
Measuring the Performance of

CORBA for High-speed

Networking

Douglas C. Schmidt

schmidt@cs.wustl.edu

http://www.cs.wustl.edu/�schmidt/

Washington University, St. Louis

1

Introduction

� Distributed object computing (DOC) frame-
works are well-suited for certain communi-
cation requirements and certain network en-
vironments

{ e.g., request/response or oneway messaging over

low-speed Ethernet or Token Ring

� However, current DOC implementations ex-
hibit high overhead for other types of re-
quirements and environments

{ e.g., bandwidth-intensive and delay-sensitive stream-

ing applications over high-speed ATM or FDDI

2

Outline of Talk

� Outline communication requirements of dis-

tributed medical imaging domain

� Compare performance of several network pro-
gramming mechanisms:

{ Sockets

{ ACE C++ wrappers

{ Two CORBA implementations (ORBeline and Or-

bix)

� Discuss how to use distributed object com-

puting frameworks e�ciently and e�ectively

3

Distributed Medical Imaging

DIAGNOSTIC

STATIONSATM

MAN

ATM

LAN

ATM

LAN

MODALITIES

(CT, MR, CR)

IMAGE

STORE

4

Distributed Objects in Medical

Imaging Systems

: IMAGE

DISPLAY

: NAME

SERVER

: AUTHEN-

TICATOR

: IMAGE

PROCESSOR

SOFTWARE BUS

: NETWORK

TIME

: IMAGE

LOCATOR

: IMAGE

SERVER
: PRINTER

� Image servers have the following responsi-
bilities and requirements:

* E�ciently store/retrieve large medical images

* Respond to queries from Image Locator Servers

* Manage short-term and long-term image persistence

5

Image Server System Architecture

ATM

SWITCH

Sender

1: push(image)

CPU1 CPU2 CPU3 CPU4

worker worker worker workerReceiver

2: pull(image)

6

Motivation for CORBA

� Simpli�es application interworking

{ CORBA provides higher level integration than tra-

ditional \untyped TCP bytestreams"

� Provides a foundation for higher-level dis-
tributed object collaboration

{ e.g., Windows OLE and the OMG Common Ob-

ject Service Speci�cation (COSS)

� Bene�ts for distributed programming simi-
lar to OO languages for non-distributed pro-
gramming

{ e.g., encapsulation, interface inheritance, and object-

based exception handling

7

CORBA Overview

� CORBA speci�es the following functions of
an Object Request Broker (ORB)

{ Interface De�nition Language (CORBA IDL)

{ A mapping from CORBA IDL onto C, C++, and

Smalltalk

{ An Interface Repository

. Contains meta-info that can be queried at run-

time

{ A Dynamic Invocation Interface

. Used to compose method requests at run-time

{ A Basic Object Adaptor (BOA)

. Allows developers to integrate their objects with

an ORB

8

CORBA Services

� CORBA provides the following mechanisms

{ Parameter marshalling

{ Object location

{ Object activation

{ Replication and fault tolerance

� COSS extends CORBA to provide services
like

{ Event services

{ Naming services

{ Transactions

{ Object lifecycle management

9

Key Research Question

Can CORBA be used to transfer

medical images e�ciently over

high-speed networks?

� Our goal was to determine this empirically

before adopting the CORBA communica-

tion model wholesale

10

Performance Experiments

� Enhanced version of TTCP

{ TTCP measures end-to-end, oneway bulk data

transfer

{ Enhanced version tests C, ACE C++ wrappers,

and CORBA

� Parameters varied

{ 64 Mbytes of data bu�ers ranging from 1 Kbyte

to 128 Kbyte (by powers of 2)

{ Socket queues were 8k (default) and 64k (maxi-

mum)

{ Networks were 155 Mbps ATM and 10 Mbps Eth-

ernet

� Compiler was SunC++ 4.0.1 using highest

optimization level

11

Network/Host Environment

BAY NETWORKS

LATTISCELL

ATM SWITCH

(16 PORT, OC3

155MBPS/PORT,

9,180 MTU)
SPARCSTATION

20 MODEL 50S

(ENI ATM

ADAPTORS

AND ETHERNET)

12

TTCP Con�guration for C and

ACE C++ Wrappers

ATM

SWITCH

Sender

1: write(buf)

2: forward

Receiver

3: read(buf)

13

TTCP Con�guration for CORBA

Implementations

ATM

SWITCH

TTCP

Stub

Sender 1: send(buf)

2: forward

TTCP

Skel

TTCP

Impl3: send(buf)

14

CORBA Implementations

� 2 implementations of TTCP using 2 ver-
sions of CORBA

{ IDL string and IDL sequence

typedef sequence<char> ttcp_sequence;

interface TTCP_Sequence

{

oneway void send (in ttcp_sequence ttcp_seq);

};

interface TTCP_String

{

oneway void send (in string ttcp_string);

};

{ Orbix 1.3 and ORBeline 1.2

. Couldn't directly reuse source code since neither

ORB supported same IDL ! C++ mapping

. Also, neither ORB supported CORBA 2.0

15

CORBA Sender Implementation

� Obtain reference to target objects via bind

factory:

// Use locator service to acquire bindings.

TTCP_String *t_str = TTCP_String::_bind ();

TTCP_Sequence *t_seq = TTCP_Sequence::_bind ();

// ...

// String transfer.

char *buffer = new char[buffer_size];

// Initialize data in char * buffer...

while (--buffers_sent >= 0)

t_str->send (buffer);

// Sequence transfer.

ttcp_sequence sequence_buffer;

// Initialize data in TTCP_Sequence buffer...

while (--buffers_sent >= 0)

t_seq->send (sequence_buffer);

16

CORBA Receiver Implementation

� Implementation class for IDL interface that

inherits from automatically-generated CORBA

skeleton class

class TTCP_Sequence_i

: virtual public TTCP_SequenceBOAImpl

{

public:

TTCP_Sequence_i (void): nbytes_ (0) {}

// Upcall invoked by the CORBA skeleton.

virtual void send (const ttcp_sequence &ttcp_seq,

CORBA::Environment &IT_env)

{

this->nbytes_ += ttcp_seq._length;

}

// ...

private:

// Keep track of bytes received.

u_long nbytes_;

};

17

CORBA Receiver Main

� Initializes object implementations and goes

into CORBA event loop

int main (int argc, char *argv[])

{

// Implements the Sequence object.

TTCP_Sequence_i ttcp_sequence;

// Implements the String object.

TTCP_String_i ttcp_string;

// Tell the ORB that the objects are active.

CORBA::BOA::impl_is_ready ();

/* NOTREACHED */

return 0;

}

18

Performance over ATM and

Ethernet

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

Message Size (Kbytes)

T
hr

ou
gh

pu
t (

M
bp

s)

64k socket queue

C

ACE

Orbix Sequence
ORBeline Sequence

Orbix String

ORBeline String

All Ethernet results

19

C and ACE Performance over

ATM and Ethernet

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

Message Size (Kbytes)

T
hr

ou
gh

pu
t (

M
bp

s)

C over ATM (64k socket queue)

ACE over ATM (64k socket queue)

ACE over ATM (8k socket queue)

C over ATM (8k socket queue)

All Ethernet Results

20

Orbix and ORBeline Performance

over ATM and Ethernet

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

Message Size (Kbytes)

T
hr

ou
gh

pu
t (

M
bp

s)

Results above for 64k socket queue

Results below for 8k socket queue

Orbix Sequence
ORBeline Sequence
Orbix String
ORBeline String

All Ethernet Results

21

Primary Sources of Overhead for

CORBA

� Data copying

� Demultiplexing

� Memory allocation

� Presentation layer formatting

22

High-Cost Functions

� C and ACE C++ Tests

{ Transferring 64 Mbytes with 128 Kbyte bu�ers

Test %Time #Calls msec/call Name

--

C sockets 99.6 527 92.8 _write

(sender)

C sockets 99.3 7201 6.2 _read

(receiver)

ACE C++ wrapper 99.4 527 87.3 _write

(sender)

ACE C++ wrapper 99.6 7192 6.2 _read

(receiver)

23

High-Cost Functions (cont'd)

� Orbix String and Sequence Tests

Test %Time #Calls msec/call Name

--

Orbix Sequence 94.6 532 89.1 _write

(sender) 4.1 2121 1.0 memcpy

Orbix Sequence 92.7 7860 6.1 _read

(receiver) 4.8 2581 0.6 memcpy

Orbix String 89.0 532 85.6 _write

(sender) 4.6 2121 1.1 memcpy

4.1 2700 0.7 strlen

Orbix String 86.3 7744 5.7 _read

(receiver) 5.5 6740 0.4 strlen

4.5 2581 0.9 memcpy

24

High-Cost Functions (cont'd)

� ORBeline String and Sequence Tests

Test %Time #Calls msec/call Name

--

ORBeline Sequence 91.0 551 74.9 _write

(sender) 5.2 6413 0.4 memcpy

1.8 1032 0.8 __sigaction

ORBeline Sequence 89.0 7568 5.8 _read

(receiver) 5.1 7222 0.3 memcpy

3.3 1071 1.5 _poll

ORBeline String 83.8 551 83.9 _write

(sender) 5.4 920 3.2 strcpy

4.3 5901 0.4 memcpy

3.9 1728 1.2 strlen

1.1 1032 0.6 __sigaction

ORBeline String 85.4 7827 5.5 _read

(receiver) 4.6 6710 0.3 memcpy

4.2 1702 1.3 strlen

2.8 1071 1.3 _poll

25

Evaluation and Recommendations

� Understand communication requirements and

network/host environments

� Measure performance empirically before adopt-
ing a communication model

{ Low-speed networks often hide performance over-

head

� Insist CORBA implementors provide hooks
to manipulate options

{ e.g., setting socket queue size with ORBeline was

hard

� Increase size of socket queues to largest

value supported by OS

� Tune the size of the transmitted data bu�ers

to match MTU of the network

26

Evaluation and Recommendations

(cont'd)

� Use IDL sequences rather than IDL strings

to avoid unnecessary data access and copy-

ing

� Use write/read rather than send/recv on

SVR4 platforms

� Long-term solution:

{ Optimize DOC frameworks

{ Add streaming support to CORBA speci�cation

� Near-term solution for CORBA overhead on
high-speed networks:

{ Integrate DOC frameworks with OO encapsula-

tion of network programming interfaces

27

Concluding Remarks

CLIENT
OBJECT

IMPL

DYNAMIC

INVOCATION

INTERFACE

IDL
STUBS

ORB
INTERFACE

IDL
SKELETON

OBJECT

ADAPTER

OBJECT

REQUEST BROKER

op(args)

DATA COPYING

OPTIMIZATIONS

OPERATION

DEMULTIPLEXING

OPTIMIZATIONS

GIOP PROTOCOL

OPTIMIZATIONS

PRESENTATION

LAYER

OPTIMIZATIONS

� To be e�ective for use with performance-

critical applications over high-speed networks,

CORBA implementations must be optimized

� Key optimization points are illustrated above

28

