CHAPTER 4

The Makefile, Project, and Workspace
Creator (MPC)

4.1 Introduction

Maintaining multiple build tool files for a multi-platform project can be quite
achallenge, especialy when the project structure and platforms are constantly
changing and evolving. A project may support Makefiles, Visual C++ project
files, Borland Makefiles, and many others. Adding files, deleting files,
changing project options or even changing the name of the target within your
project will require you to expend time updating each build tool file. What you
need instead is a single location to store project specific information to avoid
repetitious, tedious modifications to multiple build tool files. Thisis where
Makefile Project Creator (MPC) comes into the picture.

MPC can be used to generate build tool specific project files from a generic
mpc file. The MPC project fileis a collection of source files that make up a
single build target. M PC uses platform specific input along with mpc files and
generates build tool specific files like makefiles, Visual C++ workspace and
project files, Visual Studio solution and project files, etc.

MPC provides many advantages over the build tool filesit replaces. It
provides mechanisms for minimizing maintenance of project build files. It

ociweb.com 33

8
3
o
3
5
3
7 I

The Makefile, Project, and Workspace Creator (MPC)

4.2

does this through support for project inheritance and defaults for all aspects of
aproject, and the syntax is simple and easy to use and maintain. These and
other features will be discussed in detail in the following sections. A complete
example of the use of MPC is shown in section 4.3.3.9.

Using MPC

An MPC project isaset of parameters that describe an individual build target
(such as alibrary or executable). These parameters include the target name,
include paths, source files, header files, etc. One or more projects can be
defined within asingle mpc file. An MPC workspace is just an arbitrary
collection of projects.

Projects can be generated (without workspaces) by using the mpc.pl script.
Multiple mpc files can be passed to this script. If no mpc files are passed to the
script, it will search for project-related files (such as source files, header files,
etc.) and incorporate them into a default project.

ociweb.com @

OBJECT COMPUTING, INC.

4.2 Using MPC

Figure 4-1 shows a high-level view of project file generation using mpc.pl.

=
MPC
File
> PrquIect
ile
Template Make Project .
File Creator (Makefile,
VCproj,
dsp, etc.)
=
Template

Input File

Figure 4-1 Generating projects with mpc.pl

To generate workspaces, you must run mwe . pl. This script will generate
projects from mpc files and create a workspace based on those mpc files. If no
mwec files are passed to the script, it will search in the current directory and its
subdirectories for al mpc files and incorporate them into a single workspace.

For make based project types (make, gnuace, bmake, nmake), aworkspaceis
just atop-level makefile. But, for graphical interfaces such as Visual Studio, a
workspace is the top-level file that groups all of the project files together.

|
@ I ociweb.com 35

OBJECT COMPUTING, INC.

The Makefile, Project, and Workspace Creator (MPC)

Figure 4-2 shows a high-level view of workspace file generation using

mwec.pl.

—

MWC
File

Worllzgfpace

ile

Make Workspace (Makefile,
dsw, dn,
etc.)

Figure 4-2 Generating workspaces with mwc.pl

421 Supported Build Tools

MPC generates workspaces and projects for use with many build tools. Table
4-1 lists the MPC types (used with mpc’'s -type option) and their associated

build tools.

Table 4-1 MPC Types

Type Build Tool
automake GNU Automake.
bcb2007 Borland C++ Builder 2007
bcb2009 CodeGear C++ Builder 2009
bds4 Support for Borland Developer Studio 4 isincomplete.
bmake Borland Make.
em3 eMbedded Visua C++ 3.00 and 4.00.
ghs Support for Green Hills C++ Builder isincomplete.
GNU Make for ACE/TAO/CIAO only (ACE/TAO/CIAO
ghuace extension).
Generic make. The makefiles generated by this project type
nake can be used with any version of make. However, due to
configuration issues, it should not be used with ACE or
TAO.
nmake Microsoft NMake.
sle Support for Visual SlickEdit isincomplete.
vcé Visual C++ 6.0.

36

ociweb.com @

OBJECT COMPUTING, INC.

4.2 Using MPC

Table 4-1 MPC Types

Type Build Tool

ve7 Visual C++ 7.0.

ve7l Visua C++ 7.1.

vcs Visual C++ 8.0.

ve9 Visual C++ 9.0.

veclo Visual C++ 10.0.

wb26 WindRiver Workbench 2.6.

4.2.2 Command Line
The command line options for the workspace creator (mwc . p1) and the project
creator (mpc.pl) are exactly the same. The project creator is used to generate
one or more separate projects by passing mpc filesto it on the command line.
The workspace creator is used to generate one or more workspaces and the
projects related to those workspaces.

Table 4-2 describes each option with the more commonly used optionsin bold
and project specific optionsinitalics.
Table 4-2 Command Line Options

Option

Description

-base

This option allows the user to force any project to inherit
from a specified base project. This option can be used
multiple times to force multiple inheritance upon a project.

-exclude

If thisoption is used with mwc . p1, the directories or mwc
files provided in a comma separated list will be excluded
when searching for mpc files. Each element provided for
exclusion should be relative to the starting directory. This
option has no effect when used with mpc . p1.

-expand_vars

This option instructs MPC to perform direct replacement of
$() variables with the values from the environment (if the
-use_env option is used) or the values specified by the
-relative option.

-feature file

This option allowsthe user to override the default feature file
(MPC/config/default.features or
ACE_wrappers/bin/MakeProjectCreator/config/de
fault.features) which may or may not exist. Thisfile
can be used to override feature values specified in the
global. features filelocated in the conf ig directory.
Feature files are described in section 4.3.2.3.

[
I ociweb.com

OBJECT COMPUTING, INC.

37

The Makefile, Project, and Workspace Creator (MPC)

Table 4-2 Command Line Options

Option

Description

-features

Specifies the feature list to set before processing. Thisisa
comma separated list and should contain no spaces.

-for_eclipse

Allows generated makefiles to be used with Eclipse.

-gendot

A .dot file, for use with Graphviz, will be created for each
workspace processed.

-genins

This option instructs MPC to generate an “install” file after
processing each project. These “install” files can be used
with the prj_install.pl script which will copy portions of the
project related filesinto a user specified location.

-gfeature file

Specifiesthe global feature file. The default global feature
fileisglobal.features foundinthe config directory.

-global

This option specifies the global input file. Values stored
within this base project are applied to all generated projects.
The default valueis
ACE_wrappers/bin/MakeProjectCreator/global.mp
b or MPC/config/global.mpb.

-hierarchy

If this option is used with mwc . p1, it will generate a
workspace at each directory between the directory in which it
isrun and the location of a processed mpc file. This option
has no effect when used with mpc . p1 and is the default for
“make”’ based workspace types.

-include

Include search directories are added with this option. These
search directories are used when locating base projects,
template input files and templates. It can be used multiple
times on the same command line.

-into

This option specifiesthat all generated project files will be
placed in amirrored directory structure.

-language

This option is used to specify which language to assume
when generating projects. The default language is
cplusplus, but csharp, java and vb are also supported.

-make_coexistence

Make based project types that normally name the workspace
Makefile (bmake or nmake) will name the generated
output files such that they can coexist within the same
directory. In essence, the bmake and nmake workspace
names will not beMakefile, but the name of the
workspace followed by the project type (. bmake or
.nmake).

38

ociweb.com @

OBJECT COMPUTING, INC.

4.2 Using MPC

Table 4-2 Command Line Options

Option

Description

-name_modifier

This option allows the user to modify the output names of
projects and workspaces. These are usually determined by
either the mpc or mwc file, but can be modified using a
pattern replacement. The parameter passed to this option will
be used as the pattern and any asterisks (*) found in the
pattern will be replaced with the project or workspace name
depending on which type of fileis being created.

-apply_project

Thisoptionisonly useful with the -name_modifier option.
When used in conjunction with -name modifier, the
pattern will be applied to the project name in addition to the
project or workspace name.

-nocomments

Comments will not be placed in the generated workspace
files.

-noreldefs

This option specifies that the default relative definitions
should not be generated. Seethe -relative option below.

-notoplevel

Thisoption tellsmwc . pl to generate all workspace related
project files, but do not generate the associated workspace.
Thisoption tellsmpc . p1l to process al mpc files passed in,
but it will not generate any project files.

-recurse

Search from the current directory for any input files and
process them from the directory in which they are located.

-relative

Relative paths are used to replace variables enclosed with
$ (). By default, any environment variable that endsin
_ROOT will be automatically used as arelative path
replacement. For more information see “ The -relative
Option.” on page 40.

-static

Specifies that static project fileswill be generated from the
MPC projects. The default isto generate dynamic project
files.

-template

This option alows a user to specify an alternate template.
Each project type hasits own template and this option allows
auser to override the default template.

Each project type has a set of template input files. With this
option the default template input file can be overridden for a
particular project type. For more information see “The -ti
Option.” on page 41.

-type

This option specifies the type of project or workspace to be
generated. It can be specified multiple times to generate
different project types for asingle set of input files.

[
I ociweb.com

OBJECT COMPUTING, INC.

39

The Makefile, Project, and Workspace Creator (MPC)

4221

Table 4-2 Command Line Options

Option Description

This option instructs MPC to replace al $ () instances with
-use_env the corresponding environment variable value instead of
using values provided by the -relative option.

Use this option to override an mpc project assignment from
the command line. This can be used to introduce new name
-value_project value pairsto a project. However, it must be avalid project
assignment. For more information see “ The -value_project
Option.” on page 41.

This option can be used to override existing template input
variable values from the command line. It can not be used to
introduce new template input name value pairs. For more
information see “The -value_template Option.” on page 42.

-value_template

-version The MPC version is printed and no files are processed.

The undocumented complete option can be used to
-complete generate atcsh complete command that allows a user of the
tcsh shell to complete on options as well as file names.

Additional Option Descriptions

Some of the optionsin Table 4-2 require an expanded explanation. Y ou will
find moreinformation on the -relative, -ti, -value project and
-value template options below.

The -relative Option.

Some project types do not (completely) support the idea of accessing
environment variablesthrough theuse of $ (), and therefore MPC must ensure
that generated projects are usable in these cases. In order to avoid the
existenceof $ () variableswithin the generated project files, relative paths are
put in place of those (where possible).

The -relative option takes a single parameter of a name value pair, for
example:

mwc.pl -relative PROJ TOP=/usr/projects/top

In above example, if thetext "s (PROJ_TOP) " isfound as a value for any
mpb, mpc, mpd, or mpt variable then it is replaced by a path that isrelative to
/usr/projects/top. For example, if an mpc file located under

40

/usr/projects/top/dir contained the following:
||
ociweb.com @ I

OBJECT COMPUTING, INC.

4.2 Using MPC

i

OBJECT COMPUTING, INC.

project {
includes += $(PROJ_TOP)

}
The generated project file would contain text similar to:

CPPFLAGS += -I..

The s (PROJ_TOP) string was replaced with adirectory value that is relative
to the directory in which the mpc file is located.

The -ti Option.

The -t 1 option allows you to identify different template input files based on
the type of target being built. Template input files correspond to four different
categories: d11, 1ib, d11_exe, and 1ib_exe. Not al project types
distinguish between the different categories, but the templates for various
project types will be combined with different template input files, depending
on the build target type, to generate different output.

To override the default template input file names, a -ti option is provided.
The -t1 option takes asingle parameter of theform type:file. Thetypeis
one of the four categories stated above and the £i1e isthe base name of an
mpt file located somewhere in the include search paths.

The following example shows a usage of the -ti option. It says that when
generating a static project (lib), usethe ve71ib template input file and when
generating a dynamic project (dil), use the ve7d11 template input file:

mpc.pl -type vec7l -ti lib:ve7dsplib -ti dll:vc7dspdll

These happen to be the default valuesfor the vc71 type, but it illustratesthat a
different template input can be specified for each category.

The -value_project Option.

The -value project option can be useful when the need arises to modify
the value of an MPC variable across one or more mpc files. For example, if
you wanted to generate all of your projects with an additional include search
path you would run the following command:

mwc.pl -value project includes+=/include/path

ociweb.com 41

The Makefile, Project, and Workspace Creator (MPC)

4.2.3

In the above example, an additional include search path of /include/path
would be placed in all generated projects.

The -value_template Option.

This option modifies existing or adds new template input name/value pairs.
For example, if you wanted to generate dynamic vc71 projects with only
Release targets, you would run the following command:

mwc.pl -type vc7l1 -value template configurations=Release

To find out what template input variables are defined, see the individual mpd
file of interest
(SACE_ROOT/bin/MakeProjectCreator/templates/*.mpd and
$MPC_ROOT/templates/*.mpd) and search for names used within <% and
%>. Names that are not listed as project keywords (Table 4-3 on page 47) are
template variables.

Environment Variables

MPC recognizes afew environment variables that alter the way it performs
certain tasks. The sections below describe each one and the effect it hason
MPC.

MPC will use the options defined in MPC_COMMANDLINE asif they were given
on the command line to mwec.pl or mpc.pl. The environment value will be
prepended to options actually passed to mwec.pl or mpc.pl on the actual
command line.

TheMPC_DEPENDENCY COMBINED STATIC LIBRARY environment variable
only affects the way workspace dependencies are created for static projects
with the em3, ve6, ve7, ve71, ve8, ve9 and vel0 project types. If this
environment variable is set, MPC will generate inter-project dependencies for
libraries within a single workspace. Thisis usually not desired since adding
these dependencies in a static workspace has the side effect of including
dependee libraries into the dependent library.

If the MPC_LOGGING environment variable is set, MPC will parse the value
and provide informational, warning and diagnostic messages depending on
it's setting. If the value contains info=1, informational messages will be
printed. If it containswarn=1, warning messageswill be printed. If it contains
diag=1, diagnostic messages will be printed. And lastly, if it contains

42

[
ociweb.com I

OBJECT COMPUTING, INC.

4.3 Writing MPC and MWC Files

detail=1, detail messages will be printed. If it contains none of these, MPC
will act asif MPC_SILENT was set.

TheMPC SILENT environment variable instructs MPC not to print any
messages, except error messages. The progress indicator is still printed.

If MPC_VERBOSE ORDERING is set, MPC will warn the user about references
to projectsinthe“after” keyword that have not been processed. This only
has an effect when running mwec . p1.

4.3 Writing MPC and MWC Files

Y ou may want to familiarize yourself with the various input files for MPC.
The input file types and the syntax of each are discussed in the sections below.

4.3.1 Input Files
There are four different input files associated with MPC. For most users of
MPC, the main files of concern are mpc and mwc files.

43.1.1 Project Files (mpc)

Project files, those with thempc extension, contain such things as include
paths, library paths, source files and inter-project dependencies. An mpc file
can contain one or more “projects’ each of which needs to be uniquely named
to avoid project generation errors. Projects represent build targets such as
libraries and executables.

4.3.1.2 Workspace Files (mwc)
Workspaces are defined by providing alist of mpc files, directories or other
mwc filesin asingle mwc file. For each mpc file, the Workspace Creator calls
upon the Project Creator to generate the project. After all of the projects are
successfully generated, the tool-specific workspace is generated containing
the projects and any defined inter-project dependency information (if
supported by the build tool). An mwc file can contain one or more
“workspaces,” each of which needsto be uniquely named. If no workspace
files are provided to the workspace creator, the current directory is traversed
and any mpc files located will be part of the workspace that is generated.

|
I ociweb.com 43

OBJECT COMPUTING, INC.

The Makefile, Project, and Workspace Creator (MPC)

43.1.3

4314

4.3.2

43.2.1

Base Project Files (mpb)

One of the many unique and useful features of MPC is that the project
definition files can use inheritance. Project inheritance allows a user to set up
abase project (mpb file) that can contain information that is applicable to all
derived projects. Common project attributes, such asinclude paths, library
paths, and inter-project dependencies, could be described in this base project
and any project that inherits from it would contain this information as well.

Base Workspace Files (mwb)

As with projects, workspaces can also inherit from other workspaces. A base
workspace can provide workspace information that may be common to other
workspaces.

General Input File Syntax
In this section we discuss the syntax of the various files. We a so describe
some of the default values that go along with these files.

mwc and mwb

Workspaces can contain individual mpc files or directories. There can be one
or more workspaces defined within asingle mwc file.

workspace (optional name): optional base workspace {
file.mpc
directory
other.mwc

exclude (ve6, ve7, ve7l, ve8, ve9, vecl0, nmake) {
this_directory

}
}

A workspace can be given aname. Thisisthe value given in the parentheses
after the keyword workspace. If the workspace is not given aname, the
workspace name is taken from the name of the mwec file without the extension.

Workspaces can also inherit from other workspaces. In the above example,
optional base workspace would be the base name of an mwb file with
no extension that contains workspace information. This information would
then be included in each workspace that inherits from it.

[
ociweb.com I

OBJECT COMPUTING, INC.

4.3 Writing MPC and MWC Files

i

OBJECT COMPUTING, INC.

Thelines between the curly braces contain assignments, mpc files, directories,
other workspace files or exclusion sections. The mpc files listed will be
included in the workspace. If adirectory is listed within the workspace, the
workspace creator will recursively traverse that directory and use any mpc
filesthat are found. If aworkspace fileislisted it will be aggregated into the
main workspace.

A workspace can have assignments interspersed within the directories and
mpc files. These assignments modify the way projects are generated.

The cmdline setting can be used to provide command line options that would
normally be passed to mwec . pl (see Table 4-2). However, the -type,
-recurse, -noreldefs, -make coexistence, -genins, -into and
-language options aswell asinput files are ignored. Environment variables
may be accessed through $NAME, where NAME is the environment variable
name. The cmdline assignment may be useful for workspaces that require
specific mwe . pl optionsin order to process correctly.

The only other setting supported by mwc.pl isimplicit. If implicit isset
to 1 then default project files are generated in each directory where no mpc
file exists. The implicit keyword can also be set to the name of abase
project. In this case, the implicitly generated project will inherit from the base
project specified in the assignment. Either way, if the directory does not
contain files that can be used within a project, no project is created. Setting
implicit can be useful when you want to define specific workspaces, but the
MPC defaults are sufficient for the directories involved within the workspace.

Scoped assignments are assignments that are associated with specific mpc
files or directories listed with the scope of the assignment. The following
example shows a scoped assignment of cmd1ine that only appliesto one of
the mpc files listed in the workspace. Inthisexample,
directory/foo.mpc would be processed asif the -static option had been
passed on the command line whereas other directories and mpc files would
not.

workspace {
static {
cmdline += -static
directory/foo.mpc
}

exclude (gnuace, make) {
some . mpc

ociweb.com 45

The Makefile, Project, and Workspace Creator (MPC)

43.2.2

}
}

Exclusion sections are used to prevent directories and mpc files from being
processed. These excluded directories and mpc files will be skipped when
generating project files and workspaces. The exclude keyword accepts
project types within the parentheses (as above), which will cause the
workspace creator to only exclude the listing for particular types. If no types
are provided, exclusion will take place for al project types.

Comments are similar to the C++ style comments. Any text after a double
dash (//) is considered a comment.

mpc and mpb

Project Declarations

Project declarations are similar to workspace declarations, but are a bit more
complex. An mpc file can contain one or more “projects’ and each project can
inherit from base projects.

project (optional name): base project, another base project
exename = client
includes += directory name other directory
libpaths += /usr/X11R6/1lib

Header Files {
filel.h
file2.h
fileN.h

}

Source Files {
filel.cpp
file2.cpp
fileN.cpp

}

}

If the optional project name is not given, then the project nameis taken from
the name of the mpc file without the extension. Therefore, if your mpc fileis
going to contain multiple projects, it isimportant to provide project names to
prevent each generated project from overwriting the other. MPC will issue an

46

error and stop if duplicate project names are detected.
||
ociweb.com @ I

OBJECT COMPUTING, INC.

4.3 Writing MPC and MWC Files

Base Projects

Base projects can be of the extension mpb and mpc. If afile with the name of
the base project with an mpb or mpc extension cannot be found within the mpc
include search path, afatal error isissued and processing halts.

Assignment Keywords
Table 4-3 shows the keywords that can be used in an assignment (i.e. =, += or
- =) within an mpc file. The most commonly used keywords are shown in bold

face.
Table 4-3 Assignment Keywords

Keyword Description

after Specifies that this project must be built after 1 or more
project names listed.
Specifies which features should be disabled in order to

avoids generate the project file. Under the GNUACE type, it also
specifies which make macros should not be set to build the
target.
This setting instructs MPC to create projects that only

custom onl contain custom generation targets. Any filesincluded in the

_only projects will be provided by custom component lists defined

through the use of Define Custom.

dilout If defined, specifies where the dynamic libraries will be
placed. This overrides libout in the dynamic case.

; Specifies preprocessor flags passed to the compiler when

dynamicflags building a dynamic library.
Determines that the project will be an executable and the

exename name of the executable target.

exeout Specifies where executables will be placed.

includes Specifies one or more directories to supply to the compiler
for use as include search paths.

libout Specifies where the dynamic and static libraries will be
placed.

liboaths Specifies one or more directories to supply to the compiler

P for use as library search paths.

Specifies one or more librariesto link into the target. Library

libs modifiers may be added when being processed in the
template file. For example, library modifiers are added when
using the vc6 project type.

|
@ I ociweb.com 47

OBJECT COMPUTING, INC.

The Makefile, Project, and Workspace Creator (MPC)

Table 4-3 Assignment Keywords

Keyword Description

lit libs Thisisthe same aslibs except that alibrary modifier will not
— be added.

Values supplied here will be passed directly to the compiler
as command line defined macros.

Specifies that the source files should be compiled as
managed managed C++. Thisisonly supported by the nmake, vc7,
vc71, and vcs project types.

It specifies that precompiled headers should not be used for
the source files listed within the scope of it’s setting. This

macros

no_pch keyword can only be used as a source component scoped
setting (i.e., inside the scope of Source Files).
ch header The name of the precompiled header file. See the discussion
pen_ below this table for more information.
The name of the precompiled source file. See the discussion
pch_source below this table for more information.

If thisis defined in the project, the value will be interpreted
as commands to run after the project has been successfully
postbuild built. The <% %> construct (See“ Template Files (mpd)” on
page 68.) can be used within this value to access template
variables and functions of the template parser.

If thisis defined in the project, the value will be interpreted
ascommandsto run beforethe project hasbeen built. The <%
prebuild %> construct (See“ Template Files (mpd)” on page 68.) can
be used within this value to access template variables and
functions of the template parser.

Thisissimilarto 1it 1ibs except that no prefix or
extension is added to the names specified.

If set to 1, MPC will recurse into directories listed under
component listings (such as Source Files, Header Files,
recurse etc.) and add any component corresponding filesto the list.
This keyword can be used as aglobal project setting or a
component scoped setting.

Specifies which features should be enabled in order to
generate the project file. Under the GNUACE type, it also

pure_libs

requires specifies which make macros should be set to build the
target.
Determines that the project will be alibrary and the name of
sharedname the dynamic library target. See the discussion below this

table for more information.

|
48 ociweb.com I

OBJECT COMPUTING, INC.

4.3 Writing MPC and MWC Files

i

OBJECT COMPUTING, INC.

Table 4-3 Assignment Keywords

Keyword Description

Specifies preprocessor flags passed to the compiler when
building a static library.

Determines that the project will be alibrary and the name of

staticflags

staticname the static library target.

taochecks For GNUACE Make only, specifies one or more hames to
& search for in the macros specified by tagname.

tagname Specifies the GNUACE Make macro to check before

building the target.
version Specifies the version number for the library or executable.

Determines whether the project isaWeb Application. A web
web application project will have no project file written but the

app information will be included in the workspace if web
applications are supported by the project type.

Assignments can also use the += and - = operators to add and subtract values
from keyword values.

If a sharedname isspecified in the mpc file and staticname isnot used,
then staticname isassumed to be the same as sharedname. Thisaso
appliesin the opposite direction.

If neither exename, sharedname nor staticname is specified, MPC will search
the source filesfor amain function. If amain isfound, the exename will be
set to the name of the file, minus the extension, that contained the main
function. Otherwise, sharedname and staticname will be set to the project
name.

If the project name, exename, sharedname or staticname contain an asterisk it
instructs MPC to dynamically determine a portion of the name based on
certain defaults. If the project name contains an asterisk, then the asterisk will
be replaced with the default project name. If exename, sharedname or
staticname contains an asterisk, then the asterisk will be replaced with the
project name.

If the pch header keyword is not used and afile exists, in the directory in
which the mpc file is located, that matches * pch.h it isassumed to be the
precompiled header for that directory. If there are multiple pch filesin the
directory, then the precompiled header that closely matches the project name
will be chosen. Similar logic appliesfor the pch_source keyword.

ociweb.com 49

The Makefile, Project, and Workspace Creator (MPC)

Components

An mpc file can also specify the filesto beincluded in the generated “ project
file. Thesefiles are specified using the component names shown in Table 4-4.
However, most of the time users will want to allow MPC to provide the
default values for project files.

Table 4-4 Component Names and Default Values

Name Default Value

Defaultsto dl filesin the directory that have the
following extensions: mpc, mpb, and mwc.

Defaultsto al filesin the directory that have the
following extensions: cpp, cxx, cc, ¢, and C.

Defaultsto dl filesin the directory that have the
following extensions: h, hpp, hxx, and hh.

Defaultsto al filesin the directory that have the
following extensions: i and inl.

Defaultsto al filesin the directory that end in the
following: T.cpp, T.cxx, T.cc, T.c,and T.C.

Defaultsto al filesin the directory that match the
following: README, readme, .doc, .html and . txt.

Defaultsto all filesin the directory that match the project
name and have an rc extension.

Build Files

Source Files

Header Files

Inline Files

Template Files

Documentation Files

Resource Files

If acomponent is not specified in the mpc file, the default value will be used.
To disallow a particular set of files that may exist in the directory, you must
declare an empty set of the particular component type.

Each component name accepts two forms. The first form isasimple list of
files within the construct.

Source Files {
filel.cpp
file2.cpp

}
The second form is acomplex list of files within named blocks.

Source Files (MACRO NAME) {
Blocka {
filel.cpp
file2.cpp

}

|
50 ociweb.com @ I

OBJECT COMPUTING, INC.

4.3 Writing MPC and MWC Files

i

OBJECT COMPUTING, INC.

BlockB {
file3.cpp
file4.cpp

}

}

The second form allows the user to logically group the files to make future
maintenance easier. Using thisform has the effect of visually grouping filesin
the generated project file for the em3, gnuace, vcé, ve7, ve71, ve8, ve9 and
vcl10 project types.

If afileislisted inthe Source Files component list and a corresponding
header or inline file exists in the directory, it is added to the corresponding
component list unlessit is aready listed.

Verbatim Clause
Theverbatim construct can be used to place text into a generated project file
verbatim. The verbatim syntax is asfollows:

verbatim(<project type>, <location>) {
}

When MPC is generating a project of type <project types> and encounters
amarker inthe template file (see Table 4-8 on page 69) that matches the
<location> hame, it will place the text found inside the construct directly
into the generated project. If the text inside the construct requires that white
space be preserved, each line must be enclosed in double quotes. The
following verbat im example would result in gnuace generated projects
having arule at the bottom of the GNUmakefile wherethe all: target
depends on foo.

verbatim(gnuace, bottom) {
all: foo

}

Expand Clause

The expand keyword can be used to provide values for variable names
enclosed within $ () . In the example below, we see the name VAR NAME
inside the parenthesis. Whenever MPC sees $ (VAR _NAME) it will attempt to
replace it with values from the expansion list. MPC will first try to replace it
with the value of the environment valriable named ENV_VAR. If that

ociweb.com 51

The Makefile, Project, and Workspace Creator (MPC)

environment variable has avalue, it will be used. Otherwise, it will continue
down thelist until a suitable valueisfound. In this example, the text
last_resort value will beused. MPC will leavethe$ () valueasitwasin
the event that no value is found.

expand (VAR_NAME) {
$ENV_VAR
last_resort value

}

Specific Clause

The specific keyword can be used to define assignments that are specific to
aparticular project type. Thiswill allow platform or OS-specific values to be
placed into a project. For example, on one platform you may want to link in a
library named gt -mt, but on another you need to link in gt -mt230nc.

specific (bmake, nmake, vcé6, vc7, vc7l, vc8) {
lit_1libs += gt-mt230nc

} else {
lit 1libs += gt-mt

}

If an else clauseis provided, it isrequired to be on the same line asthe closing
curly brace. Y ou may aso negate the project type (using '!") which will cause
the specific to be evaluated for al types except the type specified.

If akeyword used within a specific section isnot recognized as avalid
MPC keyword, it isinterpreted to be template value modifier. In this situation,
this construct works exactly the same way asthe -value template
command line option (see Table 4-2 on page 37).

Conditional Clause
This scope allows addition of source files conditionally based on a particular

project type. The syntax is as follows:

conditional (<project types> [, <project type> ...]1) {
sourcel.cpp

}...

conditional (<project type> [, <project type> ...]) {
sourcel.cpp

52

ociweb.com @

OBJECT COMPUTING, INC.

4.3 Writing MPC and MWC Files

} else {
source2.cpp

}...

If the elseis provided, it is required to be on the same line as the closing curly
brace. Y ou may also negate the project type (using '!’) which will cause the
conditional to be evaluated for al types except the type specified.

Custom Types and Build Rules
MPC alows you to define your own custom file types to support a variety of
custom build rules. Below is an example of a custom definition.

project {

Define Custom(MOC)
automatic
command
output_option
inputext
pre_extension
source_outputext
keyword mocflags

}

0w O

(QTDIR) /bin/moc

el
.h

=]

ocC

.Ccpp
commandflags

LU | | N [

// Custom Component
MOC Files {
QtReactor.h

}

Source Files {
QtReactor_moc.cpp
}
}

The above example defines a custom file type, “Moc”, that describes basic
information about how to process the input files and what output files are
created. Once the custom file type is defined, MOC_Files can be used to
specify the input files for this new file type.

|
@ I ociweb.com 53

OBJECT COMPUTING, INC.

The Makefile, Project, and Workspace Creator (MPC)

Table 4-5 contains the keywords that can be used within the scope of
Define Custom.

Table 4-5 Define_Custom Keywords

Keyword Description

If set to 1, then attempt to automatically determine which
files belong to the set of input files for the custom type. If set
to 0, then no files are automatically added to the input files.
If omitted, then automatic is assumed to be 1. Custom file
automatic types that are automatic will have the side effect of possibly
adding filesto Source Files, Inline Files,

Header Files, Template Files,Resource Filesand
Documentation Files depending on which extension
types the command generates.

The name of the command that should be used to processthe

command input files for the custom type.
commandflags Any options that should be passed to the command.
If thisis given avalue, then a dependency upon that value
dependent will be givent to al of the generated files. The default for this
is unset and no dependency will be generated.
inputext Thisisacomma separated list of input file extensions that

belong to the command.

Thisisaspecial assignment that allows the user to map
<name> into the project level namespace. The value (if any)
that is assigned to this construct must be one of the keywords
that can be used within a Define_Custom clause. The result
of this assignment is the ability modify the value of
keywords that are normally only accessible within the scope
of acustom component (e.g. command, commandflags,
etc.).

If the command requires alibrary that is not in the normal
libpath library search path, this keyword can be used to ensure that
the command is able to find the library that it needsto run.

If the command takes an option to specify asinglefile output
name, then set it here. Otherwise, this should be omitted.

If thisis set to 1, then arule will be added to the custom rule
pch_postrule that will modify the source output files to include the
precompiled header file.

This allows usersto create arbitrary commands that will be
postcommand run after the main command is run to process the custom
input files.

keyword <name>

output_option

|
54 ociweb.com I

OBJECT COMPUTING, INC.

4.3 Writing MPC and MWC Files

i

OBJECT COMPUTING, INC.

Table 4-5 Define_Custom Keywords

Keyword Description
If the command produces multiple files of the same
extension, this comma separated list can be used to specify
pre_extension them. For example, tao_1d1l creates two types of files per

extension (C.h, S.h, C.cpp, S.cpp, €c.) Thisappliesto all
extension types.

source_pre_extension

Thisisthe same as pre_extension except that it only applies
to sourcefiles.

inline_pre_extension

Thisisthe same as pre_extension except that it only applies
toinlinefiles.

header pre_extension

Thisisthe same as pre_extension except that it only applies
to header files.

template pre extensi
on

Thisisthe same as pre_extension except that it only applies
to template files.

resource_pre_extensi
on

Thisisthe same as pre_extension except that it only applies
to resource files.

documentation_pre_e
xtension

Thisisthe same as pre_extension except that it only applies
to documentation files.

generic_pre_extensio
n

Thisisthe same as pre_extension except that it only applies
to generic files.

pre_filename

The syntax for thisisthe ssame aspre extension, but the
values specified are prepended to the file name instead of the
extension. This appliesto all extension types.

source _pre filename

Thisisthe sameaspre_filename except that it only appliesto
source files.

inline_pre filename

Thisisthe same as pre_filename except that it only appliesto
inlinefiles.

header_pre filename

Thisisthe sameaspre_filename except that it only appliesto
header files.

template pre filenam
e

Thisisthe sameaspre filename except that it only appliesto
template files.

resource_pre filenam
e

Thisisthe sameaspre_filename except that it only appliesto
resource files.

documentation_pre_fi
lename

Thisisthe sameaspre filename except that it only appliesto
documentation files.

generic_pre filename

Thisisthesame as pre_filename except that it only appliesto
genericfiles.

ociweb.com

55

The Makefile, Project, and Workspace Creator (MPC)

Table 4-5 Define_Custom Keywords

Keyword Description

Thisisacomma separated list of possible source file output
source_outputext extensions. If the command does not produce source files,
then this can be omitted.

Thisisacomma separated list of possibleinline file output
inline_outputext extensions. If the command does not produce inlinefiles,
then this can be omitted.

Thisisacomma separated list of possible header file output
header_outputext extensions. If the command does not produce header files,
then this can be omitted.

Thisisacomma separated list of possible template file
template_outputext | output extensions. If the command does not produce
template files, then this can be omitted.

Thisis acomma separated list of possible resource file
resource_outputext | output extensions. If the command does not produce resource
files, then this can be omitted.

Thisisacommaseparated list of possible documentation file

documentation_outpu output extensions. If the command does not produce

text documentation files, then this can be omitted.
If the command does not generate any of the other output
generic_outputext types listed above, then the extensions should be listed under

this.

Thereis a special interaction between custom components and the source,
header and inline components. If a custom definition is set to be “ automatic”
and custom component files are present but not specified, the default custom
generated names are added to the source, header and inline component lists
unless those names are already listed (or partialy listed) in those component
lists. See " Custom Types and Build Rules’ on page 53 for more information
about defining your own custom type.

Particular output extensionsfor custom build types are not required. However,
at least one output extension typeis required for MPC to generate a target.

Y our command does not necessarily have to generate output, but an extension
typeisrequired if you want the input file to be processed during the project
compilation.

If the custom output can not be represented with the above output extension
keywords (*_outputext) and you have knowledge of the output filesa priori,

56

you can represent them with the’>>" construct.
ociweb.com @

OBJECT COMPUTING, INC.

4.3 Writing MPC and MWC Files

i

OBJECT COMPUTING, INC.

Below isan example that demonstrates the use of ' >>’. The command takes an
input file name of foo.prp and produces two files that have completely
unrelated filenames, hello.h and hello. cpp.

project {
Define Custom(Quogen) {
automatic =0
command = perl quogen.pl
commandflags = --debuglevel=1 --language=c++ \
--kernel language=c++
inputext = .prp
keyword quogenflags = commandflags

}

Quogen Files {
foo.prp >> hello.h hello.cpp

}

Source Files {
hello.cpp

}
}

Y ou can use the’ <<’ construct to represent dependencies for specific custom
input file. For instance, in the above example, assume that foo.prp depends
upon foo.in, we would represent this by adding << foo.in as shown below.

Quogen Files {
foo.prp >> hello.h hello.cpp << foo.in

}

An additional construct can be used within the scope of aDefine Custom.
This congtruct is called optional, and can be used to represent optional
custom command output that is dependent upon particular command line
parameters passed to the custom command.
project {
Define Custom(TEST) {
optional (keyword) {
flag keyword(option) += value [, value]
}
}
}

In the above fragment, keyword can be any of thepre extension,

pre filename keywordsor any of the keywordsthat end in _outputext.
The £1lag_keyword can be any of the custom definition keywords, however
only commandflags has any functional value. The flag keyword valueis

ociweb.com 57

The Makefile, Project, and Workspace Creator (MPC)

searched for the opt ion value contained inside the parenthesis. If it isfound
the value or values after the += are added to the list specified by keyword.
This can aso be negated by prefixing the opt ion with an exclamation point
OF

The example below shows how the optional construct is used by the custom
definition for the tao_id1 command (see

ACE wrappers/TAO/MPC/config/taocidldefaults.mpb). The -GA
option causes tao_1id1 to generate an additional source file (based on the idl
file name) with an A. cpp extension. The -Sc option causes tao_1id1l to
suppress the generation of S_T related files.

Define Custom(IDL) {

inputext = .idl
source_pre_extension = C, S
header pre_extension = C, S
inline pre extension = C, S

source_outputext = .cpp, .cxx, .cc, .C
header outputext = .h, .hpp, .hxx, .hh
inline outputext = .inl, .1

keyword idlflags = commandflags

optional (source pre extension)
commandflags (-GA) += A

}

optional (template outputext) {
commandflags(!-Sc) += S T.cpp, S_T.cxx, S_T.cc, S T.C

}

optional (header pre extension)
commandflags(!-Sc) += S_T

}
optional (inline pre extension)
commandflags (!-Sc) += S_T

}
}

For custom file types, there are a few keywords that can be used within the
custom file type component lists: command, commandflags, dependent,
gendir, postcommand, and recurse.

The recurse keyword works as described in Table 4-3, “ Assignment
Keywords”.

|
58 ociweb.com @ I

OBJECT COMPUTING, INC.

4.3 Writing MPC and MWC Files

i

OBJECT COMPUTING, INC.

The command, commandflags, dependent and postcommand keywords
can be used to augment or override the value defined inthe Define Custom
section.

The gendir keyword can be used (only if output optionissetin
Define Custom) to specify the directory in which the generated output will
go. Hereisan example:

MOC Files {
commandflags += -nw
gendir = moc_generated
QtReactor.h

}

Source Files {
moc_generated/QtReactor_moc.cpp

}

In the above example, the -nw option is added to commandflags and the
generated file (QtReactor moc.cpp) isplaced inthemoc _generated
directory. If the MOC custom definition did not have an output option
setting, then options would need to be added to commandflags or a
postcommand would need to be defined to ensure that the output actually
went into themoc_generated directory.

Modify_Custom

Anexisting Define Custom section can be modified by using
Modify Custom. Thesyntax isidentical to that of aDefine Custom.

Custom Post Command

When defining apostcommand as part of aDefine Custom, afew pseudo
template variables are available to provide some flexibility. The following
table shows the pseudo template variables that can be accessed only from the
postcommand. Please note that <% and %> are part of the syntax.

Table 4-6 Post Command Pseudo Variables

Variable Description

<%input%> Theinput file for the original command.

<3input_basename%> | The basename of theinput file for the original command.

Theinput file for the original command with the extension
stripped off.

<%input_noext%>

ociweb.com 59

The Makefile, Project, and Workspace Creator (MPC)

Table 4-6 Post Command Pseudo Variables

Variable

Description

<%input_ext%>

This gives the file extension of theinput file (if there is one).

<%output%>

The output file created by the original command.

<%output_ basename%>

The basename of the output file for the original command.

<%output_noext%>

The output file created by the original command with the
extension stripped off.

<%output_ext%>

This gives the file extension of the output file (if thereis
one).

The output file can b
referenced as a compo
does not match the pa

e referenced as a generic output file, or it can be
nent file using one of the following variables. If it
rticular type the value will be empty.

<%source file%>

The output fileif it has a source file extension.

<%template file%>

The output fileif it isatemplate file.

<%header file%>

The output fileif it has a header file extension.

<%inline file%>

The output fileif it has aninline file extension.

<%documentation file

o
>

The output fileif it is a documentation file.

<%resource_file%>

The output fileif it has aresource file extension.

The following table describes the pseudo template variables that can be used

in the command, commandflags, dependent, output option and
postcommand Settings.

Table 4-7 Common Pseudo Variables

Variable Description

Sandss A platform and project non-specific representation of a
Srande command conditional and.

soats A platform non-specific command to print afileto the
seearer terminal.
<Scmp%> A platform non-specific command to compare two files.
<3cp%> A platform non-specific command to copy afile.
<3crlfss A platform non-specific line ending.
<%equotes> A project non-specific escaped double quote.

. A platform and project non-specific representation of a
Rk greater than sign.

60

ociweb.com @

OBJECT COMPUTING, INC.

4.3 Writing MPC and MWC Files

43.2.3

i

OBJECT COMPUTING, INC.

Table 4-7 Common Pseudo Variables

Variable Description

a1rss A platform and project non-specific representation of aless
than sign.

<3mkdirs> A platform non-specific command to make a directory.

<3mvs> A platform non-specific command to move afile.

<3nul%> A platform non-specific null device.

A platform and project non-specific representation of a
command conditional or.

<%or%>

<%0s%> Returns either win32 or unix.
<3rm%> A platform non-specific command to delete afile.
<%quote$> A project non-specific representation of adouble quote.

A temporary file name. The generated temporary file name
<Stemporary$> contains no directory portion and is the same for each use
within the same variabl e setting.

The Feature File

The term feature, as used by MPC, describes different concepts or external
software that a project may requirein order to build properly. The feature file
determines which features are enabled or disabled which has a direct effect on
whether or not MPC generates a project.

It supports the standard comment (/ /) and assignment of numbers to feature
names. These feature names will correspond to values given to the requires
and avoids keywordsin mpc files.

If afeatureis not listed in the feature file or is listed with a boolean value of
true (1), that feature is enabled. If afeatureislisted and has a boolean value of
false (0), that feature is disabled.

If afeature nameislisted in the requires valuefor a particular project and
that feature is enabled, that project will be generated. If the feature is not
enabled, the project will not be generated.

The opposite holds true for the avoids keyword. If afeature nameislistedin
the avoids valuefor aproject and the feature is disabled, that project will be
generated. If the feature is enabled, the project will not be generated.

The global feature file for MPC contains the following values.

ociweb.com 61

The Makefile, Project, and Workspace Creator (MPC)

4324

boost = 0
mfc = 0
qt =0
rpc = 0

zlib
zzip

0
0

In the above contents, boost, mfc, gt, rpe, z1ib and zzip are disabled for
each project generated. If these values do not suit your needs, then you must
do one of three things:

e Create aproject specific featurefilein the config directory (ex.
make . features) to set features for a particular project type.

* Createadefault.features fileinthe config directory that contains
the feature set you need.

» Create afeature file anywhere you like with the features you want and use
the -feature file option to specify the location.

» Usethe -features option to dynamically modify the feature settings.

Generated projects will have a combination of features specified in the
global.features fileaswell asin your feature file. Therefore, if afeature
isdisabled in the global file and you want to enable it, you must explicitly
enableit in your featurefile.

Feature Projects

A feature project contains information as a project would, but can only be a
base project and will only be added to a sub project if the features that it
requires are enabled or the features that it avoids are disabled.

A feature definition requires at |east one feature name. A name by itself
specifies that the feature must be enabled. A '!" in front of the feature name
indicates that the feature must be disabled. There may be more than one
comma separated feature listed between the parenthesis.

The following example show how to declare a feature project.

// ziparchive.mpb

feature (ziparchive)
includes += $(ZIPARCHIVEROOT)
libpaths += $(ZIPARCHIVEROOT)/lib
libs += ziparch

}

62

[
ociweb.com I

OBJECT COMPUTING, INC.

4.3 Writing MPC and MWC Files

4.3.3

433.1

4.3.3.2

<

OBJECT COMPUTING, INC.

With this example, any project that inherits from the ziparchive base
feature project will contain the project information only if the ziparchive
feature is enabled.

Defaults

MPC has been designed to minimize the amount of maintenance that goesinto
keeping build tool files up-to-date with the project. If your source codeis
organized properly, the maintenance of your mpc files should be minimal.

With the use of inheritance and proper code arrangement, an mpc file for a
TAO related project may be as simple as:

project: taoserver {

}

This project definition could be used to generate a project for a TAO server
with multiple idl, header and source files.

Theideaof proper source layout is basically summarized as one directory per
binary target. If only the files that pertain to asingle target are located in the
directory with the mpc file, then the MPC defaults will satisfy most project
needs.

Of course, it will not always be possible or desirable to organize your project
codein thisfashion, so all defaulting behavior can be overridden. The next
sections describe the default behaviors of MPC and how to override them.

Source Files

New source files are added and others are removed quite often in adeveloping
project. If the Source Files component isleft out of an mpcfile, then MPC
will assume that any file matching one of the source extensionsisto be
included in the project. For most project types, the source extensions are:
.Ccpp, .CXX, .cc, .c and . C. Only the following extensions are considered
source extensions: . cpp, .cxx and . ¢ for the veé project type as Visual C++
6.0 does not understand fileswith the . cc or . C extension.

Template Files

MPC assumes that any file matching one of the template extensionsisto be
included in the project if the Template Files component isleft out of an
mpc file. For most project types, the template extensionsare: _T. cpp,

I ociweb.com 63

The Makefile, Project, and Workspace Creator (MPC)

4.3.3.3

4334

4.3.35

_T.cxx, T.cc, T.C, T.C, t.cpp, t.cxx, t.cc, t.c, and
_t.C.However, only the T.cpp and T.cxx extensions are considered
template extensions for the vcé project type.

If the Source Files component is defaulted, and afileis explicitly listed in
the Template_Files section that happensto appear to MPC asasourcefile (i.e.
has a source file extension, but does not have T directly beforeit), MPC will
automatically exclude it from the Source Files component.

Inline Files

Aswith sourcefiles, the Inline Files component can beleft out of an mpc
fileto alow it to generate defaults. Filesthat match the .1 and . inl
extensions are considered inline files.

TheInline Files component hasaspecia interaction with the

Source Files component. If the Source Files component hasfileslisted
andthe Inline Files component isomitted, then each sourcefileis
matched to an inlinefile. If the matching inline fileis found or would be
generated from a custom command, it isadded to the Inline Files
component list.

Header Files

Aswith sourcefiles, theHeader Files component can beleft out of an mpc
fileto alow it to generate defaults. Files that match the . h, . hpp, . hxx, and
.hh extensions are considered header files.

TheHeader Files component hasaspecial interaction with the

Source Files component. If the Source Files component hasfileslisted
and the Header Files component isomitted, then each sourcefileis
matched to a header file. If the matching header file isfound or would be
generated from a custom command, then it is added to the Header Files
component list.

Documentation Files

TheDocumentation Files component, if omitted, will default to all files
that end in the following: README, readme, .doc, .html and . txt.

[
ociweb.com I

OBJECT COMPUTING, INC.

4.3 Writing MPC and MWC Files

4.3.3.6 Resource Files
TheResource Files component, if omitted, will default to only the files
that end in . rc and are similar to the name of the project. For example, if a
directory contains three . rc files and the project nameis foo, only the . rc
files that contain the word foo will automatically be added to the
Resource Files component list.

4.3.3.7 Build Files
TheBuild Files component, if omitted, will default to al filesthat end in
the following: .mpc, mpc and .mwc

4.3.3.8 Custom Defined Files

Thecustom Defined Files componentshaveaspecial interactionwith the

Source Files component. If the custom command generates source files
and hasthe automatic setting set to 1, they will automatically be added to
the Source Files component list. If any of thefileslisted in the

Source Files components list match any of the generated source file
names, then none of the generated source file names will be automatically
added to the Source Files componentslist.

Example MPC File

The exampl e below uses the directory contents of
STAO ROOT/orbsvcs/performance-tests/RTEvent/1ib toillustrate
the simplicity of mpc files:

Auto_Disconnect.cpp
Auto_Disconnect.h
Auto_Disconnect.inl
Auto_Functor.cpp
Auto Functor.h
Auto_Functor.inl
Client Group.cpp
Client Group.h
Client Group.inl
Client Options.cpp
Client Options.h
Client Pair.cpp
Client_Pair.h
Client Pair.inl
Consumer.cpp

Loopback Supplier.h
Low_Priority Setup.cpp
Low_Priority Setup.h
Low_Priority Setup.inl
Makefile
ORB_Holder.cpp
ORB_Holder.h
ORB_Holder.inl
ORB_Shutdown.cpp
ORB_Shutdown.h
ORB_Shutdown.inl
ORB_Task_Activator.cpp
ORB_Task Activator.h
ORB_Task Activator.inl
ORB_Task.cpp

RTEC Initializer.cpp
RTEC Initializer.h
rtec_perf export.h
RTEC_Perf.mpc
RTPOA_Setup.cpp
RTPOA_Setup.h

RTPOA Setup.inl
RTServer_Setup.cpp
RTServer Setup.h
RTServer Setup.inl
Send_Task.cpp
Send_Task.h

Send Task_Stopper.cpp
Send_Task_Stopper.h
Send Task Stopper.inl

ociweb.com

The Makefile, Project, and Workspace Creator (MPC)

Consumer.h

Control.cpp

Control.h

EC Destroyer.cpp

EC Destroyer.h
EC_Destroyer.inl
Federated Test.idl
Implicit_Deactivator.cpp
Implicit_Deactivator.h
Implicit Deactivator.inl
Loopback_Consumer.cpp
Loopback Consumer.h
Loopback. cpp

Loopback.h

Loopback Pair.cpp
Loopback Pair.h
Loopback_Pair.inl

Loopback Supplier.cpp

ORB _Task.h
ORB_Task.inl

Peer Base.cpp

Peer Base.h
PriorityBand Setup.cpp
PriorityBand Setup.h
PriorityBand Setup.inl
RIR_Narrow.cpp
RIR_Narrow.h

RT Class.cpp
RT_Class.h
RT_Class.inl

RTClient Setup.cpp
RTClient_Setup.h
RTClient Setup.inl
RTCORBA_Setup.cpp
RTCORBA Setup.h
RTCORBA_Setup.inl

Servant_var.cpp
Servant_var.h
Servant_var.inl
Shutdown. cpp
Shutdown.h
Shutdown.inl
Supplier.cpp
Supplier.h
SyncScope_Setup.cpp
SyncScope_Setup.h
SyncScope_Setup.inl
TAO_RTEC_Perf.dsp
TAO RTEC Perf.dsw
Task_Activator.cpp
Task Activator.h
Task Activator.inl

The following mpc file (RTEC_Perf . mpc) shows the simple and small
number of lines required to generate usable build tool project files.

project (RTEC_Perf) :

strategies, rtcorbaevent, minimum corba {

-Wb, export_macro=TAO RTEC Perf Export \

-Wb, export_include=rtec_perf export.h

sharedname = TAO_RTEC_ Perf
idlflags +=
dllflags +=

Template Files {
Auto_Disconnect.cpp
Auto_Functor.cpp

Low_Priority Setup.cpp

RIR Narrow.cpp
Servant_var.cpp
Shutdown. cpp

Task Activator.cpp

TAO RTEC PERF BUILD DLL

A line-by-line explanation of the example mpc file islisted below.

project (RTEC Perf): strategies, rtcorbaevent, minimum corba {

Thefirst line declares a project named RTEC_Perf that inherits from the base
projects listed after the colon.

sharedname = TAO RTEC Perf

|
66 ociweb.com @ I

OBJECT COMPUTING, INC.

4.4 Adding a New Type

4.4

Line 2 determines that the project is alibrary and the library name is
TAO _RTEC Perf.

idlflags += -Wb,export macro=TAO RTEC Perf Export \
-Wb,export_include=rtec perf export.h

Lines 3-4 add to the flags passed to the IDL compiler when processing theidl
files.

dllflags += TAO RTEC PERF BUILD DLL

Thenext line adds TAO_RTEC_PERF BUILD DLL tothedllflags, which
defines a macro that isused by the rtec_perf export.h header file.

Template Files {
Auto_Disconnect.cpp
Auto_Functor.cpp
Low_Priority Setup.cpp
RIR Narrow.cpp
Servant_var.cpp
Shutdown. cpp
Task Activator.cpp

}

Lines 7-15 name the listed cpp files as part of the Template Files.

Y ou may have noticed that there isn’t much to the file above. With the default
behaviors that are built into MPC, there does not need to be. Werely on the
defaults to determine the values of IDL. Files, Source Files,

Inline Files, and Header Files. Sincethetemplate files do not match
the MPC built-in defaults, we must explicitly list them. We also rely on
inheritance to get many of the TAO-related options.

Adding a New Type

i

OBJECT COMPUTING, INC.

If MPC does not support a particular build tool, you may want to consider
adding a new project type. For instance, support could be added to MPC for
Boost Jam, X code and many others. To do so will require knowledge of the
MPC input files, as well as Object Oriented Perl.

ociweb.com 67

The Makefile, Project, and Workspace Creator (MPC)

44.1

4411

Input File Syntax
This section describes the syntax of the files that are used during project
generation.

Template Files (mpd)

Template files make up the bulk of what MPC putsinto each generated project
file. They providethe plain text and the layout of the data provided by the mpc
files, using various template directives.

Template directives are declared using a<% %> construct. This construct is
used to create if statements, for loops and to access variables. One thing to
note is that any text, including white space, that is not enclosed within <% %>
isleft untouched and is passed directly into the generated project file.

An if statement can appear on asingle line or it can span multiple lines. For
example, the following line:

<%1f (exename) $>BIN = <%exename$><%else%$>LIB = <%sharedname$><%endif%>

isequivalent to:

<%1if (exename) %>

BIN = <%exename%>
<%else%>

LIB = <%sharedname%>
<%endif%>

A foreach statement can also appear on asingle line or can span multiple
lines. As described below in the keywords section, the foreach statement
evaluates the variable in a space-separated list context.

There are a couple of waysto write a foreach loop. Thefirst and preferred
way isto name the loop variable and then list each variable to be evaluated.

FILES=<%foreach(fvar, idl files source files header files)%> <%fvar%><%endfor%>

The second way isto let the foreach statement determine the loop variable.
With this style, each value can be accessed viathe first variable name passed
to the foreach with thetrailing s’ removed.

FILES=<%foreach(idl files source files header files)%> <%idl file%><%endfor%>

68

[
ociweb.com I

OBJECT COMPUTING, INC.

4.4 Adding a New Type

Notethat the <$idl file%> variable will contain each individual value of
theidl files, source files and header files list. If thevariablein
the foreach doesnot end in’'s’, the variable of the same name within the
foreach will contain each individual value, e.g.,

<%foreach(filelist) %> <%filelist%><%endfor%>

Table 4-8 lists keywords that can appear in template files.
Table 4-8 Template File Keywords

Keyword Description
basename Evaluates the variable name and removes the directory
portion from that value.
basenoextension Thisissimilar to basename except that the extension is
also removed from the variable name value.
The value passed to comment is ignored and can be any
comment set of characters, except anew line or a closing
parenthesis.
This function returns true if the variable value (first
compares parameter) is equal to the string value (second
parameter).
This function returns true if the variable value (first
contains parameter) contains the regular expression (second
parameter).
i Evaluates the variable name and removes the basename
lrname

from that value.

duplicate_index

This function returns a number based on the number of
times afile with the same name (but different directory)
is seen within aproject. The function returns false upon
the first occurrance of afile.

Used with the 1 £ statement. An else block will be

else evaluated if the statement does not evaluate to true.
endfor Used with foreach. Thisends foreach block.
. Used withthe i f statement. Thisendsanif or if/else

endif

block.

This function returnstrue if the variable value (first
ends with parameter) ends with the regular expression (second

parameter).

Thisissimilar to eval in perl. The template code passed
eval to this function will be evaluated within the context of

the current templ ate.

|
@ I ociweb.com 69

OBJECT COMPUTING, INC.

The Makefile, Project, and Workspace Creator (MPC)

Table 4-8 Template File Keywords

Keyword Description

Thisisdirectly related to overriding the project-wide
settingsin an mpc file. It takes two variable names that
are comma separated. The first corresponds to afile
name and the second is any variable name.

The given variable names are evaluated in alist context

flag overrides

foreach which is space separated.
Used with foreach. Theliteral value passed to
forfirst forfirst will be placed on the first iteration of
foreach.
£ Used with foreach. Theliteral value passed to
orlast

forlast will be placed onthelast iteration of foreach.

Used with foreach. Theliteral value passed to
fornotfirst fornotfirst will be placed on each iteration of
foreach except for the first.

Used with foreach. Theliteral value passed to

fornotlast fornotlast will be placed on each iteration of
foreach except for the last.
has_extension Returns true is the variable value has afile extension.

Used to determineif avariable is defined. The not
operator (!) can be used to invert the if check. This
construct will only check for values defined within an
mpc or mpt file. Default values (even those implemented
by the project creators) are not considered inthe i f
statement.

if

This function is used to associate a key with avariable
value. If the key has been associated with avariable
value more than once, the count of association will be
appended to the output.

Return the given variable value in all lower case
characters.

Thisisdirectly related to the verbat im keyword from
marker the mpc syntax. This can be used to designate markers
within atemplate. Ex. <$marker (local) $>.

Thisfunction returnstrue if the array parameter contains
multiple values.

keyname used

1lc

multiple

Evaluates the variable name value as a file name and
noextension removes the extension from that value including the
period.

|
70 ociweb.com @ I

OBJECT COMPUTING, INC.

4.4 Adding a New Type

Table 4-8 Template File Keywords

Keyword

Description

normalize

Convert dashes, slashes, dollar signs, parenthesis and
dotsin the given variable value to underscores.

remove from

This function will remove afilein acomponent list. It
requires two parameters. Thefirst parameter isa
component name(e.g., Source_Files) and the second
parameter is a project or template variable name. The
third and fourth optional parameters allow you to alter
the project or template variable value in order to remove
files that do not match the value exactly. The third
parameter isaregular expression and the fourth paramter
isthe value with which to replace the regular expression
match.

reverse

This function reverses the order of the array parameter
values.

scope

Thisis used to set the scope of execution of afunction
that will operate on the template output. A scopeis
begun by passing "enter” and a function name with an
optional parameter. Currently, the only function name
supported is"escape”. A scopeis ended by passing
"leave".

sort

This function sorts the array parameter values.

starts_with

This function returns true if the variable value (first
parameter) starts with the regular expression (second
parameter).

transdir

Replaces values within the directory portion of avariable
value with something that can be used as arelative path.
The current working directory isremoved and ".." is
replaced with "dotdot".

uc

Return the given variable value in all upper case
characters.

ucw

Return the given variable value with the first letter of
each word in upper case. Words are separated by spaces
or underscores.

unig

This function returns the unique set of the array
parameter values.

[
I ociweb.com

OBJECT COMPUTING, INC.

71

The Makefile, Project, and Workspace Creator (MPC)

Table 4-9 lists special names that can be used as variables in some template
files. The variableslisted in Table on page 60 can be used aswell (except for

<Yptemporary%o>).

Table 4-9 Special Values used in Template Files

Value Description
ciao Implemented by the GNUACE project creator module,
* specifies that the project uses CIAO.
Thisvalue isimplemented by the BMake project creator
cppdir modules. It returns a semicolon separated list of directories

taken from each value in the Source Files list.

custom_types

Contains alist of the custom build types. See“ Custom
Types’ on page 73 for more details.

cwd The full current working directory.

This only has avalue within the context of a foreach and
forcount provides a 1 based count, by default, of the index of the

elementsin foreach.

Thisvalue isimplemented by the VC7 project creator
guid module. It returns aguid value based on the project that is

usable within VC7 project files.

make file name

Thisvalueisimplemented by the VC6 and EM3 project
creator modules. It returns the project name with the make
file extension that corresponds to the particular project type.

project file

This variable contains the name of the output file for the
current project being generated.

project name

This variable contains the name of the current project being
generated.

rcdir

Thisvalue isimplemented by the BMake project creator
modules. It returns a semicolon separated list of directories
taken from each value in the Resource_Files list.

tao

Implemented by the GNUA CE project creator module,
specifies that the project uses TAO.

veversion

Thisvaue isimplemented by the VC7ProjectCreator. It
returns the version number of the type of project being
generated. 7.00 isreturn for vc7, 7.10 isreturn for vc71 and
8.00 isreturned for vc8, 9.00 is returned for vc9, 10.00 is
returned for vcl9.

vpath

Thisvalue isimplemented by the GNUA CEProjectCreator.
It returns a value, based on the location of the source files,
that specifiesthe VPATH setting for GNU Make.

72

ociweb.com @

OBJECT COMPUTING, INC.

4.4 Adding a New Type

i

OBJECT COMPUTING, INC.

Custom Types

To support multiple custom build types, a special keyword was introduced.
The custom_types keyword is used to access the list of custom types
defined by the user. In a foreach context, each custom type can be accessed
through the custom_type keyword.

A variety of information is available from each custom_type through the - >
operator. Theinput files, input extensions, command, command output option,
command flags, and output file directory are all accessible through the field
names that correspond to the particular type.

The input files associated with the custom type are accessed through
custom_type->input files. Eachinput file has aset of output files
associated with it which can be accessed in a foreach context through
Ccustom type->input file-soutput files. The custom typefieldsare
listed in Table 4-10.

Table 4-10 Custom Type Fields

Value Description
command The command used for the custom type.
commandflags The command options not including the output option.
dependent This setting determines the command upon which custom
p generated files should depend.
The output directory associated with a particular input file.
endir This field has no meaning when accessed directly through
9 the custom_type. It should always be used within the
context of aflag overrides (See Table 4-8).
input files Theinput files associated with the custom type.
inputexts Theinput file extensions associated with the custom type.
libpath Thelibrary path setting for the command.
output_option The optional command output option.

This setting determines whether the command needs

pch_postrule assistance in supporting precompiled headers.

Allows a user to execute arbitrary commands after the main

postcommand command is run to generate the output file.

The exampl e below, which creates generic makefile rulesfor building custom
input files, shows basic use of the custom type and the various fields that can
be accessed. The main limitation with the custom_types keyword, as can be

ociweb.com 73

The Makefile, Project, and Workspace Creator (MPC)

seen below, is that the foreach variable cannot be named as stated on
page 68.

<%1if (custom types) %>

<%foreach(custom_types) %>

<%foreach(custom_type->input files) %>

<%foreach(custom type->input file-soutput files) %>

<%custom_type->input file->output file%>: <%custom type->input file%>
<%custom_type->command%> <%custom type->commandflags%> $@

<%endfor%>
<%endfor%>
<%endfor%>
<%endif%>

Grouped Files
File grouping is part of the syntax of mpc files. If a set of files are grouped
within the mpc file, they can be accessed as a group within the mpd file.

Files (such as Source Files, Header Files) can be grouped together as
shown on page 50. Within the mpd file, the different components can be
accessed by prepending grouped to the component
(grouped_source files, grouped header files, €tc)

Table 4-11 Grouped Files Field Names

Field Name Description

files The input files associated with the group.
component _name The name of the set of multiple groups of files.

The example below, which creates make macros for each file group, shows
basic use of grouping and the fields that can be accessed. The main limitation
with file grouping, as can be seen below, is that the foreach variable cannot
be named as stated on page 68. The following example involves source files,
but any of the components listed in 4.3.2.2 can be used.

<%1if (grouped source files) %>

<%comment (Get back each set of grouped files)%>

<%foreach(grouped source files) %>

<%$comment (This will provide the name of the group) %>

<%grouped_source file%> = \

<%comment (Get all the source files in a single group) %>

<%foreach(grouped_source file->files) %>
<%grouped_source file->file)%><%fornotlast (" \\")%>

74

[
ociweb.com I

OBJECT COMPUTING, INC.

4.4 Adding a New Type

44.1.2

i

OBJECT COMPUTING, INC.

<%endfor%>
<%endfor%>

ifndef <%grouped source files->component name%>
<%grouped_source files->component name%> = \
<%foreach(grouped source files)%>
<%grouped_source file%><%fornotlast (" \\")%>
<%endfor%>
endif
<%endif%>

Template Input Files (mpt)

Template input files provide build tool specific information that is common to
all projects, such as compiler switches, intermediate directories, compiler
macros, etc. Each project type can provide template input files for dynamic
libraries, static libraries, dynamic executables and static executables.
However, none of these are actually required by MPC.

The template input files are more free-form than the other MPC filetypes. It is
similar to the mpc syntax except that there is no project definition and there is
only one keyword. The keyword, conditional include, isusedtoinclude
other mpt filesif they can be found in the MPC include search path. If the
name listed in double quotes after conditional include isnot found, itis
ignored and no warning is produced. Thempt extension is automatically
added to the name provided.

The template input files contain variable assignments and collections of
variable assignments. A variable assignment is of the form:

variable name = valuel "value 2"
variable name += another value

This variable can then be used within the corresponding mpd file.

Variable assignments can be grouped together and named within the mpt file
and used as scoped variables within the mpd file. The following example
shows the use of collections of variable assignments.

// wpt file
configurations
common_defines

Release Debug
WIN32 _CONSOLE

Release {
compile flags = /W3 /GX /02 /MD /GR

ociweb.com 75

The Makefile, Project, and Workspace Creator (MPC)

4.4.2

4421

defines = NDEBUG

}

Debug {
compile flags = /W3 /Gm /GX /Zi /0d /MDA /GR /Gy
defines = _DEBUG

}

conditional include "vcfullmacros"

Below isthe portion of the mpd file that would use the information provided
in the mpt file above.

<%foreach (configurations) %>
Name = <%configuration%s
<%compile flags%><%foreach(defines common defines)%> /D <%define%>=1<%endfor%>

<%endfor%>

The following output is generated from the above example:

Name = Release
/W3 /GX /02 /MD /GR /D NDEBUG=1 /D WIN32=1 /D _CONSOLE=1

Name = Debug
/W3 /Gm /GX /zZi /0d /MDd /GR /Gy /D _DEBUG=1 /D WIN32=1 /D _CONSOLE=1

If aforeach variable value corresponds to a variable group name, that
variable group is available within the scope of that foreach.

A Simple Example

We will discuss what it would take to add support for afictional build tool
throughout this section. The diagram on page 35 shows the relationship
between the template and project creator discussed below.

Template

The best thing to do is to start with the template. The template is the most
important piece when adding anew project type. It basically tells MPC how to
lay out all of the information it gathers while processing an mpc file. The
template file will have a mixture of plain text and the mpd syntax described in

76

4.4.1.1. Hereisour sample fictional . mpd.
[
ociweb.com @ I

OBJECT COMPUTING, INC.

4.4 Adding a New Type

// This project has been generated by MPC.
// CAUTION! Hand edit only if you know what you are doing!

// Section 1 - PROJECT OPTIONS
ctags:*

debugSwitches:-nw
//end-proj-opts

// Section 2 - MAKEFILE
Makefile.<%project name%>

// Section 3 - OPTIONS
//end-options

// Section 4 - TARGET FILE
<%1if (exename) %>
<%exename$>
<%else%>

<%1if (sharedname) %>
<%sharedname%>
<%else%>

<%if (staticname) %>
<%staticname%>
<%endif%>
<%endif%>
<%endif%>

// Section 5 - SOURCE FILES
<%foreach (source files)%>
<%source_file%>

<%endfor¥>

//end-srcfiles

// Section 6 - INCLUDE DIRECTORIES
<%foreach (includes) %>

<%include%>

<%endfor%>

//end-include-dirs

// Section 7 - LIBRARY DIRECTORIES
<%foreach(libpaths) %>

<%libpath%>

<%endfor%>

//end-library-dirs

// Section 8 - DEFINITIONS
<%foreach (macros defines) %>
-D<%macro%>

|
@ I ociweb.com 77

OBJECT COMPUTING, INC.

The Makefile, Project, and Workspace Creator (MPC)

<%endfor%>

<%1f (pch_header) %>
<%foreach(pch defines) %>
-D<%pch_define%>
<%endfor%>

<%endif%>

//end-defs

// Section 9 - C FLAGS
<%cflags("-g") %>

// Section 10 - LIBRARY FLAGS
<%libflags%>

// Section 11 - SRC DIRECTORY

// Section 12 - OBJ DIRECTORY

<%objdir(".") %>
// Section 13 - BIN DIRECTORY
<%if (install) $><%install%><%else%>.<%endif%>

// User targets section. Following lines will be

// inserted into Makefile right after the generated cleanall target.
// The Project File editor does not edit these lines - edit the .vpj
// directly. You should know what you are doing.

// Section 14 - USER TARGETS

<%marker (top) %>

<%marker (macros) %>

<%marker (local) %>

<%marker (bottom) %>

//end-user-targets

// Section 15 - LIBRARY FILES
<%foreach(libs 1lit libs pure libs) %>
<%1ib%>

<%endfor%>

//end-library-files

Note that output is generated differently depending upon whether
<%¥exename%>, <¥sharedname%> Or <¥staticname%> isdefined dueto the
if statements that were used with relation these variable names. Also, certain
portions of the project file are only generated if particular variables are set.

|
78 ociweb.com @ I

OBJECT COMPUTING, INC.

4.4 Adding a New Type

44272

i

OBJECT COMPUTING, INC.

Project Creator

Next, you would writethe FictionalProjectCreator.pm. It may be best
to start with a copy of the MakeProjectCreator.pm and edit it. Change the
package nameto FictionalProjectCreator and haveit inherit from
MakeProjectBase and ProjectCreator. Then, override the methods that
are needed for this particular type.

package FictionalProjectCreator;

khkkhkhkhkhhhhhhhhhhkhhhhkhkhkhkhhhkkhkhkkkkxx
Description : A Fictional Project Creator

Author : Chad Elliott

Create Date : 10/01/2004

EEEEE RS R R RS SR SRR SRR E SRS SRR RS EEEEEEEEEEEEE R R R R R EEEEEE RS
khkkhkhkhkhkhhhkhhhhkhkhhhhhhkhhkkkxx
Pragmas

khkhhhhhhhhdhhhhhhh bbbk bk hkhkk kA kA kA kA kA A A A A Ak Ak Ak kkkkkkkkkhkhkkkx %

use strict;

use MakeProjectBase;
use ProjectCreator;

use vars gw(@ISA);
@ISA = gw(MakeProjectBase ProjectCreator) ;

khkkhkhkhhhhhhhhhhhhhhhhhhhhhhkhkhkhkhkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkxx

Subroutine Section
kkdhkkhkhkdhhkhkdhhkhhhkdhhkhkdhhkhkhhkdhhkhdhhhkdhhdhhhkdhhhhdhhhdbhkhkhkhdhkhdhdkhhhhkxdx

sub convert slashes {
#my ($self) = shift;
return 0;

}

sub project file extension
#my ($self) = shift;
return '.fic';

}

sub get dll exe template input file {
#my ($self) = shift;
return 'fictionalexe';

}

ociweb.com 79

The Makefile, Project, and Workspace Creator (MPC)

4423

sub get dll template input file {
#my ($self) = shift;
return 'fictionaldll';

}

sub get template {
#my ($self) = shift;
return 'fictional';

}

1;

In our example, we inherit from the MakeProjectBase which provides some
methods that are common to al “make” based project creators.

We override the convert slashes method to return 0. A zero return value
tells MPC not to convert slashes to back slashes (converting dashesis useful
for Windows related build tools).

Wethen override theproject file extension method to return the
project file extension which is used by a method defined in the
M akeProjectBase module.

Next, weoverridetheget dll exe template input file and

get dll template input file methods. Those methods return the
specific template input file names for a dynamic executable and dynamic
library, respectively.

Lastly, we override the get _template method to return the template file
name for our new project type. In our case, the method returns fictional
which corresponds to the name of the template file we created earlier.

There are many other methods that can be overridden to change the way MPC
generates output. For a complete list, see the “Virtual Methods To Be
Overridden” section of the Creator.pm and ProjectCreator.pm.

Workspace Creator

Thelast part that you would need to write is the
FictionalWorkspaceCreator.pm. Thismoduleisusualy more
code-intensive than its Project Creator counterpart.

package FictionalWorkspaceCreator;

EEEEE R R R R E R R R SRR R SRR SR SRR R R R RS SR SRR SRR EEEEEEEE RS

Description : A Fictional Workspace Creator

80

[
ociweb.com I

OBJECT COMPUTING, INC.

4.4 Adding a New Type

Author : Chad Elliott
Create Date : 10/01/2004

khkkhkhhhhhhhhhhhhhhhhhhhhhhhk bk bk kkhkhkhkkkkkk kA kkkkkkkkkkkkkhkkhkkkxx

+

khkhhhhhhhhhhhhhh bbbk hhhkk kA kA kA kA kA kA A A Ak Ak Ak kkkkkkkkkkkkk k%

ETS

Pragmas
dkkkkkkhkhhkhhkhkhhkhkhhkhhhkhhhkhhkhhhhhhdhkhhhhhhdhkhdhkhhhkdkhkhdhhkhkdkxk

use strict;

use FictionalProjectCreator;
use WorkspaceCreator;

use vars gw(@ISA);
@ISA = gw(WorkspaceCreator) ;

khhhhhhhhhhhhhhhh bbbk hhkkkk kA kA kA kA kA kA A A Ak Ak hkkkkkkkkkkhkkhkkk k%

Subroutine Section
khkhkkhkhkhkhkhkhkhhkhkhkhkdhkhkdhhkhkhkhkhkhkhkhhkhhkhdkhkhkdhkhhkhdhkhkhhkdhkhkdhkhkhkhkdhkkhkdkkx

sub workspace file name {
my ($self) = shift;
return $self->get modified workspace name ($self->get workspace name(),
'fws!') ;

sub pre workspace {
my ($self) = shift;
my ($fh) = shift;
my (Scrlf) = $self->crlf();

print $fh '<?xml version="1.0" encoding="UTF-8"?>', $crlf,

'<!-- MPC Command -->', Scrlf,
"<l-- $0 @ARGV -->", S$crlf;

sub write comps {

my ($self) = shift;

my ($£h) = shift;

my (Sprojects) = $self->get projects();

my (@list) = $self->sort_dependencies ($projects) ;
my (Scrlf) = $self->crlf();

print $fh '<projectss', Scrlf;
foreach my $project (@list) {

print $fh " <project path=\"Sproject\"/>$Scrlf";
}

print $fh "</projects>$crlf";

|
@ I ociweb.com 81

OBJECT COMPUTING, INC.

The Makefile, Project, and Workspace Creator (MPC)

The first method we override from WorkspaceCreator.pm is the
workspace file name method. It isused to determine the output file for
the generated workspace.

Second, we override the pre workspace method, which we use to print out
the generic unchanging section of our generated workspace.

Lastly, weoverridethewrite comps method. This method iswhere the bulk
of the work is done in our workspace creator. A workspace creator has many
sets of data available. A reference to the list of project file names can be
obtained through the get projects method; project-specific information
can be obtained through the get project info method which returns an
array reference where each array element is an array containing the project
name, project dependencies and a project guid (if applicable).

|
82 ociweb.com @ I

OBJECT COMPUTING, INC.

	The Makefile, Project, and Workspace Creator (MPC)
	4.1 Introduction
	4.2 Using MPC
	4.2.1 Supported Build Tools
	4.2.2 Command Line
	4.2.2.1 Additional Option Descriptions

	4.2.3 Environment Variables

	4.3 Writing MPC and MWC Files
	4.3.1 Input Files
	4.3.1.1 Project Files (mpc)
	4.3.1.2 Workspace Files (mwc)
	4.3.1.3 Base Project Files (mpb)
	4.3.1.4 Base Workspace Files (mwb)

	4.3.2 General Input File Syntax
	4.3.2.1 mwc and mwb
	4.3.2.2 mpc and mpb
	4.3.2.3 The Feature File
	4.3.2.4 Feature Projects

	4.3.3 Defaults
	4.3.3.1 Source Files
	4.3.3.2 Template Files
	4.3.3.3 Inline Files
	4.3.3.4 Header Files
	4.3.3.5 Documentation Files
	4.3.3.6 Resource Files
	4.3.3.7 Build Files
	4.3.3.8 Custom Defined Files
	4.3.3.9 Example MPC File

	4.4 Adding a New Type
	4.4.1 Input File Syntax
	4.4.1.1 Template Files (mpd)
	4.4.1.2 Template Input Files (mpt)

	4.4.2 A Simple Example
	4.4.2.1 Template
	4.4.2.2 Project Creator
	4.4.2.3 Workspace Creator

