
Step-by-Step PCA

David T. Harvey∗ Bryan A. Hanson†

2022-03-31

Contents

1 Step 1. Centering the Data 2

2 Step 2. Scaling the Data 5

3 Step 3. Data Reduction 5
3.1 Using prcomp . 6
3.2 Using All the Data . 7
3.3 What Else is in the PCA Results? . 9
3.4 Scree Plot . 9
3.5 Loading Plot . 9
3.6 How Does prcomp Actually Work? . 10

4 Step 4. Undoing the Scaling 10

5 Step 5. Undoing the Centering 11

6 Proof of Perfect Reconstruction 11

7 The More Components Used, the Better the Reconstruction 11

8 Works Consulted 11

This vignette is based upon LearnPCA version 0.1.4.

LearnPCA provides the following vignettes:

• Start Here
• A Conceptual Introduction to PCA
• Step By Step PCA
• Understanding Scores & Loadings
• Visualizing PCA in 3D
• The Math Behind PCA
• PCA Functions
• To access the vignettes with R, simply type browseVignettes("LearnPCA") to get a clickable list in a

browser window.

Vignettes are available in both pdf (on CRAN) and html formats (at Github).

In this vignette we’ll walk through the computational and mathematical steps needed to carry out PCA.
If you are not familiar with PCA from a conceptual point of view, we strongly recommend you read the
Conceptual Introduction to PCA vignette before proceeding.

∗Professor of Chemistry & Biochemistry, DePauw University, Greencastle IN USA., harvey@depauw.edu
†Professor Emeritus of Chemistry & Biochemistry, DePauw University, Greencastle IN USA., hanson@depauw.edu

1

http://bryanhanson.github.io/LearnPCA/articles/Start_Here.html
http://bryanhanson.github.io/LearnPCA/articles/Conceptual_Intro_PCA.html
http://bryanhanson.github.io/LearnPCA/articles/Step_By_Step_PCA.html
http://bryanhanson.github.io/LearnPCA/articles//Scores_Loadings.html
http://bryanhanson.github.io/LearnPCA/articles/Visualizing_PCA_3D.html
http://bryanhanson.github.io/LearnPCA/articles/Math_Behind_PCA.html
http://bryanhanson.github.io/LearnPCA/articles/Functions_PCA.html
mailto:harvey@depauw.edu
mailto:hanson@depauw.edu

The steps to carry out PCA are:

1. Center the data
2. Optionally, scale the data
3. Carry out data reduction
4. Optionally, undo any scaling, likely using a limited number of PCs
5. Optionally, undo the centering, likely using a limited number of PCs

We’ll discuss each of these steps in order. For many or most types of analysis, one would just do the first
three steps, which provides the scores and loadings that are usually the main result of interest. In some cases,
it is desirable to reconstruct the original data from the reduced data set. For that task you needs steps four
and five.

To illustrate the process, we’ll use a portion of a data set containing measurements of metal pollutants in the
estuary shared by the Tinto and Odiel rivers in southwest Spain. The full data set is found in the package
ade4; we’ll use data for just a couple of elements and a few samples. This 16 sample, two variable data set
will make it easier to visualize the steps as we go. Table 1 shows the values, and we’ll refer to this as the
FeCu data set (since we are using the data for iron and copper). It’s important at this point to remember
that the samples are in rows, and the variables are in columns. Also, notice that the values for Fe2O3 are in
percentages, but the values for Cu are in ppm (parts per million).

Figure 1 is a plot showing the range of the values; Figure 2 gives another view of the same data, plotting the
concentrations of copper against iron.

data(tintoodiel) # activate the data set from package ade4

TO <- tintoodiel$tab # to save typing, rename the element with the data

select just a few samples (in rows) & variables (in columns)

FeCu <- TO[28:43,c("Fe2O3", "Cu")]

summary(FeCu)

Fe2O3 Cu

Min. : 7.35 Min. : 1.052

1st Qu.:11.61 1st Qu.: 2.192

Median :13.05 Median :238.000

Mean :15.38 Mean :224.496

3rd Qu.:18.73 3rd Qu.:356.250

Max. :32.40 Max. :787.000

1 Step 1. Centering the Data

The first step is to center the data.

When we center the data, we take each column, corresponding to a particular variable, and subtract the
mean of that column from each value in the column. Thus, regardless of the original values in the column,
the centered values are now expressed relative to the mean value for that column. The function scale can do
this for us (in spite of its name, scale can both center and scale):

FeCu_centered <- scale(FeCu, scale = FALSE, center = TRUE) # see ?scale for defaults

Figure 3 is a plot of the centered values. Note how the values on the y-axis have changed compared to the
raw data. It’s apparent that the ranges of the chosen variables are quite different. This is a classic case where
scaling is desirable, otherwise the variable with larger values will dominate the PCA results.

Why do we center the data? The easiest way to think about this is that without centering there is an offset
in the data, a bit like an intercept in a linear regression. If we don’t remove this offset, it adversely affects
the results and their interpretation. There is good discussion of this with illustrations at this Cross Validated
answer if you wish a bit more explanation.

2

https://stats.stackexchange.com/a/22331/26909

Table 1: The FeCu data set. Values for Fe2O3 are percentages, those for Cu are ppm.

Fe2O3 Cu
9.50 594.000
7.35 328.000

14.99 1.674
18.50 2.990
7.72 402.000

13.40 342.000
12.40 1.052
11.80 399.000
20.60 3.670
19.40 2.250
25.60 2.020
32.40 787.000
12.00 238.000
11.05 249.000
16.60 1.278
12.70 238.000

Fe2O3 Cu

0
2

0
0

4
0

0
6

0
0

8
0

0

V
a

lu
e

s
 (

F
e

2
O

3
 i
n

 p
e

rc
e

n
t,

 C
u

 i
n

 p
p

m
)

Figure 1: The range of the raw data values in FeCu.

3

10 15 20 25 30

0
2

0
0

4
0

0
6

0
0

8
0

0

Fe2O3 (percent)

C
u

 (
p

p
m

)

Figure 2: The relationship between the raw data values in FeCu.

4

Fe2O3 Cu

−
2

0
0

0
2

0
0

4
0

0

c
e

n
te

re
d

 v
a

lu
e

s

Figure 3: Centered data values in FeCu.

2 Step 2. Scaling the Data

Scaling the data is optional. If the range of the variables (which, recall, are in the columns) are approximately
the same, one generally does not scale the data. However, if some variables have much larger ranges, they
will dominate the PCA results. You may want this to happen, or you may not, and in many cases it is wise
to try different scaling options. As mentioned above, the FeCu data set should be scaled to avoid the Cu
values dominating the analysis, since these values are larger.1

To scale the data, we can use scale again:

FeCu_centered_scaled <- scale(FeCu_centered, center = FALSE, scale = TRUE) # see ?scale for defaults

The default scale = TRUE scales the (already centered) columns by dividing them by their standard deviation.
Figure 4 shows the result. This scaling has the effect of making the column standard deviations equal to one:

apply(FeCu_centered_scaled, 2, sd)

Fe2O3 Cu

1 1

Put another way, all variables are now on the same scale, which is really obvious from Figure 4. One downside
of this scaling is that if you have variables that may only be noise, the contribution of these variables is the
same as variables representing interesting features.

3 Step 3. Data Reduction

Now we are ready for the actual data reduction process. This is accomplished via the function prcomp.2

prcomp can actually do the centering and scaling for you, should you prefer. But in this case we have already

1The actual numbers are what matter as far as the mathematics of scaling goes. However, in practice, one should pay
attention to the units as well. For those that are not chemists, a “ppm” is a much smaller unit than a percentage. If we were to
report both metal concentrations in percentages, it would make the Cu values much smaller and it is the Fe2O3 values that
would dominate.

2There are other functions in R for carrying out PCA. See the PCA Functions vignette for the details.

5

Fe2O3 Cu

−
1

0
1

2

c
e

n
te

re
d

 &
 s

c
a

le
d

 v
a

lu
e

s

Figure 4: Centered and scaled data.

done those steps, so we choose the arguments to prcomp appropriately.3

3.1 Using prcomp

pca_FeCu <- prcomp(FeCu_centered_scaled)

str(pca_FeCu)

List of 5

$ sdev : num [1:2] 1.007 0.992

$ rotation: num [1:2, 1:2] 0.707 -0.707 -0.707 -0.707

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:2] "Fe2O3" "Cu"

.. ..$: chr [1:2] "PC1" "PC2"

$ center : Named num [1:2] 1.15e-16 -6.85e-17

..- attr(*, "names")= chr [1:2] "Fe2O3" "Cu"

$ scale : Named num [1:2] 6.68 243.11

..- attr(*, "names")= chr [1:2] "Fe2O3" "Cu"

$ x : num [1:16, 1:2] -1.697 -1.15 0.607 0.975 -1.327 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:16] "O-1" "O-2" "O-3" "O-4" ...

.. ..$: chr [1:2] "PC1" "PC2"

- attr(*, "class")= chr "prcomp"

str(pca_FeCu) shows the structure of pca_FeCu, the object that holds the PCA results. A key part is
pca_FeCu$x, which holds the scores. Notice that it has 16 rows and two columns, exactly like our original set
of data. In general, pca$x will be a matrix with dimensions n × p where n is the number of samples, and p is
the number of variables.

3If one uses scale to center and/or scale your data, the results are tagged with attributes giving the values necessary
to undo the calculation. Take a look at str(FeCu_centered_scale) and you’ll see these attributes. Compare the values for
attributes(FeCu_centered_scaled)["scaled:center"] to colMeans(FeCu). Importantly, if you use scale to do your centering
and scaling, these attributes are understood by prcomp and are reflected in the returned data, even if prcomp didn’t do the
centering and scaling itself. In other words, these two functions are designed to work together.

6

Scores represent the original data but in a new coordinate system. Figure 5 shows the scores.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
3

−
2

−
1

0
1

PC1

P
C

2

Figure 5: Scores.

3.2 Using All the Data

If you compare Figure 5 to Figure 2, it looks broadly similar, but the points are rotated and the scales are
different.4 You might ask, what did we really accomplish here? Well, because we are using just a tiny portion
of the original data, the multi-dimensional nature of the whole set is obscured. So, just to make the point,
let’s repeat everything we’ve done so far, except use all the data (52 samples and 16 variables). Figure 6
shows the first two principal component scores. A similar plot of the raw data is not possible, because it is
not two-dimensional: there are 16 dimensions corresponding to the 16 variables.5

pca_TO <- prcomp(TO, scale. = TRUE)

4This is an important observation that we discuss in the Understanding Scores & Loadings vignette.
5For the full data set, there are also 16 dimensions in the form of 16 principal components. But, each of the 16 principal

components each has a bit of the original 16 raw variables in it, and showing only the first two principal components is meaningful.
How meaningful? The scree plot will tell us. Keep reading.

7

−4 −3 −2 −1 0 1 2 3

−
4

−
3

−
2

−
1

0
1

2

PC1

P
C

2

Figure 6: Score plot using all the data.

8

3.3 What Else is in the PCA Results?

Earlier we did str(pca) to see what was stored in the results of our PCA. We already considered pca$x.
The other elements are:

• pca$sdev The standard deviations of the principal components. These are used in the construction of
a scree plot (coming up next). The length of pca$sdev is equal to p, the number of variables in the
data set.

• pca$rotation These are the loadings, stored in a square matrix with dimensions p × p

• pca$center The values used for centering (either calculated by prcomp or passed as attributes from
the results of scale). There are p values.

• pca$scale (either calculated by prcomp or passed as attributes from the results of scale). There are
p values.

The returned information is sufficient to reconstruct the original data set (more on that later).

3.4 Scree Plot

As mentioned in the A Conceptual Introduction to PCA vignette, a scree plot shows the amount of variance
explained for each PC. These values are simply the square of pca$sdev and can be plotted by calling plot

on an object of class prcomp. See Figure 7. Remember, the more variance explained, the more information a
PC carries. From the plot, we can see that both variables contribute about equally to separation in the score
plot.6

plot(pca_FeCu, main = "")

V
a

ri
a

n
c
e

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 7: Scree plot.

3.5 Loading Plot

To show the loadings, one can use the following code, which gives Figure 8. We can see that the Fe2O3 and
Cu contribute in opposite directions.

barplot(pca_FeCu$rotation[,1], main = "")

At this point we have looked at each element of a prcomp object and seen what information is stored in it.

6As an exercise, see what happens to the scree plot if you don’t scale the values.

9

Fe2O3 Cu

−
0
.6

−
0
.2

0
.2

0
.4

0
.6

Figure 8: Plot of the loadings on PC1.

3.6 How Does prcomp Actually Work?

Please see both the The Math Behind PCA and Understanding Scores & Loadings vignettes for a full
discussion of the details of the calculation.

4 Step 4. Undoing the Scaling

Sometimes it is desirable to reconstruct the original data using a limited number of PCs. If one reconstructs
the original data using all the PCs, one gets the original data back. However, for many data sets, the higher
PCs don’t represent useful information; effectively they are noise. So using a limited number of PCs one can
get back a reasonably faithful representation of the original data.

To reconstruct all or part of the original data, one starts from the object returned by prcomp. If one wants to
use the first z PCs to reconstruct the data, one takes the first z scores (in pca$x) and multiplies them by the
tranpose of the first z columns of the rotation matrix (in pca$rotation). In R this would be expressed for
the pca_FeCu data set as:

Xhat <- pca_FeCu$x[, 1:z] %*% t(pca_FeCu$rotation[, 1:z])

where Xhat is the reconstructed7 original matrix.8

We are now ready to undo the scaling, which is accomplished by dividing the columns of Xhat by the scale
factors previously employed. Once again the scale function makes it easy to operate on the columns of the
matrix.

Xhat <- scale(Xhat, center = FALSE, scale = 1/pca_FeCu$scale)

7Why do we call it Xhat? X represents the data matrix. hat is a reference to the use of the symbolˆas in X̂ which is often
used to designate a reconstruction or estimation of a value in statistics.

8Since there are only two columns in FeCu, the largest value of z that one could us is two, which is not very interesting. Keep
reading.

10

5 Step 5. Undoing the Centering

Finally, we take the unscaled Xhat and add back the values that we subtracted when centering, again using
scale.

Xhat <- scale(Xhat, center = -pca_FeCu$center, scale = FALSE)

One might think that scale can handle both the unscaling and re-centering processes at the same time.
This is not the case, as scale does any (un)centering first, then scales the data. We need to take care of
scaling first, and then the centering second. Thus in the forward direction, scale can handle both tasks
simultaneously, but in the reconstruction direction, we need to take it step-wise.

6 Proof of Perfect Reconstruction

If we use only a portion of the PCs, an approximation of the original data is returned. If we use all the PCs,
then the original data is reconstructed. Let’s make sure this is true for the full tintoodiel data set.

TOhat <- pca_TO$x %*% t(pca_TO$rotation)

TOhat <- scale(TOhat, center = FALSE, scale = 1/pca_TO$scale)

TOhat <- scale(TOhat, center = -pca_TO$center, scale = FALSE)

If this process worked correctly, there should be no difference between the reconstructed data and the original
data.

mean(TOhat - as.matrix(TO))

[1] 4.122971e-16

The result is a vanishingly small number, so we’ll call it a Success!

7 The More Components Used, the Better the Reconstruction

Figure 9 shows how the approximation of the original data set (tintoodiel) improves as more and more
PCs are included in the reconstruction. The y-axis represents the error, as the root mean squared deviation
of the original data minus the approximation.

8 Works Consulted

In addition to references and links in this document, please see the Works Consulted section of the Start

Here vignette for general background.

11

http://bryanhanson.github.io/LearnPCA/articles/Start_Here.html#works-consulted

5 10 15

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

No. of Components Retained

E
rr

o
r

Figure 9: Reduction of error as the number of components included in the reconstruction increases.

12

	Step 1. Centering the Data
	Step 2. Scaling the Data
	Step 3. Data Reduction
	Using prcomp
	Using All the Data
	What Else is in the PCA Results?
	Scree Plot
	Loading Plot
	How Does prcomp Actually Work?

	Step 4. Undoing the Scaling
	Step 5. Undoing the Centering
	Proof of Perfect Reconstruction
	The More Components Used, the Better the Reconstruction
	Works Consulted

