CHAPTER 32

CIAO and CCM

32.1 Introduction

The OMG CORBA Component Model (CCM) (OMG Document
formal/06-04-01) defines a specification for implementing component
middleware. The Component-Integrated ACE ORB (CIAO) isTAO's
implementation of the CCM specification.

The CORBA Component Model is a step in the longtime evolution of
software engineering best practices towards higher levels of abstraction. CCM
isarealization of the concept of composing software from reusable, pluggable
components, assembled into an application at run time. When properly
applied, component-based software devel opment promotesimproved software
reuse, deployment flexibility, and programmer productivity.

32.1.1 Prerequisites
To better understand this chapter, the reader should be familiar with the
content of the following chapters from this guide:

» Chapter 2, “Building ACE and TAO"

|
@ I ociweb.com 1213

OBJECT COMPUTING, INC.

CIAO and CCM

32.1.2

» Chapter 4, “The Makefile, Project, and Workspace Creator (MPC)”
e Chapter 5, “TAO IDL Compiler”

« Chapter 11, “Value Types’

e Chapter 13, “Locad Interfaces”

What is a Component?

A component is a pluggable, self-contained software entity consisting of its
own encapsulated business logic and data with clearly defined interfaces for
collaboration. A component defines both the capabilitiesit provides and the
servicesit requires aswell as eventsit publishes and consumes, asillustrated
by the diagram.

Event
<<component>> Publisher

< > Facet ; >/
Implementation
\<) Facet
Implementation

Event
Consumer

Receptacle

Facets

Figure 32-1 A CCM Component

The CORBA 2.x object model lacks the expressiveness required to create
pluggable components. A CORBA 2.x IDL interface specifies a contract
between aclient and a server. That contract specifies what the server provides
and what the client can expect. However, agreat dea of information is
missing from that IDL contract. A client or server has no formal mechanism to
specify what it requires—namely, which IDL interfaces it depends upon to
accomplish its tasks. These dependencies are hidden in the implementation
code. Without knowledge of what each client or server requires, it is
impossible to connect the clients and servers at run time in a generic way.

1214

[
ociweb.com I

OBJECT COMPUTING, INC.

32.1 Introduction

The CORBA Component Model includes new IDL constructs for expressing
both the client and the server sides of component collaboration. This new
edition of IDL iscalled IDL3. IDL3isasuperset of traditional CORBA IDL,
or IDL2. The TAO IDL compiler accepts both IDL3 and IDL 2 interface
specifications.

A component defines its collaborations in terms of provided and required
interfaces. An IDL3 component specification consists of ports that indicate
how the component interacts with other components as both a client and a
server. There are several types of ports providing various capabilities:

» A facet defines an IDL interface provided by a component. Thisisthe
server-side of the traditional IDL contract.

* A receptacle defines an IDL interface that is used by a component. The
component may interact with that interface either through synchronous
calls or through AMI. Facets and receptacles are connected via assembly
descriptors that are processed at run-time.

* Anevent source or publisher defines an event type that is published by a
component. CCM events are strongly typed, as our example will illustrate.

* Anevent sink or consumer defines an event type that is consumed by a
component. Event sources and sinks are connected via assembly
descriptors that are processed at run-time.

» Anattribute provides a mechanism for configuring component properties
at application start-up.

An application consists of several components packaged together and
deployed at run time. A CCM-based application may consist of numerous
binary component implementations implemented in several different
programming languages communicating through CORBA.

The CCM specification defines a Component |mplementation Framework
(CIF) consisting of tools to simplify the implementation of components. The
CIF uses the Component I mplementation Definition Language (CIDL),
through which a component developer defines a composition to describe a
component’ simplementation details. A CIDL compiler generates a skeletal
version of the component’s C++ implementation, or executor. The developer
isleft to concentrate on application logic.

|
@ I ociweb.com 1215

OBJECT COMPUTING, INC.

CIAO and CCM

32.1.3

32.1.4

Component Deployment
A developer configures an application’ s component connections—facet to
receptacle, event source to event sink—via descriptor files that a component
server process loads at run time. The component server creates a component
container to instantiate a component and connect it to any collaborating
components through the appropriate ports. The component itself is deployed
inalibrary that is dynamically loaded into the component server at run time.

CORBA isthe underlying middleware infrastructure for the component
containers. The container programming model is built on the Portable Object
Adapter (POA). Components communicate through CORBA, assuring
interoperability. The diagram illustrates the component container’s
relationship to the CORBA infrastructure.

Container

Container

<<component>>

Q\

<<component>>

./
POA

.

POA

ORB

Figure 32-2 The Component Container and the CORBA Infrastructure

Summary of the CCM Programming Model
The CCM model of component programming extends the CORBA 2.x
programming model! in the following ways:

» A component specifies not only what it provides, but also what it requires.

» A component can provide multiple interfaces that are not related through

inheritance.

1216

[
ociweb.com I

OBJECT COMPUTING, INC.

32.1 Introduction

i

OBJECT COMPUTING, INC.

* A component specifies events it publishes and consumes directly in its
interface. Events are strongly typed value objects.

» Anapplication devel oper assembles and deploys a component-based
application by writing standard XML-based assembly and deployment
descriptors. The component server reads the descriptors at run-time to
load libraries and connect components, promoting loose coupling of
component implementations.

* A component developer can add capabilities to an existing component
without affecting existing clients by providing a new facet.

» A component developer does not need to have any direct interaction with
the Portable Object Adapter. The component container interacts with the
POA.

* A component developer does not writeamain () function.
* The component container instantiates and destroys the component.

e The component server provides standard services such as event
publication, transactions, persistent state, and security and enforces usage
policies consistently.

A CCM client does not have to be component-aware. A CORBA 2.x client can
bind to a component facet and interact with it without any knowledgethat it is
part of a CCM component.

ociweb.com 1217

CIAO and CCM

32.1.5

32.2

Road Map

The following sectionsillustrate the CCM programming model with an
example. The exampleillustrates the steps involved in developing a CIAO
application by tracing the road map outlined in the diagram.

< Define an IDL interface for each component and its facets
« Implement each component and its facets
< Define each component’s composition
< Implement a C++ executor for each component and facet
« Describe the application’s deployment
< Describe each component’s libraries and ports
« Connect component instances through their ports
< Deploy each component into a component container
¢ Build the application
< Run the application

Figure 32-3 Road Map

Asyou can see, component development and deployment primarily consists
of five phases: defining interfaces, implementing interfaces, describing the
deployment, building, and running. Defining and implementing interfaces
should be familiar to any CORBA developer. We will find that some of the
stepsinimplementing an IDL 3 interface are a bit different as we take
advantage of the CCM programming model. Describing the deployment,
involves defining XML descriptors to define how each component is
composed from itslibraries and how the components are connected together to
form an application. In the fourth step, building, we create a set of dynamic
libraries for each component. Finally, we run the application by executing
component serversto load the dynamic libraries and connect the components
together.

Example - The Messenger Application

Our CIAO example builds on the Messenger example used throughout this
guide. The exampl€e' s source code, build files, and XML descriptor files ares

1218

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

inthe $CIAO ROOT/examples/DevGuideExamples/Messenger
directory.

The CIAO Messenger example consists of three components: a Messenger, a
Receiver, and an Administrator. The Messenger publishes message events and
provides a history of all published messages. The Receiver subscribes to
message events and retrieves the Messenger’ s message history. The
Administrator controls the Messenger, starting and stopping publication and
changing the attributes of what the Messenger publishes. The relationship
between the three component types is demonstrated by the following
component diagram:

Runnable b
runnables
@),
<<component>> <<component>>
Messenger Publication Administrator
Q content
Historyé @ Message
message_consumer
) <<component>>
message_history Receiver

facet

40
J)— receptacle
—> > publisher

>>— consumer

Figure 32-4 Messenger Component Diagram

The diagram illustrates that the M essenger component provides three facets,
Runnable, Publication, and History. Each facet isan IDL interface. The
Messenger component also publishes Message events. Each Message event
isavalue-based event type. The Receiver component has a receptacle that
connectsto the Messenger’ sHistory facet. It also consumesMessage events
published by the Messenger. Finally, the Administrator component has two

|
@ I ociweb.com 1219

OBJECT COMPUTING, INC.

CIAO and CCM

receptacles connected to the Messenger’ sRunnable and Publication
facets, respectively.

The Messenger does not start publishing messages immediately at start-up.
The Administrator connects to the Messenger’s Runnable facet and invokes
thestart () operation on it to trigger message publication. Upon receiving a
start () request, the Messenger publishes messagesto all connected
Receivers until the Administrator tellsit to stop () . The “start publication”
collaboration isillustrated in the following interaction diagram:

sd StartPublishing)

::Administrator ‘ ‘ ::Messenger‘ receiverl receiver2
::Receiver :Receiver
Iaunch}

start r

loop) || publish > ﬁ
publish ’H

Figure 32-5 Start Message Publication

32.2.1 The Messenger Application’s IDL Interfaces
Thefirst task is to specify the Messenger application’sinterfaces using IDL.
Or, more accurately, using IDL 3. Next, we create a component type
specification for the Messenger, Receiver, and Administrator. After that, we
specify standard IDL interfaces for each of the facets provided by the

1220

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

Messenger, namely the History, Runnable, and Publication. Finaly, we
create aMessage event type whose instances the Messenger publishes.

< Define an IDL interface for each component and its facets
< Implement each component and its facets

< Define each component’s composition

< Implement a C++ executor for each component and facet
< Describe the application’s deployment

< Describe each component’s libraries and ports

< Connect component instances through their ports

< Deploy each component into a component container
¢ Build the application
< Run the application

Figure 32-6 Road Map

32.2.1.1 The Messenger Component and Facets

The Messenger component provides facets that implement the Runnable,
Publication, and History interfaces. It also publishes aMessage. Each
Receiver component consumes the Mes sages published by the Messenger and
usesthe History facet provided by the Messenger. The Administrator
component uses the Runnable and Publication facets provided by the
Messenger.

First, we specify IDL interfaces for the Runnable and Publication facets.
Both of these are IDL 2 interfaces that would be recognized by any CORBA
client:

// file Runnable.idl
interface Runnable {
void start();

void stop();

}i

// file Publication.idl
interface Publication {
attribute string text;
attribute unsigned short period;

}i

|
@ I ociweb.com 1221

OBJECT COMPUTING, INC.

CIAO and CCM

We put each IDL interfacein its own file as a programming convention. The
Runnable interface provides control over starting and stopping of message
publication. The Publication interface provides control over the published
message text and the period, in seconds, between messages.

The Messenger component publishes Message events. We define the
Message type using the new IDL3 keyword eventtype. An eventtype is
an IDL value type that inherits from the abstract value type

Components: : EventBase. Our Message event type has three public string
members. subject, user, and text.

// file Message.idl
#include <Components.idls>

eventtype Message {
public string subject;
public string user;
public string text;

}i

typedef sequence<Message> Messages;

We must include the IDL file Components. idl to use IDL3 keywords such
aseventtype. Likeany IDL valuetype, The Message event type may
contain operations and a factory. For more information on value types, see
Chapter 11.

However, we can simplify our event type implementation by restricting the
contents of the event type to public data members. For such an event type, the
IDL compiler generates afull event type implementation and automatically
registers the event type factory for us. Therefore, we do not add operations or
afactory to the event type.

The History facet contains operations to retrieve published Message events.

// file History.idl
#include <Components.idl>
#include <Message.idl>

interface History {
Messages get_all();
Message get latest();

}i

1222

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

The implementation of the History facet must keep track of each message
that it publishesfor later retrieval by clients.

Finally, we declare the Messenger component. The Messenger declaration
illustrates several of the new IDL 3 keywords introduced for component-based
programming.

// file Messenger.idl

#include <Components.idl>
#include <Runnable.idl>
#include <Publication.idl>
#include <Message.idl>
#include <History.idls

component Messenger {
attribute string subject;

provides Runnable control;
provides Publication content;

publishes Message message publisher;
provides History message history;

}i

home MessengerHome manages Messenger {};

The Messenger’ s component specification must include Components.idl to
make the IDL3 keywords available. It also includes IDL files for each of its
three facets and for the Message eventsit publishes.

The keyword component isanew IDL3 keyword that is used to define a
component.

component Messenger {

The component’ s definition can contain IDL attributes just like an IDL2
interface. However, the component’ s definition may not contain IDL
operations.

The Messenger component contains one attribute, the subject.

attribute string subject;

ociweb.com 1223

CIAO and CCM

Despite of the fact that the subject attribute iswritable it is not exposed to
the Messenger’s clients.

The Messenger component provides three facets.

provides Runnable control;
provides Publication content;
provides History message history;

Each facet isan IDL interface. A component uses the provides keyword to
indicate the servicesthat it offers. In the example, the Messenger’ sthree facets
are aRunnable facet called control for starting and stopping message
publication, aPublication facet called content for control over the
message content and publication period, and aHistory facet called
message history for access to all messages published by the component.
There is no limit to the number of clients that may access the Messenger’'s
facets.

The Messenger component publishes events:

publishes Message message publisher;

}i

Recall that aMessage is an event type. Published events are strongly typed.
There isno limit to the number of subscribers for a published event. The
Messenger component has neither direct knowledge of the event’ s subscribers
nor knowledge of the underlying messaging mechanism.

A publishes port may publish to an unlimited number of subscribers. A
second kind of publisher, called an emitter, islimited to one subscriber. An
emitter uses the emits keyword instead of the publishes keyword. The
CCM deployment framework enforces the emitter’ s limitation to one
subscriber at deployment time. Aside from the keyword, the emitter’s IDL
syntax is the same as the publisher’s. For example:

emits Message message publisher;
The home, called MessengerHome, manages the life cycle of the component.

home MessengerHome manages Messenger {};

1224

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.1.2

i

OBJECT COMPUTING, INC.

Note

Each component has a corresponding home. The component server uses the
home to create and destroy component instances. Our Messenger’ shome isthe
simplest possible home, implicitly defining acreate () operation. The home
construct will be discussed in more detail later.

The Receiver Component

The Receiver component receives Message events from the Messenger and
retrieves the message History from the Messenger.

// file Receiver.idl
#include <Components.idl>
#include <Messsage.idl>
#include <History.idls>

component Receiver {
consumes Message message consumer;
uses History message history;

}i

home ReceiverHome manages Receiver {};

The Receiver does not expose any facets, but instead indicateswhat it requires
viaauses specification. The Receiver usesaHistory facet, and consumes
Message events. The specification of not only what a component offers but
also what it requiresis asignificant step forward, as it enables connection of
components at deployment time. Both of these Receiver receptacles are
connected to corresponding facets on the Messenger component at
deployment.

The Receiver dso hasahome, ReceiverHome, Which is responsible for
creating and destroying Receiver component instances. Again, thisisthe
simplest possible home declaration.

home ReceiverHome manages Receiver {};

The Receiver’s IDL file does not have a dependency on the Messenger. The
Receiver knows about Message and History, but it does not need to know
anything about the component that provides those services. A component may
depend on IDL interfaces and event types, but it need not depend on other
components.

ociweb.com 1225

CIAO and CCM

32.2.1.3

Note

The Administrator Component

Finally, the third component type, an Administrator, triggers the Messenger’s
event publication and controls the period of its publication and the text that it
publishes.

// file Administrator.idl
#include <Components.idls>
#include <Runnable.idl>
#include <Publication.idls>

component Administrator {
uses multiple Runnable runnables;
uses multiple Publication content;

}i

home AdministratorHome manages Administrator {};

The Administrator uses both the Runnable and Publication facets
provided by the Messenger. These two receptacles are later connected to
corresponding facets provided by the Messenger. The Administrator’ shomeis
responsible for creating and destroying the Administrator component instance
at run time.

Theuses multiple keyword onthe Administrator's runnables and
content receptacles indicates that the Administrator can connect to more
than one Runnable facet and more than one Publication facet. These
facets may be provided by the same component or by different components;
the Administrator does not need to know. In our sample deployment the
Administrator connects to one Runnable facet and one Publication facet,
both from the same Messenger component.

The Administrator’s IDL file does not have a dependency on the Messenger.
The Administrator knows about Runnable and Publication, but it does not
need to know anything about the component that provides those services.

The Administrator, like all components, has a home to manageitslife cycle:

home AdministratorHome manages Administrator {};

1226

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.2

i

OBJECT COMPUTING, INC.

The homesin our example are the simplest possible. The default home
contains afactory that acts like a default constructor. It is possible to override
that factory and provide parameters to be passed into it.

To summarize, we' ve been exposed to several new IDL3 keywords:
Table 32-1 IDL3 Keywords

IDL3 Keyword

Description

component

Declares a component that can provide and use facets,
publish and consume events

provides

Declares an IDL interface that the component offers; the
interface defines a service offered

uses

Declares an IDL interface that the component requires

uses multiple

Declares that the component can connect to one or more
instances of the required interface

eventtype

Declares an event type that the component publishes; the
eventtype isan DL valuetype

publishes

Declares that the component publishes instances of an event
type to a potentially unlimited number of consumers

emits

Declares that the component publishes instances of an event
type to exactly one consumer

consumes

Declares that the component expects the event type to be
published to it by one or more publishers

home

Declares an interface used by the component container to
manage the component’slife cycle

manages

Declares which component is managed by the home

Implementing the Components

The CORBA Component Model specification defines a Component
Implementation Framework (CIF) consisting of toolsto simplify and automate
the implementation of components. A significant part of the CIF isthe
Component Implementation Definition Language (CIDL), through which a
component developer provides implementation details for each component
type. The CIDL compiler compilesthe CIDL files and generates a significant
portion of the C++ implementation code. The developer is |eft to concentrate

on application logic.

ociweb.com

1227

CIAO and CCM

We write CIDL filesfor the Messenger, Receiver, and Administrator
component types. Each CIDL file contains a component composition.

< Define an IDL interface for each component and its facets
< Implement each component and its facets

Q Define each component’s compositio@
¢ Implement a C++ executor for each component and facet
< Describe the application’s deployment
< Describe each component’s libraries and ports
< Connect component instances through their ports
< Deploy each component into a component container
¢ Build the application

< Run the application

Figure 32-7 Road Map

32.2.2.1 The Messenger Compaosition

The primary entity of aCIDL fileisacomposition. A composition
describes how a component is connected to itshome. A component can be
instantiated by more than one home; the composition designates the home
responsible for the component.
The declaration of the Messenger’ s composition follows:
// file Messenger.cidl
#include <Messenger.idl>
composition session Messenger Impl
{

home executor MessengerHome Exec

{

implements MessengerHome;
manages Messenger Exec;

}i
}i
The session isthe component’ slife cycle category. A session composition
provides transient object references and maintains its transient state for the
lifetime of the session. Once the component is destroyed, its object references

1228

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

areinvalidated and its state is lost. The other valid composition life cycle
categoriesareentity, service, and process. They are discussed later.

The name of the composition isMessenger Impl. The CIDL compiler
generates its implementation code into a C++ namespace called
Messenger Impl. The composition can have any name; it is customary to
end the namewith Impl.

Animplementation of acomponent or ahomeis called an executor. A CCM
developer implements an executor rather than a servant. The CIDL compiler
generates two abstract C++ executor classes, one for the component and one
for itshome, using the namesMessenger Exec and MessengerHome Exec
specified in the CIDL composition. The Messenger executors may have any
name; it is customary to end the each with the suffix Exec.

home executor MessengerHome Exec

{

implements MessengerHome;
manages Messenger Exec;

}i

Thehome executor defines which home is used to manage the life cycle of
the Messenger component.

The implements declaration declares which of the component’s homes
manages the component’ s life cycle. The Messenger component only has one
home, the MessengerHome, SO that isthe home we'll use. Note that we don't
need to indicate that the MessengerHome manages the M essenger
component; that relationship is defined in the MessengerHome's declaration.

The component devel oper overrides pure virtual methods in the generated
executor classesto provide the component implementation. The CIDL
compiler can optionally generate a default implementation of each C++
executor class. By default, it appends i to the executor class name. The
default implementation of the Messenger executor iSMessenger exec i,
and the default implementation of the MessengerHome executor is
MessengerHome exec_i. The component developer fillsthe application
logic into the generated Messenger executor implementation. The CIDL
compiler generates afull implementation for the MessengerHome’ s executor,
S0 no developer intervention is required.

ociweb.com 1229

CIAO and CCM

32.2.2.2 The Receiver and Administrator Compositions
The Receiver and Administrator compositions are similar to the Messenger
composition.
// file Receiver.cidl
#include <Receiver.idls>
composition session Receiver Impl
{
home executor ReceiverHome Exec
{
implements ReceiverHome;
manages Receiver Exec;
Vi
}i
The Receiver’s composition is called Receiver Impl, and it's home
executor implements the ReceiverHome. CIDL compiler generates an
abstract executor class for the ReceiverHome called ReceiverHome Exec
and an abstract executor class for the Receiver component called
Receiver Exec. Optionally, the CIDL compiler can generate default
implementations of the two executors.
// file Administrator.cidl
#include <Administrator.idls>
composition session Administrator_Impl
{
home executor AdministratorHome Exec
{
implements AdministratorHome;
manages Administrator Exec;
}i
}i
The Administrator’s composition is called Administrator Impl, andits
home executor implements the AdministratorHome. The CIDL compiler
generates an abstract executor class for the AdministratorHome called
AdministratorHome Exec and an abstract executor classfor the
Administrator component called Administrator Exec.
1230

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.3

i

OBJECT COMPUTING, INC.

To summarize, we' ve been exposed to severa new CIDL keywords:
Table 32-2 CIDL Keywords

CIDL Keyword Description
Declares a set of entities that work together to manage the
composition component’ s life cycle and implement the component’s
behavior

A component category characterized by transient state and
transient object identity

A component category characterized by objects having no
duration beyond the lifetime of a single client interaction

A component category characterized by persistent state that
isvisible to the user and persistent object identity

session

service

entity

A component category characterized by persistent state that
isnot visible to the user and persistent object identity

Declares the name of the abstract component home executor
class

process

executor

implements Declares the home that manages the component
manages Declares the name of the abstract component executor class

Compiling the IDL and CIDL

We compilethe IDL fileswith TAO s IDL compiler. The TAO IDL compiler
recognizes | DL 3 constructs such as component and eventtype. Additional
information on compiling the Messenger’s IDL filesis contained in 32.2.6.

We compile the CIDL fileswith CIAO’s CIDL compiler. Additional
information on compiling the Messenger’s CIDL filesisalso contained in
32.2.6. The CIDL Compiler Reference in 32.5 contains more extensive
information on using the CIDL compiler.

This section concentrates on the output of the IDL and CIDL compilers rather
than the mechanics of executing the IDL and CIDL compilers.

The CIDL compiler can generate most of the code for home, component, and
facet executor implementations through its - -gen-exec-impl
command-line option. For each component, home, or facet it generates a C++
class that inherits from a generated abstract executor class, leaving the
component developer to fill in the application logic.

ociweb.com 1231

CIAO and CCM

The diagram shows the files that the CIDL compiler generates when it

compilesMessenger.cidl.

IDL File

Messenger.idl CIDL File

I Messenger.cidl l

Compile IDL

MessengerC.h MessengerS.h
MessengerC.cpp| | MessengerS.cpp

Messenger Messenger
Stub Skeleton

Messenger_exec.h,
Messenger_exec.cpp

(Optional)
Default Executor
Implementation(s)

Messenger_svnt.h,
Messenger_svnt.cpp

Servants

Exeoutor. | Messengerec.n, N EEERA
Stub MessengerEC.cpp Skeleton

Compile CIDL

\
MessengerE.idl

Compile IDL

IDL File,
Executor
Interfaces

MessengerEC.h,
MessengerEC.cpp

Figure 32-8 Running the CIDL Compiler

We show both Messenger.cidl and Messenger . 1d1 asinputsto the CIDL
compiler because the Messenger.cidl fileincludesMessenger.idl.

1232

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

The CIDL compiler generatesan IDL file, MessengerE. 1d1, containing
local interfaces for the Messenger’ s component, home, and facet executors.
We compilethis IDL file with the IDL compiler to generate an abstract C++
executor class for each component and facet. Each component, home, and
facet executor implementation implements one of the local interfaces declared
inMessengerE. idl.

The CIDL compiler also generates complete C++ header and implementation
files for the servant classes. Thereis a servant class for each component,
home, and facet executor class. The CCM devel oper does not directly
instantiate servants; instead, the component container instantiates servants and
registers them with the Portable Object Adapter automatically.

The CIDL compiler optionally generates default component, home, and facet
executor implementation classesin files called Messenger exec.h and
Messenger exec.cpp. Those files contain definitions for five classes:
Messenger_ exec_i,MessengerHome exec i, Runnable exec i,
Publication exec i,andHistory exec_i. Thelatter three classes are
executors for the Messenger's Runnable, Publication, and History
facets. For safety, copy theMessenger exec.h andMessenger exec.cpp
filesto something like Messenger exec i.hand

Messenger exec_1i.cpp. Youmay alsowant to break the implementations
for History exec i, Runnable exec i, €tc., into different header and
implementation files as we' ve done in our sample code.

ociweb.com 1233

CIAO and CCM

The diagram illustrates the M essenger executor’s classes.

<<executor interface>>
CCM_Messenger

+get_content() =0
+get_control() =0
+get_message_history() = 0

T

<<session executor>>
Messenger_Exec

T

<<executor impl>>
Messenger_exec_i

+get_content():CCM_Publication
+get_control():CCM_Runnable
+get_message_history():CCM_History

Executor interface; in
MessengerEC.h and .cpp

Session executor; in
MessengerEC.h and .cpp

Executor implementation;
in Messenger_exec_i.h
and .cpp

[] Class generated by the CIDL compiler
[] Classimplemented by the component developer

Figure 32-9 The Messenger Executor’s Classes

The table summarizes the Messenger’ s executor implementation classes.

Table 32-3 Executor Implementation Classes

Executor

Implementation

Class Description

Messenger exec i Implements the Messenger component
MessengerHome exec_i | Implements the MessengerHome
Runnable exec_i Implements the Runnable facet
Publication exec i Implements the Publication facet
History exec i Implementsthe History facet

1234

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

32.2.4 Implementing the Executors
The CIAO CIDL compiler generates an empty implementation of each
component and facet executor. In the following sections, we implement the
facet executors for the Runnable, Publication, and History facets and
the component executors for the Messenger, Receiver, and Administrator

components.

¢+ Define an IDL interface for each component and its facets
¢ Implement each component and its facets
< Define each component’s composition
C Implement a C++ executor for each component and fac@
¢« Describe the application’s deployment
< Describe each component’s libraries and ports
< Connect component instances through their ports
< Deploy each component into a component container
¢ Build the application
¢« Run the application

Figure 32-10 Road Map

|
@ I ociweb.com 1235

OBJECT COMPUTING, INC.

CIAO and CCM

32.2.4.1 The Runnable Facet Executor
The Runnable facet is provided by the Messenger component and permits a

client to start and stop message publication. The component diagram

highlights the role of the Messenger’s Runnable facet.

Runnable

<<component>>
Messenger

O) runnables

Publication

O content

|
History 5 U Message

message_consumer

<<component>>
Administrator

message_history

facet
receptacle
publisher
consumer

AR

<<component>>
Receiver

Figure 32-11 The Messenger’s Runnable Facet

Recall that the Runnable IDL interfaceis asfollows:

// file Runnable.idl
interface Runnable {
void start();

void stop();

}i

1236

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

The CIDL compiler generates a default Runnable executor with empty
implementations of start () and stop () . The class diagram illustrates the
Runnable executor’s class hierarchy.

<<stub>>
Runnable

+start() CORBA::LocalObject
+stop()

<<executor interface>>
CCM_Runnable TAO_Local_RefCounted_Object

+start() = 0
+stop() =0

T

<<executor impl>>
Runnable_exec_i

+start()
+stop()

Class in the TAO Library
Class generated by the IDL compiler
Class generated by the CIDL compiler

|

Class implemented by the component developer

Figure 32-12 Class Diagram for the Runnable Executor

The IDL compiler generates aRunnable stub. The CIDL compiler generates
an abstract executor base class, CCM_Runnable, and optionally generates an
empty executor implementation, Runnable exec i. The CIDL compiler
generates a default constructor, a destructor, and a virtual method for each of
Runnable’s|DL operations and attributes.

|
@ I ociweb.com 1237

OBJECT COMPUTING, INC.

CIAO and CCM

Note

For each IDL interface “ MylInterface” that is a facet of a component, the
CIDL compiler generates an abstract facet executor class called
“ CCM_Mylnterface.”

An executor isalocal CORBA object. Its generated implementation class also
inherits from ::CORBA: : LocalObject. Additional information on local
objects can be found in Chapter 13.

The Messenger component only publishes messages when it can acquire the
Runnable executor'srun_lock. If the Messenger cannot acquire the run
lock, it blocks waiting for it to be released. A client of the Runnable facet
controlsthe run lock viathe start () and stop () operations.

The Runnable executor implementation follows. Changes to the
CIDL-generated empty executor implementation arein bold:

// file Runnable exec i.h

#include "Messenger svnt.h"
#include "tao/LocalObject.h"
#include <ace/Thread Mutex.h>

namespace Messenger Impl

{

class MESSENGER EXEC_Export Runnable exec_i
: public virtual ::CCM_Runnable,
public virtual ::CORBA::LocalObject
{

public:
Runnable exec i (void);
virtual ~Runnable exec i (void);
// Operations from ::Runnable
virtual void start ();
virtual void stop ();

ACE_Thread Mutex& get run lock();

private:
ACE Thread Mutex run lock_;
}

1238

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

Theincluded Messenger svnt.h header file contains the servant class
definitions for the Runnable, Publication, History, Messenger, and
MessengerHome. A component developer does not implement servant
classes; instead, the CIDL compiler generates servant classes and the
component container automatically instantiates them at runtime. A
component devel oper implements executor classes that have no relationship to
the server’s POA. The automatically-generated servant class delegates its
execution to the devel oper-written local executor object.

The executor implementation inherits from the generated abstract executor
base class, CCM_Runnable, and from : : CORBA: : LocalObject.
CCM_Runnable, inturn, inherits from the generated Runnable stub class that
the client uses. Thus, the executor implements the Runnable interface
generated by the IDL compiler. The start () and stop () operations are
declared as pure virtual methodsin the CCM_Runnable class, forcing the
executor to implement them.

Note the lack of inheritance from a POA Runnable class; instead, the CIDL
compiler generates aRunnable Servant classfor us.

Theinheritancefrom : : CORBA: : LocalObject enforcestwo behaviors: first,
the executor isa::CORBA: : LocalObject, meaning that it can only be used
from within the server process; second the executor has reference counting,
meaning that the inherited add ref () and remove ref () operations
must be used to manage the executor’s memory.

Our Runnable implementation contains aprivate ACE_Thread Mutex lock
and a public accessor method to retrieve it. The Messenger acquires this
run_lock before publishing each message and releases it after publishing
each message. If the Messenger cannot acquire the run_lock, it blocks until
thelock isreleased. A Runnable client can acquire and releasethe run_lock
throughthe start () and stop () operations. In thisway, a client can control
whether or not the Messenger publishes any messages.

The CIDL compiler also generates an empty, default implementation of the
Runnable exec_i class. Weimplement a constructor, the start () and
stop () operations, and an accessor for the mutex lock. Changes to the
CIDL-generated default executor implementation code are in bold.

// file Runnable exec_i.cpp

#include "Messenger_exec_i.h"
#include "ciao/CIAO_common.h"

ociweb.com 1239

CIAO and CCM

namespace Messenger Impl

{

Runnable_exec_i::Runnable exec_i (void)

{

// initially, the Messenger does not publish
this->stop();

}

Runnable_exec_i::~Runnable _exec_ i (void)

{
}

// Operations from ::Runnable

void
Runnable exec i::start ()

{

// Your code here.

// allows the Messenger to acquire the lock and publish
this->run lock .release()

}

void
Runnable exec i::stop ()

{

// Your code here.

// prevents the Messenger from acquiring the lock; can’t publish
this->run lock .acquire()

}

ACE Thread Mutex&
Runnable exec i::get run lock()

{

return this->run lock ;

}
}

The Runnable executor creates an ACE_Thread Mutex lock for the
Messenger to acquirein its event loop before publishing messages. If the
Messenger can’t acquire the lock, then it does not publish messages. This
agreement between the Runnable executor and the Messenger executor

1240

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

controls the suspension and resumption of message publication. Initially, the
Runnable executor holds the lock. The implementations of start () and
stop () release and acquire the lock, respectively. Theget run lock ()
accessor exposes the lock to the Messenger executor.

The CIDL compiler also generates executor implementations for the
Publication and History interfaces and the Messenger, Receiver, and
Administrator components.

32.2.4.2 The Publication Facet Executor
The publication facet is provided by the Messenger component and
permits a client to modify the text published and the period (in seconds)
between published messages.

Recall that the Publication IDL interfaceis asfollows:

interface Publication {
attribute string text;
attribute unsigned short period;

}i

The CIDL compiler generates an empty implementation of the Publication
executor. We add private class attributes to keep track of the message subject,
text, and period. Changes to the CIDL-generated code are in bold.

#include <string>
#include <ace/Thread Mutex.h>

namespace Messenger Impl

{
class MESSENGER _EXEC_Export Publication_exec i
: public virtual ::CCM Publication,
public virtual ::CORBA::LocalObject

{
public:
Publication exec_i (const char* text,
CORBA: :UShort period) ;
virtual ~Publication exec i (void);

// Operations from ::Publication
vrtual char* text ();

virtual void text (const char* text);

|
@ I ociweb.com 1241

OBJECT COMPUTING, INC.

CIAO and CCM

virtual CORBA::UShort period () ;
virtual void period (CORBA::UShort period) ;

private:
std::string text ;
CORBA: :UShort period ;

ACE_Thread Mutex lock ;
}i
}

The pattern is similar to the Runnable executor’'s. The

Publication exec i executor inherits from both the generated
CCM_Publication classand TAO'S : : CORBA: : LocalObject class. The
accessor and modifier for the text and period attributes are declared as pure
virtual methodsinthe CCM_Publication class, forcing usto implement
them in our executor.

Thetext andperiod class members hold information about the
publication. Because clients can modify the text and period, the executor uses
anACE Thread Mutex lock to protect them from simultaneous access. We
have to assume that a provided facet might be accessed by multiple threads at
the same time.

Theimplementation of the Publication executor follows. Again, changesto
the CIDL-generated default executor implementation code are in bold.

#include "Publication exec i.h"
#include "ciao/CIAO_ common.h"

namespace Messenger Impl

{

Publication exec i::Publication exec i (const char* text,
CORBA: :UShort period)
¢ text (text),
period (period)
{
}

Publication exec i::~Publication exec i (void)

1242

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

// Operations from ::Publication

char*
Publication_exec_i::text ()

{

ACE_Guard<ACE Thread Mutex> guard(this->lock);
return CORBA::string dup(this->text .c_str());

}

void
Publication exec i::text (const char* text)

{

ACE_Guard<ACE_Thread Mutex> guard(this->lock);

this->text = text;
ACE DEBUG((LM_INFO, ACE TEXT("publication text changed to %C\n"), text));

}

CORBA: :UShort

Publication exec i::period ()

{
ACE_Guard<ACE Thread Mutex> guard(this->lock);
return this->period ;

}

void
Publication exec i::period (CORBA::UShort period)

{

ACE Guard<ACE Thread Mutex> guard(this->lock);

if (period > 0) {
this->period = period;
ACE DEBUG ((LM _INFO,
ACE_TEXT ("publication period changed to %d seconds\n"), period));
} else {
ACE DEBUG ((LM_INFO,
ACE_TEXT ("ignoring a negative period of %d\n"), period));

The Publication executor contains text and a publication period. Because
the client may change either the text or publication period, we protect both
with amutex lock. The constructor sets the text and period values. The
attribute accessors and modifiers are straightforward, protecting those values
with the mutex lock. The period modifier ensures that the new period isa
positive number.

ociweb.com 1243

CIAO and CCM

32.2.4.3

The History Facet Executor

The Messenger component stores the messagesthat it publishesinaHistory
executor. TheHistory executor containsan STL list of published Message
events. We protect access to the list with an ACE_Thread Mutex lock
because multiple threads might add to and query the History list
simultaneously. We must assume that simultaneous access will happen.

Recall that the History IDL interfaceis asfollows, where Message isan
event type:

#include <Message.idl>

interface History {
Messages get_all();
Message get latest();

}i

The CIDL-generated History executor implementation follows, with our
changesin bold.

#include "Messenger svnt.h"
#include "Messenger exec_export.h"
#include "tao/LocalObject.h"

#include <list>
#include <ace/Thread Mutex.h>

namespace Messenger Impl

{

class MESSENGER EXEC_Export History exec i
: public virtual ::CCM_History,
public virtual ::CORBA::LocalObject

{

public:
History exec_i (void);
virtual ~History exec i (void);
// Operations from ::History
virtual ::Messages* get_all ();
virtual ::Message* get latest ();

void add(::Message* message) ;

private:
ACE Thread Mutex lock ;

1244

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

<

OBJECT COMPUTING, INC.

typedef std::list<::Message var> MessageList;
MessageList messages ;
}i

We add amutex lock and an STL 11ist of messages as private class attributes.
Thelock protects the message list from simultaneous access by multiple
threads. The STL list storesMessage varsto properly handle reference
counting and memory ownership. The Messenger component uses the public
add () method to add messages to the history asit publishes them.

The History executor implementation follows. As always, changes to the
CIDL-generated default executor implementation code arein bold. Comments
are interspersed with the code.

namespace Messenger Impl

{

History exec_i::History exec i (void)
}

History exec i::~History exec i (void)
{
}

// Operations from ::History

The implementation of the history’sget all () operation isthe most
challenging. It convertsthe STL list of Message varsinto an DL sequence
of Messages.

: :Messages*
History exec_i::get_all ()
{
// Your code here.
ACE_Guard<ACE Thread Mutex> guard(this->lock);

ACE DEBUG((LM_INFO, ACE TEXT("History i::get all\n")));

// create a Messages sequence, set its length

ociweb.com 1245

CIAO and CCM

}

: :Messages* retval = new ::Messages();
retval->length(this->messages .size());

// iterate through the MessagelList, copying messages into the return sequence
CORBA::ULong 1 = 0;
for (MessageList::iterator messageItr = this->messages .begin();

messageltr != this->messages .end();

++messageltr)
// because the MessageList contains Message vars, reference counting
// upon assignment into the sequence is handled properly for us.
(*retval) [i++] = *messageltr;

return retval;

Theget _all () operation creates anew Messages Sequence, setting its
length. It then iterates through the internal STL list of Message var, adding
each Message to the sequence. Because the STL list storesMessage vars
the assignment of each Message from the STL list to the sequence handles
memory management properly for us by incrementing the reference count on
each returned Message.

Theget latest () operation simply retrievesthelast Message added to the
list and returnsit.

:Message*

History exec_i::get latest ()

{

}

// Your code here.
ACE_Guard<ACE Thread Mutex> guard(this->lock);
ACE DEBUG ((LM INFO, ACE TEXT("History i::get latest\n")));

// just get the last message from the history. because the MessageList
// contains Message vars, _var to _var assigmnent handles the reference
// counting properly for us.

::Message var retval = this->messages_.back();

return retval. retn();

We extract the last Message into aMessage var and return it with the
_retn () operation to handle the reference counting of the Message properly.
We give up ownership of the Message when we return it, but we also want to

1246

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

keep the Message in theinternal list. The reference counting handles that for
us.

TheMessenger calsthelocal add () method to store published Messages.

void History exec i::add (::Message* message)

{

ACE Guard<ACE Thread Mutex> guard(lock);

// bump up the reference count; we don't own the parameter.
// the var in the STL list takes ownership of the "copy"
message-> add ref();

this->messages .push back(message);

}
}

It increments the reference count of the Message and storesit intheclass's
STL list. If we do not increment the reference count, then the STL list would
attempt to take ownership of aMessage that it does not own.

Theget all() andget latest () operationsare exposed to clients
through the History interface. The add () method is not part of the IDL
interface and is visible only through the Messenger implementation.

|
@ I ociweb.com 1247

OBJECT COMPUTING, INC.

CIAO and CCM

32.2.4.4 The Messenger Component Executor
The Messenger component provides the Runnable, Publication, and
History facets and publishes Message events. It delegates much of its work
totheRunnable, Publication, and History executors.

Runnable
o) runnables
<<component>> <<component>>
Messenger Publication Administrator
Dﬂ

Historyé & Message

message_consumer

<<component>>
message_history Receiver
—() facet
>— receptacle
——> > publisher
>>— consumer

Figure 32-13 The Messenger Component
Recall that the Messenger’s IDL specification is as follows:

component Messenger {
attribute string subject;

provides Runnable control;
provides Publication content;

publishes Message message_publisher;
provides History message history;

}i

home MessengerHome manages Messenger {};

|
1248 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

The Messenger’s component executor containsaget <facet names> ()
operation for each of its three provided facets to expose the facet to the
component container. As ageneral rule, for each IDL 3 statement of the form

provides <facet interface> <facet name>;

the CIDL compiler generates a operation of the form

::CCM_<facet_interface> ptr get_<facet name>();

Thus, the IDL statement

provides Publication content;

causes the CIDL compiler to generate an operation in the Messenger executor
with the signature

::CCM_Publication ptr get content();

The Messenger’ s MessengerHome manages the Messenger’s life cycle. The
component container creates an instance of the Messenger executor through
itsMessengerHome.

Recall that the Messenger’s CIDL composition is as follows:

composition session Messenger Impl

{

home executor MessengerHome Exec

{

implements MessengerHome;
manages Messenger Exec;

}i

The CIDL compiler uses both the Messenger’s IDL interface and its CIDL
composition to generate an implementation of its executor. It generates a
default Messenger executor with empty implementations of the

get control(),get content (), and get message history () facet

ociweb.com 1249

CIAO and CCM

accessors. The class diagram illustrates the Messenger executor class
hierarchy.

Components::EnterpriseComponent

<<executor interface>>

Components::
CCM_Messenger

SessionComponent

TAO_Local_RefCounted_Object
ACE_Task_Base
| AN

<<executor impl>>
Messenger_exec_i

+get_content() =0
+get_control() = 0
+get_message_history() =0

T

<<session executor>>
Messenger_exec

ZAN

CORBA::LocalObject

+get_content():CCM_Publication
+get_control():CCM_Runnable
+get_message_history():CCM_History

Class in the ACE Library, inheritance added by developer
Class in the CIAO Library

Class in the TAO Library

Class generated by the CIDL compiler

JONNL

Class implemented by the component developer

Figure 32-14 Messenger Executor Class Diagram

The IDL compiler does not generate aMessenger stub. The Messenger
component is not an IDL 2 interface. The CIDL compiler generates an abstract
executor base class, CCM_Messenger, just asit did for the Runnable facet.
The CIDL compiler also generates aMessenger exec class that identifies
the Messenger as a session component. A session component exports

1250

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

transient object references and is responsible for managing its own persistent
state if it has any.

The CIDL compiler optionally generates an empty executor implementation,
Messenger exec_i.The CIDL compiler generates a default constructor, a
destructor, and avirtual method for each of the Messenger’sfacets.

The executor implementation class a so inherits from

: : CORBA: : LocalObject, marking the Messenger exec i asa

CORBA: :LocalObject and allowing the component container to manage the
executor’s memory through reference counting.

The CIDL-generated executor implementation is as follows; as always, our
changes are in bold. Comments are interspersed through the class definition.

#include "Messenger svnt.h"
#include "Messenger exec_export.h"
#include "tao/LocalObject.h"

#include <string>
#include <ace/Task.h>

namespace Messenger Impl

{

// forward declarations for executor implementations referenced
// in the Messenger exec i class definition

class Runnable exec i;

class Publication exec_i;

class History exec i;

The Messenger executor is an active object, publishing messages in its own
thread. It inheritsfrom ACE_Task_Base to redlize the active object behavior.
There will be more on the implications of this later.

class MESSENGER EXEC Export Messenger exec i
: public virtual Messenger Exec,
public virtual ::CORBA::LocalObject,
public virtual ACE Task Base

{

public:

The CIDL compiler generates adefault constructor and destructor. Thereisno
reason to change the signatures of these methods.

Messenger exec i (void);
virtual ~Messenger exec_ i (void);

|
@ I ociweb.com 1251

OBJECT COMPUTING, INC.

CIAO and CCM

The CIDL compiler generates an empty accessor and modifier for the
subject attribute.

virtual char* subject ();

virtual void subject (const char* subject);

The CIDL compiler generates aget operation for each of the Messenger’s
three provided facets.

virtual ::CCM_Runnable ptr get control ();
virtual ::CCM_Publication ptr get content ();

virtual ::CCM_History ptr get message history ();

The Messenger has three facets: aRunnable facet called control, a
Publication facet called content, and aHistory facet called
message history.

// Operations from Components::SessionComponent

The CIDL compiler generates a callback operation to set the component’s
session context. It generates a session context class that is specific to the
component type. The component container instantiates and sets the
component instance’ s session context at application startup.

The session context contains methods that enable the component to interact
with the other components to which it is connected. Contexts are the glue that
plug collaborating components together. Aswe' |l see later, the Messenger
component publishes Message events to interested consumers through its
context.

virtual void set_session context (::Components::SessionContext ptr ctx);

The component container callsset session context () afterit
instantiates the component executor instance. The CIDL compiler also
generates a private class member called context to store the context and
generates the implementation of the set _session context () operation.
No work is required on the part of the component developer.

|
1252 ociweb.com @ I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPUTING, INC.

The CIDL compiler generates three callback operations through which the
component container indicates when the component is being activated,
passivated, or removed.

virtual void ccm_activate ();
virtual void ccm_passivate ();

virtual void ccm_remove () ;

The component container calls ccm_activate () to notify component that it
has been activated. The ccm_activate () call completes before any other
component operations are invoked. The component executor may perform its
initializationin ccm_activate (). The component devel oper can assume that
the session context has been initialized when the component container cals
cem_activate (). The Messenger’simplementation of ccm_activate ()
callSACE Task Base::activate () tolaunch amessage-publishing thread.

The component container calls ccm_passivate () to notify the component
that it has been deactivated. Here, the component executor should release any
resources acquired in ccm_activate (). The component container then calls
cem_remove () when the component executor is about to be destroyed. The
component developer can assume that the session context is still available
when the component container calls ccm passivate () or ccm_remove ().

Theccm activate(), ccm passivate (), and ccm _remove () operations
areregquired by the OMG CORBA Component Model specification.

The svc () method is an implementation detail that is specific to our
implementation of the Messenger executor.

virtual int svec();

It isoverridden from the inherited ACE_Task_Base class. Our
implementation of ccm_activate () calSACE Task Base::activate()
to launch athread that executesthe sve () method. The implementation of the
sve () method publishes Message events to interested consumers.

The CIDL compiler automatically generates a context class member.

private:
: :CCM_Messenger_Context_var context_;

ociweb.com 1253

CIAO and CCM

The component container calls set session context () to set the context
when it initializes the component executor. The Messenger publishesits
Message events through the context.

The component devel oper may add additional class members required to
implement the component executor. We add several.

private:
Runnable exec i* control ;
Publication exec i* content ;
History exec i* history ;

std::string subject ;
const std::string user ;
}i

The private control , content , and history class memberswill be
initialized by the user’s code to contain pointers to the facet executors for the
Runnable, Publication, and History facets of the Messenger component.
Theuser class member isastring that contains a user name that the
Messenger embeds into each Message it publishes.

The Messenger executor implementation follows. As always, changes to the
CIDL-generated default executor implementation code arein bold. Comments
are interspersed with the code.

#include "Messenger exec_i.h"
#include "ciao/CIAO_common.h"

The Messenger executor includes the executor class definitions for its
History, Runnable, and Publication facets.

#include <ace/0S.h>

#include "History exec_i.h"
#include "Runnable exec i.h"
#include "Publication exec_i.h"

namespace Messenger Impl

1254

[
ociweb.com I

OBJECT COMPUTING, INC.

32.2 Example - The Messenger Application

i

OBJECT COMPU