BIRD Programmer's Documentation

Ondrej Filip <feela@network.cz>, Martin Mares <mj@ucw.cz>, Ondrej Zajicek <santiago@crfreenet.org>
Maria Matejka <mq@jmgq.cz>,

This document contains programmer’s documentation for the BIRD Internet Routing Daemon project.

Contents

1 BIRD Design

6 System dependent parts
6.1 Introduction.
6.2 Logging
6.3 Kernel synchronization

7 Library functions

1.1 Imtroduction L e e
1.2 Design goals e
1.3 Architecture L e
1.4 TImplementation L
2 Core
2.1 Forwarding Information Base
2.2 Routing tables e
2.3 Route attribute cache
2.4 Routing protocols L e
2.5 Graceful restart recovery oL e
2.6 Protocol hooks e
2.7 Interfaces e
2.8 MPLS . . . e
2.9 Neighbor cache e
2.10 Command line interface L L
2.11 Object locks o o
3 Configuration
3.1 Configuration manager e e
3.2 Lexical analyzer e
3.3 Parser e
4 Filters
4.1 Filters e
4.2 Trie for prefix sets L e e e
5 Protocols
5.1 The Babel protocol L
5.2 Bidirectional Forwarding Detection L o
5.3 Border Gateway Protocol
5.4 BGP Monitoring Protocol (BMP)
5.5 Open Shortest Path First (OSPF)
5.6 Pipe . . . o e e
5.7 Router Advertisements e
5.8 Routing Information Protocol (RIP)
5.9 RPKI To Router (RPKI-RTR) et
5.10 Statico e
5.11 Direct o e e

U R

©

17
22
26
29
35
38
38
41
42

44
44
47
49

51
51
93

58
58
63
64
71
73
80
80
81
83
90
90

91
91
91
93

94

CONTENTS 3

7.1 IP addresses e e e e 94
7.2 Linked lists L 98
7.3 Miscellaneous functions. L e e 100
7.4 Message authentication codes Lo e 104
7.5 Flow specification (lowspec) 106
8 Resources 114
8.1 Introduction L e e 114
8.2 Resource pools L 114
8.3 Memory blocks e 116
8.4 Linear memory pools e e 117
8.5 Slabs e e 119
8.6 Events e 120
8.7 Sockets e e e 121

Chapter 1: BIRD Design

1.1 Introduction

This document describes the internal workings of BIRD, its architecture, design decisions and rationale
behind them. It also contains documentation on all the essential components of the system and their
interfaces.

Routing daemons are complicated things which need to act in real time to complex sequences of external
events, respond correctly even to the most erroneous behavior of their environment and still handle enormous
amount of data with reasonable speed. Due to all of this, their design is very tricky as one needs to carefully
balance between efficiency, stability and (last, but not least) simplicity of the program and it would be
possible to write literally hundreds of pages about all of these issues. In accordance to the famous quote of
Anton Chekhov ”Shortness is a sister of talent”, we’ve tried to write a much shorter document highlighting
the most important stuff and leaving the boring technical details better explained by the program source
itself together with comments contained therein.

1.2 Design goals

When planning the architecture of BIRD, we’ve taken a close look at the other existing routing daemons
and also at some of the operating systems used on dedicated routers, gathered all important features and
added lots of new ones to overcome their shortcomings and to better match the requirements of routing in
today’s Internet: IPv6, policy routing, route filtering and so on. From this planning, the following set of
design goals has arisen:

e Support all the standard routing protocols and make it easy to add new ones. This leads to modularity
and clean separation between the core and the protocols.

e Support both IPv4 and IPv6 in the same source tree, re-using most of the code. This leads to abstraction
of IP addresses and operations on them.

o Minimize OS dependent code to make porting as easy as possible. Unfortunately, such code cannot be
avoided at all as the details of communication with the IP stack differ from OS to OS and they often
vary even between different versions of the same OS. But we can isolate such code in special modules
and do the porting by changing or replacing just these modules. Also, don’t rely on specific features
of various operating systems, but be able to make use of them if they are available.

o Allow multiple routing tables. Easily solvable by abstracting out routing tables and the corresponding
operations.

o Offer powerful route filtering. There already were several attempts to incorporate route filters to a
dynamic router, but most of them have used simple sequences of filtering rules which were very inflexible
and hard to use for non-trivial filters. We’ve decided to employ a simple loop-free programming
language having access to all the route attributes and being able to modify the most of them.

e Support easy configuration and re-configuration. Most routers use a simple configuration language
designed ad hoc with no structure at all and allow online changes of configuration by using their
command-line interface, thus any complex re-configurations are hard to achieve without replacing the
configuration file and restarting the whole router. We’ve decided to use a more general approach:
to have a configuration defined in a context-free language with blocks and nesting, to perform all
configuration changes by editing the configuration file, but to be able to read the new configuration
and smoothly adapt to it without disturbing parts of the routing process which are not affected by the
change.

e Be able to be controlled online. In addition to the online reconfiguration, a routing daemon should be
able to communicate with the user and with many other programs (primarily scripts used for network
maintenance) in order to make it possible to inspect contents of routing tables, status of all routing
protocols and also to control their behavior (disable, enable or reset a protocol without restarting all

4

1.3. Architecture 5

the others). To achieve this, we implement a simple command-line protocol based on those used by
FTP and SMTP (that is textual commands and textual replies accompanied by a numeric code which
makes them both readable to a human and easy to recognize in software).

e Respond to all events in real time. A typical solution to this problem is to use lots of threads to
separate the workings of all the routing protocols and also of the user interface parts and to hope
that the scheduler will assign time to them in a fair enough manner. This is surely a good solution,
but we have resisted the temptation and preferred to avoid the overhead of threading and the large
number of locks involved and preferred a event driven architecture with our own scheduling of events.
An unpleasant consequence of such an approach is that long lasting tasks must be split to more parts
linked by special events or timers to make the CPU available for other tasks as well.

1.3 Architecture

The requirements set above have lead to a simple modular architecture containing the following types of
modules:

Core modules
implement the core functions of BIRD: taking care of routing tables, keeping protocol status, interacting
with the user using the Command-Line Interface (to be called CLI in the rest of this document) etc.

Library modules
form a large set of various library functions implementing several data abstractions, utility functions
and also functions which are a part of the standard libraries on some systems, but missing on other
ones.

Resource management modules
take care of resources, their allocation and automatic freeing when the module having requested shuts
itself down.

Configuration modules
are fragments of lexical analyzer, grammar rules and the corresponding snippets of C code. For each
group of code modules (core, each protocol, filters) there exist a configuration module taking care of
all the related configuration stuff.

The filter
implements the route filtering language.

Protocol modules
implement the individual routing protocols.

System-dependent modules
implement the interface between BIRD and specific operating systems.

The client
is a simple program providing an easy, though friendly interface to the CLI.

1.4 Implementation

BIRD has been written in GNU C. We’ve considered using C++4, but we’ve preferred the simplicity and
straightforward nature of C which gives us fine control over all implementation details and on the other hand
enough instruments to build the abstractions we need.

The modules are statically linked to produce a single executable file (except for the client which stands on
its own).

The building process is controlled by a set of Makefiles for GNU Make, intermixed with several Perl and
shell scripts.

The initial configuration of the daemon, detection of system features and selection of the right modules to
include for the particular OS and the set of protocols the user has chosen is performed by a configure script

1.4. Implementation 6

generated by GNU Autoconf.

The parser of the configuration is generated by the GNU Bison.

The documentation is generated using SGMLtools with our own DTD and mapping rules which produce
both an online version in HTML and a neatly formatted one for printing (first converted from SGML to
KTEX and then processed by TEX and dvips to get a PostScript file).

The comments from C sources which form a part of the programmer’s documentation are extracted using a
modified version of the kernel-doc tool.

If you want to work on BIRD, it’s highly recommended to configure it with a -—enable-debug switch which
enables some internal consistency checks and it also links BIRD with a memory allocation checking library
if you have one (either efence or dmalloc).

Chapter 2: Core

2.1 Forwarding Information Base

FIB is a data structure designed for storage of routes indexed by their network prefixes. It supports insertion,
deletion, searching by prefix, ‘routing’ (in CIDR sense, that is searching for a longest prefix matching a
given IP address) and (which makes the structure very tricky to implement) asynchronous reading, that is
enumerating the contents of a FIB while other modules add, modify or remove entries.

Internally, each FIB is represented as a collection of nodes of type fib_node indexed using a sophisticated
hashing mechanism. We use two-stage hashing where we calculate a 16-bit primary hash key independent
on hash table size and then we just divide the primary keys modulo table size to get a real hash key used
for determining the bucket containing the node. The lists of nodes in each bucket are sorted according to
the primary hash key, hence if we keep the total number of buckets to be a power of two, re-hashing of the
structure keeps the relative order of the nodes.

To get the asynchronous reading consistent over node deletions, we need to keep a list of readers for each
node. When a node gets deleted, its readers are automatically moved to the next node in the table.

Basic FIB operations are performed by functions defined by this module, enumerating of FIB contents is
accomplished by using the FIB_.WALK() macro or FIB.ITERATE_START() if you want to do it asyn-
chronously.

For simple iteration just place the body of the loop between FIB.-WALK() and FIB_-WALK_END(). You
can’t modify the FIB during the iteration (you can modify data in the node, but not add or remove nodes).

If you need more freedom, you can use the FIBITERATE_*() group of macros. First, you initialize an
iterator with FIB.ITERATE_INIT(). Then you can put the loop body in between FIB.ITERATE_START()
and FIB_ITERATE_END(). In addition, the iteration can be suspended by calling FIB_ITERATE_PUT().
This’ll link the iterator inside the FIB. While suspended, you may modify the FIB, exit the current function,
etc. To resume the iteration, enter the loop again. You can use FIB_ITERATE_UNLINK() to unlink the
iterator (while iteration is suspended) in cases like premature end of FIB iteration.

Note that the iterator must not be destroyed when the iteration is suspended, the FIB would then contain
a pointer to invalid memory. Therefore, after each FIB_ITERATE_INIT() or FIB_ITERATE_PUT() there
must be either FIBAITERATE_START() or FIB.ITERATE_UNLINK() before the iterator is destroyed.

Function

void fib_init (struct fib * f, pool * p, uint addr_type, uint node_size, uint node_offset, uint hash_order,
fib_init_fn énit) — initialize a new FIB

Arguments

struct fib * f
the FIB to be initialized (the structure itself being allocated by the caller)

pool * p
pool to allocate the nodes in

uint addr_type
— undescribed —

uint node_size
node size to be used (each node consists of a standard header fib_node followed by user data)

uint node_offset
— undescribed —

uint hash_order
initial hash order (a binary logarithm of hash table size), 0 to use default order (recommended)

fib_init_fn indt
pointer a function to be called to initialize a newly created node

7

2.1. Forwarding Information Base 8

Description
This function initializes a newly allocated FIB and prepares it for use.

Function
void * fib_find (struct fib * f, const net_addr * a) — search for FIB node by prefix

Arguments

struct fib * f
FIB to search in

const net_addr * a
— undescribed —

Description
Search for a FIB node corresponding to the given prefix, return a pointer to it or NULL if no such node exists.

Function

void * fib_get (struct fib * f, const net_addr * a) — find or create a FIB node

Arguments

struct fib * f
FIB to work with

const net_addr * a
— undescribed —

Description
Search for a FIB node corresponding to the given prefix and return a pointer to it. If no such node exists,
create it.

Function

void * fib_route (struct fib * f, const net_addr * n) — CIDR routing lookup

Arguments

struct fib * f
FIB to search in

const net_addr * n
network address

Description
Search for a FIB node with longest prefix matching the given network, that is a node which a CIDR router
would use for routing that network.

Function
void fib_delete (struct fib * f, void * E) — delete a FIB node

Arguments

struct fib * f
FIB to delete from

void * E
entry to delete
Description

This function removes the given entry from the FIB, taking care of all the asynchronous readers by shifting
them to the next node in the canonical reading order.

2.2. Routing tables 9

Function
void fib_free (struct fib * f) — delete a FIB

Arguments

struct fib * f
FIB to be deleted

Description
This function deletes a FIB — it frees all memory associated with it and all its entries.

Function
void fib_check (struct fib * f) — audit a FIB

Arguments

struct fib * f
FIB to be checked

Description
This debugging function audits a FIB by checking its internal consistency. Use when you suspect somebody
of corrupting innocent data structures.

2.2 Routing tables

Routing tables are probably the most important structures BIRD uses. They hold all the information about
known networks, the associated routes and their attributes.

There are multiple routing tables (a primary one together with any number of secondary ones if requested
by the configuration). Each table is basically a FIB containing entries describing the individual destination
networks. For each network (represented by structure net), there is a one-way linked list of route entries
(rte), the first entry on the list being the best one (i.e., the one we currently use for routing), the order of
the other ones is undetermined.

The rte contains information about the route. There are net and src, which together forms a key identifying
the route in a routing table. There is a pointer to a rta structure (see the route attribute module for a
precise explanation) holding the route attributes, which are primary data about the route. There are several
technical fields used by routing table code (route id, REF_* flags), There is also the pflags field, holding
protocol-specific flags. They are not used by routing table code, but by protocol-specific hooks. In contrast
to route attributes, they are not primary data and their validity is also limited to the routing table.

There are several mechanisms that allow automatic update of routes in one routing table (dst) as a result of
changes in another routing table (src). They handle issues of recursive next hop resolving, flowspec validation
and RPKI validation.

The first such mechanism is handling of recursive next hops. A route in the dst table has an indirect next
hop address, which is resolved through a route in the src table (which may also be the same table) to get
an immediate next hop. This is implemented using structure hostcache attached to the src table, which
contains hostentry structures for each tracked next hop address. These structures are linked from recursive
routes in dst tables, possibly multiple routes sharing one hostentry (as many routes may have the same
indirect next hop). There is also a trie in the hostcache, which matches all prefixes that may influence
resolving of tracked next hops.

When a best route changes in the src table, the hostcache is notified using rt_notify_hostcache(), which
immediately checks using the trie whether the change is relevant and if it is, then it schedules asynchronous
hostcache recomputation. The recomputation is done by rt_update_hostcache() (called from rt_event() of
src table), it walks through all hostentries and resolves them (by rt_update_hostentry()). It also updates the
trie. If a change in hostentry resolution was found, then it schedules asynchronous nexthop recomputation of
associated dst table. That is done by rt_next_hop_update() (called from rt_event() of dst table), it iterates over
all routes in the dst table and re-examines their hostentries for changes. Note that in contrast to hostcache

2.2. Routing tables 10

update, next hop update can be interrupted by main loop. These two full-table walks (over hostcache and
dst table) are necessary due to absence of direct lookups (route -> affected nexthop, nexthop -> its route).
The second mechanism is for flowspec validation, where validity of flowspec routes depends of resolving their
network prefixes in IP routing tables. This is similar to the recursive next hop mechanism, but simpler as
there are no intermediate hostcache and hostentries (because flows are less likely to share common net prefix
than routes sharing a common next hop). In src table, there is a list of dst tables (list flowspec_links), this list
is updated by flowpsec channels (by rt_flowspec_link() and rt_flowspec_unlink() during channel start/stop).
Each dst table has its own trie of prefixes that may influence validation of flowspec routes in it (flowspec_trie).
When a best route changes in the src table, rt_flowspec_notify() immediately checks all dst tables from the list
using their tries to see whether the change is relevant for them. If it is, then an asynchronous re-validation
of flowspec routes in the dst table is scheduled. That is also done by function rt_next_hop_update(), like
nexthop recomputation above. It iterates over all flowspec routes and re-validates them. It also recalculates
the trie.

Note that in contrast to the hostcache update, here the trie is recalculated during the rt_next_hop_update(),
which may be interleaved with IP route updates. The trie is flushed at the beginning of recalculation, which
means that such updates may use partial trie to see if they are relevant. But it works anyway! Either
affected flowspec was already re-validated and added to the trie, then IP route change would match the trie
and trigger a next round of re-validation, or it was not yet re-validated and added to the trie, but will be
re-validated later in this round anyway.

The third mechanism is used for RPKI re-validation of IP routes and it is the simplest. It is just a list of
subscribers in src table, who are notified when any change happened, but only after a settle time. Also, in
RPKI case the dst is not a table, but a channel, who refeeds routes through a filter.

Function

int net_roa_check (rtable * tab, const net_addr * n, u32 asn) — check validity of route origination in a ROA
table

Arguments

rtable * tab
ROA table

const net_addr * n
network prefix to check

u32 asn
AS number of network prefix

Description

Implements RFC 6483 route validation for the given network prefix. The procedure is to find all candi-
date ROAs - ROAs whose prefixes cover the given network prefix. If there is no candidate ROA, return
ROA_UNKNOWN. If there is a candidate ROA with matching ASN and maxlen field greater than or equal
to the given prefix length, return ROA_VALID. Otherwise, return ROA_INVALID. If caller cannot determine
origin AS, 0 could be used (in that case ROA_VALID cannot happen). Table tab must have type NET_ROA4
or NET_ROAG6, network n must have type NET_IP4 or NET_IP6, respectively.

Function

*

rte * rte_find (net * net, struct rte_src * src) — find a route

Arguments

net * net
network node

struct rte_src * src
route source

Description
The rte_find() function returns a route for destination net which is from route source sre.

2.2. Routing tables 11

Function

*

rte * rte_get_temp (rta * a, struct rte_src * src) — get a temporary rte

Arguments

rta *

a
attributes to assign to the new route (a rta; in case it’s un-cached, rte_update() will create a cached

copy automatically)

struct rte_src * src
route source

Description
Create a temporary rte and bind it with the attributes a.

Function

*

rte * rte_cow_rta (rte * r, linpool * Ip) — get a private writable copy of rte with writable rta

Arguments

*

rte * r

a route entry to be copied

linpool * Ip
a linpool from which to allocate rta

Description

rte_cow_rta() takes a rte and prepares it and associated rta for modification. There are three possibilities:
First, both rte and rta are private copies, in that case they are returned unchanged. Second, rte is private
copy, but rta is cached, in that case rta is duplicated using rta_do_cow(). Third, both rte is shared and
rta is cached, in that case both structures are duplicated by rte_do_cow() and rta_do_cow().

Note that in the second case, cached rta loses one reference, while private copy created by rta_do_cow() is
a shallow copy sharing indirect data (eattrs, nexthops, ...) with it. To work properly, original shared rta
should have another reference during the life of created private copy.

Result
a pointer to the new writable rte with writable rta.

Function
void rte_announce (rtable * tab, uint type, net * net, rte * new, rte * old, rte * new_best, rte * old_best) —

announce a routing table change

Arguments

rtable * tab
table the route has been added to

uint type
type of route announcement (RA_UNDEF or RA_ANY)

net * net
network in question

*

rte * new

the new or changed route

rte * old
the previous route replaced by the new one

2.2. Routing tables 12

* new_best

the new best route for the same network

rte

rte * old_best
the previous best route for the same network

Description

This function gets a routing table update and announces it to all protocols that are connected to the same
table by their channels.

There are two ways of how routing table changes are announced. First, there is a change of just one route
in net (which may caused a change of the best route of the network). In this case new and old describes the
changed route and new_best and old_best describes best routes. Other routes are not affected, but in sorted
table the order of other routes might change.

Second, There is a bulk change of multiple routes in net, with shared best route selection. In such case
separate route changes are described using type of RA_ANY, with new and old specifying the changed route,
while new_best and old_best are NULL. After that, another notification is done where new_best and old_best
are filled (may be the same), but new and old are NULL.

The function announces the change to all associated channels. For each channel, an appropriate preprocessing
is done according to channel ra_mode. For example, RA_OPTIMAL channels receive just changes of best routes.
In general, we first call preexport() hook of a protocol, which performs basic checks on the route (each
protocol has a right to veto or force accept of the route before any filter is asked). Then we consult an
export filter of the channel and verify the old route in an export map of the channel. Finally, the rt_notify()
hook of the protocol gets called.

Note that there are also calls of rt_notify() hooks due to feed, but that is done outside of scope of
rte_announce().

Function

void rte_free (rte * e) — delete a rte
Arguments

*

rte * e

rte to be deleted

Description
rte_free() deletes the given rte from the routing table it’s linked to.

Function

void rte_update? (struct channel * ¢, const net_addr * n, rte * new, struct rte_src * src) — enter a new update
to a routing table

Arguments

struct channel * ¢
channel doing the update

const net_addr * n
— undescribed —

*

rte * new

a rte representing the new route or NULL for route removal.

struct rte_src * src
protocol originating the update

Description

This function is called by the routing protocols whenever they discover a new route or wish to update/remove
an existing route. The right announcement sequence is to build route attributes first (either un-cached with
aflags set to zero or a cached one using rta_lookup(); in this case please note that you need to increase the

2.2. Routing tables 13

use count of the attributes yourself by calling rta_clone()), call rte_get_temp() to obtain a temporary rte,
fill in all the appropriate data and finally submit the new rte by calling rte_update().

sre specifies the protocol that originally created the route and the meaning of protocol-dependent data of
new. If new is not NULL, src have to be the same value as new->attrs->proto. p specifies the protocol that
called rte_update(). In most cases it is the same protocol as src. rte_update() stores p in new->sender;
When rte_update() gets any route, it automatically validates it (checks, whether the network and next hop
address are valid IP addresses and also whether a normal routing protocol doesn’t try to smuggle a host
or link scope route to the table), converts all protocol dependent attributes stored in the rte to temporary
extended attributes, consults import filters of the protocol to see if the route should be accepted and/or its
attributes modified, stores the temporary attributes back to the rte.

Now, having a ”public” version of the route, we automatically find any old route defined by the protocol src
for network n, replace it by the new one (or removing it if new is NULL), recalculate the optimal route for
this destination and finally broadcast the change (if any) to all routing protocols by calling rte_announce().
All memory used for attribute lists and other temporary allocations is taken from a special linear pool
rte_update_pool and freed when rte_update() finishes.

Function

void rt_refresh_begin (rtable * ¢, struct channel * ¢) — start a refresh cycle

Arguments

rtable * ¢
related routing table ¢ related channel

struct channel * ¢
— undescribed —

Description

This function starts a refresh cycle for given routing table and announce hook. The refresh cycle is a sequence
where the protocol sends all its valid routes to the routing table (by rte_update()). After that, all protocol
routes (more precisely routes with ¢ as sender) not sent during the refresh cycle but still in the table from
the past are pruned. This is implemented by marking all related routes as stale by REF_STALE flag in
rt_refresh_begin(), then marking all related stale routes with REF_DISCARD flag in rt_refresh_end() and
then removing such routes in the prune loop.

Function

void rt_refresh_end (rtable * t, struct channel * ¢) — end a refresh cycle

Arguments

rtable * ¢
related routing table

struct channel * ¢
related channel

Description
This function ends a refresh cycle for given routing table and announce hook. See rt_refresh_begin() for
description of refresh cycles.

Function

void rte_dump (rte * e) — dump a route

Arguments

rte * e
rte to be dumped

Description
This functions dumps contents of a rte to debug output.

2.2. Routing tables 14

Function

void rt_dump (rtable * t) — dump a routing table

Arguments

rtable * ¢
routing table to be dumped

Description
This function dumps contents of a given routing table to debug output.

Function
void rt_dump_all (void) — dump all routing tables

Description
This function dumps contents of all routing tables to debug output.

Function
void rt_init (void) — initialize routing tables

Description
This function is called during BIRD startup. It initializes the routing table module.

Function

void rt_prune_table (rtable * tab) — prune a routing table

Arguments

rtable * tab
— undescribed —

Description

The prune loop scans routing tables and removes routes belonging to flushing protocols, discarded routes
and also stale network entries. It is called from rt_event(). The event is rescheduled if the current iteration
do not finish the table. The pruning is directed by the prune state (prune_state), specifying whether the
prune cycle is scheduled or running, and there is also a persistent pruning iterator (prune_fit).

The prune loop is used also for channel flushing. For this purpose, the channels to flush are marked before
the iteration and notified after the iteration.

Function

struct f_trie * rt_lock_trie (rtable * tab) — lock a prefix trie of a routing table

Arguments

rtable * tab
routing table with prefix trie to be locked

Description

The prune loop may rebuild the prefix trie and invalidate f_trie_walk_state structures. Therefore, asyn-
chronous walks should lock the prefix trie using this function. That allows the prune loop to rebuild the trie,
but postpones its freeing until all walks are done (unlocked by rt_unlock_trie()).

Return a current trie that will be locked, the value should be passed back to rt_unlock_trie() for unlocking.

2.2. Routing tables 15

Function

void rt_unlock_trie (rtable * tab, struct f_trie * trie) — unlock a prefix trie of a routing table

Arguments

rtable * tab
routing table with prefix trie to be locked

struct f_trie * trie
value returned by matching rt_lock_trie()

Description
Done for trie locked by rt_lock_trie() after walk over the trie is done. It may free the trie and schedule next
trie pruning.

Function

void rt_lock_table (rtable * r) —lock a routing table

Arguments

rtable * r
routing table to be locked

Description
Lock a routing table, because it’s in use by a protocol, preventing it from being freed when it gets undefined
in a new configuration.

Function

void rt_unlock_table (rtable * r) — unlock a routing table

Arguments

rtable * r
routing table to be unlocked

Description
Unlock a routing table formerly locked by rt_lock_table(), that is decrease its use count and delete it if it’s
scheduled for deletion by configuration changes.

Function

void rt_commit (struct config * new, struct config * old) — commit new routing table configuration

Arguments

struct config * new
new configuration

struct config * old
original configuration or NULL if it’s boot time config

Description

Scan differences between old and new configuration and modify the routing tables according to these changes.
If new defines a previously unknown table, create it, if it omits a table existing in old, schedule it for
deletion (it gets deleted when all protocols disconnect from it by calling rt_unlock_table()), if it exists in both
configurations, leave it unchanged.

2.2. Routing tables 16

Function

int rt_feed_channel (struct channel * ¢) — advertise all routes to a channel

Arguments

struct channel * ¢
channel to be fed

Description

This function performs one pass of advertisement of routes to a channel that is in the ES_ FEEDING state.
It is called by the protocol code as long as it has something to do. (We avoid transferring all the routes in
single pass in order not to monopolize CPU time.)

Function

void rt_feed_channel_abort (struct channel * ¢) — abort protocol feeding

Arguments

struct channel * ¢
channel

Description
This function is called by the protocol code when the protocol stops or ceases to exist during the feeding.

Function
net * net_find (rtable * tab, net_addr * addr) — find a network entry

Arguments

rtable * tab
a routing table

net_addr * addr
address of the network

Description
net_find() looks up the given network in routing table tab and returns a pointer to its net entry or NULL if
no such network exists.

Function

net * net_get (rtable * tab, net_addr * addr) — obtain a network entry

Arguments

rtable * tab
a routing table

net_addr * addr
address of the network

Description
net_get() looks up the given network in routing table tab and returns a pointer to its net entry. If no such
entry exists, it’s created.

2.3. Route attribute cache 17

Function

*

rte * rte_cow (rte * r) — copy a route for writing

Arguments

*

rte * r

a route entry to be copied

Description

rte_cow() takes a rte and prepares it for modification. The exact action taken depends on the flags of the
rte — if it’s a temporary entry, it’s just returned unchanged, else a new temporary entry with the same
contents is created.

The primary use of this function is inside the filter machinery — when a filter wants to modify rte contents
(to change the preference or to attach another set of attributes), it must ensure that the rte is not shared
with anyone else (and especially that it isn’t stored in any routing table).

Result
a pointer to the new writable rte.

2.3 Route attribute cache

Each route entry carries a set of route attributes. Several of them vary from route to route, but most
attributes are usually common for a large number of routes. To conserve memory, we've decided to store
only the varying ones directly in the rte and hold the rest in a special structure called rta which is shared
among all the rte’s with these attributes.

Each rta contains all the static attributes of the route (i.e., those which are always present) as structure
members and a list of dynamic attributes represented by a linked list of ea_1ist structures, each of them
consisting of an array of eattr’s containing the individual attributes. An attribute can be specified more
than once in the ea_list chain and in such case the first occurrence overrides the others. This semantics is
used especially when someone (for example a filter) wishes to alter values of several dynamic attributes, but
it wants to preserve the original attribute lists maintained by another module.

Each eattr contains an attribute identifier (split to protocol ID and per-protocol attribute ID), protocol
dependent flags, a type code (consisting of several bit fields describing attribute characteristics) and either
an embedded 32-bit value or a pointer to a adata structure holding attribute contents.

There exist two variants of rta’s — cached and un-cached ones. Un-cached rta’s can have arbitrarily complex
structure of ea_list’s and they can be modified by any module in the route processing chain. Cached rta’s
have their attribute lists normalized (that means at most one ea_list is present and its values are sorted
in order to speed up searching), they are stored in a hash table to make fast lookup possible and they are
provided with a use count to allow sharing.

Routing tables always contain only cached rta’s.

Function

struct nexthop * nexthop_merge (struct nexthop * z, struct nexthop * y, int rz, int ry, int maz, linpool *
Ip) — merge nexthop lists

Arguments

struct nexthop * z
list 1

struct nexthop * y
list 2

int rz
reusability of list

2.3. Route attribute cache 18

int ry
reusability of list y

int maz
max number of nexthops

linpool * Ip
linpool for allocating nexthops

Description

The nexthop_merge() function takes two nexthop lists z and y and merges them, eliminating possible du-
plicates. The input lists must be sorted and the result is sorted too. The number of nexthops in result is
limited by maz. New nodes are allocated from linpool Ip.

The arguments rz and ry specify whether corresponding input lists may be consumed by the function (i.e.
their nodes reused in the resulting list), in that case the caller should not access these lists after that. To
eliminate issues with deallocation of these lists, the caller should use some form of bulk deallocation (e.g.
stack or linpool) to free these nodes when the resulting list is no longer needed. When reusability is not set,
the corresponding lists are not modified nor linked from the resulting list.

Function

*

eattr * ea_find (ea list * e, unsigned id) — find an extended attribute

Arguments

ea_list * e
attribute list to search in

unsigned id
attribute ID to search for

Description
Given an extended attribute list, ea_find() searches for a first occurrence of an attribute with specified ID,
returning either a pointer to its eattr structure or NULL if no such attribute exists.

Function

*

eattr * ea_walk (struct ea_walk_state * s, uint id, uint maz) — walk through extended attributes

Arguments

struct ea_walk_state * s
walk state structure

uint id
start of attribute ID interval

uint max
length of attribute ID interval

Description

Given an extended attribute list, ea_walk() walks through the list looking for first occurrences of attributes
with ID in specified interval from id to (id + maz - 1), returning pointers to found eattr structures, storing
its walk state in s for subsequent calls.

The function ea_walk() is supposed to be called in a loop, with initially zeroed walk state structure s with
filled the initial extended attribute list, returning one found attribute in each call or NULL when no other
attribute exists. The extended attribute list or the arguments should not be modified between calls. The
maximum value of maz is 128.

2.3. Route attribute cache 19

Function

uintptr_t ea_get_int (ea_list * e, unsigned id, uintptr_t def) — fetch an integer attribute
Arguments

ea list * e
attribute list

unsigned id
attribute ID

uintptr_t def
default value

Description
This function is a shortcut for retrieving a value of an integer attribute by calling ea_find() to find the
attribute, extracting its value or returning a provided default if no such attribute is present.

Function

void ea_do_prune (ea_list * e)

Arguments

ea list * e
— undescribed —

Description
for this reason.

Function

void ea_sort (ealist * e) — sort an attribute list

Arguments

ea_list * e
list to be sorted

Description

This function takes a ea_list chain and sorts the attributes within each of its entries.

If an attribute occurs multiple times in a single ea_list, ea_sort() leaves only the first (the only significant)
occurrence.

Function

unsigned ea_scan (ealist * e) — estimate attribute list size

Arguments

ea_list * e
attribute list

Description
This function calculates an upper bound of the size of a given ea_list after merging with ea_merge().

2.3. Route attribute cache 20

Function

void ea_merge (ea list * e, ea list * ¢) — merge segments of an attribute list

Arguments

ea list * e
attribute list

ealist * ¢
buffer to store the result to

Description

This function takes a possibly multi-segment attribute list and merges all of its segments to one.

The primary use of this function is for ea_list normalization: first call ea_scan() to determine how much
memory will the result take, then allocate a buffer (usually using alloca()), merge the segments with
ea_merge() and finally sort and prune the result by calling ea_sort().

Function

int ea_same (ealist * x, ealist * y) — compare two ea_list’s

Arguments

ealist * z
attribute list

ea list * y
attribute list

Description
ea_same() compares two normalized attribute lists and y and returns 1 if they contain the same attributes,
0 otherwise.

Function

void ea_show (struct cli * ¢, const eattr * e) — print an eattr to CLI

Arguments

struct cli * ¢
destination CLI

const eattr * e
attribute to be printed

Description

This function takes an extended attribute represented by its eattr structure and prints it to the CLI
according to the type information.

If the protocol defining the attribute provides its own get_attr() hook, it’s consulted first.

Function

void ea_dump (ea_list *) — dump an extended attribute

Arguments

ea_list * e
attribute to be dumped

Description
ea_dump() dumps contents of the extended attribute given to the debug output.

2.3. Route attribute cache 21

Function

uint ea_hash (ealist * e) — calculate an ea_list hash key
Arguments

ea list * e
attribute list

Description
ea_hash() takes an extended attribute list and calculated a hopefully uniformly distributed hash value from
its contents.

Function

ea list * ea_append (ealist * to, ealist * what) — concatenate ea_list’s

Arguments

ea list * to
destination list (can be NULL)

ea_list * what
list to be appended (can be NULL)

Description
This function appends the ea_list what at the end of ea_list to and returns a pointer to the resulting list.

Function

*

rta * rta_lookup (rta * o) —look up a rta in attribute cache

Arguments

ES3

rta * o

a un-cached rta

Description

rta-lookup() gets an un-cached rta structure and returns its cached counterpart. It starts with examining
the attribute cache to see whether there exists a matching entry. If such an entry exists, it’s returned and
its use count is incremented, else a new entry is created with use count set to 1.

The extended attribute lists attached to the rta are automatically converted to the normalized form.

Function

void rta_dump (rta * a) — dump route attributes
Arguments

*

rta * a

attribute structure to dump

Description
This function takes a rta and dumps its contents to the debug output.

Function

void rta_dump_all (void) — dump attribute cache

Description
This function dumps the whole contents of route attribute cache to the debug output.

2.4. Routing protocols 22

Function
void rta_init (void) — initialize route attribute cache
Description

This function is called during initialization of the routing table module to set up the internals of the attribute
cache.

Function

rta * rta_clone (rta * r) — clone route attributes

Arguments

rta * r
a rta to be cloned

Description
rta-clone() takes a cached rta and returns its identical cached copy. Currently it works by just returning
the original rta with its use count incremented.

Function

void rta_free (rta * r) — free route attributes
Arguments

*

rta * r

a rta to be freed

Description

If you stop using a rta (for example when deleting a route which uses it), you need to call rta_free() to
notify the attribute cache the attribute is no longer in use and can be freed if you were the last user (which
rta_free() tests by inspecting the use count).

2.4 Routing protocols

2.4.1 Introduction

The routing protocols are the bird’s heart and a fine amount of code is dedicated to their management and
for providing support functions to them. (-: Actually, this is the reason why the directory with sources of
the core code is called nest :-).

When talking about protocols, one need to distinguish between protocols and protocol instances. A protocol
exists exactly once, not depending on whether it’s configured or not and it can have an arbitrary number of
instances corresponding to its "incarnations” requested by the configuration file. Each instance is completely
autonomous, has its own configuration, its own status, its own set of routes and its own set of interfaces it
works on.

A protocol is represented by a protocol structure containing all the basic information (protocol name, default
settings and pointers to most of the protocol hooks). All these structures are linked in the protocol_list list.

Each instance has its own proto structure describing all its properties: protocol type, configuration, a
resource pool where all resources belonging to the instance live, various protocol attributes (take a look at
the declaration of proto in protocol.h), protocol states (see below for what do they mean), connections
to routing tables, filters attached to the protocol and finally a set of pointers to the rest of protocol hooks
(they are the same for all instances of the protocol, but in order to avoid extra indirections when calling the
hooks from the fast path, they are stored directly in proto). The instance is always linked in both the global
instance list (proto_list) and a per-status list (either active_proto_list for running protocols, initial_proto_list
for protocols being initialized or flush_proto_list when the protocol is being shut down).

The protocol hooks are described in the next chapter, for more information about configuration of protocols,
please refer to the configuration chapter and also to the description of the proto_commit function.

2.4. Routing protocols 23

2.4.2 Protocol states

As startup and shutdown of each protocol are complex processes which can be affected by lots of external
events (user’s actions, reconfigurations, behavior of neighboring routers etc.), we have decided to supervise
them by a pair of simple state machines — the protocol state machine and a core state machine.

The protocol state machine corresponds to internal state of the protocol and the protocol can alter its state
whenever it wants to. There are the following states:

PS_DOWN
The protocol is down and waits for being woken up by calling its start() hook.

PS_START
The protocol is waiting for connection with the rest of the network. It’s active, it has resources
allocated, but it still doesn’t want any routes since it doesn’t know what to do with them.

PS_UP
The protocol is up and running. It communicates with the core, delivers routes to tables and wants to
hear announcement about route changes.

PS_STOP
The protocol has been shut down (either by being asked by the core code to do so or due to having
encountered a protocol error).

Unless the protocol is in the PS_DOWN state, it can decide to change its state by calling the proto_notify_state
function.

At any time, the core code can ask the protocol to shut itself down by calling its stop() hook.

2.4.3 Functions of the protocol module

The protocol module provides the following functions:

Function

struct channel * proto_find_channel_by_table (struct proto * p, struct rtable * ¢) — find channel connected to
a routing table

Arguments

struct proto * p
protocol instance

struct rtable * ¢
routing table

Description
Returns pointer to channel or NULL

Function

struct channel * proto_find_channel_by_name (struct proto * p, const char * n) — find channel by its name

Arguments

struct proto * p
protocol instance

const char * n
channel name

Description
Returns pointer to channel or NULL

2.4. Routing protocols 24

Function

struct channel * proto_add_channel (struct proto
routing table

* p, struct channel_config * ¢f) — connect protocol to a

Arguments

struct proto * p
protocol instance

struct channel_config * cf
channel configuration

Description

This function creates a channel between the protocol instance p and the routing table specified in the
configuration c¢f, making the protocol hear all changes in the table and allowing the protocol to update
routes in the table.

The channel is linked in the protocol channel list and when active also in the table channel list. Channels
are allocated from the global resource pool (proto_pool) and they are automatically freed when the protocol
is removed.

Function

void channel_request_feeding (struct channel * ¢) — request feeding routes to the channel

Arguments

struct channel * ¢
given channel

Description

Sometimes it is needed to send again all routes to the channel. This is called feeding and can be requested
by this function. This would cause channel export state transition to ES_ FEEDING (during feeding) and
when completed, it will switch back to ES_ READY. This function can be called even when feeding is already
running, in that case it is restarted.

Function

void proto_setup_mpls_map (struct proto * p, uint rts, int hooks) — automatically setup FEC map for protocol

Arguments

struct proto * p
affected protocol

uint rts
RTS_* value for generated MPLS routes

int hooks
whether to update rte_insert / rte_remove hooks

Description

Add, remove or reconfigure MPLS FEC map of the protocol p, depends on whether MPLS channel exists,
and setup rte_insert / rte_remove hooks with default MPLS handlers. It is a convenience function supposed
to be called from the protocol start and configure hooks, after reconfiguration of channels. For shutdown,
use proto_shutdown_mpls_map(). If caller uses its own rte_insert / rte_remove hooks, it is possible to disable
updating hooks and doing that manually.

2.4. Routing protocols 25

Function

void proto_shutdown_mpls_map (struct proto * p, int hooks) — automatically shutdown FEC map for protocol

Arguments

struct proto * p
affected protocol

int hooks
whether to update rte_insert / rte_remove hooks

Description
Remove MPLS FEC map of the protocol p during protocol shutdown.

Function

void * proto_new (struct proto_config * ¢f) — create a new protocol instance
Arguments

struct proto_config * cf
— undescribed —

Description

When a new configuration has been read in, the core code starts initializing all the protocol instances
configured by calling their init() hooks with the corresponding instance configuration. The initialization
code of the protocol is expected to create a new instance according to the configuration by calling this
function and then modifying the default settings to values wanted by the protocol.

Function

void * proto_config_-new (struct protocol * pr, int class) — create a new protocol configuration

Arguments

struct protocol * pr
protocol the configuration will belong to

int class
SYM_PROTO or SYM_TEMPLATE

Description

Whenever the configuration file says that a new instance of a routing protocol should be created, the
parser calls proto_config-new() to create a configuration entry for this instance (a structure staring with
the proto_config header containing all the generic items followed by protocol-specific ones). Also, the
configuration entry gets added to the list of protocol instances kept in the configuration.

The function is also used to create protocol templates (when class SYM_TEMPLATE is specified), the only
difference is that templates are not added to the list of protocol instances and therefore not initialized during
protos_commit()).

Function

void proto_copy-config (struct proto_config * dest, struct proto_config * src) — copy a protocol configuration

Arguments

struct proto_config * dest
destination protocol configuration

struct proto_config * src
source protocol configuration

Description

Whenever a new instance of a routing protocol is created from the template, proto_copy_config() is called to
copy a content of the source protocol configuration to the new protocol configuration. Name, class and a
node in protos list of dest are kept intact. copy_config() protocol hook is used to copy protocol-specific data.

2.5. Graceful restart recovery 26

Function

void protos_preconfig (struct config * ¢) — pre-configuration processing

Arguments

struct config * ¢
new configuration

Description
This function calls the preconfig() hooks of all routing protocols available to prepare them for reading of the
new configuration.

Function

void protos_commit (struct config * new, struct config * old, int force_reconfig, int type) — commit new
protocol configuration

Arguments

struct config * new
new configuration

struct config * old
old configuration or NULL if it’s boot time config

int force_reconfig
force restart of all protocols (used for example when the router ID changes)

int type
type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)

Description

Scan differences between old and new configuration and adjust all protocol instances to conform to the new
configuration.

When a protocol exists in the new configuration, but it doesn’t in the original one, it’s immediately started.
When a collision with the other running protocol would arise, the new protocol will be temporarily stopped
by the locking mechanism.

When a protocol exists in the old configuration, but it doesn’t in the new one, it’s shut down and deleted
after the shutdown completes.

When a protocol exists in both configurations, the core decides whether it’s possible to reconfigure it dy-
namically - it checks all the core properties of the protocol (changes in filters are ignored if type is RECON-
FIG_SOFT) and if they match, it asks the reconfigure() hook of the protocol to see if the protocol is able to
switch to the new configuration. If it isn’t possible, the protocol is shut down and a new instance is started
with the new configuration after the shutdown is completed.

2.5 Graceful restart recovery

Graceful restart of a router is a process when the routing plane (e.g. BIRD) restarts but both the forwarding
plane (e.g kernel routing table) and routing neighbors keep proper routes, and therefore uninterrupted packet
forwarding is maintained.

BIRD implements graceful restart recovery by deferring export of routes to protocols until routing tables
are refilled with the expected content. After start, protocols generate routes as usual, but routes are not
propagated to them, until protocols report that they generated all routes. After that, graceful restart
recovery is finished and the export (and the initial feed) to protocols is enabled.

When graceful restart recovery need is detected during initialization, then enabled protocols are marked with
gr_recovery flag before start. Such protocols then decide how to proceed with graceful restart, participation
is voluntary. Protocols could lock the recovery for each channel by function channel_graceful_restart_lock()

2.5. Graceful restart recovery 27

(state stored in gr_lock flag), which means that they want to postpone the end of the recovery until they
converge and then unlock it. They also could set gr_wait before advancing to PS_UP, which means that the
core should defer route export to that channel until the end of the recovery. This should be done by protocols
that expect their neigbors to keep the proper routes (kernel table, BGP sessions with BGP graceful restart
capability).

The graceful restart recovery is finished when either all graceful restart locks are unlocked or when graceful
restart wait timer fires.

Function
void graceful_restart_recovery (void) — request initial graceful restart recovery
Graceful restart recovery

Called by the platform initialization code if the need for recovery after graceful restart is detected during
boot. Have to be called before protos_commit().

Function
void graceful_restart_init (void) — initialize graceful restart
Description

When graceful restart recovery was requested, the function starts an active phase of the recovery and
initializes graceful restart wait timer. The function have to be called after protos_commit().

Function

void graceful_restart_done (timer *t UNUSED) — finalize graceful restart
Arguments

timer *t UNUSED
— undescribed —

Description

When there are no locks on graceful restart, the functions finalizes the graceful restart recovery. Protocols
postponing route export until the end of the recovery are awakened and the export to them is enabled. All
other related state is cleared. The function is also called when the graceful restart wait timer fires (but there
are still some locks).

Function

void channel_graceful_restart_lock (struct channel * ¢) — lock graceful restart by channel
Arguments

struct channel * ¢
— undescribed —

Description

This function allows a protocol to postpone the end of graceful restart recovery until it converges. The lock
is removed when the protocol calls channel_graceful_restart_unlock() or when the channel is closed.

The function have to be called during the initial phase of graceful restart recovery and only for protocols
that are part of graceful restart (i.e. their gr_recovery is set), which means it should be called from protocol
start hooks.

Function
void channel_graceful_restart_unlock (struct channel * ¢) — unlock graceful restart by channel

Arguments

struct channel * ¢
— undescribed —

Description
This function unlocks a lock from channel_graceful_restart_lock(). Tt is also automatically called when the
lock holding protocol went down.

2.5. Graceful restart recovery 28

Function

void protos_dump_all (void) — dump status of all protocols

Description

This function dumps status of all existing protocol instances to the debug output. It involves printing of
general status information such as protocol states, its position on the protocol lists and also calling of a
dump() hook of the protocol to print the internals.

Function

void proto_build (struct protocol * p) — make a single protocol available

Arguments

struct protocol * p
the protocol

Description
After the platform specific initialization code uses protos_build() to add all the standard protocols, it should
call proto_build() for all platform specific protocols to inform the core that they exist.

Function

void protos_build (void) — build a protocol list

Description

This function is called during BIRD startup to insert all standard protocols to the global protocol list.
Insertion of platform specific protocols (such as the kernel syncer) is in the domain of competence of the
platform dependent startup code.

Function

*

void proto_set_message (struct proto * p, char * msg, int len) — set administrative message to protocol

Arguments

struct proto * p
protocol

*

char * msg

message

int len
message length (-1 for NULL-terminated string)

Description

The function sets administrative message (string) related to protocol state change. It is called by the nest
code for manual enable/disable/restart commands all routes to the protocol, and by protocol-specific code
when the protocol state change is initiated by the protocol. Using NULL message clears the last message.
The message string may be either NULL-terminated or with an explicit length.

Function

void channel_notify_limit (struct channel * ¢, struct channel limit * [, int dir, u32 rt_count)

Arguments

struct channel * ¢
channel

2.6. Protocol hooks 29

struct channel_limit * {
limit being hit

int dir
limit direction (PLD_*)

u32 rt_count
the number of routes

Description
The function is called by the route processing core when limit [is breached. It activates the limit and tooks
appropriate action according to [->action.

Function

void proto_notify_state (struct proto * p, uint state) — notify core about protocol state change

Arguments

struct proto * p
protocol the state of which has changed

uint state
— undescribed —

Description

Whenever a state of a protocol changes due to some event internal to the protocol (i.e., not inside a start()
or shutdown() hook), it should immediately notify the core about the change by calling proto_notify_state()
which will write the new state to the proto structure and take all the actions necessary to adapt to the new
state. State change to PS_.DOWN immediately frees resources of protocol and might execute start callback
of protocol; therefore, it should be used at tail positions of protocol callbacks.

2.6 Protocol hooks

Each protocol can provide a rich set of hook functions referred to by pointers in either the proto or protocol
structure. They are called by the core whenever it wants the protocol to perform some action or to notify
the protocol about any change of its environment. All of the hooks can be set to NULL which means to ignore
the change or to take a default action.

Function

void preconfig (struct protocol * p, struct config * ¢) — protocol preconfiguration

Arguments

struct protocol * p
a routing protocol

struct config * ¢
new configuration

Description
The preconfig() hook is called before parsing of a new configuration.

Function

void postconfig (struct proto_config * ¢) — instance post-configuration

Arguments

struct proto_config * ¢
instance configuration

Description
The postconfig() hook is called for each configured instance after parsing of the new configuration is finished.

2.6. Protocol hooks 30

Function

struct proto * init (struct proto_config * ¢) — initialize an instance

Arguments

struct proto_config * ¢
instance configuration

Description
The init() hook is called by the core to create a protocol instance according to supplied protocol configuration.

Result
a pointer to the instance created

Function

int reconfigure (struct proto * p, struct proto_config * c) — request instance reconfiguration

Arguments

struct proto * p
an instance

struct proto_config * ¢
new configuration

Description

The core calls the reconfigure() hook whenever it wants to ask the protocol for switching to a new configu-
ration. If the reconfiguration is possible, the hook returns 1. Otherwise, it returns 0 and the core will shut
down the instance and start a new one with the new configuration.

After the protocol confirms reconfiguration, it must no longer keep any references to the old configuration
since the memory it’s stored in can be re-used at any time.

Function

void dump (struct proto * p) — dump protocol state

Arguments

struct proto * p
an instance

Description
This hook dumps the complete state of the instance to the debug output.

Function

int start (struct proto * p) — request instance startup
Arguments

struct proto * p
protocol instance

Description
The start() hook is called by the core when it wishes to start the instance. Multitable protocols should lock
their tables here.

Result
new protocol state

2.6. Protocol hooks 31

Function

int shutdown (struct proto * p) — request instance shutdown

Arguments

struct proto * p
protocol instance

Description
The stop() hook is called by the core when it wishes to shut the instance down for some reason.

Returns
new protocol state

Function

void cleanup (struct proto * p) — request instance cleanup

Arguments

struct proto * p
protocol instance

Description
The cleanup() hook is called by the core when the protocol became hungry/down, i.e. all protocol ahooks
and routes are flushed. Multitable protocols should unlock their tables here.

Function

void get_status (struct proto * p, byte * buf) — get instance status

Arguments

struct proto * p
protocol instance

byte * buf
buffer to be filled with the status string

Description
This hook is called by the core if it wishes to obtain an brief one-line user friendly representation of the
status of the instance to be printed by the <cf/show protocols/ command.

Function

void get_route_info (rte * e, byte * buf, ea_list * attrs) — get route information
Arguments

rte * e
a route entry

byte * buf
buffer to be filled with the resulting string

ea list * attrs
extended attributes of the route

Description
This hook is called to fill the buffer buf with a brief user friendly representation of metrics of a route belonging
to this protocol.

2.6. Protocol hooks 32

Function
int get_attr (eattr * a, byte * buf, int buflen) — get attribute information

Arguments

eattr * a
an extended attribute

byte * buf
buffer to be filled with attribute information

int buflen
a length of the buf parameter

Description

The get_attr() hook is called by the core to obtain a user friendly representation of an extended route
attribute. It can either leave the whole conversion to the core (by returning GA_UNKNOWN), fill in only attribute
name (and let the core format the attribute value automatically according to the type field; by returning
GA_NAME) or doing the whole conversion (used in case the value requires extra care; return GA_FULL).

Function
void if-notify (struct proto * p, unsigned flags, struct iface * i) — notify instance about interface changes

Arguments

struct proto * p
protocol instance

unsigned flags
interface change flags

struct iface * ¢
the interface in question

Description
This hook is called whenever any network interface changes its status. The change is described by a combi-

nation of status bits (IF_CHANGE_xxx) in the flags parameter.

Function

void ifa_notify (struct proto * p, unsigned flags, struct ifa * a) — notify instance about interface address
changes

Arguments

struct proto * p
protocol instance

unsigned flags
address change flags

struct ifa * a
the interface address

Description
This hook is called to notify the protocol instance about an interface acquiring or losing one of its addresses.
The change is described by a combination of status bits (IF_.CHANGE_xxx) in the flags parameter.

2.6. Protocol hooks 33

Function

void rt_notify (struct proto * p, net * net, rte * new, rte * old, ea_list * attrs) — notify instance about routing
table change

Arguments

struct proto * p
protocol instance

net * net
a network entry

*

rte * new

new route for the network

rte * old
old route for the network

ea_list * attrs
extended attributes associated with the new entry

Description

The rt_notify() hook is called to inform the protocol instance about changes in the connected routing table
table, that is a route old belonging to network net being replaced by a new route new with extended attributes
attrs. Either new or old or both can be NULL if the corresponding route doesn’t exist.

If the type of route announcement is RA_OPTIMAL, it is an announcement of optimal route change, new
stores the new optimal route and old stores the old optimal route.

If the type of route announcement is RA_ANY, it is an announcement of any route change, new stores the
new route and old stores the old route from the same protocol.

p->accept_ra_types specifies which kind of route announcements protocol wants to receive.

Function

void neigh_notify (neighbor * neigh) — notify instance about neighbor status change

Arguments

neighbor * neigh
a neighbor cache entry

Description
The neigh_notify() hook is called by the neighbor cache whenever a neighbor changes its state, that is it gets
disconnected or a sticky neighbor gets connected.

Function

int preexport (struct proto * p, rte ** e, ea_list ** attrs, struct linpool * pool) — pre-filtering decisions before
route export

Arguments

struct proto * p
protocol instance the route is going to be exported to

*3k

rte e

the route in question

ea_list ** attrs
extended attributes of the route

struct linpool * pool
linear pool for allocation of all temporary data

2.6. Protocol hooks 34

Description

The preezport() hook is called as the first step of a exporting a route from a routing table to the protocol
instance. It can modify route attributes and force acceptance or rejection of the route before the user-specified
filters are run. See rte_announce() for a complete description of the route distribution process.

The standard use of this hook is to reject routes having originated from the same instance and to set default
values of the protocol’s metrics.

Result
1 if the route has to be accepted, -1 if rejected and 0 if it should be passed to the filters.

Function

int rte_recalculate (struct rtable * table, struct network * net, struct rte * new, struct rte * old, struct rte *
old_best) — prepare routes for comparison

Arguments

struct rtable * table
a routing table

struct network * net
a network entry

struct rte * new
new route for the network

struct rte * old
old route for the network

struct rte * old_best
old best route for the network (may be NULL)

Description

This hook is called when a route change (from old to new for a net entry) is propagated to a table. It may
be used to prepare routes for comparison by rte_better() in the best route selection. new may or may not be
in met->routes list, old is not there.

Result
1 if the ordering implied by rte_better() changes enough that full best route calculation have to be done, 0
otherwise.

Function

int rte_better (rte * new, rte * old) — compare metrics of two routes

Arguments

rte * new
the new route

rte * old
the original route

Description

This hook gets called when the routing table contains two routes for the same network which have originated
from different instances of a single protocol and it wants to select which one is preferred over the other one.
Protocols usually decide according to route metrics.

Result
1 if new is better (more preferred) than old, 0 otherwise.

2.7. Interfaces 35

Function

int rte_same (rte * el, rte * e2) — compare two routes

Arguments

rte * el
route

rte ¥ e2
route

Description

The rte_same() hook tests whether the routes e! and e2 belonging to the same protocol instance have
identical contents. Contents of rta, all the extended attributes and rte preference are checked by the core
code, no need to take care of them here.

Result
1 if e? is identical to e2, 0 otherwise.

Function

void rte_insert (net * n, rte * e) — notify instance about route insertion

Arguments

net * n
network

*

rte * e

route

Description
This hook is called whenever a rte belonging to the instance is accepted for insertion to a routing table.
Please avoid using this function in new protocols.

Function

void rte_remove (net * n, rte * e) — notify instance about route removal

Arguments

net * n
network

ES

rte * e

route

Description
This hook is called whenever a rte belonging to the instance is removed from a routing table.
Please avoid using this function in new protocols.

2.7 Interfaces

The interface module keeps track of all network interfaces in the system and their addresses.

Each interface is represented by an iface structure which carries interface capability flags (IF_MULTIACCESS,
IF_BROADCAST etc.), MTU, interface name and index and finally a linked list of network prefixes assigned to
the interface, each one represented by struct ifa.

The interface module keeps a ‘soft-up’ state for each iface which is a conjunction of link being up, the
interface being of a ‘sane’ type and at least one IP address assigned to it.

2.7. Interfaces 36

Function

void ifa_dump (struct ifa * a) — dump interface address

Arguments

struct ifa * a
interface address descriptor

Description
This function dumps contents of an ifa to the debug output.

Function

void if-dumyp (struct iface * ¢) — dump interface

Arguments

struct iface * ¢
interface to dump

Description
This function dumps all information associated with a given network interface to the debug output.

Function

void if-dump_all (void) — dump all interfaces

Description
This function dumps information about all known network interfaces to the debug output.

Function

void if_delete (struct iface * old) — remove interface

Arguments

struct iface * old
interface

Description
This function is called by the low-level platform dependent code whenever it notices an interface disappears.
It is just a shorthand for if update().

Function

struct iface * if_update (struct iface * new) — update interface status

Arguments

struct iface * new
new interface status

Description

if-update() is called by the low-level platform dependent code whenever it notices an interface change.
There exist two types of interface updates — synchronous and asynchronous ones. In the synchronous case, the
low-level code calls if_start_update(), scans all interfaces reported by the OS, uses if-update() and ifa_update()
to pass them to the core and then it finishes the update sequence by calling if end_update(). When working
asynchronously, the sysdep code calls if update() and ifa_update() whenever it notices a change.

if-update() will automatically notify all other modules about the change.

2.7. Interfaces 37

Function

void if_feed_baby (struct proto * p) — advertise interfaces to a new protocol
Arguments

struct proto * p
protocol to feed

Description
When a new protocol starts, this function sends it a series of notifications about all existing interfaces.

Function

struct iface * if_find_by_index (unsigned idz) — find interface by ifindex
Arguments

unsigned idz
ifindex

Description
This function finds an iface structure corresponding to an interface of the given index idr. Returns a
pointer to the structure or NULL if no such structure exists.

Function

struct iface * if_find_by_name (const char *

name) — find interface by name
Arguments

const char * name
interface name

Description
This function finds an iface structure corresponding to an interface of the given name name. Returns a
pointer to the structure or NULL if no such structure exists.

Function
struct ifa * ifa_update (struct ifa * a) — update interface address

Arguments

struct ifa * a
new interface address

Description
This function adds address information to a network interface. It’s called by the platform dependent code
during the interface update process described under if-update().

Function
void ifa_delete (struct ifa * a) — remove interface address

Arguments

struct ifa * a
interface address

Description
This function removes address information from a network interface. It’s called by the platform dependent
code during the interface update process described under if_update().

Function

void if-init (void) — initialize interface module

Description
This function is called during BIRD startup to initialize all data structures of the interface module.

2.8. MPLS 38

2.8 MPLS

The MPLS subsystem manages MPLS labels and handles their allocation to MPLS-aware routing protocols.
These labels are then attached to IP or VPN routes representing label switched paths — LSPs. MPLS labels
are also used in special MPLS routes (which use labels as network address) that are exported to MPLS
routing table in kernel. The MPLS subsystem consists of MPLS domains (struct mpls_domain), MPLS
channels (struct mpls_channel) and FEC maps (struct mpls_fec_map).

The MPLS domain represents one MPLS label address space, implements the label allocator, and han-
dles associated configuration and management. The domain is declared in the configuration (struct
mpls_domain_config). There might be multiple MPLS domains representing separate label spaces, but
in most cases one domain is enough. MPLS-aware protocols and routing tables are associated with a specific
MPLS domain.

The MPLS domain has configurable label ranges (struct mpls_range), by default it has two ranges: static
(16-1000) and dynamic (1000-10000). When a protocol wants to allocate labels, it first acquires a handle
(struct mpls_handle) for a specific range using mpls_-new_handle(), and then it allocates labels from that
with mpls_new_label(). When not needed, labels are freed by mpls_free_label() and the handle is released by
mpls_free_handle(). Note that all labels and handles must be freed manually.

Both MPLS domain and MPLS range are reference counted, so when deconfigured they could be freed just
after all labels and ranges are freed. Users are expected to hold a reference to a MPLS domain for whole time
they use something from that domain (e.g. mpls_handle), but releasing reference to a range while holding
associated handle is OK.

The MPLS channel is subclass of a generic protocol channel. It has two distinct purposes - to handle per-
protocol MPLS configuration (e.g. which MPLS domain is associated with the protocol, which label range
is used by the protocol), and to announce MPLS routes to a routing table (as a regular protocol channel).

The FEC map is a helper structure that maps forwarding equivalent classes (FECs) to MPLS labels. It is
an internal matter of a routing protocol how to assign meaning to allocated labels, announce LSP routes
and associated MPLS routes (i.e. ILM entries). But the common behavior is implemented in the FEC map,
which can be used by the protocols that work with IP-prefix-based FECs.

The FEC map keeps hash tables of FECs (struct mpls_fec) based on network prefix, next hop eattr and
assigned label. It has three general labeling policies: static assignment (MPLS_POLICY_STATIC), per-prefix
policy (MPLS_POLICY_PREFIX), and aggregating policy (MPLS_POLICY_AGGREGATE). In per-prefix policy, each
distinct LSP is a separate FEC and uses a separate label, which is kept even if the next hop of the LSP
changes. In aggregating policy, LSPs with a same next hop form one FEC and use one label, but when a next
hop (or remote label) of such LSP changes then the LSP must be moved to a different FEC and assigned
a different label. There is also a special VRF policy (MPLS_POLICY_VRF) applicable for L3VPN protocols,
which uses one label for all routes from a VRF, while replacing the original next hop with lookup in the
VRF.

The overall process works this way: A protocol wants to announce a LSP route, it does that by announcing
e.g. IP route with EA_MPLS_POLICY attribute. After the route is accepted by filters (which may also change
the policy attribute or set a static label), the mpls_handle_rte() is called from rte_update2(), which applies
selected labeling policy, finds existing FEC or creates a new FEC (which includes allocating new label
and announcing related MPLS route by mpls_announce_fec()), and attach FEC label to the LSP route.
After that, the LSP route is stored in routing table by rte_recalculate(). Changes in routing tables trigger
mpls_rte_insert() and mpls_rte_remove() hooks, which refcount FEC structures and possibly trigger removal
of FECs and withdrawal of MPLS routes.

TODO: - special handling of reserved labels

2.9 Neighbor cache

Most routing protocols need to associate their internal state data with neighboring routers, check whether
an address given as the next hop attribute of a route is really an address of a directly connected host and
which interface is it connected through. Also, they often need to be notified when a neighbor ceases to
exist or when their long awaited neighbor becomes connected. The neighbor cache is there to solve all these
problems.

The neighbor cache maintains a collection of neighbor entries. Each entry represents one IP address corre-

2.9. Neighbor cache 39

sponding to either our directly connected neighbor or our own end of the link (when the scope of the address
is set to SCOPE_HOST) together with per-neighbor data belonging to a single protocol. A neighbor entry
may be bound to a specific interface, which is required for link-local IP addresses and optional for global IP
addresses.

Neighbor cache entries are stored in a hash table, which is indexed by triple (protocol, IP, requested-iface), so
if both regular and iface-bound neighbors are requested, they are represented by two neighbor cache entries.
Active entries are also linked in per-interface list (allowing quick processing of interface change events).
Inactive entries exist only when the protocol has explicitly requested it via the NEF_STICKY flag because
it wishes to be notified when the node will again become a neighbor. Such entries are instead linked in a
special list, which is walked whenever an interface changes its state to up. Neighbor entry VRF association
is implied by respective protocol.

Besides the already mentioned NEF_STICKY flag, there is also NEF_ONLINK, which specifies that neighbor
should be considered reachable on given iface regardless of associated address ranges, and NEF_IFACE, which
represents pseudo-neighbor entry for whole interface (and uses IPA_NONE IP address).

When a neighbor event occurs (a neighbor gets disconnected or a sticky inactive neighbor becomes connected),
the protocol hook neigh_notify() is called to advertise the change.

Function

neighbor * neigh_find (struct proto * p, ip_addr a, struct iface * iface, uint flags) — find or create a neighbor
entry

Arguments

struct proto * p
protocol which asks for the entry

ip_addr a
IP address of the node to be searched for

struct iface * iface
optionally bound neighbor to this iface (may be NULL)

uint flags
NEF_STICKY for sticky entry, NEF_ONLINK for onlink entry

Description

Search the neighbor cache for a node with given IP address. Iface can be specified for link-local addresses
or for cases, where neighbor is expected on given interface. If it is found, a pointer to the neighbor entry is
returned. If no such entry exists and the node is directly connected on one of our active interfaces, a new
entry is created and returned to the caller with protocol-dependent fields initialized to zero. If the node is
not connected directly or *a is not a valid unicast IP address, neigh_find() returns NULL.

Function

void neigh-dump (neighbor * n) — dump specified neighbor entry.

Arguments

neighbor * n
the entry to dump

Description
This functions dumps the contents of a given neighbor entry to debug output.

Function

void neigh_dump_all (void) — dump all neighbor entries.

Description
This function dumps the contents of the neighbor cache to debug output.

2.9. Neighbor cache 40

Function

*

void neigh_update (neighbor * n, struct iface * iface)

Arguments

neighbor * n
neighbor to update

struct iface * iface
changed iface

Description

The function recalculates state of the neighbor entry n assuming that only the interface iface may changed
its state or addresses. Then, appropriate actions are executed (the neighbor goes up, down, up-down, or just
notified).

Function

void neigh_if-up (struct iface *)

Arguments

struct iface * 1
interface in question

Description

Tell the neighbor cache that a new interface became up.

The neighbor cache wakes up all inactive sticky neighbors with addresses belonging to prefixes of the interface
Q.

Function

void neigh_if-down (struct iface * i) — notify neighbor cache about interface down event

Arguments

struct iface * ¢
the interface in question

Description
Notify the neighbor cache that an interface has ceased to exist.
It causes all neighbors connected to this interface to be updated or removed.

Function

void neigh_if-link (struct iface * i) — notify neighbor cache about interface link change

Arguments

struct iface * ¢
the interface in question

Description
Notify the neighbor cache that an interface changed link state. All owners of neighbor entries connected to
this interface are notified.

2.10. Command line interface 41

Function

void neigh_ifa_up (struct ifa * a)

Arguments

struct ifa * a
interface address in question

Description

Tell the neighbor cache that an address was added or removed.

The neighbor cache wakes up all inactive sticky neighbors with addresses belonging to prefixes of the interface
belonging to ifa and causes all unreachable neighbors to be flushed.

Function
void neigh_prune (void) — prune neighbor cache
Description

neigh_prune() examines all neighbor entries cached and removes those corresponding to inactive protocols.
It’s called whenever a protocol is shut down to get rid of all its heritage.

Function

void neigh_init (pool * if_pool) — initialize the neighbor cache.

Arguments

pool * if_pool
resource pool to be used for neighbor entries.

Description
This function is called during BIRD startup to initialize the neighbor cache module.

2.10 Command line interface

This module takes care of the BIRD’s command-line interface (CLI). The CLI exists to provide a way to
control BIRD remotely and to inspect its status. It uses a very simple textual protocol over a stream
connection provided by the platform dependent code (on UNIX systems, it’s a UNIX domain socket).

Each session of the CLI consists of a sequence of request and replies, slightly resembling the FTP and SMTP
protocols. Requests are commands encoded as a single line of text, replies are sequences of lines starting
with a four-digit code followed by either a space (if it’s the last line of the reply) or a minus sign (when
the reply is going to continue with the next line), the rest of the line contains a textual message semantics
of which depends on the numeric code. If a reply line has the same code as the previous one and it’s a
continuation line, the whole prefix can be replaced by a single white space character.

Reply codes starting with 0 stand for ‘action successfully completed’” messages, 1 means ‘table entry’, 8
‘runtime error’ and 9 ‘syntax error’.

Each CLI session is internally represented by a cli structure and a resource pool containing all resources
associated with the connection, so that it can be easily freed whenever the connection gets closed, not
depending on the current state of command processing.

The CLI commands are declared as a part of the configuration grammar by using the CF_CLI macro. When
a command is received, it is processed by the same lexical analyzer and parser as used for the configuration,
but it’s switched to a special mode by prepending a fake token to the text, so that it uses only the CLI
command rules. Then the parser invokes an execution routine corresponding to the command, which either
constructs the whole reply and returns it back or (in case it expects the reply will be long) it prints a partial
reply and asks the CLI module (using the cont hook) to call it again when the output is transferred to the
user.

2.11. Object locks 42

The this_cli variable points to a c1i structure of the session being currently parsed, but it’s of course available
only in command handlers not entered using the cont hook.

TX buffer management works as follows: At cli.tx_buf there is a list of TX buffers (struct cli_out), cli.tx_write
is the buffer currently used by the producer (cli_printf(), cli-alloc_out()) and cli.tx_pos is the buffer currently
used by the consumer (cli_write(), in system dependent code). The producer uses cli_out.wpos ptr as the
current write position and the consumer uses cli_out.outpos ptr as the current read position. When the
producer produces something, it calls cli_write_trigger(). If there is not enough space in the current buffer,
the producer allocates the new one. When the consumer processes everything in the buffer queue, it calls
cliwritten(), tha frees all buffers (except the first one) and schedules cli.event .

Function

void cli_printf (cli * ¢, int code, char * msg,) — send reply to a CLI connection
Arguments

*

cli* ¢

CLI connection

int code
numeric code of the reply, negative for continuation lines

*

char * msg

a printf()-like formatting string.

variable arguments

Description

This function send a single line of reply to a given CLI connection. In works in all aspects like bsprintf()
except that it automatically prepends the reply line prefix.

Please note that if the connection can be already busy sending some data in which case cli_printf() stores
the output to a temporary buffer, so please avoid sending a large batch of replies without waiting for the
buffers to be flushed.

If you want to write to the current CLI output, you can use the cli_msg() macro instead.

Function
void cli_init (void) — initialize the CLI module

Description
This function is called during BIRD startup to initialize the internal data structures of the CLI module.

2.11 Object locks

The lock module provides a simple mechanism for avoiding conflicts between various protocols which would
like to use a single physical resource (for example a network port). It would be easy to say that such collisions
can occur only when the user specifies an invalid configuration and therefore he deserves to get what he has
asked for, but unfortunately they can also arise legitimately when the daemon is reconfigured and there exists
(although for a short time period only) an old protocol instance being shut down and a new one willing to
start up on the same interface.

The solution is very simple: when any protocol wishes to use a network port or some other non-shareable
resource, it asks the core to lock it and it doesn’t use the resource until it’s notified that it has acquired the
lock.

Object locks are represented by object_lock structures which are in turn a kind of resource. Lockable
resources are uniquely determined by resource type (0BJLOCK_UDP for a UDP port etc.), IP address (usually
a broadcast or multicast address the port is bound to), port number, interface and optional instance ID.

2.11. Object locks 43

Function

struct object_lock * olock_new (pool * p) — create an object lock
Arguments

pool * p
resource pool to create the lock in.

Description
The olock_new() function creates a new resource of type object_lock and returns a pointer to it. After
filling in the structure, the caller should call olock_acquire() to do the real locking.

Function

void olock_acquire (struct object_lock *) — acquire a lock

Arguments

struct object_lock * [
the lock to acquire

Description

This function attempts to acquire exclusive access to the non-shareable resource described by the lock I. It
returns immediately, but as soon as the resource becomes available, it calls the hook() function set up by
the caller.

When you want to release the resource, just rfree() the lock.

Function

void olock_init (void) — initialize the object lock mechanism

Description
This function is called during BIRD startup. It initializes all the internal data structures of the lock module.

Chapter 3: Configuration

3.1 Configuration manager

Configuration of BIRD is complex, yet straightforward. There are three modules taking care of the configu-
ration: config manager (which takes care of storage of the config information and controls switching between
configs), lexical analyzer and parser.

The configuration manager stores each config as a config structure accompanied by a linear pool from which
all information associated with the config and pointed to by the config structure is allocated.

There can exist up to four different configurations at one time: an active one (pointed to by config), configu-
ration we are just switching from (old_config), one queued for the next reconfiguration (future_config; if there
is one and the user wants to reconfigure once again, we just free the previous queued config and replace it
with the new one) and finally a config being parsed (new-config). The stored old_config is also used for undo
reconfiguration, which works in a similar way. Reconfiguration could also have timeout (using config_timer)
and undo is automatically called if the new configuration is not confirmed later. The new config (new_config)
and associated linear pool (c¢fg_mem) is non-NULL only during parsing.

Loading of new configuration is very simple: just call config-alloc() to get a new config structure, then
use config-parse() to parse a configuration file and fill all fields of the structure and finally ask the config
manager to switch to the new config by calling config_commit().

CLI commands are parsed in a very similar way — there is also a stripped-down config structure associated
with them and they are lex-ed and parsed by the same functions, only a special fake token is prepended
before the command text to make the parser recognize only the rules corresponding to CLI commands.

Function

*

struct config * config_alloc (const char * name) — allocate a new configuration

Arguments

const char * name

name of the config

Description
This function creates new config structure, attaches a resource pool and a linear memory pool to it and
makes it available for further use. Returns a pointer to the structure.

Function

int config_parse (struct config * ¢) — parse a configuration

Arguments

struct config * ¢
configuration

Description
config_parse() reads input by calling a hook function pointed to by cf-read_hook and parses it according to
the configuration grammar. It also calls all the preconfig and postconfig hooks before, resp. after parsing.

Result
1 if the config has been parsed successfully, 0 if any error has occurred (such as anybody calling cf-error())
and the err_msg field has been set to the error message.

Function

int cli_parse (struct config * ¢) — parse a CLI command

44

3.1. Configuration manager 45

Arguments

struct config * ¢
temporary config structure

Description
cli_parse() is similar to config_parse(), but instead of a configuration, it parses a CLI command. See the CLI
module for more information.

Function

void config-free (struct config * ¢) — free a configuration

Arguments

struct config * ¢
configuration to be freed

Description
This function takes a config structure and frees all resources associated with it.

Function

void config_free_old (void) — free stored old configuration

Description

This function frees the old configuration (old_config) that is saved for the purpose of undo. It is useful
before parsing a new config when reconfig is requested, to avoid keeping three (perhaps memory-heavy)
configs together. Configuration is not freed when it is still active during reconfiguration.

Function

int config_commit (struct config * ¢, int type, uint timeout) — commit a configuration

Arguments

struct config * ¢
new configuration

int type
type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)

uint timeout
timeout for undo (in seconds; or 0 for no timeout)

Description

When a configuration is parsed and prepared for use, the config-commit() function starts the process of re-
configuration. It checks whether there is already a reconfiguration in progress in which case it just queues the
new config for later processing. Else it notifies all modules about the new configuration by calling their com-
mit() functions which can either accept it immediately or call config_add_obstacle() to report that they need
some time to complete the reconfiguration. After all such obstacles are removed using config_del_obstacle(),
the old configuration is freed and everything runs according to the new one.

When timeout is nonzero, the undo timer is activated with given timeout. The timer is deactivated when
config-commit(), config-confirm() or config-undo() is called.

Result

CONF_DONE if the configuration has been accepted immediately, CONF_PROGRESS if it will take some time
to switch to it, CONF_QUEUED if it’s been queued due to another reconfiguration being in progress now or
CONF_SHUTDOWN if BIRD is in shutdown mode and no new configurations are accepted.

3.1. Configuration manager 46

Function
int config_confirm (void) — confirm a commited configuration
Description

When the undo timer is activated by config-commit() with nonzero timeout, this function can be used to
deactivate it and therefore confirm the current configuration.

Result
CONF_CONFIRM when the current configuration is confirmed, CONF_NONE when there is nothing to confirm (i.e.
undo timer is not active).

Function

int config-undo (void) — undo a configuration

Description

Function config-undo() can be used to change the current configuration back to stored old_config. If no
reconfiguration is running, this stored configuration is commited in the same way as a new configuration in
config_commit(). If there is already a reconfiguration in progress and no next reconfiguration is scheduled,
then the undo is scheduled for later processing as usual, but if another reconfiguration is already scheduled,
then such reconfiguration is removed instead (i.e. undo is applied on the last commit that scheduled it).

Result

CONF_DONE if the configuration has been accepted immediately, CONF_PROGRESS if it will take some time
to switch to it, CONF_QUEUED if it’s been queued due to another reconfiguration being in progress now,
CONF_UNQUEUED if a scheduled reconfiguration is removed, CONF_NOTHING if there is no relevant configuration
to undo (the previous config request was config-undo() too) or CONF_SHUTDOWN if BIRD is in shutdown mode
and no new configuration changes are accepted.

Function
void order_shutdown (int gr) — order BIRD shutdown

Arguments

int gr
— undescribed —

Description
This function initiates shutdown of BIRD. It’s accomplished by asking for switching to an empty configura-
tion.

Function

void ¢f_error (const char * msg,) — report a configuration error

Arguments

const char * msg
printf-like format string

variable arguments

Description
c¢f-error() can be called during execution of config_parse(), that is from the parser, a preconfig hook or a
postconfig hook, to report an error in the configuration.

3.2. Lexical analyzer 47

Function

char * c¢fg_strdup (const char * ¢) — copy a string to config memory
Arguments

const char * ¢
string to copy

Description

cfg-strdup() creates a new copy of the string in the memory pool associated with the configuration being
currently parsed. It’s often used when a string literal occurs in the configuration and we want to preserve it
for further use.

3.2 Lexical analyzer

The lexical analyzer used for configuration files and CLI commands is generated using the flex tool ac-
companied by a couple of functions maintaining the hash tables containing information about symbols and
keywords.

Each symbol is represented by a symbol structure containing name of the symbol, its lexical scope, symbol
class (SYM_PROTO for a name of a protocol, SYM_CONSTANT for a constant etc.) and class dependent data.
When an unknown symbol is encountered, it’s automatically added to the symbol table with class SYM_VOID.

The keyword tables are generated from the grammar templates using the gen_keywords.mé script.

Function

void cf-lex_unwind (void) — unwind lexer state during error

Lexical analyzer
cf-lex_unwind() frees the internal state on IFS stack when the lexical analyzer is terminated by cf_error().

Function

*

struct symbol * cf_find_symbol_scope (const struct sym_scope * scope, const byte * ¢) — find a symbol by

name
Arguments

const struct sym_scope * scope
config scope

const byte * ¢
symbol name

Description

This functions searches the symbol table in the scope scope for a symbol of given name. First it examines
the current scope, then the underlying one and so on until it either finds the symbol and returns a pointer
to its symbol structure or reaches the end of the scope chain and returns NULL to signify no match.

Function

struct symbol * ¢f_get_symbol (struct config * conf, const byte * ¢) — get a symbol by name
Arguments

struct config * conf
— undescribed —

const byte * ¢
symbol name

Description

This functions searches the symbol table of the currently parsed config (new_config) for a symbol of given
name. It returns either the already existing symbol or a newly allocated undefined (SYM_VOID) symbol if no
existing symbol is found.

3.2. Lexical analyzer 48

Function

struct symbol * cf_localize_symbol (struct config * conf, struct symbol * sym) — get the local instance of
given symbol

Arguments

struct config * conf
— undescribed —

struct symbol * sym
the symbol to localize

Description
This functions finds the symbol that is local to current scope for purposes of c¢f-define_symbol().

Function

void c¢f-lex_init (int is_cli, struct config * ¢) — initialize the lexer

Arguments

int us_cli
true if we're going to parse CLI command, false for configuration

struct config * ¢
configuration structure

Description
cf-lex_init() initializes the lexical analyzer and prepares it for parsing of a new input.

Function

void c¢f-push_scope (struct config * conf, struct symbol * sym) — enter new scope

Arguments

struct config * conf
— undescribed —

struct symbol * sym
symbol representing scope name

Description

If we want to enter a new scope to process declarations inside a nested block, we can just call ¢f_push_scope()
to push a new scope onto the scope stack which will cause all new symbols to be defined in this scope and
all existing symbols to be sought for in all scopes stored on the stack.

Function

void ¢f_pop_scope (struct config * conf) — leave a scope

Arguments

struct config * conf
— undescribed —

Description
¢f-pop_scope() pops the topmost scope from the scope stack, leaving all its symbols in the symbol table, but
making them invisible to the rest of the config.

3.3. Parser

49

Function

void c¢f-push_soft_scope (struct config * conf) — enter new soft scope

Arguments

struct config * conf
— undescribed —

Description

If we want to enter a new anonymous scope that most likely will not contain any symbols, we can use
cf-push_soft_scope() insteas of cf_push_scope(). Such scope will be converted to a regular scope on first use.

Function

void cf-pop_soft_scope (struct config * conf) — leave a soft scope

Arguments

struct config * conf
— undescribed —

Description
Leave a soft scope entered by cf-push_soft_scope().

Function

void ¢f-swap_soft_scope (struct config * conf) — convert soft scope to regular scope

Arguments

struct config * conf
— undescribed —

Description

Soft scopes cannot hold symbols, so they must be converted to regular scopes on first use.

automatically by cf-new_symbol().

It is done

Function

char * cf_symbol_class_name (struct symbol * sym) — get name of a symbol class

Arguments

struct symbol * sym
symbol

Description
This function returns a string representing the class of the given symbol.

3.3 Parser

Both the configuration and CLI commands are analyzed using a syntax driven parser generated by the
bison tool from a grammar which is constructed from information gathered from grammar snippets by the

gen_parser.m4 script.

Grammar snippets are files (usually with extension .Y) contributed by various BIRD modules in order to
provide information about syntax of their configuration and their CLI commands. Each snipped consists
of several sections, each of them starting with a special keyword: CF_HDR for a list of #include directives
needed by the C code, CF_DEFINES for a list of C declarations, CF_DECLS for bison declarations including

3.3. Parser 50

keyword definitions specified as CF_KEYWORDS, CF_GRAMMAR for the grammar rules, CF_CODE for auxiliary C
code and finally CF_END at the end of the snippet.

To create references between the snippets, it’s possible to define multi-part rules by utilizing the CF_ADDTO
macro which adds a new alternative to a multi-part rule.

CLI commands are defined using a CF_CLI macro. Its parameters are: the list of keywords determining the
command, the list of parameters, help text for the parameters and help text for the command.

Values of enum filter types can be defined using CF_ENUM with the following parameters: name of filter type,
prefix common for all literals of this type and names of all the possible values.

Chapter 4: Filters

4.1 Filters

You can find sources of the filter language in filter/ directory. File filter/config.Y contains filter
grammar and basically translates the source from user into a tree of £_inst structures. These trees are later
interpreted using code in filter/filter.c.

A filter is represented by a tree of f_inst structures, later translated into lists called f_1line. All the
instructions are defined and documented in filter/f-inst.c definition file.

Filters use a £ _val structure for their data. Each £_val contains type and value (types are constants prefixed
with T_). Look into filter/data.h for more information and appropriate calls.

Function

enum filter_return interpret (struct filter_state * fs, const struct fline * line, uint arge, const struct f_val *
argu, struct f_val * val)

Arguments

struct filter_state * fs
filter state

const struct f_line * line
— undescribed —

uint arge
— undescribed —

const struct f_val * argv
— undescribed —

struct f_val * val
— undescribed —

Description
Interpret given tree of filter instructions. This is core function of filter system and does all the hard work.

Each instruction has 4 fields

code (which is instruction code), aux (which is extension to instruction code, typically type), argl and
arg?2 - arguments. Depending on instruction, arguments are either integers, or pointers to instruction trees.
Common instructions like 4+, that have two expressions as arguments use TWOARGS macro to get both of
them evaluated.

Function

enum filter_return f_run (const struct filter * filter, struct rte
run a filter for a route

** rte, struct linpool * tmp_pool, int flags) —

Arguments

const struct filter * filter
filter to run

struct rte ** rte
route being filtered, may be modified

struct linpool * tmp_pool
all filter allocations go from this pool

int flags
flags

51

4.1. Filters 52

Description

If filter needs to modify the route, there are several posibilities. rte might be read-only (with REF_COW
flag), in that case rw copy is obtained by rte_cow() and rte is replaced. If rte is originally rw, it may be
directly modified (and it is never copied).

The returned rte may reuse the (possibly cached, cloned) rta, or (if rta was modified) contains a modified
uncached rta, which uses parts allocated from ¢mp_pool and parts shared from original rta. There is one
exception - if rte is rw but contains a cached rta and that is modified, rta in returned rte is also cached.
Ownership of cached rtas is consistent with rte, i.e. if a new rte is returned, it has its own clone of cached
rta (and cached rta of read-only source rte is intact), if rte is modified in place, old cached rta is possibly
freed.

Function

enum filter_return f eval_rte (const struct f line * expr, struct rte ** rte, struct linpool * tmp_pool, uint argc,
const struct fval * argv, struct f_val * pres) — run a filter line for an uncached route

Arguments

const struct f_line * expr
filter line to run

struct rte ** rte
route being filtered, may be modified

struct linpool * tmp_pool
all filter allocations go from this pool

uint arge
— undescribed —

const struct f_val * argv
— undescribed —

struct f_val * pres
— undescribed —

Description

This specific filter entry point runs the given filter line (which must not have any arguments) on the given
route.

The route MUST NOT have REF_COW set and its attributes MUST NOT be cached by rta-lookup().

Function

*

int filter_same (const struct filter * new, const struct filter * old) — compare two filters

Arguments

const struct filter * new
first filter to be compared

const struct filter * old
second filter to be compared

Description
Returns 1 in case filters are same, otherwise 0. If there are underlying bugs, it will rather say 0 on same
filters than say 1 on different.

Function

void filter_commit (struct config * new, struct config * old) — do filter comparisons on all the named functions
and filters

4.2. Trie for prefix sets 53

Arguments

struct config * new
— undescribed —

struct config * old
— undescribed —

Function

struct f_tree * build_tree (struct f_tree * from)

Arguments

struct f_tree * from
degenerated tree (linked by tree->left) to be transformed into form suitable for find_tree()

Description
Transforms degenerated tree into balanced tree.

Function

int same_tree (const struct f_tree * ¢1, const struct f_tree * t2)

Arguments

const struct f_tree * ¢1
first tree to be compared

const struct f_tree * t2
second one

Description
Compares two trees and returns 1 if they are same

4.2 'Trie for prefix sets

We use a (compressed) trie to represent prefix sets. Every node in the trie represents one prefix (addr/plen)
and plen also indicates the index of bits in the address that are used to branch at the node. Note that
such prefix is not necessary a member of the prefix set, it is just a canonical prefix associated with a node.
Prefix lengths of nodes are aligned to multiples of TRIE_STEP (4) and there is 16-way branching in each node.
Therefore, we say that a node is associated with a range of prefix lengths (plen .. plen + TRIE_STEP - 1).
The prefix set is not just a set of prefixes, it is defined by a set of prefix patterns. Each prefix pattern consists
of ppaddr/pplen and two integers: low and high. The tested prefix paddr/plen matches that pattern if
the first MIN(plen, pplen) bits of paddr and ppaddr are the same and low <= plen <= high.

There are two ways to represent accepted prefixes for a node. First, there is a bitmask local, which
represents independently all 15 prefixes that extend the canonical prefix of the node and are within a
range of prefix lengths associated with the node. E.g., for node 10.0.0.0/8 they are 10.0.0.0/8, 10.0.0.0/9,
10.128.0.0/9, .. 10.224.0.0/11. This order (first by length, then lexicographically) is used for indexing the
bitmask local, starting at position 1. I.e., index is 27 (plen - base) + offset within the same length, see
function trie_local-mask6() for details.

Second, we use a bitmask accept to represent accepted prefix lengths at a node. The bit is set means that
all prefixes of given length that are either subprefixes or superprefixes of the canonical prefix are accepted.
As there are 33 prefix lengths (0..32 for IPv4), but there is just one prefix of zero length in the whole trie
so we have zero flag in f_trie (indicating whether the trie accepts prefix 0.0.0.0/0) as a special case, and
accept bitmask represents accepted prefix lengths from 1 to 32.

One complication is handling of prefix patterns with unaligned prefix length. When such pattern is to be
added, we add a primary node above (with rounded down prefix length nlen) and a set of secondary nodes
below (with rounded up prefix lengths slen). Accepted prefix lengths of the original prefix pattern are then

4.2. Trie for prefix sets 54

represented in different places based on their lengths. For prefixes shorter than nlen, it is accept bitmask
of the primary node, for prefixes between nlen and slen - 1 it is local bitmask of the primary node, and
for prefixes longer of equal slen it is accept bitmasks of secondary nodes.

There are two cases in prefix matching - a match when the length of the prefix is smaller that the length
of the prefix pattern, (plen < pplen) and otherwise. The second case is simple - we just walk through the
trie and look at every visited node whether that prefix accepts our prefix length (plen). The first case is
tricky - we do not want to examine every descendant of a final node, so (when we create the trie) we have
to propagate that information from nodes to their ascendants.

There are two kinds of propagations - propagation from child’s accept bitmask to parent’s accept bitmask,
and propagation from child’s accept bitmask to parent’s local bitmask. The first kind is simple - as all
superprefixes of a parent are also all superprefixes of appropriate length of a child, then we can just add
(by bitwise or) a child accept mask masked by parent prefix length mask to the parent accept mask. This
handles prefixes shorter than node plen.

The second kind of propagation is necessary to handle superprefixes of a child that are represented by parent
local mask - that are in the range of prefix lengths associated with the parent. For each accepted (by child
accept mask) prefix length from that range, we need to set appropriate bit in local mask. See function
trie_amask_to_local() for details.

There are four cases when we walk through a trie:

- we are in NULL - we are out of path (prefixes are inconsistent) - we are in the wanted (final) node (node
length == plen) - we are beyond the end of path (node length > plen) - we are still on path and keep
walking (node length < plen)

The walking code in trie_match_net() is structured according to these cases.

Iteration over prefixes in a trie can be done using TRIE-WALK() macro, or directly using trie_walk_init()
and trie-walk_next() functions. The second approach allows suspending the iteration and continuing in it
later. Prefixes are enumerated in the usual lexicographic order and may be restricted to a subset of the trie
(all subnets of a specified prefix).

Note that the trie walk does not reliably enumerate ‘implicit’ prefixes defined by low and high fields in prefix
patterns, it is supposed to be used on tries constructed from ‘explicit’ prefixes (Low == plen == high in
call to trie_add_prefiz()).

The trie walk has three basic state variables stored in the struct f_trie walk state — the current node in
stack[stack_pos|, accept_length for iteration over inter-node prefixes (non-branching prefixes on compressed
path between the current node and its parent node, stored in the bitmap accept of the current node) and
local_pos for iteration over intra-node prefixes (stored in the bitmap local).

The trie also supports longest-prefix-match query by trie_match_longest_ipj() and it can be ex-
tended to iteration over all covering prefixes for a given prefix (from longest to shortest) using
TRIE_.WALK_TO_ROOT-IPj() macro. There are also IPv6 versions (for practical reasons, these func-
tions and macros are separate for IPv4 and IPv6). There is the same limitation to enumeration of ‘implicit’
prefixes like with the previous TRIE_WALK() macro.

Function

struct f_trie * fnew_trie (linpool * Ip, uint data_size) — allocates and returns a new empty trie

Arguments

linpool * Ip
linear pool to allocate items from

uint data_size
user data attached to node

Function

void * trie_add_prefiz (struct f{_trie * ¢, const net_addr * net, uint [, uint h)

Arguments

struct f_trie * ¢
trie to add to

4.2. Trie for prefix sets 55

const net_addr * net
IP network prefix

uint [
prefix lower bound

uint h
prefix upper bound

Description

Adds prefix (prefix pattern) n to trie ¢. [and h are lower and upper bounds on accepted prefix lengths,
both inclusive. 0 <=1, h <= 32 (128 for IPv6).

Returns a pointer to the allocated node. The function can return a pointer to an existing node if pz and
plen are the same. If px/plen == 0/0 (or ::/0), a pointer to the root node is returned. Returns NULL when
called with mismatched IPv4/IPv6 net type.

Function

int trie_match_net (const struct f_trie * ¢, const net_addr * n)

Arguments
const struct f_trie * ¢
trie

const net_addr * n
net address

Description
Tries to find a matching net in the trie such that prefix n matches that prefix pattern. Returns 1 if there is
such prefix pattern in the trie.

Function

int trie_match_longest_ip4 (const struct f_trie * ¢, const net_addr_ip4 * net, net_addr_ip4 * dst, ip4_addr *
found0)

Arguments

const struct f_trie * ¢
trie

const net_addr_ip4 * net
net address

net_addr_ip4 * dst
return value

ip4d_addr * found0
optional returned bitmask of found nodes

Description

Perform longest prefix match for the address met and return the resulting prefix in the buffer dst. The
bitmask found0 is used to report lengths of prefixes on the path from the root to the resulting prefix.
E.g., if there is also a /20 shorter matching prefix, then 20-th bit is set in found0. This can be used to
enumerate all matching prefixes for the network net using function trie_match_-next_longest_ip4() or macro
TRIE_WALK_TO_ROOT-IPj().

This function assumes IPv4 trie, there is also an IPv6 variant. The net argument is typed as net_addr_ip4,
but would accept any IPv4-based net_addr, like net4_prefiz(). Anyway, returned dst is always net_addr_ip4.

Result
1 if a matching prefix was found, 0 if not.

4.2. Trie for prefix sets 56

Function

int trie_match_longest_ip6 (const struct f_trie * ¢, const net_addr_ip6 * net, net_addr_ip6 * dst, ip6_addr *
found0)

Arguments

const struct f_trie * ¢
trie

const net_addr_ip6 * net
net address

net_addr_ip6 * dst
return value

ip6_addr * found0
optional returned bitmask of found nodes

Description

Perform longest prefix match for the address net and return the resulting prefix in the buffer dst. The
bitmask found0 is used to report lengths of prefixes on the path from the root to the resulting prefix.
E.g., if there is also a /20 shorter matching prefix, then 20-th bit is set in found0. This can be used to
enumerate all matching prefixes for the network net using function trie_match_next_longest_ip6() or macro
TRIE_WALK_TO_ROOT_IP6().

This function assumes IPv6 trie, there is also an IPv4 variant. The net argument is typed as net_addr_ip6,
but would accept any IPv6-based net_addr, like net6_prefiz(). Anyway, returned dst is always net_addr_ip6.

Result
1 if a matching prefix was found, 0 if not.

Function

void trie_walk_init (struct {_trie_walk state * s, const struct f_trie * ¢, const net_addr * net)

Arguments

struct f_trie_walk_state * s
walk state

const struct f_trie * ¢
trie

const net_addr * net
optional subnet for walk

Description

Initialize walk state for subsequent walk through nodes of the trie ¢ by trie_walk_next(). The argument net
allows to restrict walk to given subnet, otherwise full walk over all nodes is used. This is done by finding
node at or below net and starting position in it.

Function

int trie_walk_next (struct f_trie_walk state * s, net_addr * net)

Arguments

struct f_trie_walk_state * s
walk state

net_addr * net
return value

4.2. Trie for prefix sets 57

Description

Find the next prefix in the trie walk and return it in the buffer net. Prefixes are walked in the usual
lexicographic order and may be restricted to a subset of the trie during walk setup by trie_walk_init(). Note
that the trie walk does not iterate reliably over ’implicit’ prefixes defined by low and high fields in prefix
patterns, it is supposed to be used on tries constructed from ’explicit’ prefixes (Low == plen == high in
call to trie_add_prefiz()).

Result
1 if the next prefix was found, 0 for the end of walk.

Function

int trie_same (const struct f_trie * ¢1, const struct f_trie * ¢2)

Arguments

const struct f_trie * ¢1
first trie to be compared

const struct f_trie * 2
second one

Description
Compares two tries and returns 1 if they are same

Function

void trie_format (const struct {_trie * ¢, buffer * buf)

Arguments

const struct f_trie * ¢
trie to be formatted

buffer * buf
destination buffer

Description
Prints the trie to the supplied buffer.

Chapter 5: Protocols

5.1 The Babel protocol

The Babel is a loop-avoiding distance-vector routing protocol that is robust and efficient both in ordinary
wired networks and in wireless mesh networks.

The Babel protocol keeps state for each neighbour in a babel neighbor struct, tracking received Hello and
I Heard You (IHU) messages. A babel_interface struct keeps hello and update times for each interface,
and a separate hello seqno is maintained for each interface.

For each prefix, Babel keeps track of both the possible routes (with next hop and router IDs), as well as
the feasibility distance for each prefix and router id. The prefix itself is tracked in a babel_entry struct,
while the possible routes for the prefix are tracked as babel_route entries and the feasibility distance is
maintained through babel_source structures.

The main route selection is done in babel_select_route(). This is called when an entry is updated by receiving
updates from the network or when modified by internal timers. The function selects from feasible and
reachable routes the one with the lowest metric to be announced to the core.

Supported standards: RFC 8966 - The Babel Routing Protocol RFC 8967 - MAC Authentication for Babel
RFC 9079 - Source Specific Routing for Babel RFC 9229 - IPv4 Routes with IPv6 Next Hop for Babel

Function
void babel_announce_rte (struct babel proto * p, struct babel entry * e) — announce selected route to the

core

Arguments

struct babel_proto * p
Babel protocol instance

struct babel_entry * e
Babel route entry to announce

Description
This function announces a Babel entry to the core if it has a selected incoming path, and retracts it otherwise.
If there is no selected route but the entry is valid and ours, the unreachable route is announced instead.

Function

void babel_select_route (struct babel_proto * p, struct babel_entry * e, struct babel_route * mod) — select
best route for given route entry

Arguments

struct babel_proto * p
Babel protocol instance

struct babel_entry * e
Babel entry to select the best route for

struct babel_route * mod
Babel route that was modified or NULL if unspecified

Description

Select the best reachable and feasible route for a given prefix among the routes received from peers, and
propagate it to the nest. This just selects the reachable and feasible route with the lowest metric, but keeps
selected the old one in case of tie.

If no feasible route is available for a prefix that previously had a route selected, a seqno request is sent to
try to get a valid route. If the entry is valid and not owned by us, the unreachable route is announced to

58

5.1. The Babel protocol 59

the nest (to blackhole packets going to it, as per section 2.8). It is later removed by babel_expire_routes().
Otherwise, the route is just removed from the nest.

Argument mod is used to optimize best route calculation. When specified, the function can assume that
only the mod route was modified to avoid full best route selection and announcement when non-best route
was modified in minor way. The caller is advised to not call babel_select_route() when no change is done
(e.g. periodic route updates) to avoid unnecessary announcements of the same best route. The caller is not
required to call the function in case of a retraction of a non-best route.

Note that the function does not active triggered updates. That is done by babel_rt_notify() when the change
is propagated back to Babel.

Function

void babel_send_update_ (struct babel_iface * ifa, btime changed, struct fib * rtable) — send route table updates

Arguments

struct babel_iface * ifa
Interface to transmit on

btime changed
Only send entries changed since this time

struct fib * rtable
— undescribed —

Description

This function produces update TLVs for all entries changed since the time indicated by the changed param-
eter and queues them for transmission on the selected interface. During the process, the feasib