
picoTCP User Documentation

Copyright c©2013-2015 Altran NV. All right reserved.

September 18, 2015

September 18, 2015

Disclaimer This document is distributed under the terms of Creative Commons CC BY-ND 3.0.
You are free to share unmodified copies of this document, as long as the copyright statement is
kept. Click here to view the full license text.

http://creativecommons.org/licenses/by-nd/3.0/

Contents

1 Overview 4

2 Usage and platform integration 6

2.1 Requirements and Configuration . 6

2.2 Supported features . 6

2.3 Enabling modules . 7

2.4 Target requirements . 10

2.5 Network devices integration . 12

3 API Documentation 15

3.1 IPv4 functions . 15

3.2 IPv6 functions . 24

3.3 Socket calls . 32

3.4 DHCP client . 46

3.5 DHCP server . 49

3.6 DNS client . 50

3.7 MDNS client . 52

3.8 DNS SD client . 57

3.9 SNTP client . 59

3.10 IGMP . 60

3.11 IP Filter . 61

3.12 SLAACV4 Module . 63

3.13 TFTP . 63

3.14 Point-to-Point Protocol (PPP) . 82

3.15 Optimized Link State Routing (OLSR) Module 87

3.16 Ad-hoc On-Demand Distance Vector Routing (AODV) 88

4 Examples 89

4.1 Ping example . 89

4.2 UDP echo socket example . 90

2

4.3 TCP echo socket example . 91

4.4 NAT setup example . 93

4.5 DNS example . 94

4.6 DHCP client example . 95

4.7 HTTP Client example . 96

4.8 HTTP Server example . 99

4.9 TFTP Client (application driven) . 101

A Supported RFC’s 107

3

1. Overview

PicoTCP is a complete TCP/IP stack, intended for embedded devices and designed to run
on different architectures and networking hardware. The architecture of the stack allows easy
selection of the features needed for any particular use, taking into account the sizing and the
performance of the platform on which the code is to run. Even if it is designed to allow for
size and performance constraints, the chosen approach is to comply with the latest standards in
the telecommunications research, including the latest proposals, in order to achieve the highest
standards for today’s inter-networking communications. PicoTCP is distributed as a library to
be integrated with application and form a combination for any hardware-specific firmware.

The main characteristics of the library are the following:

• Modularity Each component of the stack is deployed in a separate module, allowing the
selection at compile time of the components needed to be included for any specific plat-
form, depending on the particular use case. We know that saving memory and resources
is often mission-critical for a project, and therefore PicoTCP is fully focussed on saving
up to the last byte of memory.

• Code Quality Every component added to the stack must pass a complete set of validation
tests. Before new code can be introduced it is scanned and proof-checked by three separate
levels of quality enforcement. The process related to the validation of the code is one of
the major tasks of the engineering team. In the top-down approach of the design, a new
module has to pass the review of our senior architects, to have it comply with the general
guidelines. The development of the smaller components is done in a test-driven way,
providing a specific unit test for each function call. Finally, functional non-regression tests
are performed after the feature development is complete, and all the tests are automatically
scheduled to run several times per day to check for functional regressions.

• Adherence to the standards The protocols included in the stack are done following
stepare designed by following meticulously the guidelines provided by the International
Engineering Task Force (IETF) with regards to inter-networking communication. A strong
adherence to the standards guarantees a smooth integration with all the existing TCP/IP
stacks, when communicating with both other embedded devices and with the PC/server
world.

• Features A fully-featured protocol implementation including all those non-mandatory
features means better data-transfer performances, coverage of rare/unique network sce-
narios and topologies and a better integration with all types of networking hardware
devices.

• Transparency The availability of the source code to the Free Software community is an
important added value of PicoTCP. The constant peer reviews and constructive comments
on the design and the development choices that PicoTCP receives from the academic
world and from several hundreds of hobbyists and professionals who read the code, are an
essential element in the quality build-up of the product.

• Simplicity The APIs provided to access the library facilities, both from the applications
as well as from the device drivers, are small and well documented. This concurs with the

4

goal of the library to facilitate the integration with the surroundings and minimize the
time used to combine the stack with existing code. The support required to port to a new
architecture is so small it is reduced to a set of macros defined in a header file specific for
the platform.

5

2. Usage and platform integration

2.1 Requirements and Configuration

PicoTCP is designed to be portable and versatile. Modules can be activated at compile-time, or
excluded from the compilation in order to reduce the build size or save resources at runtime. This
characteristic allows an embedded application to create different types of appliances, starting
from a small forwarding multi-protocol switch, to fully-featured TCP hosts, supporting internal
applets as well as generic POSIX-compliant socket interfaces.

2.2 Supported features

• Device layer Facilities for device driver are offered in a simple structure and API.

• ARP The stack can use the ”Address Resolution Protocol” to retrieve the MAC addresses
of other hosts in the network.

• IPv4 The network layer supports the IPv4 network layer protocol. An API is provided
in order to access all the addressing and routing related functionalities.

• ICMP Also the ”Internet Control Message Protocol” is implemented. This protocol
provides the system to send error messages, do a ping, ...

• NAT The stack supports ”Network Address Translation” to hide addresses from internal
networks to the outside. The API also supports functions for port forwarding.

• multicast sockets The stack supports multicast (one-to-many) sockets and addresses in
order to send and receive data to/from multicast groups.

• IGMP As an integration for the multicast features above, IGMP version 2 is supported
to manage the membership to multicast groups.

• UDP The stack can use the ”User Datagram Protocol” as a transport protocol for
connection-less communication between sockets.

• TCP The stack supports the connection-oriented ”Transport Control Protocol” for reli-
able communications. The TCP implementation is fully featured and the most commonly
used extensions are included.

• Sockets The user applications on different host use the socket API to communicate.
The socket API is based on the latest POSIX (1-2008) specifications, while not being
fully compliant due to the fact that it is designed to run in a single threading unit.
Blocking functionalities are reproduced via callback triggering as described in the socket
API documentation.

• DNS client A small DNS client is provided to resolve an IP address for a given name.
The API supports setting several DNS servers and a small cache.

6

• MDNS client picoTCP has a mDNS responder on which records can be registered and re-
solved without the need of a centralised DNS-server. Supports possible caching of records
and defending of hostnames.

• DNS-SD client The stack can register services on the network via Multicast DNS, which
allows Zero Configuration Networking capabilities.

• SNTP client The stack supports synchronizing time over the network using sntp with a
precision of at least 10msec. Similar to unix a gettimeofday function is implemented.

• DHCP client A DHCP client can request an IP lease from a DHCP server to set the IP
adress of the device.

• DHCP server Also a small DHCP server is included to hand out IP addresses to hosts
in the network.

• Linux development and test facilities The stack is developed entirely on a Linux
system. Several tools are easily available and/or included to develop and test user appli-
cations. (tun/tap devices, vde, tcp benchmark test, ...)

2.3 Enabling modules

Each module, option and feature included in the code base must be explicitly enabled by
defining a specific PICO SUPPORT preprocessor variable. If the default Makefile is used to
compile PicoTCP, this can be done using command line options when running make. The syntax
required to compile the protocol in a library (the default Makefile target) is the following:

make [MAKE ARG=VALUE] [...]

2.3.1 Compile-time options

A few compile-time options can be specified using the command line arguments of make to
modify the result of the build. Global options that affect the build are the following:

Argument Possible values Default value Description

DEBUG 0,1 1 When enabled (=1), the re-
sulting library will contain de-
bug symbols. The size of the
library will be much larger
than the production build,
but it will be possible to run
the stack into a debugger to
inspect its behaviour. When
the option is disabled (=0),
the library will be optimized
for size in flash, resulting in a
smaller binary to be used in
production.

7

PREFIX any valid path ./build The target directory where
the library and all the objects
will be placed after the com-
pilation.

ENDIAN little, big little Force to build against little-
endian or big-endian architec-
ture.

CROSS COMPILE compiler prefix Use a cross compile pre-
fix when calling the binaries
needed to build.

TCP 0,1 1 Enables the support for
Transmission Control Proto-
col by allowing the usage of
stream sockets.

UDP 0,1 1 Enables the support for User
Datagram Protocol by allow-
ing the usage of datagram
sockets.

IPV4 0,1 1 Enables the support for basic
IP networking functionalities.
At least one network proto-
col is required for most of the
features to work, as all types
of sockets depend on the net-
working layer.

NAT 0,1 1 Activates the support for net-
work address translation to
IPv4.

ICMP4 0,1 1 Enables the support for con-
trol messages over IPv4, (not
including the ping functional-
ities).

MCAST 0,1 1 If enabled, the support for
multicast sockets will be in-
cluded in the resulting library.

DEVLOOP 0,1 1 If enabled, a loopback device
will be added to the stack, and
can be configured to run local
traffic.

PING 0,1 1 When activated, the ping
API will be available to test
whether the hosts on the net-
work are reachable. Requires
ICMP4 support.

CRC 0,1 0 If enabled, CRC values are
validated at IP and transport
layer.

8

IPV4FRAG 0,1 1 Enables the support for frag-
mentation and reassembly of
IPV4 packets.

IPV6FRAG 0,1 1 Enables the support for frag-
mentation and reassembly of
IPV6 packets.

IPFILTER 0,1 1 If enabled, provides basic fil-
tering.

DNS CLIENT 0,1 1 This feature is required to re-
solve host names into IP ad-
dresses and vice-versa.

MDNS 0,1 1 If enabled, registering and re-
solving DNS records on the
network via Multicast DNS is
possible.

DNS SD 0,1 1 If enabled, it is possible to reg-
ister services on the network
via Multicast DNS.

SNTP CLIENT 0,1 1 Enables snychronising the lo-
cal time to a given ntp server.

DHCP CLIENT 0,1 1 When activated, it will be
possible to get the IP address
for network devices automati-
cally, when a DHCP server is
present on the network.

DHCP SERVER 0,1 1 If activated, it will be possible
to run a small DHCP server
to provide addresses for au-
tomatic configuration to the
other hosts in the network.

HTTP CLIENT 0,1 1 Activates a basic HTTP
client.

HTTP SERVER 0,1 1 Activates a basic HTTP
server.

2.3.2 Architecture support

By default, the stack will be compiled to run in a process on a POSIX system, e.g. to be
linked to a Linux application. To change this behavior and produce a library linked to a specific
board-support package (BSP) among those supported, it is sufficient to set the command line
argument variable ARCH to a specific value. The architectures supported by the stack are the
following:

ARCH keyword CPU Reference hardware

stm32 ARM Cortex M4-F ST Microelectronics evalua-
tion board ”STM32f4 Discov-
ery”

stm32f1xx ARM Cortex M3 muRata SN820X

9

stellaris ARM Cortex LM3S-6965 Texas Instrument Evaluation
Kit ”Codesourcery LM3S6965
ETH”

lpc18xx ARM Cortex M3 NXP LPC1837 Xplorer board

lpc43xx ARM Cortex M4/M0 Hitex Evaluation Board
LPC4357

msp430 Texas Instruments MSP430 Texas Instruments EZ430-
Chronos

pic24 Microchip PIC24FJ256GA106 openPicus flyportPRO

atmega128 Atmel ATmega128 Ethernut 2

2.4 Target requirements

PicoTCP can run on several different hardware architectures and can be integrated with virtu-
ally any operating system or within a standalone application. It is possible to run PicoTCP on
big-endian as well as little-endian CPU configurations. PicoTCP uses gcc-specific tags that may
not be compatible with other compilers. The amount of resources needed may vary depending
on the modules that are compiled-in. However, adapting to a specific hardware platform or for
a particular use may require some integration effort.

2.4.1 Porting PicoTCP to a target system

Warning: ensure that the Board Support Package provided by your hardware
supplier is distributed under the terms of a license compatible with the PicoTCP

license, described in the Appendix of this document.

PicoTCP relies on a simple set of system-specific calls that must be implemented externally
from the target. Briefly, the interface needed for the stack to run is composed by:

• A mechanism to allocate dynamic memory on the system

• A stable time-source to update its internal counters

For the memory allocation interface, two symbols have to be defined by the system:

void *pico_zalloc(int size) - (memory allocation)

void pico_free(void *ptr) - (memory release)

• pico zalloc Must allocate an object of the given size size in memory and set the content
of the allocated memory to zero. A pointer to the address 0 will indicate an allocation
failure.

• pico free Must release the memory assigned to the object previously allocated at the
address ptr.

For the time keeping, the following objects must be defined by the system:

10

• static inline unsigned long PICO TIME(void)

Returns current time expressed in seconds

• static inline unsigned long PICO TIME MS(void)

Returns current time expressed in milliseconds

• static inline void PICO IDLE(void)

Sleep between two consecutive iterations inside the main protocol loop (e.g. to yield the
CPU to some other functionality on the sytem)

As an alternative to defining the time-keeping procedure in the asynchronous functions PICO TIME()

and PICO TIME MS(), it is possible to use an interrupt handler linked to a fixed interval time
source, increasing the volatile global variable pico tick. If done this way, the two functions
may return the values of (pico tick / 1000) and pico tick, respectively.

Finally, whenever debug information is needed, the system will have to provide a dbg() function
that accepts the same variadic arguments model as a standard printf().

2.4.2 Defining a new architecture support

If all the above requirements are satisfied, PicoTCP expects those functions to be mapped to
existing code in the BSP of the architecture. An easy way to do so is by means of a new
architecture-specific header file under the include/arch subdirectory. Since all the functions
above must already be implemented outside the PicoTCP tree, the library will have to be linked
to the system support library, either during compilation or at at a subsequent stage when the
resulting firmware is being generated. For this reason, a prototype of all the functions used
to implement the functionalities requested by the BSP must be included from the architecture
support header file or incorporated into the file itself.

For instance, if the BSP for an architecture called ”foobar” provides the following functions:

void *custom_allocate_and_zero(int size);

void *custom_free(void *mem);

int print_serial_debug(...);

and an interrupt handler is attached to a time source in order to increment the pico tick vari-
able every millisecond, a possible architecture-specific file (under arch/pico foobar.h) should
look like the following:

/* repeat the prototypes used */

extern void *custom_allocate_and_zero(int size);

extern void *custom_free(void *mem);

extern int print_serial_debug(...);

#define dbg print_serial_debug

#define pico_zalloc(x) custom_allocate_and_zero(x)

#define pico_free(x) custom_free(x)

static inline unsigned long PICO_TIME(void)

{

return pico_tick / 1000;

11

}

static inline unsigned long PICO_TIME_MS(void)

{

return pico_tick;

}

static inline void PICO_IDLE(void)

{

unsigned long tick_now = pico_tick;

while(tick_now == pico_tick);

}

Once the architecture-specific file is created, it is time to add the architecture-specific support
to the pico config.h file, the same way it is done for the existing architectures, using an
additional preprocessor elif block:

#elif defined FOOBAR

#include "arch/pico_foobar.h"

From this point on, it is sufficient to define a preprocessor variable with the keyword chosen
for the architecture, all in capitals (FOOBAR in this example case). The final step is to create a
block in the main PicoTCP makefile that also sets the compiler flags needed to produce objects
that are compatible with and/or optimized for the foobar architecture. Additionally, this block
also contains the definition of the keyword preprocessor macro in order to have the correct
arch-specific header included:

ifeq ($(ARCH),foobar)

CFLAGS+=-mcustom-foobar-code -DFOOBAR

endif

To compile for the foobar architecture, it is now sufficient to run

make ARCH=foobar

2.5 Network devices integration

Every device driver must define its own interface to communicate with the stack. This interface
is accessed via the pico device structure. Every device implements an instance of this structure
by populating the following mandatory fields:

• overhead - A positive integer indicating the amount of bytes required by the device driver
to implement its header. This is used whenever a network layer allocates a new packet
to be sent through this device. If a value is specified here, it will be possible for the
device to seek back in the frame scheduled for sending, and subsequently copy any header
information in front of it. Devices dealing with pure stack frames or subparts of it (e.g.
Ethernet) should have overhead set to 0.

12

• The callback send - must be a pointer to a function internally defined in the device driver
module. This function will be called every time a frame must be injected in the network.
The module can implement a generic send function for all the registered devices, as the
device field will be passed as the first argument. The callback prototype is the following:

int (*send)(struct pico device *self, void *buf, int len);

If the device can immediately inject the frame at address buf of length len, it returns
back to the caller the length of the frame injected. If the device is currently busy, this
function can safely return 0, and the stack will retry the same operation again later.

• The callback poll - must be a pointer to a function internally defined in the device driver
module. This function will be called periodically by the stack, to request a synchronization
on the incoming frames. The prototype is the following:

int (*poll)(struct pico device *self, int loop score);

The poll function must check if the device is ready to receive frames, and for each frame
that is directed to the stack, it will call the library function pico stack recv(). This
function will deliver the received frame to the stack.

The loop score variable represents the maximum amount of frames that the stack can
process during this call, i.e. the maximum amount of calls to pico stack recv() that
can be performed during this iterations. The device driver should loop around the packet
delivery operation and decrease the loop score by one every time a frame is delivered to
the stack. If during the iteration all the score was used, poll will return 0.

NOTE: The poll function must return immediately and must never block on hardware-
specific operations. If the device is interrupt-driven, the integration will have to provide a
mechanism to defer the reception until the next call back to poll. Calling pico stack recv()

is only allowed from inside the poll() callback, thus a two-halves interface interrupt man-
agement design is required, and any memory structure shared between the two halves must
be protected against concurrent access accordingly.

• The callback destroy - a pointer to a function that deallocates the device structure
itself and frees all the structures that were possibly allocated by the driver during device
creation.

A device driver will have a simple two-functions library API exported in a header file using the
same name, in the modules directory. The two functions to export will be:

• A create function, accepting any argument required for the internal device configuration,
that returns a pointer to the newly allocated device. The function must allocate the device
and finally call the library function pico device init() in order to register the device
into the stack. The pico device init() function accepts the following arguments:

– the device allocated just before

– a null-terminated string containing a unique device name for the device to be inserted
in the system (e.g. ”eth0”)

– a pointer to an Ethernet address in the form of a previously allocated pico ethdev

structure, containing the hardware address to be used by the stack for datalink
addressing. If no hardware-specific address is provided to pico device init() is
provided (i.e. a NULL pointer is passed), the newly created device will be directly
attached to the network layer and it will have to provide and process valid IP packets
without further encapsulation.

13

• A destroy routine, accepting the previously allocated device pointer to free all the associ-
ated structures.

The way to expand the device driver interface is by simply creating a new specific structure
that contains it and thus inherits all the capabilities of the standard structure but also holds
the required hardware-specific information. The three callbacks will always receive a pointer
to the beginning of the pico device structure, but the memory area that follows the structure
can be used to keep track of the device hardware-specific context.

Naming conventions must be followed for the two functions exposed to the user interface to cre-
ate and destroy the device. The functions must be named pico X create() and pico X destroy(),
where X is the unique name of the device driver.

As an example of a very simple device driver, directly attached to the networking layer using
the valid naming convention for the send/poll/create/destroy interfaces are contained in
the source file modules/pico dev null.c and its header modules/pico dev null.h.

14

3. API Documentation

The following sections will describe the API for picoTCP.

3.1 IPv4 functions

3.1.1 pico ipv4 to string

Description

Convert the internet host address IP to a string in IPv4 dotted-decimal notation. The result
is stored in the char array that ipbuf points to. The given IP address argument must be in
network order (i.e. 0xC0A80101 becomes 192.168.1.1).

Function prototype

int pico_ipv4_to_string(char *ipbuf, const uint32_t ip);

Parameters

• ipbuf - Char array to store the result in.
• ip - Internet host address in integer notation.

Return value

On success, this call returns 0 if the conversion was successful. On error, -1 is returned and
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_ipv4_to_string(buf, ip);

3.1.2 pico string to ipv4

Description

Convert the IPv4 dotted-decimal notation into binary form. The result is stored in the int

that IP points to. Little endian or big endian is not taken into account. The address supplied
in ipstr can have one of the following forms: a.b.c.d, a.b.c or a.b.

Function prototype

int pico_string_to_ipv4(const char *ipstr, uint32_t *ip);

Parameters

• ipstr - Pointer to the IP string.
• ip - Int pointer to store the result in.

15

Return value

On success, this call returns 0 if the conversion was successful. On error, -1 is returned and
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_string_to_ipv4(buf, *ip);

3.1.3 pico ipv4 valid netmask

Description

Check if the provided mask if valid.

Function prototype

int pico_ipv4_valid_netmask(uint32_t mask);

Parameters

• mask - The netmask in integer notation.

Return value

On success, this call returns the netmask in CIDR notation is returned if the netmask is valid.
On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_ipv4_valid_netmask(netmask);

3.1.4 pico ipv4 is unicast

Description

Check if the provided address is unicast or multicast.

Function prototype

int pico_ipv4_is_unicast(uint32_t address);

Parameters

• address - Internet host address in integer notation.

Return value

Returns 1 if unicast, 0 if multicast.

16

Example

ret = pico_ipv4_is_unicast(address);

3.1.5 pico ipv4 source find

Description

Find the source IP for the link associated to the specified destination. This function will use
the currently configured routing table to identify the link that would be used to transmit any
traffic directed to the given IP address.

Function prototype

struct pico_ip4 *pico_ipv4_source_find(struct pico_ip4 *dst);

Parameters

• address - Pointer to the destination internet host address as struct pico ip4.

Return value

On success, this call returns the source IP as struct pico ip4. If the source can not be found,
NULL is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable

Example

src = pico_ipv4_source_find(dst);

3.1.6 pico ipv4 link add

Description

Add a new local device dev inteface, f.e. eth0, with IP address ’address’ and netmask ’netmask’.
A device may have more than one link configured, i.e. to access multiple networks on the same
link.

Function prototype

int pico_ipv4_link_add(struct pico_device *dev, struct pico_ip4 address,

struct pico_ip4 netmask);

Parameters

• dev - Local device.
• address - Pointer to the internet host address as struct pico ip4.
• netmask - Netmask of the address.

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

17

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR ENETUNREACH - network unreachable
• PICO ERR EHOSTUNREACH - host is unreachable

Example

ret = pico_ipv4_link_add(dev, address, netmask);

3.1.7 pico ipv4 link del

Description

Remove the link associated to the local device that was previously configured, corresponding to
the IP address ’address’.

Function prototype

int pico_ipv4_link_del(struct pico_device *dev, struct pico_ip4 address);

Parameters

• dev - Local device.
• address - Pointer to the internet host address as struct pico ip4.

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_ipv4_link_del(dev, address);

3.1.8 pico ipv4 link find

Description

Find the local device associated to the local IP address ’address’.

Function prototype

struct pico_device *pico_ipv4_link_find(struct pico_ip4 *address);

Parameters

• address - Pointer to the internet host address as struct pico ip4.

Return value

On success, this call returns the local device. On error, NULL is returned and pico err is set
appropriately.

18

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENXIO - no such device or address

Example

dev = pico_ipv4_link_find(address);

3.1.9 pico ipv4 nat enable

Description

This function enables NAT functionality on the passed IPv4 link. Forwarded packets from
an internal network will have the public IP address from the passed link and a translated
port number for transmission on the external network. Usual operation requires at least one
additional link for the internal network, which is used as a gateway for the internal hosts.

Function prototype

int pico_ipv4_nat_enable(struct pico_ipv4_link *link)

Parameters

• link - Pointer to a link pico ipv4 link.

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_ipv4_nat_enable(&external_link);

3.1.10 pico ipv4 nat disable

Description

Disables the NAT functionality.

Function prototype

int pico_ipv4_nat_disable(void);

Return value

Always returns 0.

3.1.11 pico ipv4 port forward

Description

This function adds or deletes a rule in the IP forwarding table. Internally in the stack, a
one-direction NAT entry will be made.

19

Function prototype

int pico_ipv4_port_forward(struct pico_ip4 pub_addr, uint16_t pub_port,

struct pico_ip4 priv_addr, uint16_t priv_port, uint8_t proto,

uint8_t persistant)

Parameters

• pub addr - Public IP address, must be identical to the address of the external link.
• pub port - Public port to be translated.
• priv addr - Private IP address of the host on the internal network.
• priv port - Private port of the host on the internal network.
• proto - Protocol identifier, see supported list below.
• persistant - Option for function call: create PICO IPV4 FORWARD ADD (= 1)

or delete PICO IPV4 FORWARD DEL (= 0).

Protocol list

• PICO PROTO ICMP4

• PICO PROTO TCP

• PICO PROTO UDP

Return value

On success, this call 0 after a succesfull entry of the forward rule. On error, -1 is returned and
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - not succesfull, try again

Example

ret = pico_ipv4_port_forward(ext_link_addr, ext_port, host_addr,

host_port, PICO_PROTO_UDP, 1);

3.1.12 pico ipv4 route add

Description

Add a new route to the destination IP address from the local device link, f.e. eth0.

Function prototype

int pico_ipv4_route_add(struct pico_ip4 address, struct pico_ip4 netmask,

struct pico_ip4 gateway, int metric, struct pico_ipv4_link *link);

Parameters

• address - Pointer to the destination internet host address as struct pico ip4.
• netmask - Netmask of the address. If zeroed, the call assumes the meaning of adding a

default gateway.

20

• gateway - Gateway of the address network. If zeroed, no gateway will be associated to
this route, and the traffic towards the destination will be simply forwarded towards the
given device.

• metric - Metric for this route.
• link - Local device interface. If a valid gateway is specified, this parameter is not manda-

tory, otherwise NULL can be used.

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR EHOSTUNREACH - host is unreachable
• PICO ERR ENETUNREACH - network unreachable

Example

ret = pico_ipv4_route_add(dst, netmask, gateway, metric, link);

3.1.13 pico ipv4 route del

Description

Remove the route to the destination IP address from the local device link, f.e. etho0.

Function prototype

int pico_ipv4_route_del(struct pico_ip4 address, struct pico_ip4 netmask,

struct pico_ip4 gateway, int metric, struct pico_ipv4_link *link);

Parameters

• address - Pointer to the destination internet host address as struct pico ip4.
• netmask - Netmask of the address.
• gateway - Gateway of the address network.
• metric - Metric of the route.
• link - Local device interface.

Return value

On success, this call returns 0 if the route is found. On error, -1 is returned and pico err is
set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_ipv4_route_del(dst, netmask, gateway, metric, link);

21

3.1.14 pico ipv4 route get gateway

Description

This function gets the gateway address for the given destination IP address, if set.

Function prototype

struct pico_ip4 pico_ipv4_route_get_gateway(struct pico_ip4 *addr)

Parameters

• address - Pointer to the destination internet host address as struct pico ip4.

Return value

On success the gateway address is returned. On error a null address is returned (0.0.0.0)
and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable

Example

gateway_addr = pico_ip4 pico_ipv4_route_get_gateway(&dest_addr)

3.1.15 pico icmp4 ping

Description

This function sends out a number of ping echo requests and checks if the replies are received
correctly. The information from the replies is passed to the callback function after a succesfull
reception. If a timeout expires before a reply is received, the callback is called with the error
condition.

Function prototype

int pico_icmp4_ping(char *dst, int count, int interval, int timeout, int size,

void (*cb)(struct pico_icmp4_stats *));

Parameters

• dst - Pointer to the destination internet host address as text string
• count - Number of pings going to be send
• interval - Time between two transmissions (in ms)
• timeout - Timeout period untill reply received (in ms)
• size - Size of data buffer in bytes
• cb - Callback for ICMP ping

Data structure struct pico icmp4 stats

struct pico_icmp4_stats

{

struct pico_ip4 dst;

unsigned long size;

22

unsigned long seq;

unsigned long time;

unsigned long ttl;

int err;

};

With err values:

• PICO PING ERR REPLIED (value 0)
• PICO PING ERR TIMEOUT (value 1)
• PICO PING ERR UNREACH (value 2)
• PICO PING ERR PENDING (value 0xFFFF)

Return value

On success, this call returns a positive number, which is the ID of the ping operation just
started. On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space

Example

id = pico_icmp4_ping(dst_addr, 30, 10, 100, 1000, callback);

3.1.16 pico icmp4 ping abort

Description

This function aborts an ongoing ping operation that has previously started using pico icmp4 ping().

Function prototype

int pico_icmp4_ping_abort(int id);

Parameters

• id - identification number for the ping operation. This has been returned by pico icmp4 ping()

and it is intended to distinguish the operation to be cancelled.

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_icmp4_ping_abort(id);

23

3.2 IPv6 functions

3.2.1 pico ipv6 to string

Description

Convert the internet host address IP to a string in IPv6 colon:hex notation. The result is stored
in the char array that ipbuf points to.

Function prototype

int pico_ipv6_to_string(char *ipbuf, const uint8_t ip[PICO_SIZE_IP6]);

Parameters

• ipbuf - Char array to store the result in.
• ip - Internet host address in unsigned byte array notation of lenght 16.

Return value

On success, this call returns 0 if the conversion was successful. On error, -1 is returned and
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_ipv6_to_string(buf, ip);

3.2.2 pico string to ipv6

Description

Convert the IPv6 colon:hex notation into binary form. The result is stored in the int that IP
points to. The address supplied in ipstr can have one of the default forms for IPv6 address
description, including at most one abbreviation skipping zeroed fields using ”::”

Function prototype

int pico_string_to_ipv6(const char *ipstr, uint8_t *ip);

Parameters

• ipstr - Pointer to the IP string.
• ip - Int pointer to store the result in.

Return value

On success, this call returns 0 if the conversion was successful. On error, -1 is returned and
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

24

Example

ret = pico_string_to_ipv6("fe80::1", *ip);

3.2.3 pico ipv6 is unicast

Description

Check if the provided address is unicast or multicast.

Function prototype

int pico_ipv6_is_unicast(struct pico_ip6 *a);

Parameters

• address - Internet host address.

Return value

Returns 1 if unicast, 0 if multicast.

Example

ret = pico_ipv6_is_unicast(address);

3.2.4 pico ipv6 is multicast

Description

Check if the provided address is a valid Internet multicast address, i.e. it belongs to the range
ff00::/8.

Function prototype

int pico_ipv6_is_multicast(struct pico_ip6 *a);

Parameters

• address - Internet host address.

Return value

Returns 1 if a multicast Internet address has been provided.

Example

ret = pico_ipv6_is_multicast(address);

3.2.5 pico ipv6 is global

Description

Check if the provided address is a valid Internet global address, i.e. it belongs to the range
2000::/3.

Function prototype

int pico_ipv6_is_global(struct pico_ip6 *a);

25

Parameters

• address - Internet host address.

Return value

Returns 1 if a global Internet address has been provided.

Example

ret = pico_ipv6_is_global(address);

3.2.6 pico ipv6 is uniquelocal

Description

Check if the provided address is a valid Internet uniquelocal address, i.e. it belongs to the range
fc00::/7.

Function prototype

int pico_ipv6_is_uniquelocal(struct pico_ip6 *a);

Parameters

• address - Internet host address.

Return value

Returns 1 if a uniquelocal Internet address has been provided.

Example

ret = pico_ipv6_is_uniquelocal(address);

3.2.7 pico ipv6 is sitelocal

Description

Check if the provided address is a valid Internet sitelocal address, i.e. it belongs to the range
fec0::/10.

Function prototype

int pico_ipv6_is_sitelocal(struct pico_ip6 *a);

Parameters

• address - Internet host address.

Return value

Returns 1 if a sitelocal Internet address has been provided.

Example

ret = pico_ipv6_is_sitelocal(address);

26

3.2.8 pico ipv6 is linklocal

Description

Check if the provided address is a valid Internet linklocal address, i.e. it belongs to the range
fe80::/10.

Function prototype

int pico_ipv6_is_linklocal(struct pico_ip6 *a);

Parameters

• address - Internet host address.

Return value

Returns 1 if a linklocal Internet address has been provided.

Example

ret = pico_ipv6_is_linklocal(address);

3.2.9 pico ipv6 is localhost

Description

Check if the provided address is a valid Internet localhost address, i.e. it is ”::1”.

Function prototype

int pico_ipv6_is_localhost(struct pico_ip6 *a);

Parameters

• address - Internet host address.

Return value

Returns 1 if a localhost Internet address has been provided.

Example

ret = pico_ipv6_is_localhost(address);

3.2.10 pico ipv6 is undefined

Description

Check if the provided address is a valid Internet undefined address, i.e. it is ”::0”.

Function prototype

int pico_ipv6_is_undefined(struct pico_ip6 *a);

Parameters

• address - Internet host address.

27

Return value

Returns 1 if the Internet address provided describes ANY host.

Example

ret = pico_ipv6_is_undefined(address);

3.2.11 pico ipv6 source find

Description

Find the source IP for the link associated to the specified destination. This function will use
the currently configured routing table to identify the link that would be used to transmit any
traffic directed to the given IP address.

Function prototype

struct pico_ip6 *pico_ipv6_source_find(struct pico_ip6 *dst);

Parameters

• address - Pointer to the destination internet host address as struct pico ip6.

Return value

On success, this call returns the source IP as struct pico ip6. If the source can not be found,
NULL is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable

Example

src = pico_ipv6_source_find(dst);

3.2.12 pico ipv6 link add

Description

Add a new local device dev inteface, f.e. eth0, with IP address ’address’ and netmask ’netmask’.
A device may have more than one link configured, i.e. to access multiple networks on the same
link.

Function prototype

int pico_ipv6_link_add(struct pico_device *dev, struct pico_ip6 address,

struct pico_ip6 netmask);

Parameters

• dev - Local device.
• address - Pointer to the internet host address as struct pico ip6.
• netmask - Netmask of the address.

28

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR ENETUNREACH - network unreachable
• PICO ERR EHOSTUNREACH - host is unreachable

Example

ret = pico_ipv6_link_add(dev, address, netmask);

3.2.13 pico ipv6 link del

Description

Remove the link associated to the local device that was previously configured, corresponding to
the IP address ’address’.

Function prototype

int pico_ipv6_link_del(struct pico_device *dev, struct pico_ip6 address);

Parameters

• dev - Local device.
• address - Pointer to the internet host address as struct pico ip6.

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_ipv6_link_del(dev, address);

3.2.14 pico ipv6 link find

Description

Find the local device associated to the local IP address ’address’.

Function prototype

struct pico_device *pico_ipv6_link_find(struct pico_ip6 *address);

Parameters

• address - Pointer to the internet host address as struct pico ip6.

29

Return value

On success, this call returns the local device. On error, NULL is returned and pico err is set
appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENXIO - no such device or address

Example

dev = pico_ipv6_link_find(address);

3.2.15 pico ipv6 route add

Description

Add a new route to the destination IP address from the local device link, f.e. eth0.

Function prototype

int pico_ipv6_route_add(struct pico_ip6 address, struct pico_ip6 netmask,

struct pico_ip6 gateway, int metric, struct pico_ipv6_link *link);

Parameters

• address - Pointer to the destination internet host address as struct pico ip6.
• netmask - Netmask of the address. If zeroed, the call assumes the meaning of adding a

default gateway.
• gateway - Gateway of the address network. If zeroed, no gateway will be associated to

this route, and the traffic towards the destination will be simply forwarded towards the
given device.

• metric - Metric for this route.
• link - Local device interface. If a valid gateway is specified, this parameter is not manda-

tory, otherwise NULL can be used.

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR EHOSTUNREACH - host is unreachable
• PICO ERR ENETUNREACH - network unreachable

Example

ret = pico_ipv6_route_add(dst, netmask, gateway, metric, link);

3.2.16 pico ipv6 route del

Description

Remove the route to the destination IP address from the local device link, f.e. etho0.

30

Function prototype

int pico_ipv6_route_del(struct pico_ip6 address, struct pico_ip6 netmask,

struct pico_ip6 gateway, int metric, struct pico_ipv6_link *link);

Parameters

• address - Pointer to the destination internet host address as struct pico ip6.
• netmask - Netmask of the address.
• gateway - Gateway of the address network.
• metric - Metric of the route.
• link - Local device interface.

Return value

On success, this call returns 0 if the route is found. On error, -1 is returned and pico err is
set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_ipv6_route_del(dst, netmask, gateway, metric, link);

3.2.17 pico ipv6 route get gateway

Description

This function gets the gateway address for the given destination IP address, if set.

Function prototype

struct pico_ip6 pico_ipv6_route_get_gateway(struct pico_ip6 *addr)

Parameters

• address - Pointer to the destination internet host address as struct pico ip6.

Return value

On success the gateway address is returned. On error a null address is returned (0.0.0.0)
and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable

Example

gateway_addr = pico_ip6 pico_ipv6_route_get_gateway(&dest_addr)

31

3.2.18 pico ipv6 dev routing enable

Description

Enable IPv6 Routing messages through the specified interface. On a picoTCP IPv6 machine,
when routing is enabled, all possible routes to other links are advertised to the target interfaces.
This allows the hosts connected to the target interface to use the picoTCP IPv6 machine as
a router towards public IPv6 addresses configured on other interfaces, or reachable through
known gateways.

Function prototype

struct pico_ip6 pico_ipv6_dev_routing_enable(struct pico_device *dev)

Parameters

• dev - Pointer to the target device struct pico device.

Return value

On success, zero is returned. On error, -1 is returned and pico err is set appropriately.

Example

retval = pico_ipv6_dev_routing_enable(eth1);

3.2.19 pico ipv6 dev routing disable

Description

Enable IPv6 Routing messages through the specified interface. On a picoTCP IPv6 machine,
when routing is enabled, all possible routes to other links are advertised to the target interface.
This function will stop advertising reachable routes to public IPv6 addresses configured on other
interfaces, or reachable through known gateways.

Function prototype

struct pico_ip6 pico_ipv6_dev_routing_disable(struct pico_device *dev)

Parameters

• dev - Pointer to the target device struct pico device.

Return value

On success, zero is returned. On error, -1 is returned and pico err is set appropriately.

Example

retval = pico_ipv6_dev_routing_disable(eth1);

3.3 Socket calls

With the socket calls, the user can open, close, bind, . . . sockets and do read or write operations.
The provided transport protocols are UDP and TCP.

32

3.3.1 pico socket open

Description

This function will be called to open a socket from the application level. The created socket will
be unbound and not connected.

Function prototype

struct pico_socket *pico_socket_open(uint16_t net, uint16_t proto,

void (*wakeup)(uint16_t ev, struct pico_socket *s));

Parameters

• net - Network protocol, PICO PROTO IPV4 = 0, PICO PROTO IPV6 = 41
• proto - Transport protocol, PICO PROTO TCP = 6, PICO PROTO UDP = 17
• wakeup - Callback function that accepts 2 parameters:

– ev - Events that apply to that specific socket, see further
– s - Pointer to a socket of type struct pico socket

Possible events for sockets

• PICO SOCK EV RD - triggered when new data arrives on the socket. A new receive action
can be taken by the socket owner because this event indicates there is new data to receive.

• PICO SOCK EV WR - triggered when ready to write to the socket. Issuing a write/send call
will now succeed if the buffer has enough space to allocate new outstanding data.

• PICO SOCK EV CONN - triggered when connection is established (TCP only). This event is
received either after a successful call to pico socket connect to indicate that the connec-
tion has been established, or on a listening socket, indicating that a call to pico socket accept

may now be issued in order to accept the incoming connection from a remote host.
• PICO SOCK EV CLOSE - triggered when a FIN segment is received (TCP only). This event

indicates that the other endpont has closed the connection, so the local TCP layer is only
allowed to send new data until a local shutdown or close is initiated. PicoTCP is able to
keep the connection half-open (only for sending) after the FIN packet has been received,
allowing new data to be sent in the TCP CLOSE WAIT state.

• PICO SOCK EV FIN - triggered when the socket is closed. No further communication is
possible from this point on the socket.

• PICO SOCK EV ERR - triggered when an error occurs.

Return value

On success, this call returns a pointer to the declared socket (struct pico socket *). On
error the socket is not created, NULL is returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EPROTONOSUPPORT - protocol not supported
• PICO ERR ENETUNREACH - network unreachable

Example

sk_tcp = pico_socket_open(PICO_PROTO_IPV4, PICO_PROTO_TCP, &wakeup);

33

3.3.2 pico socket read

Description

This function will be called to read data from a connected socket. The function checks that the
socket is bound and connected before attempting to receive data.

Function prototype

int pico_socket_read(struct pico_socket *s, void *buf, int len);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of the buffer where the received data will be stored
• len - Length of the buffer (in bytes), represents the maximum amount of bytes that can

be read

Return value

On success, this call returns an integer representing the number of bytes read. On error, -1 is
returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EIO - input/output error
• PICO ERR ESHUTDOWN - cannot read after transport endpoint shutdown

Example

bytesRead = pico_socket_read(sk_tcp, buffer, bufferLength);

3.3.3 pico socket write

Description

This function will be called to write the content of a buffer to a socket that has been previously
connected. This function checks that the socket is bound, connected and that it is allowed to
send data, i.e. there hasn’t been a local shutdown. This is the preferred function to use when
writing data from the application to a connected stream.

Function prototype

int pico_socket_write(struct pico_socket *s, void *buf, int len);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of a (constant) buffer where the data is stored
• len - Length of the data buffer buf

Return value

On success, this call returns an integer representing the number of bytes written to the socket.
On error, -1 is returned, and pico err is set appropriately.

34

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EIO - input/output error
• PICO ERR ENOTCONN - the socket is not connected
• PICO ERR ESHUTDOWN - cannot send after transport endpoint shutdown
• PICO ERR EADDRNOTAVAIL - address not available
• PICO ERR EHOSTUNREACH - host is unreachable
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable

Example

bytesWritten = pico_socket_write(sk_tcp, buffer, bufLength);

3.3.4 pico socket sendto

Description

This function sends data from the local address to the remote address, without checking whether
the remote endpoint is connected. Specifying the destination is particularly useful while send-
ing single datagrams to different destinations upon consecutive calls. This is the preferred
mechanism to send datagrams to a remote destination using a UDP socket.

Function prototype

int pico_socket_sendto(struct pico_socket *s, const void *buf, int len,

void *dst, uint16_t remote_port);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of the buffer
• len - Length of the buffer buf
• dst - Pointer to the origin of the IPv4/IPv6 frame header
• remote port - Portnumber of the receiving socket

Return value

On success, this call returns an integer representing the number of bytes written to the socket.
On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR EADDRNOTAVAIL - address not available
• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable

Example

bytesWritten = pico_socket_sendto(sk_tcp, buf, len, &sk_tcp->remote_addr,

sk_tcp->remote_port);

35

3.3.5 pico socket recvfrom

Description

This function is called to receive data from the specified socket. It is useful when called in the
context of a non-connected socket, to receive the information regarding the origin of the data,
namely the origin address and the remote port number.

Function prototype

int pico_socket_recvfrom(struct pico_socket *s, void *buf, int len,

void *orig, uint16_t *remote_port);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of the buffer
• len - Maximum allowed length for the data to be stored in the buffer buf
• orig - Pointer to the origin of the IPv4/IPv6 frame header, can be NULL
• remote port - Pointer to the port number of the sender socket, can be NULL

Return value

On success, this call returns an integer representing the number of bytes read from the socket.
On success, if orig is not NULL, The address of the remote endpoint is stored in the memory
area pointed by orig. In the same way, remote port will contain the portnumber of the sending
socket, unless a NULL is passed from the caller.

On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ESHUTDOWN - cannot read after transport endpoint shutdown
• PICO ERR EADDRNOTAVAIL - address not available

Example

bytesRcvd = pico_socket_recvfrom(sk_tcp, buf, bufLen, &peer, &port);

3.3.6 Extended Socket operations

The interface provided by sendto/recvfrom can be extended to include more information about
the network communication. This is especially useful in UDP communication, and whenever ex-
tended information is needed about the single datagram and its encapsulation in the networking
layer.

PicoTCP offers an extra structure that can be used to set and retrieve message information while
transmitting and receiving datagrams, respectively. The structure pico msginfo is defined as
follows:

struct pico_msginfo {

struct pico_device *dev;

uint8_t ttl;

uint8_t tos;

};

36

3.3.7 pico socket sendto extended

Description

This function is an extension of the pico socket sendto function described above. It’s exactly
the same but it adds up an additional argument to set TTL and QOS information on the
outgoing packet which contains the datagram.

The usage of the extended argument makes sense in UDP context only, as the information is
set at packet level, and only with UDP there is a 1:1 correspondence between datagrams and
IP packets.

Function prototype

int pico_socket_sendto_extended(struct pico_socket *s, const void *buf, int len,

void *dst, uint16_t remote_port, struct pico_msginfo *info);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of the buffer
• len - Length of the data that is stored in the buffer (in bytes)
• dst - Pointer to the origin of the IPv4/IPv6 frame header
• remote port - Port number of the receiving socket at the remote endpoint
• info - Extended information about the packet containing this datagram. Only the fields

”ttl” and ”tos” are taken into consideeration, while ”dev” is ignored.

Return value

On success, this call returns an integer representing the number of bytes written to the socket.
On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR EADDRNOTAVAIL - address not available
• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable

Example

struct pico_msginfo info = { };

info.ttl = 5;

bytesWritten = pico_socket_sendto_extended(sk_tcp, buf, len, &sk_tcp->remote_addr,

sk_tcp->remote_port, &info);

3.3.8 pico socket recvfrom extended

Description

This function is an extension to the normal pico socket recvfrom function, which allows to
retrieve additional information about the networking layer that has been involved in the delivery
of the datagram.

37

Function prototype

int pico_socket_recvfrom_extended(struct pico_socket *s, void *buf, int len,

void *orig, uint16_t *remote_port, struct pico_msginfo *info);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of the buffer
• len - Maximum allowed length for the data to be stored in the buffer buf
• orig - Pointer to the origin of the IPv4/IPv6 frame header, can be NULL
• remote port - Pointer to the port number of the sender socket, can be NULL
• info - Extended information about the incoming packet containing this datagram. The

device where the packet was received is pointed by info-¿dev, the maximum TTL for the
packet is stored in info-¿ttl, and finally the field info-¿tos keeps track of the flags in IP
header’s QoS.

Return value

On success, this call returns an integer representing the number of bytes read from the socket.
On success, if orig is not NULL, The address of the remote endpoint is stored in the memory
area pointed by orig. In the same way, remote port will contain the portnumber of the sending
socket, unless a NULL is passed from the caller.

On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ESHUTDOWN - cannot read after transport endpoint shutdown
• PICO ERR EADDRNOTAVAIL - address not available

Example

struct pico_msginfo info;

bytesRcvd = pico_socket_recvfrom_extended(sk_tcp, buf, bufLen, &peer, &port, &info);

if (info && info->dev) {

printf("Socket received a datagram via device %s, ttl:%d, tos: %08x\n",

info->dev->name, info->ttl, info->tos);

}

3.3.9 pico socket send

Description

This function is called to send data to the specified socket. It checks if the socket is connected
and then calls the pico socket sendto function.

Function prototype

int pico_socket_send(struct pico_socket *s, const void *buf, int len);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of the buffer
• len - Length of the buffer buf

38

Return value

On success, this call returns an integer representing the number of bytes written to the socket.
On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOTCONN - the socket is not connected
• PICO ERR EADDRNOTAVAIL - address not available
• PICO ERR EHOSTUNREACH - host is unreachable
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable

Example

bytesRcvd = pico_socket_send(sk_tcp, buf, bufLen);

3.3.10 pico socket recv

Description

This function directly calls the pico socket recvfrom function.

Function prototype

int pico_socket_recv(struct pico_socket *s, void *buf, int len);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of the buffer
• len - Maximum allowed length for the data to be stored in the buffer buf

Return value

On success, this call returns an integer representing the number of bytes read from the socket.
On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ESHUTDOWN - cannot read after transport endpoint shutdown
• PICO ERR EADDRNOTAVAIL - address not available

Example

bytesRcvd = pico_socket_recv(sk_tcp, buf, bufLen);

3.3.11 pico socket bind

Description

This function binds a local IP-address and port to the specified socket.

Function prototype

int pico_socket_bind(struct pico_socket *s, void *local_addr, uint16_t *port);

39

Parameters

• s - Pointer to socket of type struct pico socket

• local addr - Void pointer to the local IP-address
• port - Local portnumber to bind with the socket

Return value

On success, this call returns 0 after a succesfull bind. On error, -1 is returned, and pico err is
set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR ENXIO - no such device or address

Example

errMsg = pico_socket_bind(sk_tcp, &sockaddr4->addr, &sockaddr4->port);

3.3.12 pico socket getname

Description

This function returns the local IP-address and port previously bound to the specified socket.

Function prototype

int pico_socket_getname(struct pico_socket *s, void *local_addr, uint16_t *port,

uint16_t *proto);

Parameters

• s - Pointer to socket of type struct pico socket

• local addr - Address (IPv4 or IPv6) previously associated to this socket
• port - Local portnumber associated to the socket
• proto - Proto of the address returned in the local addr field. Can be either PICO PROTO IPV4

or PICO PROTO IPV6

Return value

On success, this call returns 0 and populates the three fields local addr port and proto accord-
ingly. On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument(s) provided

Example

errMsg = pico_socket_getname(sk_tcp, address, &port, &proto);

if (errMsg == 0) {

if (proto == PICO_PROTO_IPV4)

addr4 = (struct pico_ip4 *)address;

else

addr6 = (struct pico_ip6 *)address;

}

40

3.3.13 pico socket getpeername

Description

This function returns the IP-address of the remote peer connected to the specified socket.

Function prototype

int pico_socket_getpeername(struct pico_socket *s, void *remote_addr, uint16_t *port,

uint16_t *proto);

Parameters

• s - Pointer to socket of type struct pico socket

• remote addr - Address (IPv4 or IPv6) associated to the socket remote endpoint
• port - Local portnumber associated to the socket
• proto - Proto of the address returned in the local addr field. Can be either PICO PROTO IPV4

or PICO PROTO IPV6

Return value

On success, this call returns 0 and populates the three fields local addr port and proto accord-
ingly. On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument(s) provided
• PICO ERR ENOTCONN - the socket is not connected to any peer

Example

errMsg = pico_socket_getpeername(sk_tcp, address, &port, &proto);

if (errMsg == 0) {

if (proto == PICO_PROTO_IPV4)

addr4 = (struct pico_ip4 *)address;

else

addr6 = (struct pico_ip6 *)address;

}

3.3.14 pico socket connect

Description

This function connects a local socket to a remote socket of a server that is listening, or perma-
nently associate a remote UDP peer as default receiver for any further outgoing traffic through
this socket.

Function prototype

int pico_socket_connect(struct pico_socket *s, void *srv_addr,

uint16_t remote_port);

Parameters

• s - Pointer to socket of type struct pico socket

• srv addr - Void pointer to the remote IP-address to connect to
• remote port - Remote port number on which the socket will be connected to

41

Return value

On success, this call returns 0 after a succesfull connect. On error, -1 is returned, and pico err

is set appropriately.

Errors

• PICO ERR EPROTONOSUPPORT - protocol not supported
• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable

Example

errMsg = pico_socket_connect(sk_tcp, &sockaddr4->addr, sockaddr4->port);

3.3.15 pico socket listen

Description

A server can use this function when a socket is opened and bound to start listening to it.

Function prototype

int pico_socket_listen(struct pico_socket *s, int backlog);

Parameters

• s - Pointer to socket of type struct pico socket

• backlog - Maximum connection requests

Return value

On success, this call returns 0 after a succesfull listen start. On error, -1 is returned, and
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EISCONN - socket is connected

Example

errMsg = pico_socket_listen(sk_tcp, 3);

3.3.16 pico socket accept

Description

When a server is listening on a socket and the client is trying to connect. The server on his side
will wakeup and acknowledge the connection by calling the this function.

Function prototype

struct pico_socket *pico_socket_accept(struct pico_socket *s, void *orig,

uint16_t *local_port);

42

Parameters

• s - Pointer to socket of type struct pico socket

• orig - Pointer to the origin of the IPv4/IPv6 frame header
• local port - Portnumber of the local socket (pointer)

Return value

On success, this call returns the pointer to a struct pico socket that represents the client
thas was just connected. Also orig will contain the requesting IP-address and remote port

will contain the portnumber of the requesting socket. On error, NULL is returned, and pico err

is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EAGAIN - resource temporarily unavailable

Example

client = pico_socket_accept(sk_tcp, &peer, &port);

3.3.17 pico socket shutdown

Description

Used by the pico socket close function to shutdown read and write mode for the specified
socket. With this function one can close a socket for reading and/or writing.

Function prototype

int pico_socket_shutdown(struct pico_socket *s, int mode);

Parameters

• s - Pointer to socket of type struct pico socket

• mode - PICO SHUT RDWR, PICO SHUT WR, PICO SHUT RD

Return value

On success, this call returns 0 after a succesfull socket shutdown. On error, -1 is returned, and
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

errMsg = pico_socket_shutdown(s, PICO_SHUT_RDWR);

3.3.18 pico socket close

Description

Function used on application level to close a socket. Always closes read and write connection.

43

Function prototype

int pico_socket_close(struct pico_socket *s);

Parameters

• s - Pointer to socket of type struct pico socket

Return value

On success, this call returns 0 after a succesfull socket shutdown. On error, -1 is returned, and
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

errMsg = pico_socket_close(sk_tcp);

3.3.19 pico socket setoption

Description

Function used to set socket options.

Function prototype

int pico_socket_setoption(struct pico_socket *s, int option, void *value);

Parameters

• s - Pointer to socket of type struct pico socket

• option - Option to be set (see further for all options)
• value - Value of option (void pointer)

Available socket options

• PICO TCP NODELAY - Disables/enables the Nagle algorithm (TCP Only).
• PICO SOCKET OPT KEEPCNT - Set number of probes for TCP keepalive
• PICO SOCKET OPT KEEPIDLE - Set timeout value for TCP keepalive probes (in ms)
• PICO SOCKET OPT KEEPINTVL - Set interval between TCP keepalive retries in case of no

reply (in ms)
• PICO SOCKET OPT LINGER - Set linger time for TCP TIME WAIT state (in ms)
• PICO SOCKET OPT RCVBUF - Set receive buffer size for the socket
• PICO SOCKET OPT RCVBUF - Set receive buffer size for the socket
• PICO SOCKET OPT RCVBUF - Set receive buffer size for the socket
• PICO SOCKET OPT SNDBUF - Set send buffer size for the socket
• PICO IP MULTICAST IF - (Not supported) Set link multicast datagrams are sent from,

default is first added link
• PICO IP MULTICAST TTL - Set TTL (0-255) of multicast datagrams, default is 1
• PICO IP MULTICAST LOOP - Specifies if a copy of an outgoing multicast datagram is looped

back as long as it is a member of the multicast group, default is enabled
• PICO IP ADD MEMBERSHIP - Join the multicast group specified
• PICO IP DROP MEMBERSHIP - Leave the multicast group specified

44

Return value

On success, this call returns 0 after a succesfull setting of socket option. On error, -1 is returned,
and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_socket_setoption(sk_tcp, PICO_TCP_NODELAY, NULL);

uint8_t ttl = 2;

ret = pico_socket_setoption(sk_udp, PICO_IP_MULTICAST_TTL, &ttl);

uint8_t loop = 0;

ret = pico_socket_setoption(sk_udp, PICO_IP_MULTICAST_LOOP, &loop);

struct pico_ip4 inaddr_dst, inaddr_link;

struct pico_ip_mreq mreq = {{0},{0}};

pico_string_to_ipv4("224.7.7.7", &inaddr_dst.addr);

pico_string_to_ipv4("192.168.0.2", &inaddr_link.addr);

mreq.mcast_group_addr = inaddr_dst;

mreq.mcast_link_addr = inaddr_link;

ret = pico_socket_setoption(sk_udp, PICO_IP_ADD_MEMBERSHIP, &mreq);

ret = pico_socket_setoption(sk_udp, PICO_IP_DROP_MEMBERSHIP, &mreq)

3.3.20 pico socket getoption

Description

Function used to get socket options.

Function prototype

int pico_socket_getoption(struct pico_socket *s, int option, void *value);

Parameters

• s - Pointer to socket of type struct pico socket

• option - Option to be set (see further for all options)
• value - Value of option (void pointer)

Available socket options

• PICO TCP NODELAY - Nagle algorithm, value casted to (int *) (0 = disabled, 1 = enabled)
• PICO SOCKET OPT RCVBUF - Read current receive buffer size for the socket
• PICO SOCKET OPT SNDBUF - Read current receive buffer size for the socket
• PICO IP MULTICAST IF - (Not supported) Link multicast datagrams are sent from
• PICO IP MULTICAST TTL - TTL (0-255) of multicast datagrams
• PICO IP MULTICAST LOOP - Loop back a copy of an outgoing multicast datagram, as long

as it is a member of the multicast group, or not.

45

Return value

On success, this call returns 0 after a succesfull getting of socket option. The value of the option
is written to value. On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_socket_getoption(sk_tcp, PICO_TCP_NODELAY, &stat);

uint8_t ttl = 0;

ret = pico_socket_getoption(sk_udp, PICO_IP_MULTICAST_TTL, &ttl);

uint8_t loop = 0;

ret = pico_socket_getoption(sk_udp, PICO_IP_MULTICAST_LOOP, &loop);

3.4 DHCP client

A DHCP client for obtaining a dynamic IP address. DHCP is supported on multiple interfaces.

3.4.1 pico dhcp initiate negotiation

Description

Initiate a DHCP negotiation. The user passes a callback-function, which will be executed on
DHCP success or failure.

Function prototype

int pico_dhcp_initiate_negotiation(struct pico_device *device,

void (*callback)(void *cli, int code), uint32_t *xid);

Parameters

• device - the device on which a negotiation should be started.
• callback - the function which is executed on success or failure. This function can be

called multiple times. F.e.: initially DHCP succeeded, then the DHCP server is removed
long enough from the network for the lease to expire, later the server is added again to the
network. The callback is called 3 times: first with code PICO DHCP SUCCESS, then with
PICO DHCP RESET and finally with PICO DHCP SUCCESS. The callback may be called before
pico dhcp initiate negotiation has returned, f.e. in case of failure to open a socket.
The callback has two parameters:

– cli - the identifier of the negotiation
– code - the id indicating success or failure, see further

• xid - transaction id of the negotiation. Is set on PICO DHCP SUCCESS, 0 otherwise.

Possible DHCP codes

• PICO DHCP SUCCESS - DHCP succeeded, the user can start using the assigned address,
which can be obtained by calling pico dhcp get address.

46

• PICO DHCP ERROR - an error occurred. DHCP is unable to recover from this error. pico err

is set appropriately.
• PICO DHCP RESET - DHCP was unable to renew its lease, and the lease expired. The user

must immediately stop using the previously assigned IP, and wait for DHCP to obtain a
new lease. DHCP will automatically start negotiations again.

Return value

Returns 0 on success, -1 otherwise.

Errors

All errors are reported through the callback-function described above.

• PICO ERR EADDRNOTAVAIL - address not available
• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable
• PICO ERR EPROTONOSUPPORT - protocol not supported
• PICO ERR ENETUNREACH - network unreachable
• PICO ERR EINVAL - invalid argument
• PICO ERR ENXIO - no such device or address
• PICO ERR EOPNOTSUPP - operation not supported on socket

Example

pico_dhcp_initiate_negotiation(dev, &callback_dhcpclient, &xid);

3.4.2 pico dhcp client abort

Description

Cancel the ongoing negotiation. To be used if the operation of obtaining an IP address from a
remote DHCP server needs to be aborted, before the callback has been triggered.

Function prototype

struct pico ip4 pico dhcp client abort(uint32 t xid);

Parameters

• xid - the transaction id returned from the call pico dhcp initiate negotiation.

Return value

Returns 0 on success, -1 otherwise (i.e. the XID could not be found in the list of ongoing
transactions).

3.4.3 pico dhcp get identifier

Description

Get the identifier needed to pass to all other pico dhcp functions. This function should only
be called after a callback occurred with code PICO DHCP SUCCESS.

47

Function prototype

void *pico dhcp get identifier(uint32 t xid);

Parameters

• xid - transaction id of the negotiation.

Return value

void * - pointer to the identifier.

Example

void *cli = pico_dhcp_get_identifier(xid);

3.4.4 pico dhcp get address

Description

Get the address that was assigned through DHCP. This function should only be called after a
callback occurred with code PICO DHCP SUCCESS.

Function prototype

struct pico ip4 pico dhcp get address(void *cli);

Parameters

• cli - the identifier that was provided by the callback on PICO DHCP SUCCESS.

Return value

struct pico ip4 - the address that was assigned.

Example

struct pico_ip4 address = pico_dhcp_get_address(cli);

3.4.5 pico dhcp get gateway

Description

Get the address of the gateway that was assigned through DHCP. This function should only be
called after a callback occurred with code PICO DHCP SUCCESS.

Function prototype

struct pico ip4 pico dhcp get gateway(void *cli);

Parameters

• cli - the identifier that was provided by the callback on PICO DHCP SUCCESS.

Return value

• struct pico ip4 - the address of the gateway that should be used.

48

3.4.6 pico dhcp get nameserver

Description

Get the address of the first or the second nameserver that was assigned through DHCP. This
function should only be called after a callback occurred with code PICO DHCP SUCCESS.

Function prototype

struct pico ip4 pico dhcp get nameserver(void *cli, int index);

Parameters

• cli - the identifier that was provided by the callback on PICO DHCP SUCCESS.
• index - the indes of the domain name server received. Can be either ”0” or ”1”.

Return value

• struct pico ip4 - the address of the nameserver that should be used. On failure, e.g.
an invalid index was passed, it returns ”255.255.255.255”. If the IP address of the DNS
has not been set, it may return INADDR ANY.

Example

struct pico_ip4 gateway = pico_dhcp_get_gateway(cli);

3.5 DHCP server

3.5.1 pico dhcp server initiate

Description

This function starts a simple DHCP server.

Function prototype

int pico dhcp server initiate(struct pico dhcpd settings *settings);

Parameters

• settings - a pointer to a struct pico dhcpd settings, in which the following members
matter to the user :

– struct pico ip4 my ip - the IP address of the device performing DHCP. Only IPs
of this network will be served.

– uint32 t pool start - the lowest host number that may be assigned, defaults to
100 if not provided.

– uint32 t pool end - the highest host number that may be assigned, defaults to 254
if not provided.

– uint32 t lease time - the advertised lease time in seconds, defaults to 120 if not
provided.

Return value

On successful startup of the dhcp server, 0 is returned. On error, -1 is returned, and pico err

is set appropriately.

49

Errors

• PICO ERR EPROTONOSUPPORT - protocol not supported
• PICO ERR ENETUNREACH - network unreachable
• PICO ERR EINVAL - invalid argument
• PICO ERR ENXIO - no such device or address

3.5.2 pico dhcp server destroy

Description

This function stops a previously started DHCP server on the given device.

Function prototype

int pico dhcp server destroy(struct pico device *dev);

Parameters

• dev - a pointer to a struct pico device, to identify a previously started DHCP server
that must be terminated.

Return value

On success, 0 is returned. On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR ENOENT - there was no DHCP server running on the given device.

Example

struct pico_dhcpd_settings s = { };

s.my_ip.addr = long_be(0x0a280001); /* 10.40.0.1 */

pico_dhcp_server_initiate(&s);

3.6 DNS client

3.6.1 pico dns client nameserver

Description

Function to add or remove nameservers.

Function prototype

int pico_dns_client_nameserver(struct pico_ip4 *ns, uint8_t flag);

Parameters

• ns - Pointer to the address of the name server.
• flag - Flag to indicate addition or removal (see further).

50

Flags

• PICO DNS NS ADD - to add a nameserver
• PICO DNS NS DEL - to remove a nameserver

Return value

On success, this call returns 0 if the nameserver operation has succeeded. On error, -1 is
returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable

Example

ret = pico_dns_client_nameserver(&addr_ns, PICO_DNS_NS_ADD);

ret = pico_dns_client_nameserver(&addr_ns, PICO_DNS_NS_DEL);

3.6.2 pico dns client getaddr

Description

Function to translate an url text string to an internet host address IP.

Function prototype

int pico_dns_client_getaddr(const char *url, void (*callback)(char *ip, void *arg),

void *arg);

Parameters

• url - Pointer to text string containing url text string (e.g. www.google.com).
• callback - Callback function, returning the internet host address IP and the provided

argument. The returned string has to be freed by the user.
• arg - Pointer to an identifier for the request. The pointer is returned in the callback.

Return value

On success, this call returns 0 if the request is sent. On error, -1 is returned and pico err is
set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable

Example

int ret = pico_dns_client_getaddr("www.google.com", cb_getaddr, &identifier);

3.6.3 pico dns client getname

Description

Function to translate an internet host address IP to an url text string.

51

Function prototype

int pico_dns_client_getname(const char *ip, void (*callback)(char *url, void *arg),

void *arg);

Parameters

• ip - Pointer to text string containing an internet host address IP (e.g. 8.8.4.4)
• callback - Callback function, receiving the url text string. Note: the returned string has

to be freed by the user.
• arg - Pointer to an identifier for the request. The pointer is returned in the callback.

Return value

On success, this call returns 0 if the request is sent. On error, -1 is returned and pico err is
set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable

Example

int ret = pico_dns_client_getname("8.8.4.4", cb_getname, &identifier);

3.7 MDNS client

This module can register DNS resource records on the network via Multicast DNS as either
shared or unique records. Unique records are, as the name implies, unique on the network
(the record-name and -type combination is unique) and one single host has claimed the own-
ership of them. Shared records are records that are not unique on the network, which means
multiple hosts can register records with the same record-name and -type combination. For more
information on shared and unique resource record sets, see RFC6762.

Unique records are, as it should, defended when somebody else tries to claim the same unique
records. When hosts detect such a defense of another host while registering their own records,
the conflict will be resolved by choosing another name for the records and another attempt is
made to register those new records.

This module only supplies the mechanisms of record registration and resolving on the network,
it doesn’t parses the contents of them, that’s up to the application.

3.7.1 pico mdns init

Description

Initialises the entire mDNS-module and sets the hostname for this machine. Sets up the global
mDNS socket properly and calls callback when succeeded. Only when the module is properly
initialised, records can be registered on the network.

52

Function prototype

int pico_mdns_init(const char *hostname,

struct pico_ip4 address,

void (*callback)(pico_mdns_rtree *, char *, void *),

void *arg);

Parameters

• hostname - Hostname to register for this machine. Should end with ’.local’.
• address - IPv4-address of this machines interface to generate a hostname record from.
• cb initialised - Callback-function that is called when the initialisation process is done.

This will also get called when asynchronous conflicts occur for successfully registered
records during run-time. The mDNS-record tree contains the registered records, the
char-buffer contains the registered hostname and the void-pointer contains the passed
argument.

• arg - Argument for callback supplied by user. This can be used if you want to pass some
variable into your callback function.

Return value

Returns 0 when the module is properly initialised and the host started registering the hostname.
Returns something else went the host failed initialising the module or registering the hostname.
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space

Example

pico_mdns_init("host.local", address, &mdns_init_callback, NULL);

3.7.2 pico mdns get hostname

Description

Get the current hostname for this machine.

Function prototype

const char * pico_mdns_get_hostname(void);

Return value

Returns the current hostname for this machine when the module is initialised, returns NULL
when the module is not initialised.

Errors

• PICO ERR EINVAL - invalid argument

Example

char *url = pico_mdns_get_hostname();

53

3.7.3 pico mdns set hostname

Description

Sets the hostname for this machine. Claims automatically a unique A record with the IPv4-
address of this host. The hostname won’t be set directly when this functions returns, but only if
the claiming of the unique record succeeded. Init-callback specified when initialising the module
will be called when the hostname-record is successfully registered.

Function prototype

int pico_mdns_set_hostname(const char *url, void *arg);

Parameters

• url - URL to set the hostname to. Should end with ’.local’.
• arg - Argument for init-callback supplied by user. This can be used if you want to pass

some variable into your callback function.

Return value

Returns 0 when the host started registering the hostname-record successfully, returns something
else when it didn’t succeed. pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space

Example

int ret = pico_mdns_set_hostname("device.local", NULL);

3.7.4 pico mdns claim

Description

Claims all different mDNS records in a tree in a single API-call. All records in the mDNS
record-tree are registered in a single new claim-session.

Function prototype

int pico_mdns_claim(pico_mdns_rtree record_tree,

void (*callback)(pico_mdns_rtree *, char *, void *),

void *arg);

Parameters

• record tree - mDNS record-tree with records to register on the network via Multicast
DNS. Can contain unique records as well as shared records. Declare a mDNS record-
tree with the macro ’PICO MDNS RTREE DECLARE(name)’, which is actually just a
pico tree-struct, with a comparing-function already set. Records can be added with the
preprocessor macro ’PICO MDNS RTREE ADD(pico mdns rtree *, struct pico mdns record
*)’. To create mDNS records see ’pico mdns record create’.

• callback - Callback function that gets called when ALL records in the tree are suc-
cessfully registered on the network. Records in the returned tree can differ from records
originally registered due to conflict-resolution and such.

54

• arg - Argument for callback supplied by user. This can be used if you want to pass some
variable into your callback function.

Return value

Returns 0 when the host started registering the record successfully, returns something else when
it didn’t succeed. pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space

Example

...

PICO_MDNS_RTREE_DECLARE(rtree);

PICO_MDNS_RTREE_ADD(&rtree, &record);

int ret = pico_mdns_claim(rtree, &claimed_cb, NULL);

3.7.5 pico mdns getrecord

Description

API-call to query a record with a certain URL and type. First checks the cache for this record.
If no cache-entry is found, a query will be sent on the wire for this record.

Function prototype

int pico_mdns_getrecord(const char *url, uint16_t type,

void (*callback)(pico_mdns_rtree *, char *, void *),

void *arg);

Parameters

• url - URL of the DNS name to query records for.
• type - DNS type of the records to query for on the network.
• callback - Callback to call when records are found or answers to the query are received.

This functions can get called multiple times when multiple answers are possible (e.g. with
shared records). It’s up to the application to aggregate all these received answers, this is
possible with a static variable of the type pico mdns rtree.

• arg - Argument for callback supplied by user. This can be used if you want to pass some
variable into your callback function.

Return value

Returns 0 when the host started querying for these records successfully or the records are found
in the cache. Returns something else when it didn’t succeed. pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space

Example

int ret = pico_mdns_getrecord("_ipp._tcp.local", PICO_DNS_TYPE_PTR, &query_cb, NULL);

55

3.7.6 pico mdns record create

Description

Creates a single standalone mDNS resource record with given name, type and data to register
on the network.

Function prototype

struct pico_mdns_record *pico_mdns_record_create(const char *url,

void *_rdata,

uint16_t datalen,

uint16_t rtype,

uint32_t rttl,

uint8_t flags);

Parameters

• url - DNS resource record name in URL format. Will be converted to DNS name notation
format.

• rdata - Memory buffer with data to insert in the resource record. If data of record should
contain a DNS name, the name in the databuffer needs to be in URL-format.

• datalen - The exact length in bytes of the rdata-buffer. If data of record should contain a
DNS name (f.e. with PICO DNS TYPE PTR), datalen needs to be pico dns strlen(rdata).

• rtype - DNS type of the resource record to be.
• ttl - TTL of the resource record to be when registered on the network. In seconds.
• flags - With this parameter, you can specify a record as either a shared record or a unique

record with respectively PICO MDNS RECORD SHARED- or PICO MDNS RECORD UNIQUE-
preprocessor defines. Records are by default registered as unique.

Return value

Returns a pointer to the newly created record on success, returns NULL on failure. pico err

is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space

Example

pico_ip4 ip = 0;

pico_string_to_ipv4("10.10.0.5", &(ip.addr));

struct pico_mdns_record *record = pico_mdns_record_create("foo.local",

&(ip.addr),

PICO_SIZE_IP4,

PICO_DNS_TYPE_ANY,

120,

PICO_MDNS_RECORD_UNIQUE);

56

3.7.7 IS HOSTNAME RECORD

Description

The initialisation-callback can get called multiple times during run-time due to passive conflict
detection. A passive conflict occurs for unique records when a faulty Multicast DNS-responder
doesn’t apply conflict resolution after an occurred conflict. A passive conflict can also occur
when a peer registers a shared record with the same name and type combination as a unique
record that the local host already successfully registered on the network. Because of that,
shared records have priority over unique records, so unfortunately the local host has to apply
the conflict resolution-mechanism to it’s earlier uniquely verified record. To be able to notify
the application of an updated unique record, the callback gets called given in the initialisation-
function. But since that callback maybe parses the returned records as the hostname-records
and this isn’t necessarily the case when a passive conflict occurs, a mechanism is needed to
differ hostname-records from other records. This preprocessor-macro allows this.

Function prototype

IS_HOSTNAME_RECORD(record)

Parameters

• record - mDNS resource record

Return value

Returns 1 when this record is a hostname record, returns 0 when it’s not or when given pointer
is a NULL pointer.

3.8 DNS SD client

With this module DNS-SD services can be registered on the network to allow Zero Configuration
Networking on the device. This is merely a small layer on top of Multicast DNS.

3.8.1 pico dns sd init

Description

Just calls pico mdns init in its turn to initialise the mDNS-module. See ’pico mdns init’ for
more information.

3.8.2 pico dns sd register service

Description

Registers the service with a certain name and type on the network via Multicast DNS.

Function prototype

int pico_dns_sd_register_service(const char *name,

const char *type,

uint16_t port,

kv_vector *txt_data,

57

uint16_t ttl,

void (*callback)(pico_mdns_rtree *,char *,void *),

void *arg);

Parameters

• name - Instance-name of the service. Use a descriptive name for it but not longer than 63
characters.

• type - The type of the service. For all the possible service types see: http://www.dns-sd.
org/servicetypes.html

• port - The portnumber on which the service runs.
• txt data - Pointer to vector with key-value pairs to insert into the TXT record to give ad-

ditional information about the service. Use the ’PICO DNS SD KV VECTOR DECLARE’-
macro to declare a vector for key-value-pairs. This vector will be destroyed when the
function returns since there’s no need in keeping the contents.

• ttl - TTL of the service on the network before it needs to be reconfirmed. In seconds.
• callback - Callback function that gets called when the service is successfully registered

on the network.
• arg - Argument for callback supplied by user. This can be used if you want to pass some

variable into your callback function.

Return value

Returns 0 when the module successfully started registering the service, something else on failure.
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space

Example

PICO_DNS_SD_KV_VECTOR_DECLARE(dictionary);

pico_dns_sd_register_service("Printer 2nd Floor", "_printer._sub._http._tcp", 80, \\

&dictionary, 240, ®_cb, NULL);

3.8.3 pico dns sd kv vector add

Description

Add a key-value pair the a key-value pair vector.

Function prototype

int pico_dns_sd_kv_vector_add(kv_vector *vector, char *key, char *value);

Parameters

• vector - Pointer to vector to add the pair to. Declare a key-value vector with the
’PICO DNS SD KV VECTOR DECLARE’-macro.

• key - Key of the pair. Cannot be NULL.
• value - Value of the pair. can be NULL, empty (””) or filled (”value”).

58

http://www.dns-sd.org/servicetypes.html
http://www.dns-sd.org/servicetypes.html

Return value

Returns 0 when the pair is added successfully, something else on failure. pico err is set
appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space

Example

PICO_DNS_SD_KV_VECTOR_DECLARE(dictionary);

pico_dns_sd_kv_vector_add(&dictionary, "pass", "1234");

pico_dns_sd_kv_vector_add(&dictionary, "color", NULL);

3.9 SNTP client

This module allows you to sync your device to to a specified (s)ntp server. You can then retreive
the time with the pico sntp gettimeofday function.

3.9.1 pico sntp sync

Description

Function to sync the local time to a given sntp server.

Function prototype

int pico_sntp_sync(char *sntp_server, void (*cb_synced)(pico_err_t status));

Parameters

• sntp server - String with the sntp server to get the time from
• cb synced - Callback function that is called when the synchronisation process is done.

The status variable indicates wheter the synchronisation was succesfull or not.

Return value

On success, this call returns 0 if the synchronisation operation has succeeded. On error, -1 is
returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space

Example

int ret = pico_sntp_sync("ntp.nasa.gov", &callback);

59

3.9.2 pico sntp gettimeofday

Description

Function to get the current time. Be sure to call the pico sntp sync function to synchronise
BEFORE calling this function.

Function prototype

int pico_sntp_gettimeofday(struct pico_timeval *tv);

Parameters

• tv - Pointer to a time val struct in which the current time will be set.

Return value

On success, this call returns 0 if the time is set. On error, -1 is returned and pico err is set
appropriately.

Example

int ret = pico_sntp_gettimeofday(tv);

3.10 IGMP

This module allows the user to join and leave IGMP multicast groups. Currently only IGMP2
is supported.

3.10.1 pico igmp2 join group

Description

Join an IGMP2 multicast group.

Function prototype

int pico_igmp2_join_group(struct pico_ip4 *group_address,

struct pico_ipv4_link *link);

Parameters

• group address - the address of the multicast group you want to join.
• link - the link on which that multicast group should be joined.

Errors

In case of failure, -1 is returned, and the value of pico err is set as follows:

• PICO ERR EINVAL - Invalid argument provided
• PICO ERR EFAULT - Internal error
• PICO ERR EEXIST - Attempted to join a group that was already joined before

60

3.10.2 pico igmp2 leave group

Description

leave an IGMP2 multicast group.

Function prototype

int pico igmp2 leave group(struct pico ip4 *group address, struct pico ipv4 link *link);

Parameters

• group address - the address of the multicast group you want to leave.
• link - the link on which that multicast group should be left.

Return value

In case of success, 0. In case of failure, -1 is returned and pico err is set accordingly.

Errors

In case of success, zero is returned. In case of failure, -1 is returned, and the value of pico err
is set as follows:

• PICO ERR EINVAL - Invalid argument provided
• PICO ERR EFAULT - Internal error
• PICO ERR ENOENT - Attempted to leave a group which has never been joined

3.11 IP Filter

This module allows the user to add and remove filters. The user can filter packets based
on interface, protocol, outgoing address, outgoing netmask, incomming address, incomming
netmask, outgoing port, incomming port, priority and type of service. There are four types
of filters: ACCEPT, PRIORITY, REJECT, DROP. When creating a PRIORITY filter, it is
necessary to give a priority value in a range between ’-10’ and ’10’, ’0’ as default priority.

3.11.1 pico ipv4 filter add

Description

Function to add a filter.

Function prototype

int pico_ipv4_filter_add(struct pico_device *dev, uint8_t proto,

struct pico_ip4 out_addr, struct pico_ip4 out_addr_netmask,

struct pico_ip4 in_addr, struct pico_ip4 in_addr_netmask, uint16_t out_port,

uint16_t in_port, int8_t priority, uint8_t tos, enum filter_action action);

Parameters

• dev - interface to be filtered
• proto - protocol to be filtered
• out addr - outgoing address to be filtered

61

• out addr netmask - outgoing address-netmask to be filtered
• in addr - incomming address to be filtered
• in addr netmask - incomming address-netmask to be filtered
• out port - outgoing port to be filtered
• in port - incomming port to be filtered
• priority - priority to assign on the marked packet
• tos - type of service to be filtered
• action - type of action for the filter: ACCEPT, PRIORITY, REJECT and DROP. AC-

CEPT, filters all packets selected by the filter. PRIORITY is not yet implemented. RE-
JECT drops all packets and send an ICMP message ’Packet Filtered’ (Communication
Administratively Prohibited). DROP will discard the packet silently.

Return value

On success, this call returns the filter id from the generated filter. This id must be used when
deleting the filter. On error, -1 is returned and pico err is set appropriately.

Example

/* block all incoming traffic on port 5555 */

filter_id = pico_ipv4_filter_add(NULL, 6, NULL, NULL, NULL, NULL, 0, 5555,

0, 0, FILTER_REJECT);

Errors

• PICO ERR EINVAL - invalid argument

3.11.2 pico ipv4 filter del

Description

Function to delete a filter.

Function prototype

int pico_ipv4_filter_del(int filter_id)

Parameters

• filter id - the id of the filter you want to delete.

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EPERM - operation not permitted

Example

ret = pico_ipv4_filter_del(filter_id);

62

3.12 SLAACV4 Module

3.12.1 pico slaacv4 claimip

Description

This function starts the ip claiming process for a device. It will generate first the local link ip
using as seed the mac address of the device. Then it will start the claim procedure described
in RFC3927. In case of success the IP is registered to the IP layer and returned using the
callback function. In case of error, code SLAACV4 ERROR is returned. Errors occur when
the maximum number of conflicts is reached. Use the IP returned only if the return code is
SLAACV4 SUCCESS.

Function prototype

pico slaacv4 claimip(struct pico device *dev, void (*cb)(struct pico ip4 *ip, uint8 t

code));

Parameters

• dev - a pointer to a struct pico device

• *cb - a callback function returning the ip claimed and a return code (SLAACV4 ERROR
— SLAACV4 SUCCESS)

Return value

0 returned if the claiming has started successfully

Example

dev = pico_get_device(sdev);

ret = pico_slaacv4_claimip(dev, slaacv4_cb);

3.12.2 pico slaacv4 unregisterip

Description

This function allows to unregister the local link ip in usage. The function will remove from the
route table the local link ip and will reset the internal state of the SLAACV4 module

Function prototype

void pico slaacv4 unregisterip(void);

3.13 TFTP

This module provides support for Trivial File Transfer Protocol (TFTP). The support includes
client and server implementation, both of them can be active at the same time.

Flows must be split up into TFTP blocks on the sender side, and reassembled from block len
on the receiving side. Please note that a block whose size is less than the block size indicates
the end of the transfer.

63

To indicate the end of a transfer where the content is aligned with the block size, an additional
transmission of zero bytes must follow the flow.

Function pico tftp listen must be used to start the server with a proper callback that should be
provided by the user. To reject a request received by the server the server callback must call
pico tftp reject request.

In order to start transmission or reception of files a session handler must be obtained with a call
to pico tftp session setup. The created session may take advantage of the Extenxed Options of
the TFTP protocol invoking pico tftp set option before starting using it.

Real file transaction is started using the functions pico tftp start tx and pico tftp start rx; both
require a callback that must be provided by the user to handle single chunks of the transmission.
The transmitter callback must use pico tftp send function to send each block of data.

In case of problem the session can be aborted (and an error message is sent to the remote side)
using pico tftp abort.

When a transfer is complete the session became invalid and must not be used any more.

Application driven interface

In some use case is preferable to have an application driven behaviour. The API provide 5
specific functions to use TFTP in this scenario.

The way to obtain a session handler suited for this purpose is an invocation to the function
pico tftp app setup. The synchro variable passed to this function will play a key role during
the management of the transfer.

As usual the section can be instructed to use Extended Options using pico tftp set option before
starting the file transfer.

Once the session is created, the application can start receiving a file with a call to the function
pico tftp app start rx or, if needs to transmit, invoking pico tftp app start tx.

After the file transfer is started the user is allowed to perform data handling only when the syn-
chro variable associated with the session is not 0. It is set to 0 after calling pico tftp app setup.
A value that differ to 0 means that a single chunk is ready to be handled.

Single chunk of data are received using pico tftp get and transmitted with the use of the function
pico tftp put.

Once the file transfer ends, both for completion or in case of error, the session is no more valid.

3.13.1 pico tftp listen

Description

Start up a TFTP server listening for GET/PUT requests on the given port. The function
pointer passed as callback in the cb argument will be invoked upon a new transfer request
received from the network, and the call will pass the information about:

• The address of the remote peer asking for a transfer
• The remote port of the peer
• The type of transfer requested, via the opcode parameter being either PICO TFTP RRQ or
PICO TFTP WRQ, for get or put requests respectively.

64

Function prototype

int pico_tftp_listen(uint16_t family, void (*cb)(union pico_address *addr,

uint16_t port, uint16_t opcode, char *filename, int32_t len));

Parameters

• family - The chosen socket family. Accepted values are PICO PROTO IPV4 for IPv4 and
PICO PROTO IPV6 for IPv6.

• cb - a pointer to the callback function, defined by the user, that will be called upon a new
transfer request.

Return value

This function returns 0 if succeeds or -1 in case of errors (pico err is set accordingly).

Example

/* Example of a TFTP listening service callback */

void tftp_listen_cb(union pico_address *addr, uint16_t port,

uint16_t opcode, char *filename, int32_t len)

{

struct note_t *note;

struct pico_tftp_session *session;

printf("TFTP listen callback (BASIC) from remote port %" PRIu16 ".\n",

short_be(port));

if (opcode == PICO_TFTP_RRQ) {

printf("Received TFTP get request for %s\n", filename);

note = transfer_prepare(&session, ’t’, filename, addr, family);

start_tx(session, filename, port, cb_tftp_tx, note);

} else if (opcode == PICO_TFTP_WRQ) {

printf("Received TFTP put request for %s\n", filename);

note = transfer_prepare(&session, ’r’, filename, addr, family);

start_rx(session, filename, port, cb_tftp_rx, note);

}

}

// Code fragment to demostrate the use of pico_tftp_listen:

if (!is_server_enabled) {

pico_tftp_listen(PICO_PROTO_IPV4, (commands->operation == ’S’) ?

tftp_listen_cb_opt : tftp_listen_cb);

is_server_enabled = 1;

}

3.13.2 pico tftp reject request

Description

This message is used in listen callback to reject a request with an error message.

65

Function prototype

int pico_tftp_reject_request(union pico_address *addr, uint16_t port,

uint16_t error_code, const char *error_message);

Parameters

• addr - The address of the remote peer; it must match the address where the request came
from.

• port - The port on the remote peer; it must match the address where the request came
from.

• error code - Error reason, possible values are:
TFTP ERR UNDEF Not defined, see error message (if any)
TFTP ERR ENOENT File not found
TFTP ERR EACC Access violation
TFTP ERR EXCEEDED Disk full or allocation exceeded
TFTP ERR EILL Illegal TFTP operation
TFTP ERR ETID Unknown transfer ID
TFTP ERR EEXIST File already exists
TFTP ERR EUSR No such user
TFTP ERR EOPT Option negotiation

• message - Text message to attach.

Return value

This function returns 0 if succeeds or -1 in case of errors (pico err is set accordingly).

Example

void tftp_listen_cb_opt(union pico_address *addr, uint16_t port,

uint16_t opcode, char *filename, int32_t len)

{

struct note_t *note;

struct pico_tftp_session *session;

int options;

uint8_t timeout;

int32_t filesize;

int ret;

printf("TFTP listen callback (OPTIONS) from remote port %" PRIu16 ".\n",

short_be(port));

/* declare the options we want to support */

ret = pico_tftp_parse_request_args(filename, len, &options,

&timeout, &filesize);

if (ret)

pico_tftp_reject_request(addr, port, TFTP_ERR_EOPT,

"Malformed request");

if (opcode == PICO_TFTP_RRQ) {

printf("Received TFTP get request for %s\n", filename);

66

note = transfer_prepare(&session, ’T’, filename, addr, family);

if (options & PICO_TFTP_OPTION_TIME)

pico_tftp_set_option(session, PICO_TFTP_OPTION_TIME, timeout);

if (options & PICO_TFTP_OPTION_FILE) {

ret = get_filesize(filename);

if (ret < 0) {

pico_tftp_reject_request(addr, port, TFTP_ERR_ENOENT,

"File not found");

return;

}

pico_tftp_set_option(session, PICO_TFTP_OPTION_FILE, ret);

}

start_tx(session, filename, port, cb_tftp_tx_opt, note);

} else { /* opcode == PICO_TFTP_WRQ */

printf("Received TFTP put request for %s\n", filename);

note = transfer_prepare(&session, ’R’, filename, addr, family);

if (options & PICO_TFTP_OPTION_TIME)

pico_tftp_set_option(session, PICO_TFTP_OPTION_TIME, timeout);

if (options & PICO_TFTP_OPTION_FILE)

pico_tftp_set_option(session, PICO_TFTP_OPTION_FILE, filesize);

start_rx(session, filename, port, cb_tftp_rx_opt, note);

}

}

3.13.3 pico tftp session setup

Description

Obtain a session handler to use for the next file transfer with a remote location.

Function prototype

struct pico_tftp_session * pico_tftp_session_setup(union pico_address *a,

uint16_t family);

Parameters

• a - The address of the peer to be contacted. In case of a solicited transfer, it must match
the address where the request came from.

• family - The chosen socket family. Accepted values are PICO PROTO IPV4 for IPv4 and
PICO PROTO IPV6 for IPv6.

Return value

In case of success a session handler is returned. In case of failure, NULL is returned and pico err
is set accordingly.

67

Example

struct pico_tftp_session * make_session_or_die(union pico_address *addr,

uint16_t family)

{

struct pico_tftp_session * session;

session = pico_tftp_session_setup(addr, family);

if (!session) {

fprintf(stderr, "TFTP: Error in session setup\n");

exit(3);

}

return session;

}

3.13.4 pico tftp set option

Description

This function is used to require the use of Extended Options for TFTP transfer associate to
a session according to RFC 2347 and RFC 2349. It should be used before the invocation of
pico tftp start rx or pico tftp start tx unless the setting is related to the timeout. In order to
require Transfer size Option PICO TFTP OPTION FILE must be used and his value set to
the file size in case of a Write Request or to 0 in case of a Read Request. To require to adopt
a specific fixed value for the timeout PICO TFTP OPTION TIME must be used with a value
ranging between 1 and 255. If this option is set to a value of 0 (or not used at all) an adaptive
timeout algorithm will take care of the retransmissions.

Function prototype

int pico_tftp_set_option(struct pico_tftp_session *session,

uint8_t type, int32_t value);

Parameters

• session - Section handler to use for the file transfer.
• type - Option to set; accepted values are PICO TFTP OPTION FILE for Transfer size

Option or PICO TFTP OPTION TIME for Timeout interval Option.
• value - Option value to send.

Return value

This function returns 0 if succeeds or -1 in case of errors (pico err is set accordingly).

Example

filesize = get_filesize(commands->filename);

if (filesize < 0) {

fprintf(stderr, "TFTP: unable to read size of file %s\n",

68

commands->filename);

exit(3);

}

pico_tftp_set_option(session, PICO_TFTP_OPTION_FILE, filesize);

start_tx(session, commands->filename, short_be(PICO_TFTP_PORT),

cb_tftp_tx_opt, note);

3.13.5 pico tftp get option

Description

This function is used to retrieve the values of Extended Options that has been set to a ses-
sion according to RFC 2347 and RFC 2349. In order to ask Transfer size Option value
PICO TFTP OPTION FILE must be used; it may be used for example for example in receiver
callback for calculation of remaining bytes to be received to complete the current transfer. To
query the timeout PICO TFTP OPTION TIME must be used; a value ranging between 1 and
255 will be returned in the value parameter if the fixed interval is in place. If the call return -1
and pico err is set to PICO ERR ENOENT the adaptive timeout algorithm is running.

Function prototype

int pico_tftp_set_option(struct pico_tftp_session *session,

uint8_t type, int32_t *value);

Parameters

• session - Section handler to use for the file transfer.
• type - Option to query; accepted values are PICO TFTP OPTION FILE for Transfer

size Option or PICO TFTP OPTION TIME for Timeout interval Option.
• value - Pointer to an integer variable where to store the value.

Return value

This function returns 0 if succeeds or -1 in case of errors (pico err is set accordingly).

Example

int cb_tftp_tx_opt(struct pico_tftp_session *session, uint16_t event,

uint8_t *block, int32_t len, void *arg)

{

int ret;

int32_t filesize;

if (event == PICO_TFTP_EV_OPT) {

ret = pico_tftp_get_option(session, PICO_TFTP_OPTION_FILE, &filesize);

if (ret)

printf("TFTP: Option filesize is not used\n");

else

printf("TFTP: We expect to transmit %" PRId32 " bytes\n",

69

filesize);

event = PICO_TFTP_EV_OK;

}

return cb_tftp_tx(session, event, block, len, arg);

}

3.13.6 pico tftp parse request args

Description

This function is used to extract Extension Options eventually present in Read or Write request
(in the listen callback) or in Option ACKnowledge messages (in transmitter or receiver callback
when event is equal to PICO TFTP EV OPT). Note that timeout and filesize are modified only
if the corresponding option is found in the received message.

Function prototype

int pico_tftp_parse_request_args(char *args, int32_t len, int *options,

uint8_t *timeout, int32_t *filesize);

Parameters

• args - Pointer to the buffer containing the arguments: filename for listen callback and
block for rx or tx callback.

• len - Length of the buffer containing the arguments; same value of the len parameter in
callbacks.

• options - Pointer to the variable that will contain the set of options found. Presence
of single options can be then verified anding it with PICO TFTP OPTION FILE or
PICO TFTP OPTION TIME.

• timeout - Pointer to the variable that will contain the timeout value (if present in the
options).

• filesize - Pointer to the variable that will contain the filesize value (if present in the
options)..

Return value

This function returns 0 if succeeds or -1 in case of errors (pico err is set accordingly).

Example

void tftp_listen_cb_opt(union pico_address *addr, uint16_t port,

uint16_t opcode, char *filename, int32_t len)

{

struct note_t *note;

struct pico_tftp_session *session;

int options;

uint8_t timeout;

int32_t filesize;

70

int ret;

printf("TFTP listen callback (OPTIONS) from remote port %" PRIu16 ".\n",

short_be(port));

/* declare the options we want to support */

ret = pico_tftp_parse_request_args(filename, len, &options,

&timeout, &filesize);

if (ret)

pico_tftp_reject_request(addr, port, TFTP_ERR_EOPT,

"Malformed request");

if (opcode == PICO_TFTP_RRQ) {

printf("Received TFTP get request for %s\n", filename);

note = transfer_prepare(&session, ’T’, filename, addr, family);

if (options & PICO_TFTP_OPTION_TIME)

pico_tftp_set_option(session, PICO_TFTP_OPTION_TIME, timeout);

if (options & PICO_TFTP_OPTION_FILE) {

ret = get_filesize(filename);

if (ret < 0) {

pico_tftp_reject_request(addr, port, TFTP_ERR_ENOENT,

"File not found");

return;

}

pico_tftp_set_option(session, PICO_TFTP_OPTION_FILE, ret);

}

start_tx(session, filename, port, cb_tftp_tx_opt, note);

} else { /* opcode == PICO_TFTP_WRQ */

printf("Received TFTP put request for %s\n", filename);

note = transfer_prepare(&session, ’R’, filename, addr, family);

if (options & PICO_TFTP_OPTION_TIME)

pico_tftp_set_option(session, PICO_TFTP_OPTION_TIME, timeout);

if (options & PICO_TFTP_OPTION_FILE)

pico_tftp_set_option(session, PICO_TFTP_OPTION_FILE, filesize);

start_rx(session, filename, port, cb_tftp_rx_opt, note);

}

}

3.13.7 pico tftp start tx

Description

Start a TFTP transfer. The action can be unsolicited (client PUT operation) or solicited (server
responding to a GET request). In either case, the transfer will happen one block at a time, and
the callback provided by the user will be called to notify the acknowledgement for the successful
of each transfer, transfer of the last block, reception of an option acknowledge message (client

71

mode) or whenever an error occurs. Any error during the TFTP transfer will cancel the transfer
itself. The possible values for the event variable in callback are:

• PICO TFTP EV OK Time to send another chunk of data.
• PICO TFTP EV OPT Option acknowledge has been received.
• PICO TFTP EV ERR PEER An error has occurred remotely.
• PICO TFTP EV ERR LOCAL An internal error has occurred.

Function prototype

int pico_tftp_start_tx(struct pico_tftp_session *session, uint16_t port,

const char *filename,

int (*user_cb)(struct pico_tftp_session *session, uint16_t event,

uint8_t *block, int32_t len, void *arg),

void *arg);

Parameters

• session - Session handler to use for the file transfer.
• port - The port on the remote peer.
• filename - The name of the file to be transferred. In case of solicited transfer, it must

match the filename provided during the request.
• user cb - The callback provided by the user to be called upon each block transfer, option

acknowledge or in case of error.
• arg - The pointer is sent as argument to the callback.

Return value

This function returns 0 if succeeds or -1 in case of errors (pico err is set accordingly).

Example

void start_tx(struct pico_tftp_session *session,

const char *filename, uint16_t port,

int (*tx_callback)(struct pico_tftp_session *session, uint16_t err,

uint8_t *block, int32_t len, void *arg),

struct note_t *note)

{

if (pico_tftp_start_tx(session, port, filename, tx_callback, note)) {

fprintf(stderr, "TFTP: Error in initialization\n");

exit(1);

}

}

3.13.8 pico tftp send

Description

Send the next block during an active TFTP transfer. This is ideally called every time the user
callback is triggered by the protocol, indicating that the transfer of the last block has been
acknowledged. The user should not call this function unless it’s solicited by the protocol during
an active transmit session.

72

Function prototype

int32_t pico_tftp_send(struct pico_tftp_session *session,

const uint8_t *data, int32_t len);

Parameters

• session - the session handler to use for the file transfer.
• data - the content of the block to be transferred.
• len - the size of the buffer being transmitted. If < BLOCKSIZE, the transfer is concluded.

In order to terminate a transfer where the content is aligned to BLOCKSIZE, a zero-sized
pico tftp send must be called at the end of the transfer.

Return value

In case of success, the number of bytes transmitted is returned. In case of failure, -1 is returned
and pico err is set accordingly.

Example

int cb_tftp_tx(struct pico_tftp_session *session, uint16_t event,

uint8_t *block, int32_t len, void *arg)

{

struct note_t *note = (struct note_t *) arg;

if (event != PICO_TFTP_EV_OK) {

fprintf(stderr, "TFTP: Error %" PRIu16 ": %s\n", event, block);

exit(1);

}

len = read(note->fd, tftp_txbuf, PICO_TFTP_PAYLOAD_SIZE);

if (len >= 0) {

note->filesize += len;

pico_tftp_send(session, tftp_txbuf, len);

if (len < PICO_TFTP_PAYLOAD_SIZE) {

printf("TFTP: file %s (%" PRId32

" bytes) TX transfer complete!\n",

note->filename, note->filesize);

close(note->fd);

del_note(note);

}

} else {

perror("read");

fprintf(stderr,

"Filesystem error reading file %s,"

" cancelling current transfer\n", note->filename);

pico_tftp_abort(session, TFTP_ERR_EACC, "Error on read");

del_note(note);

}

if (!clipboard)

73

pico_timer_add(3000, deferred_exit, NULL);

return len;

}

3.13.9 pico tftp start rx

Description

Start a TFTP transfer. The action can be unsolicited (client GET operation) or solicited
(server responding to a PUT request). In either case, the transfer will happen one block at a
time, and the callback provided by the user will be called upon successful transfer of a block,
whose content can be directly accessed via the block field, reception of an option acknowledge
messagge (client mode) or whenever an error occurs. The possible values for the event variable
in callback are:

• PICO TFTP EV OK Previously sent block has been acknowledge.
• PICO TFTP EV OPT Option acknowledge has been received.
• PICO TFTP EV ERR PEER An error has occurrend remotely.
• PICO TFTP EV ERR LOCAL An internal error has occurred.

Function prototype

int pico_tftp_start_rx(struct pico_tftp_session *session, uint16_t port,

const char *filename,

int (*user_cb)(struct pico_tftp_session *session, uint16_t event,

uint8_t *block, int32_t len, void *arg),

void *arg);

Parameters

• session - the session handler to use for the file transfer.
• port - The port on the remote peer.
• filename - The name of the file to be transfered. In case of solicited transfer, it must

match the filename provided during the request.
• user cb - The callback provided by the user to be called upon each block transfer, option

acknowledge or in case of error. This is the callback where the incoming data is processed.
When len is less than the block size, the transfer is over.

• arg - The pointer sent as argument to the callback.

Return value

This function returns 0 if succeeds or -1 in case of errors (pico err is set accordingly).

Example

void start_rx(struct pico_tftp_session *session,

const char *filename, uint16_t port,

int (*rx_callback)(struct pico_tftp_session *session, uint16_t err,

uint8_t *block, int32_t len, void *arg),

struct note_t *note)

{

if (pico_tftp_start_rx(session, port, filename, rx_callback, note)) {

74

fprintf(stderr, "TFTP: Error in initialization\n");

exit(1);

}

}

3.13.10 pico tftp get file size

Description

This function is used to retrieve the file size (if transmitted by the remote or set as session
option). It is equivalent to a call to pico tftp get option(session, PICO TFTP OPTION FILE,
&file size);

Function prototype

int pico_tftp_get_file_size(struct pico_tftp_session *session,

int32_t *file_size);

Parameters

• session - Section handler to use for the file transfer.
• file size - Pointer to an integer variable where to store the value.

Return value

This function returns 0 if succeeds or -1 in case of errors (pico err is set accordingly).

Example

ret = pico_tftp_get_file_size(session, &file_size);

if (ret)

printf("Information about file size has not been received"\n);

3.13.11 pico tftp abort

Description

When called this function aborts associated ongoing transmission and notifying the other end-
point with a proper error message. After a call to this function the session is closed automati-
cally.

Function prototype

int pico_tftp_abort(struct pico_tftp_session *session,

uint16_t error, const char *reason);

Parameters

• session - the session handler related to the session to abort.

75

• error - Error reason code, possible values are:
TFTP ERR UNDEF Not defined, see error message (if any)
TFTP ERR ENOENT File not found
TFTP ERR EACC Access violation
TFTP ERR EXCEEDED Disk full or allocation exceeded
TFTP ERR EILL Illegal TFTP operation
TFTP ERR ETID Unknown transfer ID
TFTP ERR EEXIST File already exists
TFTP ERR EUSR No such user
TFTP ERR EOPT Option negotiation

• reason - Text message to attach.

Return value

This function returns 0 if succeeds or -1 in case of errors (pico err is set accordingly).

Example

int cb_tftp_rx(struct pico_tftp_session *session, uint16_t event,

uint8_t *block, int32_t len, void *arg)

{

struct note_t *note = (struct note_t *) arg;

int ret;

if (event != PICO_TFTP_EV_OK) {

fprintf(stderr, "TFTP: Error %" PRIu16 ": %s\n", event, block);

exit(1);

}

note->filesize += len;

if (write(note->fd, block, len) < 0) {

perror("write");

fprintf(stderr, "Filesystem error writing file %s,"

" cancelling current transfer\n", note->filename);

pico_tftp_abort(session, TFTP_ERR_EACC, "Error on write");

del_note(note);

} else {

if (len != PICO_TFTP_PAYLOAD_SIZE) {

printf("TFTP: file %s (%" PRId32

" bytes) RX transfer complete!\n",

note->filename, note->filesize);

close(note->fd);

del_note(note);

}

}

if (!clipboard)

pico_timer_add(3000, deferred_exit, NULL);

return len;

76

}

3.13.12 pico tftp close server

Description

This function is used to shutdown the TFTP server.

Function prototype

int pico_tftp_close_server(void);

Return value

This function returns 0 if succeeds or -1 in case of errors (pico err is set accordingly).

Example

ret = pico_tftp_close_server();

if (ret)

printf(stderr, "Failure shutting down the server\n");

3.13.13 pico tftp app setup

Description

Obtain a session handler to use for the next file transfer with a remote location in application
driven mode.

Function prototype

struct pico_tftp_session * pico_tftp_app_setup(union pico_address *a,

uint16_t port, uint16_t family, int *synchro);

Parameters

• a - The address of the peer to be contacted. In case of a solicited transfer, it must match
the address where the request came from.

• port - The port on the remote peer.
• family - The chosen socket family. Accepted values are PICO PROTO IPV4 for IPv4 and
PICO PROTO IPV6 for IPv6.

• synchro - Variable to handle the synchronization.

Return value

In case of success a session handler is returned. In case of failure, NULL is returned and pico err
is set accordingly.

77

Example

session = pico_tftp_app_setup(&server_address, short_be(PICO_TFTP_PORT),

PICO_PROTO_IPV4, &synchro);

if (!session) {

fprintf(stderr, "Error in pico_tftp_app_setup\n");

exit(1);

}

3.13.14 pico tftp app start rx

Description

Application driven function used to request to read a remote file. The transfer will happen one
block at a time using pico tftp app get.

Function prototype

int pico_tftp_app_start_rx(struct pico_tftp_session *session,

const char *filename);

Parameters

• session - Session handler to use for the file transfer.
• filename - The name of the file to be received.

Return value

This function returns 0 if succeeds or -1 in case of errors (pico err is set accordingly).

Example

printf("Start receiving file %s with options set to %d\n", filename, options);

if (options) {

ret = pico_tftp_set_option(session, PICO_TFTP_OPTION_FILE, 0);

if (ret) {

fprintf(stderr, "Error in pico_tftp_set_option\n");

exit(1);

}

}

ret = pico_tftp_app_start_rx(session, filename);

if (ret) {

fprintf(stderr, "Error in pico_tftp_app_start_rx\n");

exit(1);

}

78

3.13.15 pico tftp app start tx

Description

Application driven function used to request to write a remote file. The transfer will happen one
block at a time using pico tftp app put.

Function prototype

int pico_tftp_app_start_tx(struct pico_tftp_session *session,

const char *filename);

Parameters

• session - Session handler to use for the file transfer.
• filename - The name of the file to be sent.

Return value

This function returns 0 if succeeds or -1 in case of errors (pico err is set accordingly).

Example

printf("Start sending file %s with options set to %d\n", filename, options);

if (options) {

ret = get_filesize(filename);

if (ret < 0) {

fprintf(stderr, "Error in get_filesize\n");

exit(1);

}

ret = pico_tftp_set_option(session, PICO_TFTP_OPTION_FILE, ret);

if (ret) {

fprintf(stderr, "Error in pico_tftp_set_option\n");

exit(1);

}

}

ret = pico_tftp_app_start_tx(session, filename);

if (ret) {

fprintf(stderr, "Error in pico_tftp_app_start_rx\n");

exit(1);

}

79

3.13.16 pico tftp get

Description

Read the next block during an active TFTP transfer. The len field must always be equal to
PICO TFTP PAYLOAD SIZE. Once the file has been sent or after an error the session is no
more valid.

Function prototype

int32_t pico_tftp_get(struct pico_tftp_session *session,

uint8_t *data, int32_t len);

Parameters

• session - Session handler to use for the file transfer.
• data - Buffer where to store the acquired payload.
• len - Length of the buffer size to receive; it is equal to the fixed chunk size.

Return value

This function returns the number of received bytes of payload (0 included) if succeeds. In case
of error a negative number is returned.

Errors

• -1 At least one of the passed arguments are invalid.
• -PICO TFTP EV ERR PEER Remote failure.
• -PICO TFTP EV ERR LOCAL Local failure.

Example

for(;left; left -= countdown) {

usleep(2000); //PICO_IDLE();

pico_stack_tick();

if (countdown)

continue;

if (*synchro) {

len = pico_tftp_get(session, buf, PICO_TFTP_PAYLOAD_SIZE);

if (len < 0) {

fprintf(stderr, "Failure in pico_tftp_get\n");

close(fd);

countdown = 1;

continue;

}

ret = write(fd, buf, len);

if (ret < 0) {

fprintf(stderr, "Error in write\n");

pico_tftp_abort(session, TFTP_ERR_EXCEEDED, "File write error");

close(fd);

80

countdown = 1;

continue;

}

printf("Written %" PRId32 " bytes to file (synchro=%d)\n",

len, *synchro);

if (len != PICO_TFTP_PAYLOAD_SIZE) {

close(fd);

printf("Transfer complete!\n");

countdown = 1;

}

}

}

3.13.17 pico tftp put

Description

Send the next block during an active TFTP transfer. The len field, with the exception of last
invocation must always be equal to PICO TFTP PAYLOAD SIZE. Once the file has been sent
or after an error the session is no more valid.

Function prototype

int32_t pico_tftp_put(struct pico_tftp_session *session,

uint8_t *data, int32_t len);

Parameters

• session - Session handler to use for the file transfer.
• data - Pointer to the data to be transmitted.
• len - Length of the buffer size to transmit; last chunk must be < of the maximum buffer

size (0 if file size was a multiple of maximum buffer size).

Return value

This function returns the number of transmitted payload data (len) if succeeds. In case of error
a negative number is returned.

Errors

• -1 At least one of the passed arguments are invalid.
• -PICO TFTP EV ERR PEER Remote failure.
• -PICO TFTP EV ERR LOCAL Local failure.

Example

for(;left; left -= countdown) {

usleep(2000); //PICO_IDLE();

pico_stack_tick();

81

if (countdown)

continue;

if (*synchro) {

ret = read(fd, buf, PICO_TFTP_PAYLOAD_SIZE);

if (ret < 0) {

fprintf(stderr, "Error in read\n");

pico_tftp_abort(session, TFTP_ERR_EACC, "File read error");

close(fd);

countdown = 1;

continue;

}

printf("Read %" PRId32 " bytes from file (synchro=%d)\n",

len, *synchro);

len = pico_tftp_put(session, buf, ret);

if (len < 0) {

fprintf(stderr, "Failure in pico_tftp_put\n");

close(fd);

countdown = 1;

continue;

}

if (len != PICO_TFTP_PAYLOAD_SIZE) {

close(fd);

printf("Transfer complete!\n");

countdown = 1;

}

}

}

3.14 Point-to-Point Protocol (PPP)

PPP consists in a family of data-link protocols, providing link control, configuration and au-
thentication over a point-to-point link. In a connected embedded system, it is often used to
access dial-up modems over serial lines.

This module supports GSM modem configuration by implementing part of ETSI TS 127 007.

From the picoTCP perspective, each PPP capable device may be abstracted into its own instance
that can be created using pico ppp create.

Any GSM/GPRS/3G/HSDPA module, exporting a non-blocking serial interface, such as SPI
or UART, can be connected to the ppp device abstraction, using pico ppp set serial read,
pico ppp set serial write, pico ppp set serial set speed.

Once the physical interface is attached, the access to the remote access point gateway can be
configured using pico ppp set apn, pico ppp set username and pico ppp set password.

When the interface is configured, the connection may be established using pico ppp connect.
Even if the peer disconnects, the connection will be brought up again automatically afterwords.

82

To interrupt the connection and stop the automatic reconnection, pico ppp disconnect can
be called.

3.14.1 pico ppp create

Description

This function will create a new device association to be used with the ppp driver. The driver
must then afterwards be associated with lower-level serial functions in order to be used.

Function prototype

struct pico device *pico ppp create(void);

Return value

A new pico device is allocated and returned if the device is successfully created.

Example

ppp = pico_ppp_create();

3.14.2 pico ppp set serial read

Description

This function will associate the read function from an external source (e.g. a UART device
API) to the read functionality of the PPP driver. Setting up a proper read/write interface is
necessary for the PPP driver to work properly.

The function associated with the read must be non-blocking, no matter the execution model of
the system.

Function prototype

int pico ppp set serial read(struct pico device *dev, int (*sread)(struct pico device

*, void *, int))

Parameters

• dev - a pointer to a struct pico device specifying the target interface.
• sread - a pointer to a function of type int fn(struct pico device *, void *, int)

specifying the target serial read function. The function prototype will be called with the
device pointer, a buffer to be filled with serial data, and the maximum lenght of the usable
buffer.

Return value

0 returned if the serial read function is successfully associated.

Example

static int my_serial_read(struct pico_device *dev, void *buf, int len)

{

83

return nonblock_uart_read(buf, len);

}

pico_ppp_set_serial_read(ppp, my_serial_read);

3.14.3 pico ppp set serial write

Description

This function will associate the write function from an external source (e.g. a UART device
API) to the write functionality of the PPP driver. Setting up a proper read/write interface is
necessary for the PPP driver to work properly.

The function associated with the write must be non-blocking, no matter the execution model
of the system.

Function prototype

int pico ppp set serial write(struct pico device *dev, int (*swrite)(struct pico device

*, const void *, int))

Parameters

• dev - a pointer to a struct pico device specifying the target interface.
• swrite - a pointer to a function of type int fn(struct pico device *, const void

*, int) specifying the target serial write function. The function prototype will be called
with the device pointer, a buffer to be filled with serial data, and the maximum lenght of
the usable buffer.

Return value

0 returned if the serial write function is successfully associated.

Example

static int my_serial_write(struct pico_device *dev, const void *buf, int len)

{

return nonblock_uart_write(buf, len);

}

pico_ppp_set_serial_write(ppp, my_serial_write);

3.14.4 pico ppp set serial set speed

Description

This function will associate the set speed function from an external source (e.g. a UART device
API) to dynamically set the UART speed for the interface with the PPP driver.

Calling this function is not mandatory for the PPP UART interface to work.

Function prototype

int pico ppp set serial set speed(struct pico device *dev, int (*sset speed)(struct

pico device *, uint32 t))

84

Parameters

• dev - a pointer to a struct pico device specifying the target interface.
• sset speed - a pointer to a function of type int fn(struct pico device *, uint32 t

speed) specifying the target serial set speed function. The function prototype will be
called with the device pointer and the speed at which the UART should be configured by
PPP.

Return value

0 returned if the serial set speed function is successfully associated.

Example

static int my_serial_set_speed(struct pico_device *dev, uint32_t speed)

{

return uart_set_speed(speed);

}

pico_ppp_set_serial_set_speed(ppp, my_serial_set_speed);

3.14.5 pico ppp set apn

Description

This function allows the configuration of the APN name in order for PPP to correctly establish
the connection to the remote Access Point gateway.

Function prototype

int pico ppp set apn(struct pico device *dev, const char *apn);

Parameters

• dev - a pointer to a struct pico device specifying the target interface.
• apn - a string containing the Access Point Name.

Return value

0 returned if the APN is correctly configured.

Example

ret = pico_ppp_set_apn(dev, "internet.apn.name");

3.14.6 pico ppp set username

Description

This function will set an username for the PAP/CHAP authentication mechanism.

Function prototype

int pico ppp set username(struct pico device *dev, const char *username);

85

Parameters

• dev - a pointer to a struct pico device specifying the target interface.
• username - a string specifying the desired username.

Return value

0 returned if the username is successfully configured.

Example

ret = pico_ppp_set_username(dev, "john");

3.14.7 pico ppp set password

Description

This function will set the password for the PAP/CHAP authentication mechanism.

Function prototype

int pico ppp set password(struct pico device *dev, const char *password);

Parameters

• dev - a pointer to a struct pico device specifying the target interface.
• username - a string specifying the desired password.

Return value

0 returned if the password is successfully configured.

Example

ret = pico_ppp_set_password(dev, "secret");

3.14.8 pico ppp connect

Description

This function will enable the PPP connection, by triggering the startup of the handshakes
required at all levels. If the connection is dropped, the system will try to reconnect by restarting
the handshakes, until pico ppp disconnect is finally called.

Function prototype

int pico ppp connect(struct pico device *ppp)

Parameters

• dev - a pointer to a struct pico device specifying the target interface.

Return value

0 returned if the device is successfully connecting.

86

Example

ret = pico_ppp_connect(dev);

3.14.9 pico ppp disconnect

Description

This function will disable the PPP connection, by triggering a disconnection, and by disabling
the reconnect feature, if enabled.

Function prototype

int pico ppp disconnect(struct pico device *ppp)

Parameters

• dev - a pointer to a struct pico device specifying the target interface.

Return value

0 returned if the device is successfully put in disconnected state.

Example

ret = pico_ppp_disconnect(dev);

3.15 Optimized Link State Routing (OLSR) Module

OLSR is a proactive routing protocol for mobile ad-hoc networks (MANETs). It is well suited
to large and dense mobile networks, as the optimization achieved using the MPRs works well
in this context. The larger and more dense a network, the more optimization can be achieved
as compared to the classic link state algorithm. OLSR uses hop-by-hop routing, i.e., each node
uses its local information to route packets.

OLSR is well suited for networks, where the traffic is random and sporadic between a larger
set of nodes rather than being almost exclusively between a small specific set of nodes. As a
proactive protocol, OLSR is also suitable for scenarios where the communicating pairs change
over time: no additional control traffic is generated in this situation since routes are maintained
for all known destinations at all times. – cfr. RFC3626

3.15.1 pico olsr add

Description

This function will add the target device to the OLSR mechanism on the machine, meaning
that it will be possible to advertise and collect routing information using Optimized Link State
Routing protocol, as described in RFC3626, through the target device.

In order to use multiple devices in the OLSR system, this function needs to be called multiple
times, once per device.

87

Function prototype

pico olsr add(struct pico device *dev);

Parameters

• dev - a pointer to a struct pico device specifying the target interface.

Return value

0 returned if the device is successfully added.

Example

ret = pico_olsr_add(dev);

3.16 Ad-hoc On-Demand Distance Vector Routing (AODV)

AODV is a reactive routing protocol for mobile ad-hoc networks (MANETs). Its best fit are
especially ultra-low power radio networks, or those RF topologies where sporadic traffic between
a small specific set of nodes is foreseen. In order to create a route, one node must explicitly start
the communication towards a remote node, and the route is created ad-hoc upon the demand
for a specific network path. AODV guarantees that the traffic generated by each node in order
to create and maintain routes is kept as low as possible.

3.16.1 pico aodv add

Description

This function will add the target device to the AODV mechanism on the machine, meaning
that it will be possible to advertise and collect routing information using Ad-hoc On-Demand
Distance Vector Routing, as described in RFC3561, through the target device.

In order to use multiple devices in the AODV system, this function needs to be called multiple
times, once per device.

Function prototype

pico aodv add(struct pico device *dev);

Parameters

• dev - a pointer to a struct pico device specifying the target interface.

Return value

0 returned if the device is successfully added.

Example

ret = pico_aodv_add(dev);

88

4. Examples

The following sections will give code examples of picoTCP. It is assumed that all examples
include the appropriate header files and a main routine that calls the app x functions to initialize
the example.

The most common header files are:

#include "pico_stack.h"

#include "pico_config.h"

#include "pico_dev_vde.h"

#include "pico_ipv4.h"

#include "pico_socket.h"

#include "pico_dev_tun.h"

#include "pico_nat.h"

#include "pico_icmp4.h"

#include "pico_dns_client.h"

#include "pico_dev_loop.h"

#include "pico_dhcp_client.h"

#include "pico_dhcp_server.h"

#include "pico_ipfilter.h"

4.1 Ping example

#define NUM_PING 10

/* callback function for receiving ping reply */

void cb_ping(struct pico_icmp4_stats *s)

{

char host[30];

int time_sec = 0;

int time_msec = 0;

/* convert ip address from icmp4_stats structure to string */

pico_ipv4_to_string(host, s->dst.addr);

/* get time information from icmp4_stats structure */

time_sec = s->time / 1000;

time_msec = s->time % 1000;

if (s->err == PICO_PING_ERR_REPLIED) {

/* print info if no error reported in icmp4_stats structure */

dbg("%lu bytes from %s: icmp_req=%lu ttl=%lu time=%lu ms\n", \

s->size, host, s->seq, s->ttl, s->time);

if (s->seq >= NUM_PING)

exit(0);

89

} else {

/* else, print error info */

dbg("PING %lu to %s: Error %d\n", s->seq, host, s->err);

exit(1);

}

}

/* initialize the ping command */

void app_ping(char *dest)

{

pico_icmp4_ping(dest, NUM_PING, 1000, 5000, 48, cb_ping);

}

4.2 UDP echo socket example

struct pico_ip4 inaddr_any = { };

/* callback for UDP echo socket events */

void cb_udpecho(uint16_t ev, struct pico_socket *s)

{

char recvbuf[1400];

int read = 0;

uint32_t peer;

uint16_t port;

/* process read event, data available */

if (ev == PICO_SOCK_EV_RD) {

/* while data available in socket buffer, echo data to peer */

do {

read = pico_socket_recvfrom(s, recvbuf, 1400, &peer, &port);

if (read > 0)

pico_socket_sendto(s, recvbuf, read, &peer, port);

} while(read > 0);

}

/* process error event, socket error occured */

if (ev == PICO_SOCK_EV_ERR) {

printf("Socket Error received. Bailing out.\n");

exit(1);

}

printf("Received data from %08X:%u\n", peer, port);

}

/* initialize the UDP echo socket */

void app_udpecho(uint16_t source_port)

{

struct pico_socket *s;

90

uint16_t port_be = 0;

/* set the source port for the socket */

if (source_port == 0)

port_be = short_be(5555);

else

port_be = short_be(source_port);

/* open a UDP socket with the appropriate callback */

s = pico_socket_open(PICO_PROTO_IPV4, PICO_PROTO_UDP, &cb_udpecho);

if (!s)

exit(1);

/* bind the socket to port_be */

if (pico_socket_bind(s, &inaddr_any, &port_be) != 0)

exit(1);

}

4.3 TCP echo socket example

#define BSIZE 1460

/* callback for TCP echo socket events */

void cb_tcpecho(uint16_t ev, struct pico_socket *s)

{

char recvbuf[BSIZE];

int read = 0, written = 0;

int pos = 0, len = 0;

struct pico_socket *sock_a;

struct pico_ip4 orig;

uint16_t port;

char peer[30];

/* process read event, data available */

if (ev & PICO_SOCK_EV_RD) {

do {

read = pico_socket_read(s, recvbuf + len, BSIZE - len);

if (read > 0)

len += read;

} while(read > 0);

}

/* process connect event, syn received */

if (ev & PICO_SOCK_EV_CONN) {

/* accept new connection request */

sock_a = pico_socket_accept(s, &orig, &port);

/* convert peer IP to string */

91

pico_ipv4_to_string(peer, orig.addr);

/* print info */

printf("Connection established with %s:%d.\n", peer, short_be(port));

}

/* process fin event, receiving socket closed */

if (ev & PICO_SOCK_EV_FIN) {

printf("Socket closed. Exit normally. \n");

}

/* process error event, socket error occured */

if (ev & PICO_SOCK_EV_ERR) {

printf("Socket Error received: %s. Bailing out.\n", strerror(pico_err));

exit(1);

}

/* process close event, receiving socket received close from peer */

if (ev & PICO_SOCK_EV_CLOSE) {

printf("Socket received close from peer.\n");

/* shutdown write side of socket */

pico_socket_shutdown(s, PICO_SHUT_WR);

}

/* if data read, echo back */

if (len > pos) {

do {

/* echo data back to peer */

written = pico_socket_write(s, recvbuf + pos, len - pos);

if (written > 0) {

pos += written;

if (pos >= len) {

pos = 0;

len = 0;

written = 0;

}

} else {

printf("SOCKET> ECHO write failed, dropped %d bytes\n",(len-pos));

}

} while(written > 0);

}

}

/* initialize the TCP echo socket */

void app_tcpecho(uint16_t source_port)

{

struct pico_socket *s;

uint16_t port_be = 0;

int backlog = 40; /* max number of accepting connections */

92

int ret;

/* set the source port for the socket */

if (source_port == 0)

port_be = short_be(5555);

else

port_be = short_be(source_port);

/* open a TCP socket with the appropriate callback */

s = pico_socket_open(PICO_PROTO_IPV4, PICO_PROTO_TCP, &cb_tcpecho);

if (!s)

exit(1);

/* bind the socket to port_be */

ret = pico_socket_bind(s, &inaddr_any, &port_be);

if (ret != 0)

exit(1);

/* start listening on socket */

ret = pico_socket_listen(s, backlog);

if (ret != 0)

exit(1);

}

4.4 NAT setup example

/* initialize NAT functionality and add port forward rule */

void app_nat(char *dest)

{

char *dest = NULL;

struct pico_ip4 ipdst, pub_addr, priv_addr;

struct pico_ipv4_link *link;

/* convert IP address of link where to enable NAT */

pico_string_to_ipv4(dest, &ipdst.addr);

/* get link pointer */

link = pico_ipv4_link_get(&ipdst);

if (!link) {

printf("destination not found\n");

exit(1);

}

/* enable NAT on link */

pico_ipv4_nat_enable(link);

/* add port forward rule */

pico_string_to_ipv4("10.50.0.10", &pub_addr.addr);

93

pico_string_to_ipv4("10.40.0.08", &priv_addr.addr);

pico_ipv4_port_forward(pub_addr, short_be(5555), priv_addr, short_be(6667),

PICO_PROTO_UDP, PICO_IPV4_FORWARD_ADD);

printf("nat started\n");

}

4.5 DNS example

/* identifier struct */

struct dns_identifier {

uint8_t id;

/* ... */

};

/* callback function of URL translation */

void cb_getaddr(char *ip, void *arg)

{

struct dns_identifier *id_getaddr = (struct dns_identifier *) arg;

/* NULL indicates an error condition */

if (!ip) {

printf("DNS error occured: %s\n", strerror(pico_err));

return;

}

printf("DNS translation to ip %s (id %u)\n", ip, id_getaddr ? id_getaddr->id : 0);

/* important: free the received pointers! */

PICO_FREE(ip);

if (id_getaddr)

PICO_FREE(id_getaddr);

}

/* callback function of IP translation */

void cb_getname(char *url)

{

struct dns_identifier *id_getname = (struct dns_identifier *) arg;

/* NULL indicates an error condition */

if (!url) {

printf("DNS error occured: %s\n", strerror(pico_err));

return;

}

printf("DNS translation to url %s (id %u)\n", url, id_getname ? id_getname->id : 0);

/* important: free the received pointers! */

PICO_FREE(url);

if (id_getname)

94

PICO_FREE(id_getname);

}

/* initialize the dns */

void app_dns(char *url, char *ip)

{

struct pico_ip4 nameserver = { };

struct dns_identifier *id_getaddr = NULL, *id_getname = NULL;

/* optional: add custom dns nameserver */

pico_string_to_ipv4("8.8.4.4", &nameserver.addr);

pico_dns_client_nameserver(&nameserver, PICO_DNS_NS_ADD);

/* request translation of URL f.e. www.google.com */

id_getaddr = PICO_ZALLOC(sizeof(struct dns_identifier));

id_getaddr->id = 1;

pico_dns_client_getaddr(url, &cb_getaddr, id_getaddr);

/* request translation of IP f.e. 8.8.8.8 */

id_getname = PICO_ZALLOC(sizeof(struct dns_identifier));

id_getname->id = 2;

pico_dns_client_getname(ip, &cb_getname, id_getname);

}

4.6 DHCP client example

int main(void)

{

uint8_t mac_eth0[6] = {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc};

uint8_t mac_eth1[6] = {0xcb, 0xa9, 0x87, 0x65, 0x43, 0x21};

char s_addr_eth0[16] = { }, s_addr_eth1[16] = { };

void *identifier_eth0 = NULL, *identifier_eth1 = NULL;

uint32_t xid_eth0 = 0, xid_eth1 = 0;

struct pico_device *eth0 = NULL, *eth1 = NULL;

struct pico_ip4 addr_eth0 = { }, addr_eth1 = { };

/* see section 2.5 Network devices integration */

eth0 = pico_device_create("eth0", mac_eth0);

eth1 = pico_device_create("eth1", mac_eth1);

pico_stack_init();

if (pico_dhcp_initiate_negotiation(eth0, &cb_dhcpclient, &xid_eth0) < 0) {

printf("DHCPC: error initiating negotiation: %s\n", strerror(pico_err));

exit(255);

}

if (pico_dhcp_initiate_negotiation(eth1, &cb_dhcpclient, &xid_eth1) < 0) {

printf("DHCPC: error initiating negotiation: %s\n", strerror(pico_err));

95

exit(255);

}

for(;;) {

pico_stack_tick();

/* did both devices get a successful lease? */

if (xid_eth0 && xid_eth1)

break;

PICO_IDLE();

}

identifier_eth0 = pico_dhcp_get_identifier(xid_eth0);

addr_eth0 = pico_dhcp_get_address(identifier_eth0);

pico_ipv4_to_string(s_addr_eth0, addr_eth0.addr);

printf("Device %s got leased IP %s\n", eth0->name, s_addr_eth0);

identifier_eth1 = pico_dhcp_get_identifier(xid_eth1);

addr_eth1 = pico_dhcp_get_address(identifier_eth1);

pico_ipv4_to_string(s_addr_eth1, addr_eth1.addr);

printf("Device %s got leased IP %s\n", eth1->name, s_addr_eth1);

return 0;

}

4.7 HTTP Client example

static char *url_filename = NULL;

static int http_save_file(void *data, int len)

{

int fd = open(url_filename, O_WRONLY |O_CREAT | O_TRUNC, 0660);

int w, e;

if (fd < 0)

return fd;

printf("Saving data to : %s\n",url_filename);

w = write(fd, data, len);

e = errno;

close(fd);

errno = e;

return w;

}

void wget_callback(uint16_t ev, uint16_t conn)

{

char data[1024 * 1024]; // MAX: 1M

static int _length = 0;

if(ev & EV_HTTP_CON)

96

{

printf(">>> Connected to the client \n");

/* you can let the client use the default generated header

or you can create you own string header (compatible with HTTP/1.x */

pico_http_client_sendHeader(conn,NULL,HTTP_HEADER_DEFAULT);

}

if(ev & EV_HTTP_REQ)

{

struct pico_http_header * header = pico_http_client_readHeader(conn);

printf("Received header from server...\n");

printf("Server response : %d\n",header->responseCode);

printf("Location : %s\n",header->location);

printf("Transfer-Encoding : %d\n",header->transferCoding);

printf("Size/Chunk : %d\n",header->contentLengthOrChunk);

}

if(ev & EV_HTTP_BODY)

{

int len;

printf("Reading data...\n");

/*

Data is passed to you without you worrying if the transfer is

chunked or the content-length was specified.

*/

while((len = pico_http_client_readData(conn,data + _length,1024)))

{

_length += len;

}

}

if(ev & EV_HTTP_CLOSE)

{

struct pico_http_header * header = pico_http_client_readHeader(conn);

int len;

printf("Connection was closed...\n");

printf("Reading remaining data, if any ...\n");

while((len = pico_http_client_readData(conn,data,1000u)) && len > 0)

{

_length += len;

}

printf("Read a total data of : %d bytes \n",_length);

if(header->transferCoding == HTTP_TRANSFER_CHUNKED)

{

if(header->contentLengthOrChunk)

{

printf("Last chunk data not fully read !\n");

97

exit(1);

}

else

{

printf("Transfer ended with a zero chunk! OK !\n");

}

} else

{

if(header->contentLengthOrChunk == _length)

{

printf("Received the full : %d \n",_length);

}

else

{

printf("Received %d , waiting for %d\n",_length, header->contentLengthOrChunk);

exit(1);

}

}

if (!url_filename) {

printf("Failed to get local filename\n");

exit(1);

}

if (http_save_file(data, _length) < _length) {

printf("Failed to save file: %s\n", strerror(errno));

exit(1);

}

pico_http_client_close(conn);

exit(0);

}

if(ev & EV_HTTP_ERROR)

{

printf("Connection error (probably dns failed : check the routing table), trying to close the client...\n");

pico_http_client_close(conn);

exit(1u);

}

if(ev & EV_HTTP_DNS)

{

printf("The DNS query was successful ... \n");

}

}

void app_wget(char *arg)

{

char * url;

cpy_arg(&url, arg);

98

if(!url)

{

fprintf(stderr, " wget expects the url to be received\n");

exit(1);

}

// when opening the http client it will internally parse the url passed

if(pico_http_client_open(url,wget_callback) < 0)

{

fprintf(stderr," error opening the url : %s, please check the format\n",url);

exit(1);

}

url_filename = basename(url);

}

4.8 HTTP Server example

#define SIZE 4*1024

void serverWakeup(uint16_t ev,uint16_t conn)

{

static FILE * f;

char buffer[SIZE];

if(ev & EV_HTTP_CON)

{

printf("New connection received....\n");

pico_http_server_accept();

}

if(ev & EV_HTTP_REQ) // new header received

{

int read;

char * resource;

printf("Header request was received...\n");

printf("> Resource : %s\n",pico_http_getResource(conn));

resource = pico_http_getResource(conn);

if(strcmp(resource,"/")==0 || strcmp(resource,"index.html") == 0 || strcmp(resource,"/index.html") == 0)

{

// Accepting request

printf("Accepted connection...\n");

pico_http_respond(conn,HTTP_RESOURCE_FOUND);

f = fopen("test/examples/index.html","r");

if(!f)

99

{

fprintf(stderr,"Unable to open the file /test/examples/index.html\n");

exit(1);

}

read = fread(buffer,1,SIZE,f);

pico_http_submitData(conn,buffer,read);

}

else

{ // reject

printf("Rejected connection...\n");

pico_http_respond(conn,HTTP_RESOURCE_NOT_FOUND);

}

}

if(ev & EV_HTTP_PROGRESS) // submitted data was sent

{

uint16_t sent, total;

pico_http_getProgress(conn,&sent,&total);

printf("Chunk statistics : %d/%d sent\n",sent,total);

}

if(ev & EV_HTTP_SENT) // submitted data was fully sent

{

int read;

read = fread(buffer,1,SIZE,f);

printf("Chunk was sent...\n");

if(read > 0)

{

printf("Sending another chunk...\n");

pico_http_submitData(conn,buffer,read);

}

else

{

printf("Last chunk !\n");

pico_http_submitData(conn,NULL,0);// send the final chunk

fclose(f);

}

}

if(ev & EV_HTTP_CLOSE)

{

printf("Close request...\n");

pico_http_close(conn);

}

if(ev & EV_HTTP_ERROR)

{

100

printf("Error on server...\n");

pico_http_close(conn);

}

}

/* simple server example that serves the index(.html) page */

void app_httpd(char *arg)

{

/* transfer encoding with this server is always chunked and you can

submit chunks to the client, without needing to specify the content-length of the

body response */

if(pico_http_server_start(0,serverWakeup) < 0)

{

fprintf(stderr,"Unable to start the server on port 80\n");

}

}

4.9 TFTP Client (application driven)

#include <stdio.h>

#include <sys/types.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <inttypes.h>

#include "pico_stack.h"

#include "pico_config.h"

#include "pico_ipv4.h"

#include "pico_icmp4.h"

#include "pico_socket.h"

#include "pico_stack.h"

#include "pico_device.h"

#include "pico_dev_vde.h"

#include "pico_tftp.h"

static struct pico_device *pico_dev;

int32_t get_filesize(const char *filename)

{

int ret;

struct stat buf;

ret = stat(filename, &buf);

if (ret)

return -1;

return buf.st_size;

}

void start_rx(struct pico_tftp_session *session, int *synchro,

const char *filename, int options)

101

{

int ret;

int fd;

int32_t len;

uint8_t buf[PICO_TFTP_PAYLOAD_SIZE];

int left = 1000;

int countdown = 0;

printf("Start receiving file %s with options set to %d\n", filename, options);

if (options) {

ret = pico_tftp_set_option(session, PICO_TFTP_OPTION_FILE, 0);

if (ret) {

fprintf(stderr, "Error in pico_tftp_set_option\n");

exit(1);

}

}

ret = pico_tftp_app_start_rx(session, filename);

if (ret) {

fprintf(stderr, "Error in pico_tftp_app_start_rx\n");

exit(1);

}

fd = open(filename, O_WRONLY | O_EXCL | O_CREAT, 0664);

if (!fd) {

fprintf(stderr, "Error in open\n");

countdown = 1;

}

for(;left; left -= countdown) {

usleep(2000); //PICO_IDLE();

pico_stack_tick();

if (countdown)

continue;

if (*synchro) {

len = pico_tftp_get(session, buf, PICO_TFTP_PAYLOAD_SIZE);

if (len < 0) {

fprintf(stderr, "Failure in pico_tftp_get\n");

close(fd);

countdown = 1;

continue;

}

ret = write(fd, buf, len);

if (ret < 0) {

fprintf(stderr, "Error in write\n");

pico_tftp_abort(session, TFTP_ERR_EXCEEDED, "File write error");

close(fd);

102

countdown = 1;

continue;

}

printf("Written %" PRId32 " bytes to file (synchro=%d)\n", len, *synchro);

if (len != PICO_TFTP_PAYLOAD_SIZE) {

close(fd);

printf("Transfer complete!\n");

countdown = 1;

}

}

}

}

void start_tx(struct pico_tftp_session *session, int *synchro,

const char *filename, int options)

{

int ret;

int fd;

int32_t len;

uint8_t buf[PICO_TFTP_PAYLOAD_SIZE];

int left = 1000;

int countdown = 0;

printf("Start sending file %s with options set to %d\n", filename, options);

if (options) {

ret = get_filesize(filename);

if (ret < 0) {

fprintf(stderr, "Error in get_filesize\n");

exit(1);

}

ret = pico_tftp_set_option(session, PICO_TFTP_OPTION_FILE, ret);

if (ret) {

fprintf(stderr, "Error in pico_tftp_set_option\n");

exit(1);

}

}

ret = pico_tftp_app_start_tx(session, filename);

if (ret) {

fprintf(stderr, "Error in pico_tftp_app_start_rx\n");

exit(1);

}

fd = open(filename, O_RDONLY, 0444);

if (!fd) {

fprintf(stderr, "Error in open\n");

103

pico_tftp_abort(session, TFTP_ERR_EACC, "Error opening file");

countdown = 1;

}

for(;left; left -= countdown) {

usleep(2000); //PICO_IDLE();

pico_stack_tick();

if (countdown)

continue;

if (*synchro) {

ret = read(fd, buf, PICO_TFTP_PAYLOAD_SIZE);

if (ret < 0) {

fprintf(stderr, "Error in read\n");

pico_tftp_abort(session, TFTP_ERR_EACC, "File read error");

close(fd);

countdown = 1;

continue;

}

printf("Read %" PRId32 " bytes from file (synchro=%d)\n", len, *synchro);

len = pico_tftp_put(session, buf, ret);

if (len < 0) {

fprintf(stderr, "Failure in pico_tftp_put\n");

close(fd);

countdown = 1;

continue;

}

if (len != PICO_TFTP_PAYLOAD_SIZE) {

close(fd);

printf("Transfer complete!\n");

countdown = 1;

}

}

}

}

void usage(const char *text)

{

fprintf(stderr, "%s\nArguments must be <filename> <mode>\n"

"<mode> can be:\n"

"\tg => GET request without options\n"

"\tG => GET request WITH options\n"

"\tp => PUT request without options\n"

"\tP => PUT request WITH options\n\n",

text);

exit(1);

}

104

int main(int argc, char** argv)

{

struct pico_ip4 my_ip;

union pico_address server_address;

struct pico_ip4 netmask;

struct pico_tftp_session *session;

int synchro;

int options = 0;

void (*operation)(struct pico_tftp_session *session, int *synchro,

const char *filename, int options);

unsigned char macaddr[6] = {

0, 0, 0, 0xa, 0xb, 0x0

};

uint16_t *macaddr_low = (uint16_t *) (macaddr + 2);

*macaddr_low = *macaddr_low ^ (uint16_t)((uint16_t)getpid() & (uint16_t)0xFFFFU);

macaddr[4] ^= (uint8_t)(getpid() >> 8);

macaddr[5] ^= (uint8_t) (getpid() & 0xFF);

pico_string_to_ipv4("10.40.0.10", &my_ip.addr);

pico_string_to_ipv4("255.255.255.0", &netmask.addr);

pico_string_to_ipv4("10.40.0.2", &server_address.ip4.addr);

if (argc != 3) {

usage("Invalid number or arguments");

}

switch (argv[2][0]) {

case ’G’:

options = 1;

case ’g’:

operation = start_rx;

break;

case ’P’:

options = 1;

case ’p’:

operation = start_tx;

break;

default:

usage("Invalid mode");

}

printf("%s start!\n", argv[0]);

pico_stack_init();

pico_dev = (struct pico_device *) pico_vde_create("/tmp/vde_switch",

"tap0", macaddr);

105

if(!pico_dev) {

fprintf(stderr, "Error creating pico device,"

" got enough privileges? Exiting...\n");

exit(1);

}

pico_ipv4_link_add(pico_dev, my_ip, netmask);

printf("Starting picoTCP loop\n");

session = pico_tftp_app_setup(&server_address, short_be(PICO_TFTP_PORT),

PICO_PROTO_IPV4, &synchro);

if (!session) {

fprintf(stderr, "Error in pico_tftp_app_setup\n");

exit(1);

}

printf("synchro %d\n", synchro);

operation(session, &synchro, argv[1], options);

}

106

A. Supported RFC’s

RFC Description

RFC 768 User Datagram Protocol (UDP)

RFC 791 Internet Protocol (IP)

RFC 792 Internet Control Message Protocol (ICMP)

RFC 793 Transmission Control Protocol (TCP)

RFC 816 Fault Isolation and Recovery

RFC 826 Address Resolution Protocol (ARP)

RFC 879 The TCP Maximum Segment Size and Related Topics

RFC 894 IP over Ethernet

RFC 896 Congestion Control in IP/TCP Internetworks

RFC 919 Broadcasting Internet Datagrams

RFC 922 Broadcasting Internet Datagrams in the Presence of Subnets

RFC 950 Internet Standard Subnetting Procedure

RFC 1009 Requirements for Internet Gateways

RFC 1034 Domain NamesConcepts and Facilities

RFC 1035 Domain NamesImplementation and Specification

RFC 1071 Computing the Internet Checksum

RFC 1112 Internet Group Management Protocol (IGMP)

RFC 1122 Requirements for Internet HostsCommunication Layers

RFC 1123 Requirements for Internet Hosts - Application and Support (1)

RFC 1191 Path MTU Discovery (1)

RFC 1323 TCP Extensions for High Performance

RFC 1332 The PPP Internet Protocol Control Protocol (IPCP)

RFC 1334 PPP Authentication Protocols

RFC 1337 TIME-WAIT Assassination Hazards in TCP

RFC 1350 The TFTP Protocol (Revision 2)

RFC 1534 Interoperation Between DHCP and BOOTP

RFC 1542 Clarifications and Extensions for the Bootstrap Protocol

RFC 1661 The Point-to-Point Protocol (PPP)

RFC 1662 PPP in HDLC-like Framing

RFC 1812 Requirements for IP Version 4 Routers

RFC 1878 Variable Length Subnet Table For IPv4

RFC 1886 DNS Extensions to Support IP Version 6 (1)

RFC 1994 PPP Challenge Handshake Authentication Protocol (CHAP)

RFC 2018 TCP Selective Acknowledgment Options

RFC 2131 Dynamic Host Configuration Protocol (DHCP)

RFC 2132 DHCP Options and BOOTP Vendor Extensions

RFC 2236 Internet Group Management Protocol, Version 2

RFC2347 TFTP Option Extension

RFC2349 TFTP Timeout Interval and Transfer Size Options

RFC 2460 Internet Protocol, Version 6 (IPv6) Specification

RFC 2581 TCP Congestion Control

107

RFC 2663 IP Network Address Translator (NAT) Terminology and Considerations

RFC 3042 Enhancing TCP’s Loss Recovery Using Limited Transmit

RFC 3315 Dynamic Host Configuration Protocol for IPv6 (DHCPv6) (1)

RFC 3376 Internet Group Management Protocol, Version 3

RFC 3517 A Conservative Selective Acknowledgment (SACK)-based Loss Recovery Algorithm for
TCP

RFC 3561 Ad-hoc On-Demand Distance Vector (AODV) Routing

RFC 3626 Optimized Link State Routing Protocol (OLSR)

RFC 3782 The NewReno Modification to TCP’s Fast Recovery Algorithm

RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses

RFC 4291 IP Version 6 Addressing Architecture

RFC 4443 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
Specification

RFC 4861 Neighbor Discovery for IP version 6 (IPv6)

RFC 4862 IPv6 Stateless Address Autoconfiguration

RFC 6691 TCP Options and Maximum Segment Size (MSS)

RFC 6762 Multicast DNS

RFC 6763 DNS-based Service Discovery

(1) Work in progress (2) Experimental

108

	Overview
	Usage and platform integration
	Requirements and Configuration
	Supported features
	Enabling modules
	Target requirements
	Network devices integration

	API Documentation
	IPv4 functions
	IPv6 functions
	Socket calls
	DHCP client
	DHCP server
	DNS client
	MDNS client
	DNS SD client
	SNTP client
	IGMP
	IP Filter
	SLAACV4 Module
	TFTP
	Point-to-Point Protocol (PPP)
	Optimized Link State Routing (OLSR) Module
	Ad-hoc On-Demand Distance Vector Routing (AODV)

	Examples
	Ping example
	UDP echo socket example
	TCP echo socket example
	NAT setup example
	DNS example
	DHCP client example
	HTTP Client example
	HTTP Server example
	TFTP Client (application driven)

	Supported RFC's

