
in <CHARPRE defaulted attributes list> 90
in <CHARSFX defaulted attributes list> 93
in <encoded hex literal> 26
in <INPUT parameter> 52
in <OUTPUT parameter> 52
in <ZONED SGNLOC attributes list> 110
in section: <CCSID attribute> 115
in section: <CHAR> 87
in section: <character> 20
in section: <CHARPRE> 90
in section: <CHARSFX> 93
in section: <comparison predicate> 22
in section: <literal> 26
in section: <token> 37
in section: <ZONED> 111

CCSIDs, list of 227
CHAR

defined 85
in <CHAR> 85
in <DEFAULT statement> 47
in <field> 44
in <key word> 37
in section: <CHAR> 85
in section: <data declaration statement> 45
in section: <JUSTIFY attribute> 128
in section: <LENGTH attribute> 129
in section: <LENGTH function> 155
in section: <literal> 27
in section: <MAXLEN attribute> 133
in section: <UNITLEN attribute> 152
in section: ASIS-to-field data types 163
in section: CHARxxx-to-CHARxxx 168
in section: field data types-to-ASIS 173

<CHAR attributes list>
defined 85
in <CHAR> 85
in <subtype instance attributes list> 107

<CHAR defaulted attributes list>
defined 85
in <CHAR attributes list> 85
in <DEFAULT statement> 47

<CHAR HIGHLOW1 attributes list>
defined 86
in <CHAR length attributes list> 86

<CHAR HIGHLOW2 attributes list>
defined 86
in <CHAR length attributes list> 86

266 SdU A Data Language Reference for DD&C

<CHAR HIGHLOW3 attributes list>
defined 87
in <CHAR length attributes list> 86

<CHAR HIGHLOW4 attributes list>
defined 87
in <CHAR length attributes list> 86

<CHAR LENGTH asterisk attributes list>
defined 86
in <CHAR length attributes list> 86

<CHAR length attributes list>
defined 86
in <CHAR defaulted attributes list> 85

<CHAR LENGTH fixed attributes list>
defined 86
in <CHAR length attributes list> 86

<CHAR LENGTH identifier attributes list>
defined 86
in <CHAR length attributes list> 86

<CHAR optional attributes list>
defined 87
in <CHAR attributes list> 85

<character>
defined 20

<character literal>
defined 26
in <delimiter token> 36
in <file name> 50
in <HELP attribute> 126
in <literal> 26
in <NOTE attribute> 134
in <program name> 41
in <TITLE attribute> 151
in section: <HELP attribute> 126
in section: <literal> 26
in section: <NOTE attribute> 134
in section: <TITLE attribute> 151
in section: <token> 37

<character string>
defined 26
in <character literal> 26
in section: <literal> 27

CHARPRE
defined 89
in <CHARPRE> 89
in <DEFAULT statement> 47
in <field> 44
in <key word> 37
in section: <comparison predicate> 21
in section: <LENGTH attribute> 129
in section: <LENGTH function> 155

CHARPRE (continued)
in section: <MAXLEN attribute> 133
in section: <PREBYTRVS attribute> 135
in section: <PRELEN attribute> 137
in section: <PRESIGNED attribute> 138
in section: <UNITLEN attribute> 152
in section: ASIS-to-field data types 163
in section: CHARxxx-to-CHARxxx 170
in section: field data types-to-ASIS 173
insection: <CHARPRE> 89

<CHARPRE attributes list>
defined 89
in <CHARPRE> 89
in <subtype instance attributes list> 107

<CHARPRE defaulted attributes list>
defined 90
in <CHARPRE attributes list> 89
in <DEFAULT statement> 47

<CHARPRE optional attributes list>
defined 90
in <CHARPRE attributes list> 89

CHARSFX
defined 92
in <field> 44
in <key word> 37
in section: <LENGTH function> 155

<CHARSFX attributes list>
defined 92
in <CHARSFX> 92
in <subtype instance attributes list> 107

<CHARSFX defaulted attributes list>
defined 93
in <CHARSFX attributes list> 92
in <DEFAULT statement> 47

<CHARSFX optional attributes list>
defined 93
in <CHARSFX attributes list> 92

<comment>
defined 36
in <separator> 36
in section: <token> 37

<comparison operator>
defined 21
in <comparison predicate> 21
in section: <comparison predicate> 21

COMPLEX
in <key word> 37

<COMPLEX attribute>
defined 117
in <BINARY defaulted attributes list> 72

 Index 267

<COMPLEX attribute> (continued)
in <FLOAT defaulted attributes list> 100
in <PACKED defaulted attributes list> 102
in <ZONED defaulted attributes list> 110

components of DD&C
ADL declaration translator 3
Conversion Plan Builder 3, 31, 195, 231
Conversion Plan Executor 52, 129, 133

<condition>
defined 23
in <boolean primary> 23
in <condition> 23
in <WHEN clause> 38
in section: <CASE> 83
in section: <condition> 23
in section: CASE-to-CASE 167

condition token 41, 53
CONSTANT

in <CONSTANT statement> 42
in <key word> 37
in section: <CONSTANT statement> 42

<CONSTANT statement>
defined 42
in <DECLARE statement> 46
in section: <BYTRVS attribute> 114
in section: <CCSID attribute> 115
in section: <COMPLEX attribute> 117
in section: <CONSTRAINED attribute> 118
in section: <DMNHIGH attribute> 119
in section: <DMNLOW attribute> 120
in section: <DMNMAX attribute> 122
in section: <DMNSIZE attribute> 123
in section: <FORM attribute> 125
in section: <HELP attribute> 126
in section: <HIGH attribute> 127
in section: <LENGTH attribute> 129
in section: <LOW attribute> 131
in section: <MAXALC attribute> 132
in section: <MAXLEN attribute> 133
in section: <NOTE attribute> 134
in section: <PREBYTRVS attribute> 135
in section: <PRECISION attribute> 136
in section: <PRELEN attribute> 137
in section: <PRESIGNED attribute> 138
in section: <RADIX attribute> 139
in section: <SCALE attribute> 140
in section: <SGNCNV attribute> 141
in section: <SGNMNS attribute> 146
in section: <SGNPLS attribute> 147
in section: <SGNUNS attribute> 148

<CONSTANT statement> (continued)
in section: <SIGNED attribute> 149
in section: <SKIP attribute> 150
in section: <TITLE attribute> 151
in section: <UNITLEN attribute> 152
in section: <ZONENC attribute> 153

CONSTRAINED
in <CONSTRAINED attribute> 118
in <key word> 37
in section: <BINARY> 69
in section: <CONSTRAINED attribute> 118

<CONSTRAINED attribute>
defined 118
in <BINARY defaulted attributes list> 72
in <PACKED defaulted attributes list> 102
in <ZONED defaulted attributes list> 110

<constructor>
defined 44
in <data> 44
in <SUBTYPE statement> 57
in section: <ASIS> 68
in section: <BIT> 77
in section: <CHAR> 87
in section: <PLAN statement> 53

Conversion Plan Builder component 3, 31, 195, 231
Conversion Plan Executor 52, 129, 133

D
<data>

defined 44
in <data declaration statement> 44
in section: <data declaration statement> 44

<data declaration statement>
defined 44
in <DECLARE statement> 46
in <SEQUENCE> 105
in section: <ARRAY> 66
in section: <CCSID attribute> 115
in section: <data declaration statement> 44
in section: <DEFAULT statement> 47
in section: <PLAN statement> 52
in section: <subtype instance> 107

DD&C
conversions supported by 157
list of valid CCSIDs for 227
user exit 225

DD&C API functions
FMTGEN (generate) 3
FMTPRS (parse) 3

268 SdU A Data Language Reference for DD&C

DD&C Components
ADL declaration translator 3, 55
Conversion Plan Builder 3, 31, 195, 231
Conversion Plan Executor 52, 129, 133

DDM definition 259
DECLARE

in <DECLARE statement> 46
in <key word> 37
in section: <positional identifier> 31

<DECLARE attributes list>
defined 46
in <DECLARE statement> 46

<DECLARE statement>
defined 46
in <parse unit> 30
in section: <DEFAULT statement> 47
in section: <positional identifier> 31
in section: <qualified identifier> 33

DEFAULT
in <DEFAULT statement> 47
in <key word> 37

<DEFAULT statement>
defined 47
in <DECLARE statement> 46
in section: <ARRAY> 66
in section: <CCSID attribute> 115
in section: <data declaration statement> 44
in section: <DEFAULT statement> 47
in section: ARRAY-to-ARRAY 161

<delimiter token>
defined 36
in <token> 36
in section: <token> 37

DGTLSTBYT
in <key word> 37
in <PACKED SGNLOC attributes list> 103
in <SGNLOC attribute> 144
in section: <PACKED> 103
in section: <SGNLOC attribute> 144
in section: <SGNMNS attribute> 146
in section: <SGNPLS attribute> 147
in section: <SGNUNS attribute> 148

<digit>
defined 20
in <character> 20
in <hex digit> 26
in <identifier> 25
in <positional identifier> 31
in <positive integer> 26
in <signed integer> 26

<dimension>
defined 121
in <DMNLST attribute> 121

DMNHIGH
in <DMNHIGH attribute> 119
in <key word> 37
in section: <DMNHIGH attribute> 119
in section: <DMNLST attribute> 121
in section: ARRAY-to-ARRAY 162

<DMNHIGH attribute>
defined 119
in <dimension> 121
in section: <ARRAY> 61—65
in section: <DMNHIGH attribute> 119
in section: <DMNLST attribute> 121
in section: ARRAY-to-ARRAY 161

DMNLOW
in <DMNLOW attribute> 120
in <key word> 37
in section: <ARRAY> 65
in section: <DMNLOW attribute> 120
in section: <DMNLST attribute> 121
in section: ARRAY-to-ARRAY 162

<DMNLOW attribute>
defined 120
in <ARRAY defaulted attributes list> 65
in <dimension> 121
in section: <ARRAY> 61—65
in section: <DMNLOW attribute> 120
in section: <DMNLST attribute> 121
in section: ARRAY-to-ARRAY 161

DMNLST
in <DMNLST attribute> 121
in <key word> 37
in section: <subtype instance> 108

<DMNLST attribute>
defined 121
in <ARRAY attributes list> 65
in section: <ARRAY> 66

DMNMAX
in <key word> 37

<DMNMAX attribute>
defined 122
in <dimension> 121
in section: <ARRAY> 63
in section: ARRAY-to-ARRAY 161

DMNSIZE
in <DMNSIZE attribute> 123
in <key word> 37
in section: <DMNLST attribute> 121

 Index 269

DMNSIZE (continued)
in section: <DMNSIZE attribute> 123
in section: ARRAY-to-ARRAY 162

<DMNSIZE attribute>
defined 123
in <dimension> 121
in section: <ARRAY> 61—65
in section: ARRAY-to-ARRAY 161

E
<encoded hex literal>

defined 26
in <HELP attribute> 126
in <noncharacter literal> 26
in <NOTE attribute> 134
in <TITLE attribute> 151
in section: <HELP attribute> 126
in section: <literal> 26
in section: <NOTE attribute> 134
in section: <TITLE attribute> 151

END
in <END statement> 49
in <key word> 37

<END statement>
defined 49
in <CASE> 82
in <DECLARE statement> 46
in <PLAN statement> 52
in <SEQUENCE> 105
in section: <BEGIN statement> 40
in section: <END statement> 49

ENUMERATION
defined 94
in <DEFAULT statement> 47
in <ENUMERATION> 94
in <field> 44
in <key word> 37
in section: <ENUMERATION> 95
in section: <LENGTH attribute> 129
in section: <SGNCNV attribute> 141
in section: ASIS-to-field data types 163
in section: BINARY, PACKED,

ZONED-to-ENUMERATION 164
in section: field data types-to-ASIS 173

<ENUMERATION attributes list>
defined 94
in <ENUMERATION> 94
in <subtype instance attributes list> 107

<ENUMERATION defaulted attributes list>
defined 94
in <DEFAULT statement> 47
in <ENUMERATION attributes list> 94

<enumeration identifier>
defined 94
in <enumeration value> 94
in section: BINARY, PACKED,

ZONED-to-ENUMERATION 164
in section: ENUMERATION-to-ENUMERATION 172

<enumeration list>
defined 94
in <ENUMERATION> 94

<ENUMERATION optional attributes list>
defined 94
in <ENUMERATION attributes list> 94

<enumeration value>
defined 94
in <enumeration list> 94
in section: <ENUMERATION> 94

ESCAPE
in <key word> 37

EXACT
in <key word> 37

exception, ADL
at Conversion Plan Builder time 195
handling 17

F
FALSE

in <boolean literal> 26
in <key word> 37
in <PACKED SIGNED attributes list> 103
in <ZONED SIGNED attributes list> 110
in section: <ARRAY> 63
in section: <ASIS> 68
in section: <BINARY> 69
in section: <BIT> 76
in section: <BITPRE> 80
in section: <CASE> 83
in section: <CCSID attribute> 115
in section: <CHAR> 87
in section: <CHARPRE> 90
in section: <comparison predicate> 21
in section: <condition> 23
in section: <CONSTRAINED attribute> 118
in section: <DMNHIGH attribute> 119
in section: <DMNLOW attribute> 120
in section: <DMNSIZE attribute> 123

270 SdU A Data Language Reference for DD&C

FALSE (continued)
in section: <ENUMERATION> 95
in section: <HIGH attribute> 127
in section: <LENGTH attribute> 129
in section: <literal> 27
in section: <LOW attribute> 131
in section: <MAXLEN attribute> 133
in section: <PACKED> 102
in section: <predicate> 32
in section: <PRESIGNED attribute> 138
in section: <SIGNED attribute> 149
in section: <ZONED> 109
in section: ASIS-to-field data types 163
in section: BIT-to-BIT 165
in section: BIT-to-BITPRE 165
in section: BITPRE-to-BITPRE 166
in section: BOOLEAN-to-BOOLEAN 167
in section: CASE-to-CASE 167
in section: CHARxxx-to-CHARxxx 169
in section: field data types-to-ASIS 173
in section: Numeric conversions 184

FB32
in <FORM attribute> 125
in <key word> 37
in section: <FLOAT> 99
in section: <FORM attribute> 125

FB64
in <FORM attribute> 125
in <key word> 37
in section: <FLOAT> 99
in section: <FORM attribute> 125

FB80
in <FORM attribute> 125
in <key word> 37
in section: <FLOAT> 99
in section: <FORM attribute> 125

FH128
in <FORM attribute> 125
in <key word> 37
in section: <FLOAT> 97
in section: <FORM attribute> 125

FH32
in <FORM attribute> 125
in <key word> 37
in section: <FLOAT> 97
in section: <FORM attribute> 125

FH64
in <FORM attribute> 125
in <key word> 37
in section: <FLOAT> 97

FH64 (continued)
in section: <FORM attribute> 125

FI128
in <FORM attribute> 125
in <key word> 37
in section: <FLOAT> 100
in section: <FORM attribute> 125

<file name>
defined 50
in <INCLUDE statement> 50
in section: <INCLUDE statement> 50

FIT
in <FIT attribute> 124
in <key word> 37
in section: <FIT attribute> 124
in section: Numeric conversions 178

<FIT attribute>
defined 124
in <BINARY defaulted attributes list> 72
in <FLOAT defaulted attributes list> 100
in <PACKED defaulted attributes list> 102
in <ZONED defaulted attributes list> 110

FLOAT
defined 100
in <DEFAULT statement> 47
in <field> 44
in <FLOAT> 100
in <key word> 37
in section: <FLOAT> 96, 101
in section: <LENGTH attribute> 129
in section: <PRECISION attribute> 136
in section: <RADIX attribute> 139
in section: <SCALE attribute> 140
in section: ASIS-to-field data types 163
in section: ENUMERATION-to-BINARY, PACKED,

ZONED 171
in section: field data types-to-ASIS 173
in section: Numeric conversions 175, 194

<FLOAT attributes list>
defined 100
in <FLOAT> 100
in <subtype instance attributes list> 107

<FLOAT defaulted attributes list>
defined 100
in <DEFAULT statement> 47
in <FLOAT attributes list> 100

<FLOAT optional attributes list>
defined 100
in <FLOAT attributes list> 100

 Index 271

FMTADLCA (ADL communications area) 17, 53
FMTGEN (generate function) 3
FMTPRS (parse function)

description of 3
in ADL example 6

FORM
in <FORM attribute> 125
in <key word> 37
in section: <FLOAT> 97
in section: <FORM attribute> 125

<FORM attribute>
defined 125
in <FLOAT defaulted attributes list> 100
in section: <FLOAT> 96

FRSBYT
in <key word> 37
in <SGNLOC attribute> 144
in <ZONED SGNLOC attributes list> 110
in section: <DEFAULT statement> 48
in section: <SGNLOC attribute> 144
in section: <ZONED> 110

H
handling exceptions 17
HELP

in <HELP attribute> 126
in <key word> 37
in section: <HELP attribute> 126

<HELP attribute>
defined 126
in <ARRAY optional attributes list> 65
in <ASIS optional attributes list> 67
in <BINARY optional attributes list> 72
in <BIT optional attributes list> 76
in <BITPRE optional attributes list> 79
in <BOOLEAN optional attributes list> 81
in <CASE optional attributes list> 82
in <CHAR optional attributes list> 87
in <CHARPRE optional attributes list> 90
in <CHARSFX optional attributes list> 93
in <DECLARE attributes list> 46
in <ENUMERATION optional attributes list> 94
in <FLOAT optional attributes list> 100
in <PACKED optional attributes list> 103
in <SEQUENCE optional attributes list> 105
in <ZONED optional attributes list> 110

<hex digit>
defined 26
in <hex string> 26

<hex digit> (continued)
in section: <literal> 26
in section: <SGNMNS attribute> 146
in section: <SGNPLS attribute> 147
in section: <SGNUNS attribute> 148

<hex literal>
defined 26
in <encoded hex literal> 26
in <noncharacter literal> 26
in <SGNMNS attribute> 146
in <SGNPLS attribute> 147
in <SGNUNS attribute> 148
in <ZONENC attribute> 153
in section: <literal> 28
in section: <SGNMNS attribute> 146
in section: <SGNPLS attribute> 147
in section: <SGNUNS attribute> 148
in section: <ZONENC attribute> 153

<hex string>
defined 26
in <hex literal> 26
in section: <literal> 27

HIGH
in <CHAR HIGHLOW1 attributes list> 86
in <CHAR HIGHLOW2 attributes list> 86
in <CHAR HIGHLOW3 attributes list> 87
in <CHAR HIGHLOW4 attributes list> 87
in <HIGH attribute> 127
in <key word> 37
in section: <CHAR> 87
in section: <HIGH attribute> 127
in section: ARRAY-to-ARRAY 161
in section: CHARxxx-to-CHARxxx 169

<HIGH attribute>
defined 127
in section: <CHAR> 85
in section: ASIS-to-field data types 163
in section: CHARxxx-to-CHARxxx 168
in section: field data types-to-ASIS 173

I
<identifier>

defined 25
in <assignment statement> 39
in <BEGIN statement> 40
in <CALL statement> 41
in <constant identifier> 42
in <data declaration statement> 44
in <DECLARE statement> 46

272 SdU A Data Language Reference for DD&C

<identifier> (continued)
in <DEFAULT statement> 47
in <END statement> 49
in <enumeration identifier> 94
in <OTHERWISE statement> 51
in <PLAN statement> 52
in <qualifier> 33
in <REJECT statement> 54
in <SKIP statement> 55
in <subtype identifier> 57
in <WHEN statement> 59
in section: <assignment statement> 39
in section: <BEGIN statement> 40
in section: <CALL statement> 41
in section: <CCSID attribute> 115
in section: <CONSTANT statement> 42
in section: <data declaration statement> 44
in section: <DEFAULT statement> 47
in section: <DMNLOW attribute> 120
in section: <DMNSIZE attribute> 123
in section: <END statement> 49
in section: <HIGH attribute> 127
in section: <identifier> 25
in section: <LENGTH attribute> 129
in section: <LOW attribute> 131
in section: <OTHERWISE statement> 51
in section: <qualified identifier> 33
in section: <REJECT statement> 54
in section: <SKIP statement> 55
in section: <subtype instance> 107
in section: <SUBTYPE statement> 57
in section: CASE-to-CASE 167

<identifier character>
defined 25
in <identifier> 25
in section: <identifier> 25

IN
in <key word> 37

INCLUDE
in <INCLUDE statement> 50
in <key word> 37

<INCLUDE statement>
defined 50
in section: <INCLUDE statement> 50

INPUT
in <INPUT parameter> 52
in <key word> 37
in section: <PLAN statement> 53

<INPUT parameter>
defined 52

<INPUT parameter> (continued)
in <parameter> 52
in section: <assignment statement> 39
in section: <PLAN statement> 53

J
JUSTIFY

in <JUSTIFY attribute> 128
in <key word> 37
in section: <JUSTIFY attribute> 128
in section: CHARxxx-to-CHARxxx 168

<JUSTIFY attribute>
defined 128
in <CHAR defaulted attributes list> 85

L
LEFT

in <JUSTIFY attribute> 128
in <key word> 37
in section: <JUSTIFY attribute> 128
in section: CHARxxx-to-CHARxxx 168

LENGTH
in <LENGTH function> 155
in <ASIS defaulted attributes list> 67
in <BINARY optional attributes list> 72
in <BIT defaulted attributes list> 76
in <BOOLEAN defaulted attributes list> 81
in <CHAR LENGTH asterisk attributes list> 86
in <CHAR length attributes list> 86
in <CHAR length fixed attributes list> 86
in <CHAR LENGTH identifier attributes list> 86
in <ENUMERATION defaulted attributes list> 94
in <key word> 37
in <LENGTH attribute> 129
in section: <ASIS> 67
in section: <BINARY> 69
in section: <BIT> 76
in section: <CHAR> 85
in section: <ENUMERATION> 94
in section: <FLOAT> 97
in section: <LENGTH attribute> 129
in section: ASIS-to-field data types 163
in section: BIT-to-BIT 165
in section: CHARxxx-to-CHARxxx 169
in section: field data types-to-ASIS 173

<LENGTH attribute>
defined 129
in <CASE optional attributes list> 82

 Index 273

<LENGTH attribute> (continued)
in <INPUT parameter> 52
in section: <BINARY> 69
in section: <CASE> 82
in section: <CHAR> 85
in section: <LENGTH attribute> 129
in section: <MAXLEN attribute> 133
in section: <PLAN statement> 53
in section: ASIS-to-field data types 163
in section: BIT-to-BIT 165
in section: CHARxxx-to-CHARxxx 168
in section: ENUMERATION-to-BINARY, PACKED,

ZONED 171
in section: field data types-to-ASIS 173

<LENGTH function>
defined 155
in <value specification> 38
in section: <LENGTH function> 155

<letter>
defined 20
in <character> 20
in <identifier> 25
in section: <identifier> 25

LIKE
in <key word> 37

<literal>
defined 26
in <CONSTANT statement> 42
in <value specification> 38
in section: <CONSTANT statement> 42
in section: <DEFAULT statement> 47

LOGICAL
in <key word> 37
in <SGNCNV attribute> 141
in section: <SGNCNV attribute> 141

LOW
in <CHAR HIGHLOW1 attributes list> 86
in <CHAR HIGHLOW2 attributes list> 86
in <CHAR HIGHLOW3 attributes list> 87
in <CHAR HIGHLOW4 attributes list> 87
in <key word> 37
in <LOW attribute> 131
in section: <CHAR> 87
in section: <LOW attribute> 131
in section: ARRAY-to-ARRAY 161
in section: CHARxxx-to-CHARxxx 169

<LOW attribute>
defined 131
in section: <CHAR> 85
in section: ASIS-to-field data types 163

<LOW attribute> (continued)
in section: CHARxxx-to-CHARxxx 168, 169
in section: field data types-to-ASIS 173

<lower case letter>
defined 20
in <letter> 20

LSTBIT
in <BLNENC attribute> 113
in <key word> 37
in section: <BLNENC attribute> 113

LSTBYT
in <key word> 37
in <SGNLOC attribute> 144
in <ZONED SGNLOC attributes list> 110
in section: <DEFAULT statement> 48
in section: <SGNLOC attribute> 145
in section: <ZONED> 110

M
<max ASIS>

defined 67
in <ASIS defaulted attributes list> 67
in section: <ASIS> 68

<max BITPRE>
in <BITPRE defaulted attributes list> 79

<max CHAR>
defined 87
in <CHAR HIGHLOW1 attributes list> 86
in <CHAR HIGHLOW2 attributes list> 86
in <CHAR HIGHLOW3 attributes list> 87
in <CHAR HIGHLOW4 attributes list> 87
in <CHAR LENGTH asterisk attributes list> 86
in <CHAR length fixed attributes list> 86
in <CHAR LENGTH identifier attributes list> 86
in section: <CHAR> 87

<max CHARPRE>
defined 90
in <CHARPRE defaulted attributes list> 90

<max CHARSFX>
defined 93
in <CHARSFX defaulted attributes list> 93

<max15>
defined 19
in section: <HELP attribute> 126
in section: <NOTE attribute> 134

<max28>
defined 19
in section: <LENGTH function> 155

274 SdU A Data Language Reference for DD&C

<max31>
defined 19
in section: <DMNHIGH attribute> 119
in section: <DMNLOW attribute> 120
in section: <DMNLST attribute> 121
in section: <DMNMAX attribute> 122
in section: <DMNSIZE attribute> 123
in section: <HIGH attribute> 127
in section: <LENGTH function> 155
in section: <LOW attribute> 131
in section: <positional identifier> 31

<max7>
defined 19
in section: <SCALE attribute> 140

<max8>
defined 19
in section: <identifier> 25
in section: <TITLE attribute> 151

MAXALC
in <key word> 37

<MAXALC attribute>
defined 132
in <ARRAY defaulted attributes list> 65
in <ASIS defaulted attributes list> 67
in <BIT defaulted attributes list> 76
in <BITPRE defaulted attributes list> 79
in <CASE defaulted attributes list> 82
in <CHAR HIGHLOW2 attributes list> 86
in <CHAR HIGHLOW3 attributes list> 87
in <CHAR HIGHLOW4 attributes list> 87
in <CHAR LENGTH identifier attributes list> 86
in <CHARPRE defaulted attributes list> 90
in <CHARSFX defaulted attributes list> 93
in section: BIT-to-BIT 165
in section: CHARxxx-to-CHARxxx 169

MAXLEN
in <key word> 37
in section: ASIS-to-field data types 163

<MAXLEN attribute>
defined 133
in <OUTPUT parameter> 52
in section: <BITPRE> 79
in section: <CHARPRE> 90
in section: <CHARSFX> 93
in section: <MAXLEN attribute> 133
in section: <PLAN statement> 53

<min31>
defined 19
in section: <DMNHIGH attribute> 119
in section: <DMNLOW attribute> 120

<min7>
defined 19
in section: <SCALE attribute> 140

<module>
defined 29
in section: <module> 29

N
<new line>

defined 36
in <separator> 36
in section: <token> 37

<noncharacter literal>
defined 26
in <literal> 26
in <nondelimiter token> 36

<nondelimiter token>
defined 36
in <token> 36
in section: <token> 37

NOT
in <boolean factor> 23
in <key word> 37
in section: <condition> 23
in section: <PRESIGNED attribute> 138
in section: <SIGNED attribute> 149

NOTE
in <key word> 37
in <NOTE attribute> 134
in section: <NOTE attribute> 134

<NOTE attribute>
defined 134
in <ARRAY optional attributes list> 65
in <ASIS optional attributes list> 67
in <BINARY optional attributes list> 72
in <BIT optional attributes list> 76
in <BITPRE optional attributes list> 79
in <BOOLEAN optional attributes list> 81
in <CASE optional attributes list> 82
in <CHAR optional attributes list> 87
in <CHARPRE optional attributes list> 90
in <CHARSFX optional attributes list> 93
in <DECLARE attributes list> 46
in <ENUMERATION optional attributes list> 94
in <FLOAT optional attributes list> 100
in <PACKED optional attributes list> 103
in <SEQUENCE optional attributes list> 105
in <ZONED optional attributes list> 110
in section: <NOTE attribute> 134

 Index 275

O
OF

in <ARRAY> 65
in <key word> 37
in <SUBTYPE statement> 57

OR
in <condition> 23
in <key word> 37
in section: <condition> 23

OTHERWISE
in <key word> 37
in <OTHERWISE clause> 51
in section: <CASE> 83
in section: <OTHERWISE statement> 51

<OTHERWISE clause>
defined 51
in <OTHERWISE statement> 51
in section: <OTHERWISE statement> 51

<OTHERWISE statement>
defined 51
in <CASE> 82
in section: <CASE> 83
in section: <OTHERWISE statement> 51
in section: <REJECT statement> 54
in section: CASE-to-CASE 167

OUTPUT
in <key word> 37
in <OUTPUT parameter> 52
in section: <PLAN statement> 53

<OUTPUT parameter>
defined 52
in <parameter> 52
in section: <PLAN statement> 53

P
PACKED

defined 102
in <DEFAULT statement> 47
in <field> 44
in <key word> 37
in section: <ASIS> 68
in section: <BIT> 76
in section: <CCSID attribute> 115
in section: <CHAR> 87
in section: <DMNHIGH attribute> 119
in section: <DMNLOW attribute> 120
in section: <DMNSIZE attribute> 123
in section: <HIGH attribute> 127

PACKED (continued)
in section: <LENGTH attribute> 129
in section: <LOW attribute> 131
in section: <MAXLEN attribute> 133
in section: <PACKED> 102
in section: <PRECISION attribute> 136
in section: <SCALE attribute> 140
in section: <SGNLOC attribute> 144
in section: <SGNMNS attribute> 146
in section: <SGNPLS attribute> 147
in section: <SGNUNS attribute> 148
in section: <SIGNED attribute> 149
in section: ASIS-to-field data types 164
in section: BINARY, PACKED,

ZONED-to-ENUMERATION 164
in section: ENUMERATION-to-BINARY, PACKED,

ZONED 171
in section: field data types-to-ASIS 174
in section: Numeric conversions 174, 191, 194

<PACKED attributes list>
defined 102
in <PACKED> 102
in <subtype instance attributes list> 107

<PACKED defaulted attributes list>
defined 102
in <DEFAULT statement> 47
in <PACKED attributes list> 102

<PACKED optional attributes list>
defined 103
in <PACKED attributes list> 102

<PACKED SGNLOC attributes list>
defined 103
in <PACKED SIGNED attributes list> 103

<PACKED SIGNED attributes list>
defined 103
in <PACKED defaulted attributes list> 102

<parameter>
defined 52
in <parameter list> 52
in section: <module> 29
in section: <PLAN statement> 52

<parameter list>
defined 52
in <PLAN statement> 52
in section: <PLAN statement> 53

parse function (FMTPRS) 3, 6
<parse unit>

defined 30
in section: <INCLUDE statement> 50

276 SdU A Data Language Reference for DD&C

PLAN
in <key word> 37
in <PLAN statement> 52
in section: <CCSID attribute> 115
in section: <module> 29
in section: <PLAN statement> 52

<PLAN statement>
defined 52
in <parse unit> 30
in section: <PLAN statement> 52

<positional identifier>
defined 31
in <qualifier> 33
in section: <data declaration statement> 45
in section: <positional identifier> 31
in section: CASE-to-CASE 167

<positive integer>
defined 26
in <CCSID attribute> 115
in <DMNMAX attribute> 122
in <HIGH attribute> 127
in <LENGTH attribute> 129
in <LOW attribute> 131
in <MAXLEN attribute> 133
in <noncharacter literal> 26
in <PRECISION attribute> 136
in <SKIP attribute> 150
in <SKIP statement> 55
in section: <literal> 28
in section: <SKIP statement> 55

PREBYTRVS
in <key word> 37
in <PREBYTRVS attribute> 135
in section: <PREBYTRVS attribute> 135
in section: BIT-to-BITPRE 165
in section: BITPRE-to-BIT 166
in section: BITPRE-to-BITPRE 166

<PREBYTRVS attribute>
defined 135
in <BITPRE defaulted attributes list> 79
in <CHARPRE defaulted attributes list> 90
in section: CHARxxx-to-CHARxxx 170

PRECISION
in <key word> 37
in <PACKED defaulted attributes list> 102
in <PRECISION attribute> 136
in <ZONED defaulted attributes list> 110
in section: <BINARY> 69—73
in section: <DEFAULT statement> 48
in section: <ENUMERATION> 95

PRECISION (continued)
in section: <FLOAT> 99
in section: <PACKED> 102
in section: <PRECISION attribute> 136
in section: <ZONED> 110
in section: ASIS-to-field data types 163
in section: field data types-to-ASIS 173
in section: Numeric conversions 177

<PRECISION attribute>
defined 136
in <BINARY defaulted attributes list> 72
in <FLOAT optional attributes list> 100
in section: <BINARY> 69
in section: <CONSTRAINED attribute> 118
in section: <FLOAT> 100
in section: <PACKED> 102
in section: <PRECISION attribute> 136
in section: <RADIX attribute> 139
in section: <ZONED> 109

<predicate>
defined 32
in <boolean primary> 23
in section: <condition> 23

PRELEN
in <key word> 37
in <PRELEN attribute> 137
in section: <BITPRE> 80
in section: <CHARPRE> 90
in section: <PRELEN attribute> 137
in section: ASIS-to-field data types 163
in section: BIT-to-BITPRE 165
in section: BITPRE-to-BIT 166
in section: BITPRE-to-BITPRE 166

<PRELEN attribute>
defined 137
in <BITPRE defaulted attributes list> 79
in <CHARPRE defaulted attributes list> 90
in section: CHARxxx-to-CHARxxx 170

PRESIGNED
in <key word> 37

<PRESIGNED attribute>
defined 138
in <BITPRE defaulted attributes list> 79
in <CHARPRE defaulted attributes list> 90

<program name>
defined 41
in <CALL statement> 41

 Index 277

Q
<qualified identifier>

defined 33
in <LENGTH function> 155
in <ASIS defaulted attributes list> 67
in <assignment statement> 39
in <BIT defaulted attributes list> 76
in <boolean primary> 23
in <CCSID attribute> 115
in <CHAR HIGHLOW2 attributes list> 86
in <CHAR HIGHLOW3 attributes list> 87
in <CHAR HIGHLOW4 attributes list> 87
in <CHAR LENGTH identifier attributes list> 86
in <DMNHIGH attribute> 119
in <DMNLOW attribute> 120
in <DMNSIZE attribute> 123
in <HIGH attribute> 127
in <INPUT parameter> 52
in <LENGTH attribute> 129
in <LOW attribute> 131
in <MAXLEN attribute> 133
in <nondelimiter token> 36
in <OUTPUT parameter> 52
in <value specification> 38
in section: <ARRAY> 66
in section: <ASIS> 68
in section: <assignment statement> 39
in section: <BIT> 76
in section: <CCSID attribute> 115
in section: <CHAR> 87
in section: <condition> 23
in section: <DMNHIGH attribute> 119
in section: <DMNLOW attribute> 120
in section: <DMNSIZE attribute> 123
in section: <HIGH attribute> 127
in section: <LENGTH attribute> 129
in section: <LOW attribute> 131
in section: <MAXLEN attribute> 133
in section: <PLAN statement> 52
in section: <qualified identifier> 33
in section: <value expression> 38

<qualifier>
defined 33
in <qualifier list> 33
in section: <qualified identifier> 33

<qualifier list>
defined 33
in <qualified identifier> 33

<quote representation>

<quote representation> (continued)
defined 26
in <character string> 26

R
RADIX

in <key word> 37
<RADIX attribute>

defined 139
in <BINARY defaulted attributes list> 72
in <FLOAT defaulted attributes list> 100
in section: <CONSTRAINED attribute> 118
in section: <RADIX attribute> 139
in section: <SCALE attribute> 140

REJECT
in <key word> 37
in <REJECT statement> 54

<REJECT statement>
defined 54
in <OTHERWISE clause> 51
in <THEN clause> 59
in section: <OTHERWISE statement> 51
in section: <WHEN statement> 59

RIGHT
in <JUSTIFY attribute> 128
in <key word> 37
in section: <JUSTIFY attribute> 128
in section: CHARxxx-to-CHARxxx 168

ROUND
in <FIT attribute> 124
in <key word> 37
in section: <FIT attribute> 124

S
SCALE

in <key word> 37
in <PACKED defaulted attributes list> 102
in <SCALE attribute> 140
in <ZONED defaulted attributes list> 110
in section: <ASIS> 68
in section: <BINARY> 69
in section: <BIT> 76
in section: <CCSID attribute> 115
in section: <CHAR> 87
in section: <DMNHIGH attribute> 119
in section: <DMNLOW attribute> 120
in section: <DMNSIZE attribute> 123
in section: <HIGH attribute> 127

278 SdU A Data Language Reference for DD&C

SCALE (continued)
in section: <LENGTH attribute> 129
in section: <LOW attribute> 131
in section: <MAXLEN attribute> 133
in section: <SCALE attribute> 140
in section: BINARY, PACKED,

ZONED-to-ENUMERATION 164
in section: ENUMERATION-to-BINARY, PACKED,

ZONED 171
<SCALE attribute>

defined 140
in <BINARY defaulted attributes list> 72
in section: <CONSTRAINED attribute> 118
in section: <PACKED> 102
in section: <RADIX attribute> 139
in section: <SCALE attribute> 140
in section: <ZONED> 109

SCM, definition 261
<separator>

defined 36
in <bit literal> 26
in <character literal> 26
in <hex literal> 26
in section: <token> 37

SEQUENCE
defined 105
in <ARRAY> 65
in <constructor> 44
in <key word> 37
in <SEQUENCE> 105
in section: <data declaration statement> 44
in section: <positional identifier> 31
in section: <SEQUENCE> 105
in section: <SUBTYPE statement> 57

<SEQUENCE attributes list>
defined 105
in <SEQUENCE> 105
in <subtype instance attributes list> 107

<SEQUENCE optional attributes list>
defined 105
in <SEQUENCE attributes list> 105

<SGNCNV attribute>
defined 141
in <BINARY defaulted attributes list> 72
in <ENUMERATION defaulted attributes list> 94
in section: <SGNCNV attribute> 141

SGNLOC
in <key word> 37
in <PACKED SGNLOC attributes list> 103
in <PACKED SIGNED attributes list> 103

SGNLOC (continued)
in <SGNLOC attribute> 144
in <ZONED SGNLOC attributes list> 110
in <ZONED SIGNED attributes list> 110
in section: <DEFAULT statement> 48
in section: <PACKED> 103
in section: <SGNMNS attribute> 146
in section: <SGNPLS attribute> 147
in section: <SGNUNS attribute> 148
in section: <ZONED> 110

<SGNLOC attribute>
defined 144
in section: <PACKED> 102
in section: <ZONED> 109

SGNMNS
in <key word> 37
in <SGNMNS attribute> 146
in section: <DEFAULT statement> 48
in section: <SGNMNS attribute> 146

<SGNMNS attribute>
defined 146
in <PACKED SGNLOC attributes list> 103
in <ZONED SGNLOC attributes list> 110
in section: <PACKED> 102
in section: <SGNMNS attribute> 146
in section: <SGNPLS attribute> 147
in section: <SGNUNS attribute> 148
in section: <ZONED> 109

SGNPLS
in <key word> 37
in <SGNPLS attribute> 147
in section: <DEFAULT statement> 48
in section: <SGNPLS attribute> 147

<SGNPLS attribute>
defined 147
in <PACKED SGNLOC attributes list> 103
in <ZONED SGNLOC attributes list> 110
in section: <PACKED> 102
in section: <SGNMNS attribute> 146
in section: <SGNPLS attribute> 147
in section: <SGNUNS attribute> 148
in section: <ZONED> 109

SGNUNS
in <key word> 37
in <SGNUNS attribute> 148

<SGNUNS attribute>
defined 148
in <PACKED SGNLOC attributes list> 103
in section: <PACKED> 102
in section: <SGNMNS attribute> 146

 Index 279

<SGNUNS attribute> (continued)
in section: <SGNPLS attribute> 147
in section: <SGNUNS attribute> 148

SIGNED
in <key word> 37
in <PACKED defaulted attributes list> 102
in <PACKED SIGNED attributes list> 103
in <PRESIGNED attribute> 138
in <SIGNED attribute> 149
in <ZONED defaulted attributes list> 110
in <ZONED SIGNED attributes list> 110
in section: <BINARY> 69
in section: <ENUMERATION> 94
in section: <PACKED> 102
in section: <PRESIGNED attribute> 138
in section: <SIGNED attribute> 149
in section: <ZONED> 109

<SIGNED attribute>
defined 149
in <BINARY defaulted attributes list> 72
in <ENUMERATION defaulted attributes list> 94

<signed integer>
defined 26
in <DMNHIGH attribute> 119
in <DMNLOW attribute> 120
in <DMNSIZE attribute> 123
in <enumeration value> 94
in <noncharacter literal> 26
in <SCALE attribute> 140
in section: <ENUMERATION> 94
in section: <literal> 28

SKIP
in <key word> 37
in <SKIP attribute> 150
in <SKIP statement> 55
in section: <SKIP attribute> 150

<SKIP attribute>
defined 150
in <ARRAY defaulted attributes list> 65
in section: <ARRAY> 66
in section: <SKIP attribute> 150

<SKIP statement>
defined 55
in <OTHERWISE clause> 51
in <SEQUENCE> 105
in <THEN clause> 59
in section: <CASE> 83
in section: <MAXALC attribute> 132
in section: <OTHERWISE statement> 51
in section: <SEQUENCE> 105

<SKIP statement> (continued)
in section: <WHEN statement> 59

<source character>
defined 20
in <character string> 26
in <comment> 36
in section: <character> 20

<space>
defined 36
in <character> 20
in <separator> 36
in section: <token> 37

<special character>
defined 20
in <character> 20

<special symbol>
defined 36
in <delimiter token> 36

storage allocation 17
SUBSTR

in <key word> 37
SUBTYPE

in <key word> 37
in <SUBTYPE statement> 57
in section: <DEFAULT statement> 47

<SUBTYPE defaulted attributes list>
in section: <DEFAULT statement> 47

<subtype instance>
defined 107
in <ARRAY> 65
in <data> 44
in <SUBTYPE statement> 57
in section: <ARRAY> 66
in section: <subtype instance> 107
in section: <SUBTYPE statement> 57

<subtype instance attributes list>
defined 107
in <subtype instance> 107

<SUBTYPE statement>
defined 57
in <DECLARE statement> 46
in section: <subtype instance> 107

T
<tab>

defined 36
in <separator> 36
in section: <token> 37

280 SdU A Data Language Reference for DD&C

<terminator>
defined 37
in <ARRAY> 65
in <assignment statement> 39
in <BEGIN statement> 40
in <CALL statement> 41
in <CONSTANT statement> 42
in <data> 44
in <DEFAULT statement> 47
in <END statement> 49
in <INCLUDE statement> 50
in <OTHERWISE clause> 51
in <REJECT statement> 54
in <SKIP statement> 55
in <SUBTYPE statement> 57
in <THEN clause> 59
in section: <CASE> 83
in section: <ENUMERATION> 94
in section: <OTHERWISE statement> 51
in section: <WHEN statement> 59

THEN
in <key word> 37
in <THEN clause> 59
in section: <CASE> 83
in section: <WHEN statement> 59

<THEN clause>
defined 59
in <WHEN statement> 59
in section: <CASE> 83
in section: <WHEN statement> 59

TITLE
in <key word> 37
in <TITLE attribute> 151
in section: <TITLE attribute> 151

<TITLE attribute>
defined 151
in <ARRAY optional attributes list> 65
in <ASIS optional attributes list> 67
in <BINARY optional attributes list> 72
in <BIT optional attributes list> 76
in <BITPRE optional attributes list> 79
in <BOOLEAN optional attributes list> 81
in <CASE optional attributes list> 82
in <CHAR optional attributes list> 87
in <CHARPRE optional attributes list> 90
in <CHARSFX optional attributes list> 93
in <DECLARE attributes list> 46
in <ENUMERATION optional attributes list> 94
in <FLOAT optional attributes list> 100
in <PACKED optional attributes list> 103

<TITLE attribute> (continued)
in <SEQUENCE optional attributes list> 105
in <ZONED optional attributes list> 110

<token>
defined 36
in section: <token> 37

TP 261
TRUE

in <boolean literal> 26
in <key word> 37
in <PACKED SIGNED attributes list> 103
in <ZONED SIGNED attributes list> 110
in section: <ARRAY> 63
in section: <BINARY> 69
in section: <BITPRE> 80
in section: <BOOLEAN> 81
in section: <BYTRVS attribute> 114
in section: <CASE> 83
in section: <CHARPRE> 90
in section: <comparison predicate> 21
in section: <condition> 23
in section: <CONSTRAINED attribute> 118
in section: <ENUMERATION> 95
in section: <literal> 27
in section: <MAXALC attribute> 132
in section: <OTHERWISE statement> 51
in section: <PACKED> 102
in section: <predicate> 32
in section: <PRESIGNED attribute> 138
in section: <SIGNED attribute> 149
in section: <when clause> 38
in section: <WHEN statement> 59
in section: <ZONED> 109
in section: ASIS-to-field data types 163
in section: BIT-to-BIT 165
in section: BIT-to-BITPRE 165
in section: BITPRE-to-BITPRE 166
in section: BOOLEAN-to-BOOLEAN 167
in section: CASE-to-CASE 167
in section: CHARxxx-to-CHARxxx 169
in section: field data types-to-ASIS 173
in section: Numeric conversions 184

TRUNCATE
in <FIT attribute> 124
in <key word> 37
in section: <FIT attribute> 124

 Index 281

U
<underscore>

defined 20
in <character> 20
in <identifier character> 25

UNITLEN
in <ASIS defaulted attributes list> 67
in <CHAR HIGHLOW1 attributes list> 86
in <CHAR HIGHLOW2 attributes list> 86
in <CHAR HIGHLOW3 attributes list> 87
in <CHAR HIGHLOW4 attributes list> 87
in <CHAR LENGTH asterisk attributes list> 86
in <CHAR length fixed attributes list> 86
in <CHAR LENGTH identifier attributes list> 86
in <CHARPRE defaulted attributes list> 90
in <CHARSFX defaulted attributes list> 93
in <key word> 37
in <UNITLEN attribute> 152
in section: <ASIS> 68
in section: <CHAR> 85
in section: <CHARPRE> 90
in section: <CHARSFX> 93
in section: <LENGTH attribute> 129
in section: <MAXLEN attribute> 133
in section: <UNITLEN attribute> 152
in section: ASIS-to-field data types 163
in section: field data types-to-ASIS 173

<UNITLEN attribute>
defined 152
in section: CHARxxx-to-CHARxxx 170

<upper case letter>
defined 20
in <letter> 20

user-exit function of DD&C
calling conventions 225
when program is called 226

W
WHEN

in <key word> 37
in <WHEN clause> 38

<WHEN clause>
defined 38
in <ARRAY> 65
in <ASIS> 67
in <BINARY> 71
in <BIT> 76
in <BITPRE> 79

<WHEN clause> (continued)
in <BOOLEAN> 81
in <CASE> 82
in <CHAR> 85
in <CHARPRE> 89
in <CHARSFX> 92
in <ENUMERATION> 94
in <FLOAT> 100
in <PACKED> 102
in <SEQUENCE> 105
in <subtype instance> 107
in <WHEN statement> 59
in <ZONED> 109
in section: <CASE> 83

workspace variables
and storage allocation 17
as data storage class 29
contained within a module 231
updating file records with 212

Z
ZONED

defined 109
in <DEFAULT statement> 47
in <field> 44
in <key word> 37
in <ZONED> 109
in section: <ASIS> 68
in section: <BIT> 76
in section: <CCSID attribute> 115
in section: <CHAR> 87
in section: <DEFAULT statement> 48, 49
in section: <DMNHIGH attribute> 119
in section: <DMNLOW attribute> 120
in section: <DMNSIZE attribute> 123
in section: <HIGH attribute> 127
in section: <LENGTH attribute> 129
in section: <LOW attribute> 131
in section: <MAXLEN attribute> 133
in section: <PRECISION attribute> 136
in section: <SCALE attribute> 140
in section: <SGNLOC attribute> 144
in section: <SGNMNS attribute> 146
in section: <SGNPLS attribute> 147
in section: <SIGNED attribute> 149
in section: <ZONED> 109
in section: <ZONENC attribute> 153
in section: ASIS-to-field data types 164
in section: BINARY, PACKED,

ZONED-to-ENUMERATION 164

282 SdU A Data Language Reference for DD&C

ZONED (continued)
in section: ENUMERATION-to-BINARY, PACKED,

ZONED 171
in section: field data types-to-ASIS 174
in section: Numeric conversions 174, 194

<ZONED attributes list>
defined 110
in <subtype instance attributes list> 107
in <ZONED> 109

<ZONED defaulted attributes list>
defined 110
in <DEFAULT statement> 47
in <ZONED attributes list> 110

<ZONED optional attributes list>
defined 110
in <ZONED attributes list> 110

<ZONED SGNLOC attributes list>
defined 110
in <ZONED SIGNED attributes list> 110

<ZONED SIGNED attributes list>
defined 110
in <ZONED defaulted attributes list> 110

ZONENC
in <key word> 37
in <ZONENC attribute> 153
in section: <ZONENC attribute> 153

<ZONENC attribute>
defined 153
in <ZONED defaulted attributes list> 110
in section: <ZONED> 109

ZONFRSBYT
in <key word> 37
in <SGNLOC attribute> 144
in <ZONED SGNLOC attributes list> 110
in section: <DEFAULT statement> 48
in section: <SGNLOC attribute> 144
in section: <SGNMNS attribute> 146
in section: <SGNPLS attribute> 147
in section: <ZONED> 110

ZONLSTBYT
in <key word> 37
in <SGNLOC attribute> 144
in <ZONED SGNLOC attributes list> 110
in section: <DEFAULT statement> 48
in section: <SGNLOC attribute> 144
in section: <SGNMNS attribute> 146
in section: <SGNPLS attribute> 147
in section: <ZONED> 110

 Index 283

Communicating Your Comments to IBM

SMARTdata UTILITIES
A Data Language Reference for
Data Description and Conversion

Publication No. SC26-7092-01

If you especially like or dislike anything about this book, please use one of the methods listed
below to send your comments to IBM. Whichever method you choose, make sure you send your
name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. However, the comments you send should pertain to only the informa-
tion in this manual and the way in which the information is presented. To request additional publi-
cations, or to ask questions or make comments about the functions of IBM products or systems,
you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United States, you
can give the RCF to the local IBM branch office or IBM representative for postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

 – United States: 1-800-426-6209
– Other countries: (+1)+408+256-7896

� If you prefer to send comments electronically, use this network ID:

– IBMLink from U.S. and IBM Network: STARPUBS at SJEVM5
– IBMLink from Canada: STARPUBS at TORIBM
– IBM Mail Exchange: USIB3VVD at IBMMAIL

 – Internet: starpubs@vnet.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

SMARTdata UTILITIES
A Data Language Reference for
Data Description and Conversion

Publication No. SC26-7092-01

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your com-
ments in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC26-7092-01 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
RCF Processing Department
G26/050
5600 Cottle Road
SAN JOSE, CA 95193-0001

Fold and Tape Please do not staple Fold and Tape

SC26-7092-01

IBM

Program Number: 5765-548
 5765-549
 5622-793
 5622-794
 5639-B92

Printed in U.S.A.

SC26-7ð92-ð1

