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Foreword

This manual documents the release 4.08 of the OCaml system. It is organized as follows.
e Part I, “An introduction to OCaml”, gives an overview of the language.
e Part II, “The OCaml language”, is the reference description of the language.
e Part III, “The OCaml tools”, documents the compilers, toplevel system, and programming
utilities.
e Part IV, “The OCaml library”, describes the modules provided in the standard library.

e Part V, “Appendix”, contains an index of all identifiers defined in the standard library, and
an index of keywords.

Conventions

OCaml runs on several operating systems. The parts of this manual that are specific to one
operating system are presented as shown below:

Unix:
This is material specific to the Unix family of operating systems, including Linux and
MacOS X.

Windows:
This is material specific to Microsoft Windows (XP, Vista, 7, 8, 10).

License

The OCaml system is copyright (€) 1996-2019 Institut National de Recherche en Informatique et
en Automatique (INRIA). INRIA holds all ownership rights to the OCaml system.

The OCaml system is open source and can be freely redistributed. See the file LICENSE in the
distribution for licensing information.

The present documentation is copyright (©) 2019 Institut National de Recherche en Informatique
et en Automatique (INRIA). The OCaml documentation and user’s manual may be reproduced and
distributed in whole or in part, subject to the following conditions:

e The copyright notice above and this permission notice must be preserved complete on all
complete or partial copies.



10 Foreword

e Any translation or derivative work of the OCaml documentation and user’s manual must be
approved by the authors in writing before distribution.

e If you distribute the OCaml documentation and user’s manual in part, instructions for ob-
taining the complete version of this manual must be included, and a means for obtaining a
complete version provided.

e Small portions may be reproduced as illustrations for reviews or quotes in other works without
this permission notice if proper citation is given.

Availability

The complete OCaml distribution can be accessed via the Web sites http://www.ocaml.org/ and
http://caml.inria.fr/. The former Web site contains a lot of additional information on OCaml.


http://www.ocaml.org/
http://caml.inria.fr/

Part 1

An introduction to OCaml
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Chapter 1

The core language

This part of the manual is a tutorial introduction to the OCaml language. A good familiarity with
programming in a conventional languages (say, C or Java) is assumed, but no prior exposure to
functional languages is required. The present chapter introduces the core language. Chapter 2 deals
with the module system, chapter 3 with the object-oriented features, chapter 4 with extensions to
the core language (labeled arguments and polymorphic variants), and chapter 6 gives some advanced
examples.

1.1 Basics

For this overview of OCaml, we use the interactive system, which is started by running ocaml from
the Unix shell, or by launching the OCamlwin.exe application under Windows. This tutorial is
presented as the transcript of a session with the interactive system: lines starting with # represent
user input; the system responses are printed below, without a leading #.

Under the interactive system, the user types OCaml phrases terminated by ;; in response to
the # prompt, and the system compiles them on the fly, executes them, and prints the outcome of
evaluation. Phrases are either simple expressions, or let definitions of identifiers (either values or
functions).

# 1+2%3;;

- : int =7

# let pi = 4.0 *. atan 1.0;;

val pi : float = 3.14159265358979312

# let square x = X *. X;;
val square : float -> float = <fun>

# square (sin pi) +. square (cos pi);;
- : float = 1.

The OCaml system computes both the value and the type for each phrase. Even function parameters
need no explicit type declaration: the system infers their types from their usage in the function.
Notice also that integers and floating-point numbers are distinct types, with distinct operators: +
and * operate on integers, but +. and *. operate on floats.

13
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# 1.0 x 2;;
Error: This expression has type float but an expression was expected of type
int

Recursive functions are defined with the let rec binding:

# let rec fib n =

# if n < 2 then n else fib (n-1) + fib (n-2);;
val fib : int -> int = <fun>

# fib 10;;

- : int = 55

1.2 Data types

In addition to integers and floating-point numbers, OCaml offers the usual basic data types:
e booleans

# (1 < 2) = false;;
- : bool = false

# let one = if true then 1 else 2;;
val one : int =1

e characters
# 'a'y;
- : char = 'a'

# int_of_char '\n';;
- : int = 10

e immutable character strings

# ||He110|| ~n n - "WOI‘ld" ..
- : string = "Hello world"

# {|This is a quoted string, here, neither \ nor " are special characters|};;
- : string =
"This is a quoted string, here, neither \\ nor \" are special characters"

RO\ SO\

- : bool = true

# {delimiter|the end of this|}quoted string is here|delimiter}

# = "the end of this|}quoted string is here";;
- : bool = true

Predefined data structures include tuples, arrays, and lists. There are also general mechanisms
for defining your own data structures, such as records and variants, which will be covered in more
detail later; for now, we concentrate on lists. Lists are either given in extension as a bracketed
list of semicolon-separated elements, or built from the empty list [] (pronounce “nil”) by adding
elements in front using the :: (“cons”) operator.
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# let 1 = ["is"; "a"; "tale"; "told"; "etc."l;;

val 1 : string list = ["is"; "a"; "tale"; "told"; "etc."]

# "Life" :: 1;;

- : string list = ["Life"; "is"; "a"; "tale"; "told"; "etc."]

As with all other OCaml data structures, lists do not need to be explicitly allocated and deallocated
from memory: all memory management is entirely automatic in OCaml. Similarly, there is no
explicit handling of pointers: the OCaml compiler silently introduces pointers where necessary.

As with most OCaml data structures, inspecting and destructuring lists is performed by pattern-
matching. List patterns have exactly the same form as list expressions, with identifiers representing
unspecified parts of the list. As an example, here is insertion sort on a list:

# let rec sort 1lst =

# match 1lst with

# 0 -> [

# | head :: tail -> insert head (sort tail)
# and insert elt 1lst =
# match lst with

#

#

#

[1 -> [elt]
| head :: tail -> if elt <= head then elt :: 1lst else head :: insert elt tail
M
val sort : 'a list -> 'a list = <fun>
val insert : 'a -> 'a list -> 'a list = <fun>
# sort 1;;

- : string list = ["a"; "etc."; "is"; "tale"; "told"]

The type inferred for sort, 'a list -> 'a list, means that sort can actually apply to lists
of any type, and returns a list of the same type. The type 'a is a type variable, and stands for
any given type. The reason why sort can apply to lists of any type is that the comparisons (=,
<=, etc.) are polymorphic in OCaml: they operate between any two values of the same type. This
makes sort itself polymorphic over all list types.

H+

sort [6;2;5;3];;
: int list = [2; 3; 5; 6]

# sort [3.14; 2.718];;
: float list = [2.718; 3.14]

The sort function above does not modify its input list: it builds and returns a new list containing
the same elements as the input list, in ascending order. There is actually no way in OCaml to modify
a list in-place once it is built: we say that lists are immutable data structures. Most OCaml data
structures are immutable, but a few (most notably arrays) are mutable, meaning that they can be
modified in-place at any time.

The OCaml notation for the type of a function with multiple arguments is
argl_type -> arg2_type -> ... —-> return_type. For example, the type inferred for insert,
'a => 'a list -> 'a list, means that insert takes two arguments, an element of any type 'a
and a list with elements of the same type 'a and returns a list of the same type.
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1.3 Functions as values

OCaml is a functional language: functions in the full mathematical sense are supported and can
be passed around freely just as any other piece of data. For instance, here is a deriv function that
takes any float function as argument and returns an approximation of its derivative function:

# let deriv f dx = function x -> (f (x +. dx) -. f x) /. dx;;
val deriv : (float -> float) -> float -> float —-> float = <fun>

# let sin' = deriv sin le-6;;

val sin' : float -> float = <fun>

# sin' pi;;

- : float = -1.00000000013961143
Even function composition is definable:

# let compose f g = function x -> £ (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>

# let cos2 = compose square cos;;
val cos2 : float -> float = <fun>

Functions that take other functions as arguments are called “functionals”, or “higher-order func-
tions”. Functionals are especially useful to provide iterators or similar generic operations over a
data structure. For instance, the standard OCaml library provides a List.map functional that
applies a given function to each element of a list, and returns the list of the results:

# List.map (function n -> n * 2 + 1) [0;1;2;3;4];;
- : int list = [1; 3; 5; 7; 9]

This functional, along with a number of other list and array functionals, is predefined because it is
often useful, but there is nothing magic with it: it can easily be defined as follows.

# let rec map £ 1 =

# match 1 with

# b -> 1

# | hd :: t1 -> f hd :: map f tl;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

1.4 Records and variants

User-defined data structures include records and variants. Both are defined with the type declara-
tion. Here, we declare a record type to represent rational numbers.

# type ratio = {num: int; denom: int};;
type ratio = { num : int; denom : int; }

# let add_ratio rl r2 =
# {num = ri.num * r2.denom + r2.num * rl.denom;
# denom = ril.denom * r2.denom};;
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val add_ratio : ratio -> ratio -> ratio = <fun>

# add_ratio {num=1; denom=3} {num=2; denom=5};;
- : ratio = {num = 11; denom = 15}

Record fields can also be accessed through pattern-matching:

# let integer_part r =

# match r with

# {num=num; denom=denom} -> num / denom;;
val integer_part : ratio -> int = <fun>

Since there is only one case in this pattern matching, it is safe to expand directly the argument r
in a record pattern:

# let integer_part {num=num; denom=denom} = num / denom;;
val integer_part : ratio -> int = <fun>

Unneeded fields can be omitted:

# let get_denom {denom=denom} = denom;;
val get_denom : ratio -> int = <fun>

Optionally, missing fields can be made explicit by ending the list of fields with a trailing wildcard

# let get_num {num=num; _ } = num;;
val get_num : ratio -> int = <fun>

When both sides of the = sign are the same, it is possible to avoid repeating the field name by
eliding the =field part:

# let integer_part {num; denom} = num / denom;;
val integer_part : ratio -> int = <fun>

This short notation for fields also works when constructing records:

# let ratio num denom = {num; denom};;
val ratio : int -> int -> ratio = <fun>

At last, it is possible to update few fields of a record at once:

#
let integer_product integer ratio = { ratio with num = integer * ratio.num };;
val integer_product : int -> ratio -> ratio = <fun>

With this functional update notation, the record on the left-hand side of with is copied except for
the fields on the right-hand side which are updated.

The declaration of a variant type lists all possible forms for values of that type. Each case is
identified by a name, called a constructor, which serves both for constructing values of the variant
type and inspecting them by pattern-matching. Constructor names are capitalized to distinguish
them from variable names (which must start with a lowercase letter). For instance, here is a variant
type for doing mixed arithmetic (integers and floats):
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# type number = Int of int | Float of float | Error;;
type number = Int of int | Float of float | Error

This declaration expresses that a value of type number is either an integer, a floating-point number,
or the constant Error representing the result of an invalid operation (e.g. a division by zero).
Enumerated types are a special case of variant types, where all alternatives are constants:

# type sign = Positive | Negative;;
type sign = Positive | Negative

# let sign_int n = if n >= 0 then Positive else Negative;;
val sign_int : int -> sign = <fun>

To define arithmetic operations for the number type, we use pattern-matching on the two num-
bers involved:

# let add_num nl n2 =
# match (nl, n2) with

# (Int i1, Int i2) ->

# (* Check for overflow of integer addition *)

# if sign_int il = sign_int i2 && sign_int (il + i2) <> sign_int il
# then Float(float il +. float i2)

# else Int(il + i2)

# | (Int il, Float f2) -> Float(float il +. £f2)

# | (Float f1, Int i2) -> Float(f1l +. float i2)

# | (Float f1, Float f2) -> Float(f1l +. f2)

# | (Error, _) -> Error

# | (_, Error) -> Error;;

val add_num : number -> number -> number = <fun>

# add_num (Int 123) (Float 3.14159);;
- : number = Float 126.14159

Another interesting example of variant type is the built-in 'a option type which represents
either a value of type 'a or an absence of value:

# type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

This type is particularly useful when defining function that can fail in common situations, for
instance

# let safe_square_root x = if x > 0. then Some(sqrt x) else None;;
val safe_square_root : float -> float option = <fun>

The most common usage of variant types is to describe recursive data structures. Consider for
example the type of binary trees:

# type 'a btree = Empty | Node of 'a * 'a btree * 'a btree;;
type 'a btree = Empty | Node of 'a * 'a btree * 'a btree
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This definition reads as follows: a binary tree containing values of type 'a (an arbitrary type) is
either empty, or is a node containing one value of type 'a and two subtrees also containing values
of type 'a, that is, two 'a btree.

Operations on binary trees are naturally expressed as recursive functions following the same
structure as the type definition itself. For instance, here are functions performing lookup and
insertion in ordered binary trees (elements increase from left to right):

# let rec member x btree =

# match btree with

# Empty -> false

# | Node(y, left, right) ->

# if x = y then true else
#

if x < y then member x left else member x right;;
val member : 'a -> 'a btree -> bool = <fun>

# let rec insert x btree =
# match btree with

# Empty -> Node(x, Empty, Empty)

# | Node(y, left, right) ->

# if x <= y then Node(y, insert x left, right)

# else Node(y, left, insert x right);;
val insert : 'a -> 'a btree -> 'a btree = <fun>

1.4.1 Record and variant disambiguation

( This subsection can be skipped on the first reading )
Astute readers may have wondered what happens when two or more record fields or constructors
share the same name

# type first_record = { x:int; y:int; =z:int }
# type middle_record = { x:int; z:int }
# type last_record { x:int };;

# type first_variant = A | B | C
# type last_variant = A;;

The answer is that when confronted with multiple options, OCaml tries to use locally available
information to disambiguate between the various fields and constructors. First, if the type of the
record or variant is known, OCaml can pick unambiguously the corresponding field or constructor.
For instance:

# let look_at_x_then_z (r:first_record) =

# let x = r.x in

# X +r.z;;

val look_at_x_then_z : first_record -> int = <fun>

# let permute (x:first_variant) = match x with
# | A > (B:first_variant)
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# | B -> A
# | C -> C;;
val permute : first_variant -> first_variant = <fun>

# type wrapped = First of first_record

# let f (First r) = r, r.x;;

type wrapped = First of first_record

val f : wrapped -> first_record * int = <fun>

In the first example, (r:first_record) is an explicit annotation telling OCaml that the type
of r is first_record. With this annotation, Ocaml knows that r.x refers to the x field of the
first record type. Similarly, the type annotation in the second example makes it clear to OCaml
that the constructors A, B and C come from the first variant type. Contrarily, in the last example,
OCaml has inferred by itself that the type of r can only be first_record and there are no needs
for explicit type annotations.

Those explicit type annotations can in fact be used anywhere. Most of the time they are
unnecessary, but they are useful to guide disambiguation, to debug unexpected type errors, or
combined with some of the more advanced features of OCaml described in later chapters.

Secondly, for records, OCaml can also deduce the right record type by looking at the whole set
of fields used in a expression or pattern:

# let project_and_rotate {x;y; _ } ={ x=-y; y=x; z =0} ;;
val project_and_rotate : first_record —-> first_record = <fun>

Since the fields x and y can only appear simultaneously in the first record type, OCaml infers that
the type of project_and_rotate is first_record -> first_record.

In last resort, if there is not enough information to disambiguate between different fields or
constructors, Ocaml picks the last defined type amongst all locally valid choices:

# let look_at_xz {x;z} = x;;
val look_at_xz : middle_record -> int = <fun>

Here, OCaml has inferred that the possible choices for the type of {x;z} are first_record
and middle_record, since the type last_record has no field z. Ocaml then picks the type
middle_record as the last defined type between the two possibilities.

Beware that this last resort disambiguation is local: once Ocaml has chosen a disambiguation,
it sticks to this choice, even if it leads to an ulterior type error:

# let look_at_x_then y r =
# let x = r.x in (* Ocaml deduces [r: last_record] *)
# X +r.y;;
Error: This expression has type last_record
The field y does not belong to type last_record

# let is_a_or_b x = match x with

# | A -> true (* 0Caml infers [x: last_variant] x)

# | B -> true;;

Error: This variant pattern is expected to have type last_variant
The constructor B does not belong to type last_variant
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Moreover, being the last defined type is a quite unstable position that may change surrepti-
tiously after adding or moving around a type definition, or after opening a module (see chapter
2). Consequently, adding explicit type annotations to guide disambiguation is more robust than
relying on the last defined type disambiguation.

1.5 Imperative features

Though all examples so far were written in purely applicative style, OCaml is also equipped with
full imperative features. This includes the usual while and for loops, as well as mutable data
structures such as arrays. Arrays are either created by listing semicolon-separated element values
between [| and |] brackets, or allocated and initialized with the Array.make function, then filled
up later by assignments. For instance, the function below sums two vectors (represented as float
arrays) componentwise.

# let add_vect vl v2 =
# let len = min (Array.length v1) (Array.length v2) in

# let res = Array.make len 0.0 in
# for i = 0 to len - 1 do

# res. (i) <- vi.(i) +. v2.(i)

# done;

# res;;

val add_vect : float array -> float array -> float array = <fun>

# add_vect [l 1.0; 2.0 |1 [l 3.0; 4.0 11;;
- : float array = [[4.; 6.]]

Record fields can also be modified by assignment, provided they are declared mutable in the
definition of the record type:

# type mutable_point = { mutable x: float; mutable y: float };;
type mutable_point = { mutable x : float; mutable y : float; }

# let translate p dx dy =

# p.x <-p.x +. dx; p.y <- p.y +. dy;;

val translate : mutable_point -> float -> float -> unit = <fun>
# let mypoint = { x = 0.0; y = 0.0 };;

val mypoint : mutable_point = {x = 0.; y = 0.}

# translate mypoint 1.0 2.0;;
- : unit = ()

# mypoint;;
: mutable_point = {x = 1.; y = 2.}

OCaml has no built-in notion of variable — identifiers whose current value can be changed
by assignment. (The let binding is not an assignment, it introduces a new identifier with a new
scope.) However, the standard library provides references, which are mutable indirection cells, with
operators ! to fetch the current contents of the reference and := to assign the contents. Variables
can then be emulated by let-binding a reference. For instance, here is an in-place insertion sort
over arrays:



22

# let insertion_sort a =

# for i = 1 to Array.length a - 1 do

# let val_i = a.(i) in

# let j = ref i in

# while !j > 0 && val_i < a.(!'j - 1) do
# a.(1j) <= a.(1j - 1);

# jo:=1j-1

# done;

# a.(!j) <- val_i

# done; ;

val insertion_sort : 'a array -> unit = <fun>

References are also useful to write functions that maintain a current state between two calls to
the function. For instance, the following pseudo-random number generator keeps the last returned
number in a reference:

# let current_rand = ref 0;;
val current_rand : int ref = {contents = 0}

# let random () =
# current_rand := !current_rand * 25713 + 1345;

# lcurrent_rand;;
val random : unit -> int = <fun>

Again, there is nothing magical with references: they are implemented as a single-field mutable
record, as follows.

# type 'a ref = { mutable contents: 'a };;
type 'a ref = { mutable contents : 'a; }

# let (! ) r = r.contents;;

val ( ! ) : 'a ref -> 'a = <fun>
# let ( := ) r newval = r.contents <- newval;;
val ( := ) : 'a ref -> 'a -> unit = <fun>

In some special cases, you may need to store a polymorphic function in a data structure, keeping
its polymorphism. Doing this requires user-provided type annotations, since polymorphism is only
introduced automatically for global definitions. However, you can explicitly give polymorphic types
to record fields.

# type idref = { mutable id: 'a. 'a -> 'a };;
type idref = { mutable id : 'a. 'a -> 'a; }

# let r = {id = fun x -> x};;
val r : idref = {id = <fun>}

# let g s = (s.id 1, s.id true);;
val g : idref -> int * bool = <fun>

# r.id <- (fun x -> print_string "called id\n"; x);;
- : unit = ()
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#gr;;

called id

called id

- : int * bool = (1, true)

1.6 Exceptions

OCaml provides exceptions for signalling and handling exceptional conditions. Exceptions can also
be used as a general-purpose non-local control structure, although this should not be overused since
it can make the code harder to understand. Exceptions are declared with the exception construct,
and signalled with the raise operator. For instance, the function below for taking the head of a
list uses an exception to signal the case where an empty list is given.

# exception Empty_list;;
exception Empty_list

# let head 1 =
# match 1 with

# [] -> raise Empty_list
# | hd :: t1 -> hd;;

val head : 'a list -> 'a = <fun>
# head [1;2];;

- : int =1

# head [];;

Exception: Empty_list.

Exceptions are used throughout the standard library to signal cases where the library functions
cannot complete normally. For instance, the List.assoc function, which returns the data associ-
ated with a given key in a list of (key, data) pairs, raises the predefined exception Not_found when
the key does not appear in the list:

# List.assoc 1 [(0, "zero"); (1, "one")];;
- : string = "one"

# List.assoc 2 [(0, "zero"); (1, "one")];;
Exception: Not_found.

Exceptions can be trapped with the try...with construct:

# let name_of_binary_digit digit =

#  try

# List.assoc digit [0, "zero"; 1, "one"]
# with Not_found ->

# "not a binary digit";;

val name_of_binary_digit : int -> string = <fun>

# name_of_binary_digit O;;
- : string = "zero"

# name_of_binary_digit (-1);;
- : string = "not a binary digit"
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The with part does pattern matching on the exception value with the same syntax and behavior
as match. Thus, several exceptions can be caught by one try...with construct:

# let rec first_named_value values names =

#  try

# List.assoc (head values) names

# with

# | Empty_list -> "no named value"

t# | Not_found -> first_named_value (List.tl values) names;;

val first_named_value : 'a list -> ('a * string) list -> string = <fun>

# first_named_value [ 0; 10 ] [ 1, "one"; 10, "ten"];;
- : string = "ten"

Also, finalization can be performed by trapping all exceptions, performing the finalization, then
re-raising the exception:

# let temporarily_set_reference ref newval funct =
# let oldval = !ref in

# try

# ref := newval;

# let res = funct () in

# ref := oldval;

# res

# with x >

# ref := oldval;

# raise x;;

val temporarily_set_reference : 'a ref -> 'a -> (unit -> 'b) -> 'b = <fun>

An alternative to try...with is to catch the exception while pattern matching:

# let assoc_may_map f x 1 =

# match List.assoc x 1 with

# | exception Not_found -> None

# |l v > £ vy;;

val assoc_may_map : ('a -> 'b option) -> 'c -> ('c * 'a) list -> 'b option =
<fun>

Note that this construction is only useful if the exception is raised between match. ..with. Exception
patterns can be combined with ordinary patterns at the toplevel,

# let flat_assoc_opt x 1 =
# match List.assoc x 1 with

# | None | exception Not_found -> None
# | Some _ as v -> v;;
val flat_assoc_opt : 'a -> ('a * 'b option) list -> 'b option = <fun>

but they cannot be nested inside other patterns. For instance, the pattern Some (exception A) is
invalid.

When exceptions are used as a control structure, it can be useful to make them as local as
possible by using a locally defined exception. For instance, with
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# let fixpoint f x =

# let exception Done in

# let x = ref x in

# try while true do

# let y = f !x in

# if !'x = y then raise Done else x :=y
# done; assert false

# with Done -> !x;;

val fixpoint : ('a -> 'a) -> 'a -> 'a = <fun>

the function £ cannot raise a Done exception, which removes an entire class of misbehaving functions.

1.7 Lazy expressions

OCaml allows us to defer some computation until later when we need the result of that computation.

We use lazy (expr) to delay the evaluation of some expression expr. For example, we can
defer the computation of 1+1 until we need the result of that expression, 2. Let us see how we
initialize a lazy expression.

# let lazy_two = lazy ( print_endline "lazy_two evaluation"; 1 + 1 );;
val lazy_two : int lazy_t = <lazy>

We added print_endline "lazy_two evaluation" to see when the lazy expression is being
evaluated.

The value of lazy_two is displayed as <lazy>, which means the expression has not been evalu-
ated yet, and its final value is unknown.

Note that lazy_two has type int lazy_t. However, the type 'a lazy_t is an internal type
name, so the type 'a Lazy.t should be preferred when possible.

When we finally need the result of a lazy expression, we can call Lazy.force on that expression
to force its evaluation. The function force comes from standard-library module Lazy[26.24].

# Lazy.force lazy_two;;
lazy_two evaluation
- : int = 2

Notice that our function call above prints “lazy_two evaluation” and then returns the plain value
of the computation.

Now if we look at the value of lazy_two, we see that it is not displayed as <lazy> anymore but
as lazy 2.

# lazy_two;;
- : int lazy_t = lazy 2

This is because Lazy.force memoizes the result of the forced expression. In other words, every
subsequent call of Lazy . force on that expression returns the result of the first computation without
recomputing the lazy expression. Let us force lazy_two once again.
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# Lazy.force lazy_two;;
- : int = 2

The expression is not evaluated this time; notice that “lazy_two evaluation” is not printed. The
result of the initial computation is simply returned.
Lazy patterns provide another way to force a lazy expression.

# let lazy_ 1l = lazy ([1; 2] @ [3; 41);;
val lazy_1 : int list lazy_t = <lazy>

# let lazy 1 = lazy_l;;

val 1 : int list = [1; 2; 3; 4]

We can also use lazy patterns in pattern matching.

#  let maybe_eval lazy_guard lazy_expr =

# match lazy_guard, lazy_expr with

# | lazy false, _ -

> "matches if (Lazy.force lazy_guard = false); lazy_expr not forced"
# | lazy true, lazy _ -

> "matches if (Lazy.force lazy_guard = true); lazy_expr forced";;
val maybe_eval : bool lazy_t -> 'a lazy_t -> string = <fun>

The lazy expression lazy_expr is forced only if the lazy_guard value yields true once com-
puted. Indeed, a simple wildcard pattern (not lazy) never forces the lazy expression’s evaluation.
However, a pattern with keyword lazy, even if it is wildcard, always forces the evaluation of the
deferred computation.

1.8 Symbolic processing of expressions

We finish this introduction with a more complete example representative of the use of OCaml
for symbolic processing: formal manipulations of arithmetic expressions containing variables. The
following variant type describes the expressions we shall manipulate:

# type expression =

# Const of float

# | Var of string

# | Sum of expression * expression (x el + e2 %)
# | Diff of expression * expression (* el - e2 %)
# | Prod of expression * expression (x el * e2 *)
# | Quot of expression * expression (x el / e2 %)
# 5

type expression =
Const of float
| Var of string

| Sum of expression * expression

| Diff of expression * expression

| Prod of expression * expression

| Quot of expression * expression
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We first define a function to evaluate an expression given an environment that maps variable
names to their values. For simplicity, the environment is represented as an association list.

# exception Unbound_variable of string;;
exception Unbound_variable of string

# let rec eval env exp =
# match exp with
Const ¢ > ¢
| Var v ->
(try List.assoc v env with Not_found -> raise (Unbound_variable v))
Sum(f, g) -> eval env f +. eval env g
Diff(f, g) -> eval env f -. eval env g
Prod(f, g) -> eval env f *. eval env g

Quot(f, g) -> eval env f /. eval env g;;
val eval : (string * float) list -> expression -> float = <fun>

H OH HF H OH H R

# eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));;
- : float = 9.42

Now for a real symbolic processing, we define the derivative of an expression with respect to a
variable dv:

# let rec deriv exp dv =

# match exp with

# Const ¢ -> Const 0.0

# | Var v => if v = dv then Const 1.0 else Const 0.0

# | Sum(f, g) -> Sum(deriv f dv, deriv g dv)

# | Diff(f, g) -> Diff(deriv f dv, deriv g dv)

# | Prod(f, g) -> Sum(Prod(f, deriv g dv), Prod(deriv f dv, g))

# | Quot(f, g) -> Quot(Diff (Prod(deriv f dv, g), Prod(f, deriv g dv)),
# Prod(g, g))

# 5

val deriv : expression —-> string -> expression = <fun>

# deriv (Quot(Const 1.0, Var "x")) "x";;

- : expression =

Quot (Diff (Prod (Const 0., Var "x"), Prod (Const 1., Const 1.)),
Prod (Var "x", Var "x"))

1.9 Pretty-printing

As shown in the examples above, the internal representation (also called abstract syntaz) of expres-
sions quickly becomes hard to read and write as the expressions get larger. We need a printer and
a parser to go back and forth between the abstract syntax and the concrete syntax, which in the
case of expressions is the familiar algebraic notation (e.g. 2¥x+1).

For the printing function, we take into account the usual precedence rules (i.e. * binds tighter
than +) to avoid printing unnecessary parentheses. To this end, we maintain the current operator
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precedence and print parentheses around an operator only if its precedence is less than the current
precedence

# let print_expr exp =
#  (x Local function definitions *)
let open_paren prec op_prec =
if prec > op_prec then print_string "(" in
let close_paren prec op_prec =
if prec > op_prec then print_string ")" in
let rec print prec exp = (* prec is the current precedence *)
match exp with
Const ¢ -> print_float c
| Var v -> print_string v
| Sum(f, g) —>
open_paren prec 0;
print O f; print_string " + "; print O g;
close_paren prec O
| Diff(f, g) —->
open_paren prec 0;
print O f; print_string " - "; print 1 g;
close_paren prec O
| Prod(f, g) —>
open_paren prec 2;
print 2 f; print_string " * "; print 2 g;
close_paren prec 2
| Quot(f, g) —->
open_paren prec 2;
print 2 f; print_string " / "; print 3 g;
close_paren prec 2
in print O exp;;
val print_expr : expression -> unit = <fun>

H OH HF H H HF H H H HHH HHH HH HEHHHEHF H HH

# let e = Sum(Prod(Const 2.0, Var "x"), Const 1.0);;
val e : expression = Sum (Prod (Const 2., Var "x"), Const 1.)

# print_expr e; print_newline ();;
2. *x x + 1.
- : unit = ()

+*

print_expr (deriv e "x"); print_newline ();;
.k 1.+ 0. xx + 0.
- : unit = ()

N

1.10 Printf formats

There is a printf function in the Printf[26.36] module (see chapter 2) that allows you to make
formatted output more concisely. It follows the behavior of the printf function from the C standard
library. The printf function takes a format string that describes the desired output as a text
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interspered with specifiers (for instance %d, %f). Next, the specifiers are substituted by the following
arguments in their order of apparition in the format string:

# Printf.printf "%i + %i is an integer value, %F * %F is a float, %S\n"
# 32 4.5 1. "this is a string";;

3 + 2 is an integer value, 4.5 * 1. is a float, "this is a string"

- : unit = ()

The OCaml type system checks that the type of the arguments and the specifiers are compatible.
If you pass it an argument of a type that does not correspond to the format specifier, the compiler
will display an error message:

# Printf.printf "Float value: }F" 42;;
Error: This expression has type int but an expression was expected of type
float

The fprintf function is like printf except that it takes an output channel as the first argument.
The %a specifier can be useful to define custom printer (for custom types). For instance, we can
create a printing template that converts an integer argument to signed decimal:

# let pp_int ppf n = Printf.fprintf ppf "%d" n;;
val pp_int : out_channel -> int -> unit = <fun>

# Printf.printf "Outputting an integer using a custom printer: %a " pp_int 42;;
Outputting an integer using a custom printer: 42 - : unit = ()

The advantage of those printers based on the %a specifier is that they can be composed together to
create more complex printers step by step. We can define a combinator that can turn a printer for
'a type into a printer for 'a optional:

# let pp_option printer ppf = function
# | None -> Printf.fprintf ppf "None"
# | Some v -> Printf.fprintf ppf "Some(%a)" printer v;;
val pp_option :
(out_channel -> 'a -> unit) -> out_channel -> 'a option -> unit = <fun>

# Printf.fprintf stdout

#  "The current setting is %a. \nThere is only %a\n"
# (pp_option pp_int) (Some 3)

# (pp_option pp_int) None

# 5

The current setting is Some(3).

There is only None

- : unit = ()

If the value of its argument its None, the printer returned by pp_option printer prints None otherwise
it uses the provided printer to print Some .
Here is how to rewrite the pretty-printer using fprintf:

# let pp_expr ppf expr =
# let open_paren prec op_prec output =
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if prec > op_prec then Printf.fprintf output "%s" "(" in
let close_paren prec op_prec output =
if prec > op_prec then Printf.fprintf output "%s" ")" in
let rec print prec ppf expr =
match expr with
| Const ¢ -> Printf.fprintf ppf "YF" c
| Var v -> Printf.fprintf ppf "%s" v
| Sum(f, g) —->
open_paren prec O ppf;
Printf.fprintf ppf "Ja + %a" (print 0) f (print 0) g;
close_paren prec O ppf
| Diff(f, g) ->
open_paren prec O ppf;
Printf.fprintf ppf "%a - %a" (print 0) f (print 1) g;
close_paren prec O ppf
| Prod(f, g) ->
open_paren prec 2 ppf;
Printf.fprintf ppf "ka * %a" (print 2) f (print 2) g;
close_paren prec 2 ppf
| Quot(f, g) ->
open_paren prec 2 ppf;
Printf.fprintf ppf "ka / %a" (print 2) f (print 3) g;
close_paren prec 2 ppf
in print O ppf expr;;
val pp_expr : out_channel -> expression —> unit = <fun>

H OH HF OH OH HF OH OH HF H HHHHHHHFH HEHH KT HH

# pp_expr stdout e; print_newline ();;

2. ¥ x + 1.

- : unit = O

# pp_expr stdout (deriv e "x"); print_newline ();;
2. 1. +0. *xx + 0.

- : unit = (O

Due to the way that format string are build, storing a format string requires an explicit type
annotation:

# let str : _ format =
# "%1i is an integer value, %F is a float, %S\n";;

# Printf.printf str 3 4.5 "string value";;
3 is an integer value, 4.5 is a float, "string value"
- : unit = ()

1.11 Standalone OCaml programs

All examples given so far were executed under the interactive system. OCaml code can also be com-
piled separately and executed non-interactively using the batch compilers ocamlc and ocamlopt.
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The source code must be put in a file with extension .ml. It consists of a sequence of phrases, which
will be evaluated at runtime in their order of appearance in the source file. Unlike in interactive
mode, types and values are not printed automatically; the program must call printing functions
explicitly to produce some output. The ;; used in the interactive examples is not required in
source files created for use with OCaml compilers, but can be helpful to mark the end of a top-level
expression unambiguously even when there are syntax errors. Here is a sample standalone program
to print Fibonacci numbers:

(x File fib.ml *)
let rec fib n =
if n < 2 then 1 else fib (n-1) + fib (n-2);;
let main () =
let arg = int_of_string Sys.argv.(1) in
print_int (fib arg);
print_newline ();
exit 0;;
main ();;

Sys.argv is an array of strings containing the command-line parameters. Sys.argv. (1) is thus
the first command-line parameter. The program above is compiled and executed with the following
shell commands:

$ ocamlc -o fib fib.ml
$ ./fib 10

89

$ ./fib 20

10946

More complex standalone OCaml programs are typically composed of multiple source files, and
can link with precompiled libraries. Chapters 9 and 12 explain how to use the batch compilers
ocamlc and ocamlopt. Recompilation of multi-file OCaml projects can be automated using third-
party build systems, such as the ocamlbuild compilation manager.


https://github.com/ocaml/ocamlbuild/
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Chapter 2

The module system

This chapter introduces the module system of OCaml.

2.1 Structures

A primary motivation for modules is to package together related definitions (such as the definitions
of a data type and associated operations over that type) and enforce a consistent naming scheme
for these definitions. This avoids running out of names or accidentally confusing names. Such a
package is called a structure and is introduced by the struct...end construct, which contains an
arbitrary sequence of definitions. The structure is usually given a name with the module binding.
Here is for instance a structure packaging together a type of priority queues and their operations:

# module PrioQueue =

# struct

# type priority = int

# type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue
# let empty = Empty

# let rec insert queue prio elt =

# match queue with

# Empty -> Node(prio, elt, Empty, Empty)

# | Node(p, e, left, right) ->

# if prio <=p

# then Node(prio, elt, insert right p e, left)

# else Node(p, e, insert right prio elt, left)

# exception Queue_is_empty

# let rec remove_top = function

# Empty -> raise Queue_is_empty

# | Node(prio, elt, left, Empty) -> left

# | Node(prio, elt, Empty, right) -> right

# | Node(prio, elt, (Node(lprio, lelt, _, _) as left),

# (Node(rprio, relt, _, _) as right)) ->
# if lprio <= rprio

# then Node(lprio, lelt, remove_top left, right)

33



# else Node(rprio, relt, left, remove_top right)
# let extract = function
# Empty -> raise Queue_is_empty
# | Node(prio, elt, _, _) as queue —> (prio, elt, remove_top queue)
# end;;
module PrioQueue :
sig

type priority = int
type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue

val empty : 'a queue

val insert : 'a queue -> priority -> 'a -> 'a queue

exception Queue_is_empty

val remove_top : 'a queue -> 'a queue

val extract : 'a queue -> priority * 'a * 'a queue
end

Outside the structure, its components can be referred to using the “dot notation”, that is, identifiers
qualified by a structure name. For instance, PrioQueue.insert is the function insert defined
inside the structure PrioQueue and PrioQueue.queue is the type queue defined in PrioQueue.

# PrioQueue.insert PrioQueue.empty 1 "hello";;
- : string PrioQueue.queue =
PrioQueue.Node (1, "hello", PrioQueue.Empty, PrioQueue.Empty)

Another possibility is to open the module, which brings all identifiers defined inside the module
in the scope of the current structure.

# open PrioQueue;;

# insert empty 1 "hello";;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

Opening a module enables lighter access to its components, at the cost of making it harder to
identify in which module a identifier has been defined. In particular, opened modules can shadow
identifiers present in the current scope, potentially leading to confusing errors:

# let empty = []
# open PrioQueue;;
val empty : 'a list = []

# let x =1 :: empty ;;
Error: This expression has type 'a PrioQueue.queue
but an expression was expected of type int list

A partial solution to this conundrum is to open modules locally, making the components of
the module available only in the concerned expression. This can also make the code easier to read
— the open statement is closer to where it is used— and to refactor — the code fragment is more
self-contained. Two constructions are available for this purpose:

# let open PrioQueue in
# insert empty 1 "hello";;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)
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and

# PrioQueue. (insert empty 1 "hello");;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

In the second form, when the body of a local open is itself delimited by parentheses, braces or
bracket, the parentheses of the local open can be omitted. For instance,

# PrioQueue. [empty] = PrioQueue. ([emptyl);;
- : bool = true

# PrioQueue. [|emptyl|] = PrioQueue. ([|emptyl]);;
- : bool = true

# PrioQueue.{ contents = empty } = PrioQueue.({ contents = empty 1});;
- : bool = true

becomes

# PrioQueue. [insert empty 1 "hello"];;
- : string PrioQueue.queue list = [Node (1, "hello", Empty, Empty)]

It is also possible to copy the components of a module inside another module by using an
include statement. This can be particularly useful to extend existing modules. As an illustration,
we could add functions that returns an optional value rather than an exception when the priority
queue is empty.

# module PrioQueueOpt =
# struct
# include PrioQueue
# let remove_top_opt x =
# try Some(remove_top x) with Queue_is_empty -> None
# let extract_opt x =
# try Some(extract x) with Queue_is_empty -> None
# end;;
module PrioQueueOpt :
sig
type priority
type 'a queue
'a Prio(Jueue.queue =

int

Empty

| Node of priority * 'a * 'a queue * 'a queue
val empty : 'a queue
val insert : 'a queue -> priority -> 'a -> 'a queue
exception Queue_is_empty
val remove_top : 'a queue -> 'a queue
val extract : 'a queue -> priority * 'a * 'a queue
val remove_top_opt : 'a queue -> 'a queue option
val extract_opt : 'a queue -> (priority * 'a * 'a queue) option

end
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2.2 Signatures

Signatures are interfaces for structures. A signature specifies which components of a structure
are accessible from the outside, and with which type. It can be used to hide some components
of a structure (e.g. local function definitions) or export some components with a restricted type.
For instance, the signature below specifies the three priority queue operations empty, insert and
extract, but not the auxiliary function remove_top. Similarly, it makes the queue type abstract
(by not providing its actual representation as a concrete type).

# module type PRIOQUEUE =

# sig
# type priority = int (* still concrete *)
# type 'a queue (* now abstract *)
# val empty : 'a queue
# val insert : 'a queue -> int -> 'a -> 'a queue
# val extract : 'a queue -> int * 'a * 'a queue
# exception Queue_is_empty
# end;;
module type PRIOQUEUE =
sig

type priority = int
type 'a queue

val empty : 'a queue
val insert : 'a queue -> int -> 'a -> 'a queue
val extract : 'a queue -> int * 'a * 'a queue
exception Queue_is_empty

end

Restricting the PrioQueue structure by this signature results in another view of the PrioQueue
structure where the remove_top function is not accessible and the actual representation of priority
queues is hidden:

# module AbstractPrioQueue = (PrioQueue : PRIOQUEUE);;
module AbstractPrioQueue : PRIOQUEUE

# AbstractPrioQueue.remove_top ;;
Error: Unbound value AbstractPrio(Jueue.remove_top

# AbstractPrioQueue.insert AbstractPrioQueue.empty 1 "hello";;
- : string AbstractPrioQueue.queue = <abstr>

The restriction can also be performed during the definition of the structure, as in
module PrioQueue = (struct ... end : PRIOQUEUE);;

An alternate syntax is provided for the above:
module PrioQueue : PRIOQUEUE = struct ... end;;

Like for modules, it is possible to include a signature to copy its components inside the current
signature. For instance, we can extend the PRIOQUEUE signature with the extract_opt function:
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# module type PRIOQUEUE_WITH_OPT =

# sig
# include PRIOQUEUE
# val extract_opt : 'a queue -> (int * 'a * 'a queue) option
# end;;
module type PRIOQUEUE_WITH_OPT =
sig

type priority = int
type 'a queue

val empty : 'a queue

val insert : 'a queue -> int -> 'a -> 'a queue

val extract : 'a queue -> int * 'a * 'a queue

exception Queue_is_empty

val extract_opt : 'a queue -> (int * 'a * 'a queue) option
end

2.3 Functors

Functors are “functions” from modules to modules. Functors let you create parameterized modules
and then provide other modules as parameter(s) to get a specific implementation. For instance, a
Set module implementing sets as sorted lists could be parameterized to work with any module that
provides an element type and a comparison function compare (such as OrderedString):

# type comparison = Less | Equal | Greater;;
type comparison = Less | Equal | Greater

# module type ORDERED_TYPE =

# sig

# type t

# val compare: t -> t -> comparison
# end;;

module type ORDERED_TYPE = sig type t val compare : t -> t —-> comparison end

# module Set =
# functor (Elt: ORDERED_TYPE) ->

| Greater -> hd :: add x tl
let rec member x s =

# struct

# type element = Elt.t

# type set = element list

# let empty = []

# let rec add x s =

# match s with

# 1 > [x]

# | hd::tl ->

# match Elt.compare x hd with

# Equal -> s (* x is already in s *)
# | Less -> x :: s (* x is smaller than all elements of s *)
#

#
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# match s with
# [1 -> false
# | hd::tl ->
# match Elt.compare x hd with
# Equal -> true (* x belongs to s *)
# | Less -> false (* x is smaller than all elements of s *)
# | Greater -> member x tl
# end; ;
module Set :

functor (El1t : ORDERED_TYPE) ->

sig

type element = Elt.t

type set = element list

val empty : 'a list

val add : Elt.t -> EIt.t list -> Elt.t list

val member : Elt.t -> EIt.t list -> bool
end

By applying the Set functor to a structure implementing an ordered type, we obtain set operations
for this type:

# module OrderedString =
# struct

# type t = string
# let compare x y = if x = y then Equal else if x < y then Less else Greater
# end;;
module OrderedString :
sig type t = string val compare : 'a -> 'a -> comparison end

# module StringSet = Set(OrderedString);;
module StringSet :
sig
type element = OrderedString.t
type set = element list
val empty : 'a list
val add : OrderedString.t -> OrderedString.t list -> OrderedString.t list
val member : OrderedString.t -> OrderedString.t list -> bool
end

# StringSet.member "bar" (StringSet.add "foo" StringSet.empty);;
- : bool = false

2.4 Functors and type abstraction

As in the PrioQueue example, it would be good style to hide the actual implementation of the
type set, so that users of the structure will not rely on sets being lists, and we can switch later to
another, more efficient representation of sets without breaking their code. This can be achieved by
restricting Set by a suitable functor signature:
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# module type SETFUNCTOR =

#  functor (Elt: ORDERED_TYPE) ->

# sig

# type element = Elt.t (* concrete *)
# type set (* abstract *)
# val empty : set

# val add : element -> set -> set

# val member : element -> set -> bool

# end; ;

module type SETFUNCTOR =
functor (E1t : ORDERED_TYPE) ->

sig
type element = Elt.t
type set
val empty : set
val add : element -> set —-> set
val member : element -> set -> bool

end

# module AbstractSet = (Set : SETFUNCTOR);;
module AbstractSet : SETFUNCTOR

# module AbstractStringSet = AbstractSet(OrderedString);;
module AbstractStringSet :
sig
type element = OrderedString.t
type set = AbstractSet(OrderedString).set
val empty : set
val add : element -> set —-> set
val member : element -> set -> bool
end

# AbstractStringSet.add "gee" AbstractStringSet.empty;;
- : AbstractStringSet.set = <abstr>

In an attempt to write the type constraint above more elegantly, one may wish to name the
signature of the structure returned by the functor, then use that signature in the constraint:

# module type SET =
# sig
type element
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end;;
module type SET =
sig
type element
type set
val empty : set

H OH HF H H H
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val add : element -> set -> set
val member : element -> set -> bool
end

# module WrongSet = (Set : functor(Elt: ORDERED_TYPE) -> SET);;
module WrongSet : functor (El1t : ORDERED_TYPE) -> SET

# module WrongStringSet = WrongSet(OrderedString);;
module WrongStringSet :
sig
type element = WrongSet (OrderedString).element
type set = WrongSet (OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

# WrongStringSet.add "gee" WrongStringSet.empty ;;
Error: This expression has type string but an expression was expected of type
WrongStringSet.element = WrongSet (OrderedString).element

The problem here is that SET specifies the type element abstractly, so that the type equality
between element in the result of the functor and t in its argument is forgotten. Consequently,
WrongStringSet.element is not the same type as string, and the operations of WrongStringSet
cannot be applied to strings. As demonstrated above, it is important that the type element in
the signature SET be declared equal to E1t.t; unfortunately, this is impossible above since SET
is defined in a context where E1t does not exist. To overcome this difficulty, OCaml provides a
with type construct over signatures that allows enriching a signature with extra type equalities:

# module AbstractSet2 =

# (Set : functor(Elt: ORDERED_TYPE) -> (SET with type element = Elt.t));;
module AbstractSet2 :
functor (El1t : ORDERED_TYPE) ->
sig
type element = Elt.t
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

As in the case of simple structures, an alternate syntax is provided for defining functors and
restricting their result:

module AbstractSet2(Elt: ORDERED_TYPE) : (SET with type element = Elt.t) =
struct ... end;;

Abstracting a type component in a functor result is a powerful technique that provides a high
degree of type safety, as we now illustrate. Consider an ordering over character strings that is
different from the standard ordering implemented in the OrderedString structure. For instance,
we compare strings without distinguishing upper and lower case.
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# module NoCaseString =
# struct

# type t = string
# let compare sl s2 =
#

OrderedString.compare (String.lowercase_ascii sl1) (String.lowercase_ascii s2)
# end;;
module NoCaseString :

sig type t = string val compare : string -> string -> comparison end

# module NoCaseStringSet = AbstractSet(NoCaseString);;
module NoCaseStringSet :
sig
type element = NoCaseString.t
type set = AbstractSet (NoCaseString).set
val empty : set
val add : element —-> set -> set
val member : element -> set -> bool
end

# NoCaseStringSet.add "FO0" AbstractStringSet.empty ;;
Error: This expression has type
AbstractStringSet.set = AbstractSet(OrderedString) .set
but an expression was expected of type
NoCaseStringSet.set = AbstractSet (NoCaseString).set

Note that the two types AbstractStringSet.set and NoCaseStringSet.set are not compatible,
and values of these two types do not match. This is the correct behavior: even though both set types
contain elements of the same type (strings), they are built upon different orderings of that type, and
different invariants need to be maintained by the operations (being strictly increasing for the stan-
dard ordering and for the case-insensitive ordering). Applying operations from AbstractStringSet
to values of type NoCaseStringSet.set could give incorrect results, or build lists that violate the
invariants of NoCaseStringSet.

2.5 Modules and separate compilation

All examples of modules so far have been given in the context of the interactive system. However,
modules are most useful for large, batch-compiled programs. For these programs, it is a practi-
cal necessity to split the source into several files, called compilation units, that can be compiled
separately, thus minimizing recompilation after changes.

In OCaml, compilation units are special cases of structures and signatures, and the relationship
between the units can be explained easily in terms of the module system. A compilation unit A
comprises two files:

e the implementation file A.ml, which contains a sequence of definitions, analogous to the inside
of a struct...end construct;

e the interface file A.mli, which contains a sequence of specifications, analogous to the inside
of a sig...end construct.
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These two files together define a structure named A as if the following definition was entered at
top-level:

module A: sig (* contents of file A.mli *) end
= struct (* contents of file A.ml *) end;;

The files that define the compilation units can be compiled separately using the ocamlc -c
command (the -c option means “compile only, do not try to link”); this produces compiled interface
files (with extension .cmi) and compiled object code files (with extension .cmo). When all units
have been compiled, their .cmo files are linked together using the ocamlc command. For instance,
the following commands compile and link a program composed of two compilation units Aux and
Main:

$ ocamlc -c Aux.mli # produces aux.cmi
$ ocamlc -c Aux.ml # produces aux.cmo
$ ocamlc -c Main.mli # produces main.cmi
$ ocamlc -c Main.ml # produces main.cmo
$ ocamlc -o theprogram Aux.cmo Main.cmo

The program behaves exactly as if the following phrases were entered at top-level:

module Aux: sig (* contents of Aux.mli *) end

= struct (* contents of Aux.ml *) end;;
module Main: sig (* contents of Main.mli *) end

= struct (* contents of Main.ml *) end;;

In particular, Main can refer to Aux: the definitions and declarations contained in Main.ml and
Main.mli can refer to definition in Aux.ml, using the Aux.ident notation, provided these definitions
are exported in Aux.mli.

The order in which the .cmo files are given to ocamlc during the linking phase determines the
order in which the module definitions occur. Hence, in the example above, Aux appears first and
Main can refer to it, but Aux cannot refer to Main.

Note that only top-level structures can be mapped to separately-compiled files, but neither
functors nor module types. However, all module-class objects can appear as components of a
structure, so the solution is to put the functor or module type inside a structure, which can then
be mapped to a file.



Chapter 3

Objects in OCaml

(Chapter written by Jérome Vouillon, Didier Rémy and Jacques Garrigue)

This chapter gives an overview of the object-oriented features of OCaml.

Note that the relationship between object, class and type in OCaml is different than in main-
stream object-oriented languages such as Java and C+-+, so you shouldn’t assume that similar
keywords mean the same thing. Object-oriented features are used much less frequently in OCaml
than in those languages. OCaml has alternatives that are often more appropriate, such as modules
and functors. Indeed, many OCaml programs do not use objects at all.

3.1 Classes and objects

The class point below defines one instance variable x and two methods get_x and move. The
initial value of the instance variable is 0. The variable x is declared mutable, so the method move
can change its value.

# class point =
# object
# val mutable x = 0
# method get_x = x
# method move d = x <- x + d
# end;;
class point :
object val mutable x : int method get_x : int method move : int -> unit end

We now create a new point p, instance of the point class.

# let p = new point;;
val p : point = <obj>

Note that the type of p is point. This is an abbreviation automatically defined by the class
definition above. It stands for the object type <get_x : int; move : int -> unit>, listing the
methods of class point along with their types.

We now invoke some methods of p:
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# pHget_x;;
- : int =0
# p#move 3;;
- : unit = ()
# pHget_x;;
- : int = 3

The evaluation of the body of a class only takes place at object creation time. Therefore, in the
following example, the instance variable x is initialized to different values for two different objects.

# let x0 = ref O;;
val x0 : int ref = {contents = 0}

# class point =
# object

# val mutable x = incr x0; !x0
# method get_x = x

# method move d = x <- x + d

# end; ;

class point :
object val mutable x : int method get_x : int method move : int -> unit end

# new point#get_x;;
- int =1
# new point#get_x;;
- : int = 2

The class point can also be abstracted over the initial values of the x coordinate.

class point = fun x_init ->
object
val mutable x = x_init
method get_x = x
method move d = x <- x + d
end;;
class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end

#
#
#
#
#
#

Like in function definitions, the definition above can be abbreviated as:

# class point x_init =
# object
# val mutable x = x_init
# method get_x = x
# method move d = x <- x + d
# end;;
class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end
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An instance of the class point is now a function that expects an initial parameter to create a point
object:

# new point;;
- : int -> point = <fun>
# let p = new point 7;;

val p : point = <obj>

The parameter x_init is, of course, visible in the whole body of the definition, including methods.
For instance, the method get_offset in the class below returns the position of the object relative
to its initial position.

# class point x_init =
# object
# val mutable x = x_init
# method get_x = x
# method get_offset = x - x_init
# method move d = x <- x + d
# end;;
class point :
int ->
object

val mutable x : int

method get_offset : int

method get_x : int

method move : int -> unit
end

Expressions can be evaluated and bound before defining the object body of the class. This is useful
to enforce invariants. For instance, points can be automatically adjusted to the nearest point on a
grid, as follows:

# class adjusted_point x_init =
# let origin = (x_init / 10) * 10 in

# object
# val mutable x = origin
# method get_x = x
# method get_offset = x - origin
# method move d = x <- x +d
# end;;
class adjusted_point :
int ->
object

val mutable x : int

method get_offset : int

method get_x : int

method move : int -> unit
end
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(One could also raise an exception if the x_init coordinate is not on the grid.) In fact, the same
effect could here be obtained by calling the definition of class point with the value of the origin.

# class adjusted_point x_init = point ((x_init / 10) * 10);;
class adjusted_point : int -> point

An alternate solution would have been to define the adjustment in a special allocation function:

# let new_adjusted_point x_init = new point ((x_init / 10) * 10);;
val new_adjusted_point : int -> point = <fun>

However, the former pattern is generally more appropriate, since the code for adjustment is part
of the definition of the class and will be inherited.

This ability provides class constructors as can be found in other languages. Several constructors
can be defined this way to build objects of the same class but with different initialization patterns;
an alternative is to use initializers, as described below in section 3.4.

3.2 Immediate objects

There is another, more direct way to create an object: create it without going through a class.
The syntax is exactly the same as for class expressions, but the result is a single object rather
than a class. All the constructs described in the rest of this section also apply to immediate objects.

#

#

# val mutable x = 0

# method get_x = x

# method move d = x <- x + d
# end;;

val p : < get_x : int; move : int -> unit > = <obj>
# pHget_x;;

- : int =0

# p#move 3;;

- : unit = ()

+H+

p#get_x;;
:int = 3

Unlike classes, which cannot be defined inside an expression, immediate objects can appear
anywhere, using variables from their environment.

# let minmax x y =
# if x < y then object method min = x method max = y end

# else object method min = y method max = x end;;
val minmax : 'a -> 'a -> < max : 'a; min : 'a > = <fun>

Immediate objects have two weaknesses compared to classes: their types are not abbreviated,
and you cannot inherit from them. But these two weaknesses can be advantages in some situations,
as we will see in sections 3.3 and 3.10.



Chapter 3. Objects in OCaml 47

3.3 Reference to self

A method or an initializer can invoke methods on self (that is, the current object). For that, self
must be explicitly bound, here to the variable s (s could be any identifier, even though we will
often choose the name self.)

# class printable_point x_init =
# object (s)
# val mutable x = x_init
# method get_x = x
# method move d = x <- x + d
# method print = print_int s#get_x
# end;;
class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end

# let p = new printable_point 7;;
val p : printable_point = <obj>

# p#print;;
7- : unit = ()

Dynamically, the variable s is bound at the invocation of a method. In particular, when the class
printable_point is inherited, the variable s will be correctly bound to the object of the subclass

A common problem with self is that, as its type may be extended in subclasses, you cannot fix
it in advance. Here is a simple example.

# let ints = ref [1;;
val ints : '_weakl list ref = {contents = []}

# class my_int =
# object (self)

# method n = 1

# method register = ints := gelf :: !ints

# end ;;

Error: This expression has type < n : int; register : 'a; .. >

but an expression was expected of type 'weakl
Self type cannot escape its class

You can ignore the first two lines of the error message. What matters is the last one: putting self
into an external reference would make it impossible to extend it through inheritance. We will see
in section 3.12 a workaround to this problem. Note however that, since immediate objects are not
extensible, the problem does not occur with them.
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# let my_int =
# object (self)

# method n = 1
# method register = ints := self :: !ints
# end;;

val my_int : < n : int; register : unit > = <obj>

3.4 Initializers

Let-bindings within class definitions are evaluated before the object is constructed. It is also
possible to evaluate an expression immediately after the object has been built. Such code is written
as an anonymous hidden method called an initializer. Therefore, it can access self and the instance
variables.

# class printable_point x_init =
# let origin = (x_init / 10) * 10 in
# object (self)
# val mutable x = origin
# method get_x = x
# method move d = x <- x + d
# method print = print_int self#get_x
# initializer print_string "new point at "; self#print; print_newline ()
# end;;
class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end

# let p = new printable_point 17;;
new point at 10
val p : printable_point = <obj>

Initializers cannot be overridden. On the contrary, all initializers are evaluated sequentially. Ini-
tializers are particularly useful to enforce invariants. Another example can be seen in section 6.1.

3.5 Virtual methods

It is possible to declare a method without actually defining it, using the keyword virtual. This
method will be provided later in subclasses. A class containing virtual methods must be flagged
virtual, and cannot be instantiated (that is, no object of this class can be created). It still defines
type abbreviations (treating virtual methods as other methods.)

# class virtual abstract_point x_init =
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# object (self)
# method virtual get_x : int
# method get_offset = self#get_x - x_init
# method virtual move : int -> unit
# end;;
class virtual abstract_point :
int ->
object
method get_offset : int
method virtual get_x : int
method virtual move : int -> unit

end
# class point x_init =
# object
# inherit abstract_point x_init
# val mutable x = x_init
# method get_x = x
# method move d = x <- x + d
# end;;
class point :
int ->
object

val mutable x : int

method get_offset : int

method get_x : int

method move : int -> unit
end

Instance variables can also be declared as virtual, with the same effect as with methods.

# class virtual abstract_point2 =

# object

# val mutable virtual x : int
# method move d = x <- x + d
# end;;

class virtual abstract_point2 :
object val mutable virtual x : int method move : int -> unit end

class point2 x_init =
object
inherit abstract_point2
val mutable x = x_init
method get_offset = x - x_init
end;;
class point2 :
int ->
object
val mutable x : int
method get_offset : int

#
#
#
#
#
#
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method move : int -> unit
end

3.6 Private methods

Private methods are methods that do not appear in object interfaces. They can only be invoked
from other methods of the same object.

# class restricted_point x_init =
# object (self)
# val mutable x = x_init
# method get_x = x
# method private move d = x <- x + d
# method bump = self#move 1
# end; ;
class restricted_point :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method private move : int -> unit
end

# let p = new restricted_point O0;;
val p : restricted_point = <obj>

# p#move 10 ;;
Error: This expression has type restricted_point
It has no method move

# p#bump; ;
- : unit = ()

Note that this is not the same thing as private and protected methods in Java or C++, which can
be called from other objects of the same class. This is a direct consequence of the independence
between types and classes in OCaml: two unrelated classes may produce objects of the same type,
and there is no way at the type level to ensure that an object comes from a specific class. However
a possible encoding of friend methods is given in section 3.17.

Private methods are inherited (they are by default visible in subclasses), unless they are hidden
by signature matching, as described below.

Private methods can be made public in a subclass.

# class point_again x =
# object (self)

# inherit restricted_point x
# method virtual move :
# end;;

class point_again :
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int ->

object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit

end

The annotation virtual here is only used to mention a method without providing its definition.
Since we didn’t add the private annotation, this makes the method public, keeping the original
definition.

An alternative definition is

# class point_again x =
# object (self : < move : _; ..>)
# inherit restricted_point x
# end; ;
class point_again :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit
end

The constraint on self’s type is requiring a public move method, and this is sufficient to override
private.

One could think that a private method should remain private in a subclass. However, since the
method is visible in a subclass, it is always possible to pick its code and define a method of the
same name that runs that code, so yet another (heavier) solution would be:

# class point_again x =

# object
# inherit restricted_point x as super
# method move = super#move
# end;;
class point_again :
int ->
object

val mutable x : int

method bump : unit

method get_x : int

method move : int -> unit
end

Of course, private methods can also be virtual. Then, the keywords must appear in this order
method private virtual.
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3.7 Class interfaces

Class interfaces are inferred from class definitions. They may also be defined directly and used to
restrict the type of a class. Like class declarations, they also define a new type abbreviation.

# class type restricted_point_type =

# object

# method get_x : int
# method bump : unit
# end;;

class type restricted_point_type =
object method bump : unit method get_x : int end

# fun (x : restricted_point_type) -> x;;
- : restricted_point_type -> restricted_point_type = <fun>

In addition to program documentation, class interfaces can be used to constrain the type of a
class. Both concrete instance variables and concrete private methods can be hidden by a class type
constraint. Public methods and virtual members, however, cannot.

# class restricted_point' x = (restricted_point x : restricted_point_type);;
class restricted_point' : int -> restricted_point_type

Or, equivalently:

# class restricted_point' = (restricted_point : int -> restricted_point_type);;
class restricted_point' : int -> restricted_point_type

The interface of a class can also be specified in a module signature, and used to restrict the inferred
signature of a module.

# module type POINT = sig

# class restricted_point' : int ->
# object

# method get_x : int

# method bump : unit

# end

# end;;

module type POINT =

sig
class restricted_point'
int -> object method bump : unit method get_x : int end
end

# module Point : POINT = struct

# class restricted_point' = restricted_point
# end;;

module Point : POINT
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3.8 Inheritance

We illustrate inheritance by defining a class of colored points that inherits from the class of points.
This class has all instance variables and all methods of class point, plus a new instance variable c
and a new method color.

# class colored_point x (c : string) =
# object

# inherit point x
# val c = ¢
# method color = c
# end;;
class colored_point :
int ->
string ->
object
val ¢ : string
val mutable x : int
method color : string
method get_offset : int
method get_x : int
method move : int -> unit
end

# let p' = new colored_point 5 "red";;
val p' : colored_point = <obj>

# p'#get_x, p'#color;;
- : int * string = (5, "red")

A point and a colored point have incompatible types, since a point has no method color. However,
the function get_x below is a generic function applying method get_x to any object p that has
this method (and possibly some others, which are represented by an ellipsis in the type). Thus, it
applies to both points and colored points.

# let get_succ_x p = p#get_x + 1;;
val get_succ_x : < get_x : int; .. > -> int = <fun>

# get_succ_x p + get_succ_x p';;
- : int = 8

Methods need not be declared previously, as shown by the example:

# let set_x p = p#set_x;;
val set_x : < set_x : 'a; .. > -> 'a = <fun>

# let incr p = set_x p (get_succ_x p);;
val incr : < get_x : int; set_x : int -> 'a; .. > -> 'a = <fun>

3.9 Multiple inheritance

Multiple inheritance is allowed. Only the last definition of a method is kept: the redefinition in a
subclass of a method that was visible in the parent class overrides the definition in the parent class.
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Previous definitions of a method can be reused by binding the related ancestor. Below, super is
bound to the ancestor printable_point. The name super is a pseudo value identifier that can
only be used to invoke a super-class method, as in super#print.

# class printable_colored_point y c =
# object (self)
# val c = ¢
# method color = c
# inherit printable_point y as super
# method! print =
# print_string "(";
# super#print;
# print_string ", ";
# print_string (self#color);
# print_string ")"
# end;;
class printable_colored_point :
int ->
string ->
object

val ¢ : string
val mutable x : int
method color : string
method get_x : int
method move : int —-> unit
method print : unit

end

# let p' = new printable_colored_point 17 "red";;
new point at (10, red)
val p' : printable_colored_point = <obj>

# p'#print;;
(10, red)- : unit = ()

A private method that has been hidden in the parent class is no longer visible, and is thus not
overridden. Since initializers are treated as private methods, all initializers along the class hierarchy
are evaluated, in the order they are introduced.

Note that for clarity’s sake, the method print is explicitly marked as overriding another defi-
nition by annotating the method keyword with an exclamation mark !. If the method print were
not overriding the print method of printable_point, the compiler would raise an error:

# object
# method! m = ()
# end;;

Error: The method "m' has no previous definition
This explicit overriding annotation also works for val and inherit:

# class another_printable_colored_point y ¢ c¢' =
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# object (self)
# inherit printable_point y
# inherit! printable_colored_point y c
# wval! ¢ =c'
# end;;
class another_printable_colored_point :
int ->
string ->
string ->
object

val ¢ : string
val mutable x : int
method color : string
method get_x : int
method move : int -> unit
method print : unit

end

3.10 Parameterized classes

Reference cells can be implemented as objects. The naive definition fails to typecheck:

# class oref x_init

# object

# val mutable x = x_init
# method get = x

# method set y = x <- ¥y
# end;;

Error: Some type variables are unbound in this type:
class oref :

'a =>
object
val mutable x : 'a
method get : 'a
method set : 'a -> unit
end

The method get has type 'a where 'a is unbound

The reason is that at least one of the methods has a polymorphic type (here, the type of the value
stored in the reference cell), thus either the class should be parametric, or the method type should
be constrained to a monomorphic type. A monomorphic instance of the class could be defined by:

# class oref (x_init:int) =

# object

# val mutable x = x_init
# method get = x

# method set y = x <- y
# end;;

class oref :
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int ->
object val mutable x : int method get : int method set : int -> unit end
Note that since immediate objects do not define a class type, they have no such restriction.

# let new_oref x_init =
# object

# val mutable x = x_init

# method get = x

# method set y = x <- y

# end;;

val new_oref : 'a -> < get : 'a; set : 'a -> unit > = <fun>

On the other hand, a class for polymorphic references must explicitly list the type parameters in
its declaration. Class type parameters are listed between [ and ]. The type parameters must also
be bound somewhere in the class body by a type constraint.

# class ['al oref x_init =
# object
val mutable x = (x_init : 'a)
method get = x
method set y = x <- ¥y
end;;
class ['a] oref :
'a -> object val mutable x : 'a method get : 'a method set : 'a -> unit end

#
#
#
#

# let r = new oref 1 in r#set 2; (r#get);;
- : int = 2

The type parameter in the declaration may actually be constrained in the body of the class def-
inition. In the class type, the actual value of the type parameter is displayed in the constraint
clause.

# class ['a] oref_succ (x_init:'a) =
# object
val mutable x = x_init + 1
method get = x
method set y = x <- ¥y
end;;
class ['a] oref_succ :
'a =>
object
constraint 'a = int
val mutable x : int
method get : int
method set : int -> unit
end

#
#
#
#

Let us consider a more complex example: define a circle, whose center may be any kind of point. We
put an additional type constraint in method move, since no free variables must remain unaccounted
for by the class type parameters.



Chapter 3. Objects in OCaml 57

# class ['a] circle (c : 'a) =
# object
# val mutable center = c
# method center = center
# method set_center ¢ = center <- c
# method move = (center#move : int -> unit)
# end;;
class ['a] circle :
1a ->
object
constraint 'a = < move : int -> unit; .. >
val mutable center : 'a
method center : 'a
method move : int -> unit
method set_center : 'a -> unit
end

An alternate definition of circle, using a constraint clause in the class definition, is shown below.
The type #point used below in the constraint clause is an abbreviation produced by the definition
of class point. This abbreviation unifies with the type of any object belonging to a subclass of class
point. It actually expands to < get_x : int; move : int -> unit; .. >. This leads to the
following alternate definition of circle, which has slightly stronger constraints on its argument, as
we now expect center to have a method get_x.

# class ['a] circle (c : 'a) =
# object
# constraint 'a = #point
# val mutable center = ¢
# method center = center
# method set_center ¢ = center <- c
# method move = center#move
# end; ;
class ['a] circle :
'a =>
object
constraint 'a = #point
val mutable center : 'a
method center : 'a
method move : int -> unit
method set_center : 'a -> unit
end

The class colored_circle is a specialized version of class circle that requires the type of the
center to unify with #colored_point, and adds a method color. Note that when specializing a
parameterized class, the instance of type parameter must always be explicitly given. It is again
written between [ and ].

# class ['a]l colored_circle c =
# object



58

# constraint 'a = #colored_point
# inherit ['al circle c
# method color = center#color
# end;;
class ['a] colored_circle :
'a =>
object
constraint 'a = #colored_point
val mutable center : 'a
method center : 'a

method color : string

method move : int -> unit

method set_center : 'a -> unit
end

3.11 Polymorphic methods

While parameterized classes may be polymorphic in their contents, they are not enough to allow
polymorphism of method use.
A classical example is defining an iterator.

# List.fold_left;;
- :('a->"'b->"'a) -> 'a -> 'b list -> 'a = <fun>

# class ['al] intlist (1 : int list) =

# object

# method empty = (1 = [])

# method fold f (accu : 'a) = List.fold_left f accu 1
# end;;

class ['a] intlist :
int list ->
object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end

At first look, we seem to have a polymorphic iterator, however this does not work in practice.

# let 1 = new intlist [1; 2; 3];;
val 1 : '_weak2 intlist = <obj>

# 1#fold (fun x y —> x+y) 0;;

- : int =6

#1355

- : int intlist = <obj>

# 1#fold (fun s x -> s ~ Int.to_string x ~ " ") ""

Error: This expression has type int but an expression was expected of type
string

Our iterator works, as shows its first use for summation. However, since objects themselves are not
polymorphic (only their constructors are), using the fold method fixes its type for this individual
object. Our next attempt to use it as a string iterator fails.
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The problem here is that quantification was wrongly located: it is not the class we want to be
polymorphic, but the fold method. This can be achieved by giving an explicitly polymorphic type
in the method definition.

class intlist (1 : int list) =
object
method empty = (1 = [])
method fold : 'a. ('a -> int -> 'a) -> 'a -> 'a =
fun f accu -> List.fold_left f accu 1
end;;
class intlist :
int list ->
object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end

#
#
#
#
#
#

# let 1 = new intlist [1; 2; 3];;
val 1 : intlist = <obj>

# 1#fold (fun x y -> x+y) 0;;
- : int = 6

# 1#fold (fun s x -> s ~ Int.to_string x ~ " ") "";;
- : string = "1 23"

As you can see in the class type shown by the compiler, while polymorphic method types must be
fully explicit in class definitions (appearing immediately after the method name), quantified type
variables can be left implicit in class descriptions. Why require types to be explicit? The problem
is that (int -> int -> int) -> int -> int would also be a valid type for fold, and it happens
to be incompatible with the polymorphic type we gave (automatic instantiation only works for
toplevel types variables, not for inner quantifiers, where it becomes an undecidable problem.) So
the compiler cannot choose between those two types, and must be helped.

However, the type can be completely omitted in the class definition if it is already known,
through inheritance or type constraints on self. Here is an example of method overriding.

# class intlist_rev 1 =

# object

# inherit intlist 1

# method! fold f accu = List.fold_left f accu (List.rev 1)
# end;;

The following idiom separates description and definition.

class type ['al iterator =
object method fold : ('b -> 'a -> 'b) -> 'b -> 'b end;;

#
#
# class intlist' 1 =

# object (self : int #iterator)

# method empty = (1 = [])

# method fold f accu = List.fold_left f accu 1l
# end; ;
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Note here the (self : int #iterator) idiom, which ensures that this object implements the
interface iterator.

Polymorphic methods are called in exactly the same way as normal methods, but you should
be aware of some limitations of type inference. Namely, a polymorphic method can only be called
if its type is known at the call site. Otherwise, the method will be assumed to be monomorphic,
and given an incompatible type.

# let sum lst = 1lst#fold (fun x y -> x+y) 0;;
val sum : < fold : (int -> int -> int) -> int -> 'a; .. > -> 'a = <fun>

# sum 1 ;;
Error: This expression has type intlist
but an expression was expected of type
< fold : (int -> int -> int) -> int -> 'a; .. >
Types for method fold are incompatible

The workaround is easy: you should put a type constraint on the parameter.

# let sum (lst : _ #iterator) = lst#fold (fun x y -> x+y) O;;
val sum : int #iterator -> int = <fun>

Of course the constraint may also be an explicit method type. Only occurrences of quantified
variables are required.

# let sum lst =
# (st : < fold : 'a. ('a => _ -> 'a) —> 'a -> 'a; .. >)#fold (+) 0;;
val sum : < fold : 'a. ('a -> int -> 'a) -> 'a -> 'a; .. > -> int = <fun>

Another use of polymorphic methods is to allow some form of implicit subtyping in method
arguments. We have already seen in section 3.8 how some functions may be polymorphic in the
class of their argument. This can be extended to methods.

# class type pointO = object method get_x : int end;;
class type point0 = object method get_x : int end

# class distance_point x =

# object
# inherit point x
# method distance : 'a. (#point0 as 'a) -> int =
# fun other -> abs (other#get_x - x)
# end; ;
class distance_point :
int ->
object

val mutable x : int
method distance : #point0O -> int
method get_offset : int
method get_x : int
method move : int -> unit
end

# let p = new distance_point 3 in
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# (p#distance (new point 8), p#distance (new colored_point 1 "blue"));;
- : int * int = (5, 2)

Note here the special syntax (#pointO as 'a) we have to use to quantify the extensible part
of #point0. As for the variable binder, it can be omitted in class specifications. If you want
polymorphism inside object field it must be quantified independently.

# class multi_poly =

# object
# method m1 : 'a. (< nl : 'b. 'b -> 'b; .. > as 'a) -> _ =
# fun o -> o#nl true, o#nl "hello"
# method m2 : 'a 'b. (< n2 : 'b -> bool; .. > as 'a) > 'b > _ =
# fun o x -> o#n2 x
# end;;
class multi_poly :
object
method m1 : < nl : 'b. 'b => 'b; .. > => bool * string
method m2 : < n2 : 'b -> bool; .. > -> 'b -> bool
end

In method m1, o must be an object with at least a method n1, itself polymorphic. In method m2,
the argument of n2 and x must have the same type, which is quantified at the same level as 'a.

3.12 Using coercions

Subtyping is never implicit. There are, however, two ways to perform subtyping. The most general
construction is fully explicit: both the domain and the codomain of the type coercion must be
given.

We have seen that points and colored points have incompatible types. For instance, they cannot
be mixed in the same list. However, a colored point can be coerced to a point, hiding its color
method:

# let colored_point_to_point cp = (cp : colored_point :> point);;
val colored_point_to_point : colored_point -> point = <fun>

# let p = new point 3 and q = new colored_point 4 "blue";;
val p : point = <obj>
val q : colored_point = <obj>

# let 1 = [p; (colored_point_to_point q)];;
val 1 : point list = [<obj>; <obj>]

An object of type t can be seen as an object of type t' only if t is a subtype of t'. For instance,
a point cannot be seen as a colored point.

# (p : point :> colored_point);;
Error: Type point = < get_offset : int; get_x : int; move : int -> unit >
is not a subtype of
colored_point =
< color : string; get_offset : int; get_x : int;
move : int -> unit >
The first object type has no method color
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Indeed, narrowing coercions without runtime checks would be unsafe. Runtime type checks might
raise exceptions, and they would require the presence of type information at runtime, which is
not the case in the OCaml system. For these reasons, there is no such operation available in the
language.

Be aware that subtyping and inheritance are not related. Inheritance is a syntactic relation
between classes while subtyping is a semantic relation between types. For instance, the class of
colored points could have been defined directly, without inheriting from the class of points; the type
of colored points would remain unchanged and thus still be a subtype of points.

The domain of a coercion can often be omitted. For instance, one can define:

# let to_point cp = (cp :> point);;
val to_point : #point -> point = <fun>

In this case, the function colored_point_to_point is an instance of the function to_point. This is
not always true, however. The fully explicit coercion is more precise and is sometimes unavoidable.
Consider, for example, the following class:

# class cO = object method m = {< >} method n = 0 end;;

class cO : object ('a) method m : 'a method n : int end

The object type cO is an abbreviation for <m : 'a; n : int> as 'a. Consider now the type
declaration:

# class type cl = object method m : cl end;;

class type cl1 = object method m : cl1 end

The object type c1 is an abbreviation for the type <m : 'a> as 'a. The coercion from an object
of type cO to an object of type c1 is correct:

# fun (x:c0) -> (x : c0 :> cl);;
- : c0 -> c1 = <fun>

However, the domain of the coercion cannot always be omitted. In that case, the solution is to use
the explicit form. Sometimes, a change in the class-type definition can also solve the problem

# class type c2 = object ('a) method m : 'a end;;
class type c2 = object ('a) method m : 'a end

# fun (x:c0) -> (x :> c2);;
- : ¢c0 -> c2 = <fun>

While class types c1 and c2 are different, both object types c1 and c2 expand to the same object
type (same method names and types). Yet, when the domain of a coercion is left implicit and its
co-domain is an abbreviation of a known class type, then the class type, rather than the object
type, is used to derive the coercion function. This allows leaving the domain implicit in most cases
when coercing form a subclass to its superclass. The type of a coercion can always be seen as
below:

# let to_cl x = (x > cl);;
val to_cl : <m : #cl; .. > -> cl = <fun>

# let to_c2 x = (x :> c2);;
val to_c2 : #c2 -> c2 = <fun>
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Note the difference between these two coercions: in the case of to_c2, the type
#c2 = <m : 'a; .. > as 'a is polymorphically recursive (according to the explicit re-
cursion in the class type of c2); hence the success of applying this coercion to an object of
class c0. On the other hand, in the first case, c1 was only expanded and unrolled twice to
obtain <m : <m : cl; .. >; .. > (remember #c1 = < m : cl; .. >), without introducing
recursion. You may also note that the type of to_c2 is #c2 -> c2 while the type of to_c1 is
more general than #c1 -> c1. This is not always true, since there are class types for which some
instances of #c are not subtypes of c, as explained in section 3.16. Yet, for parameterless classes
the coercion (_ :> c) is always more general than (_ : #c :> c).

A common problem may occur when one tries to define a coercion to a class ¢ while defining
class c. The problem is due to the type abbreviation not being completely defined yet, and so its
subtypes are not clearly known. Then, a coercion (_ :> ¢) or (_ : #c :> c) is taken to be the
identity function, as in

# function x -> (x :> 'a);;
- : 'a -> 'a = <fun>

As a consequence, if the coercion is applied to self, as in the following example, the type of self is
unified with the closed type ¢ (a closed object type is an object type without ellipsis). This would
constrain the type of self be closed and is thus rejected. Indeed, the type of self cannot be closed:
this would prevent any further extension of the class. Therefore, a type error is generated when
the unification of this type with another type would result in a closed object type.

class ¢ = object method m = 1 end
and d = object (self)
inherit c
method n = 2
method as_c = (self :> c)
end;;
Error: This expression cannot be coerced to type ¢ = < m : int >; it has type

#
#
#
#
#
#

<as_c : c; m : int; n : int; .. >
but is here used with type c
Self type cannot escape its class

However, the most common instance of this problem, coercing self to its current class, is detected
as a special case by the type checker, and properly typed.

# class ¢ = object (self) method m = (self :> c) end;;
class ¢ : object method m : ¢ end

This allows the following idiom, keeping a list of all objects belonging to a class or its subclasses:

# let all_c = ref [1;;
val all_c : '_weak3 list ref = {contents = []}

# class ¢ (m : int) =
# object (self)

# method m = m
# initializer all_c := (self :> c) :: lall_c
# end;;

class ¢ : int -> object method m : int end
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This idiom can in turn be used to retrieve an object whose type has been weakened:

# let rec lookup_obj obj = function [] -> raise Not_found

# | obj' :: 1 —>
# if (obj :> < >) = (obj' :> < >) then obj' else lookup_obj obj 1 ;;
val lookup_obj : < .. > -> (< .. > as 'a) list -> 'a = <fun>

# let lookup_c obj = lookup_obj obj '!all_c;;
val lookup_c : < .. > -> < m : int > = <fun>

The type < m : int > we see here is just the expansion of c, due to the use of a reference; we have
succeeded in getting back an object of type c.

The previous coercion problem can often be avoided by first defining the abbreviation, using a
class type:

# class type c' = object method m : int end;;

class type c' = object method m : int end

# class ¢ : ¢c' = object method m = 1 end
# and d = object (self)

# inherit c

# method n = 2

# method as_c = (self :> c')

# end;;

class ¢ : c'

and d : object method as_c : c¢' method m : int method n : int end

It is also possible to use a virtual class. Inheriting from this class simultaneously forces all methods
of ¢ to have the same type as the methods of c'.

# class virtual c' = object method virtual m : int end;;
class virtual c' : object method virtual m : int end

# class ¢ = object (self) inherit c' method m = 1 end;;
class ¢ : object method m : int end

One could think of defining the type abbreviation directly:
# type ¢' = <m : int>;;

However, the abbreviation #c' cannot be defined directly in a similar way. It can only be defined
by a class or a class-type definition. This is because a #-abbreviation carries an implicit anonymous
variable .. that cannot be explicitly named. The closer you get to it is:

# type 'a c'_class = 'a constraint 'a =< m : int; .. >;;

with an extra type variable capturing the open object type.
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3.13 Functional objects

It is possible to write a version of class point without assignments on the instance variables. The
override construct {< ... >} returns a copy of “self” (that is, the current object), possibly changing
the value of some instance variables.

# class functional_point y
# object

# val x = y

# method get_x = x

#

#

#

method move d = {<K x = x + d >}
method move_to x = {< x >}
end;;
class functional_point :
int ->
object ('a)
val x : int
method get_x : int
method move : int -> 'a
method move_to : int -> 'a
end

# let p = new functional_point 7;;
val p : functional_point = <obj>

# pHget_x;;
- int =7

# (p#move 3)#get_x;;
- : int = 10

# (p#move_to 15)#get_x;;

- : int = 15
# p#get_x;;
- :int =7

As with records, the form {< x >} is an elided version of {< x = x >} which avoids the repetition
of the instance variable name. Note that the type abbreviation functional_point is recursive,
which can be seen in the class type of functional_point: the type of self is 'a and 'a appears
inside the type of the method move.

The above definition of functional_point is not equivalent to the following:

# class bad_functional_point y =

# object

# val x =y

# method get_x = x

# method move d = new bad_functional_point (x+d)
# method move_to x = new bad_functional_point x
# end;;

class bad_functional_point :
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int ->
object
val x : int
method get_x : int
method move : int -> bad_functional_point
method move_to : int -> bad_functional_point
end

While objects of either class will behave the same, objects of their subclasses will be different. In a
subclass of bad_functional_point, the method move will keep returning an object of the parent
class. On the contrary, in a subclass of functional_point, the method move will return an object
of the subclass.

Functional update is often used in conjunction with binary methods as illustrated in section
6.2.1.

3.14 Cloning objects

Objects can also be cloned, whether they are functional or imperative. The library function 0o . copy
makes a shallow copy of an object. That is, it returns a new object that has the same methods
and instance variables as its argument. The instance variables are copied but their contents are
shared. Assigning a new value to an instance variable of the copy (using a method call) will not
affect instance variables of the original, and conversely. A deeper assignment (for example if the
instance variable is a reference cell) will of course affect both the original and the copy.

The type of Oo.copy is the following:
# 0o.copy;;
- : (< .. >as 'a) -> 'a = <fun>
The keyword as in that type binds the type variable 'a to the object type < .. >. Therefore,
Oo.copy takes an object with any methods (represented by the ellipsis), and returns an object
of the same type. The type of Oo.copy is different from type < .. > -> < .. > as each ellipsis
represents a different set of methods. Ellipsis actually behaves as a type variable.

# let p = new point 5;;
val p : point = <obj>

# let q = Oo.copy p;;
val q : point = <obj>

# g#move 7; (p#get_x, q#tget_x);;
- : int * int = (5, 12)

In fact, Oo.copy p will behave as p#copy assuming that a public method copy with body {< >}
has been defined in the class of p.

Objects can be compared using the generic comparison functions = and <>. Two objects are
equal if and only if they are physically equal. In particular, an object and its copy are not equal.

# let q = Oo.copy p;;
val q : point = <obj>

#p=q9,p=pP;;
- : bool * bool = (false, true)
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Other generic comparisons such as (<, <=, ...) can also be used on objects. The relation < defines an
unspecified but strict ordering on objects. The ordering relationship between two objects is fixed
once for all after the two objects have been created and it is not affected by mutation of fields.

Cloning and override have a non empty intersection. They are interchangeable when used within
an object and without overriding any field:

# class copy =

# object
# method copy = {< >}
# end;;

class copy : object ('a) method copy : 'a end

# class copy =

# object (self)
# method copy
# end;;

class copy : object ('a) method copy : 'a end

Oo.copy self

Only the override can be used to actually override fields, and only the Oo.copy primitive can be
used externally.
Cloning can also be used to provide facilities for saving and restoring the state of objects.

# class backup =
# object (self : 'mytype)
# val mutable copy = None
# method save = copy <- Some {< copy = None >}
# method restore = match copy with Some x -> x | None -> self
# end;;
class backup :
object ('a)
val mutable copy : 'a option
method restore : 'a
method save : unit
end

The above definition will only backup one level. The backup facility can be added to any class by
using multiple inheritance.

# class ['al backup_ref x = object inherit ['a] oref x inherit backup end;;
class ['a] backup_ref :

la _>
object ('b)
val mutable copy : 'b option
val mutable x : 'a
method get : 'a
method restore : 'b
method save : unit
method set : 'a -> unit
end

# let rec get pn = if n = 0 then p # get else get (p # restore) (n-1);;
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val get : (< get : 'b; restore : 'a; .. > as 'a) -> int -> 'b = <fun>

# let p = new backup_ref 0 in

# p # save; p # set 1; p # save; p # set 2;

# [get p O; get p 1; get p 2; get p 3; get p 41;;
- : int list = [2; 1; 1; 1; 1]

We can define a variant of backup that retains all copies. (We also add a method clear to manually
erase all copies.)

# class backup =
# object (self : 'mytype)
# val mutable copy = None
# method save = copy <- Some {< >}
# method restore = match copy with Some x -> x | None -> self
# method clear = copy <- None
# end; ;
class backup :
object ('a)
val mutable copy : 'a option
method clear : unit
method restore : 'a
method save : unit
end

# class ['al backup_ref x = object inherit ['al oref x inherit backup end;;
class ['a] backup_ref :
'a ->
object ('b)
val mutable copy : 'b option
val mutable x : 'a
method clear : unit
method get : 'a

method restore : 'b

method save : unit

method set : 'a -> unit
end

# let p = new backup_ref 0 in

# p # save; p # set 1; p # save; p # set 2;

# [get p O; get p 1; get p 2; get p 3; get p 41;;
- : int list = [2; 1; 0; 0; 0]

3.15 Recursive classes

Recursive classes can be used to define objects whose types are mutually recursive.

# class window =
# object
# val mutable top_widget = (None : widget option)



Chapter 3. Objects in OCaml 69

# method top_widget = top_widget
# end
# and widget (w : window) =
# object
# val window = w
# method window = window
# end;;
class window :
object
val mutable top_widget : widget option
method top_widget : widget option
end
and widget : window -> object val window : window method window : window end

Although their types are mutually recursive, the classes widget and window are themselves inde-
pendent.

3.16 Binary methods

A binary method is a method which takes an argument of the same type as self. The class
comparable below is a template for classes with a binary method leq of type 'a -> bool
where the type variable 'a is bound to the type of self. Therefore, #comparable expands to

< leq : 'a -> bool; .. > as 'a. We see here that the binder as also allows writing recursive
types.

# class virtual comparable =

# object (_ : 'a)

# method virtual leq : 'a —-> bool

# end; ;

class virtual comparable : object ('a) method virtual leq : 'a -> bool end

We then define a subclass money of comparable. The class money simply wraps floats as comparable
objects. We will extend it below with more operations. We have to use a type constraint on the
class parameter x because the primitive <= is a polymorphic function in OCaml. The inherit
clause ensures that the type of objects of this class is an instance of #comparable.

# class money (x : float) =
# object

# inherit comparable

# val repr = x
#
#
#

method value
method leq p
end;;
class money :
float ->
object ('a)
val repr : float
method leq : 'a -> bool

repr
repr <= pi#value
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method value : float
end

Note that the type money is not a subtype of type comparable, as the self type appears in con-
travariant position in the type of method leq. Indeed, an object m of class money has a method
leq that expects an argument of type money since it accesses its value method. Considering m of
type comparable would allow a call to method leq on m with an argument that does not have a
method value, which would be an error.

Similarly, the type money2 below is not a subtype of type money.

# class money2 x =

# object
# inherit money x
# method times k = {< repr = k *. repr >}
# end;;
class money2 :
float ->
object ('a)

val repr : float
method leq : 'a —-> bool
method times : float -> 'a
method value : float

end

It is however possible to define functions that manipulate objects of type either money or money2: the
function min will return the minimum of any two objects whose type unifies with #comparable. The
type of min is not the same as #comparable -> #comparable -> #comparable, as the abbreviation
#comparable hides a type variable (an ellipsis). Each occurrence of this abbreviation generates a
new variable.

# let min (x : #comparable) y =
# if x#leq y then x else y;;
val min : (#comparable as 'a) -> 'a -> 'a = <fun>

This function can be applied to objects of type money or money2.

# (min (new money 1.3) (new money 3.1))#value;;
: float = 1.3

=+

(min (new money2 5.0) (new money2 3.14))#value;;
: float = 3.14

More examples of binary methods can be found in sections 6.2.1 and 6.2.3.

Note the use of override for method times. Writing new money2 (k *. repr) instead of
{< repr = k *. repr >} would not behave well with inheritance: in a subclass money3 of money2
the times method would return an object of class money2 but not of class money3 as would be
expected.

The class money could naturally carry another binary method. Here is a direct definition:
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# class money x =
# object (self : 'a)
# val repr = x
# method value = repr
# method print = print_float repr
# method times k = {< repr = k *. x >}
# method leq (p : 'a) = repr <= p#value
# method plus (p : 'a) = {< repr = x +. p#value >}
# end;;
class money :
float ->
object ('a)
val repr : float
method leq : 'a —-> bool
method plus : 'a -> 'a
method print : unit
method times : float -> 'a
method value : float
end

3.17 Friends

The above class money reveals a problem that often occurs with binary methods. In order to interact
with other objects of the same class, the representation of money objects must be revealed, using a
method such as value. If we remove all binary methods (here plus and leq), the representation
can easily be hidden inside objects by removing the method value as well. However, this is not
possible as soon as some binary method requires access to the representation of objects of the same
class (other than self).

# class safe_money x =

# object (self : 'a)

# val repr = x

# method print = print_float repr
#

#

method times k = {< repr = k *. x >}
end;;
class safe_money :

float ->

object ('a)
val repr : float
method print : unit
method times : float -> 'a

end

Here, the representation of the object is known only to a particular object. To make it available to
other objects of the same class, we are forced to make it available to the whole world. However we
can easily restrict the visibility of the representation using the module system.

# module type MONEY =
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sig
type t
class c : float ->
object ('a)
val repr : t
method value : t
method print : unit
method times : float -> 'a
method leq : 'a -> bool
method plus : 'a -> 'a
end
end;;

#

#

#

#

#

#

#

#

#

#

#

#

# module Euro : MONEY =

# struct

# type t = float

# class ¢c x =

# object (self : 'a)
# val repr = x
# method value = repr
# method print = print_float repr
# method times k = {< repr = k *. x >}
# method leq (p : 'a) = repr <= pi#value
# method plus (p : 'a) = {< repr = x +. p#value >}
# end

# end;;

Another example of friend functions may be found in section 6.2.3. These examples occur when
a group of objects (here objects of the same class) and functions should see each others internal
representation, while their representation should be hidden from the outside. The solution is always
to define all friends in the same module, give access to the representation and use a signature
constraint to make the representation abstract outside the module.



Chapter 4

Labels and variants

(Chapter written by Jacques Garrigue)

This chapter gives an overview of the new features in OCaml 3: labels, and polymorphic variants.

4.1 Labels

If you have a look at modules ending in Labels in the standard library, you will see that function
types have annotations you did not have in the functions you defined yourself.

+H+

ListLabels.map;;
- : f:('a -> 'b) -> 'a list -> 'b list = <fun>

HH*

Stringlabels.sub;;
: string -> pos:int -> len:int -> string = <fun>

Such annotations of the form name: are called labels. They are meant to document the code,
allow more checking, and give more flexibility to function application. You can give such names to
arguments in your programs, by prefixing them with a tilde ~.

# let £ "x "y = x - y;;
val f : x:int -> y:int -> int = <fun>
# let x =3 and y = 2 in £ "x 7y;;

- : int =1

When you want to use distinct names for the variable and the label appearing in the type, you
can use a naming label of the form “name:. This also applies when the argument is not a variable.

# let £ "x:x1 “y:yl = x1 - yi;;
val f : x:int -> y:int -> int = <fun>

# £ "x:3 Ty:2;;

- : int = 1

73



74

Labels obey the same rules as other identifiers in OCaml, that is you cannot use a reserved
keyword (like in or to) as label.

Formal parameters and arguments are matched according to their respective labels®, the absence
of label being interpreted as the empty label. This allows commuting arguments in applications.
One can also partially apply a function on any argument, creating a new function of the remaining
parameters.

# let £ "x "y =x - y;;
val £ : x:int -> y:int -> int = <fun>

# £ "y:2 "x:3;;
- : int = 1

=+

ListLabels.fold_left;;
- : f:('a->'b -> 'a) -> init:'a -> 'b list -> 'a = <fun>

# ListLabels.fold_left [1;2;3] ~init:0 “f:( + );;
- : int = 6

+H+

ListLabels.fold_left “init:0;;
- : f:(int -> 'a -> int) -> 'a list -> int = <fun>

If several arguments of a function bear the same label (or no label), they will not commute
among themselves, and order matters. But they can still commute with other arguments.

# let hline "x:x1 "x:x2 7y = (x1, x2, y);;

val hline : x:'a -> x:'b -> y:'c -> 'a * 'b * 'c = <fun>
# hline "x:3 "y:2 "x:5;;

- : int * int * int = (3, 5, 2)

As an exception to the above parameter matching rules, if an application is total (omitting all
optional arguments), labels may be omitted. In practice, many applications are total, so that labels
can often be omitted.

#f 3 2;;
- :int =1
# ListLabels.map succ [1;2;3];;

: int list = [2; 3; 4]

But beware that functions like ListLabels.fold_left whose result type is a type variable will
never be considered as totally applied.

# ListLabels.fold_left ( + ) 0 [1;2;3];;
Error: This expression has type int —-> int -> int
but an expression was expected of type 'a list

When a function is passed as an argument to a higher-order function, labels must match in
both types. Neither adding nor removing labels are allowed.

!This correspond to the commuting label mode of Objective Caml 3.00 through 3.02, with some additional flexi-
bility on total applications. The so-called classic mode (-nolabels options) is now deprecated for normal use.
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# let h g = g "x:3 "y:2;;
val h : (x:int -> y:int -> 'a) -> 'a = <fun>
# h f;;
- :int =1
#h (+) ;;
Error: This expression has type int —-> int -> int
but an expression was expected of type x:int -> y:int -> 'a

Note that when you don’t need an argument, you can still use a wildcard pattern, but you must
prefix it with the label.

# h (fun “x:_ "y -> y+1);;
- : int = 3

4.1.1 Optional arguments

An interesting feature of labeled arguments is that they can be made optional. For optional param-
eters, the question mark 7 replaces the tilde = of non-optional ones, and the label is also prefixed
by 7 in the function type. Default values may be given for such optional parameters.

# let bump 7(step = 1) x = x + step;;
val bump : ?7step:int -> int -> int = <fun>

# bump 2;;
- : int = 3

# bump “step:3 2;;
- :int =5

A function taking some optional arguments must also take at least one non-optional argument.
The criterion for deciding whether an optional argument has been omitted is the non-labeled ap-
plication of an argument appearing after this optional argument in the function type. Note that if
that argument is labeled, you will only be able to eliminate optional arguments by totally applying
the function, omitting all optional arguments and omitting all labels for all remaining arguments.

# let test 7(x =0) ?2(y =0) O ?7(z=0 O = (x, y, 2);;
val test : ?x:int -> ?y:int -> unit -> ?z:int -> unit -> int * int * int =
<fun>

+H+

test O;;
- : ?z:int -> unit -> int * int * int = <fun>

# test "x:2 O "z:3 O;;
: int * int * int = (2, 0, 3)

Optional parameters may also commute with non-optional or unlabeled ones, as long as they are
applied simultaneously. By nature, optional arguments do not commute with unlabeled arguments
applied independently.
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# test "y:2 "x:3 O O3;
- : int * int * int = (3, 2, 0)

+H+

test ) ) "z:1 "y:2 "x:3;;
- : int * int * int = (3, 2, 1)
# (test O Q) ~z:1 ;;

Error: This expression has type int * int * int
This is not a function; it cannot be applied.

Here (test () ()) is already (0,0,0) and cannot be further applied.

Optional arguments are actually implemented as option types. If you do not give a default
value, you have access to their internal representation, type 'a option = None | Some of ‘'a.
You can then provide different behaviors when an argument is present or not.

# let bump 7step x =
# match step with

# | None -> x * 2
# | Some y > x +y
# 5

val bump : ?step:int -> int -> int = <fun>

It may also be useful to relay an optional argument from a function call to another. This can
be done by prefixing the applied argument with 7. This question mark disables the wrapping of
optional argument in an option type.

# let test2 7x 7y () = test ?x 7y O O;;
val test2 : ?x:int -> ?y:int -> unit -> int * int * int = <fun>

# test2 7?x:Nomne;;
- : ?y:int -> unit -> int * int * int = <fun>

4.1.2 Labels and type inference

While they provide an increased comfort for writing function applications, labels and optional
arguments have the pitfall that they cannot be inferred as completely as the rest of the language.
You can see it in the following two examples.

# let h' g =g "y:2 "x:3;;
val h' : (y:int -> x:int -> 'a) -> 'a = <fun>

#h' £ 53
Error: This expression has type x:int -> y:int -> int

but an expression was expected of type y:int -> x:int -> '

a

# let bump_it bump x =
# bump “step:2 x;;
val bump_it : (step:int -> 'a -> 'b) -> 'a -> 'b = <fun>

# bump_it bump 1 ;;
Error: This expression has type 7step:int -> int -> int
but an expression was expected of type step:int -> 'a -> 'b
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The first case is simple: g is passed “y and then “x, but £ expects “x and then ~y. This is correctly
handled if we know the type of g to be x:int -> y:int -> int in advance, but otherwise this
causes the above type clash. The simplest workaround is to apply formal parameters in a standard
order.

The second example is more subtle: while we intended the argument bump to be of type
?step:int -> int -> int, it is inferred as step:int -> int -> 'a. These two types being
incompatible (internally normal and optional arguments are different), a type error occurs when
applying bump_it to the real bump.

We will not try here to explain in detail how type inference works. One must just understand
that there is not enough information in the above program to deduce the correct type of g or bump.
That is, there is no way to know whether an argument is optional or not, or which is the correct
order, by looking only at how a function is applied. The strategy used by the compiler is to assume
that there are no optional arguments, and that applications are done in the right order.

The right way to solve this problem for optional parameters is to add a type annotation to the
argument bump.

# let bump_it (bump : 7step:int -> int -> int) x =

# bump “step:2 x;;

val bump_it : (?step:int -> int -> int) -> int -> int = <fun>
# bump_it bump 1;;

- : int = 3

In practice, such problems appear mostly when using objects whose methods have optional argu-
ments, so that writing the type of object arguments is often a good idea.

Normally the compiler generates a type error if you attempt to pass to a function a parameter
whose type is different from the expected one. However, in the specific case where the expected
type is a non-labeled function type, and the argument is a function expecting optional parameters,
the compiler will attempt to transform the argument to have it match the expected type, by passing
None for all optional parameters.

# let twice £ (x : int) = £(f x);;
val twice : (int -> int) -> int -> int = <fun>

# twice bump 2;;
- : int = 8

This transformation is coherent with the intended semantics, including side-effects. That is, if
the application of optional parameters shall produce side-effects, these are delayed until the received
function is really applied to an argument.

4.1.3 Suggestions for labeling

Like for names, choosing labels for functions is not an easy task. A good labeling is a labeling
which

e makes programs more readable,

e is easy to remember,
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e when possible, allows useful partial applications.

We explain here the rules we applied when labeling OCaml libraries.

To speak in an “object-oriented” way, one can consider that each function has a main argument,
its object, and other arguments related with its action, the parameters. To permit the combination
of functions through functionals in commuting label mode, the object will not be labeled. Its role
is clear from the function itself. The parameters are labeled with names reminding of their nature
or their role. The best labels combine nature and role. When this is not possible the role is to be
preferred, since the nature will often be given by the type itself. Obscure abbreviations should be
avoided.

ListLabels.map : f:('a -> 'b) -> 'a list -> 'b list
UnixLabels.write : file_descr -> buf:bytes -> pos:int -> len:int -> unit

When there are several objects of same nature and role, they are all left unlabeled.
ListLabels.iter2 : f:('a -> 'b => 'c) -> 'a list -> 'b list -> unit
When there is no preferable object, all arguments are labeled.

BytesLabels.blit :
src:bytes -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

However, when there is only one argument, it is often left unlabeled.
BytesLabels.create : int -> bytes

This principle also applies to functions of several arguments whose return type is a type variable,
as long as the role of each argument is not ambiguous. Labeling such functions may lead to
awkward error messages when one attempts to omit labels in an application, as we have seen with
ListLabels.fold_left.

Here are some of the label names you will find throughout the libraries.

Label | Meaning

f: a function to be applied

pos: a position in a string, array or byte sequence
len: a length

buf: a byte sequence or string used as buffer

src: the source of an operation

dst: the destination of an operation

init: | the initial value for an iterator

cmp: a comparison function, e.g. Stdlib.compare
mode: | an operation mode or a flag list

All these are only suggestions, but keep in mind that the choice of labels is essential for read-
ability. Bizarre choices will make the program harder to maintain.

In the ideal, the right function name with right labels should be enough to understand the
function’s meaning. Since one can get this information with OCamlBrowser or the ocaml toplevel,
the documentation is only used when a more detailed specification is needed.
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4.2 Polymorphic variants

Variants as presented in section 1.4 are a powerful tool to build data structures and algorithms.
However they sometimes lack flexibility when used in modular programming. This is due to the
fact that every constructor is assigned to a unique type when defined and used. Even if the same
name appears in the definition of multiple types, the constructor itself belongs to only one type.
Therefore, one cannot decide that a given constructor belongs to multiple types, or consider a value
of some type to belong to some other type with more constructors.

With polymorphic variants, this original assumption is removed. That is, a variant tag does
not belong to any type in particular, the type system will just check that it is an admissible value
according to its use. You need not define a type before using a variant tag. A variant type will be
inferred independently for each of its uses.

Basic use

In programs, polymorphic variants work like usual ones. You just have to prefix their names with
a backquote character *

# [O0n; °~0Off];;
: [> "0ff | "0On ] list = [ 0On; “Off]

# ~Number 1;;
- : [> “Number of int ] = “Number 1

# let f = function On -> 1 | “0Off -> 0 | “Number n -> n;;
val £ : [< “Number of int | “Off | On ] -> int = <fun>

# List.map f ["On; ~0ff];;
- : int list = [1; 0]

[>*0ff| 0n] list means that to match this list, you should at least be able to match ~0ff and
“0On, without argument. [<*0On| 0ff| Number of int] means that £ may be applied to ~0ff, ~0On
(both without argument), or ~Number n where n is an integer. The > and < inside the variant types
show that they may still be refined, either by defining more tags or by allowing less. As such, they
contain an implicit type variable. Because each of the variant types appears only once in the whole
type, their implicit type variables are not shown.

The above variant types were polymorphic, allowing further refinement. When writing type an-
notations, one will most often describe fixed variant types, that is types that cannot be refined. This
is also the case for type abbreviations. Such types do not contain < or >, but just an enumeration
of the tags and their associated types, just like in a normal datatype definition.

# type 'a vlist = ['Nil | “Cons of 'a * 'a vlist];;
type 'a vlist = [ “Cons of 'a * 'a vlist | "Nil ]

# let rec map £ : 'a vlist -> 'b vlist = function
# | “Nil -> °"Nil

# | “Cons(a, 1) -> “Cons(f a, map f 1)

# 5

val map : ('a -> 'b) -> 'a vlist -> 'b vlist = <fun>
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Advanced use

Type-checking polymorphic variants is a subtle thing, and some expressions may result in more
complex type information.

# let f = function "A -> “C | "B -> "D | x => x;;
val £ : ([> A | 'B| C| D] as 'a) -> 'a = <fun>
# f "E;;

-:[>A] B|] C| D| E]="E

Here we are seeing two phenomena. First, since this matching is open (the last case catches any
tag), we obtain the type [> ~A | “B] rather than [< A | “B] in a closed matching. Then, since
x is returned as is, input and return types are identical. The notation as 'a denotes such type
sharing. If we apply f to yet another tag “E, it gets added to the list.

# let f1 = function "A x > x =1 ] "B -> true | “C —> false
# let f2 = function A x -> x = "a" | "B -> true ;;

val f1 : [< A of int | "B | C ] -> bool = <fun>

val f2 : [< A of string | "B ] -> bool = <fun>

# let £ x = f1 x && £2 x;;
val £ : [< A of string & int | "B ] -> bool = <fun>

Here £1 and £2 both accept the variant tags ~A and "B, but the argument of “A is int for £1 and
string for £2. In f’s type ~C, only accepted by f1, disappears, but both argument types appear
for A as int & string. This means that if we pass the variant tag ~A to £, its argument should
be both int and string. Since there is no such value, £ cannot be applied to ~A, and *B is the only
accepted input.

Even if a value has a fixed variant type, one can still give it a larger type through coercions.
Coercions are normally written with both the source type and the destination type, but in simple
cases the source type may be omitted.

# type 'a wlist = ['Nil | “Cons of 'a * 'a wlist | “Snoc of 'a wlist * 'al;;
type 'a wlist = [ “Cons of 'a * 'a wlist | 'Nil | “Snoc of 'a wlist * 'a ]

# let wlist_of_vlist 1 = (1 : 'a vlist :> 'a wlist);;
val wlist_of_vlist : 'a vlist -> 'a wlist = <fun>

# let open_vlist 1 = (1 : 'a vlist :> [> 'a vlist]l);;
val open_vlist : 'a vlist -> [> 'a vlist ] = <fun>

# fun x > (x > [CAI'BI'CD);;
-:[<A| Bl ¢Cc]l->["A]| B| "CJ] = <fun>

You may also selectively coerce values through pattern matching.

# let split_cases = function

# | "Nil | “Cons _ as x —> "A x
# | “Snoc as x -> "B x

#

val split_cases :
[< “Cons of 'a | “Nil | “Snoc of 'b ] ->
[> A of [> Cons of 'a | "Nil ] | "B of [> “Snoc of 'b ] ] = <fun>
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When an or-pattern composed of variant tags is wrapped inside an alias-pattern, the alias is given
a type containing only the tags enumerated in the or-pattern. This allows for many useful idioms,
like incremental definition of functions.

# let num x = “Num x

# let evall eval (CNum x) = x

# let rec eval x = evall eval x ;;

val num : 'a -> [> “Num of 'a ] = <fun>

val evall : 'a -> [< “Num of 'b ] -> 'b = <fun>
val eval : [< “Num of 'a ] -> 'a = <fun>

# let plus x y = ~Plus(x,y)
# let eval2 eval = function

# | “Plus(x,y) -> eval x + eval y

# | “Num _ as x -> evall eval x

# let rec eval x = eval2 eval x ;;

val plus : 'a -> 'b -> [> "Plus of 'a * 'b ] = <fun>

val eval2 : ('a -> int) -> [< “Num of int | “Plus of 'a * 'a ] -> int = <fun>
val eval : ([< "Num of int | "Plus of 'a * 'a ] as 'a) -> int = <fun>

To make this even more comfortable, you may use type definitions as abbreviations for or-
patterns. That is, if you have defined type myvariant = ["Tagl of int | “Tag2 of booll,
then the pattern #myvariant is equivalent to writing (*Tagl(_ : int) | “Tag2(_ : bool)).

Such abbreviations may be used alone,

# let £ = function

# | #myvariant -> "myvariant"

# | “Tag3 -> "Tag3";;

val £ : [< "Tagl of int | “Tag2 of bool | “Tag3 ] -> string = <fun>

or combined with with aliases.

# let gl = function “Tagl _ -> "Tagl" | “Tag2 _ -> "Tag2";;
val g1 : [< "Tagl of 'a | “Tag2 of 'b ] -> string = <fun>

# let g = function

# | #myvariant as x -> gl x

# | “Tag3 -> "Tag3";;

val g : [< "Tagl of int | “Tag2 of bool | "Tag3 ] -> string = <fun>

4.2.1 Weaknesses of polymorphic variants

After seeing the power of polymorphic variants, one may wonder why they were added to core
language variants, rather than replacing them.

The answer is twofold. One first aspect is that while being pretty efficient, the lack of static type
information allows for less optimizations, and makes polymorphic variants slightly heavier than core
language ones. However noticeable differences would only appear on huge data structures.

More important is the fact that polymorphic variants, while being type-safe, result in a weaker
type discipline. That is, core language variants do actually much more than ensuring type-safety,



82

they also check that you use only declared constructors, that all constructors present in a data-
structure are compatible, and they enforce typing constraints to their parameters.

For this reason, you must be more careful about making types explicit when you use polymorphic
variants. When you write a library, this is easy since you can describe exact types in interfaces,
but for simple programs you are probably better off with core language variants.

Beware also that some idioms make trivial errors very hard to find. For instance, the following
code is probably wrong but the compiler has no way to see it.

B | °C] ;;

# type abc = ["A | |
| "B | "C1]

type abc = [ "A

# let £ = function

# | “As -> "A"

# | #abc -> "other" ;;

val £ : [< A | "4s | "B | "C ] -> string = <fun>

# let £ : abc -> string = f ;;
val £ : abc -> string = <fun>

You can avoid such risks by annotating the definition itself.

# let £ : abc -> string = function

# | ﬁ —> M"An

# | #abc -> "other" ;;

Error: This pattern matches values of type [? “As ]
but a pattern was expected which matches values of type abc
The second variant type does not allow tag(s) “As



Chapter 5

Polymorphism and its limitations

This chapter covers more advanced questions related to the limitations of polymorphic functions and
types. There are some situations in OCaml where the type inferred by the type checker may be less
generic than expected. Such non-genericity can stem either from interactions between side-effect
and typing or the difficulties of implicit polymorphic recursion and higher-rank polymorphism.
This chapter details each of these situations and, if it is possible, how to recover genericity.

5.1 Weak polymorphism and mutation

5.1.1 Weakly polymorphic types

Maybe the most frequent examples of non-genericity derive from the interactions between polymor-
phic types and mutation. A simple example appears when typing the following expression

# let store = ref None ;;
val store : '_weakl option ref = {contents = Nonel}

Since the type of None is 'a option and the function ref has type 'b -> 'b ref, a natural
deduction for the type of store would be 'a option ref. However, the inferred type,
' _weakl option ref, is different. Type variables whose name starts with a _weak prefix like
' _weakl are weakly polymorphic type variables, sometimes shortened as weak type variables. A
weak type variable is a placeholder for a single type that is currently unknown. Once the specific
type t behind the placeholder type '_weakl is known, all occurrences of ' _weakl will be replaced
by t. For instance, we can define another option reference and store an int inside:

# let another_store = ref None ;;
val another_store : '_weak2 option ref = {contents = None}

# another_store := Some O;

# another_store ;;
- : int option ref = {contents = Some 0}

After storing an int inside another_store, the type of another_store has been updated from
' _weak2 option ref to int option ref. This distinction between weakly and generic polymor-
phic type variable protects OCaml programs from unsoundness and runtime errors. To understand
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from where unsoundness might come, consider this simple function which swaps a value x with the
value stored inside a store reference, if there is such value:

# let swap store x = match !store with

# | None —> store := Some x; x
# | Some y -> store := Some x; ¥y;;
val swap : 'a option ref -> 'a -> 'a = <fun>

We can apply this function to our store

# let one = swap store 1
# let one_again = swap store 2

# let two = swap store 3;;
val one : int =1

val one_again : int = 1

val two : int = 2

After these three swaps the stored value is 3. Everything is fine up to now. We can then try to
swap 3 with a more interesting value, for instance a function:

# let error = swap store (fun x -> x);;
Error: This expression should not be a function, the expected type is int

At this point, the type checker rightfully complains that it is not possible to swap an integer and a
function, and that an int should always be traded for another int. Furthermore, the type checker
prevents us to change manually the type of the value stored by store:

# store := Some (fun x -> x);;
Error: This expression should not be a function, the expected type is int

Indeed, looking at the type of store, we see that the weak type '_weakl has been replaced by the
type int

# store;;
- : int option ref = {contents = Some 3}

Therefore, after placing an int in store, we cannot use it to store any value other than an int.
More generally, weak types protect the program from undue mutation of values with a polymorphic
type.

Moreover, weak types cannot appear in the signature of toplevel modules: types must be known
at compilation time. Otherwise, different compilation units could replace the weak type with
different and incompatible types. For this reason, compiling the following small piece of code

let option_ref = ref None
yields a compilation error

Error: The type of this expression, '_weakl option ref,
contains type variables that cannot be generalized

To solve this error, it is enough to add an explicit type annotation to specify the type at
declaration time:
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let option_ref: int option ref = ref None

This is in any case a good practice for such global mutable variables. Otherwise, they will pick
out the type of first use. If there is a mistake at this point, this can result in confusing type errors
when later, correct uses are flagged as errors.

5.1.2 The value restriction

Identifying the exact context in which polymorphic types should be replaced by weak types in
a modular way is a difficult question. Indeed the type system must handle the possibility that
functions may hide persistent mutable states. For instance, the following function uses an internal
reference to implement a delayed identity function

# let make_fake_id () =
# let store = ref None in

# fun x -> swap store x ;;
val make_fake_id : unit -> 'a -> 'a = <fun>

# let fake_id = make_fake_id();;
val fake_id : '_weak3 -> '_weak3 = <fun>

It would be unsound to apply this fake_id function to values with different types. The function
fake_id is therefore rightfully assigned the type '_weak3 -> '_weak3 rather than 'a -> 'a. At
the same time, it ought to be possible to use a local mutable state without impacting the type of
a function.

To circumvent these dual difficulties, the type checker considers that any value returned by a
function might rely on persistent mutable states behind the scene and should be given a weak type.
This restriction on the type of mutable values and the results of function application is called the
value restriction. Note that this value restriction is conservative: there are situations where the
value restriction is too cautious and gives a weak type to a value that could be safely generalized
to a polymorphic type:

# let not_id = (fun x -> x) (fun x -> X);;
val not_id : '_weak4 -> '_weak4 = <fun>

Quite often, this happens when defining function using higher order function. To avoid this problem,
a solution is to add an explicit argument to the function:

# let id_again = fun x -> (fun x -> x) (fun x -> x) Xx;;
val id_again : 'a -> 'a = <fun>

With this argument, id_again is seen as a function definition by the type checker and can there-
fore be generalized. This kind of manipulation is called eta-expansion in lambda calculus and is
sometimes referred under this name.

5.1.3 The relaxed value restriction

There is another partial solution to the problem of unnecessary weak type, which is implemented
directly within the type checker. Briefly, it is possible to prove that weak types that only appear
as type parameters in covariant positions —also called positive positions— can be safely generalized
to polymorphic types. For instance, the type 'a list is covariant in 'a:
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# let £ O = [1;;
val f : unit -> 'a list = <fun>

# let empty = £ ;;
val empty : 'a list = []

Remark that the type inferred for empty is 'a list and not '_weak5 list that should have
occurred with the value restriction since £ () is a function application.

The value restriction combined with this generalization for covariant type parameters is called
the relaxed value restriction.

5.1.4 Variance and value restriction

Variance describes how type constructors behave with respect to subtyping. Consider for instance
a pair of type x and xy with x a subtype of xy, denoted x :> xy:

# type x =1[ "X 1;;
type x = [ "X ]

# typexy=1L[X1"Y1;;
type xy = [ "X | “Y ]

As x is a subtype of xy, we can convert a value of type x to a value of type xy:

# let x:x = “X;;
val x : x = X
#  let x' = (x > xy);;

val x' : xy = X

Similarly, if we have a value of type x 1list, we can convert it to a value of type xy list, since we
could convert each element one by one:

# let 1l:x list = ['X; “XI;;
val 1 : x list = ["X; “X]

# let 1' = (1 :> xy list);;
val 1' : xy list = ["X; “X]

In other words, x :> xy implies that x list :> xy list, therefore the type constructor 'a list
is covariant (it preserves subtyping) in its parameter 'a.
Contrarily, if we have a function that can handle values of type xy

# let f: xy -> unit = function
# | "X >0

# 1Y > O;s;

val £ : xy -> unit = <fun>

it can also handle values of type x:

# let £f' = (f :> x -> unit);;
val f' : x -> unit = <fun>
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Note that we can rewrite the type of £ and £' as

# type 'a proc = 'a -> unit

# let f' = (£: xy proc :> x proc);;
type 'a proc = 'a -> unit

val f' : x proc = <fun>

In this case, we have x :> xy implies xy proc :> x proc. Notice that the second subtyping
relation reverse the order of x and xy: the type constructor 'a proc is contravariant in its parameter
'a. More generally, the function type constructor 'a -> 'b is covariant in its return type 'b and
contravariant in its argument type 'a.

A type constructor can also be invariant in some of its type parameters, neither covariant nor
contravariant. A typical example is a reference:

# let x: x ref = ref “X;;
val x : x ref = {contents = "X}

If we were able to coerce x to the type xy ref as a variable xy, we could use xy to store the value
*Y inside the reference and then use the x value to read this content as a value of type x, which
would break the type system.

More generally, as soon as a type variable appears in a position describing mutable state it
becomes invariant. As a corollary, covariant variables will never denote mutable locations and can
be safely generalized. For a better description, interested readers can consult the original article
by Jacques Garrigue on http://www.math.nagoya-u.ac.jp/ garrigue/papers/morepoly-long.
pdf

Together, the relaxed wvalue restriction and type parameter covariance help to avoid
eta-expansion in many situations.

5.1.5 Abstract data types

Moreover, when the type definitions are exposed, the type checker is able to infer variance informa-
tion on its own and one can benefit from the relaxed value restriction even unknowingly. However,
this is not the case anymore when defining new abstract types. As an illustration, we can define a
module type collection as:

# module type COLLECTION = sig
# type 'at
# val empty: unit -> 'a t
# end
# module Implementation = struct
# type 'at = 'a list
# let empty (O= []
# end;;
module type COLLECTION = sig type 'a t val empty : unit -> 'a t end
module Implementation :
sig type 'a t = 'a list val empty : unit -> 'a list end

# module List2: COLLECTION = Implementation;;
module List2 : COLLECTION


http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf
http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf
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In this situation, when coercing the module List2 to the module type COLLECTION, the type
checker forgets that 'a List2.t was covariant in 'a. Consequently, the relaxed value restriction
does not apply anymore:

# List2.empty O;;
- : '_weak5 List2.t = <abstr>

To keep the relaxed value restriction, we need to declare the abstract type 'a COLLECTION.t
as covariant in 'a:

# module type COLLECTION = sig
# type +'a t

# val empty: unit -> 'a t

# end

# module List2: COLLECTION = Implementation;;
module type COLLECTION = sig type +'a t val empty : unit -> 'a t end
module List2 : COLLECTION

We then recover polymorphism:

# List2.empty O;;
- : 'a List2.t = <abstr>

5.2 Polymorphic recursion

The second major class of non-genericity is directly related to the problem of type inference for
polymorphic functions. In some circumstances, the type inferred by OCaml might be not general
enough to allow the definition of some recursive functions, in particular for recursive function acting
on non-regular algebraic data type.

With a regular polymorphic algebraic data type, the type parameters of the type constructor
are constant within the definition of the type. For instance, we can look at arbitrarily nested list
defined as:

# type 'a regular_nested = List of 'a list | Nested of 'a regular_nested list
# let 1 = Nested[ List [1]; Nested [List[2;3]]; Nested[Nested[]] 1;;
type 'a regular_nested = List of 'a list | Nested of 'a regular_nested list
val 1 : int regular_nested =
Nested [List [1]; Nested [List [2; 3]]; Nested [Nested []]]

Note that the type constructor regular_nested always appears as 'a regular_nested in the
definition above, with the same parameter 'a. Equipped with this type, one can compute a maximal
depth with a classic recursive function

# let rec maximal_depth = function

# | List _ > 1

# | Nested [1 > O

# | Nested (a::q) -> 1 + max (maximal_depth a) (maximal_depth (Nested q));;

val maximal_depth : 'a regular_nested -> int = <fun>
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Non-regular recursive algebraic data types correspond to polymorphic algebraic data types
whose parameter types vary between the left and right side of the type definition. For instance, it
might be interesting to define a datatype that ensures that all lists are nested at the same depth:

# type 'a nested = List of 'a list | Nested of 'a list nested;;
type 'a nested = List of 'a list | Nested of 'a list nested

Intuitively, a value of type 'a nested is a list of list ... of list of elements a with k nested list. We
can then adapt the maximal_depth function defined on regular_depth into a depth function that
computes this k. As a first try, we may define

# let rec depth = function
# | List _ > 1
# | Nested n -> 1 + depth n;;
Error: This expression has type 'a list nested
but an expression was expected of type 'a nested

The type variable 'a occurs inside 'a list

The type error here comes from the fact that during the definition of depth, the type checker
first assigns to depth the type 'a -> 'b . When typing the pattern matching, 'a -> 'b becomes
'a nested -> 'b, then 'a nested -> int once the List branch is typed. However, when typing
the application depth n in the Nested branch, the type checker encounters a problem: depth n is
applied to 'a list nested, it must therefore have the type 'a list nested -> 'b. Unifying this
constraint with the previous one leads to the impossible constraint 'a 1list nested = 'a nested.
In other words, within its definition, the recursive function depth is applied to values of type 'a t
with different types 'a due to the non-regularity of the type constructor nested. This creates a
problem because the type checker had introduced a new type variable 'a only at the definition of
the function depth whereas, here, we need a different type variable for every application of the
function depth.

5.2.1 Explicitly polymorphic annotations

The solution of this conundrum is to use an explicitly polymorphic type annotation for the type
'a:

# let rec depth: 'a. 'a nested —> int = function

# | List _ > 1
# | Nested n -=> 1 + depth n;;
val depth : 'a nested -> int = <fun>

# depth ( Nested(List [ [7]; [8] 1) );;
- : int = 2

In the type of depth, 'a.'a nested -> int, the type variable 'a is universally quantified. In other
words, 'a.'a nested -> int reads as “for all type 'a, depth maps 'a nested values to integers”.
Whereas the standard type 'a nested -> int can be interpreted as “let be a type variable 'a,
then depth maps 'a nested values to integers”. There are two major differences with these two
type expressions. First, the explicit polymorphic annotation indicates to the type checker that it
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needs to introduce a new type variable every times the function depth is applied. This solves our
problem with the definition of the function depth.

Second, it also notifies the type checker that the type of the function should be polymorphic.
Indeed, without explicit polymorphic type annotation, the following type annotation is perfectly
valid

# let sum: 'a -> 'b -> 'c = fun xy -> x + y;;
val sum : int -> int -> int = <fun>

since 'a,'b and 'c denote type variables that may or may not be polymorphic. Whereas, it is an
error to unify an explicitly polymorphic type with a non-polymorphic type:

# let sum: 'a 'b 'c. 'a-> 'b > 'c=funxy > x+y;;
Error: This definition has type int -> int -> int which is less general than
'a 'b 'c. 'a > 'b > 'c

An important remark here is that it is not needed to explicit fully the type of depth: it is
sufficient to add annotations only for the universally quantified type variables:

# let rec depth: 'a. 'a nested -> _ = function
# | List _ > 1

# | Nested n -> 1 + depth n;;

val depth : 'a nested -> int = <fun>

# depth ( Nested(List [ [7]; [8]1 1) );;
- : int = 2

5.2.2 More examples

With explicit polymorphic annotations, it becomes possible to implement any recursive function
that depends only on the structure of the nested lists and not on the type of the elements. For
instance, a more complex example would be to compute the total number of elements of the nested

# let len nested =

# let map_and_sum f = List.fold_left (fun acc x -> acc + £ x) 0 in
# let rec len: 'a. ('a list -> int ) -> 'a nested -> int =

# fun nested_len n ->

# match n with

# | List 1 -> nested_len 1

# | Nested n -> len (map_and_sum nested_len) n

# in

# len List.length nested;;

val len : 'a nested -> int = <fun>

# len (Nested(Nested(List [ [ [1;2]; [3]1 1; [ [I; [4]1; [5;6;711; [[11 1D));;
- : int =7

Similarly, it may be necessary to use more than one explicitly polymorphic type variables, like
for computing the nested list of list lengths of the nested list:
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# let shape n =

# let rec shape: 'a 'b. ('a nested -> int nested) ->

# ('b list list -> 'a list) -> 'b nested -> int nested

# = fun nest nested_shape —>

# function

# | List 1 -> raise

# (Invalid_argument "shape requires nested_list of depth greater than 1")
# | Nested (List 1) -> nest @@ List (nested_shape 1)

# | Nested n ->

# let nested_shape = List.map nested_shape in

# let nest x = nest (Nested x) in

# shape nest nested_shape n in

# shape (funn ->n ) (fun 1 -> List.map List.length 1 ) n;;

val shape : 'a nested -> int nested = <fun>

# shape (Nested(Nested(List [ [ [1;2]; [3] 1; [ [1; [4]; [5;6;711; CU1] 1)));;
- : int nested = Nested (List [[2; 1]; [0; 1; 31; [0]11)

5.3 Higher-rank polymorphic functions

Explicit polymorphic annotations are however not sufficient to cover all the cases where the inferred
type of a function is less general than expected. A similar problem arises when using polymorphic
functions as arguments of higher-order functions. For instance, we may want to compute the average
depth or length of two nested lists:

# let average_depth x y = (depth x + depth y) / 2;;
val average_depth : 'a nested -> 'b nested -> int = <fun>

# let average_len x y = (len x + len y) / 2;;
val average_len : 'a nested -> 'b nested -> int = <fun>

# let one = average_len (List [2]) (List [[11);;
val one : int =1

It would be natural to factorize these two definitions as:

# let average f x y = (£ x + £ y) / 2;;
val average : ('a -> int) -> 'a -> 'a -> int = <fun>

However, the type of average len is less generic than the type of average_len, since it requires
the type of the first and second argument to be the same:

# average_len (List [2]) (List [[11);;
- :int =1

# average len (List [2]) (List [[11);;
Error: This expression has type 'a list
but an expression was expected of type int
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As previously with polymorphic recursion, the problem stems from the fact that type variables
are introduced only at the start of the let definitions. When we compute both £ x and £ y, the
type of x and y are unified together. To avoid this unification, we need to indicate to the type
checker that f is polymorphic in its first argument. In some sense, we would want average to have

type
val average: ('a. 'a nested -> int) -> 'a nested -> 'b nested -> int

Note that this syntax is not valid within OCaml: average has an universally quantified type 'a
inside the type of one of its argument whereas for polymorphic recursion the universally quantified
type was introduced before the rest of the type. This position of the universally quantified type
means that average is a second-rank polymorphic function. This kind of higher-rank functions is
not directly supported by OCaml: type inference for second-rank polymorphic function and beyond
is undecidable; therefore using this kind of higher-rank functions requires to handle manually these
universally quantified types.

In OCaml, there are two ways to introduce this kind of explicit universally quantified types:
universally quantified record fields,

# type 'a nested_reduction = { f:'elt. 'elt nested -> 'a };;
type 'a nested_reduction = { f : 'elt. 'elt nested -> 'a; }

# let boxed_len = { £ = len };;
val boxed_len : int nested_reduction = {f = <fun>}

and universally quantified object methods:

# let obj_len = object method f:'a. 'a nested -> 'b = len end;;
val obj_len : < f : 'a. 'a nested -> int > = <obj>

To solve our problem, we can therefore use either the record solution:

# let average nsm x y = (nsm.f x + nsm.f y) / 2 ;;
val average : int nested_reduction -> 'a nested -> 'b nested -> int = <fun>

or the object one:
# let average (obj:<f:'a. 'a nested -> _ > ) x y = (obj#f x + obj#f y) / 2 ;;

val average : < f : 'a. 'a nested -> int > -> 'b nested -> 'c nested -> int =
<fun>



Chapter 6

Advanced examples with classes and
modules

(Chapter written by Didier Rémy)

In this chapter, we show some larger examples using objects, classes and modules. We review
many of the object features simultaneously on the example of a bank account. We show how modules
taken from the standard library can be expressed as classes. Lastly, we describe a programming
pattern known as virtual types through the example of window managers.

6.1 Extended example: bank accounts

In this section, we illustrate most aspects of Object and inheritance by refining, debugging, and
specializing the following initial naive definition of a simple bank account. (We reuse the module
Euro defined at the end of chapter 3.)

# let euro = new Euro.c;;
val euro : float -> Euro.c = <fun>

# let zero = euro O.;;
val zero : Euro.c = <obj>

# let neg x = x#ttimes (-1.);;
val neg : < times : float -> 'a; .. > -> 'a = <fun>

# class account =
# object

# val mutable balance = zero
# method balance = balance
# method deposit x = balance <- balance # plus x
# method withdraw x =
# if x#leq balance then (balance <- balance # plus (neg x); x) else zero
# end;;
class account :
object
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val mutable balance : Euro.c

method balance : Euro.c

method deposit : Euro.c -> unit

method withdraw : Euro.c -> Euro.c
end

# let c = new account in ¢ # deposit (euro 100.); c # withdraw (euro 50.);;
- : Euro.c = <obj>

We now refine this definition with a method to compute interest.

# class account_with_interests =
# object (self)
# inherit account
# method private interest = self # deposit (self # balance # times 0.03)
# end;;
class account_with_interests :
object
val mutable balance : Euro.c
method balance : Euro.c
method deposit : Euro.c -> unit
method private interest : unit
method withdraw : Euro.c -> Euro.c
end

We make the method interest private, since clearly it should not be called freely from the outside.
Here, it is only made accessible to subclasses that will manage monthly or yearly updates of the
account.

We should soon fix a bug in the current definition: the deposit method can be used for with-
drawing money by depositing negative amounts. We can fix this directly:

# class safe_account =

# object
# inherit account
# method deposit x = if zero#leq x then balance <- balance#plus x
# end;;
class safe_account :
object

val mutable balance : Euro.c

method balance : Euro.c

method deposit : Euro.c -> unit

method withdraw : Euro.c -> Euro.c
end

However, the bug might be fixed more safely by the following definition:

# class safe_account =

# object

# inherit account as unsafe
# method deposit x =
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# if zero#leq x then unsafe # deposit x
# else raise (Invalid_argument "deposit")
# end;;
class safe_account :

object

val mutable balance : Euro.c

method balance : Euro.c

method deposit : Euro.c -> unit

method withdraw : Euro.c -> Euro.c
end

In particular, this does not require the knowledge of the implementation of the method deposit.
To keep track of operations, we extend the class with a mutable field history and a private
method trace to add an operation in the log. Then each method to be traced is redefined.

# type 'a operation = Deposit of 'a | Retrieval of 'a;;
type 'a operation = Deposit of 'a | Retrieval of 'a

# class account_with_history =

# object (self)

inherit safe_account as super

val mutable history = []

method private trace x = history <- x :: history

method deposit x = self#trace (Deposit x); super#deposit x
method withdraw x = self#trace (Retrieval x); super#withdraw x
method history = List.rev history

H OHF H OH OHF H H

end;;

class account_with_history :

object
val mutable balance : Euro.c
val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c -> unit
method history : Euro.c operation list
method private trace : Euro.c operation -> unit
method withdraw : Euro.c -> Euro.c

end

One may wish to open an account and simultaneously deposit some initial amount. Although the
initial implementation did not address this requirement, it can be achieved by using an initializer.

# class account_with_deposit x =

# object
# inherit account_with_history
# initializer balance <- x
# end;;
class account_with_deposit :
Euro.c ->
object

val mutable balance : Euro.c
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val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c -> unit
method history : Euro.c operation list
method private trace : Euro.c operation —> unit
method withdraw : Euro.c -> Euro.c

end

A better alternative is:

# class account_with_deposit x =
# object (self)

# inherit account_with_history
# initializer self#deposit x
# end; ;

class account_with_deposit :

Euro.c ->

object
val mutable balance : Euro.c
val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c —-> unit
method history : Euro.c operation list
method private trace : Euro.c operation -> unit
method withdraw : Euro.c -> Euro.c

end

Indeed, the latter is safer since the call to deposit will automatically benefit from safety checks
and from the trace. Let’s test it:

# let ccp = new account_with_deposit (euro 100.) in
# let _balance = ccp#withdraw (euro 50.) in
# ccp#history;;

- : Euro.c operation list = [Deposit <obj>; Retrieval <obj>]

Closing an account can be done with the following polymorphic function:

# let close c = c#withdraw c#balance;;
val close : < balance : 'a; withdraw : 'a -> 'b; .. > -> 'b = <fun>

Of course, this applies to all sorts of accounts.
Finally, we gather several versions of the account into a module Account abstracted over some
currency.

# let today () = (01,01,2000) (* an approximation *)
# module Account (M:MONEY) =

# struct

# type m = M.c

# let m = new M.c

# let zero = m O.
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class bank =
object (self)
val mutable balance = zero
method balance = balance
val mutable history = []
method private trace x = history <- x::history
method deposit x =
self#trace (Deposit x);
if zero#leq x then balance <- balance # plus x
else raise (Invalid_argument "deposit")
method withdraw x =
if x#leq balance then

else zero
method history = List.rev history
end
class type client_view =
object
method deposit : m -> unit
method history : m operation list
method withdraw : m -> m
method balance : m
end
class virtual check_client x =
let y = if (m 100.)#leq x then x
else raise (Failure "Insufficient initial deposit") in
object (self)
initializer self#deposit y
method virtual deposit: m -> unit
end
module Client (B : sig class bank : client_view end) =
struct
class account x : client_view =
object
inherit B.bank
inherit check_client x
end
let discount x =
let ¢ = new account x in
if today() < (1998,10,30) then c # deposit (m 100.); c
end
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end;;

(balance <- balance # plus (neg x); self#trace (Retrieval x); x)
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This shows the use of modules to group several class definitions that can in fact be thought of as
a single unit. This unit would be provided by a bank for both internal and external uses. This is
implemented as a functor that abstracts over the currency so that the same code can be used to
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provide accounts in different currencies.

The class bank is the real implementation of the bank account (it could have been inlined). This
is the one that will be used for further extensions, refinements, etc. Conversely, the client will only
be given the client view.

# module Euro_account = Account(Euro);;
# module Client = Euro_account.Client (Euro_account);;

# new Client.account (new Euro.c 100.);;

Hence, the clients do not have direct access to the balance, nor the history of their own accounts.
Their only way to change their balance is to deposit or withdraw money. It is important to give
the clients a class and not just the ability to create accounts (such as the promotional discount
account), so that they can personalize their account. For instance, a client may refine the deposit
and withdraw methods so as to do his own financial bookkeeping, automatically. On the other
hand, the function discount is given as such, with no possibility for further personalization.

It is important to provide the client’s view as a functor Client so that client accounts can still
be built after a possible specialization of the bank. The functor Client may remain unchanged
and be passed the new definition to initialize a client’s view of the extended account.

# module Investment_account (M : MONEY) =

# struct

# type m = M.c

# module A = Account (M)

# class bank =

# object

# inherit A.bank as super

# method deposit x =

# if (new M.c 1000.)#leq x then
# print_string "Would you like to invest?";
# super#deposit x

# end

# module Client = A.Client

# end;;

The functor Client may also be redefined when some new features of the account can be given to
the client.

# module Internet_account (M : MONEY) =
# struct

# type m = M.c

# module A = Account (M)

# class bank =

# object

# inherit A.bank

# method mail s = print_string s
# end
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# class type client_view =

# object

# method deposit : m -> unit

# method history : m operation list
# method withdraw : m -> m

# method balance : m

# method mail : string -> unit

# end

# module Client (B : sig class bank : client_view end) =
# struct

# class account x : client_view =

# object

# inherit B.bank

# inherit A.check_client x

# end

# end

#

end;;

6.2 Simple modules as classes

One may wonder whether it is possible to treat primitive types such as integers and strings as
objects. Although this is usually uninteresting for integers or strings, there may be some situations
where this is desirable. The class money above is such an example. We show here how to do it for
strings.

6.2.1 Strings

A naive definition of strings as objects could be:

# class ostring s =

# object

# method get n = String.get s n
# method print = print_string s
#

#

method escaped = new ostring (String.escaped s)
end;;
class ostring :

string ->

object
method escaped : ostring
method get : int -> char
method print : unit

end

However, the method escaped returns an object of the class ostring, and not an object of the
current class. Hence, if the class is further extended, the method escaped will only return an object
of the parent class.
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# class sub_string s =
# object
# inherit ostring s
# method sub start len = new sub_string (String.sub s start len)
# end;;
class sub_string :
string ->
object
method escaped : ostring
method get : int -> char
method print : unit
method sub : int -> int -> sub_string
end

As seen in section 3.16, the solution is to use functional update instead. We need to create an
instance variable containing the representation s of the string.

class better_string s =
object
val repr = s
method get n = String.get repr n
method print = print_string repr
method escaped = {< repr = String.escaped repr >}
method sub start len = {< repr = String.sub s start lemn >}
end;;
class better_string :
string ->
object ('a)
val repr : string
method escaped : 'a
method get : int -> char
method print : unit
method sub : int -> int -> 'a
end

#
#
#
#
#
#
#
#

As shown in the inferred type, the methods escaped and sub now return objects of the same type
as the one of the class.

Another difficulty is the implementation of the method concat. In order to concatenate a string
with another string of the same class, one must be able to access the instance variable externally.
Thus, a method repr returning s must be defined. Here is the correct definition of strings:

# class ostring s =

# object (self : 'mytype)

# val repr = s

# method repr = repr

# method get n = String.get repr n

# method print = print_string repr

# method escaped = {< repr = String.escaped repr >}

# method sub start len = {< repr = String.sub s start len >}
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# method concat (t : 'mytype) = {< repr = repr "~ t#repr >}
# end;;
class ostring :
string ->
object ('a)
val repr : string
method concat : 'a -> 'a
method escaped : 'a

method get : int -> char

method print : unit

method repr : string

method sub : int -> int -> 'a
end

Another constructor of the class string can be defined to return a new string of a given length:

# class cstring n = ostring (String.make n ' ');;
class cstring : int -> ostring

Here, exposing the representation of strings is probably harmless. We do could also hide the
representation of strings as we hid the currency in the class money of section 3.17.

Stacks

There is sometimes an alternative between using modules or classes for parametric data types.
Indeed, there are situations when the two approaches are quite similar. For instance, a stack can
be straightforwardly implemented as a class:

# exception Empty;;

exception Empty

# class ['al stack =

# object

# val mutable 1 = ([] : 'a list)
# method push x = 1 <- x::1
# method pop = match 1 with [] -> raise Empty | a::1' -> 1 <-1'; a
# method clear = 1 <- []
# method length = List.length 1
# end;;
class ['al stack :
object
val mutable 1 : 'a list
method clear : unit
method length : int
method pop : 'a
method push : 'a -> unit
end

However, writing a method for iterating over a stack is more problematic. A method fold would
have type ('b => 'a => 'b) -> 'b -> 'b. Here 'ais the parameter of the stack. The parameter
'b is not related to the class 'a stack but to the argument that will be passed to the method
fold. A naive approach is to make 'b an extra parameter of class stack:
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# class ['a, 'b] stack2 =

# object
# inherit ['a] stack
# method fold f (x : 'b) = List.fold_left f x 1
# end;;
class ['a, 'b] stack2 :
object
val mutable 1 : 'a list

method clear : unit
method fold : ('b -> 'a -> 'b) -> 'b => 'b
method length : int
method pop : 'a
method push : 'a -> unit
end

However, the method fold of a given object can only be applied to functions that all have the same
type:

# let s = new stack2;;
val s : ('_weakl, '_weak2) stack2 = <obj>

# s#tfold ( + ) 0;;

- : int =0

# s;;

- : (int, int) stack2 = <obj>

A better solution is to use polymorphic methods, which were introduced in OCaml version 3.05.
Polymorphic methods makes it possible to treat the type variable 'b in the type of fold as univer-
sally quantified, giving fold the polymorphic type Forall 'b. ('b -> 'a -> 'b) -> 'b -> 'b.
An explicit type declaration on the method fold is required, since the type checker cannot infer
the polymorphic type by itself.

# class ['a] stack3 =
# object

# inherit ['a] stack
# method fold : 'b. ('b -> 'a -> 'b) -> 'b > 'b
# = fun f x -> List.fold_left f x 1
# end;;
class ['al stack3 :
object
val mutable 1 : 'a list

method clear : unit
method fold : ('b -> 'a -> 'b) -> 'b => 'b
method length : int
method pop : 'a
method push : 'a -> unit
end

6.2.2 Hashtbl

A simplified version of object-oriented hash tables should have the following class type.
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# class type ['a, 'b] hash_table =

# object

# method find : 'a -> 'b

# method add : 'a -> 'b -> unit
# end;;

class type ['a, 'b] hash_table =
object method add : 'a -> 'b -> unit method find : 'a -> 'b end
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A simple implementation, which is quite reasonable for small hash tables is to use an association

list:

# class ['a, 'b] small_hashtbl : ['a, 'b] hash_table =

# object

# val mutable table = []

# method find key = List.assoc key table

# method add key valeur = table <- (key, valeur) :: table
# end;;

class ['a, 'b] small_hashtbl : ['a, 'b] hash_table

A better implementation, and one that scales up better, is to use a true hash table...

elements are small hash tables!

class ['a, 'b] hashtbl size : ['a, 'b] hash_table =
object (self)
val table = Array.init size (fun i -> new small_hashtbl)
method private hash key =
(Hashtbl.hash key) mod (Array.length table)
method find key = table.(self#hash key) # find key
method add key = table.(self#hash key) # add key
end;;
class ['a, 'b] hashtbl : int -> ['a, 'b] hash_table

#
#
#
#
#
#
#
#

6.2.3 Sets

whose

Implementing sets leads to another difficulty. Indeed, the method union needs to be able to access

the internal representation of another object of the same class.

This is another instance of friend functions as seen in section 3.17. Indeed, this is the same

mechanism used in the module Set in the absence of objects.

In the object-oriented version of sets, we only need to add an additional method tag to return
the representation of a set. Since sets are parametric in the type of elements, the method tag has a
parametric type 'a tag, concrete within the module definition but abstract in its signature. From
outside, it will then be guaranteed that two objects with a method tag of the same type will share

the same representation.

# module type SET =
# sig

# type 'a tag

# class ['al c :
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object ('b)
method is_empty : bool
method mem : 'a -> bool
method add : 'a -> 'b
method union : 'b -> 'b

method iter : ('a -> unit) -> unit
method tag : 'a tag
end
end;;
module Set : SET =
struct

let rec merge 11 12 =
match 11 with

0 ->12
| h1 :: t1 ->
match 12 with
0 —-> 11
| h2 :: t2 —>

if hl < h2 then hl :: merge t1 12
else if hl > h2 then h2 :: merge 11 t2
else merge t1 12
type 'a tag = 'a list
class ['al c
object (_ : 'b)
val repr = ([] : 'a list)
method is_empty = (repr = [1)
method mem x = List.exists (( = ) x) repr
method add x = {< repr = merge [x] repr >}

method union (s : 'b) = {< repr = merge repr s#tag >}
method iter (f : 'a -> unit) = List.iter f repr
method tag = repr

end
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end;;

6.3 The subject/observer pattern

The following example, known as the subject/observer pattern, is often presented in the literature
as a difficult inheritance problem with inter-connected classes. The general pattern amounts to the
definition a pair of two classes that recursively interact with one another.

The class observer has a distinguished method notify that requires two arguments, a subject
and an event to execute an action.

# class virtual ['subject, 'event] observer =
# object
# method virtual notify : 'subject -> ‘'event -> unit
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# end;;
class virtual ['subject, 'event] observer :
object method virtual notify : 'subject -> 'event -> unit end

The class subject remembers a list of observers in an instance variable, and has a distinguished
method notify_observers to broadcast the message notify to all observers with a particular
event e.

# class ['observer, 'event] subject =
# object (self)
# val mutable observers = ([]:'observer list)
# method add_observer obs = observers <- (obs :: observers)
# method notify_observers (e : 'event) =
# List.iter (fun x -> x#notify self e) observers
# end;;
class ['a, 'event] subject :
object ('b)
constraint 'a = < notify : 'b -> 'event -> unit; .. >
val mutable observers : 'a list
method add_observer : 'a -> unit
method notify_observers : 'event -> unit
end

The difficulty usually lies in defining instances of the pattern above by inheritance. This can be
done in a natural and obvious manner in OCaml, as shown on the following example manipulating
windows.

# type event = Raise | Resize | Move;;
type event = Raise | Resize | Move

# let string_of_event = function
# Raise -> "Raise" | Resize -> "Resize" | Move -> "Move";;
val string_of_event : event -> string = <fun>

# let count = ref O;;
val count : int ref = {contents = O}

# class ['observer] window_subject =

# let id = count := succ !count; !count in

# object (self)

# inherit ['observer, event] subject

# val mutable position = 0

# method identity = id

# method move x = position <- position + x; self#notify_observers Move
# method draw = Printf.printf "{Position = %d}\n" position;

#

end;;
class ['al] window_subject :
object ('b)
constraint 'a = < notify : 'b -> event -> unit; .. >

val mutable observers : 'a list
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val mutable position : int

method add_observer : 'a —-> unit

method draw : unit

method identity : int

method move : int —> unit

method notify_observers : event -> unit
end

# class ['subject] window_observer =

# object
# inherit ['subject, event] observer
# method notify s e = s#draw
# end;;
class ['a] window_observer :
object
constraint 'a = < draw : unit; .. >
method notify : 'a -> event -> unit
end

As can be expected, the type of window is recursive.

# let window = new window_subject;;
val window : < notify : 'a -> event -> unit; _.. > window_subject as 'a =
<obj>

However, the two classes of window_subject and window_observer are not mutually recursive.

# let window_observer = new window_observer;;
val window_observer : < draw : unit; _.. > window_observer = <obj>

# window#add_observer window_observer;;
- : unit = ()

# window#move 1;;
{Position = 1}
- : unit = ()

Classes window_observer and window_subject can still be extended by inheritance. For in-
stance, one may enrich the subject with new behaviors and refine the behavior of the observer.

# class ['observer] richer_window_subject =
# object (self)
# inherit ['observer] window_subject
# val mutable size =1
# method resize x = size <- size + x; self#notify_observers Resize
# val mutable top = false
# method raise = top <- true; self#notify_observers Raise
# method draw = Printf.printf "{Position = %d; Size = %d}\n" position size;
# end;;
class ['al richer_window_subject :
object ('b)
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constraint 'a = < notify : 'b -> event -> unit; .. >
val mutable observers : 'a list
val mutable position : int
val mutable size : int
val mutable top : bool
method add_observer : 'a —-> unit
method draw : unit
method identity : int
method move : int -> unit
method notify_observers : event —> unit
method raise : unit
method resize : int -> unit
end

# class ['subject] richer_window_observer =

# object
# inherit ['subject] window_observer as super
# method notify s e = if e <> Raise then s#raise; super#notify s e
# end;;
class ['a] richer_window_observer :
object
constraint 'a = < draw : unit; raise : unit; .. >
method notify : 'a -> event -> unit
end

We can also create a different kind of observer:

# class ['subject] trace_observer =
# object
# inherit ['subject, event] observer
# method notify s e =
# Printf.printf
# "<Window %d <== Ys>\n" s#identity (string_of_event e)
# end;;
class ['al] trace_observer :
object
constraint 'a = < identity : int; .. >
method notify : 'a -> event -> unit
end

and attach several observers to the same object:

# let window = new richer_window_subject;;
val window :

< notify : 'a -> event -> unit; > richer_window_subject as 'a = <obj>

# window#add_observer (new richer_window_observer);;
: unit = ()

# window#add_observer (new trace_observer);;
: unit = ()
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# window#move 1; window#resize 2;;
<Window 1 <== Move>
<Window 1 <== Raise>

{Position = 1; Size = 1}
{Position = 1; Size = 1}
<Window 1 <== Resize>
<Window 1 <== Raise>
{Position = 1; Size = 3}
{Position = 1; Size = 3}

- : unit = ()
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Chapter 7

The OCaml language

Foreword

This document is intended as a reference manual for the OCaml language. It lists the language
constructs, and gives their precise syntax and informal semantics. It is by no means a tutorial
introduction to the language: there is not a single example. A good working knowledge of OCaml
is assumed.

No attempt has been made at mathematical rigor: words are employed with their intuitive
meaning, without further definition. As a consequence, the typing rules have been left out, by lack
of the mathematical framework required to express them, while they are definitely part of a full
formal definition of the language.

Notations

The syntax of the language is given in BNF-like notation. Terminal symbols are set in typewriter
font (1ike this). Non-terminal symbols are set in italic font (like that). Square brackets [...]
denote optional components. Curly brackets { ...} denotes zero, one or several repetitions of the
enclosed components. Curly brackets with a trailing plus sign { ...} denote one or several repeti-
tions of the enclosed components. Parentheses (...) denote grouping.

7.1 Lexical conventions

Blanks

The following characters are considered as blanks: space, horizontal tabulation, carriage return,
line feed and form feed. Blanks are ignored, but they separate adjacent identifiers, literals and
keywords that would otherwise be confused as one single identifier, literal or keyword.

Comments

Comments are introduced by the two characters (*, with no intervening blanks, and terminated
by the characters *), with no intervening blanks. Comments are treated as blank characters.
Comments do not occur inside string or character literals. Nested comments are handled correctly.
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Identifiers
ident = (letter | _) {letter |0...9| _| "'}
capitalized-ident ::= (A...Z) {letter |0...9|_| "}
lowercase-ident = (a...z|_) {letter |0...9|_|"'}
letter == A...Z]a...z

Identifiers are sequences of letters, digits, _ (the underscore character), and ' (the single quote),
starting with a letter or an underscore. Letters contain at least the 52 lowercase and uppercase
letters from the ASCII set. The current implementation also recognizes as letters some characters
from the ISO 8859-1 set (characters 192-214 and 216222 as uppercase letters; characters 223-246
and 248-255 as lowercase letters). This feature is deprecated and should be avoided for future
compatibility.

All characters in an identifier are meaningful. The current implementation accepts identifiers
up to 16000000 characters in length.

In many places, OCaml makes a distinction between capitalized identifiers and identifiers that
begin with a lowercase letter. The underscore character is considered a lowercase letter for this
purpose.

Integer literals

](0...9){0...9|_}
] (0x|0X) (0...9|A...F|a...£){0...9|A...F|a...f]|_}
] (00| 00) (0...7) {0...7] _}

] (Ob|0B) (0...1){0...1]|_}

integer-literal

n= |-
| [
| [
|-

int32-literal ::= integer-literal 1
int64-literal ::= integer-literal L
nativeint-literal ::= integer-literal n

An integer literal is a sequence of one or more digits, optionally preceded by a minus sign. By
default, integer literals are in decimal (radix 10). The following prefixes select a different radix:

Prefix | Radix

0x, OX | hexadecimal (radix 16)
0o, 00 | octal (radix 8)

Ob, OB | binary (radix 2)

(The initial 0 is the digit zero; the 0 for octal is the letter O.) An integer literal can be followed
by one of the letters 1, L or n to indicate that this integer has type int32, int64 or nativeint
respectively, instead of the default type int for integer literals. The interpretation of integer literals
that fall outside the range of representable integer values is undefined.

For convenience and readability, underscore characters (_) are accepted (and ignored) within

integer literals.
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Floating-point literals

float-literal = [-] (0...9){0...9| _}[. {0...9|_} [(e|E) [+|-] (0...9) {0...9] _}]
| [-] (0x|0X) (0...9|A...F|a...£){0...9|A...F|a...£|_}

[L{0...9]A...Fla...£| M[(p|P)[*+]|-](0...9){0...9] _}]

Floating-point decimal literals consist in an integer part, a fractional part and an exponent part.
The integer part is a sequence of one or more digits, optionally preceded by a minus sign. The
fractional part is a decimal point followed by zero, one or more digits. The exponent part is the
character e or E followed by an optional + or - sign, followed by one or more digits. It is interpreted
as a power of 10. The fractional part or the exponent part can be omitted but not both, to avoid
ambiguity with integer literals. The interpretation of floating-point literals that fall outside the
range of representable floating-point values is undefined.

Floating-point hexadecimal literals are denoted with the Ox or 0X prefix. The syntax is similar
to that of floating-point decimal literals, with the following differences. The integer part and the
fractional part use hexadecimal digits. The exponent part starts with the character p or P. It is
written in decimal and interpreted as a power of 2.

For convenience and readability, underscore characters (_) are accepted (and ignored) within
floating-point literals.

Character literals

char-literal ::= ' regular-char '
' escape-sequence '

= N(\["["[n]t]|b]|r]|space)
| \(0...9)(0...9)(0...9)
| \x(0...9|A...Fla...f)(0...9]A...Fla...f)
| \o(0...3)(0...7)(0...7)

escape-sequence

Character literals are delimited by ' (single quote) characters. The two single quotes enclose
either one character different from ' and \, or one of the escape sequences below:

Sequence | Character denoted

\\ backslash (\)

\" double quote (")

\! single quote (')

\n linefeed (LF)

\r carriage return (CR)

\t horizontal tabulation (TAB)

\b backspace (BS)

\space space (SPC)

\ddd the character with ASCII code ddd in decimal
\xhh the character with ASCII code hh in hexadecimal
\oooo the character with ASCII code ooo in octal
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String literals

string-literal ::= " {string-character} "
{ quoted-string-id | {any-char} | quoted-string-id }

{a...z | _}

quoted-string-id

string-character := regular-string-char
| escape-sequence
| \u{{0...9|A...F|a...f}7}
|

\ newline {space | tab}

String literals are delimited by " (double quote) characters. The two double quotes enclose a
sequence of either characters different from " and \, or escape sequences from the table given above
for character literals, or a Unicode character escape sequence.

A Unicode character escape sequence is substituted by the UTF-8 encoding of the specified
Unicode scalar value. The Unicode scalar value, an integer in the ranges 0x0000...0xD7FF or
0xE000...0x10FFFF, is defined using 1 to 6 hexadecimal digits; leading zeros are allowed.

To allow splitting long string literals across lines, the sequence \newline spaces-or-tabs (a back-
slash at the end of a line followed by any number of spaces and horizontal tabulations at the
beginning of the next line) is ignored inside string literals.

Quoted string literals provide an alternative lexical syntax for string literals. They are useful to
represent strings of arbitrary content without escaping. Quoted strings are delimited by a matching
pair of { quoted-string-id | and | quoted-string-id } with the same quoted-string-id on both sides.
Quoted strings do not interpret any character in a special way but requires that the sequence
| quoted-string-id } does not occur in the string itself. The identifier quoted-string-id is a (possibly
empty) sequence of lowercase letters and underscores that can be freely chosen to avoid such issue
(e.g. {lhellol}, {ext|hello {|world|}lext}, ...).

The current implementation places practically no restrictions on the length of string literals.

Naming labels

To avoid ambiguities, naming labels in expressions cannot just be defined syntactically as the
sequence of the three tokens ~, ident and :, and have to be defined at the lexical level.

label-name ::= lowercase-ident
label ::= ~ label-name :
optlabel ::= 7 label-name :

Naming labels come in two flavours: label for normal arguments and optlabel for optional ones.
They are simply distinguished by their first character, either ~ or 7.

Despite label and optlabel being lexical entities in expressions, their expansions ~ label-name :
and ? label-name : will be used in grammars, for the sake of readability. Note also that inside
type expressions, this expansion can be taken literally, ¢.e. there are really 3 tokens, with optional
blanks between them.
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Prefix and infix symbols

infix-symbol = (=|<|[>|@|~ || |&|+]|-]|*|/]|$|%) {operator-char}
| # {operator-char}*

prefix-symbol ::= ! {operator-char}
| (7| ") {operator-char}™

operator-char == V|$|%h|&|*|+|-|.|/|:|<|=|>]7?|@|" ||~

See also the following language extensions: extension operators and extended indexing operators.

Sequences of “operator characters”, such as <=> or !!, are read as a single token from the
infix-symbol or prefix-symbol class. These symbols are parsed as prefix and infix operators inside
expressions, but otherwise behave like normal identifiers.

Keywords

The identifiers below are reserved as keywords, and cannot be employed otherwise:

and as assert asr begin class
constraint do done downto else end
exception  external false for fun function
functor if in include inherit initializer
land lazy let lor 1sl lsr

1lxor match method mod module mutable
new nonrec object of open or

private rec sig struct then to

true try type val virtual when

while with

The following character sequences are also keywords:

1= # & &8 ' ( ) * + , -
-. -> . .. . : N = > ; M
< <- = > >] >} ? [ [< [> [
] _ ) { {< I 1] Il } -

Note that the following identifiers are keywords of the Camlp4 extensions and should be avoided
for compatibility reasons.

parser value $ $$ $: <: << >> ?7

Ambiguities

Lexical ambiguities are resolved according to the “longest match” rule: when a character sequence
can be decomposed into two tokens in several different ways, the decomposition retained is the one
with the longest first token.
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Line number directives

linenum-directive == #{0...9}"
| #{0...9}" " {string-character} "

Preprocessors that generate OCaml source code can insert line number directives in their output
so that error messages produced by the compiler contain line numbers and file names referring to the
source file before preprocessing, instead of after preprocessing. A line number directive is composed
of a # (sharp sign), followed by a positive integer (the source line number), optionally followed by a
character string (the source file name). Line number directives are treated as blanks during lexical
analysis.

7.2 Values

This section describes the kinds of values that are manipulated by OCaml programs.

7.2.1 Base values
Integer numbers

Integer values are integer numbers from —230 to 230 — 1, that is —1073741824 to 1073741823. The
implementation may support a wider range of integer values: on 64-bit platforms, the current
implementation supports integers ranging from —262 to 262 — 1.

Floating-point numbers

Floating-point values are numbers in floating-point representation. The current implementation
uses double-precision floating-point numbers conforming to the IEEE 754 standard, with 53 bits of
mantissa and an exponent ranging from —1022 to 1023.

Characters

Character values are represented as 8-bit integers between 0 and 255. Character codes between
0 and 127 are interpreted following the ASCII standard. The current implementation interprets
character codes between 128 and 255 following the ISO 8859-1 standard.

Character strings

String values are finite sequences of characters. The current implementation supports strings con-
taining up to 224 — 5 characters (16777211 characters); on 64-bit platforms, the limit is 257 — 9.

7.2.2 Tuples

Tuples of values are written (vq , ..., v, ), standing for the n-tuple of values v to v,,. The current
implementation supports tuple of up to 222 — 1 elements (4194303 elements).
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7.2.3 Records

Record values are labeled tuples of values. The record value written { field; =vy ;... ; field, =v, }
associates the value v; to the record field field;, for i = 1...n. The current implementation supports
records with up to 222 — 1 fields (4194303 fields).

7.2.4 Arrays

Arrays are finite, variable-sized sequences of values of the same type. The current implementation
supports arrays containing up to 2?2 — 1 elements (4194303 elements) unless the elements are
floating-point numbers (2097151 elements in this case); on 64-bit platforms, the limit is 2°4 — 1 for
all arrays.

7.2.5 Variant values

Variant values are either a constant constructor, or a non-constant constructor applied to a number
of values. The former case is written constr; the latter case is written constr (vy ,... ,v, ), where
the v; are said to be the arguments of the non-constant constructor constr. The parentheses may
be omitted if there is only one argument.

The following constants are treated like built-in constant constructors:

Constant | Constructor
false the boolean false
true the boolean true
O the “unit” value
(] the empty list

The current implementation limits each variant type to have at most 246 non-constant con-
structors and 23° — 1 constant constructors.
7.2.6 Polymorphic variants

Polymorphic variants are an alternate form of variant values, not belonging explicitly to a predefined
variant type, and following specific typing rules. They can be either constant, written ~ tag-name,
or non-constant, written ° tag-name (v ).

7.2.7 Functions

Functional values are mappings from values to values.

7.2.8 Objects

Objects are composed of a hidden internal state which is a record of instance variables, and a set
of methods for accessing and modifying these variables. The structure of an object is described by
the toplevel class that created it.
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7.3 Names

Identifiers are used to give names to several classes of language objects and refer to these objects
by name later:

e value names (syntactic class value-name),
e value constructors and exception constructors (class constr-name),
e labels (label-name, defined in section 7.1),
e polymorphic variant tags (tag-name),

e type constructors (typeconstr-name),

e record fields (field-name),

e class names (class-name),

e method names (method-name),

e instance variable names (inst-var-name),
e module names (module-name),

e module type names (modtype-name).

These eleven name spaces are distinguished both by the context and by the capitalization of the
identifier: whether the first letter of the identifier is in lowercase (written lowercase-ident below)
or in uppercase (written capitalized-ident). Underscore is considered a lowercase letter for this
purpose.
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Naming objects

value-name

operator-name

infix-op

constr-name
tag-name
typeconstr-name
field-name
module-name
modtype-name
class-name
inst-var-name

method-name

lowercase-ident
( operator-name )

prefix-symbol | infix-op

infix-symbol

*[+]--=lt=]<|>]or [l |&]&t]:=
mod | land | lor | 1xor | 1sl | 1sr | asr

capitalized-ident
capitalized-ident
lowercase-ident
lowercase-ident
capitalized-ident
ident
lowercase-ident
lowercase-ident

lowercase-ident

See also the following language extension: extended indexing operators.

As shown above, prefix and infix symbols as well as some keywords can be used as value names,
provided they are written between parentheses. The capitalization rules are summarized in the
table below.

Name space Case of first letter
Values lowercase
Constructors uppercase
Labels lowercase
Polymorphic variant tags | uppercase
Exceptions uppercase
Type constructors lowercase
Record fields lowercase
Classes lowercase
Instance variables lowercase
Methods lowercase
Modules uppercase
Module types any

Note on polymorphic variant tags: the current implementation accepts lowercase variant tags in
addition to capitalized variant tags, but we suggest you avoid lowercase variant tags for portability
and compatibility with future OCaml versions.
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Referring to named objects
value-path

constr

typeconstr

field

modtype-path

class-path

classtype-path

module-path
extended-module-path

extended-module-name

module-path .| value-name
module-path .| constr-name

extended-module-path .| typeconstr-name

[

[

[

[module-path .] field-name
[extended-module-path .| modtype-name
[module-path .] class-name

[extended-module-path .] class-name
module-name {. module-name}
extended-module-name {. extended-module-name}

module-name { ( extended-module-path ) }

A named object can be referred to either by its name (following the usual static scoping rules
for names) or by an access path prefix . name, where prefix designates a module and name is
the name of an object defined in that module. The first component of the path, prefix, is either
a simple module name or an access path name; . names..., in case the defining module is itself
nested inside other modules. For referring to type constructors, module types, or class types, the
prefix can also contain simple functor applications (as in the syntactic class extended-module-path
above) in case the defining module is the result of a functor application.

Label names, tag names, method names and instance variable names need not be qualified: the
former three are global labels, while the latter are local to a class.
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7.4 Type expressions

typexpr = ' ident

| _

| (typexpr )

| [[?] label-name :] typexpr -> typexpr
| typexpr {* typexpr}™

| typeconstr

| typexpr typeconstr

| (typexpr {, typexpr} ) typeconstr

| typexpr as ' ident

| polymorphic-variant-type

| <[..]>

| < method-type {; method-type} [; | ; ..] >
| # class-path

| typexpr # class-path

| (typexpr {, typexpr} ) # class-path

poly-typexpr ::= typexpr
| {"ident}* . typexpr
method-type ::= method-name : poly-typexpr
See also the following language extensions: first-class modules, attributes and extension nodes.

The table below shows the relative precedences and associativity of operators and non-closed
type constructions. The constructions with higher precedences come first.

Operator Associativity
Type constructor application | —

# _

* _

-> right

as -

Type expressions denote types in definitions of data types as well as in type constraints over
patterns and expressions.

Type variables

The type expression ' ident stands for the type variable named ident. The type expression _ stands
for either an anonymous type variable or anonymous type parameters. In data type definitions, type
variables are names for the data type parameters. In type constraints, they represent unspecified
types that can be instantiated by any type to satisfy the type constraint. In general the scope of a
named type variable is the whole top-level phrase where it appears, and it can only be generalized
when leaving this scope. Anonymous variables have no such restriction. In the following cases,
the scope of named type variables is restricted to the type expression where they appear: 1) for
universal (explicitly polymorphic) type variables; 2) for type variables that only appear in public
method specifications (as those variables will be made universal, as described in section 7.9.1); 3)
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for variables used as aliases, when the type they are aliased to would be invalid in the scope of the
enclosing definition (i.e. when it contains free universal type variables, or locally defined types.)

Parenthesized types

The type expression ( typexpr ) denotes the same type as typexpr.

Function types

The type expression typexpr; -> typexpr, denotes the type of functions mapping arguments of
type typexpr; to results of type typexprs.

label-name : typexpr, —> typexpry denotes the same function type, but the argument is labeled
label.

7 label-name : typexpr, —> typexpr, denotes the type of functions mapping an optional labeled
argument of type typexpr; to results of type typexpr,. That is, the physical type of the function
will be typexpr; option -> typexpr,.

Tuple types

The type expression typexpr; *...* typexpr, denotes the type of tuples whose elements belong to
types typexpry, ... typexpr,, respectively.

Constructed types

Type constructors with no parameter, as in typeconstr, are type expressions.

The type expression typexpr typeconstr, where typeconstr is a type constructor with one pa-
rameter, denotes the application of the unary type constructor typeconstr to the type typexpr.

The type expression (typexpry, ..., typexpr,) typeconstr, where typeconstr is a type construc-
tor with n parameters, denotes the application of the n-ary type constructor typeconstr to the
types typexpr; through typexpr,,.

In the type expression _ typeconstr, the anonymous type expression _ stands in for anony-
mous type parameters and is equivalent to (_,...,_) with as many repetitions of _ as the arity of
typeconstr.

Aliased and recursive types

The type expression typexpr as ' ident denotes the same type as typexpr, and also binds the
type variable ident to type typexpr both in typexpr and in other types. In general the scope of
an alias is the same as for a named type variable, and covers the whole enclosing definition. If
the type variable ident actually occurs in typexpr, a recursive type is created. Recursive types for
which there exists a recursive path that does not contain an object or polymorphic variant type
constructor are rejected, except when the -rectypes mode is selected.

If ' ident denotes an explicit polymorphic variable, and typexpr denotes either an object or
polymorphic variant type, the row variable of typexpr is captured by ' ident, and quantified upon.
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Polymorphic variant types

:= [ tag-spec-first {| tag-spec} ]
| [> [tag-spec] {| tag-spec} ]
| [<[l] tag-spec-full {| tag-spec-full} [> {* tag-name}™] ]

polymorphic-variant-type

tag-spec-first =~ tag-name [of typexpr]
| [typexpr] | tag-spec
tag-spec = ° tag-name [of typexpr]
| typexpr
tag-spec-full ::= = tag-name |of [&| typexpr {& typexpr}]
| typexpr

Polymorphic variant types describe the values a polymorphic variant may take.

The first case is an exact variant type: all possible tags are known, with their associated types,
and they can all be present. Its structure is fully known.

The second case is an open variant type, describing a polymorphic variant value: it gives the
list of all tags the value could take, with their associated types. This type is still compatible with a
variant type containing more tags. A special case is the unknown type, which does not define any
tag, and is compatible with any variant type.

The third case is a closed variant type. It gives information about all the possible tags and
their associated types, and which tags are known to potentially appear in values. The exact variant
type (first case) is just an abbreviation for a closed variant type where all possible tags are also
potentially present.

In all three cases, tags may be either specified directly in the ~ tag-name [of typexpr] form,
or indirectly through a type expression, which must expand to an exact variant type, whose tag
specifications are inserted in its place.

Full specifications of variant tags are only used for non-exact closed types. They can be under-
stood as a conjunctive type for the argument: it is intended to have all the types enumerated in
the specification.

Such conjunctive constraints may be unsatisfiable. In such a case the corresponding tag may
not be used in a value of this type. This does not mean that the whole type is not valid: one can
still use other available tags. Conjunctive constraints are mainly intended as output from the type
checker. When they are used in source programs, unsolvable constraints may cause early failures.

Object types

An object type < [method-type {; method-type}] > is a record of method types.

Each method may have an explicit polymorphic type: {' ident}* . typexpr. Explicit poly-
morphic variables have a local scope, and an explicit polymorphic type can only be unified to an
equivalent one, where only the order and names of polymorphic variables may change.

The type < {method-type ;} .. > is the type of an object whose method names and types
are described by method-typey, ..., method-type,,, and possibly some other methods represented
by the ellipsis. This ellipsis actually is a special kind of type variable (called row variable in the
literature) that stands for any number of extra method types.
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#-types

The type # class-path is a special kind of abbreviation. This abbreviation unifies with the type of
any object belonging to a subclass of class class-path. It is handled in a special way as it usually
hides a type variable (an ellipsis, representing the methods that may be added in a subclass).
In particular, it vanishes when the ellipsis gets instantiated. Each type expression # class-path
defines a new type variable, so type # class-path —> # class-path is usually not the same as type
(# class-path as ' ident) -> ' ident.

Use of #-types to abbreviate polymorphic variant types is deprecated. If t is an exact variant
type then #t translates to [<t ], and #t [> ~ tag;... ~ tag, ] translates to [<t >~ tag,... ~ tagy ]

Variant and record types

There are no type expressions describing (defined) variant types nor record types, since those are
always named, i.e. defined before use and referred to by name. Type definitions are described in
section 7.8.1.

7.5 Constants

constant ::= integer-literal
| int32-literal
| int64-literal
| nativeint-literal
| float-literal
| char-literal
| string-literal
| constr
| false
| true
| O

| begin end

| []

| O]

|

© tag-name

See also the following language extension: extension literals.

The syntactic class of constants comprises literals from the four base types (integers, floating-
point numbers, characters, character strings), the integer variants, and constant constructors from
both normal and polymorphic variants, as well as the special constants false, true, (), [ ], and
[l 11, which behave like constant constructors, and begin end, which is equivalent to ().
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7.6 Patterns

pattern ::= value-name
| -
| constant

| pattern as value-name

| (pattern)

| (pattern : typexpr )

| pattern | pattern

| constr pattern

| ° tag-name pattern

| # typeconstr

| pattern {, pattern}™t

| { field [: typexpr] [= pattern] {; field [: typexpr] [= pattern]} [; _] [;] }

| [ pattern {; pattern} [;] ]

| pattern :: pattern

| [l pattern {; pattern} [;] |]

| char-literal .. char-literal

| lazy pattern

| exception pattern

See also the following language extensions: local opens, first-class modules, attributes and extension
nodes.

The table below shows the relative precedences and associativity of operators and non-closed
pattern constructions. The constructions with higher precedences come first.

Operator Associativity

lazy (see section 7.6) -
Constructor application, Tag application | right
right

b

| left
as -

Patterns are templates that allow selecting data structures of a given shape, and binding iden-
tifiers to components of the data structure. This selection operation is called pattern matching;
its outcome is either “this value does not match this pattern”, or “this value matches this pattern,
resulting in the following bindings of names to values”.

Variable patterns

A pattern that consists in a value name matches any value, binding the name to the value. The
pattern _ also matches any value, but does not bind any name.

Patterns are linear: a variable cannot be bound several times by a given pattern. In particular,
there is no way to test for equality between two parts of a data structure using only a pattern (but
when guards can be used for this purpose).
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Constant patterns

A pattern consisting in a constant matches the values that are equal to this constant.

Alias patterns

The pattern pattern, as value-name matches the same values as pattern;. If the matching against
pattern; is successful, the name value-name is bound to the matched value, in addition to the
bindings performed by the matching against pattern,.

Parenthesized patterns

The pattern ( pattern; ) matches the same values as pattern;. A type constraint can appear in a
parenthesized pattern, as in ( pattern; : typexpr ). This constraint forces the type of pattern; to
be compatible with typexpr.

“Or” patterns

The pattern pattern; | pattern, represents the logical “or” of the two patterns pattern; and
patterny,. A value matches pattern; | pattern, if it matches pattern; or pattern,. The two sub-
patterns pattern; and pattern, must bind exactly the same identifiers to values having the same
types. Matching is performed from left to right. More precisely, in case some value v matches
pattern; | pattern,, the bindings performed are those of pattern; when v matches pattern;. Oth-
erwise, value v matches pattern, whose bindings are performed.

Variant patterns

The pattern constr ( pattern, , ..., pattern, ) matches all variants whose constructor is equal to
constr, and whose arguments match pattern, ... pattern,,. It is a type error if n is not the number
of arguments expected by the constructor.

The pattern constr _ matches all variants whose constructor is constr.

The pattern pattern, :: pattern, matches non-empty lists whose heads match pattern,, and
whose tails match pattern,.

The pattern [ pattern; ;...; pattern, 1 matches lists of length n whose elements match
pattern; ... pattern,, respectively. This pattern behaves like pattern; :: ... :: pattern, :: [].

Polymorphic variant patterns

The pattern ~ tag-name pattern; matches all polymorphic variants whose tag is equal to tag-name,
and whose argument matches pattern;.

Polymorphic variant abbreviation patterns

If the type [('a,'b,...)] typeconstr = [~ tag-name; typexpr; |...| ~ tag-name,, typexpr,, ]
is defined, then the pattern # typeconstr is a shorthand for the following or-pattern:
( ~ tag-name; (_ : typexpr; ) | ... |~ tag-name, (_ : typexpr, )). It matches all values of type

[< typeconstr ].
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Tuple patterns

The pattern pattern; ,..., pattern, matches n-tuples whose components match the patterns
pattern; through pattern,. That is, the pattern matches the tuple values (v1,...,v,) such that
pattern, matches v; for i =1,...,n.

Record patterns

The pattern { field; [= pattern,] ; ... ; field, [= pattern,| } matches records that define at least the
fields field; through field,, and such that the value associated to field; matches the pattern pattern,,
for i = 1,...,n. A single identifier fieldy stands for field; = field, and a single qualified identifier
module-path . field; stands for module-path . fieldy = field;. The record value can define more
fields than field; ... field,; the values associated to these extra fields are not taken into account for
matching. Optionally, a record pattern can be terminated by ; _ to convey the fact that not all fields
of the record type are listed in the record pattern and that it is intentional. Optional type constraints
can be added field by field with { field; : typexpr, = pattern; ;... ; field, : typexpr, = pattern, }
to force the type of field, to be compatible with typexpry.

Array patterns

The pattern [| pattern; ;...; pattern, |] matches arrays of length n such that the i-th array
element matches the pattern pattern;, fori =1,...,n.

Range patterns

The pattern 'c ' .. 'd ' is a shorthand for the pattern

e ! I |C.1l | |62| || 'Cnl | 'd"!
where c1, co, ..., ¢, are the characters that occur between ¢ and d in the ASCII character set. For
instance, the pattern '0'..'9' matches all characters that are digits.

Lazy patterns
(Introduced in Objective Caml 3.11)

pattern 1=

The pattern lazy pattern matches a value v of type Lazy.t, provided pattern matches the
result of forcing v with Lazy.force. A successful match of a pattern containing lazy sub-patterns
forces the corresponding parts of the value being matched, even those that imply no test such
as lazy value-name or lazy _. Matching a value with a pattern-matching where some patterns
contain lazy sub-patterns may imply forcing parts of the value, even when the pattern selected in
the end has no lazy sub-pattern.

For more information, see the description of module Lazy in the standard library (module
Lazy[26.24]).
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Exception patterns

(Introduced in OCaml 4.02)

A new form of exception pattern, exception pattern, is allowed only as a toplevel pattern or
inside a toplevel or-pattern under a match...with pattern-matching (other occurrences are rejected
by the type-checker).

Cases with such a toplevel pattern are called “exception cases”, as opposed to regular “value
cases”. Exception cases are applied when the evaluation of the matched expression raises an excep-
tion. The exception value is then matched against all the exception cases and re-raised if none of
them accept the exception (as with a try...with block). Since the bodies of all exception and value
cases are outside the scope of the exception handler, they are all considered to be in tail-position:
if the match...with block itself is in tail position in the current function, any function call in tail
position in one of the case bodies results in an actual tail call.

A pattern match must contain at least one value case. It is an error if all cases are exceptions,
because there would be no code to handle the return of a value.
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7.7 Expressions

expr

value-path

constant

( expr )

begin expr end

( expr : typexpr )

expr {, expr}™t

constr expr

T tag-name expr

expr :: expr

[ expr {; expr} [;] ]

[l expr {; expr} [5] 1]

{ field [: typexpr]| [= expr] {; field [: typexpr] [= expr]} [;] }
{ expr with field [: typexpr| [= expr] {; field [: typexpr] [= expr]} [;] }
expr {argument}™

prefix-symbol expr

- expr

-. expr

expr infix-op expr

expr . field

expr . field <- expr

expr . ( expr )

expr . ( expr ) <- expr

expr . [ expr ]

expr . [ expr] <- expr

if expr then expr [else expr]

while expr do expr done

for value-name = expr (to | downto) expr do expr done
expr ; expr

match expr with pattern-matching

function pattern-matching

fun {parameter}t [: typexpr] -> expr

try expr with pattern-matching

let [rec] let-binding {and let-binding} in expr

let exception constr-decl in expr

new class-path

object class-body end

expr # method-name

inst-var-name

inst-var-name <- expr

( expr :> typexpr )

(expr : typexpr :> typexpr )

{< [inst-var-name [= expr] {; inst-var-name [= expr|} [;]] >}
assert expr

lazy expr

let module module-name { ( module-name : module-type )} [: module-type]
= module-expr in expr

let open module-path in expr

module-path . ( expr )

module-path . [ expr ]
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argument

pattern-matching

let-binding

parameter

expr
~ label-name
~ label-name : expr
? label-name
? label-name : expr

[|] pattern [when expr| => expr {| pattern [when expr| -> expr}

pattern = expr
value-name {parameter} [: typexpr] [:> typexpr]| = expr
value-name : poly-typexpr = expr

pattern

~ label-name

~ ( label-name [: typexpr] )

~ label-name : pattern

? label-name

? ( label-name |[: typexpr| [= expr] )

? label-name : pattern

? label-name : ( pattern [: typexpr| [= expr] )

See also the following language extensions: first-class modules, overriding in open statements,
syntax for Bigarray access, attributes, extension nodes and extended indexing operators.

7.7.1 Precedence and associativity

The table below shows the relative precedences and associativity of operators and non-closed con-
structions. The constructions with higher precedence come first. For infix and prefix symbols, we
write “*...” to mean “any symbol starting with *”.
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Construction or operator Associativity
prefix-symbol —

.C [ .{ (see section 8.12) —
#. .. left
function application, constructor application, tag application, assert, lazy | left
- -. (prefix) -
Xk, . 1sl1 1lsr asr right
X, .. /... %... mod land lor 1xor left

- left

3N right
Q.. ... right
=... <... >... &. .. $... 1= left
& && right
or || right
<- = right
if -
; right
let match fun function try -

7.7.2 Basic expressions
Constants

An expression consisting in a constant evaluates to this constant.

Value paths

An expression consisting in an access path evaluates to the value bound to this path in the cur-
rent evaluation environment. The path can be either a value name or an access path to a value
component of a module.

Parenthesized expressions

The expressions ( expr ) and begin expr end have the same value as expr. The two constructs are
semantically equivalent, but it is good style to use begin...end inside control structures:

if ... then begin ... ; ... end else begin ... ; ... end

and (...) for the other grouping situations.

Parenthesized expressions can contain a type constraint, as in ( expr : typexpr ). This con-
straint forces the type of expr to be compatible with typexpr.

Parenthesized expressions can also contain coercions ( expr [: typexpr| :> typexpr ) (see
subsection 7.7.7 below).
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Function application

Function application is denoted by juxtaposition of (possibly labeled) expressions. The expression
expr argument, ...argument,, evaluates the expression expr and those appearing in argument; to
argument,. The expression expr must evaluate to a functional value f, which is then applied to
the values of argument,, ..., argument,,.

The order in which the expressions expr, argumenty, ..., argument,, are evaluated is not speci-
fied.

Arguments and parameters are matched according to their respective labels. Argument order
is irrelevant, except among arguments with the same label, or no label.

If a parameter is specified as optional (label prefixed by ?) in the type of expr, the corresponding
argument will be automatically wrapped with the constructor Some, except if the argument itself
is also prefixed by 7, in which case it is passed as is. If a non-labeled argument is passed, and its
corresponding parameter is preceded by one or several optional parameters, then these parameters
are defaulted, i.e. the value None will be passed for them. All other missing parameters (with-
out corresponding argument), both optional and non-optional, will be kept, and the result of the
function will still be a function of these missing parameters to the body of f.

As a special case, if the function has a known arity, all the arguments are unlabeled, and their
number matches the number of non-optional parameters, then labels are ignored and non-optional
parameters are matched in their definition order. Optional arguments are defaulted.

In all cases but exact match of order and labels, without optional parameters, the function
type should be known at the application point. This can be ensured by adding a type constraint.
Principality of the derivation can be checked in the -principal mode.

Function definition

Two syntactic forms are provided to define functions. The first form is introduced by the keyword
function:

function pattern; -> expry
I

| pattern, -> expr,

This expression evaluates to a functional value with one argument. When this function is applied
to a value v, this value is matched against each pattern pattern; to pattern,. If one of these match-
ings succeeds, that is, if the value v matches the pattern pattern; for some 4, then the expression
expr; associated to the selected pattern is evaluated, and its value becomes the value of the func-
tion application. The evaluation of expr; takes place in an environment enriched by the bindings
performed during the matching.

If several patterns match the argument v, the one that occurs first in the function definition is
selected. If none of the patterns matches the argument, the exception Match_failure is raised.

The other form of function definition is introduced by the keyword fun:
fun parameter, ... parameter,, —> expr
This expression is equivalent to:

fun parameter; ->...fun parameter,, —> expr
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An optional type constraint typexpr can be added before -> to enforce the type of the result
to be compatible with the constraint typexpr:

fun parameter, ... parameter,, : typexpr —> expr
is equivalent to
fun parameter; -=>...fun parameter, -> (expr : typexpr)
Beware of the small syntactic difference between a type constraint on the last parameter
fun parameter ... (parametern : typexpr) -> expr
and one on the result
fun parameter, ... parameter,, : typexpr —> expr

The parameter patterns ~ lab and ~( lab [: typ] ) are shorthands for respectively ~ lab : lab
and ~ lab : (lab [: typ] ), and similarly for their optional counterparts.
A function of the form fun ? lab : ( pattern = expr, ) -> expr is equivalent to

fun 7 lab : ident -> let pattern = match ident with Some ident -> ident | None —> expr in expr

where ident is a fresh variable, except that it is unspecified when expr is evaluated.
After these two transformations, expressions are of the form

fun [label;| pattern, => ... fun [label,| pattern, -> expr
If we ignore labels, which will only be meaningful at function application, this is equivalent to
function pattern; —>...function pattern, —> expr

That is, the fun expression above evaluates to a curried function with n arguments: after applying
this function n times to the values vi...v,, the values will be matched in parallel against the
patterns pattern, ... pattern,. If the matching succeeds, the function returns the value of expr in
an environment enriched by the bindings performed during the matchings. If the matching fails,
the exception Match_failure is raised.

Guards in pattern-matchings

The cases of a pattern matching (in the function, match and try constructs) can include guard
expressions, which are arbitrary boolean expressions that must evaluate to true for the match case
to be selected. Guards occur just before the —> token and are introduced by the when keyword:

function pattern; [when cond;] -> expr;
|

| pattern, [when cond,| -> expr,

Matching proceeds as described before, except that if the value matches some pattern pattern;
which has a guard cond;, then the expression cond; is evaluated (in an environment enriched by
the bindings performed during matching). If cond; evaluates to true, then expr; is evaluated and
its value returned as the result of the matching, as usual. But if cond; evaluates to false, the
matching is resumed against the patterns following pattern;.
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Local definitions

The let and let rec constructs bind value names locally. The construct
let pattern; = expr; and...and pattern, = expr, in expr

evaluates expr; ...expr, in some unspecified order and matches their values against the patterns
pattern, ... pattern,. If the matchings succeed, expr is evaluated in the environment enriched by
the bindings performed during matching, and the value of expr is returned as the value of the whole
let expression. If one of the matchings fails, the exception Match_failure is raised.

An alternate syntax is provided to bind variables to functional values: instead of writing

let ident = fun parameter, ... parameter,, —> expr
in a let expression, one may instead write

let ident parameter; ... parameter,, = expr

Recursive definitions of names are introduced by let rec:
let rec pattern; = expr, and...and pattern, = expr, in expr

The only difference with the 1let construct described above is that the bindings of names to values
performed by the pattern-matching are considered already performed when the expressions expr;
to expr,, are evaluated. That is, the expressions expr; to expr,, can reference identifiers that are
bound by one of the patterns pattern,, ..., pattern,, and expect them to have the same value as in
expr, the body of the let rec construct.

The recursive definition is guaranteed to behave as described above if the expressions expr; to
expr,, are function definitions (fun... or function...), and the patterns pattern, ... pattern,, are
just value names, as in:

let rec name; = fun...and...and name, = fun...in expr

This defines name; ... name, as mutually recursive functions local to expr.

The behavior of other forms of let rec definitions is implementation-dependent. The current
implementation also supports a certain class of recursive definitions of non-functional values, as
explained in section 8.1.

Explicit polymorphic type annotations

(Introduced in OCaml 3.12)
Polymorphic type annotations in let-definitions behave in a way similar to polymorphic meth-
ods:

let pattern; : typ;...typ,, . typeexpr = expr

These annotations explicitly require the defined value to be polymorphic, and allow one to use
this polymorphism in recursive occurrences (when using let rec). Note however that this is a
normal polymorphic type, unifiable with any instance of itself.
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It is possible to define local exceptions in expressions: let exception constr-decl in expr . The
syntactic scope of the exception constructor is the inner expression, but nothing prevents exception
values created with this constructor from escaping this scope. Two executions of the definition
above result in two incompatible exception constructors (as for any exception definition). For
instance, the following assertion is true:

let gen () = let exception A in A
let () = assert(gen () <> gen ())

7.7.3 Control structures
Sequence

The expression expr; ; expry evaluates expr; first, then expr,, and returns the value of expr,.

Conditional

The expression if expr; then expr, else exprs evaluates to the value of expr, if expr; evaluates
to the boolean true, and to the value of expr, if expr; evaluates to the boolean false.
The else exprs part can be omitted, in which case it defaults to else ().

Case expression

The expression
match expr
with pattern; -> expry
|

| pattern, -> expr,

matches the value of expr against the patterns pattern; to pattern,. If the matching against
pattern; succeeds, the associated expression expr; is evaluated, and its value becomes the value of
the whole match expression. The evaluation of expr, takes place in an environment enriched by
the bindings performed during matching. If several patterns match the value of expr, the one that
occurs first in the match expression is selected. If none of the patterns match the value of expr, the
exception Match_failure is raised.

Boolean operators

The expression expr; && expry evaluates to true if both expr; and expr, evaluate to true; oth-
erwise, it evaluates to false. The first component, expr;, is evaluated first. The second com-
ponent, expry, is not evaluated if the first component evaluates to false. Hence, the expression
expr, && expry behaves exactly as

if expr; then expr, else false.

The expression expr; || expr, evaluates to true if one of the expressions expr; and expr,
evaluates to true; otherwise, it evaluates to false. The first component, expry, is evaluated first.
The second component, expr,, is not evaluated if the first component evaluates to true. Hence,
the expression expr, || expry, behaves exactly as
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if expr; then true else expr,.

The boolean operators & and or are deprecated synonyms for (respectively) && and | 1.

Loops

The expression while expr; do expr, done repeatedly evaluates expr, while expr; evaluates to
true. The loop condition expr; is evaluated and tested at the beginning of each iteration. The
whole while...done expression evaluates to the unit value ().

The expression for name = expr; to expr, do exprs done first evaluates the expressions expr;
and expry (the boundaries) into integer values n and p. Then, the loop body exprs is repeatedly
evaluated in an environment where name is successively bound to the values n, n+1, ..., p — 1,
p. The loop body is never evaluated if n > p.

The expression for name = expr; downto expry do exprs done evaluates similarly, except that
name is successively bound to the valuesn, n — 1, ..., p+ 1, p. The loop body is never evaluated
if n <p.

In both cases, the whole for expression evaluates to the unit value ().

Exception handling

The expression
try expr
with pattern; -> expry
I

| pattern, -> expr,

evaluates the expression expr and returns its value if the evaluation of expr does not raise any
exception. If the evaluation of expr raises an exception, the exception value is matched against the
patterns pattern; to pattern,. If the matching against pattern; succeeds, the associated expression
expr; is evaluated, and its value becomes the value of the whole try expression. The evaluation of
expr; takes place in an environment enriched by the bindings performed during matching. If several
patterns match the value of expr, the one that occurs first in the try expression is selected. If none
of the patterns matches the value of expr, the exception value is raised again, thereby transparently
“passing through” the try construct.

7.7.4 Operations on data structures

Products

The expression expry , ..., expr, evaluates to the n-tuple of the values of expressions expr; to
expr,,. The evaluation order of the subexpressions is not specified.

Variants

The expression constr expr evaluates to the unary variant value whose constructor is constr, and
whose argument is the value of expr. Similarly, the expression constr ( expr; ,..., expr, )
evaluates to the n-ary variant value whose constructor is constr and whose arguments are the
values of expry, ..., expr,.
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The expression constr ( expry,...,expr, ) evaluates to the variant value whose constructor is
constr, and whose arguments are the values of expr, ...expr,,.

For lists, some syntactic sugar is provided. The expression expr; :: expr, stands for the con-
structor ( :: ) applied to the arguments ( expr; , expry ), and therefore evaluates to the list whose
head is the value of expr; and whose tail is the value of expry. The expression [ expr; ;... ; expr,, ]
is equivalent to expry ::...:: expr,, :: [], and therefore evaluates to the list whose elements are
the values of expr; to expr,,.

Polymorphic variants

The expression ~ tag-name expr evaluates to the polymorphic variant value whose tag is tag-name,
and whose argument is the value of expr.

Records
The expression { field; [= expr;| ;...; fleld, [= expr, 1} evaluates to the record value
{fieldy = wy;...; field, = v,} where v; is the value of expr; for i = 1,...,n. A single

identifier field, stands for field, = field,, and a qualified identifier module-path . field}
stands for module-path . field, = field,. The fields field; to field, must all belong to the
same record type; each field of this record type must appear exactly once in the record
expression, though they can appear in any order. The order in which expr; to expr,
are evaluated is not specified.  Optional type constraints can be added after each field

{ field; : typexpr, = expr; ;...; field, : typexpr, = expr, } to force the type of fieldy to be
compatible with typexpry,.
The expression { expr with field, [= expr;| ;...; field, [= expr,]| } builds a fresh record

with fields field; ... field, equal to expr;...expr,, and all other fields having the same value
as in the record expr. In other terms, it returns a shallow copy of the record expr, except
for the fields field; ...field,, which are initialized to expr;...expr,. As previously, single
identifier field; stands for field, = field;, a qualified identifier module-path . field; stands for
module-path . field;, = field, and it is possible to add an optional type constraint on each field
being updated with { expr with field; : typexpr, = expr; ;... ; field, : typexpr, = expr, }.

The expression expr; . field evaluates expr; to a record value, and returns the value associated
to field in this record value.

The expression expr; . field <- expr, evaluates expr, to a record value, which is then modified
in-place by replacing the value associated to field in this record by the value of expr,. This operation
is permitted only if field has been declared mutable in the definition of the record type. The whole
expression expr; . field <- expr, evaluates to the unit value Q.

Arrays

The expression [| expr; ;...; expr, |] evaluates to a n-element array, whose elements are ini-
tialized with the values of expr; to expr,, respectively. The order in which these expressions are
evaluated is unspecified.

The expression expr; . ( expr, ) returns the value of element number expr, in the array denoted
by expr;. The first element has number 0; the last element has number n — 1, where n is the size
of the array. The exception Invalid_argument is raised if the access is out of bounds.
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The expression expr; . ( expry ) <- exprs modifies in-place the array denoted by expr,, replac-
ing element number expry by the value of exprs. The exception Invalid_argument is raised if the
access is out of bounds. The value of the whole expression is ().

Strings

The expression expr; . [ expry ] returns the value of character number expry in the string denoted
by expr;. The first character has number 0; the last character has number n — 1, where n is the
length of the string. The exception Invalid_argument is raised if the access is out of bounds.

The expression expr; .[ expry ] <- exprs modifies in-place the string denoted by expry,
replacing character number expr, by the value of expr;. The exception Invalid_argument is
raised if the access is out of bounds. The value of the whole expression is ().

Note: this possibility is offered only for backward compatibility with older versions of OCaml
and will be removed in a future version. New code should use byte sequences and the Bytes.set
function.

7.7.5 Operators

Symbols from the class infix-symbol, as well as the keywords *, +, -, -., =, = <, > or, ||, &, &&,
:=, mod, land, lor, 1xor, 1sl, 1sr, and asr can appear in infix position (between two expressions).
Symbols from the class prefix-symbol, as well as the keywords - and —. can appear in prefix position
(in front of an expression).

Infix and prefix symbols do not have a fixed meaning: they are simply interpreted as
applications of functions bound to the names corresponding to the symbols. The expression
prefix-symbol expr is interpreted as the application ( prefix-symbol ) expr. Similarly, the
expression expr; infix-symbol expr, is interpreted as the application ( infix-symbol ) expr; exprs.

The table below lists the symbols defined in the initial environment and their initial meaning.
(See the description of the core library module Stdlib in chapter 25 for more details). Their
meaning may be changed at any time using let ( infix-op ) name; names =. ..

Note: the operators &&, | |, and ~- are handled specially and it is not advisable to change their
meaning.

The keywords - and -. can appear both as infix and prefix operators. When they appear as
prefix operators, they are interpreted respectively as the functions (*-) and (7-.).
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Operator Initial meaning

+ Integer addition.

- (infix) Integer subtraction.

“- - (prefix) Integer negation.

* Integer multiplication.

/ Integer division. Raise Division_by_zero if second argument is zero.
mod Integer modulus. Raise Division_by_zero if second argument is zero.
land Bitwise logical “and” on integers.

lor Bitwise logical “or” on integers.

1lxor Bitwise logical “exclusive or” on integers.

1sl Bitwise logical shift left on integers.

lsr Bitwise logical shift right on integers.

asr Bitwise arithmetic shift right on integers.

+. Floating-point addition.

-. (infix) Floating-point subtraction.

“-.  -. (prefix) | Floating-point negation.

*, Floating-point multiplication.

/. Floating-point division.

*% Floating-point exponentiation.

List concatenation.

String concatenation.

! Dereferencing (return the current contents of a reference).

= Reference assignment (update the reference given as first argument with
the value of the second argument).

= Structural equality test.

<> Structural inequality test.

== Physical equality test.

I= Physical inequality test.

< Test “less than”.

<= Test “less than or equal”.

> Test “greater than”.

>= Test “greater than or equal”.
&& & Boolean conjunction.

| or Boolean disjunction.

7.7.6 Objects
Object creation

When class-path evaluates to a class body, new class-path evaluates to a new object containing the
instance variables and methods of this class.

When class-path evaluates to a class function, new class-path evaluates to a function expecting
the same number of arguments and returning a new object of this class.
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Immediate object creation

Creating directly an object through the object class-body end construct is operationally equivalent
to defining locally a class class-name = object class-body end —see sections 7.9.2 and following
for the syntax of class-body— and immediately creating a single object from it by new class-name.

The typing of immediate objects is slightly different from explicitly defining a class in two
respects. First, the inferred object type may contain free type variables. Second, since the class
body of an immediate object will never be extended, its self type can be unified with a closed object

type.

Method invocation

The expression expr # method-name invokes the method method-name of the object denoted by
expr.

If method-name is a polymorphic method, its type should be known at the invocation site. This
is true for instance if expr is the name of a fresh object (let ident = new class-path...) or if there
is a type constraint. Principality of the derivation can be checked in the -principal mode.

Accessing and modifying instance variables

The instance variables of a class are visible only in the body of the methods defined in the same class
or a class that inherits from the class defining the instance variables. The expression inst-var-name
evaluates to the value of the given instance variable. The expression inst-var-name <- expr assigns
the value of expr to the instance variable inst-var-name, which must be mutable. The whole
expression inst-var-name <- expr evaluates to ().

Object duplication

An object can be duplicated using the library function 0o.copy (see module 00[26.32]). Inside a
method, the expression {< [inst-var-name [= expr]| {; inst-var-name [= expr]}] >} returns a copy of
self with the given instance variables replaced by the values of the associated expressions. A single
instance variable name id stands for id = id. Other instance variables have the same value in the
returned object as in self.

7.7.7 Coercions

Expressions whose type contains object or polymorphic variant types can be explicitly coerced
(weakened) to a supertype. The expression ( expr :> typexpr ) coerces the expression expr to
type typexpr. The expression ( expr : typexpr; :> typexpr, ) coerces the expression expr from
type typexpr; to type typexprs.

The former operator will sometimes fail to coerce an expression expr from a type typ, to a type
typ, even if type typ; is a subtype of type typy: in the current implementation it only expands two
levels of type abbreviations containing objects and/or polymorphic variants, keeping only recursion
when it is explicit in the class type (for objects). As an exception to the above algorithm, if both the
inferred type of expr and typ are ground (i.e. do not contain type variables), the former operator
behaves as the latter one, taking the inferred type of expr as typ;. In case of failure with the former
operator, the latter one should be used.
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It is only possible to coerce an expression expr from type typ; to type typ,, if the type of expr
is an instance of typ, (like for a type annotation), and typ; is a subtype of typ,. The type of the
coerced expression is an instance of typ,. If the types contain variables, they may be instantiated
by the subtyping algorithm, but this is only done after determining whether typ; is a potential
subtype of typy. This means that typing may fail during this latter unification step, even if some
instance of typ, is a subtype of some instance of typy. In the following paragraphs we describe the
subtyping relation used.

Object types

A fixed object type admits as subtype any object type that includes all its methods. The types of
the methods shall be subtypes of those in the supertype. Namely,

<mety : typ; ;... ; mety, : typ, >
is a supertype of

<mety : typ); ... ; mety : typ;; metyy1: typlq; ... ; Metyim: typh i, 5. ] >

which may contain an ellipsis . . if every typ; is a supertype of the corresponding typ.

A monomorphic method type can be a supertype of a polymorphic method type. Namely, if
typ is an instance of typ’, then 'a;... 'a, . typ’ is a subtype of typ.

Inside a class definition, newly defined types are not available for subtyping, as the type abbre-
viations are not yet completely defined. There is an exception for coercing self to the (exact) type
of its class: this is allowed if the type of self does not appear in a contravariant position in the
class type, i.e. if there are no binary methods.

Polymorphic variant types

A polymorphic variant type typ is a subtype of another polymorphic variant type typ’ if the upper
bound of typ (i.e. the maximum set of constructors that may appear in an instance of typ) is
included in the lower bound of typ’, and the types of arguments for the constructors of typ are
subtypes of those in typ’. Namely,

[[<]> Cioftyp; | ... |~ Cy of typ, ]
which may be a shrinkable type, is a subtype of
[[>] > Ciof typil... | > Cyof typ),| ~ Cpyrof typl, 11 ... |~ Cpymof typ), ]

which may be an extensible type, if every typ; is a subtype of typ}.

Variance

Other types do not introduce new subtyping, but they may propagate the subtyping of their argu-
ments. For instance, typ; * typ,y is a subtype of typ)* typ) when typ; and typ, are respectively
subtypes of typ] and typh. For function types, the relation is more subtle: typ; => typ, is a subtype
of typy => typh if typ, is a supertype of typ] and typ, is a subtype of typ,. For this reason, function
types are covariant in their second argument (like tuples), but contravariant in their first argument.
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Mutable types, like array or ref are neither covariant nor contravariant, they are nonvariant, that
is they do not propagate subtyping.

For user-defined types, the variance is automatically inferred: a parameter is covariant if it
has only covariant occurrences, contravariant if it has only contravariant occurrences, variance-free
if it has no occurrences, and nonvariant otherwise. A variance-free parameter may change freely
through subtyping, it does not have to be a subtype or a supertype. For abstract and private types,
the variance must be given explicitly (see section 7.8.1), otherwise the default is nonvariant. This
is also the case for constrained arguments in type definitions.

7.7.8 Other
Assertion checking

OCaml supports the assert construct to check debugging assertions. The expression assert expr
evaluates the expression expr and returns () if expr evaluates to true. If it evaluates to false
the exception Assert_failure is raised with the source file name and the location of expr as
arguments. Assertion checking can be turned off with the -noassert compiler option. In this case,
expr is not evaluated at all.

As a special case, assert_ false is reduced to raise (Assert_failure ...), which gives it
a polymorphic type. This means that it can be used in place of any expression (for example as
a branch of any pattern-matching). It also means that the assert_ false “assertions” cannot be
turned off by the -noassert option.

Lazy expressions

The expression lazy expr returns a value v of type Lazy.t that encapsulates the computation of
expr. The argument expr is not evaluated at this point in the program. Instead, its evaluation will
be performed the first time the function Lazy.force is applied to the value v, returning the actual
value of expr. Subsequent applications of Lazy.force to v do not evaluate expr again. Applications
of Lazy.force may be implicit through pattern matching (see 7.6).

Local modules

The expression let module module-name = module-expr in expr locally binds the module expres-
sion module-expr to the identifier module-name during the evaluation of the expression expr. It
then returns the value of expr. For example:

let remove_duplicates comparison_fun string_list =
let module StringSet =
Set.Make(struct type t = string
let compare = comparison_fun end) in
StringSet.elements
(List.fold_right StringSet.add string_list StringSet.empty)

val remove_duplicates :
(string -> string -> int) -> string list -> string list = <fun>
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Local opens

The expressions let open module-path in expr and module-path . ( expr ) are strictly equivalent.
These constructions locally open the module referred to by the module path module-path in the
respective scope of the expression expr.

When the body of a local open expression is delimited by [ 1, [| |1, or { }, the parenthe-
ses can be omitted. For expression, parentheses can also be omitted for {< >}. For example,
module-path . [ expr ] is equivalent to module-path . ([ expr 1), and module-path . [| expr |] is
equivalent to module-path . ([| expr |]1).

7.8 Type and exception definitions

7.8.1 Type definitions

Type definitions bind type constructors to data types: either variant types, record types, type
abbreviations, or abstract data types. They also bind the value constructors and record fields
associated with the definition.

type-definition ::= type [nonrec| typedef {and typedef}

typedef ::= [type-params] typeconstr-name type-information

type-information ::=

type-equation

type-representation

type-params

type-param

variance

record-decl
constr-decl
constr-args

field-decl

type-constraint

[type-equation] [type-representation] {type-constraint}

= typexpr

= [|] constr-decl {| constr-decl}
= record-decl

type-param
( type-param {, type-param} )
[variance] ' ident

+

{ field-decl {; field-decl} [;] }
(constr-name | [1 | (::)) [of constr-args]
typexpr {* typexpr}
[mutable] field-name : poly-typexpr

constraint ' ident = typexpr

See also the following language extensions: private types, generalized algebraic datatypes, at-
tributes, extension nodes, extensible variant types and inline records.

Type definitions are introduced by the type keyword, and consist in one or several simple

definitions, possibly mutually recursive, separated by the and keyword. Each simple definition

defines one type constructor.
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A simple definition consists in a lowercase identifier, possibly preceded by one or several type
parameters, and followed by an optional type equation, then an optional type representation, and
then a constraint clause. The identifier is the name of the type constructor being defined.

In the right-hand side of type definitions, references to one of the type constructor name being
defined are considered as recursive, unless type is followed by nonrec. The nonrec keyword was
introduced in OCaml 4.02.2.

The optional type parameters are either one type variable ' ident, for type constructors with
one parameter, or a list of type variables (' identq, ..., " ident, ), for type constructors with several
parameters. Each type parameter may be prefixed by a variance constraint + (resp. -) indicating
that the parameter is covariant (resp. contravariant). These type parameters can appear in the type
expressions of the right-hand side of the definition, optionally restricted by a variance constraint ;
i.e. a covariant parameter may only appear on the right side of a functional arrow (more precisely,
follow the left branch of an even number of arrows), and a contravariant parameter only the left
side (left branch of an odd number of arrows). If the type has a representation or an equation,
and the parameter is free (i.e. not bound via a type constraint to a constructed type), its variance
constraint is checked but subtyping etc. will use the inferred variance of the parameter, which may
be less restrictive; otherwise (i.e. for abstract types or non-free parameters), the variance must be
given explicitly, and the parameter is invariant if no variance is given.

The optional type equation = typexpr makes the defined type equivalent to the type expression
typexpr: one can be substituted for the other during typing. If no type equation is given, a new
type is generated: the defined type is incompatible with any other type.

The optional type representation describes the data structure representing the defined type, by
giving the list of associated constructors (if it is a variant type) or associated fields (if it is a record
type). If no type representation is given, nothing is assumed on the structure of the type besides
what is stated in the optional type equation.

The type representation = [|] constr-decl {| constr-decl} describes a variant type. The construc-
tor declarations constr-decly, ..., constr-decl,, describe the constructors associated to this variant
type. The constructor declaration constr-name of typexpr; *...* typexpr, declares the name
constr-name as a non-constant constructor, whose arguments have types typexpr; ...typexpr,,.
The constructor declaration constr-name declares the name constr-name as a constant constructor.
Constructor names must be capitalized.

The type representation = { field-decl {; field-decl} [;] } describes a record type. The field
declarations field-decly, . . ., field-decl,, describe the fields associated to this record type. The field
declaration field-name : poly-typexpr declares field-name as a field whose argument has type
poly-typexpr. The field declaration mutable field-name : poly-typexpr behaves similarly; in ad-
dition, it allows physical modification of this field. Immutable fields are covariant, mutable fields
are non-variant. Both mutable and immutable fields may have explicitly polymorphic types. The
polymorphism of the contents is statically checked whenever a record value is created or modified.
Extracted values may have their types instantiated.

The two components of a type definition, the optional equation and the optional representation,
can be combined independently, giving rise to four typical situations:

Abstract type: no equation, no representation.
When appearing in a module signature, this definition specifies nothing on the type con-
structor, besides its number of parameters: its representation is hidden and it is assumed
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incompatible with any other type.

Type abbreviation: an equation, no representation.
This defines the type constructor as an abbreviation for the type expression on the right of
the = sign.

New variant type or record type: no equation, a representation.
This generates a new type constructor and defines associated constructors or fields, through
which values of that type can be directly built or inspected.

Re-exported variant type or record type: an equation, a representation.
In this case, the type constructor is defined as an abbreviation for the type expression given
in the equation, but in addition the constructors or fields given in the representation remain
attached to the defined type constructor. The type expression in the equation part must agree
with the representation: it must be of the same kind (record or variant) and have exactly the
same constructors or fields, in the same order, with the same arguments.

The type variables appearing as type parameters can optionally be prefixed by + or - to indicate
that the type constructor is covariant or contravariant with respect to this parameter. This variance
information is used to decide subtyping relations when checking the validity of :> coercions (see
section 7.7.7).

For instance, type +'a t declares t as an abstract type that is covariant in its parameter; this
means that if the type 7 is a subtype of the type o, then 7 t is a subtype of ¢ t. Similarly,
type -'a t declares that the abstract type t is contravariant in its parameter: if 7 is a subtype of
o, then o t is a subtype of 7 t. If no + or - variance annotation is given, the type constructor is
assumed non-variant in the corresponding parameter. For instance, the abstract type declaration
type 'a t means that 7 t is neither a subtype nor a supertype of o t if 7 is subtype of o.

The variance indicated by the + and - annotations on parameters is enforced only for abstract
and private types, or when there are type constraints. Otherwise, for abbreviations, variant and
record types without type constraints, the variance properties of the type constructor are inferred
from its definition, and the variance annotations are only checked for conformance with the defini-
tion.

The construct constraint ' ident = typexpr allows the specification of type parameters. Any
actual type argument corresponding to the type parameter ident has to be an instance of typexpr
(more precisely, ident and typexpr are unified). Type variables of typexpr can appear in the type
equation and the type declaration.

7.8.2 Exception definitions

exception-definition ::= exception constr-decl
| exception constr-name = constr

Exception definitions add new constructors to the built-in variant type exn of exception values.
The constructors are declared as for a definition of a variant type.

The form exception constr-decl generates a new exception, distinct from all other exceptions
in the system. The form exception constr-name = constr gives an alternate name to an existing
exception.
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7.9 Classes

Classes are defined using a small language, similar to the module language.

7.9.1 Class types

Class types are the class-level equivalent of type expressions: they specify the general shape and
type properties of classes.

[[?] label-name :] typexpr -> class-type
class-body-type

class-type

object [( typexpr )] {class-field-spec} end

[[ typexpr {, typexpr} 1] classtype-path
let open module-path in class-body-type

class-body-type

class-field-spec ::= inherit class-body-type
| val [mutable] [virtual]| inst-var-name : typexpr
| val virtual mutable inst-var-name : typexpr
| method [private| [virtual] method-name : poly-typexpr
| method virtual private method-name : poly-typexpr
|

constraint typexpr = typexpr

See also the following language extensions: attributes and extension nodes.

Simple class expressions

The expression classtype-path is equivalent to the class type bound to the name classtype-path.
Similarly, the expression [ typexpr; , ...typexpr, ] classtype-path is equivalent to the parametric
class type bound to the name classtype-path, in which type parameters have been instantiated to
respectively typexpry, ... typexpr,,.

Class function type

The class type expression typexpr => class-type is the type of class functions (functions from values
to classes) that take as argument a value of type typexpr and return as result a class of type
class-type.

Class body type

The class type expression object [( typexpr )] {class-field-spec} end is the type of a class body. It
specifies its instance variables and methods. In this type, typexpr is matched against the self type,
therefore providing a name for the self type.

A class body will match a class body type if it provides definitions for all the components
specified in the class body type, and these definitions meet the type requirements given in the
class body type. Furthermore, all methods either virtual or public present in the class body must
also be present in the class body type (on the other hand, some instance variables and concrete
private methods may be omitted). A virtual method will match a concrete method, which makes
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it possible to forget its implementation. An immutable instance variable will match a mutable
instance variable.

Local opens

Local opens are supported in class types since OCaml 4.06.

Inheritance

The inheritance construct inherit class-body-type provides for inclusion of methods and instance
variables from other class types. The instance variable and method types from class-body-type are
added into the current class type.

Instance variable specification

A specification of an instance variable is written val [mutable] [virtual| inst-var-name : typexpr,
where inst-var-name is the name of the instance variable and typexpr its expected type. The
flag mutable indicates whether this instance variable can be physically modified. The flag virtual
indicates that this instance variable is not initialized. It can be initialized later through inheritance.

An instance variable specification will hide any previous specification of an instance variable of
the same name.

Method specification

The specification of a method is written method [private] method-name : poly-typexpr, where
method-name is the name of the method and poly-typexpr its expected type, possibly polymorphic.
The flag private indicates that the method cannot be accessed from outside the object.

The polymorphism may be left implicit in public method specifications: any type variable which
is not bound to a class parameter and does not appear elsewhere inside the class specification will be
assumed to be universal, and made polymorphic in the resulting method type. Writing an explicit
polymorphic type will disable this behaviour.

If several specifications are present for the same method, they must have compatible types. Any
non-private specification of a method forces it to be public.

Virtual method specification
A virtual method specification is written method [private] virtual method-name : poly-typexpr,
where method-name is the name of the method and poly-typexpr its expected type.

Constraints on type parameters

The construct constraint typexpr; = typexpr, forces the two type expressions to be equal. This
is typically used to specify type parameters: in this way, they can be bound to specific type
expressions.
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Class expressions are the class-level equivalent of value expressions: they evaluate to classes, thus
providing implementations for the specifications expressed in class types.

class-expr

class-field

= class-path

| [ typexpr {, typexpr} ] class-path

| ( class-expr )

| ( class-expr : class-type )

| class-expr {argument}™*

| fun {parameter}* -> class-expr

| 1let [rec] let-binding {and let-binding} in class-expr
| object class-body end

| let open module-path in class-expr

inherit class-expr [as lowercase-ident|

inherit! class-expr [as lowercase-ident)

val [mutable] inst-var-name |[: typexpr| = expr

val! [mutable] inst-var-name [: typexpr| = expr

val [mutable| virtual inst-var-name : typexpr

val virtual mutable inst-var-name : typexpr

method [private] method-name {parameter} [: typexpr| = expr
method! [private] method-name {parameter} [: typexpr| = expr
method [private] method-name : poly-typexpr = expr

method! [private] method-name : poly-typexpr = expr
method [private] virtual method-name : poly-typexpr
method virtual private method-name : poly-typexpr
constraint typexpr = typexpr

initializer expr

See also the following language extensions: locally abstract types, attributes and extension nodes.

Simple class expressions

The expression class-path evaluates to the class bound to the name class-path. Similarly, the ex-
pression [ typexpr, , ...typexpr, 1 class-path evaluates to the parametric class bound to the name
class-path, in which type parameters have been instantiated respectively to typexpry, ... typexpr,,.

The expression ( class-expr ) evaluates to the same module as class-expr.

The expression ( class-expr :

class-type ) checks that class-type matches the type of class-expr

(that is, that the implementation class-expr meets the type specification class-type). The whole
expression evaluates to the same class as class-expr, except that all components not specified in
class-type are hidden and can no longer be accessed.
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Class application

Class application is denoted by juxtaposition of (possibly labeled) expressions. It denotes the
class whose constructor is the first expression applied to the given arguments. The arguments
are evaluated as for expression application, but the constructor itself will only be evaluated when
objects are created. In particular, side-effects caused by the application of the constructor will only
occur at object creation time.

Class function

The expression fun [[?] label-name :| pattern -> class-expr evaluates to a function from values
to classes. When this function is applied to a value v, this value is matched against the pattern
pattern and the result is the result of the evaluation of class-expr in the extended environment.
Conversion from functions with default values to functions with patterns only works identically
for class functions as for normal functions.
The expression

fun parameter, ... parameter, -> class-expr
is a short form for

fun parameter; ->...fun parameter, -> expr

Local definitions

The let and let rec constructs bind value names locally, as for the core language expressions.

If a local definition occurs at the very beginning of a class definition, it will be evaluated when
the class is created (just as if the definition was outside of the class). Otherwise, it will be evaluated
when the object constructor is called.

Local opens

Local opens are supported in class expressions since OCaml 4.06.

Class body
class-body ::= [( pattern [: typexpr| )] {class-field}

The expression object class-body end denotes a class body. This is the prototype for an object :
it lists the instance variables and methods of an object of this class.

A class body is a class value: it is not evaluated at once. Rather, its components are evaluated
each time an object is created.

In a class body, the pattern ( pattern [: typexpr| ) is matched against self, therefore providing
a binding for self and self type. Self can only be used in method and initializers.

Self type cannot be a closed object type, so that the class remains extensible.

Since OCaml 4.01, it is an error if the same method or instance variable name is defined several
times in the same class body.
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Inheritance

The inheritance construct inherit class-expr allows reusing methods and instance variables from
other classes. The class expression class-expr must evaluate to a class body. The instance variables,
methods and initializers from this class body are added into the current class. The addition of a
method will override any previously defined method of the same name.

An ancestor can be bound by appending as lowercase-ident to the inheritance construct.
lowercase-ident is not a true variable and can only be used to select a method, i.e. in an ex-
pression lowercase-ident # method-name. This gives access to the method method-name as it was
defined in the parent class even if it is redefined in the current class. The scope of this ancestor
binding is limited to the current class. The ancestor method may be called from a subclass but
only indirectly.

Instance variable definition

The definition val [mutable| inst-var-name = expr adds an instance variable inst-var-name whose
initial value is the value of expression expr. The flag mutable allows physical modification of this
variable by methods.

An instance variable can only be used in the methods and initializers that follow its definition.

Since version 3.10, redefinitions of a visible instance variable with the same name do not create
a new variable, but are merged, using the last value for initialization. They must have identical
types and mutability. However, if an instance variable is hidden by omitting it from an interface,
it will be kept distinct from other instance variables with the same name.

Virtual instance variable definition

A variable specification is written val |[mutable| virtual inst-var-name : typexpr. It specifies
whether the variable is modifiable, and gives its type.
Virtual instance variables were added in version 3.10.

Method definition

A method definition is written method method-name = expr. The definition of a method overrides
any previous definition of this method. The method will be public (that is, not private) if any of
the definition states so.

A private method, method private method-name = expr, is a method that can only be invoked
on self (from other methods of the same object, defined in this class or one of its subclasses).
This invocation is performed using the expression value-name # method-name, where value-name
is directly bound to self at the beginning of the class definition. Private methods do not appear
in object types. A method may have both public and private definitions, but as soon as there is a
public one, all subsequent definitions will be made public.

Methods may have an explicitly polymorphic type, allowing them to be used polymorphically
in programs (even for the same object). The explicit declaration may be done in one of three ways:
(1) by giving an explicit polymorphic type in the method definition, immediately after the method
name, i.e. method [private] method-name : {' ident}t . typexpr = expr; (2) by a forward
declaration of the explicit polymorphic type through a virtual method definition; (3) by importing
such a declaration through inheritance and/or constraining the type of self.
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Some special expressions are available in method bodies for manipulating instance variables and
duplicating self:

expr =
| inst-var-name <- expr
| {< [inst-var-name = expr {; inst-var-name = expr} [;]] >}

The expression inst-var-name <- expr modifies in-place the current object by replacing the
value associated to inst-var-name by the value of expr. Of course, this instance variable must have
been declared mutable.

The expression {< inst-var-name; = expry ; ... ; inst-var-name,, = expr,, >} evaluates to a copy
of the current object in which the values of instance variables inst-var-names, ..., inst-var-name,,
have been replaced by the values of the corresponding expressions expry, ..., expr,,.

Virtual method definition

A method specification is written method [private| virtual method-name : poly-typexpr. It
specifies whether the method is public or private, and gives its type. If the method is intended to
be polymorphic, the type must be explicitly polymorphic.

Explicit overriding

Since Ocaml 3.12, the keywords inherit!, val! and method! have the same semantics as
inherit, val and method, but they additionally require the definition they introduce to be
overriding. Namely, method! requires method-name to be already defined in this class, val!
requires inst-var-name to be already defined in this class, and inherit! requires class-expr to
override some definitions. If no such overriding occurs, an error is signaled.

As a side-effect, these 3 keywords avoid the warnings 7 (method override) and 13 (instance
variable override). Note that warning 7 is disabled by default.

Constraints on type parameters

The construct constraint typexpr; = typexpry forces the two type expressions to be equals.
This is typically used to specify type parameters: in that way they can be bound to specific type
expressions.
Initializers
A class initializer initializer expr specifies an expression that will be evaluated whenever an

object is created from the class, once all its instance variables have been initialized.

7.9.3 Class definitions

class-definition ::= class class-binding {and class-binding}
class-binding := [virtual] [[ type-parameters ]| class-name {parameter} [: class-type]
= class-expr

type-parameters = ' ident {, ' ident}
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A class definition class class-binding {and class-binding} is recursive. FEach class-binding
defines a class-name that can be used in the whole expression except for inheritance. It can also
be used for inheritance, but only in the definitions that follow its own.

A class binding binds the class name class-name to the value of expression class-expr. It also
binds the class type class-name to the type of the class, and defines two type abbreviations :
class-name and # class-name. The first one is the type of objects of this class, while the second is
more general as it unifies with the type of any object belonging to a subclass (see section 7.4).

Virtual class

A class must be flagged virtual if one of its methods is virtual (that is, appears in the class type,
but is not actually defined). Objects cannot be created from a virtual class.

Type parameters

The class type parameters correspond to the ones of the class type and of the two type abbreviations
defined by the class binding. They must be bound to actual types in the class definition using type
constraints. So that the abbreviations are well-formed, type variables of the inferred type of the
class must either be type parameters or be bound in the constraint clause.

7.9.4 Class specifications
class-specification ::= class class-spec {and class-spec}
class-spec = [virtual] [[ type-parameters ]| class-name : class-type

This is the counterpart in signatures of class definitions. A class specification matches a class
definition if they have the same type parameters and their types match.

7.9.5 Class type definitions
classtype-definition ::= class type classtype-def {and classtype-def}

classtype-def = [virtual] [[ type-parameters ]] class-name = class-body-type

A class type definition class class-name = class-body-type defines an abbreviation class-name
for the class body type class-body-type. As for class definitions, two type abbreviations class-name
and # class-name are also defined. The definition can be parameterized by some type parameters.
If any method in the class type body is virtual, the definition must be flagged virtual.

Two class type definitions match if they have the same type parameters and they expand to
matching types.

7.10 Module types (module specifications)

Module types are the module-level equivalent of type expressions: they specify the general shape
and type properties of modules.



154

modtype-path

sig {specification [; ;]} end

functor ( module-name : module-type ) -> module-type
module-type -> module-type

module-type with mod-constraint {and mod-constraint}

module-type

( module-type )

mod-constraint = type [type-params| typeconstr type-equation {type-constraint}
| module module-path = extended-module-path

specification ::= val value-name : typexpr

| external value-name : typexpr = external-declaration
| type-definition

| exception constr-decl

| class-specification

| classtype-definition

| module module-name : module-type

| module module-name {( module-name : module-type )} : module-type
| module type modtype-name

| module type modtype-name = module-type

| open module-path

| include module-type

See also the following language extensions: recovering the type of a module, substitution inside a
signature, type-level module aliases, attributes, extension nodes and generative functors.

7.10.1 Simple module types

The expression modtype-path is equivalent to the module type bound to the name modtype-path.
The expression ( module-type ) denotes the same type as module-type.

7.10.2 Signatures

Signatures are type specifications for structures. Signatures sig...end are collections of type
specifications for value names, type names, exceptions, module names and module type names.
A structure will match a signature if the structure provides definitions (implementations) for all
the names specified in the signature (and possibly more), and these definitions meet the type
requirements given in the signature.

An optional ; ; is allowed after each specification in a signature. It serves as a syntactic separator
with no semantic meaning.

Value specifications

A specification of a value component in a signature is written val value-name : typexpr, where
value-name is the name of the value and typexpr its expected type.
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The form external value-name : typexpr = external-declaration is similar, except that
it requires in addition the name to be implemented as the external function specified in
external-declaration (see chapter 20).

Type specifications

A specification of one or several type components in a signature is written type typedef {and typedef'}
and consists of a sequence of mutually recursive definitions of type names.

Each type definition in the signature specifies an optional type equation = typexpr and an
optional type representation = constr-decl. .. or = { field-decl .. .}. The implementation of the type
name in a matching structure must be compatible with the type expression specified in the equation
(if given), and have the specified representation (if given). Conversely, users of that signature will
be able to rely on the type equation or type representation, if given. More precisely, we have the
following four situations:

Abstract type: no equation, no representation.

Names that are defined as abstract types in a signature can be implemented in a matching
structure by any kind of type definition (provided it has the same number of type param-
eters). The exact implementation of the type will be hidden to the users of the structure.
In particular, if the type is implemented as a variant type or record type, the associated
constructors and fields will not be accessible to the users; if the type is implemented as an
abbreviation, the type equality between the type name and the right-hand side of the abbre-
viation will be hidden from the users of the structure. Users of the structure consider that
type as incompatible with any other type: a fresh type has been generated.

Type abbreviation: an equation = typexpr, no representation.
The type name must be implemented by a type compatible with typexpr. All users of the
structure know that the type name is compatible with typexpr.

New variant type or record type: no equation, a representation.
The type name must be implemented by a variant type or record type with exactly the
constructors or fields specified. All users of the structure have access to the constructors
or fields, and can use them to create or inspect values of that type. However, users of the
structure consider that type as incompatible with any other type: a fresh type has been
generated.

Re-exported variant type or record type: an equation, a representation.
This case combines the previous two: the representation of the type is made visible to all
users, and no fresh type is generated.

Exception specification

The specification exception constr-decl in a signature requires the matching structure to provide
an exception with the name and arguments specified in the definition, and makes the exception
available to all users of the structure.
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Class specifications

A specification of one or several classes in a signature is written class class-spec {and class-spec}
and consists of a sequence of mutually recursive definitions of class names.
Class specifications are described more precisely in section 7.9.4.

Class type specifications

A specification of one or several classe types in a signature is written class type classtype-def
{and classtype-def } and consists of a sequence of mutually recursive definitions of class type names.
Class type specifications are described more precisely in section 7.9.5.

Module specifications

A specification of a module component in a signature is written module module-name : module-type,
where module-name is the name of the module component and module-type its expected type.
Modules can be nested arbitrarily; in particular, functors can appear as components of structures
and functor types as components of signatures.

For specifying a module component that is a functor, one may write

module module-name ( name; : module-type; ) ... ( name, : module-type, ) : module-type
instead of

module module-name : functor ( name; : module-type; ) =>...-> module-type

Module type specifications

A module type component of a signature can be specified either as a manifest module type or as
an abstract module type.

An abstract module type specification module type modtype-name allows the name
modtype-name to be implemented by any module type in a matching signature, but hides the
implementation of the module type to all users of the signature.

A manifest module type specification module type modtype-name = module-type requires the
name modtype-name to be implemented by the module type module-type in a matching signa-
ture, but makes the equality between modtype-name and module-type apparent to all users of the
signature.

Opening a module path

The expression open module-path in a signature does not specify any components. It simply
affects the parsing of the following items of the signature, allowing components of the module
denoted by module-path to be referred to by their simple names name instead of path accesses
module-path . name. The scope of the open stops at the end of the signature expression.
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Including a signature

The expression include module-type in a signature performs textual inclusion of the components
of the signature denoted by module-type. It behaves as if the components of the included signature
were copied at the location of the include. The module-type argument must refer to a module
type that is a signature, not a functor type.

7.10.3 Functor types

The module type expression functor ( module-name : module-type; ) -> module-type, is the
type of functors (functions from modules to modules) that take as argument a module of type
module-type; and return as result a module of type module-type,;. The module type module-type,
can use the name module-name to refer to type components of the actual argument of the functor.
If the type module-type, does not depend on type components of module-name, the module type
expression can be simplified with the alternative short syntax module-type; —=> module-typey. No
restrictions are placed on the type of the functor argument; in particular, a functor may take
another functor as argument (“higher-order” functor).

7.10.4 The with operator

Assuming module-type denotes a signature, the expression module-type with mod-constraint
{and mod-constraint} denotes the same signature where type equations have been added to some
of the type specifications, as described by the constraints following the with keyword. The con-
straint type [type-parameters] typeconstr = typexpr adds the type equation = typexpr to the
specification of the type component named typeconstr of the constrained signature. The con-
straint module module-path = extended-module-path adds type equations to all type components
of the sub-structure denoted by module-path, making them equivalent to the corresponding type
components of the structure denoted by extended-module-path.
For instance, if the module type name S is bound to the signature

sig type t module M: (sig type u end) end
then S with type t=int denotes the signature
sig type t=int module M: (sig type u end) end
and S with module M = N denotes the signature
sig type t module M: (sig type u=N.u end) end
A functor taking two arguments of type S that share their t component is written
functor (A: S) (B: S with type t = A.t)

Constraints are added left to right. After each constraint has been applied, the resulting signa-
ture must be a subtype of the signature before the constraint was applied. Thus, the with operator
can only add information on the type components of a signature, but never remove information.
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7.11 Module expressions (module implementations)

Module expressions are the module-level equivalent of value expressions: they evaluate to modules,
thus providing implementations for the specifications expressed in module types.

module-expr ::= module-path
| struct [module-items| end
| functor ( module-name : module-type ) => module-expr
| module-expr ( module-expr )
|  ( module-expr )
|

( module-expr : module-type )
module-items = {;;} (definition | expr) {{;;} (definition | ;; expr)} {;;}

definition := let [rec] let-binding {and let-binding}

| external value-name : typexpr = external-declaration

| type-definition

| exception-definition

| class-definition

| classtype-definition

| module module-name {( module-name : module-type )} [: module-type]
= module-expr

| module type modtype-name = module-type

| open module-path

| include module-expr

See also the following language extensions: recursive modules, first-class modules, overriding in
open statements, attributes, extension nodes and generative functors.

7.11.1 Simple module expressions

The expression module-path evaluates to the module bound to the name module-path.

The expression ( module-expr ) evaluates to the same module as module-expr.

The expression ( module-expr : module-type ) checks that the type of module-expr is a
subtype of module-type, that is, that all components specified in module-type are implemented
in module-expr, and their implementation meets the requirements given in module-type. In other
terms, it checks that the implementation module-expr meets the type specification module-type.
The whole expression evaluates to the same module as module-expr, except that all components
not specified in module-type are hidden and can no longer be accessed.

7.11.2 Structures

Structures struct...end are collections of definitions for value names, type names, exceptions,
module names and module type names. The definitions are evaluated in the order in which they
appear in the structure. The scopes of the bindings performed by the definitions extend to the end
of the structure. As a consequence, a definition may refer to names bound by earlier definitions in
the same structure.
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For compatibility with toplevel phrases (chapter 10), optional ;; are allowed after and before
each definition in a structure. These ;; have no semantic meanings. Similarly, an expr preceded by
;3 is allowed as a component of a structure. It is equivalent to let _ = expr, i.e. expr is evaluated
for its side-effects but is not bound to any identifier. If expr is the first component of a structure,
the preceding ;; can be omitted.

Value definitions

A value definition let [rec| let-binding {and let-binding} bind value names in the same way as a
let...in... expression (see section 7.7.2). The value names appearing in the left-hand sides of the
bindings are bound to the corresponding values in the right-hand sides.

A value definition external value-name : typexpr = external-declaration implements
value-name as the external function specified in external-declaration (see chapter 20).
Type definitions
A definition of one or several type components is written type typedef {and typedef} and consists
of a sequence of mutually recursive definitions of type names.

Exception definitions

Exceptions are defined with the syntax exception constr-decl or exception constr-name = constr.

Class definitions

A definition of one or several classes is written class class-binding {and class-binding} and consists
of a sequence of mutually recursive definitions of class names. Class definitions are described more
precisely in section 7.9.3.

Class type definitions

A definition of one or several classes is written class type classtype-def {and classtype-def} and
consists of a sequence of mutually recursive definitions of class type names. Class type definitions
are described more precisely in section 7.9.5.

Module definitions

The basic form for defining a module component is module module-name = module-expr, which
evaluates module-expr and binds the result to the name module-name.
One can write

module module-name : module-type = module-expr
instead of
module module-name = ( module-expr : module-type ).

Another derived form is
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module module-name ( name; : module-type, ) ... ( name, : module-type, ) = module-expr
which is equivalent to

module module-name = functor ( name; : module-type; ) =>...-> module-expr

Module type definitions

A definition for a module type is written module type modtype-name = module-type. It binds the
name modtype-name to the module type denoted by the expression module-type.

Opening a module path

The expression open module-path in a structure does not define any components nor perform any
bindings. It simply affects the parsing of the following items of the structure, allowing components
of the module denoted by module-path to be referred to by their simple names name instead of path
accesses module-path . name. The scope of the open stops at the end of the structure expression.

Including the components of another structure

The expression include module-expr in a structure re-exports in the current structure all definitions
of the structure denoted by module-expr. For instance, if you define a module S as below

module S = struct type t = int let x = 2 end

defining the module B as

module B = struct include S let y = (x + 1 : t) end

is equivalent to defining it as

module B = struct type t = S.t let x = S.x let y = (x + 1 : t) end

The difference between open and include is that open simply provides short names for the com-
ponents of the opened structure, without defining any components of the current structure, while
include also adds definitions for the components of the included structure.

7.11.3 Functors
Functor definition

The expression functor ( module-name : module-type ) -> module-expr evaluates to a functor
that takes as argument modules of the type module-type,, binds module-name to these modules,
evaluates module-expr in the extended environment, and returns the resulting modules as results.
No restrictions are placed on the type of the functor argument; in particular, a functor may take
another functor as argument (“higher-order” functor).

Functor application

The expression module-expr; ( module-expry, ) evaluates module-expr; to a functor and
module-expry to a module, and applies the former to the latter. The type of module-expr, must
match the type expected for the arguments of the functor module-expr; .
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7.12 Compilation units

unit-interface = {specification [; ;]}

unit-implementation ::= [module-items]

Compilation units bridge the module system and the separate compilation system. A compi-
lation unit is composed of two parts: an interface and an implementation. The interface contains
a sequence of specifications, just as the inside of a sig...end signature expression. The imple-
mentation contains a sequence of definitions and expressions, just as the inside of a struct...end
module expression. A compilation unit also has a name unit-name, derived from the names of the
files containing the interface and the implementation (see chapter 9 for more details). A compilation
unit behaves roughly as the module definition

module unit-name : sig unit-interface end = struct unit-implementation end

A compilation unit can refer to other compilation units by their names, as if they were regular
modules. For instance, if U is a compilation unit that defines a type t, other compilation units can
refer to that type under the name U.t; they can also refer to U as a whole structure. Except for
names of other compilation units, a unit interface or unit implementation must not have any other
free variables. In other terms, the type-checking and compilation of an interface or implementation
proceeds in the initial environment

name; : sig specification; end...name, : sig specification,, end

where name; ... name, are the names of the other compilation units available in the search path
(see chapter 9 for more details) and specification, . .. specification,, are their respective interfaces.
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Chapter 8

Language extensions

This chapter describes language extensions and convenience features that are implemented in
OCaml, but not described in the OCaml reference manual.

8.1 Recursive definitions of values

(Introduced in Objective Caml 1.00)

As mentioned in section 7.7.2, the let rec binding construct, in addition to the definition of
recursive functions, also supports a certain class of recursive definitions of non-functional values,
such as

let rec namej =1 :: names and names = 2 :: name; in expr

which binds name; to the cyclic list 1::2::1::2::..., and names to the cyclic list
2::1::2::1::...Informally, the class of accepted definitions consists of those definitions where
the defined names occur only inside function bodies or as argument to a data constructor.

More precisely, consider the expression:

let rec name; = expry and...and name, = expr,, in expr

It will be accepted if each one of expr;...expr, is statically constructive with respect to
namej ...name,, is not immediately linked to any of name;...name,, and is not an array
constructor whose arguments have abstract type.

An expression e is said to be statically constructive with respect to the variables name ... name,,
if at least one of the following conditions is true:

e ¢ has no free occurrence of any of name; ... name,
e c is a variable

e has the form fun...->...

e has the form function...->...

e has the form lazy (...)
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e ¢ has one of the following forms, where each one of expr; ...expr,, is statically construc-
tive with respect to name; ...name,, and expr, is statically constructive with respect to
namej . ..name,, XNamej ...XNamey,:

— let [rec] xname; = expr; and...and xname,, = expr,, in expr
— let module...in expry

— constr ( expry , ..., expr,, )

— ° tag-name ( expry , ..., expr,, )

— [l expry 5 ...; expr,, |1

— { field; = expry ; ...; field,, = expr,, }

— { expr; with fieldy = expry ;...; field,, = expr,, } where expr; is not immediately

linked to name; ...name,
— (expry , ..., expr,, )

— expry ;...; expr,,
An expression e is said to be immediately linked to the variable name in the following cases:
e ¢ is name
e e has the form expr, ;... ; expr,, where expr,, is immediately linked to name

e ¢ has the form let [rec] xname; = expr; and...and xname,, = expr,, in expr, where expr
is immediately linked to name or to one of the xname; such that expr; is immediately linked
to name.

8.2 Recursive modules

(Introduced in Objective Caml 3.07)

definition == ...
| module rec module-name : module-type = module-expr
{and module-name : module-type = module-expr}
specification = ...
| module rec module-name : module-type {and module-name : module-type}
Recursive module definitions, introduced by the module rec ...and ... construction, gener-

alize regular module definitions module module-name = module-expr and module specifications
module module-name : module-type by allowing the defining module-expr and the module-type to
refer recursively to the module identifiers being defined. A typical example of a recursive module
definition is:

module rec A : sig
type t = Leaf of string | Node of ASet.t
val compare: t -> t -> int
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end = struct
type t = Leaf of string | Node of ASet.t
let compare tl1 t2 =
match (t1, t2) with
| (Leaf s1, Leaf s2) -> Stdlib.compare sl1 s2
| (Leaf _, Node _) —> 1
| (Node _, Leaf _) -> -1
| (Node nl, Node n2) -> ASet.compare nl n2
end
and ASet
Set.S with type elt = A.t
= Set.Make(A)

It can be given the following specification:

module rec A : sig
type t = Leaf of string | Node of ASet.t
val compare: t -> t -> int

end

and ASet : Set.S with type elt = A.t

This is an experimental extension of OCaml: the class of recursive definitions accepted, as well
as its dynamic semantics are not final and subject to change in future releases.

Currently, the compiler requires that all dependency cycles between the recursively-defined
module identifiers go through at least one “safe” module. A module is “safe” if all value definitions
that it contains have function types typexpr; -> typexpr,. Evaluation of a recursive module
definition proceeds by building initial values for the safe modules involved, binding all (functional)
values to fun _ -> raiseUndefined_recursive_module. The defining module expressions are then
evaluated, and the initial values for the safe modules are replaced by the values thus computed. If a
function component of a safe module is applied during this computation (which corresponds to an
ill-founded recursive definition), the Undefined_recursive_module exception is raised at runtime:

module rec M: sig val f: unit -> int end = struct let £ () = N.x end

and N:sig val x: int end = struct let x = M.f () end
Exception: Undefined_recursive_module ("exten.etex", 1, 43).

If there are no safe modules along a dependency cycle, an error is raised

module rec M: sig val x: int end = struct let x = N.y end
and N:sig val x: int val y:int end = struct let x = M.x let y = 0 end
Error: Cannot safely evaluate the definition of the following cycle

of recursively-defined modules: M -> N -> M.

There are no safe modules in this cycle (see manual section 8.2).
File "exten.etex", line 1, characters 18-28:
1 | module rec M: sig val x: int end = struct let x = N.y end

Module M defines an unsafe value, x .
File "exten.etex", line 2, characters 10-20:
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2 | and N:sig val x: int val y:int end = struct let x = M.x let y = 0 end

Module N defines an unsafe value, x .

Note that, in the specification case, the module-types must be parenthesized if they use the
with mod-constraint construct.

8.3 Private types

Private type declarations in module signatures, of the form type t = private ..., enable libraries
to reveal some, but not all aspects of the implementation of a type to clients of the library. In this
respect, they strike a middle ground between abstract type declarations, where no information is
revealed on the type implementation, and data type definitions and type abbreviations, where all
aspects of the type implementation are publicized. Private type declarations come in three flavors:
for variant and record types (section 8.3.1), for type abbreviations (section 8.3.2), and for row types
(section 8.3.3).

8.3.1 Private variant and record types

(Introduced in Objective Caml 3.07)

type-representation = ...
| =private [|]| constr-decl {| constr-decl}
| =private record-decl

Values of a variant or record type declared private can be de-structured normally in pattern-
matching or via the expr . field notation for record accesses. However, values of these types cannot
be constructed directly by constructor application or record construction. Moreover, assignment
on a mutable field of a private record type is not allowed.

The typical use of private types is in the export signature of a module, to ensure that construc-
tion of values of the private type always go through the functions provided by the module, while
still allowing pattern-matching outside the defining module. For example:

module M : sig
type t = private A | B of int
val a : t
val b : int > t
end = struct
type t = A | B of int
let a = A
let bn = assert (n > 0); Bn
end

Here, the private declaration ensures that in any value of type M.t, the argument to the B con-
structor is always a positive integer.

With respect to the variance of their parameters, private types are handled like abstract types.
That is, if a private type has parameters, their variance is the one explicitly given by prefixing the
parameter by a ‘+’ or a ‘-’, it is invariant otherwise.
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8.3.2 Private type abbreviations
(Introduced in Objective Caml 3.11)

type-equation = ...
| =private typexpr

Unlike a regular type abbreviation, a private type abbreviation declares a type that is distinct
from its implementation type typexpr. However, coercions from the type to typexpr are permitted.
Moreover, the compiler “knows” the implementation type and can take advantage of this knowledge
to perform type-directed optimizations.

The following example uses a private type abbreviation to define a module of nonnegative
integers:

module N : sig
type t = private int
val of_int: int -> t
val to_int: t -> int
end = struct
type t = int
let of_int n = assert (n >=0); n
let to_int n n
end

The type N.t is incompatible with int, ensuring that nonnegative integers and regular integers
are not confused. However, if x has type N.t, the coercion (x :> int) is legal and returns the
underlying integer, just like N.to_int x. Deep coercions are also supported: if 1 has type N.t 1list,
the coercion (1 :> int list) returns the list of underlying integers, like List.map N.to_int 1
but without copying the list 1.

Note that the coercion ( expr :> typexpr ) is actually an abbreviated form, and will only
work in presence of private abbreviations if neither the type of expr nor typexpr contain any
type variables. If they do, you must use the full form ( expr : typexpr,; :> typexpr, ) where
typexpr; is the expected type of expr. Concretely, this would be (x : N.t :> int) and
(1 : N.t list :> int list) for the above examples.

8.3.3 Private row types
(Introduced in Objective Caml 3.09)

type-equation = ...
| =private typexpr

Private row types are type abbreviations where part of the structure of the type is left abstract.
Concretely typexpr in the above should denote either an object type or a polymorphic variant
type, with some possibility of refinement left. If the private declaration is used in an interface, the
corresponding implementation may either provide a ground instance, or a refined private type.
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module M : sig type c = private < x : int; .. > val o : c end =
struct

class ¢ = object method x = 3 method y = 2 end

let o = new ¢
end

This declaration does more than hiding the y method, it also makes the type c incompatible with
any other closed object type, meaning that only o will be of type c. In that respect it behaves
similarly to private record types. But private row types are more flexible with respect to incremental
refinement. This feature can be used in combination with functors.

module F(X : sig type ¢ = private < x : int; .. > end) =
struct
let get_x (o : X.c) = o#x
end
module G(X : sig type ¢ = private < x : int; y : int; .. > end) =
struct

include F(X)
let get_y (o : X.c)
end

o#y

A polymorphic variant type [t], for example
type t = [ "A of int | "B of bool ]
can be refined in two ways. A definition [u] may add new field to [t], and the declaration
type u = private [> t]

will keep those new fields abstract. Construction of values of type [u] is possible using the known
variants of [t], but any pattern-matching will require a default case to handle the potential extra
fields. Dually, a declaration [u] may restrict the fields of [t] through abstraction: the declaration

type v = private [< t > "A]

corresponds to private variant types. One cannot create a value of the private type [v], except
using the constructors that are explicitly listed as present, (*A n) in this example; yet, when
patter-matching on a [v], one should assume that any of the constructors of [t] could be present.

Similarly to abstract types, the variance of type parameters is not inferred, and must be given
explicitly.

8.4 Local opens for patterns
(Introduced in OCaml 4.04)

pattern 1= ...
| module-path . ( pattern )
| module-path . [ pattern ]
| module-path . [| pattern |]
| module-path .{ pattern }
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For patterns, local opens are limited to the module-path .( pattern ) construction. This
construction locally open the module referred to by the module path module-path in the scope of
the pattern pattern.

When the body of a local open pattern is delimited by [ 1, [l |], or { }, the parentheses can
be omitted. For example, module-path . [ pattern ] is equivalent to module-path . ([ pattern ]),
and module-path . [| pattern |] is equivalent to module-path . ([| pattern |]).

8.5 Locally abstract types
(Introduced in OCaml 3.12, short syntax added in 4.03)

parameter = ...
| (type {typeconstr-name}™* )

The expression fun ( type typeconstr-name ) -> expr introduces a type constructor named
typeconstr-name which is considered abstract in the scope of the sub-expression, but then replaced
by a fresh type variable. Note that contrary to what the syntax could suggest, the expression
fun ( type typeconstr-name ) —> expr itself does not suspend the evaluation of expr as a regular
abstraction would. The syntax has been chosen to fit nicely in the context of function declarations,
where it is generally used. It is possible to freely mix regular function parameters with pseudo type
parameters, as in:

let f = fun (type t) (foo : t list) -> ...
and even use the alternative syntax for declaring functions:
let £ (type t) (foo : t list) = ...

If several locally abstract types need to be introduced, it is possible to use the syn-
tax fun ( type typeconstr-name ...typeconstr-name, ) -> expr as syntactic sugar for
fun ( type typeconstr-name; ) =>...-> fun ( type typeconstr-name,, ) => expr. For instance,

let f = fun (type t u v) -> fun (foo : (t * u * v) list) -> ...
let ' (type t u v) (foo : (t * u * v) list) = ...

This construction is useful because the type constructors it introduces can be used in places
where a type variable is not allowed. For instance, one can use it to define an exception in a local
module within a polymorphic function.

let £ (type t) O =
let module M = struct exception E of t end in
(fun x -> M.E x), (function M.E x -> Some x | _ -> None)

Here is another example:

let sort_uniq (type s) (cmp : s -> s -> int) =
let module S = Set.Make(struct type t = s let compare = cmp end) in
fun 1 >
S.elements (List.fold_right S.add 1 S.empty)
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It is also extremely useful for first-class modules (see section 8.6) and generalized algebraic
datatypes (GADTSs: see section 8.11).

Polymorphic syntax (Introduced in OCaml 4.00)

let-binding = ..
| value-name : type {typeconstr-name}* . typexpr = expr
class-field = ..
method [private] method-name : type {typeconstr-name}™ . typexpr = expr

p ype 1ty Y.
method! |private| method-name : type econstr-name . expr = expr
| method! [private] method ype { typeconst }* . typexpr = exp

The (type typeconstr-name ) syntax construction by itself does not make polymorphic the
type variable it introduces, but it can be combined with explicit polymorphic annotations where
needed. The above rule is provided as syntactic sugar to make this easier:

let rec £ : type t1 t2. t1 * t2 list -> t1
is automatically expanded into

let rec £ : 't1 't2. 't1 *x 't2 list -> 'tl1 =
fun (type t1) (type t2) -> ( ... : tl % t2 list -> t1)

This syntax can be very useful when defining recursive functions involving GADTSs, see the sec-
tion 8.11 for a more detailed explanation.
The same feature is provided for method definitions.

8.6 First-class modules

(Introduced in OCaml 3.12; pattern syntax and package type inference introduced in 4.00; structural
comparison of package types introduced in 4.02.; fewer parens required starting from 4.05)

typexpr = ..
| (module package-type )
module-expr = ...
| (val expr [: package-type] )

expr = ...
| (module module-expr [: package-type] )
pattern = ...
| (module module-name [: package-type] )
package-type ::= modtype-path

| modtype-path with package-constraint {and package-constraint}

package-constraint ::= type typeconstr = typexpr
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Modules are typically thought of as static components. This extension makes it possible to pack
a module as a first-class value, which can later be dynamically unpacked into a module.

The expression ( module module-expr : package-type ) converts the module (structure or func-
tor) denoted by module expression module-expr to a value of the core language that encapsulates
this module. The type of this core language value is ( module package-type ). The package-type
annotation can be omitted if it can be inferred from the context.

Conversely, the module expression ( val expr : package-type ) evaluates the core language
expression expr to a value, which must have type module package-type, and extracts the module
that was encapsulated in this value. Again package-type can be omitted if the type of expr is
known. If the module expression is already parenthesized, like the arguments of functors are, no
additional parens are needed: Map.Make(val key).

The pattern ( module module-name : package-type ) matches a package with type
package-type and binds it to module-name. It is not allowed in toplevel let bindings. Again
package-type can be omitted if it can be inferred from the enclosing pattern.

The package-type syntactic class appearing in the ( module package-type ) type expression and
in the annotated forms represents a subset of module types. This subset consists of named module
types with optional constraints of a limited form: only non-parametrized types can be specified.

For type-checking purposes (and starting from OCaml 4.02), package types are compared using
the structural comparison of module types.

In general, the module expression ( val expr : package-type ) cannot be used in the body of
a functor, because this could cause unsoundness in conjunction with applicative functors. Since
OCaml 4.02, this is relaxed in two ways: if package-type does not contain nominal type declarations
(i.e. types that are created with a proper identity), then this expression can be used anywhere,
and even if it contains such types it can be used inside the body of a generative functor, de-
scribed in section 8.16. It can also be used anywhere in the context of a local module binding
let module module-name = ( val expr; : package-type ) in expr,.

Basic example A typical use of first-class modules is to select at run-time among several im-
plementations of a signature. Each implementation is a structure that we can encapsulate as a
first-class module, then store in a data structure such as a hash table:

type picture = ...
module type DEVICE = sig
val draw : picture -> unit

end
let devices : (string, (module DEVICE)) Hashtbl.t = Hashtbl.create 17
module SVG = struct ... end

let _ = Hashtbl.add devices "SVG" (module SVG : DEVICE)
module PDF = struct ... end
let _ = Hashtbl.add devices "PDF" (module PDF: DEVICE)

We can then select one implementation based on command-line arguments, for instance:

let parse_cmdline () = ...



172

module Device =
(val (let device_name = parse_cmdline () in
try Hashtbl.find devices device_name
with Not_found ->
Printf.eprintf "Unknown device %s\n" device_name;
exit 2)
: DEVICE)

Alternatively, the selection can be performed within a function:

let draw_using_device device_name picture =
let module Device =
(val (Hashtbl.find devices device_name) : DEVICE)
in
Device.draw picture

Advanced examples With first-class modules, it is possible to parametrize some code over the
implementation of a module without using a functor.

let sort (type s) (module Set : Set.S with type elt = s) 1 =

Set.elements (List.fold_right Set.add 1 Set.empty)
val sort : (module Set.S with type elt = 'a) -> 'a list -> 'a list = <fun>

To use this function, one can wrap the Set.Make functor:

let make_set (type s) cmp =
let module S = Set.Make(struct

type t = s
let compare = cmp
end) in

(module S : Set.S with type elt = s)
val make_set : ('a -> 'a -> int) -> (module Set.S with type elt = 'a) = <fun>

8.7 Recovering the type of a module
(Introduced in OCaml 3.12)

module-type =
| module type of module-expr

The construction module type of module-expr expands to the module type (signature or functor
type) inferred for the module expression module-expr. To make this module type reusable in many
situations, it is intentionally not strengthened: abstract types and datatypes are not explicitly
related with the types of the original module. For the same reason, module aliases in the inferred
type are expanded.

A typical use, in conjunction with the signature-level include construct, is to extend the sig-
nature of an existing structure. In that case, one wants to keep the types equal to types in the
original module. This can done using the following idiom.



Chapter 8. Language extensions 173

module type MYHASH = sig
include module type of struct include Hashtbl end
val replace: ('a, 'b) t -> 'a -> 'b -> unit

end

The signature MYHASH then contains all the fields of the signature of the module Hashtbl (with
strengthened type definitions), plus the new field replace. An implementation of this signature
can be obtained easily by using the include construct again, but this time at the structure level:

module MyHash : MYHASH = struct

include Hashtbl

let replace t k v = remove t k; add t k v
end

Another application where the absence of strengthening comes handy, is to provide an alterna-
tive implementation for an existing module.

module MySet : module type of Set = struct

end

This idiom guarantees that Myset is compatible with Set, but allows it to represent sets internally
in a different way.

8.8 Substituting inside a signature

8.8.1 Destructive substitutions

(Introduced in OCaml 3.12, generalized in 4.06)

mod-constraint = ...
| type [type-params] typeconstr-name := typexpr
| module module-path := extended-module-path

A “destructive” substitution (with... :=...) behaves essentially like normal signature constraints
(with... =...), but it additionally removes the redefined type or module from the signature.

Prior to OCaml 4.06, there were a number of restrictions: one could only remove types and
modules at the outermost level (not inside submodules), and in the case of with type the definition
had to be another type constructor with the same type parameters.

A natural application of destructive substitution is merging two signatures sharing a type name.

module type Printable = sig

type t
val print : Format.formatter -> t -> unit
end

module type Comparable = sig
type t
val compare : t -> t -> int
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end
module type PrintableComparable = sig
include Printable
include Comparable with type t :=t
end

One can also use this to completely remove a field:

module type S = Comparable with type t := int
module type S = sig val compare : int -> int -> int end

or to rename one:

module type S = sig
type u
include Comparable with type t := u

end
module type S = sig type u val compare : u -> u —-> int end

Note that you can also remove manifest types, by substituting with the same type.

module type ComparableInt = Comparable with type t = int ;;
module type ComparableInt = sig type t = int val compare : t -> t -> int end

module type CompareInt = ComparableInt with type t := int
module type Comparelnt = sig val compare : int -> int -> int end
8.8.2 Local substitution declarations

(Introduced in OCaml 4.08)

specification = ...
| type type-subst {and type-subst}
| module module-name := extended-module-path
type-subst ::= [type-params] typeconstr-name := typexpr {type-constraint}
Local substitutions behave like destructive substitutions (with... :=...) but instead of being

applied to a whole signature after the fact, they are introduced during the specification of the
signature, and will apply to all the items that follow.

This provides a convenient way to introduce local names for types and modules when defining
a signature:

module type S = sig
type t
module Sub : sig
type outer :=t
type t
val to_outer : t -> outer
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end

end
module type S =
sig type t module Sub : sig type t val to_outer : t/1 -> t/2 end end

Note that, unlike type declarations, type substitution declarations are not recursive, so substi-
tutions like the following are rejected:

# module type S = sig

# type 'a poly_list := [ “Cons of 'a * 'a poly_list | “Nil ]
# end ;;

Error: Unbound type constructor poly_list

8.9 Type-level module aliases
(Introduced in OCaml 4.02)

specification = ...
| module module-name = module-path

The above specification, inside a signature, only matches a module definition equal to
module-path. Conversely, a type-level module alias can be matched by itself, or by any supertype
of the type of the module it references.

There are several restrictions on module-path:

1. it should be of the form Mj.M;...M,, (i.e. without functor applications);

2. inside the body of a functor, My should not be one of the functor parameters;

3. inside a recursive module definition, M should not be one of the recursively defined modules.

Such specifications are also inferred. Namely, when P is a path satisfying the above constraints,
module N = P

has type
module N = P

Type-level module aliases are used when checking module path equalities. That is, in a context
where module name N is known to be an alias for P, not only these two module paths check as
equal, but F' (N) and F (P) are also recognized as equal. In the default compilation mode, this is
the only difference with the previous approach of module aliases having just the same module type
as the module they reference.

When the compiler flag -no-alias-deps is enabled, type-level module aliases are also exploited
to avoid introducing dependencies between compilation units. Namely, a module alias referring
to a module inside another compilation unit does not introduce a link-time dependency on that
compilation unit, as long as it is not dereferenced; it still introduces a compile-time dependency
if the interface needs to be read, i¢.e. if the module is a submodule of the compilation unit, or if
some type components are referred to. Additionally, accessing a module alias introduces a link-time
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dependency on the compilation unit containing the module referenced by the alias, rather than the
compilation unit containing the alias. Note that these differences in link-time behavior may be
incompatible with the previous behavior, as some compilation units might not be extracted from
libraries, and their side-effects ignored.

These weakened dependencies make possible to use module aliases in place of the -pack mech-
anism. Suppose that you have a library Mylib composed of modules A and B. Using -pack, one
would issue the command line

ocamlc -pack a.cmo b.cmo -o mylib.cmo

and as a result obtain a Mylib compilation unit, containing physically A and B as submodules,
and with no dependencies on their respective compilation units. Here is a concrete example of a
possible alternative approach:

1. Rename the files containing A and B to Mylib__A and Mylib__B.

2. Create a packing interface Mylib.ml, containing the following lines.

module A
module B

Mylib__A
Mylib__B

3. Compile Mylib.ml using -no-alias-deps, and the other files using -no-alias-deps and
-open Mylib (the last one is equivalent to adding the line open! Mylib at the top of each
file).

ocamlc -c -no-alias-deps Mylib.ml
ocamlc -c¢ -no-alias-deps -open Mylib Mylib__*.mli Mylib__x*.ml

4. Finally, create a library containing all the compilation units, and export all the compiled
interfaces.

ocamlc -a Mylib*.cmo -o Mylib.cma

This approach lets you access A and B directly inside the library, and as Mylib.A and Mylib.B from
outside. It also has the advantage that Mylib is no longer monolithic: if you use Mylib.A, only
Mylib__A will be linked in, not Mylib__B.

Note the use of double underscores in Mylib__A and Mylib__B. These were chosen on pur-
pose; the compiler uses the following heuristic when printing paths: given a path Lib__fooBar,
if Lib.FooBar exists and is an alias for Lib__fooBar, then the compiler will always display
Lib.FooBar instead of Lib__fooBar. This way the long Mylib__ names stay hidden and all the
user sees is the nicer dot names. This is how the OCaml standard library is compiled.

8.10 Overriding in open statements

(Introduced in OCaml 4.01)
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definition = ...
| open! module-path
specification = ...
| open! module-path
expr =

| let open! module-path in expr

class-body-type = ..
| let open! module-path in class-body-type

class-expr = ...
| let open! module-path in class-expr

Since OCaml 4.01, open statements shadowing an existing identifier (which is later used) trigger
the warning 44. Adding a ! character after the open keyword indicates that such a shadowing is
intentional and should not trigger the warning.

This is also available (since OCaml 4.06) for local opens in class expressions and class type
expressions.

8.11 Generalized algebraic datatypes
(Introduced in OCaml 4.00)

constr-decl = ..
| constr-name : [constr-args —>| typexpr

type-param ::=
| [variance] _

Generalized algebraic datatypes, or GADTs, extend usual sum types in two ways: constraints on
type parameters may change depending on the value constructor, and some type variables may be
existentially quantified. Adding constraints is done by giving an explicit return type (the rightmost
typexpr in the above syntax), where type parameters are instantiated. This return type must use
the same type constructor as the type being defined, and have the same number of parameters.
Variables are made existential when they appear inside a constructor’s argument, but not in its
return type.

Since the use of a return type often eliminates the need to name type parameters in the left-hand
side of a type definition, one can replace them with anonymous types _ in that case.

The constraints associated to each constructor can be recovered through pattern-matching.
Namely, if the type of the scrutinee of a pattern-matching contains a locally abstract type, this
type can be refined according to the constructor used. These extra constraints are only valid inside
the corresponding branch of the pattern-matching. If a constructor has some existential variables,
fresh locally abstract types are generated, and they must not escape the scope of this branch.
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Recursive functions
Here is a concrete example:

type _ term =
| Int : int -> int term
| Add : (int -> int -> int) term
| App : ('b => 'a) term * 'b term -> 'a term
let rec eval : type a. a term -> a = function
| Int n ->n (x a = int *)
| Add => (fun x y => x+y) (x a = int -> int -> int %)
| App(f,x) —> (eval f) (eval x)
(* eval called at types (b->a) and b for fresh b *)

let two = eval (App (App (Add, Int 1), Int 1))
val two : int = 2

It is important to remark that the function eval is using the polymorphic syntax for locally abstract
types. When defining a recursive function that manipulates a GADT, explicit polymorphic recursion
should generally be used. For instance, the following definition fails with a type error:

let rec eval (type a) : a term -> a = function
| Int n ->n
| Add => (fun x y -> x+y)
| App(f,x) -> (eval f) (eval x)
Error: This expression has type ($App_'b -> a) term
but an expression was expected of type 'a
The type constructor $App_'b would escape its scope

In absence of an explicit polymorphic annotation, a monomorphic type is inferred for the recursive
function. If a recursive call occurs inside the function definition at a type that involves an existential
GADT type variable, this variable flows to the type of the recursive function, and thus escapes its
scope. In the above example, this happens in the branch App(f,x) when eval is called with f as
an argument. In this branch, the type of £ is ($App_ 'b-> a). The prefix $ in $App_ 'b denotes
an existential type named by the compiler (see 8.11). Since the type of eval is 'a term -> 'a, the
call eval f makes the existential type $App_'b flow to the type variable 'a and escape its scope.
This triggers the above error.

Type inference

Type inference for GADTs is notoriously hard. This is due to the fact some types may become
ambiguous when escaping from a branch. For instance, in the Int case above, n could have either
type int or a, and they are not equivalent outside of that branch. As a first approximation, type
inference will always work if a pattern-matching is annotated with types containing no free type
variables (both on the scrutinee and the return type). This is the case in the above example, thanks
to the type annotation containing only locally abstract types.

In practice, type inference is a bit more clever than that: type annotations do not need to be
immediately on the pattern-matching, and the types do not have to be always closed. As a result,
it is usually enough to only annotate functions, as in the example above. Type annotations are
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propagated in two ways: for the scrutinee, they follow the flow of type inference, in a way similar to
polymorphic methods; for the return type, they follow the structure of the program, they are split
on functions, propagated to all branches of a pattern matching, and go through tuples, 