
Learning Plane Geometry
Alvaro Briz Redon

2017-12-02

Introduction

Several authors defend that learning to program provides powerful strategies for thinking, designing and
solving problems. They talk about a two-phase process: first, the solution of the problem must be found, but
then this solution has to be rewritten in an alternative and precise way in a language that can be understood
by the computer.

In addition, programming provides certain opportunities to the user that few mental activities are in a
position to do. According to Seymour Papert (1928-2016), programming not only allows you to communicate
with a computer, but also to explore the way you think, to improve your logical reasoning and to increase
your capacity to correct your own mistakes.

There are multiple studies that confirm the benefits of programming on young students. For example, in the
early 1970s, it was concluded in a survey conducted by Wallace Feurzeig (1927-2013) that the use of LOGO
programming language could enhance the reading ability of some students, as well as increasing the interest
in learning and the level of self-confidence in many of them. Moreover, beyond all these aspects, learning
through the use of a programming language is usually more interesting and exciting for students. For this
reason, programming languages have been used as a tool to study Mathematics during the last decades, with
overall successful results.

Of course, there are some difficulties when teaching young students to program, but there are numerous
strategies to reduce them. Code simplification, problem subdivision or the creation by the tutors of structures
more simple than the ones existing in the programming language are some of them.

The package LearnGeom has been created with the hope of becoming useful to young students (and their
teachers) to learn (and teach) plane geometry while programming in R.

How to start? Basic functions of the package

The package provides several functions to work plane geometry, so it is expected that the user works on
a coordinate plane in order to manipulate different geometric objects and constructions. The function
CoordinatePlane allows the user to plot an empty coordinate plane with customizable limits for the X and Y
axis. Once a coordinate plane is started, it is time to create and plot on it different geometric objects.

The basic geometric objects that can be used in this version of the package are five: points, segments, arcs,
lines and polygons. All of them can be plotted in the coordinate plane with function Draw of the package,
and the appropriate use of the possibilities R offers could help to learn different mathematical concepts or
solve many kind of geometric problems.

Each of this five basic objects can be defined in a concrete way, but most of them also admit different
definitions. In the next lines it is mentioned the way these objects can be built, and what are the functions of
the package that allow their creation.

Point: A point can be created by simply defining a two-dimensional vector in R, e.g, c(0,0) for the usual
origin of coordinates. It should be remarked that this definition is also the one used for the creation of a
geometric vector to determine a direction in the plane. The coincidence of both definitions also exists if one
follows classical mathematical notations, so it shouldn’t be a source of confusion for the user.

Segment: There are two possibilities to define a segment in the plane. The first one, and the most basic
one, consists in the choice of two points of the plane, P and Q. The shortest path (in euclidean distance)

1

to connect these two points is, by definition, the segment that joins P with Q. There is another common
method to define a segment in the plane: from an starting point, choosing an angle and a length for the
segment. Both possibilities can be achieved with functions CreateSegmentPoints and CreateSegmentAngle of
the package.

Arc: An arc is simply a part of a circumference, or even the circumference itself. The function CreateArcAngle
allows the user to make an arc from a circumference with three parameters to choose: the center of the
circumference, the radius of the circumference and the two angles, from 0 to 360 degrees that determine the
part of the circumference to be plotted.

There is another possibility to create an arc in the plane: by connecting two points. The function CreateArc-
PointsDist makes easy to create an arc that joins two points in the plane. Of course, there are many (infinite)
arcs that pass through every two points in a plane. The parameter radius fixes a radius for the arc to be
built. Depending on the distance between the points, some values for this parameter will produce no arc.

Line: A line, as a segment, can be defined in two ways: from two points, or from a point and an angle.
Moreover, there is an standard combination of parameters to characterize every line in the plane: the slope and
the intercept. For this reason, the functions CreateLinePoints and CreateLineAngle return a two-dimensional
vector that contains the slope and intercept of the line, regardless of the way it is defined.

The use of the pair slope-intercept has a problem with a particular type of line: vertical lines, which are
parallel to Y axis. In the case the user defines a line of this kind, with any of the two available functions, the
returning object will be a string two-dimensional vector. It will include the word “Inf” for the first position
(infinite slope) and the constant X -value for the line in the second (as a character).

Polygon: A polygon is a closed figure made of a finite number of points (there must be 3 points at least).
The function CreatePolygon admits any finite number of points to produce a polygon. It is important to
introduce the points in a certain way to get the desired output, as the same combination of points can lead
to different figures. In order to make a polygon without self-intersections, the points must be passed to the
function following a clockwise (or counterclockwise) direction. If the user is interested in building a regular
polygon, function CreateRegularPolygon does all the job.

It is quite simple to create these objects with basic R functions, which belong to the graphics package, but the
intention was to create an homogeneous group of functions with a minimal number of parameters. Although
the pre-existing functions are simple to use for a programmer, they may contain too many parameters for
a novice user. Moreover, it is vital to define the functions with a little number of parameters in order to
highlight the different existing methods to define the same geometric object.

The following code contains examples of use of some of the functions included in the package.
library(LearnGeom)
x_min <- -5
x_max <- 5
y_min <- -5
y_max <- 5
CoordinatePlane(x_min, x_max, y_min, y_max)

NULL

P1 <- c(0,0)
P2 <- c(1,1)
P3 <- c(2,0)
Poly <- CreatePolygon(P1, P2, P3)
Draw(Poly, "blue")

NULL

Hepta <- CreateRegularPolygon(7, c(-3,0), 1)
Draw(Hepta, "orange")

2

NULL

L <- CreateLinePoints(c(-1,0), c(0,3))
Draw(L, "red")

NULL

S <- CreateSegmentAngle(c(0,-2), 60, 1)
Draw(S, "black")

NULL

A <- CreateArcAngles(c(3,-2), 1, 0, 180, "anticlock")
Draw(A, "black")

−4 −2 0 2 4

−
4

−
2

0
2

4

X

Y

NULL

3

Affine transformations

Affine functions are geometric transformations that preserve collinearity and ratios of distances. LearnGeom
contains functions to apply six different affine transformations: homothety, reflection, rotation, shear,
similarity and translation. Each of these transformations is associated with a 2 x 2 matrix, depending on
one or several specific parameters.

For example, Rotate function can be used to rotate a line, a polygon or a segment. The following code can be
used to rotate the triangle (in blue) that connects the points P1 = (0,0), P2 = (1,1) and P3 = (2,0). There
are shown two options for the fixed parameter: (-1,-1) and (2,0). These are the points that are left fixed by
the rotation in each of the executions, producing different triangles in the plane.
x_min <- -5
x_max <- 5
y_min <- -5
y_max <- 5
CoordinatePlane(x_min, x_max, y_min, y_max)

NULL

P1 <- c(0,0)
P2 <- c(1,1)
P3 <- c(2,0)
Poly <- CreatePolygon(P1, P2, P3)
Draw(Poly, "blue")

NULL

fixed <- c(-1,-1)
angle <- 30
Poly_rotated <- Rotate(Poly, fixed, angle)
Draw(Poly_rotated, "orange")

NULL

fixed <- c(2,0)
Poly_rotated <- Rotate(Poly, fixed, angle)
Draw(Poly_rotated, "transparent")

4

−4 −2 0 2 4

−
4

−
2

0
2

4

X

Y

NULL

Points of the triangle

As an example of combined use of the package functions and the R language capabilities, let’s see how we
can obtain some notable points of a triangle as the circumcenter or the incenter. The package also includes
functions Circumcenter and Incenter to find these points with only one instruction.

For example, the following blocks of code give as a result the circumcenter of a triangle, that is, the intersection
of the three perpendicular bisectors from each of the sides. First of all, it must be created the triangle.
P1 <- c(0,0)
P2 <- c(1,1)
P3 <- c(2,0)
Tri <- CreatePolygon(P1, P2, P3)

Then, the vectors that connect each pair of points are computed, and also their associated orthogonal vectors.

5

A <- Tri[1,]
B <- Tri[2,]
C <- Tri[3,]
AB <- B-A
AB_orto=c(-AB[2],AB[1])
AC <- C-A
AC_orto=c(-AC[2],AC[1])
BC <- C-B
BC_orto=c(-BC[2],BC[1])

The middle point of each of the sides of the triangle is obtained with function MidPoint.
AB_mid <- MidPoint(A,B)
AC_mid <- MidPoint(A,C)
BC_mid <- MidPoint(B,C)

To create the bisector lines three auxiliar points are computed.
AB1 <- AB_mid+AB_orto
AC1 <- AC_mid+AC_orto
BC1 <- BC_mid+BC_orto

This leads to the creation of the three bisector lines, which intersect in a point which is called the circumcenter.
L1 <- CreateLinePoints(AB_mid,AB1)
L2 <- CreateLinePoints(AC_mid,AC1)
L3 <- CreateLinePoints(BC_mid,BC1)
I <- IntersectLines(L1,L2)

This final block of code draws all the important geometric objects involved in the obtention of the circumcenter
(and the circumcenter itself).
x_min <- -6
x_max <- 6
y_min <- -6
y_max <- 6
CoordinatePlane(x_min, x_max, y_min, y_max)

NULL

P1 <- c(0,0)
P2 <- c(1,1)
P3 <- c(2,0)
Tri <- CreatePolygon(P1, P2, P3)
Draw(Tri, "blue")

NULL

Draw(L1, "red")

NULL

Draw(L2, "red")

NULL

Draw(L3, "red")

NULL

6

Draw(I, "red")

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

X

Y

NULL

As it can be observed in the code, several functions of the package make it easy to obtain some of the partial
results, but it is also necessary to create several vectors and to know about orthogonality and operations
between vectors and points to get the correct point at the end.

Tessellations

A tessellation, also known as a tiling, is a pattern that is made by repeating a basic geometric figure, or
combination of figures, along a plane. Tessellations appear sometimes in nature and are often present in
architectural constructions.

For example, beehives, the perfect structures created by bees to produce their honey, can be considered as a
tessellation made of regular hexagons. With the help of the function Tessellation is quite simple to generate

7

a pattern that reminds a beehive, like the one in the next figure. The following code could be an starting
point. The creation of a loop would allow the extension of the pattern to a wider region of the plane.
Creation of the starting hexagon, Hexa0
x_min <- -5; x_max <- 5; y_min <- -5; y_max <- 5
CoordinatePlane(x_min, x_max, y_min, y_max)

NULL

Hexa0 <- CreateRegularPolygon(6, c(-3,0), 1)
C=CenterPolygon(Hexa0)
Draw(Hexa0, "gold", label = T)

NULL

Computation of the distance from the right extreme of the hexagon
to its central axis
d <- DistancePoints(Hexa0[1,], c(-3,Hexa0[1,2]))
separation <- 2*d
Tessellation(list(Hexa0), "gold", c(1,0), separation, 4)
mid1 <- MidPoint(Hexa0[1,],Hexa0[6,])
mid2 <- MidPoint(Hexa0[2,],Hexa0[3,])
v1 <- mid1-CenterPolygon(Hexa0)
v2 <- mid2-CenterPolygon(Hexa0)
Hexa1 <- Translate(Hexa0,2*v1)
Hexa2 <- Translate(Hexa0,2*v2)
Draw(Hexa1,"gold")

NULL

Tessellation(list(Hexa1), "gold", c(1,0), separation, 3)
Draw(Hexa2,"gold")

NULL

Tessellation(list(Hexa2), "gold", c(1,0), separation, 3)
Drawing again the starting polygon to visualize the labels at its
vertex
Draw(Hexa0, "gold", label = T)

8

−4 −2 0 2 4

−
4

−
2

0
2

4

X

Y

1

2
3

4

5
6

1

2
3

4

5
6

NULL

To achieve the desired pattern it is very important to set the separation parameter of the function correctly.
Otherwise, the resulting pattern could contain some overlaps, which are uncommon in the creation of
tessellations.

However, one could minimize the code to get the hexagons Hexa1 and Hexa2 by using the function
ReflectedPolygon. It is easy to notice that these two hexagons must be symmetric to Hexa0 about the two
lines that connect the points 1 and 6, and 2 and 3. This would be the code in the case of taking advantage of
this circumstance.
L1 <- CreateLinePoints(Hexa1[1,],Hexa1[6,])
L2 <- CreateLinePoints(Hexa1[2,],Hexa1[3,])
Hexa1 <- ReflectedPolygon(Hexa1,L1)
Hexa2 <- ReflectedPolygon(Hexa1,L2)

The two options to create Hexa1 and Hexa2 seem enough to show that the use of this learning approach
could be beneficial to improve, simultaneously, geometric thinking and programming skills.

9

Recursive programming

Recursive programming is one of the most efficient strategies to find the solution of some problems. However,
it is also a difficult task for novice programmers. For quite advanced students, recursive programming could be
treated to build a well-known mathematical structure: a fractal, a concept introduced by Benoit Mandelbrot
(1924-2010). Fractals are geometric objects which satisfy the property of self-similarity, which basically means
that each of their parts satisfy the same properties and internal relationships as the complete object does.

As an illustration, this definition can be easily intuited with the help of one of the most famous fractals: the
Sierpinski triangle.

The following code uses function Sierpinski of the package to build the first iteration of the triangle and the
three first iterations. It can be appreciated how the second figure contains nine little copies of the object
represented at the first iteration.
x_min <- -6
x_max <- 6
y_min <- -6
y_max <- 6
CoordinatePlane(x_min, x_max, y_min, y_max)

NULL

n <- 3; C <- c(0,0); l <- 5
Tri <- CreateRegularPolygon(n, C, l)
it <- 1
Sierpinski(Tri, it)

10

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

X

Y

CoordinatePlane(x_min, x_max, y_min, y_max)

NULL

it <- 3
Sierpinski(Tri, it)

11

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

X

Y

Of course, one can attempt to construct the Sierpinski triangle by programming recursively with the aid of
some of the function of the package. Here it is simply shown the output that produces function Sierpinski.

Another very important fractal is the one known as Koch’s snowflake. The package contains a function called
FractalSegment that is able to produce this fractal and much more of the same nature. The following code
presents to possibilities of use of this function. There is only one difference in the parameters setting, but
the outputs are very different. The curve which is obtained with angle = 60 is the aforementioned Koch’s
snowflake.
x_min <- -6
x_max <- 6
y_min <- -4
y_max <- 8
CoordinatePlane(x_min, x_max, y_min, y_max)

NULL

P1 <- c(-5,0)
P2 <- c(5,0)

12

angle <- 90
cut1 <- 1/3
cut2 <- 2/3
f <- 1
it <- 4
FractalSegment(P1, P2, angle, cut1, cut2, f, it)

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4
6

8

X

Y

x_min <- -6
x_max <- 6
y_min <- -4
y_max <- 8
CoordinatePlane(x_min, x_max, y_min, y_max)

NULL

P1 <- c(-5,0)
P2 <- c(5,0)
angle <- 60

13

cut1 <- 1/3
cut2 <- 2/3
f <- 1
it <- 4
FractalSegment(P1, P2, angle, cut1, cut2, f, it)

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4
6

8

X

Y

Generation of trochoids

A trochoid is a closed curve that can be obtained by the conjunction of three geometric figures: two circles,
one fixed and the other moving, and a moving point which is connected to the moving circle. There are three
parameters to characterize each trochoid: the radius of the fixed circle, the radius of the moving circle and
the distance from the moving point to the center of the moving circle.

The presence of these parameters makes possible the definition of every trochoid by a set of parametrical
equations, involving trigonometry functions. However, as it was first proposed in Turtle Geometry The
Computer as a Medium for Exploring Mathematics (Abelson and diSessa) with the aid of the LOGO turtle,

14

these curves can be approximated by iteratively drawing segments of certain lengths and angles. The LOGO
turtle, which originally was a real robot developed at MIT at the end of the 60s, refers to a on-screen cursor
implemented in the LOGO language that responded to easy instructions from the user (basically direction
setting of the turtle and rectilinear movements). This turtle is also available in R with package TurtleGraphics.

As it can be seen in the work of Abelson and DiSessa, the procedure to obtain any trochoid needs four
parameters: a pair of angles and a pair of lengths. In each iteration of the process, a couple of segments are
drawn according to these angles and lenghts.

The following code includes three examples of use of the function Duopoly implemented in the package.
Parameters color and time also allow the user to appreciate the points that are drawn in the generation of
the trochoid and the order of them when building it.
P=c(0,0)
CoordinatePlane(-100,100,-50,150)

NULL

Duopoly(P,1,1,1,-3)

−100 −50 0 50 100

−
50

0
50

10
0

15
0

X

Y

15

CoordinatePlane(-100,100,-50,150)

NULL

Duopoly(P,0.8,1,0.8,3)

−100 −50 0 50 100

−
50

0
50

10
0

15
0

X

Y

CoordinatePlane(-100,100,-50,150)

NULL

Duopoly(P,2,3,2,10)

16

−100 −50 0 50 100

−
50

0
50

10
0

15
0

X

Y

Working on the real world

Function GetMap of the package RgoogleMaps gives us the possibility of treating geometric objects over a
plane that represents a piece of the world we live in. The zoom parameter ranges from 0 to 21, depending on
the location, allowing the user to visualize big pictures of the world but also little details of some buildings.

The function CoordinateImage of this package works as CoordinatePlane, but in this case it is capable of
setting the axis and the grid over an image obtained from Google Maps. Moreover, CoordinateImage is not
only expected to be used with Google Maps images, as it can work with any bitmap image that is passed to
the function.

17

	Introduction
	How to start? Basic functions of the package
	Affine transformations
	Points of the triangle
	Tessellations
	Recursive programming
	Generation of trochoids

	Working on the real world

