
o c i w e b . c o m 33

CHAPTER 4

The Makefile, Project, and Workspace
Creator (MPC)

4.1 Introduction
Maintaining multiple build tool files for a multi-platform project can be quite
a challenge, especially when the project structure and platforms are constantly
changing and evolving. A project may support Makefiles, Visual C++ project
files, Borland Makefiles, and many others. Adding files, deleting files,
changing project options or even changing the name of the target within your
project will require you to expend time updating each build tool file. What you
need instead is a single location to store project specific information to avoid
repetitious, tedious modifications to multiple build tool files. This is where
Makefile Project Creator (MPC) comes into the picture.
MPC can be used to generate build tool specific project files from a generic
mpc file. The MPC project file is a collection of source files that make up a
single build target. MPC uses platform specific input along with mpc files and
generates build tool specific files like makefiles, Visual C++ workspace and
project files, Visual Studio solution and project files, etc.
MPC provides many advantages over the build tool files it replaces. It
provides mechanisms for minimizing maintenance of project build files. It

34 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

does this through support for project inheritance and defaults for all aspects of
a project, and the syntax is simple and easy to use and maintain. These and
other features will be discussed in detail in the following sections. A complete
example of the use of MPC is shown in section 4.3.3.9.

4.2 Using MPC
An MPC project is a set of parameters that describe an individual build target
(such as a library or executable). These parameters include the target name,
include paths, source files, header files, etc. One or more projects can be
defined within a single mpc file. An MPC workspace is just an arbitrary
collection of projects.
Projects can be generated (without workspaces) by using the mpc.pl script.
Multiple mpc files can be passed to this script. If no mpc files are passed to the
script, it will search for project-related files (such as source files, header files,
etc.) and incorporate them into a default project.

o c i w e b . c o m 35

4 . 2 U s i n g M P C

Figure 4-1 shows a high-level view of project file generation using mpc.pl.

To generate workspaces, you must run mwc.pl. This script will generate
projects from mpc files and create a workspace based on those mpc files. If no
mwc files are passed to the script, it will search in the current directory and its
subdirectories for all mpc files and incorporate them into a single workspace.
For make based project types (make, gnuace, bmake, nmake), a workspace is
just a top-level makefile. But, for graphical interfaces such as Visual Studio, a
workspace is the top-level file that groups all of the project files together.

Figure 4-1 Generating projects with mpc.pl

 dsp, etc.)
 vcproj,
(Makefile,

File
Project

Make Project
Creator

Template
Input File

Template
File

File
MPC

36 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

Figure 4-2 shows a high-level view of workspace file generation using
mwc.pl.

4.2.1 Supported Build Tools
MPC generates workspaces and projects for use with many build tools. Table
4-1 lists the MPC types (used with mpc’s -type option) and their associated
build tools.

Figure 4-2 Generating workspaces with mwc.pl

 etc.)

File
MWC

Creator
Make Workspace

Workspace
File

(Makefile,
 dsw, sln,

Table 4-1 MPC Types

Type Build Tool
automake GNU Automake.
bcb2007 Borland C++ Builder 2007
bcb2009 CodeGear C++ Builder 2009
bds4 Support for Borland Developer Studio 4 is incomplete.
bmake Borland Make.
em3 eMbedded Visual C++ 3.00 and 4.00.
ghs Support for Green Hills C++ Builder is incomplete.

gnuace GNU Make for ACE/TAO/CIAO only (ACE/TAO/CIAO
extension).

make

Generic make. The makefiles generated by this project type
can be used with any version of make. However, due to
configuration issues, it should not be used with ACE or
TAO.

nmake Microsoft NMake.
sle Support for Visual SlickEdit is incomplete.
vc6 Visual C++ 6.0.

o c i w e b . c o m 37

4 . 2 U s i n g M P C

4.2.2 Command Line
The command line options for the workspace creator (mwc.pl) and the project
creator (mpc.pl) are exactly the same. The project creator is used to generate
one or more separate projects by passing mpc files to it on the command line.
The workspace creator is used to generate one or more workspaces and the
projects related to those workspaces.
Table 4-2 describes each option with the more commonly used options in bold
and project specific options in italics.

vc7 Visual C++ 7.0.
vc71 Visual C++ 7.1.
vc8 Visual C++ 8.0.
vc9 Visual C++ 9.0.
vc10 Visual C++ 10.0.
wb26 WindRiver Workbench 2.6.

Table 4-1 MPC Types

Type Build Tool

Table 4-2 Command Line Options

Option Description

-base
This option allows the user to force any project to inherit
from a specified base project. This option can be used
multiple times to force multiple inheritance upon a project.

-exclude

If this option is used with mwc.pl, the directories or mwc
files provided in a comma separated list will be excluded
when searching for mpc files. Each element provided for
exclusion should be relative to the starting directory. This
option has no effect when used with mpc.pl.

-expand_vars
This option instructs MPC to perform direct replacement of
$() variables with the values from the environment (if the
-use_env option is used) or the values specified by the
-relative option.

-feature_file

This option allows the user to override the default feature file
(MPC/config/default.features or
ACE_wrappers/bin/MakeProjectCreator/config/de
fault.features) which may or may not exist. This file
can be used to override feature values specified in the
global.features file located in the config directory.
Feature files are described in section 4.3.2.3.

38 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

-features Specifies the feature list to set before processing. This is a
comma separated list and should contain no spaces.

-for_eclipse Allows generated makefiles to be used with Eclipse.

-gendot A .dot file, for use with Graphviz, will be created for each
workspace processed.

-genins
This option instructs MPC to generate an “install” file after
processing each project. These “install” files can be used
with the prj_install.pl script which will copy portions of the
project related files into a user specified location.

-gfeature_file Specifies the global feature file. The default global feature
file is global.features found in the config directory.

-global

This option specifies the global input file. Values stored
within this base project are applied to all generated projects.
The default value is
ACE_wrappers/bin/MakeProjectCreator/global.mp
b or MPC/config/global.mpb.

-hierarchy

If this option is used with mwc.pl, it will generate a
workspace at each directory between the directory in which it
is run and the location of a processed mpc file. This option
has no effect when used with mpc.pl and is the default for
“make” based workspace types.

-include
Include search directories are added with this option. These
search directories are used when locating base projects,
template input files and templates. It can be used multiple
times on the same command line.

-into This option specifies that all generated project files will be
placed in a mirrored directory structure.

-language
This option is used to specify which language to assume
when generating projects. The default language is
cplusplus, but csharp, java and vb are also supported.

-make_coexistence

Make based project types that normally name the workspace
Makefile (bmake or nmake) will name the generated
output files such that they can coexist within the same
directory. In essence, the bmake and nmake workspace
names will not be Makefile, but the name of the
workspace followed by the project type (.bmake or
.nmake).

Table 4-2 Command Line Options

Option Description

o c i w e b . c o m 39

4 . 2 U s i n g M P C

-name_modifier

This option allows the user to modify the output names of
projects and workspaces. These are usually determined by
either the mpc or mwc file, but can be modified using a
pattern replacement. The parameter passed to this option will
be used as the pattern and any asterisks (*) found in the
pattern will be replaced with the project or workspace name
depending on which type of file is being created.

-apply_project
This option is only useful with the -name_modifier option.
When used in conjunction with -name_modifier, the
pattern will be applied to the project name in addition to the
project or workspace name.

-nocomments Comments will not be placed in the generated workspace
files.

-noreldefs This option specifies that the default relative definitions
should not be generated. See the -relative option below.

-notoplevel
This option tells mwc.pl to generate all workspace related
project files, but do not generate the associated workspace.
This option tells mpc.pl to process all mpc files passed in,
but it will not generate any project files.

-recurse Search from the current directory for any input files and
process them from the directory in which they are located.

-relative

Relative paths are used to replace variables enclosed with
$(). By default, any environment variable that ends in
_ROOT will be automatically used as a relative path
replacement. For more information see “The -relative
Option.” on page 40.

-static
Specifies that static project files will be generated from the
MPC projects. The default is to generate dynamic project
files.

-template
This option allows a user to specify an alternate template.
Each project type has its own template and this option allows
a user to override the default template.

-ti
Each project type has a set of template input files. With this
option the default template input file can be overridden for a
particular project type. For more information see “The -ti
Option.” on page 41.

-type
This option specifies the type of project or workspace to be
generated. It can be specified multiple times to generate
different project types for a single set of input files.

Table 4-2 Command Line Options

Option Description

40 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

4.2.2.1 Additional Option Descriptions
Some of the options in Table 4-2 require an expanded explanation. You will
find more information on the -relative, -ti, -value_project and
-value_template options below.

The -relative Option.
Some project types do not (completely) support the idea of accessing
environment variables through the use of $(), and therefore MPC must ensure
that generated projects are usable in these cases. In order to avoid the
existence of $() variables within the generated project files, relative paths are
put in place of those (where possible).
The -relative option takes a single parameter of a name value pair, for
example:

mwc.pl -relative PROJ_TOP=/usr/projects/top

In above example, if the text "$(PROJ_TOP)" is found as a value for any
mpb, mpc, mpd, or mpt variable then it is replaced by a path that is relative to
/usr/projects/top. For example, if an mpc file located under
/usr/projects/top/dir contained the following:

-use_env
This option instructs MPC to replace all $() instances with
the corresponding environment variable value instead of
using values provided by the -relative option.

-value_project

Use this option to override an mpc project assignment from
the command line. This can be used to introduce new name
value pairs to a project. However, it must be a valid project
assignment. For more information see “The -value_project
Option.” on page 41.

-value_template
This option can be used to override existing template input
variable values from the command line. It can not be used to
introduce new template input name value pairs. For more
information see “The -value_template Option.” on page 42.

-version The MPC version is printed and no files are processed.

-complete
The undocumented complete option can be used to
generate a tcsh complete command that allows a user of the
tcsh shell to complete on options as well as file names.

Table 4-2 Command Line Options

Option Description

o c i w e b . c o m 41

4 . 2 U s i n g M P C

project {
 includes += $(PROJ_TOP)
}

The generated project file would contain text similar to:

CPPFLAGS += -I..

The $(PROJ_TOP) string was replaced with a directory value that is relative
to the directory in which the mpc file is located.

The -ti Option.
The -ti option allows you to identify different template input files based on
the type of target being built. Template input files correspond to four different
categories: dll, lib, dll_exe, and lib_exe. Not all project types
distinguish between the different categories, but the templates for various
project types will be combined with different template input files, depending
on the build target type, to generate different output.
To override the default template input file names, a -ti option is provided.
The -ti option takes a single parameter of the form type:file. The type is
one of the four categories stated above and the file is the base name of an
mpt file located somewhere in the include search paths.
The following example shows a usage of the -ti option. It says that when
generating a static project (lib), use the vc7lib template input file and when
generating a dynamic project (dll), use the vc7dll template input file:

mpc.pl -type vc71 -ti lib:vc7dsplib -ti dll:vc7dspdll

These happen to be the default values for the vc71 type, but it illustrates that a
different template input can be specified for each category.

The -value_project Option.
The -value_project option can be useful when the need arises to modify
the value of an MPC variable across one or more mpc files. For example, if
you wanted to generate all of your projects with an additional include search
path you would run the following command:

mwc.pl -value_project includes+=/include/path

42 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

In the above example, an additional include search path of /include/path
would be placed in all generated projects.

The -value_template Option.
This option modifies existing or adds new template input name/value pairs.
For example, if you wanted to generate dynamic vc71 projects with only
Release targets, you would run the following command:

mwc.pl -type vc71 -value_template configurations=Release

To find out what template input variables are defined, see the individual mpd
file of interest
($ACE_ROOT/bin/MakeProjectCreator/templates/*.mpd and
$MPC_ROOT/templates/*.mpd) and search for names used within <% and
%>. Names that are not listed as project keywords (Table 4-3 on page 47) are
template variables.

4.2.3 Environment Variables
MPC recognizes a few environment variables that alter the way it performs
certain tasks. The sections below describe each one and the effect it has on
MPC.
MPC will use the options defined in MPC_COMMANDLINE as if they were given
on the command line to mwc.pl or mpc.pl. The environment value will be
prepended to options actually passed to mwc.pl or mpc.pl on the actual
command line.
The MPC_DEPENDENCY_COMBINED_STATIC_LIBRARY environment variable
only affects the way workspace dependencies are created for static projects
with the em3, vc6, vc7, vc71, vc8, vc9 and vc10 project types. If this
environment variable is set, MPC will generate inter-project dependencies for
libraries within a single workspace. This is usually not desired since adding
these dependencies in a static workspace has the side effect of including
dependee libraries into the dependent library.
If the MPC_LOGGING environment variable is set, MPC will parse the value
and provide informational, warning and diagnostic messages depending on
it’s setting. If the value contains info=1, informational messages will be
printed. If it contains warn=1, warning messages will be printed. If it contains
diag=1, diagnostic messages will be printed. And lastly, if it contains

o c i w e b . c o m 43

4 . 3 W r i t i n g M P C a n d M W C F i l e s

detail=1, detail messages will be printed. If it contains none of these, MPC
will act as if MPC_SILENT was set.
The MPC_SILENT environment variable instructs MPC not to print any
messages, except error messages. The progress indicator is still printed.
If MPC_VERBOSE_ORDERING is set, MPC will warn the user about references
to projects in the “after” keyword that have not been processed. This only
has an effect when running mwc.pl.

4.3 Writing MPC and MWC Files
You may want to familiarize yourself with the various input files for MPC.
The input file types and the syntax of each are discussed in the sections below.

4.3.1 Input Files
There are four different input files associated with MPC. For most users of
MPC, the main files of concern are mpc and mwc files.

4.3.1.1 Project Files (mpc)
Project files, those with the mpc extension, contain such things as include
paths, library paths, source files and inter-project dependencies. An mpc file
can contain one or more “projects” each of which needs to be uniquely named
to avoid project generation errors. Projects represent build targets such as
libraries and executables.

4.3.1.2 Workspace Files (mwc)
Workspaces are defined by providing a list of mpc files, directories or other
mwc files in a single mwc file. For each mpc file, the Workspace Creator calls
upon the Project Creator to generate the project. After all of the projects are
successfully generated, the tool-specific workspace is generated containing
the projects and any defined inter-project dependency information (if
supported by the build tool). An mwc file can contain one or more
“workspaces,” each of which needs to be uniquely named. If no workspace
files are provided to the workspace creator, the current directory is traversed
and any mpc files located will be part of the workspace that is generated.

44 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

4.3.1.3 Base Project Files (mpb)
One of the many unique and useful features of MPC is that the project
definition files can use inheritance. Project inheritance allows a user to set up
a base project (mpb file) that can contain information that is applicable to all
derived projects. Common project attributes, such as include paths, library
paths, and inter-project dependencies, could be described in this base project
and any project that inherits from it would contain this information as well.

4.3.1.4 Base Workspace Files (mwb)
As with projects, workspaces can also inherit from other workspaces. A base
workspace can provide workspace information that may be common to other
workspaces.

4.3.2 General Input File Syntax
In this section we discuss the syntax of the various files. We also describe
some of the default values that go along with these files.

4.3.2.1 mwc and mwb
Workspaces can contain individual mpc files or directories. There can be one
or more workspaces defined within a single mwc file.

workspace(optional name): optional_base_workspace {
file.mpc
directory
other.mwc

 exclude(vc6, vc7, vc71, vc8, vc9, vc10, nmake) {
 this_directory
 }
}

A workspace can be given a name. This is the value given in the parentheses
after the keyword workspace. If the workspace is not given a name, the
workspace name is taken from the name of the mwc file without the extension.
Workspaces can also inherit from other workspaces. In the above example,
optional_base_workspace would be the base name of an mwb file with
no extension that contains workspace information. This information would
then be included in each workspace that inherits from it.

o c i w e b . c o m 45

4 . 3 W r i t i n g M P C a n d M W C F i l e s

The lines between the curly braces contain assignments, mpc files, directories,
other workspace files or exclusion sections. The mpc files listed will be
included in the workspace. If a directory is listed within the workspace, the
workspace creator will recursively traverse that directory and use any mpc
files that are found. If a workspace file is listed it will be aggregated into the
main workspace.
A workspace can have assignments interspersed within the directories and
mpc files. These assignments modify the way projects are generated.
The cmdline setting can be used to provide command line options that would
normally be passed to mwc.pl (see Table 4-2). However, the -type,
-recurse, -noreldefs, -make_coexistence, -genins, -into and
-language options as well as input files are ignored. Environment variables
may be accessed through $NAME, where NAME is the environment variable
name. The cmdline assignment may be useful for workspaces that require
specific mwc.pl options in order to process correctly.
The only other setting supported by mwc.pl is implicit. If implicit is set
to 1 then default project files are generated in each directory where no mpc
file exists. The implicit keyword can also be set to the name of a base
project. In this case, the implicitly generated project will inherit from the base
project specified in the assignment. Either way, if the directory does not
contain files that can be used within a project, no project is created. Setting
implicit can be useful when you want to define specific workspaces, but the
MPC defaults are sufficient for the directories involved within the workspace.
Scoped assignments are assignments that are associated with specific mpc
files or directories listed with the scope of the assignment. The following
example shows a scoped assignment of cmdline that only applies to one of
the mpc files listed in the workspace. In this example,
directory/foo.mpc would be processed as if the -static option had been
passed on the command line whereas other directories and mpc files would
not.

workspace {
...
static {

cmdline += -static
directory/foo.mpc

}
exclude(gnuace, make) {

some.mpc

46 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

}
}

Exclusion sections are used to prevent directories and mpc files from being
processed. These excluded directories and mpc files will be skipped when
generating project files and workspaces. The exclude keyword accepts
project types within the parentheses (as above), which will cause the
workspace creator to only exclude the listing for particular types. If no types
are provided, exclusion will take place for all project types.
Comments are similar to the C++ style comments. Any text after a double
slash (//) is considered a comment.

4.3.2.2 mpc and mpb

Project Declarations
Project declarations are similar to workspace declarations, but are a bit more
complex. An mpc file can contain one or more “projects” and each project can
inherit from base projects.

project(optional name): base_project, another_base_project {
 exename = client
 includes += directory_name other_directory
 libpaths += /usr/X11R6/lib

 Header_Files {
 file1.h
 file2.h
 fileN.h
 }

 Source_Files {
 file1.cpp
 file2.cpp
 fileN.cpp
 }
}

If the optional project name is not given, then the project name is taken from
the name of the mpc file without the extension. Therefore, if your mpc file is
going to contain multiple projects, it is important to provide project names to
prevent each generated project from overwriting the other. MPC will issue an
error and stop if duplicate project names are detected.

o c i w e b . c o m 47

4 . 3 W r i t i n g M P C a n d M W C F i l e s

Base Projects
Base projects can be of the extension mpb and mpc. If a file with the name of
the base project with an mpb or mpc extension cannot be found within the mpc
include search path, a fatal error is issued and processing halts.

Assignment Keywords
Table 4-3 shows the keywords that can be used in an assignment (i.e. =, += or
-=) within an mpc file. The most commonly used keywords are shown in bold
face.
Table 4-3 Assignment Keywords

Keyword Description

after Specifies that this project must be built after 1 or more
project names listed.

avoids
Specifies which features should be disabled in order to
generate the project file. Under the GNUACE type, it also
specifies which make macros should not be set to build the
target.

custom_only
This setting instructs MPC to create projects that only
contain custom generation targets. Any files included in the
projects will be provided by custom component lists defined
through the use of Define_Custom.

dllout If defined, specifies where the dynamic libraries will be
placed. This overrides libout in the dynamic case.

dynamicflags Specifies preprocessor flags passed to the compiler when
building a dynamic library.

exename Determines that the project will be an executable and the
name of the executable target.

exeout Specifies where executables will be placed.

includes Specifies one or more directories to supply to the compiler
for use as include search paths.

libout Specifies where the dynamic and static libraries will be
placed.

libpaths Specifies one or more directories to supply to the compiler
for use as library search paths.

libs
Specifies one or more libraries to link into the target. Library
modifiers may be added when being processed in the
template file. For example, library modifiers are added when
using the vc6 project type.

48 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

lit_libs This is the same as libs except that a library modifier will not
be added.

macros Values supplied here will be passed directly to the compiler
as command line defined macros.

managed
Specifies that the source files should be compiled as
managed C++. This is only supported by the nmake, vc7,
vc71, and vc8 project types.

no_pch
It specifies that precompiled headers should not be used for
the source files listed within the scope of it’s setting. This
keyword can only be used as a source component scoped
setting (i.e., inside the scope of Source_Files).

pch_header The name of the precompiled header file. See the discussion
below this table for more information.

pch_source The name of the precompiled source file. See the discussion
below this table for more information.

postbuild

If this is defined in the project, the value will be interpreted
as commands to run after the project has been successfully
built. The <% %> construct (See “Template Files (mpd)” on
page 68.) can be used within this value to access template
variables and functions of the template parser.

prebuild

If this is defined in the project, the value will be interpreted
as commands to run before the project has been built. The <%
%> construct (See “Template Files (mpd)” on page 68.) can
be used within this value to access template variables and
functions of the template parser.

pure_libs This is similar to lit_libs except that no prefix or
extension is added to the names specified.

recurse

If set to 1, MPC will recurse into directories listed under
component listings (such as Source_Files, Header_Files,
etc.) and add any component corresponding files to the list.
This keyword can be used as a global project setting or a
component scoped setting.

requires
Specifies which features should be enabled in order to
generate the project file. Under the GNUACE type, it also
specifies which make macros should be set to build the
target.

sharedname
Determines that the project will be a library and the name of
the dynamic library target. See the discussion below this
table for more information.

Table 4-3 Assignment Keywords

Keyword Description

o c i w e b . c o m 49

4 . 3 W r i t i n g M P C a n d M W C F i l e s

Assignments can also use the += and -= operators to add and subtract values
from keyword values.
If a sharedname is specified in the mpc file and staticname is not used,
then staticname is assumed to be the same as sharedname. This also
applies in the opposite direction.
If neither exename, sharedname nor staticname is specified, MPC will search
the source files for a main function. If a main is found, the exename will be
set to the name of the file, minus the extension, that contained the main
function. Otherwise, sharedname and staticname will be set to the project
name.
If the project name, exename, sharedname or staticname contain an asterisk it
instructs MPC to dynamically determine a portion of the name based on
certain defaults. If the project name contains an asterisk, then the asterisk will
be replaced with the default project name. If exename, sharedname or
staticname contains an asterisk, then the asterisk will be replaced with the
project name.
If the pch_header keyword is not used and a file exists, in the directory in
which the mpc file is located, that matches *_pch.h it is assumed to be the
precompiled header for that directory. If there are multiple pch files in the
directory, then the precompiled header that closely matches the project name
will be chosen. Similar logic applies for the pch_source keyword.

staticflags Specifies preprocessor flags passed to the compiler when
building a static library.

staticname Determines that the project will be a library and the name of
the static library target.

tagchecks For GNUACE Make only, specifies one or more names to
search for in the macros specified by tagname.

tagname Specifies the GNUACE Make macro to check before
building the target.

version Specifies the version number for the library or executable.

webapp
Determines whether the project is a Web Application. A web
application project will have no project file written but the
information will be included in the workspace if web
applications are supported by the project type.

Table 4-3 Assignment Keywords

Keyword Description

50 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

Components
An mpc file can also specify the files to be included in the generated “project”
file. These files are specified using the component names shown in Table 4-4.
However, most of the time users will want to allow MPC to provide the
default values for project files.

If a component is not specified in the mpc file, the default value will be used.
To disallow a particular set of files that may exist in the directory, you must
declare an empty set of the particular component type.
Each component name accepts two forms. The first form is a simple list of
files within the construct.

Source_Files {
 file1.cpp
 file2.cpp
}

The second form is a complex list of files within named blocks.

Source_Files(MACRO_NAME) {
 BlockA {
 file1.cpp
 file2.cpp
 }

Table 4-4 Component Names and Default Values

Name Default Value

Build_Files Defaults to all files in the directory that have the
following extensions: mpc, mpb, and mwc.

Source_Files Defaults to all files in the directory that have the
following extensions: cpp, cxx, cc, c, and C.

Header_Files Defaults to all files in the directory that have the
following extensions: h, hpp, hxx, and hh.

Inline_Files Defaults to all files in the directory that have the
following extensions: i and inl.

Template_Files Defaults to all files in the directory that end in the
following: _T.cpp, _T.cxx, _T.cc, _T.c, and _T.C.

Documentation_Files Defaults to all files in the directory that match the
following: README, readme, .doc, .html and .txt.

Resource_Files Defaults to all files in the directory that match the project
name and have an rc extension.

o c i w e b . c o m 51

4 . 3 W r i t i n g M P C a n d M W C F i l e s

 BlockB {
 file3.cpp
 file4.cpp
 }
}

The second form allows the user to logically group the files to make future
maintenance easier. Using this form has the effect of visually grouping files in
the generated project file for the em3, gnuace, vc6, vc7, vc71, vc8, vc9 and
vc10 project types.
If a file is listed in the Source_Files component list and a corresponding
header or inline file exists in the directory, it is added to the corresponding
component list unless it is already listed.

Verbatim Clause
The verbatim construct can be used to place text into a generated project file
verbatim. The verbatim syntax is as follows:

verbatim(<project type>, <location>) {
 ..
}

When MPC is generating a project of type <project type> and encounters
a marker in the template file (see Table 4-8 on page 69) that matches the
<location> name, it will place the text found inside the construct directly
into the generated project. If the text inside the construct requires that white
space be preserved, each line must be enclosed in double quotes. The
following verbatim example would result in gnuace generated projects
having a rule at the bottom of the GNUmakefile where the all: target
depends on foo.

verbatim(gnuace, bottom) {
 all: foo
}

Expand Clause
The expand keyword can be used to provide values for variable names
enclosed within $(). In the example below, we see the name VAR_NAME
inside the parenthesis. Whenever MPC sees $(VAR_NAME) it will attempt to
replace it with values from the expansion list. MPC will first try to replace it
with the value of the environment valriable named ENV_VAR. If that

52 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

environment variable has a value, it will be used. Otherwise, it will continue
down the list until a suitable value is found. In this example, the text
last_resort_value will be used. MPC will leave the $() value as it was in
the event that no value is found.

expand(VAR_NAME) {
 $ENV_VAR
 last_resort_value
}

Specific Clause
The specific keyword can be used to define assignments that are specific to
a particular project type. This will allow platform or OS-specific values to be
placed into a project. For example, on one platform you may want to link in a
library named qt-mt, but on another you need to link in qt-mt230nc.

specific(bmake, nmake, vc6, vc7, vc71, vc8) {
 lit_libs += qt-mt230nc
} else {
 lit_libs += qt-mt
}

If an else clause is provided, it is required to be on the same line as the closing
curly brace. You may also negate the project type (using ’!’) which will cause
the specific to be evaluated for all types except the type specified.
If a keyword used within a specific section is not recognized as a valid
MPC keyword, it is interpreted to be template value modifier. In this situation,
this construct works exactly the same way as the -value_template
command line option (see Table 4-2 on page 37).

Conditional Clause
This scope allows addition of source files conditionally based on a particular
project type. The syntax is as follows:

conditional(<project type> [, <project type> ...]) {
 source1.cpp
 ...
}

conditional(<project type> [, <project type> ...]) {
 source1.cpp
 ...

o c i w e b . c o m 53

4 . 3 W r i t i n g M P C a n d M W C F i l e s

} else {
 source2.cpp
 ...
}

If the else is provided, it is required to be on the same line as the closing curly
brace. You may also negate the project type (using ’!’) which will cause the
conditional to be evaluated for all types except the type specified.

Custom Types and Build Rules
MPC allows you to define your own custom file types to support a variety of
custom build rules. Below is an example of a custom definition.

project {
 Define_Custom(MOC) {
 automatic = 0
 command = $(QTDIR)/bin/moc
 output_option = -o
 inputext = .h
 pre_extension = _moc
 source_outputext = .cpp

 keyword mocflags = commandflags
 }

 // Custom Component
 MOC_Files {
 QtReactor.h
 }

 Source_Files {
 QtReactor_moc.cpp
 }
}

The above example defines a custom file type, “MOC”, that describes basic
information about how to process the input files and what output files are
created. Once the custom file type is defined, MOC_Files can be used to
specify the input files for this new file type.

54 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

Table 4-5 contains the keywords that can be used within the scope of
Define_Custom.
Table 4-5 Define_Custom Keywords

Keyword Description

automatic

If set to 1, then attempt to automatically determine which
files belong to the set of input files for the custom type. If set
to 0, then no files are automatically added to the input files.
If omitted, then automatic is assumed to be 1. Custom file
types that are automatic will have the side effect of possibly
adding files to Source_Files, Inline_Files,
Header_Files, Template_Files, Resource_Files and
Documentation_Files depending on which extension
types the command generates.

command The name of the command that should be used to process the
input files for the custom type.

commandflags Any options that should be passed to the command.

dependent
If this is given a value, then a dependency upon that value
will be givent to all of the generated files. The default for this
is unset and no dependency will be generated.

inputext This is a comma separated list of input file extensions that
belong to the command.

keyword <name>

This is a special assignment that allows the user to map
<name> into the project level namespace. The value (if any)
that is assigned to this construct must be one of the keywords
that can be used within a Define_Custom clause. The result
of this assignment is the ability modify the value of
keywords that are normally only accessible within the scope
of a custom component (e.g. command, commandflags,
etc.).

libpath
If the command requires a library that is not in the normal
library search path, this keyword can be used to ensure that
the command is able to find the library that it needs to run.

output_option If the command takes an option to specify a single file output
name, then set it here. Otherwise, this should be omitted.

pch_postrule
If this is set to 1, then a rule will be added to the custom rule
that will modify the source output files to include the
precompiled header file.

postcommand
This allows users to create arbitrary commands that will be
run after the main command is run to process the custom
input files.

o c i w e b . c o m 55

4 . 3 W r i t i n g M P C a n d M W C F i l e s

pre_extension

If the command produces multiple files of the same
extension, this comma separated list can be used to specify
them. For example, tao_idl creates two types of files per
extension (C.h, S.h, C.cpp, S.cpp, etc.) This applies to all
extension types.

source_pre_extension This is the same as pre_extension except that it only applies
to source files.

inline_pre_extension This is the same as pre_extension except that it only applies
to inline files.

header_pre_extension This is the same as pre_extension except that it only applies
to header files.

template_pre_extensi
on

This is the same as pre_extension except that it only applies
to template files.

resource_pre_extensi
on

This is the same as pre_extension except that it only applies
to resource files.

documentation_pre_e
xtension

This is the same as pre_extension except that it only applies
to documentation files.

generic_pre_extensio
n

This is the same as pre_extension except that it only applies
to generic files.

pre_filename
The syntax for this is the same as pre_extension, but the
values specified are prepended to the file name instead of the
extension. This applies to all extension types.

source_pre_filename This is the same as pre_filename except that it only applies to
source files.

inline_pre_filename This is the same as pre_filename except that it only applies to
inline files.

header_pre_filename This is the same as pre_filename except that it only applies to
header files.

template_pre_filenam
e

This is the same as pre_filename except that it only applies to
template files.

resource_pre_filenam
e

This is the same as pre_filename except that it only applies to
resource files.

documentation_pre_fi
lename

This is the same as pre_filename except that it only applies to
documentation files.

generic_pre_filename This is the same as pre_filename except that it only applies to
generic files.

Table 4-5 Define_Custom Keywords

Keyword Description

56 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

There is a special interaction between custom components and the source,
header and inline components. If a custom definition is set to be “automatic”
and custom component files are present but not specified, the default custom
generated names are added to the source, header and inline component lists
unless those names are already listed (or partially listed) in those component
lists. See “Custom Types and Build Rules” on page 53 for more information
about defining your own custom type.
Particular output extensions for custom build types are not required. However,
at least one output extension type is required for MPC to generate a target.
Your command does not necessarily have to generate output, but an extension
type is required if you want the input file to be processed during the project
compilation.
If the custom output can not be represented with the above output extension
keywords (*_outputext) and you have knowledge of the output files a priori,
you can represent them with the ’>>’ construct.

source_outputext
This is a comma separated list of possible source file output
extensions. If the command does not produce source files,
then this can be omitted.

inline_outputext
This is a comma separated list of possible inline file output
extensions. If the command does not produce inline files,
then this can be omitted.

header_outputext
This is a comma separated list of possible header file output
extensions. If the command does not produce header files,
then this can be omitted.

template_outputext
This is a comma separated list of possible template file
output extensions. If the command does not produce
template files, then this can be omitted.

resource_outputext
This is a comma separated list of possible resource file
output extensions. If the command does not produce resource
files, then this can be omitted.

documentation_outpu
text

This is a comma separated list of possible documentation file
output extensions. If the command does not produce
documentation files, then this can be omitted.

generic_outputext
If the command does not generate any of the other output
types listed above, then the extensions should be listed under
this.

Table 4-5 Define_Custom Keywords

Keyword Description

o c i w e b . c o m 57

4 . 3 W r i t i n g M P C a n d M W C F i l e s

Below is an example that demonstrates the use of ’>>’. The command takes an
input file name of foo.prp and produces two files that have completely
unrelated filenames, hello.h and hello.cpp.

project {
 Define_Custom(Quogen) {
 automatic = 0
 command = perl quogen.pl
 commandflags = --debuglevel=1 --language=c++ \
 --kernel_language=c++
 inputext = .prp
 keyword quogenflags = commandflags
 }

 Quogen_Files {
 foo.prp >> hello.h hello.cpp
 }

 Source_Files {
 hello.cpp
 }
}

You can use the ’<<’ construct to represent dependencies for specific custom
input file. For instance, in the above example, assume that foo.prp depends
upon foo.in, we would represent this by adding << foo.in as shown below.

 Quogen_Files {
 foo.prp >> hello.h hello.cpp << foo.in
 }

An additional construct can be used within the scope of a Define_Custom.
This construct is called optional, and can be used to represent optional
custom command output that is dependent upon particular command line
parameters passed to the custom command.
project {
 Define_Custom(TEST) {
 optional(keyword) {
 flag_keyword(option) += value [, value]
 }
 }
}

In the above fragment, keyword can be any of the pre_extension,
pre_filename keywords or any of the keywords that end in _outputext.
The flag_keyword can be any of the custom definition keywords, however
only commandflags has any functional value. The flag_keyword value is

58 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

searched for the option value contained inside the parenthesis. If it is found
the value or values after the += are added to the list specified by keyword.
This can also be negated by prefixing the option with an exclamation point
(!).
The example below shows how the optional construct is used by the custom
definition for the tao_idl command (see
ACE_wrappers/TAO/MPC/config/taoidldefaults.mpb). The -GA
option causes tao_idl to generate an additional source file (based on the idl
file name) with an A.cpp extension. The -Sc option causes tao_idl to
suppress the generation of S_T related files.

 Define_Custom(IDL) {
 ...
 inputext = .idl
 source_pre_extension = C, S
 header_pre_extension = C, S
 inline_pre_extension = C, S
 source_outputext = .cpp, .cxx, .cc, .C
 header_outputext = .h, .hpp, .hxx, .hh
 inline_outputext = .inl, .i
 keyword idlflags = commandflags

 optional(source_pre_extension) {
 commandflags(-GA) += A
 }
 optional(template_outputext) {
 commandflags(!-Sc) += S_T.cpp, S_T.cxx, S_T.cc, S_T.C
 }
 optional(header_pre_extension) {
 commandflags(!-Sc) += S_T
 }
 optional(inline_pre_extension) {
 commandflags(!-Sc) += S_T
 }
 }

For custom file types, there are a few keywords that can be used within the
custom file type component lists: command, commandflags, dependent,
gendir, postcommand, and recurse.
The recurse keyword works as described in Table 4-3, “Assignment
Keywords”.

o c i w e b . c o m 59

4 . 3 W r i t i n g M P C a n d M W C F i l e s

The command, commandflags, dependent and postcommand keywords
can be used to augment or override the value defined in the Define_Custom
section.
The gendir keyword can be used (only if output_option is set in
Define_Custom) to specify the directory in which the generated output will
go. Here is an example:

MOC_Files {
 commandflags += -nw
 gendir = moc_generated
 QtReactor.h
}

Source_Files {
 moc_generated/QtReactor_moc.cpp
}

In the above example, the -nw option is added to commandflags and the
generated file (QtReactor_moc.cpp) is placed in the moc_generated
directory. If the MOC custom definition did not have an output_option
setting, then options would need to be added to commandflags or a
postcommand would need to be defined to ensure that the output actually
went into the moc_generated directory.

Modify_Custom

An existing Define_Custom section can be modified by using
Modify_Custom. The syntax is identical to that of a Define_Custom.

Custom Post Command
When defining a postcommand as part of a Define_Custom, a few pseudo
template variables are available to provide some flexibility. The following
table shows the pseudo template variables that can be accessed only from the
postcommand. Please note that <% and %> are part of the syntax.
Table 4-6 Post Command Pseudo Variables

Variable Description
<%input%> The input file for the original command.
<%input_basename%> The basename of the input file for the original command.

<%input_noext%>
The input file for the original command with the extension
stripped off.

60 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

The following table describes the pseudo template variables that can be used
in the command, commandflags, dependent, output_option and
postcommand settings.

<%input_ext%> This gives the file extension of the input file (if there is one).
<%output%> The output file created by the original command.
<%output_basename%> The basename of the output file for the original command.

<%output_noext%>
The output file created by the original command with the
extension stripped off.

<%output_ext%>
This gives the file extension of the output file (if there is
one).

The output file can be referenced as a generic output file, or it can be
referenced as a component file using one of the following variables. If it
does not match the particular type the value will be empty.

<%source_file%> The output file if it has a source file extension.
<%template_file%> The output file if it is a template file.
<%header_file%> The output file if it has a header file extension.
<%inline_file%> The output file if it has an inline file extension.
<%documentation_file
%> The output file if it is a documentation file.

<%resource_file%> The output file if it has a resource file extension.

Table 4-7 Common Pseudo Variables

Variable Description

<%and%>
A platform and project non-specific representation of a
command conditional and.

<%cat%>
A platform non-specific command to print a file to the
terminal.

<%cmp%> A platform non-specific command to compare two files.
<%cp%> A platform non-specific command to copy a file.
<%crlf%> A platform non-specific line ending.
<%equote%> A project non-specific escaped double quote.

<%gt%>
A platform and project non-specific representation of a
greater than sign.

Table 4-6 Post Command Pseudo Variables

Variable Description

o c i w e b . c o m 61

4 . 3 W r i t i n g M P C a n d M W C F i l e s

4.3.2.3 The Feature File
The term feature, as used by MPC, describes different concepts or external
software that a project may require in order to build properly. The feature file
determines which features are enabled or disabled which has a direct effect on
whether or not MPC generates a project.
It supports the standard comment (//) and assignment of numbers to feature
names. These feature names will correspond to values given to the requires
and avoids keywords in mpc files.
If a feature is not listed in the feature file or is listed with a boolean value of
true (1), that feature is enabled. If a feature is listed and has a boolean value of
false (0), that feature is disabled.
If a feature name is listed in the requires value for a particular project and
that feature is enabled, that project will be generated. If the feature is not
enabled, the project will not be generated.
The opposite holds true for the avoids keyword. If a feature name is listed in
the avoids value for a project and the feature is disabled, that project will be
generated. If the feature is enabled, the project will not be generated.
The global feature file for MPC contains the following values.

<%lt%>
A platform and project non-specific representation of a less
than sign.

<%mkdir%> A platform non-specific command to make a directory.
<%mv%> A platform non-specific command to move a file.
<%nul%> A platform non-specific null device.

<%or%>
A platform and project non-specific representation of a
command conditional or.

<%os%> Returns either win32 or unix.
<%rm%> A platform non-specific command to delete a file.
<%quote%> A project non-specific representation of a double quote.

<%temporary%>
A temporary file name. The generated temporary file name
contains no directory portion and is the same for each use
within the same variable setting.

Table 4-7 Common Pseudo Variables

Variable Description

62 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

boost = 0
mfc = 0
qt = 0
rpc = 0
zlib = 0
zzip = 0

In the above contents, boost, mfc, qt, rpc, zlib and zzip are disabled for
each project generated. If these values do not suit your needs, then you must
do one of three things:
• Create a project specific feature file in the config directory (ex.

make.features) to set features for a particular project type.
• Create a default.features file in the config directory that contains

the feature set you need.

• Create a feature file anywhere you like with the features you want and use
the -feature_file option to specify the location.

• Use the -features option to dynamically modify the feature settings.
Generated projects will have a combination of features specified in the
global.features file as well as in your feature file. Therefore, if a feature
is disabled in the global file and you want to enable it, you must explicitly
enable it in your feature file.

4.3.2.4 Feature Projects
A feature project contains information as a project would, but can only be a
base project and will only be added to a sub project if the features that it
requires are enabled or the features that it avoids are disabled.
A feature definition requires at least one feature name. A name by itself
specifies that the feature must be enabled. A ’!’ in front of the feature name
indicates that the feature must be disabled. There may be more than one
comma separated feature listed between the parenthesis.
The following example show how to declare a feature project.

// ziparchive.mpb
feature(ziparchive) {
 includes += $(ZIPARCHIVEROOT)
 libpaths += $(ZIPARCHIVEROOT)/lib
 libs += ziparch
}

o c i w e b . c o m 63

4 . 3 W r i t i n g M P C a n d M W C F i l e s

With this example, any project that inherits from the ziparchive base
feature project will contain the project information only if the ziparchive
feature is enabled.

4.3.3 Defaults
MPC has been designed to minimize the amount of maintenance that goes into
keeping build tool files up-to-date with the project. If your source code is
organized properly, the maintenance of your mpc files should be minimal.
With the use of inheritance and proper code arrangement, an mpc file for a
TAO related project may be as simple as:

project: taoserver {
}

This project definition could be used to generate a project for a TAO server
with multiple idl, header and source files.
The idea of proper source layout is basically summarized as one directory per
binary target. If only the files that pertain to a single target are located in the
directory with the mpc file, then the MPC defaults will satisfy most project
needs.
Of course, it will not always be possible or desirable to organize your project
code in this fashion, so all defaulting behavior can be overridden. The next
sections describe the default behaviors of MPC and how to override them.

4.3.3.1 Source Files
New source files are added and others are removed quite often in a developing
project. If the Source_Files component is left out of an mpc file, then MPC
will assume that any file matching one of the source extensions is to be
included in the project. For most project types, the source extensions are:
.cpp, .cxx, .cc, .c and .C. Only the following extensions are considered
source extensions: .cpp, .cxx and .c for the vc6 project type as Visual C++
6.0 does not understand files with the .cc or .C extension.

4.3.3.2 Template Files
MPC assumes that any file matching one of the template extensions is to be
included in the project if the Template_Files component is left out of an
mpc file. For most project types, the template extensions are: _T.cpp,

64 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

_T.cxx, _T.cc, _T.c, _T.C, _t.cpp, _t.cxx, _t.cc, _t.c, and
_t.C. However, only the _T.cpp and _T.cxx extensions are considered
template extensions for the vc6 project type.
If the Source_Files component is defaulted, and a file is explicitly listed in
the Template_Files section that happens to appear to MPC as a source file (i.e.
has a source file extension, but does not have _T directly before it), MPC will
automatically exclude it from the Source_Files component.

4.3.3.3 Inline Files
As with source files, the Inline_Files component can be left out of an mpc
file to allow it to generate defaults. Files that match the .i and .inl
extensions are considered inline files.
The Inline_Files component has a special interaction with the
Source_Files component. If the Source_Files component has files listed
and the Inline_Files component is omitted, then each source file is
matched to an inline file. If the matching inline file is found or would be
generated from a custom command, it is added to the Inline_Files
component list.

4.3.3.4 Header Files
As with source files, the Header_Files component can be left out of an mpc
file to allow it to generate defaults. Files that match the .h, .hpp, .hxx, and
.hh extensions are considered header files.
The Header_Files component has a special interaction with the
Source_Files component. If the Source_Files component has files listed
and the Header_Files component is omitted, then each source file is
matched to a header file. If the matching header file is found or would be
generated from a custom command, then it is added to the Header_Files
component list.

4.3.3.5 Documentation Files
The Documentation_Files component, if omitted, will default to all files
that end in the following: README, readme, .doc, .html and .txt.

o c i w e b . c o m 65

4 . 3 W r i t i n g M P C a n d M W C F i l e s

4.3.3.6 Resource Files
The Resource_Files component, if omitted, will default to only the files
that end in .rc and are similar to the name of the project. For example, if a
directory contains three .rc files and the project name is foo, only the .rc
files that contain the word foo will automatically be added to the
Resource_Files component list.

4.3.3.7 Build Files
The Build_Files component, if omitted, will default to all files that end in
the following: .mpc, mpc and .mwc

4.3.3.8 Custom Defined Files
The Custom Defined Files components have a special interaction with the
Source_Files component. If the custom command generates source files
and has the automatic setting set to 1, they will automatically be added to
the Source_Files component list. If any of the files listed in the
Source_Files components list match any of the generated source file
names, then none of the generated source file names will be automatically
added to the Source_Files components list.

4.3.3.9 Example MPC File
The example below uses the directory contents of
$TAO_ROOT/orbsvcs/performance-tests/RTEvent/lib to illustrate
the simplicity of mpc files:

Auto_Disconnect.cpp Loopback_Supplier.h RTEC_Initializer.cpp
Auto_Disconnect.h Low_Priority_Setup.cpp RTEC_Initializer.h
Auto_Disconnect.inl Low_Priority_Setup.h rtec_perf_export.h
Auto_Functor.cpp Low_Priority_Setup.inl RTEC_Perf.mpc
Auto_Functor.h Makefile RTPOA_Setup.cpp
Auto_Functor.inl ORB_Holder.cpp RTPOA_Setup.h
Client_Group.cpp ORB_Holder.h RTPOA_Setup.inl
Client_Group.h ORB_Holder.inl RTServer_Setup.cpp
Client_Group.inl ORB_Shutdown.cpp RTServer_Setup.h
Client_Options.cpp ORB_Shutdown.h RTServer_Setup.inl
Client_Options.h ORB_Shutdown.inl Send_Task.cpp
Client_Pair.cpp ORB_Task_Activator.cpp Send_Task.h
Client_Pair.h ORB_Task_Activator.h Send_Task_Stopper.cpp
Client_Pair.inl ORB_Task_Activator.inl Send_Task_Stopper.h
Consumer.cpp ORB_Task.cpp Send_Task_Stopper.inl

66 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

Consumer.h ORB_Task.h Servant_var.cpp
Control.cpp ORB_Task.inl Servant_var.h
Control.h Peer_Base.cpp Servant_var.inl
EC_Destroyer.cpp Peer_Base.h Shutdown.cpp
EC_Destroyer.h PriorityBand_Setup.cpp Shutdown.h
EC_Destroyer.inl PriorityBand_Setup.h Shutdown.inl
Federated_Test.idl PriorityBand_Setup.inl Supplier.cpp
Implicit_Deactivator.cpp RIR_Narrow.cpp Supplier.h
Implicit_Deactivator.h RIR_Narrow.h SyncScope_Setup.cpp
Implicit_Deactivator.inl RT_Class.cpp SyncScope_Setup.h
Loopback_Consumer.cpp RT_Class.h SyncScope_Setup.inl
Loopback_Consumer.h RT_Class.inl TAO_RTEC_Perf.dsp
Loopback.cpp RTClient_Setup.cpp TAO_RTEC_Perf.dsw
Loopback.h RTClient_Setup.h Task_Activator.cpp
Loopback_Pair.cpp RTClient_Setup.inl Task_Activator.h
Loopback_Pair.h RTCORBA_Setup.cpp Task_Activator.inl
Loopback_Pair.inl RTCORBA_Setup.h
Loopback_Supplier.cpp RTCORBA_Setup.inl

The following mpc file (RTEC_Perf.mpc) shows the simple and small
number of lines required to generate usable build tool project files.

project(RTEC_Perf): strategies, rtcorbaevent, minimum_corba {
 sharedname = TAO_RTEC_Perf
 idlflags += -Wb,export_macro=TAO_RTEC_Perf_Export \
 -Wb,export_include=rtec_perf_export.h
 dllflags += TAO_RTEC_PERF_BUILD_DLL

 Template_Files {
 Auto_Disconnect.cpp
 Auto_Functor.cpp
 Low_Priority_Setup.cpp
 RIR_Narrow.cpp
 Servant_var.cpp
 Shutdown.cpp
 Task_Activator.cpp
 }
}

A line-by-line explanation of the example mpc file is listed below.

project(RTEC_Perf): strategies, rtcorbaevent, minimum_corba {

The first line declares a project named RTEC_Perf that inherits from the base
projects listed after the colon.

 sharedname = TAO_RTEC_Perf

o c i w e b . c o m 67

4 . 4 A d d i n g a N e w T y p e

Line 2 determines that the project is a library and the library name is
TAO_RTEC_Perf.

 idlflags += -Wb,export_macro=TAO_RTEC_Perf_Export \
 -Wb,export_include=rtec_perf_export.h

Lines 3-4 add to the flags passed to the IDL compiler when processing the idl
files.

 dllflags += TAO_RTEC_PERF_BUILD_DLL

The next line adds TAO_RTEC_PERF_BUILD_DLL to the dllflags, which
defines a macro that is used by the rtec_perf_export.h header file.

 Template_Files {
 Auto_Disconnect.cpp
 Auto_Functor.cpp
 Low_Priority_Setup.cpp
 RIR_Narrow.cpp
 Servant_var.cpp
 Shutdown.cpp
 Task_Activator.cpp
 }

Lines 7-15 name the listed cpp files as part of the Template_Files.
You may have noticed that there isn’t much to the file above. With the default
behaviors that are built into MPC, there does not need to be. We rely on the
defaults to determine the values of IDL_Files, Source_Files,
Inline_Files, and Header_Files. Since the template files do not match
the MPC built-in defaults, we must explicitly list them. We also rely on
inheritance to get many of the TAO-related options.

4.4 Adding a New Type
If MPC does not support a particular build tool, you may want to consider
adding a new project type. For instance, support could be added to MPC for
Boost Jam, Xcode and many others. To do so will require knowledge of the
MPC input files, as well as Object Oriented Perl.

68 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

4.4.1 Input File Syntax
This section describes the syntax of the files that are used during project
generation.

4.4.1.1 Template Files (mpd)
Template files make up the bulk of what MPC puts into each generated project
file. They provide the plain text and the layout of the data provided by the mpc
files, using various template directives.
Template directives are declared using a <% %> construct. This construct is
used to create if statements, for loops and to access variables. One thing to
note is that any text, including white space, that is not enclosed within <% %>
is left untouched and is passed directly into the generated project file.
An if statement can appear on a single line or it can span multiple lines. For
example, the following line:

<%if(exename)%>BIN = <%exename%><%else%>LIB = <%sharedname%><%endif%>

is equivalent to:

<%if(exename)%>
BIN = <%exename%>
<%else%>
LIB = <%sharedname%>
<%endif%>

A foreach statement can also appear on a single line or can span multiple
lines. As described below in the keywords section, the foreach statement
evaluates the variable in a space-separated list context.
There are a couple of ways to write a foreach loop. The first and preferred
way is to name the loop variable and then list each variable to be evaluated.

FILES=<%foreach(fvar, idl_files source_files header_files)%> <%fvar%><%endfor%>

The second way is to let the foreach statement determine the loop variable.
With this style, each value can be accessed via the first variable name passed
to the foreach with the trailing ’s’ removed.

FILES=<%foreach(idl_files source_files header_files)%> <%idl_file%><%endfor%>

o c i w e b . c o m 69

4 . 4 A d d i n g a N e w T y p e

Note that the <%idl_file%> variable will contain each individual value of
the idl_files, source_files and header_files list. If the variable in
the foreach does not end in ’s’, the variable of the same name within the
foreach will contain each individual value, e.g.,

<%foreach(filelist)%> <%filelist%><%endfor%>

Table 4-8 lists keywords that can appear in template files.
Table 4-8 Template File Keywords

Keyword Description

basename Evaluates the variable name and removes the directory
portion from that value.

basenoextension This is similar to basename except that the extension is
also removed from the variable name value.

comment
The value passed to comment is ignored and can be any
set of characters, except a new line or a closing
parenthesis.

compares
This function returns true if the variable value (first
parameter) is equal to the string value (second
parameter).

contains
This function returns true if the variable value (first
parameter) contains the regular expression (second
parameter).

dirname Evaluates the variable name and removes the basename
from that value.

duplicate_index

This function returns a number based on the number of
times a file with the same name (but different directory)
is seen within a project. The function returns false upon
the first occurrance of a file.

else Used with the if statement. An else block will be
evaluated if the statement does not evaluate to true.

endfor Used with foreach. This ends foreach block.

endif Used with the if statement. This ends an if or if/else
block.

ends_with
This function returns true if the variable value (first
parameter) ends with the regular expression (second
parameter).

eval
This is similar to eval in perl. The template code passed
to this function will be evaluated within the context of
the current template.

70 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

flag_overrides

This is directly related to overriding the project-wide
settings in an mpc file. It takes two variable names that
are comma separated. The first corresponds to a file
name and the second is any variable name.

foreach The given variable names are evaluated in a list context
which is space separated.

forfirst
Used with foreach. The literal value passed to
forfirst will be placed on the first iteration of
foreach.

forlast Used with foreach. The literal value passed to
forlast will be placed on the last iteration of foreach.

fornotfirst
Used with foreach. The literal value passed to
fornotfirst will be placed on each iteration of
foreach except for the first.

fornotlast
Used with foreach. The literal value passed to
fornotlast will be placed on each iteration of
foreach except for the last.

has_extension Returns true is the variable value has a file extension.

if

Used to determine if a variable is defined. The not
operator (!) can be used to invert the if check. This
construct will only check for values defined within an
mpc or mpt file. Default values (even those implemented
by the project creators) are not considered in the if
statement.

keyname_used

This function is used to associate a key with a variable
value. If the key has been associated with a variable
value more than once, the count of association will be
appended to the output.

lc Return the given variable value in all lower case
characters.

marker
This is directly related to the verbatim keyword from
the mpc syntax. This can be used to designate markers
within a template. Ex. <%marker(local)%>.

multiple This function returns true if the array parameter contains
multiple values.

noextension
Evaluates the variable name value as a file name and
removes the extension from that value including the
period.

Table 4-8 Template File Keywords

Keyword Description

o c i w e b . c o m 71

4 . 4 A d d i n g a N e w T y p e

normalize Convert dashes, slashes, dollar signs, parenthesis and
dots in the given variable value to underscores.

remove_from

This function will remove a file in a component list. It
requires two parameters. The first parameter is a
component name(e.g., Source_Files) and the second
parameter is a project or template variable name. The
third and fourth optional parameters allow you to alter
the project or template variable value in order to remove
files that do not match the value exactly. The third
parameter is a regular expression and the fourth paramter
is the value with which to replace the regular expression
match.

reverse This function reverses the order of the array parameter
values.

scope

This is used to set the scope of execution of a function
that will operate on the template output. A scope is
begun by passing "enter" and a function name with an
optional parameter. Currently, the only function name
supported is "escape". A scope is ended by passing
"leave".

sort This function sorts the array parameter values.

starts_with
This function returns true if the variable value (first
parameter) starts with the regular expression (second
parameter).

transdir

Replaces values within the directory portion of a variable
value with something that can be used as a relative path.
The current working directory is removed and ".." is
replaced with "dotdot".

uc Return the given variable value in all upper case
characters.

ucw
Return the given variable value with the first letter of
each word in upper case. Words are separated by spaces
or underscores.

uniq This function returns the unique set of the array
parameter values.

Table 4-8 Template File Keywords

Keyword Description

72 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

Table 4-9 lists special names that can be used as variables in some template
files. The variables listed in Table on page 60 can be used as well (except for
<%temporary%>).
Table 4-9 Special Values used in Template Files

Value Description

ciao Implemented by the GNUACE project creator module,
specifies that the project uses CIAO.

cppdir
This value is implemented by the BMake project creator
modules. It returns a semicolon separated list of directories
taken from each value in the Source_Files list.

custom_types Contains a list of the custom build types. See “Custom
Types” on page 73 for more details.

cwd The full current working directory.

forcount
This only has a value within the context of a foreach and
provides a 1 based count, by default, of the index of the
elements in foreach.

guid
This value is implemented by the VC7 project creator
module. It returns a guid value based on the project that is
usable within VC7 project files.

make_file_name
This value is implemented by the VC6 and EM3 project
creator modules. It returns the project name with the make
file extension that corresponds to the particular project type.

project_file This variable contains the name of the output file for the
current project being generated.

project_name This variable contains the name of the current project being
generated.

rcdir
This value is implemented by the BMake project creator
modules. It returns a semicolon separated list of directories
taken from each value in the Resource_Files list.

tao Implemented by the GNUACE project creator module,
specifies that the project uses TAO.

vcversion

This value is implemented by the VC7ProjectCreator. It
returns the version number of the type of project being
generated. 7.00 is return for vc7, 7.10 is return for vc71 and
8.00 is returned for vc8, 9.00 is returned for vc9, 10.00 is
returned for vc19.

vpath
This value is implemented by the GNUACEProjectCreator.
It returns a value, based on the location of the source files,
that specifies the VPATH setting for GNU Make.

o c i w e b . c o m 73

4 . 4 A d d i n g a N e w T y p e

Custom Types
To support multiple custom build types, a special keyword was introduced.
The custom_types keyword is used to access the list of custom types
defined by the user. In a foreach context, each custom type can be accessed
through the custom_type keyword.
A variety of information is available from each custom_type through the ->
operator. The input files, input extensions, command, command output option,
command flags, and output file directory are all accessible through the field
names that correspond to the particular type.
The input files associated with the custom type are accessed through
custom_type->input_files. Each input file has a set of output files
associated with it which can be accessed in a foreach context through
custom_type->input_file->output_files. The custom type fields are
listed in Table 4-10.

The example below, which creates generic makefile rules for building custom
input files, shows basic use of the custom type and the various fields that can
be accessed. The main limitation with the custom_types keyword, as can be

Table 4-10 Custom Type Fields

Value Description
command The command used for the custom type.
commandflags The command options not including the output option.

dependent This setting determines the command upon which custom
generated files should depend.

gendir

The output directory associated with a particular input file.
This field has no meaning when accessed directly through
the custom_type. It should always be used within the
context of a flag_overrides (See Table 4-8).

input_files The input files associated with the custom type.
inputexts The input file extensions associated with the custom type.
libpath The library path setting for the command.
output_option The optional command output option.

pch_postrule This setting determines whether the command needs
assistance in supporting precompiled headers.

postcommand Allows a user to execute arbitrary commands after the main
command is run to generate the output file.

74 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

seen below, is that the foreach variable cannot be named as stated on
page 68.

<%if(custom_types)%>
<%foreach(custom_types)%>
<%foreach(custom_type->input_files)%>
<%foreach(custom_type->input_file->output_files)%>
<%custom_type->input_file->output_file%>: <%custom_type->input_file%>

<%custom_type->command%> <%custom_type->commandflags%> $@

<%endfor%>
<%endfor%>
<%endfor%>
<%endif%>

Grouped Files
File grouping is part of the syntax of mpc files. If a set of files are grouped
within the mpc file, they can be accessed as a group within the mpd file.
Files (such as Source_Files, Header_Files) can be grouped together as
shown on page 50. Within the mpd file, the different components can be
accessed by prepending grouped_ to the component
(grouped_source_files, grouped_header_files, etc.)

The example below, which creates make macros for each file group, shows
basic use of grouping and the fields that can be accessed. The main limitation
with file grouping, as can be seen below, is that the foreach variable cannot
be named as stated on page 68. The following example involves source files,
but any of the components listed in 4.3.2.2 can be used.

<%if(grouped_source_files)%>
<%comment(Get back each set of grouped files)%>
<%foreach(grouped_source_files)%>
<%comment(This will provide the name of the group)%>
<%grouped_source_file%> = \
<%comment(Get all the source files in a single group)%>
<%foreach(grouped_source_file->files)%>
 <%grouped_source_file->file)%><%fornotlast(" \\")%>

Table 4-11 Grouped Files Field Names

Field Name Description
files The input files associated with the group.
component_name The name of the set of multiple groups of files.

o c i w e b . c o m 75

4 . 4 A d d i n g a N e w T y p e

<%endfor%>
<%endfor%>

ifndef <%grouped_source_files->component_name%>
 <%grouped_source_files->component_name%> = \
<%foreach(grouped_source_files)%>
 <%grouped_source_file%><%fornotlast(" \\")%>
<%endfor%>
endif
<%endif%>

4.4.1.2 Template Input Files (mpt)
Template input files provide build tool specific information that is common to
all projects, such as compiler switches, intermediate directories, compiler
macros, etc. Each project type can provide template input files for dynamic
libraries, static libraries, dynamic executables and static executables.
However, none of these are actually required by MPC.
The template input files are more free-form than the other MPC file types. It is
similar to the mpc syntax except that there is no project definition and there is
only one keyword. The keyword, conditional_include, is used to include
other mpt files if they can be found in the MPC include search path. If the
name listed in double quotes after conditional_include is not found, it is
ignored and no warning is produced. The mpt extension is automatically
added to the name provided.
The template input files contain variable assignments and collections of
variable assignments. A variable assignment is of the form:

variable_name = value1 "value 2"
variable_name += another_value

This variable can then be used within the corresponding mpd file.
Variable assignments can be grouped together and named within the mpt file
and used as scoped variables within the mpd file. The following example
shows the use of collections of variable assignments.

// mpt file
configurations = Release Debug
common_defines = WIN32 _CONSOLE

Release {
 compile_flags = /W3 /GX /O2 /MD /GR

76 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

 defines = NDEBUG
}

Debug {
 compile_flags = /W3 /Gm /GX /Zi /Od /MDd /GR /Gy
 defines = _DEBUG
}

conditional_include "vcfullmacros"

Below is the portion of the mpd file that would use the information provided
in the mpt file above.

<%foreach(configurations)%>
Name = <%configuration%>
<%compile_flags%><%foreach(defines common_defines)%> /D <%define%>=1<%endfor%>

<%endfor%>

The following output is generated from the above example:

Name = Release
/W3 /GX /O2 /MD /GR /D NDEBUG=1 /D WIN32=1 /D _CONSOLE=1

Name = Debug
/W3 /Gm /GX /Zi /Od /MDd /GR /Gy /D _DEBUG=1 /D WIN32=1 /D _CONSOLE=1

If a foreach variable value corresponds to a variable group name, that
variable group is available within the scope of that foreach.

4.4.2 A Simple Example
We will discuss what it would take to add support for a fictional build tool
throughout this section. The diagram on page 35 shows the relationship
between the template and project creator discussed below.

4.4.2.1 Template
The best thing to do is to start with the template. The template is the most
important piece when adding a new project type. It basically tells MPC how to
lay out all of the information it gathers while processing an mpc file. The
template file will have a mixture of plain text and the mpd syntax described in
4.4.1.1. Here is our sample fictional.mpd.

o c i w e b . c o m 77

4 . 4 A d d i n g a N e w T y p e

//===
// This project has been generated by MPC.
// CAUTION! Hand edit only if you know what you are doing!
//===

// Section 1 - PROJECT OPTIONS
ctags:*
debugSwitches:-nw
//end-proj-opts

// Section 2 - MAKEFILE
Makefile.<%project_name%>

// Section 3 - OPTIONS
//end-options

// Section 4 - TARGET FILE
<%if(exename)%>
<%exename%>
<%else%>
<%if(sharedname)%>
<%sharedname%>
<%else%>
<%if(staticname)%>
<%staticname%>
<%endif%>
<%endif%>
<%endif%>

// Section 5 - SOURCE FILES
<%foreach(source_files)%>
<%source_file%>
<%endfor%>
//end-srcfiles

// Section 6 - INCLUDE DIRECTORIES
<%foreach(includes)%>
<%include%>
<%endfor%>
//end-include-dirs

// Section 7 - LIBRARY DIRECTORIES
<%foreach(libpaths)%>
<%libpath%>
<%endfor%>
//end-library-dirs

// Section 8 - DEFINITIONS
<%foreach(macros defines)%>
-D<%macro%>

78 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

<%endfor%>
<%if(pch_header)%>
<%foreach(pch_defines)%>
-D<%pch_define%>
<%endfor%>
<%endif%>
//end-defs

// Section 9 - C FLAGS
<%cflags("-g")%>

// Section 10 - LIBRARY FLAGS
<%libflags%>

// Section 11 - SRC DIRECTORY
.

// Section 12 - OBJ DIRECTORY
<%objdir(".")%>

// Section 13 - BIN DIRECTORY
<%if(install)%><%install%><%else%>.<%endif%>

// User targets section. Following lines will be
// inserted into Makefile right after the generated cleanall target.
// The Project File editor does not edit these lines - edit the .vpj
// directly. You should know what you are doing.
// Section 14 - USER TARGETS
<%marker(top)%>
<%marker(macros)%>
<%marker(local)%>
<%marker(bottom)%>
//end-user-targets

// Section 15 - LIBRARY FILES
<%foreach(libs lit_libs pure_libs)%>
<%lib%>
<%endfor%>
//end-library-files

Note that output is generated differently depending upon whether
<%exename%>, <%sharedname%> or <%staticname%> is defined due to the
if statements that were used with relation these variable names. Also, certain
portions of the project file are only generated if particular variables are set.

o c i w e b . c o m 79

4 . 4 A d d i n g a N e w T y p e

4.4.2.2 Project Creator
Next, you would write the FictionalProjectCreator.pm. It may be best
to start with a copy of the MakeProjectCreator.pm and edit it. Change the
package name to FictionalProjectCreator and have it inherit from
MakeProjectBase and ProjectCreator. Then, override the methods that
are needed for this particular type.
package FictionalProjectCreator;

**
Description : A Fictional Project Creator
Author : Chad Elliott
Create Date : 10/01/2004
**

**
Pragmas
**

use strict;

use MakeProjectBase;
use ProjectCreator;

use vars qw(@ISA);
@ISA = qw(MakeProjectBase ProjectCreator);

**
Subroutine Section
**

sub convert_slashes {
 #my($self) = shift;
 return 0;
}

sub project_file_extension {
 #my($self) = shift;
 return '.fic';
}

sub get_dll_exe_template_input_file {
 #my($self) = shift;
 return 'fictionalexe';
}

80 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

sub get_dll_template_input_file {
 #my($self) = shift;
 return 'fictionaldll';
}

sub get_template {
 #my($self) = shift;
 return 'fictional';
}

1;

In our example, we inherit from the MakeProjectBase which provides some
methods that are common to all “make” based project creators.

We override the convert_slashes method to return 0. A zero return value
tells MPC not to convert slashes to back slashes (converting slashes is useful
for Windows related build tools).
We then override the project_file_extension method to return the
project file extension which is used by a method defined in the
MakeProjectBase module.
Next, we override the get_dll_exe_template_input_file and
get_dll_template_input_file methods. Those methods return the
specific template input file names for a dynamic executable and dynamic
library, respectively.
Lastly, we override the get_template method to return the template file
name for our new project type. In our case, the method returns fictional
which corresponds to the name of the template file we created earlier.
There are many other methods that can be overridden to change the way MPC
generates output. For a complete list, see the “Virtual Methods To Be
Overridden” section of the Creator.pm and ProjectCreator.pm.

4.4.2.3 Workspace Creator
The last part that you would need to write is the
FictionalWorkspaceCreator.pm. This module is usually more
code-intensive than its Project Creator counterpart.
package FictionalWorkspaceCreator;

**
Description : A Fictional Workspace Creator

o c i w e b . c o m 81

4 . 4 A d d i n g a N e w T y p e

Author : Chad Elliott
Create Date : 10/01/2004
**

**
Pragmas
**

use strict;

use FictionalProjectCreator;
use WorkspaceCreator;

use vars qw(@ISA);
@ISA = qw(WorkspaceCreator);

**
Subroutine Section
**

sub workspace_file_name {
 my($self) = shift;
 return $self->get_modified_workspace_name($self->get_workspace_name(),
 '.fws');
}

sub pre_workspace {
 my($self) = shift;
 my($fh) = shift;
 my($crlf) = $self->crlf();

 print $fh '<?xml version="1.0" encoding="UTF-8"?>', $crlf,
 '<!-- MPC Command -->', $crlf,
 "<!-- $0 @ARGV -->", $crlf;
}

sub write_comps {
 my($self) = shift;
 my($fh) = shift;
 my($projects) = $self->get_projects();
 my(@list) = $self->sort_dependencies($projects);
 my($crlf) = $self->crlf();

 print $fh '<projects>', $crlf;
 foreach my $project (@list) {
 print $fh " <project path=\"$project\"/>$crlf";
 }
 print $fh "</projects>$crlf";

82 o c i w e b . c o m

T h e M a k e f i l e , P r o j e c t , a n d W o r k s p a c e C r e a t o r (M P C)

}

1;

The first method we override from WorkspaceCreator.pm is the
workspace_file_name method. It is used to determine the output file for
the generated workspace.
Second, we override the pre_workspace method, which we use to print out
the generic unchanging section of our generated workspace.
Lastly, we override the write_comps method. This method is where the bulk
of the work is done in our workspace creator. A workspace creator has many
sets of data available. A reference to the list of project file names can be
obtained through the get_projects method; project-specific information
can be obtained through the get_project_info method which returns an
array reference where each array element is an array containing the project
name, project dependencies and a project guid (if applicable).

	The Makefile, Project, and Workspace Creator (MPC)
	4.1 Introduction
	4.2 Using MPC
	4.2.1 Supported Build Tools
	4.2.2 Command Line
	4.2.2.1 Additional Option Descriptions

	4.2.3 Environment Variables

	4.3 Writing MPC and MWC Files
	4.3.1 Input Files
	4.3.1.1 Project Files (mpc)
	4.3.1.2 Workspace Files (mwc)
	4.3.1.3 Base Project Files (mpb)
	4.3.1.4 Base Workspace Files (mwb)

	4.3.2 General Input File Syntax
	4.3.2.1 mwc and mwb
	4.3.2.2 mpc and mpb
	4.3.2.3 The Feature File
	4.3.2.4 Feature Projects

	4.3.3 Defaults
	4.3.3.1 Source Files
	4.3.3.2 Template Files
	4.3.3.3 Inline Files
	4.3.3.4 Header Files
	4.3.3.5 Documentation Files
	4.3.3.6 Resource Files
	4.3.3.7 Build Files
	4.3.3.8 Custom Defined Files
	4.3.3.9 Example MPC File

	4.4 Adding a New Type
	4.4.1 Input File Syntax
	4.4.1.1 Template Files (mpd)
	4.4.1.2 Template Input Files (mpt)

	4.4.2 A Simple Example
	4.4.2.1 Template
	4.4.2.2 Project Creator
	4.4.2.3 Workspace Creator

