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1 Introduction

Investigation of a dose-response relationship is of primary interest in many drug-
development studies. Typically, in dose-response experiments the outcome of interest
is measured at several (increasing) dose levels, and the aim of the analysis is to
establish the form of the dependence of the response on dose (Agresti 1997). The
response can be either the efficacy of a treatment or the risk associated with the
exposure to the treatment (in toxicology studies). In a typical dose-response study
subjects are randomized to several dose groups, among which there is usually a control
group. Ruberg (1995a, 1995b) and Chuang-Stein and Agresti (1997) formulated four
main questions usually asked in dose-response studies: (1) Is there any evidence of
the drug effect? (2) For which doses is the response different from the response in
the control group? (3) What is the nature of the dose-response relationship? and (4)
What is the optimal dose?

Within the microarray setting, a dose-response experiment has the same structure
as described above. The response is the gene-expression at a certain dose level. The
dose-response curve, similarly to the dose-response studies, is assumed to be mono-
tone, i.e., the gene activity increases or decreases as the dose level increases. The
direction of the relationship is usually unknown in advance.

In this chapter we focus on the first question: is there any evidence of the drug
effect? To answer this question, we test for the null hypothesis of homogeneity of
means (no dose effect) against an ordered alternative. We compare several testing
procedures, that take into account the order restriction of the means with respect to
the increasing doses and that adjust for multiple testing. In particular, we discuss
the testing procedures of Williams (Williams 1971 and 1972), Marcus (Marcus 1976),
the global likelihood ratio test (LRT , Barlow et al. 1972, and Robertson et al. 1988),
and the M (Hu et al. 2005) statistic. Moreover, we propose a novel procedure based
on a modification of the estimator of standard error of the M statistic.

Williams (1971, 1972) proposed a step-down procedure to test for the dose effect.
The tests are performed sequentially from the comparison between the isotonic mean
of the highest dose and the sample mean of the control, to the comparison between the
isotonic mean of the lowest dose and the sample mean of the control. The procedure
stops at the dose level where the null hypothesis (of no dose effect) is not rejected.
Marcus (1976) proposed a modification of the Williams procedure, in which the sample
mean of the control was replaced by the isotonic mean of the control. A global
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likelihood ratio test, discussed by Bartholomew et al. (1961), Barlow et al. (1972),
and Robertson et al. (1988), uses the ratio between the variance calculated under the
null hypothesis and the variance calculated under an ordered alternative. Recently,
Hu et al. (2005) proposed a test statistic that was similar to Marcus’ statistic, but
with the variance estimator calculated under the ordered alternative. The degrees of
freedom of the M statistic (the difference between the number of observations and
the number of dose levels) were fixed for all the genes and all the arrays. We propose
a modification for the variance estimator of the M statistic. Namely, the difference
between the number of observations and the unique number of isotonic means is used
as the degrees of freedom for the variance estimator.

IsoGene is an R package for the analysis of dose-response microarray experiments.
The package can be used in order to identify differentially expressed genes, which are,
within the framework of dose-response microarray experiments, a subset of genes,
for which a monotone relationship between the gene expression and doses can be
detected. Inference is based on resampling methods (both permutations and the sig-
nificance analysis of Microarray (SAM)), in which the multiplicity issue is addressed
by adjustment techques controlling for the false discovery rate (FDR). This guide
provides a tutorial to the features of the package. It illustrates the capability of the
IsoGene package and provides some background information about the methodology
used for the analysis. In Chapter 2, we review different testing procedures; while in
Chapter 3, we illustrate how the methodology discussed in Chapter 2 can be imple-
mented using the IsoGene package.

2 Testing for Trend in Dose-response Microarray

Experiments

3 Testing for Homogeneity of the Means Under Re-

stricted Alternatives

In this section, we review several procedures for testing the homogeneity of the means
against order restricted alternatives. In particular we focus on four existing proce-
dures: Williams’ (Williams 1971 and 1972), Marcus’ (Marcus 1976), the global likeli-
hood ratio test (Bartholomew 1961, Barlow et al. 1972, and Robertson et al. 1988),
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and the M (Hu et al. 2005) statistic. Additionally, we introduce a modification to the
degrees of freedom of the M statistic.

In the microarray experiment, for each gene, the following ANOVA model is con-
sidered:

Yij = µ(di) + εij , i = 0, 1, . . . ,K, j = 1, 2, . . . , ni, (1)

where Yij is the jth gene-expression at the ith dose level, di (i = 0, 1, . . . ,K) are
the K+1 dose levels, µ(di) is the mean gene-expression at each dose level, and εij ∼
N(0, σ2).

The null hypothesis of no dose effect is given by

H0 : µ(d0) = µ(d1) = · · · = µ(dK). (2)

A one-sided alternative hypothesis of a positive dose effect for at least one dose level
(i.e., an increasing trend) is specified by

HUp
1 : µ(d0) ≤ µ(d1) ≤ · · · ≤ µ(dK), (3)

with at least one strict inequality. When testing the effect of a drug for a posi-
tive outcome the researcher can specify a positive effect as the desirable alternative.
However, in the current microarray setting, it seems reasonable to assume that the
gene-expression levels may increase or decrease in response to increasing doses, but
with the direction of the trend not known in advance. Thus, we must also consider
an additional alternative:

HDown
1 : µ(d0) ≥ µ(d1) ≥ · · · ≥ µ(dK), (4)

with at least one strict inequality. Testing H0 against HDown
1 or HUp

1 requires es-
timation of the means under both the null and the alternative hypotheses. Under
the null hypothesis, the estimator for the mean response µ̂ is the sample mean. Let
µ̂?0, µ̂

?
1, . . . , µ̂

?
K be the maximum likelihood estimates for the means (at each dose level)

under the ordered alternative. Barlow et al. (1972) and Robertson et al. (1998) showed
that µ̂?0, µ̂

?
1, . . . , µ̂

?
K are given by the isotonic regression of the observed means.

3.1 Williams’ (1971, 1972) and Marcus’ (1976) Test Statistics

Williams’ procedure defines H0 as the null hypothesis, and HUp
1 or HDown

1 as the one-
sided alternative. Williams’ (1971, 1972) test statistic was suggested for a setting, in
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which ni observations are available at each dose level. As all dose levels are compared
with the control level, the test statistic is given by

ti =
µ̂?i − ȳ0√

2s2/r
. (5)

Here, ȳ0 is the sample mean at the first dose level (control), µ̂?i is the estimate for
the mean at the ith dose level under the ordered alternative, r is the number of
replications at each dose level, and s2 is an estimate of the variance. For µ̂?i , Williams
(1971, 1972) used the isotonic regression of the observed response with respect to dose
(Barlow et al. 1972). Williams’ test procedure is a sequential procedure. In the first
step, µ̂?K is compared to ȳ0. If the null hypothesis is rejected, µ̂?K−1 is compared to
ȳ0, etc.

Marcus (1976) proposed a modification to Williams’ test statistic that replaced
ȳ0 with µ̂?0, the estimate of the first dose (control) mean under ordered restriction.
Marcus’ test statistic performs closely to Williams’ in terms of power (Marcus 1976).
Note that, for K = 1, Williams’ and Marcus’ test statistics reduce to the two-sample
t-test.

3.2 Likelihood Ratio Test Statistic for Monotonicity

(Barlow et al. 1972, and Robertson et al. 1988)

Williams’ and Marcus’ procedures are step-down procedures, i.e., the comparison
between a lower dose and control is tested only if the test of a higher dose vs. control
is significant. The underlying assumption is that there is a monotone dose-response
relationship with a known direction.

Testing the equality of ordered means using likelihood ratio tests (when response
is assumed to be normally distributed) was discussed by Barlow et al. (1972) and
Robertson et al. (1988). Both authors considered the likelihood ratio test, in which
the variance under the null and the alternative were compared. The likelihood ratio
test statistic is given by

Λ
2
N
01 =

σ̂2
H1

σ̂2
H0

=

∑
ij(yij − µ̂?j )2∑
ij(yij − µ̂)2

, (6)

where σ̂2
H0

and σ̂2
H1

are the estimates for the variance under the null and the alternative
hypothesis, respectively. And µ̂ =

∑
ij yij/

∑
i ni is the overall mean. The null
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hypothesis is rejected for a “small” value of Λ
2
N
01 . Equivalently, H0 is rejected for large

value of Ē2
01, where

Ē2
01 = 1− Λ

2
N
01 =

∑
ij(yij − µ̂)2 −

∑
ij(yij − µ̂?j )2∑

ij(yij − µ̂)2
. (7)

Estimating the parameters using isotonic regression requires the knowledge of the
direction of the trend. In practice, the direction of the trend is often not known
in advance. In such a case one can maximize the likelihood twice: for a monotone
decreasing trend and for a monotone increasing trend, and choose the trend with a
higher likelihood. In practice, we can calculate Ē2

01 for each direction and choose the
higher value of Ē2

01 (Barlow et al. 1972). A resampling-based approach, as described
in Section 3.2.2, can be used to approximate the null distribution for the test statistic,
so that two-sided p-values are obtained for inference.

3.3 The M Test Statistic of Hu et al. (2005)

Recently, Hu et al. (2005) proposed the following test statistic M to test for a mono-
tonic trend:

M =
µ̂?K − µ̂?0√∑K

i=0

∑ni

j=1(yij − µ̂?i )2/(n−K)
. (8)

where n is the total number of arrays.
Hu et al. (2005) discussed a setting, in which the comparison of primary interest is

the difference between the highest dose level (K) and the control dose. The numerator
of the M test statistic is the same as that of Marcus’ statistic, while the denominator
is an estimate of the standard error under an ordered alternative. This is in contrast
to Williams’ and Marcus’ approaches that use the unrestricted means to derive the
estimate for the standard error.

Hu et al. (2005) evaluated the performance of the Ē2
01 and M test statistics by

comparing the ranks of genes obtained by using both statistics, and reported similar
findings for simulated and real-life data sets.

3.4 A Modification to the M Test Statistic (Lin et al. 2007)

For the variance estimate, Hu et al. (2005) used n−K degrees of freedom (see equa-
tion (8)). However, the unique number of isotonic means is not fixed, but changes
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across the genes. For that reason, we propose a modification to the standard error es-
timator used in the M statistic by replacing it with

√∑K
i=0

∑ni

j=1(yij − µ̂?i )2/(n− I),
where I is the unique number of isotonic means for a given gene. Such a modification
is expected to improve the standard error estimates across all the genes.

The five test statistics are implemented in the R IsoGene package, which is dis-
cussed in detail in the next chapter.

4 Directional Inference

4.1 Directional Inference in Isotonic Regression

The five test statistics discussed in Section 3 should be calculated assuming a particu-
lar direction of the ordered alternative. However, the direction of the test is unknown
in advance. In this section, we address the issue of how to obtain the two-sided p-value
from the five testing procedures, and how to determine the direction of the trend from
two-sided p-value afterwards.

We focus on the two possible directions of the alternatives: HUp
1 defined in equa-

tion (3) and HDown
1 defined in equation (4). Let pUp and TUp denote the p-value

and the corresponding test statistic computed to test H0 vs. HUp
1 , and let pDown and

TDown denote the p-value and the corresponding test statistic computed to test H0

vs. HDown
1 . Barlow et al. (1972) showed that, for K > 2, a χ̄2 statistic for testing

H0 may actually yield pUp < α and pDown < α. However, p = 2 min(pUp, pDown) is
always a conservative p-value for the two-sided test of H0 vs. either HUp

1 or HDown
1 .

Hu et al. (2005) adapted the approach by taking the larger of the likelihoods of
HUp

1 or HDown
1 , i.e., the larger of TUp and TDown is used as the test statistic for

the two-sided inference. In contrast to Hu et al. (2005), we obtain two-sided p-values
by taking p = min(2 min(pUp, pDown), 1), where pUp and pDown are calculated for
TUp and TDown using permutations to approximate the null distribution of these test
statistics. We use pUp and pDown to determine the direction of the trend, as described
below.

After rejecting the null hypothesis against the two-sided test there is still a need to
determine the direction of the trend. The direction can be inferred by the following
procedure. If pUp ≤ α/2, then reject H0 and declare HUp

1 ; if pDown ≤ α/2, then
reject H0 and declare HDown

1 . The validity of this directional inference is based on
the following property: under HUp

1 , pDown is stochastically larger than U [0, 1]; and



8

under HDown
1 , pUp is stochastically larger than U [0, 1] (proof not given here). Thus,

the probability of falsely rejecting H0 is ≤ α, and the probability of declaring a wrong
direction for the trend is ≤ α/2. It is also important to note that the event pUp < α/2
and pDown < α/2 may be observed. Under H0, HUp

1 , or HDown
1 , this event is unlikely.

However, it is likely if the treatment has a large and non-monotone effect.
In order to illustrate whether the property needed for directional inference applies

to the five test statistics, we conduct a simulation study to investigate the distribution
of the pUp and pDown values. For each simulation, data are generated under HUp

1 :
the means are assumed to be equal to (1, 2, 3, 4)/

√
5 for the four doses, respectively,

and the variance is equal to σ2 = 1. The test statistics TUp and TDown are calculated
for the two possible alternatives HUp

1 and HDown
1 . Their corresponding pUp- and

pDown-values are obtained using 10,000 permutations.
Figure 1 shows the cumulative distribution of pUp and pDown. Clearly, the simula-

tions show that the cumulative distribution of pDown (the p-value of the test statistics
calculated assuming the wrong direction, dotted line in Figure 1) is stochastically
higher than U [0, 1] (solid line in Figure 1), which is the distribution of the p-values
under the null hypothesis. Moreover, the distribution of pUp (the p-value for the test
statistics calculated assuming the right direction, dashed line in Figure 1) is, as ex-
pected, stochastically smaller than U([0, 1]. Similar results (not shown) are obtained
when the data are generated under HDown

1 . The results imply that all the five test
statistics possess the property required for the directional inference: under HUp

1 the
distribution of pDown is stochastically greater than U [0, 1].

Figure 2 shows the values of test statistics, which were calculated under HUp
1 and

HDown
1 , for data generated under HUp

1 . The five test statistics are calculated for
testing H0 vs. HDown

1 (the x-axis of each test statistic in Figure 2). The behavior of
Marcus’, M , and the modified M statistics is similar as they all use the difference
between the highest and the lowest isotonic mean. The maximum value of the test
statistics (when calculated assuming the wrong direction) is equal to zero. In contrast,
Williams’ test statistic for testing H0 vs. HDown

1 (shown on the x-axis of the panel b)
can be positive or negative, because the sample mean of control group is used instead
of the isotonic mean. Note that we reject the null hypothesis in favor of HDown

1 for
negative values of the test statistic. Further, the value of the test statistics for testing
H0 vs. HUp

1 (the y-axis of Figure 2) is higher than the value of the test statistics
calculated for testing H0 vs. HDown

1 (the x-axis of Figure 2).
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Figure 1: The cumulative distribution of pUp-values (dashed line) and pDown-values
(dotted line) for the five test statistics. Data are generated under HUp

1 with isotonic
means (1, 2, 3, 4)/

√
5 for the four doses. Solid line: cumulative distribution of

H0 ∼ U [0, 1].

4.2 Control of the Directional FDR

When the FDR controlling procedures are used to adjust for multiple testing in the
microarray setting, the set of two-sided p-values computed for each gene is adjusted
by using the BH-FDR or BY-FDR procedure described in Section 3.2.1. A discovery
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Figure 2: The five test statistics calculated for H0 vs. HUp
1 (y-axis) and H0 vs. HDown

1

(x-axis).

in this case is a rejection of H0 for some gene; a false discovery is to reject H0 when
H0 is true. As mentioned before, in a microarray dose-response experiment we are
also interested in the direction of the dose-response trend.

Benjamini and Yekutieli (2005) provide a framework for addressing the multiplic-
ity problem when attempting to determine the direction of multiple parameters: a
discovery is to declare the sign of a parameter as either being positive or negative.
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Three types of false discoveries are possible: declaring a zero parameter either as
negative or as positive, declaring a negative parameter as positive, and declaring a
positive parameter as negative. The FDR corresponding to these discoveries is termed
the Mixed Directional FDR (MD-FDR). In the current setting, the MD-FDR is the
expected value of the number of genes, for which H0 is true, that are erroneously
declared to have either a positive or negative trend plus the genes with a monotone
trend but with a wrong direction of the declared trend, divided by the total number
of genes declared to have a trend. Benjamini and Yekutieli (2005) prove that if p-
values pose the directional property described in Section 4.1, then applying the BH
procedure at level q to the the set of two-sided p-values computed for each gene, and
declaring the direction of the trend corresponding to the smaller one-sided p-value,
controls the MD-FDR at level q/2 · (1 +m0/m), where m is the total number of genes
and m0 is the number of genes, for which H0 holds.

In general, directional inference is a more general setting than hypotheses testing
(Benjamini and Yekutieli, 2005). Nevertheless, as a false discovery is made based
on the p-value that is stochastically larger than U [0, 1], then the resampling-based
methods that control the FDR (Yekutieli and Benjamini, 1999) also control the MD-
FDR. This is achieved by simply applying the resampling-based procedure to test H0,
and if H0 is rejected, declaring the direction of the trend according to the minimum
one-sided p-value. For each rejected null hypothesis it is also advisable to examine
if the larger p-value is ≤ α. If this is the case, this may serve as an indication of a
non-monotone dose-response relationship.

5 Introduction to IsoGene Package

The main IsoGene package functions are IsoRawp() and IsoTestBH(), which calcu-
late the raw p-values using permutations and adjust them using the BH- and BY-FDR
procedures. The supporting functions IsoGene1() and IsoGenem() are used to cal-
culate the five test statistics from isotonic regression for one gene and all the genes,
respectively. On the other hand, the SAM procedure is also implemented to reduce
some computational time as compared to the permutation method. The main function
of the SAM is IsoTestSAM(), with supporting functions Isofudge(), IsoGenem-

SAM(), Isoqqstat(), Isoallfdr(), Isoqval(). The remaining functions Isop-

valuePlot(), IsoBHPlot(), IsoSAMPlot() IsoPlot() is used to display the data
and to show the results of testing procedures.
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6 Testing for Trends: Testing Procedures, Multi-

plicity and Resampling-based Inference

6.1 Resampling-based Multiple Testing

For adjusting for multiple testing, only the BH-FDR procedure (Benjamini and
Hochberg 1995) and BY-FDR procedure (Benjamini and Yekutieli 2001) are con-
sidered in package IsoGene(). The matrix of the values of the test statistics for each
gene and permutation is referred as the permutation matrix under the null distribution
(see Section 3.2.2).

This matrix is used to calculate the one-sided p-values for the inference. In the
first step the one-sided raw (unadjusted for multiple testing) pUp-values are calculated
using (9) or (10) based on the test statistic TUp.

Pi =
#(b : tib ≥ ti)

B − 1
, (9)

where ti is the observed test statistic for gene i.

Pi =

∑B
b=1

∑m
j=1(tjb ≥ ti)

(B − 1)×m
. (10)

For pDown-values, expect of Ē2
01, for which the test statistic value ti is always

between 0 and 1 and can be obtained in the same way as pUp-values,

pDown = #(b : tib ≤ ti)/B or pDown =
B∑
b=1

m∑
j=1

(tjb ≤ ti)/(B ×m)

should be used with tib and tjb the test statistic values obtained for gene i and j from
permutation b. This is because under the decreasing trend, we reject the four test
statistics (namely, Williams’, Marcus’, the M and modified M) with large negative
values.

Based on the p-values, various methods adjusting the type I error can be applied,
such as the Bonferroni, Holm, Hochberg, and BH-FDR and BY-FDR (Reiner et al.
2003 and Ge et al. 2003).

6.2 Significance Analysis of Microarray (SAM)

SAM (Tusher et al. 2001, Lin et al. 2008) is a procedure widely used in the microarray
setting. SAM is a testing procedure, which estimates the FDR by using permutations
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under the assumption that all null hypotheses are true. The procedure consists of three
components: (1) the adjusted test statistics, (2) an approximation of the distribution
of the test statistics based on permutations, and (3) the control of the FDR.

For a two-group setting, the modified test statistic in SAM is given by,

tSAMk =
x̄k − x̄l
sk + s0

, (11)

where

x̄l =
Σnl
j=1xjl

nl
, x̄k =

Σnk
j=1xjk

nk
,

sk =

√(
1
nk

+
1
nl

) Σnk
j=1(xjk − x̄jk)2 + Σnl

j=1(xjl − x̄jl)2

nk + nl − 2
,

and s0 is the fudge factor which is estimated from the data and is discussed later, k
and l are the index of the two groups of array, and j is the index of the array.

For F -type test statistic, such as Ē2
01, the modified test statistic is given by,

Ē2SAM
01 =

√
σ̂2
H0
− σ̂2

H1√
σ̂2
H0

+ s0
, (12)

SAM requires that the test statistic for each permutation is sorted for all the
genes, such that the first row of the sorted matrix is the minimum test statistic across
permutations, and the last row is the maximum, i.e.,

T SAM =



t(1)1 t(1)2 . . . t(1)B

t(2)1 t(2)2 . . . t(2)B

. . . .

. . . .

. . . .

t(m)1 t(m)2 . . . t(m)B


.

In T SAM , each element t(i)b is the sorted test statistic for gene i in permutation
b. The expected values of the observed ordered statistics are approximated by the
means of the rows of T SAM , given by t̄SAM(1) , t̄SAM(2) , . . . , t̄SAM(m) that are constructed in
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the following way:

T SAM =



t(1)1 t(1)2 . . . t(1)B

t(2)1 t(2)2 . . . t(2)B

. . . .

. . . .

. . . .

t(m)1 t(m)2 . . . t(m)B


⇒



1
B

∑B
b=1 t(1)b

1
B

∑B
b=1 t(2)b

.

.

.
1
B

∑B
b=1 t(m)b


=



t̄SAM(1)

t̄SAM(2)

.

.

.

t̄SAM(m)


.

The SAM procedure proposed by Tusher et al. (2001) is as follows:

1. Compute order statistics tSAM(1) ≤ tSAM(2) ≤ · · · ≤ tSAM(m) .

2. Compute the permutation matrix T SAM .

3. Calculate the expected test statistics t̄SAM(1) , t̄SAM(2) , . . . , t̄SAM(m) .

4. Plot the tSAM(1) , tSAM(2) , . . . , tSAM(m) values versus the t̄SAM(1) , t̄SAM(2) , . . . , t̄SAM(m) values
(SAM plot).

5. For a fixed threshold ∆, starting at the origin, and moving up to the right, find
the first i = i1 such that tSAMi − t̄SAMi > ∆. All genes, for which tSAMi > tSAMi1 ,
are called “significant positive”. Similarly, start at origin, move down to the left
and find the first i = i2 such that t̄SAM2 − tSAMi > ∆. All genes, for which tSAMi

< tSAMi2 , are called “significant negative”. For each ∆ define the upper cut-point
Cup(∆) as the smallest tSAMi among the significant positive genes, and similarly
define the lower cut-point Clow(∆).

6. For a grid of ∆ values, compute the total number of significant genes (from step
5), and the median number of falsely called genes, i.e., the median number of
values among each of the B sets of tib , i = 1, 2, . . . ,m that fall above cut-point
Cup(∆) and below cut-point Cdown(∆). Similarly, compute the 90th percentile
of the number of falsely called genes.

7. Estimate π0, the proportion of truly non-differentially expressed genes in the
data set, as follows:

(a) Compute the first and third quantiles of the permuted tSAM values, de-
noted as q25 and q75 (the tSAMi are the values for the original data set;
there are m such values).
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(b) Compute π̂0 = #{ti ∈ (q25, q75)}/(.5m).

(c) Let π̂0 = min(π̂0, 1).

8. The median and the 90th percentile of the number of falsely called genes from
step 6, are multiplied by π̂0,

9. Pick a ∆ and the corresponding number of significant genes.

10. The FDR is estimated by the median (or the 90th percentile) of the number of
falsely called genes divided by the number of significant genes.

Estimation of the SAM Fudge Factor s0
In the procedure described above, a fudge factor s0 in the denominator of the test

statistic (12) is used. It is calculated as the percentile of the gene-wise standard error
distribution that minimizes the coefficient of variation (CV) of the test statistics. This
modification is used to overcome bias for genes with expressions close to zero, which
have a large value of the test statistic due to a small sample variance. By using an
inflated standard error, SAM addresses the problem of the dependence of the value
of the test statistic on the variance of expression levels for a particular gene. The
calculation of s0 is as follows:

1. Let sα be the α · 100% percentile of si values. Let tαi = (X̄1 − X̄0)/(si + sα).

2. Compute the 100 centiles of the si values, denoted by q1 < q2 · · · < q100.

3. For α ∈ (0, 0.05, 0.10, . . . , 1.0)

(a) compute νj = MAD(tαi |si ∈ [qj , qj+1)), j = 1, 2, . . . ,m, where MAD is the
median absolute deviation from the median, divided by .64;

(b) compute cv(α) = coefficient of variation of the νj values.

4. Choose α̂ = argmin[cv(α)], i.e., α̂ is the quantile of the standard error that
minimizes the coefficient of variation of the SAM test statistics.

5. Compute ŝ0 = sα̂.



16

7 Using the IsoGene Package

7.1 Data Example

The data used for the analysis presented below are outcome of a dose-response mi-
croarray experiment consisting of four dose levels. Three microarray samples are
available at each dose level (hence, in total gene expression was measured for 12
arrays). Each array consists of 16,998 genes.

A dataframe with the log2 transformed gene intensities is loaded into R environ-
ment. The first ten genes and first six samples are displayed, where the row names of
the genes show the probe ID, X1, X1.1 and X1.2 are the three arrays for dose zero,
while X2, X2.1 and X2.2 are the arrays for the first dose. The dataframe is loaded
suing the function load(),

> load("data.Rdata")

A printout of the first 10 lines is given below.

> data[1:10,1:6]

X1 X1.1 X1.2 X2 X2.1 X2.2

g1 6.923109 7.024719 7.170328 7.219297 7.076908 7.404949

g2 5.107275 5.092935 5.255918 5.312913 4.893855 4.596591

g3 5.913526 6.026197 5.141728 5.828770 5.269202 5.461664

g4 4.919469 4.908159 3.500307 4.814068 4.139949 4.278321

g5 6.002091 5.878718 5.777668 6.214799 5.895586 6.163291

g6 7.162715 7.294693 6.903935 7.223069 6.972928 7.412160

g7 4.049696 4.748409 3.845498 4.780287 4.076589 4.300242

g8 3.191931 4.326571 3.771206 3.570291 2.179324 3.988911

g9 6.487708 6.285804 6.229814 6.109103 6.340837 5.931840

g10 6.695870 6.687039 6.652153 6.503670 6.387794 6.698711

7.2 Loading the Package

To load the IsoGene package into R, a binary zip-package of IsoGene program (for
Windows) needs to be installed. IsoGene package requires R packages Multtest and
ff, which need to be installed as well. Once the packages are installed, they are
available for use after being loaded in memory, which is usually done by the user:

> library(IsoGene)
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Iso 0.0-8

Note: This package now has a NAMESPACE.

Loading package ff 2.1-2

- getOption("fftempdir")=="C:/DOCUME~1/lucp1898/LOCALS~1/Temp/RtmpTKLDbm"

- getOption("ffextension")=="ff"

- getOption("ffdrop")==TRUE

- getOption("fffinonexit")==TRUE

- getOption("ffpagesize")==65536

- getOption("ffcaching")=="mmnoflush" -- consider "ffeachflush" if your system stalls on large writes

- getOption("ffbatchbytes")==16095641 -- consider a different value for tuning your system

Attaching package ff

The functions included in the package can be listed using the R help system:

> help(package = IsoGene)

First, IsoPlot() can be used to explore the data. Second, IsoGene1() and
IsoGenem() can be used to calculate the test statistics. Third, IsoRawp() provides
the output for two-sided or one-sided p-values (pUp or pDown). Based on the p-values
obtained, one can choose one test statistic and multiplicity adjustment method for
inference by using IsoTestBH(). Finally, IsopvaluePlot() can be useful for exam-
ining both of pUp- or pDown-values, and in particularly, as a post hoc procedure it
can be used to examine genes with both small pUp- and pDown-values.

8 The IsoGene Functions

8.1 Quick Start

The first stage of the analysis (which is also the time consuming stage) consists of
permutations under the null hypothesis in order to obtain the distribution of the
test statistic under the null hypothesis. Note that, by default, all five test statis-
tics discussed above are calculated. The function IsoRawp() is used to perform the
permutation. A general call of the function IsoRawp() has the form of

IsoRawp(x, data, niter=1000)
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Here, x is a vector which contains the dose levels and data is the R object, which
contains the information about gene expression and genes names. Once the permu-
tation stage is completed, the FDR adjusted p-values can be obtained using function
IsoTestBH(). The function calculates the adjusted p values for each statistic using
either the BH-FDR or BY-FDR for multiplicity adjustment. The user can specify
one of the five test statistics discussed above, or use the default call, in the later
case adjusted p-values for all test statistics will be calculated. A general form of the
IsoTestBH() has the form

IsoTestBH(rp, FDR=c(0.05,0.1), type=c("BH","BY"),

stat=c("E2","Williams","Marcus","M","ModifM"))

Note that rp is an R object, which contains all the output produced by the function
IsoRawp().
In what follows we illustrate in more details the use of the functions of the IsoGene

package.

8.2 Exploring the Data

IsoPlot() can be used to explore the data. Scatterplots for the second gene in the
dataset (data[2,]) can be produced by

> data(exampleData)

> x <- c(rep(1, 3), rep(2, 3), rep(3, 3), rep(4, 3))

> gene1 <- as.matrix(exampleData[2, ])

> par(mfrow = c(1, 2))

> IsoPlot(x, y = gene1)

> IsoPlot(x, y = gene1, type = "ordinal", add.curve = TRUE)

The left panel in Figure 3 shows the original data points (as circles) and sample
means (as pluses) for each dose. The right panel in Figure 3 shows the increasing
isotonic regression model (blue solid line) fitted on the data. The fitted monotonic
line does not indicate the significance of the test, but simply shows a more likely
increasing (or decreasing) trend.
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Figure 3: The data points are plotted as circles, while sample means as pluses. The
right panel additionally plots the fitted increasing isotonic regression model (blue solid
line).

8.3 Calculating the Test Statistics

The five test statistics described in Chapter 2 can be obtained by using the function
IsoGene1() for a single gene and using the function IsoGenem() for all the genes
simultaneously. The following R codes illustrate the input and output generated by
these two functions:

> stat1 <- IsoGene1(x, gene1)

The object stat1 contains the information about the five test statistics and the
direction for which the likelihood is maximizes.

> stat1

$E2.up

[1] 0.2697894
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$Williams.up

[1] 1.040134

$Marcus.up

[1] 1.581191

$M.up

[1] 1.205802

$ModM.up

[1] 1.278946

$E2.dn

[1] 0.0008106545

$Williams.dn

[1] -0.08238646

$Marcus.dn

[1] -0.08238646

$M.dn

[1] -0.05370908

$ModM.dn

[1] -0.06004858

$direction

[1] "u"

The first 10 objects are the values calculated for the five test statistics under
increasing and decreasing trends. The last object indicates the higher likelihood of
isotonic regression with “u” meaning a increasing trend or “d” meaning a decreasing
trend.
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We use the first 10 genes as an example to illustrate the use of function
IsoGenem():

> statm <- IsoGenem(x, exampleData[1:10, ])

> statm

$E2.up

g1 g2 g3 g4 g5 g6 g7

0.81527841 0.26978939 0.81226244 0.04625381 0.02356596 0.01270386 0.00000000

g8 g9 g10

0.05438655 0.02259598 0.99060602

$Williams.up

[1] 5.706246398 1.040133583 4.532537020 0.485215821 0.546648138

[6] 0.357615051 -0.134476246 -0.009111866 -0.693505488 28.489753149

$Marcus.up

[1] 5.7062464 1.5811905 5.0052320 0.5279040 0.5466481 0.3576151

[7] 0.0000000 0.5170096 0.4308062 29.4025214

$M.up

[1] 4.6591307 1.2058018 3.9221693 0.4308356 0.2929374 0.2138936

[7] 0.0000000 0.3916276 0.2867030 20.1706306

$ModM.up

[1] 4.6591307 1.2789459 4.3851186 0.4569702 0.3275140 0.2391403

[7] 0.0000000 0.4378530 0.3205437 21.3941846

$E2.dn

g1 g2 g3 g4 g5 g6

0.0000000000 0.0008106545 0.0000000000 0.0000000000 0.3328630108 0.3126307156

g7 g8 g9 g10

0.0902853975 0.0194293995 0.2236936672 0.0000000000

$Williams.dn

[1] 2.47954450 -0.08238646 0.77861303 0.15969984 -1.08594004 -1.06231999
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[7] -0.45383921 -0.35682222 -1.35548019 7.55960274

$Marcus.dn

[1] 0.00000000 -0.08238646 0.00000000 0.00000000 -2.16867670 -1.77404170

[7] -0.63872592 -0.35682222 -1.35548019 0.00000000

$M.dn

[1] 0.00000000 -0.05370908 0.00000000 0.00000000 -1.40596911 -1.27167021

[7] -0.51444688 -0.26542632 -1.01219460 0.00000000

$ModM.dn

[1] 0.00000000 -0.06004858 0.00000000 0.00000000 -1.49125543 -1.42177051

[7] -0.57516910 -0.29675565 -1.13166796 0.00000000

$direction

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

"u" "u" "u" "u" "d" "d" "d" "u" "d" "u"

The output from IsoGenem() has the same structure as the one for IsoGene1(),
but each object contains the values of the test statistics and the likely direction of the
isotonic regression model for all the genes.

8.4 Obtaining Raw p-values

As discussed above, we use permutations to obtain the raw p-values for the five test
statistics. The function IsoRawp() can be used in the following way:

> rawp <- IsoRawp(x = x, y = exampleData, niter = 2)

The four arguments in this function need to be specified, with no default pre-
specified values. x is the explanatory variable indicating the dose levels for all the
samples in the data. data is the data frame of gene expression values. niter defines
the number of permutations used to approximate the null distribution. The output
item rawp contains four objects with p-values for the five test statistics: the first one
contains the two-sided p-values, the second contains the one-sided p-values, the third
contains pUp-values, and the last one contains pDown-values. Below we print a part
of the object with two-sided p-values for illustration:
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> rawp.twosided <- rawp[[1]]

The first 10 rows in of the object rawp.twosided are

> rawp.twosided[1:10, ]

Probe.ID E2 Williams Marcus M ModM

1 g1 0.0 0.0 0.0 0.0 0.0

2 g2 0.5 0.5 0.5 0.5 0.5

3 g3 0.0 0.0 0.0 0.0 0.0

4 g4 0.0 0.0 0.0 0.0 0.0

5 g5 0.0 0.0 0.0 0.0 0.0

6 g6 0.0 0.5 0.5 0.5 0.0

7 g7 0.5 0.5 0.5 0.5 0.5

8 g8 0.0 0.0 0.0 0.0 0.0

9 g9 0.0 0.0 0.0 0.0 0.0

10 g10 0.0 0.0 0.0 0.0 0.0

The first output object from rawp is a matrix with six columns, where the first
column indicates the probe ID. Columns from the second to the sixth are p-values
for each of the five test statistics, respectively. The remaining three output objects
(rawp[[2]], rawp[[3]], rawp[[4]]) are structured in the same way.

8.5 Plot of p-values for a Single Gene

For a single gene, the function IsopvaluePlot() can be used to show the pUp and
pDown-values for a given test statistic:

> IsopvaluePlot(x, y, niter, stat = c("E2", "Williams", "Marcus",

+ "M", "ModifM"))

We use one gene as an example to illustrate how pUp and pDown-values (in the
upper and lower panels of Figure 4) are obtained. In Figure 4, the observed test
statistics are drawn as the dashed line, and the values of the test statistics obtained
from permutations are spread over the x-axis. For this gene, the pUp is much smaller
as compared to the pDown since TUp � TDown, which implies a possible increasing
trend in the data.

> IsopvaluePlot(x, gene1, niter = 1000, stat = "E2")
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Figure 4: The pUp and pDown-values using Ē2
01 for an example gene. The dashed line

is the observed test statistic value. In the upper panel, the dashed line (at the right)
is larger than most of the test statistics from permutations, which results in a small
pUp-value. In the lower panel, the dashed line (close to zero) is smaller than most of
the test statistics from permutations, which results in a large pDown-value.
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8.6 BH/BY-FDR Procedures for Adjusting for Multiple Test-

ing

With the two-sided p-values, the user needs to select one of the five test statistics, the
FDR level, and the type of multiplicity adjustment (BH-FDR or BY-FDR) to obtain
the list of significant genes:

> IsoTestBH(rp, FDR = c(0.05, 0.1), type = c("BH", "BY"), stat = c("E2",

+ "Williams", "Marcus", "M", "ModifM"))

The following example shows the use of the global likelihood ratio test Ē2
01, the

FDR level of 0.05 and the BH-FDR procedure controlling the FDR:

> E2.BH <- IsoTestBH(rawp.twosided, FDR = 0.05, type = "BH", stat = "E2")

The first 10 rows in the object E2.BH list the sorted row and adjusted p values for
the Ē2

01 statistic.

> E2.BH[1:10, ]

Probe.ID row.name raw p-values BH adjusted p values

1 g1 1 0 0

2 g3 3 0 0

3 g4 4 0 0

4 g5 5 0 0

5 g6 6 0 0

6 g8 8 0 0

7 g9 9 0 0

8 g10 10 0 0

9 g11 11 0 0

10 g12 12 0 0

Here we show only the first ten genes declared significant by using Ē2
01 test. The

output results in a matrix of five columns: the first column indicates the probe ID,
the second column is the corresponding row number of significant genes in the original
dataset, the third column is the unadjusted/raw p-value, and the last column is the
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adjusted p-value using the requested “BH” procedure. The order of the list of genes
found significant is based on the row number. Moreover, the function IsoBHPlot()

can be used to visualize the number of significant findings for the BH-FDR and BY-
FDR procedures for the specified test statistic:

> IsoBHPlot(rp, FDR = c(0.05, 0.1), stat = c("E2", "Williams",

+ "Marcus", "M", "ModifM"))

Figure 6 shows the unadjusted (solid blue line) and the BH-FDR (dotted and
dashed red line) and BY-FDR (dashed green line) adjusted p-values for Ē2

01. It is
obtained using the function IsoBHPlot():

> IsoBHPlot(rawp.twosided, FDR = 0.05, stat = "E2")

9 Significance Analysis of Dose-response Microar-

ray Data (SAM)

In this package, we also implement the significance analysis of microarray (SAM) for
testing for the dose-response relationship under order restricted alternatives. The
SAM procedure was proposed by Tusher et al. (2001) for finding differentially ex-
pressed genes by using permutations while controlling for the FDR.

The main function for the SAM procedure is IsoTestSAM(). Within the main func-
tion, Isofudge() calculates the fudge factor in the SAM test statistic, IsoGenemSAM()
is used to obtain the values of SAM test statistics, Isoqqstat() calculates the SAM
test statistic for the required number of permutations specified by users, Isoallfdr()
obtains the delta table in the SAM procedure, Isoqval() computes q-values of the
SAM.

The syntax of these function is as follows,

> Isofudge(x, y)

> IsoGenemSAM(x, y, fudge.factor)

> Isoqqstat(x, y, fudge = c(0, "pooled"), niter = 100)

> Isoallfdr(qqstat, ddelta, stat = c("E2", "Williams", "Marcus",

+ "M", "ModifM"))

> Isoqval(delta, allfdr, qqstat, stat)
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Figure 5: The unadjusted (solid blue line), and the BH-FDR (dotted and dashed red
line) and BY-FDR (dashed green line) adjusted p-values for Ē2

01.

We use the same data as above to obtain the fudge factor of the SAM procedure
for the five test statistics by using function Isofudge().

> fudge.factor <- Isofudge(x, exampleData)

The output of this function gives a vector of five fudge factors for each of the test
statistics.

> fudge.factor

[1] 0.07794229 0.16687744 0.10486056 0.19962253 0.12201373

Note that the fudge factor of the Ē2
01 is obtained based on the algorithm for F

test statistics given by Tusher et al. (2001) and should be used with cautions. The
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performance of using the fudge factor as compared to the t-type test statistics has not
yet investigated in term of power and control of the FDR. Therefore, it’s advisable to
use the fudge factor in the t-type test statistics.

> SAMtest.stat <- IsoGenemSAM(x, exampleData, fudge.factor)

The output of the function gives

> names(SAMtest.stat)

[1] "E2" "Williams" "Marcus" "M" "ModM" "direction"

The following codes produce the values of the five test statistics for the first ten
genes,

> SAMtest.stat[[1]][1:10]

g1 g2 g3 g4 g5 g6 g7

0.76307188 0.24474561 0.79981561 0.04428623 0.25513904 0.26372825 0.08792619

g8 g9 g10

0.05322140 0.16347105 0.98418205

> SAMtest.stat[[2]][1:10]

[1] 2.524719216 0.568405925 2.795837275 0.335299641 -0.393142350

[6] -0.477446410 -0.333583454 -0.006801912 -0.529556199 9.327805999

> SAMtest.stat[[3]][1:10]

[1] 3.1845748 1.0392371 3.6000422 0.4121190 -1.0291185 -1.0024228

[7] -0.5207607 0.4260847 -0.6845731 12.8347836

> SAMtest.stat[[4]][1:10]

[1] 2.0885434 0.6862569 2.4788191 0.2999204 -0.5940818 -0.6202021

[7] -0.3818276 0.2994731 -0.4229476 7.5100918

> SAMtest.stat[[5]][1:10]

[1] 2.6588739 0.8578876 3.1369183 0.3561781 -0.7907050 -0.8276609

[7] -0.4648386 0.3617761 -0.5797297 10.2222441
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> SAMtest.stat[[6]][1:10]

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

"u" "u" "u" "u" "d" "d" "d" "u" "d" "u"

To obtain the SAM test statistics for one of five test statistic values, for example,
the modified M test, with the required number of permutations specified by users and
compute the delta table in the SAM procedure, we can use function Isoqqstat() and
Isoallfdr() as follows,

> qqstat <- Isoqqstat(x, exampleData, fudge = "pooled", niter = 2)

> dtable <- Isoallfdr(qqstat, , stat = "ModifM")

> dim(dtable)

[1] 121 6

> head(dtable)

Ddelta FalsePositive50% FalsePositive90% Called FDR50% FDR90%

[1,] 0.01 547.932 558.0344 929 0.5898 0.6007

[2,] 0.11 470.008 470.5008 866 0.5427 0.5433

[3,] 0.21 409.024 410.0096 800 0.5113 0.5125

[4,] 0.31 369.292 373.4808 754 0.4898 0.4953

[5,] 0.41 69.608 77.4928 404 0.1723 0.1918

[6,] 0.51 40.040 46.4464 339 0.1181 0.1370

Note that in Isoallfdr(), ddelta is left blank, with default value taken from
the data, i.e., all the percentiles of the standard errors. By fixing the 50% FDR at
0.05, the corresponding delta value is 0.83 (marked in-between the dashed lines) as
we obtain from the delta table above, the number of differentially expressed genes are
872 with potential 42 genes as false positives.

> qval <- Isoqval(delta = 0.83, allfdr = dtable, qqstat = qqstat,

+ stat = "ModifM")

> dim(qval[[1]])

[1] 1000 3
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> head(qval[[1]])

Row.names t.stat q.val

g987 987 -6.742283 0

g409 409 -6.717422 0

g374 374 -6.602694 0

g229 229 -5.569383 0

g963 963 -4.952691 0

g962 962 -4.813606 0

> dim(qval[[2]])

[1] 186 3

> head(qval[[2]])

Row.names t.stat q.val

g987 987 -6.742283 0

g409 409 -6.717422 0

g374 374 -6.602694 0

g229 229 -5.569383 0

g963 963 -4.952691 0

g962 962 -4.813606 0

By specifying the desired delta value, delta table, and the user-defined test statis-
tic in function Isoqval(), we can obtain the q value of each gene from the SAM
procedure. The first object of the output is the list of q values for all the genes, rank-
ing from the smallest test statistic value to the largest; while the second object is the
list of q values for the 872 differentially expressed genes, ranking from the smallest
test statistic value to the largest. The first column of the output matrices is the row
number of genes in the data set, the second column is the observed modified M test
statistic value, and the last column is the q value of the SAM procedure for both
objects.

Alternatively, we can use function IsoTestSAM() to summarize all the steps above
and give results of a list of significant findings, which is the same second output of
function Isoqval().

> IsoTestSAM(x, y = data, fudge = c(0, "pooled"), niter = 100,

+ FDR = 0.05, stat = c("E2", "Williams", "Marcus", "M", "ModifM"))
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Specifying the same options as above in this function, we can obtain the list of
significant genes as follows: the first column is the Probe.ID, the second column is
the corresponding row numbers of the genes in the data set, the third column is the
observed modified M SAM test statistics, the fourth column is the q values of genes
by using the SAM procedure. The last two columns gives additional information by
calculating the p values based on the SAM permutation matrix and adjusting these
p values using the BH-FDR procedure.

> IsoSAM.obj <- IsoTestSAM(x, y = exampleData, fudge = "pooled",

+ niter = 2, FDR = 0.05, stat = "ModifM")

The resulting object IsoSAM.obj, contains three components:

1. sign.genes1 contains a list of genes declared significant using the SAM proce-
dure.

2. qqstat gives the SAM regularized test statistics obtained from permutations.

3. allfdr provides a delta table in the SAM procedure for the specified test statis-
tic.

To extract the list of significant gene, one can do:

> IsoSAM.sig <- IsoSAM.obj[[1]]

> dim(IsoSAM.sig)

[1] 323 6

> head(IsoSAM.sig)

Probe.ID row.number stat.val qvalue pvalue adj.pvalue

1 g987 987 -6.742283 0 0 0

2 g409 409 -6.717422 0 0 0

3 g374 374 -6.602694 0 0 0

4 g229 229 -5.569383 0 0 0

5 g963 963 -4.952691 0 0 0

6 g962 962 -4.813606 0 0 0

Finally, the graphic output of the SAM procedure can be produced using function
IsoSAMPlot().
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> IsoSAMPlot(qqstat, allfdr, FDR = 0.05, stat = c("E2", "Williams",

+ "Marcus", "M", "ModifM"))

This function requires the use of output from Isoqqstat() and Isoallfdr(),
given a user-defined test statistic and the FDR level to control. We still take the
modified M test statistic for example, at the FDR of 0.05. There are four plots
yielded from the SAM procedure. Panel a shows the FDR (either 50% or 90% (more
stringent)) vs. ∆, from which, user can choose the delta value with the corresponding
desired FDR. Panel b shows the number of significant genes vs. ∆, and panel c shows
the number of false positives (either 50% or 90%) vs. ∆. Finally panel d shows the
observed vs. the expected (obtained from permutations) test statistics, in which the
red dots are those genes called differentially expressed.

> IsoSAMPlot(qqstat = qqstat, allfdr = dtable, FDR = 0.05, stat = "ModifM")
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Figure 6: The SAM plots: a.Plot of the FDR vs. delta; b. Plot of number of significant
genes vs. delta; c. Plot of number of false positives vs. delta; d. Plot of observed vs.
expected test statistics.



34

References

Agresti, A. (1997) Statistical Methods for the Social Sciences, Finlay.

Barlow, R.E., Bartholomew, D.J., Bremner, M.J. and Brunk, H.D. (1972) Statistical
inference under order restriction, New York: Wiley.

Bartholomew, D.J. (1961) Ordered tests in the analysis of variance, Biometrika, 48,
325–332.

Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a prac-
tical and powerful approach to multiple testing. Journal of Royal Statistical
Soceity, Biostatistics, 57, 289–300.

Benjamini, Y. and Yekutieli, D. (2001) The control of the false discovery rate in
multiple testing under dependency. Annal of Statistics, 29(4), 1165–1188.

Benjamini, Y. and Yekutieli, D. (2005) False Discovery Rate-Adjusted Multiple
Confidence Intervals for Selected Parameters. Journal of the American Statistical
Association, 100, 71–81.

Chuang-Stein, C. and Agresti, A. (1997) Tutorial in biostatistics: A review of tests
for detecting a monotone dose-response relationship with ordinal response data,
Statistics in Medicine, 16, 2599–2618.

Ge, Y., Dudoit, S. and Speed, P.T. (2003) Resampling based multiple testing for
microarray data analysis, technical report, 633, University of Berkeley.

Hu, J., Kapoor, M., Zhang, W., Hamilton, S.R. and Coombes, K.R. (2005) Anal-
ysis of dose response effects on gene expression data with comparison of two
microarray platforms, Bioinformatics, 21(17), 3524–3529.

Lin, D., Shkedy, Z., Yekutieli, D., Burzykowki, T., Göhlmann, H.W.H., De Bondt,
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