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Introduction

� Distributed object computing (DOC) frame-
works are well-suited for certain communi-
cation requirements and certain network en-
vironments

{ e.g., request/response or oneway messaging over

low-speed Ethernet or Token Ring

� However, current DOC implementations ex-
hibit high overhead for other types of re-
quirements and environments

{ e.g., bandwidth-intensive and delay-sensitive stream-

ing applications over high-speed ATM or FDDI
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Outline of Talk

� Outline communication requirements of dis-

tributed medical imaging domain

� Compare performance of several network pro-
gramming mechanisms:

{ Sockets

{ ACE C++ wrappers

{ Two CORBA implementations (ORBeline and Or-

bix)

� Discuss how to use distributed object com-

puting frameworks e�ciently and e�ectively
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Distributed Medical Imaging
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Distributed Objects in Medical

Imaging Systems
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� Image servers have the following responsi-
bilities and requirements:

* E�ciently store/retrieve large medical images

* Respond to queries from Image Locator Servers

* Manage short-term and long-term image persistence
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Image Server System Architecture
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Motivation for CORBA

� Simpli�es application interworking

{ CORBA provides higher level integration than tra-

ditional \untyped TCP bytestreams"

� Provides a foundation for higher-level dis-
tributed object collaboration

{ e.g., Windows OLE and the OMG Common Ob-

ject Service Speci�cation (COSS)

� Bene�ts for distributed programming simi-
lar to OO languages for non-distributed pro-
gramming

{ e.g., encapsulation, interface inheritance, and object-

based exception handling
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CORBA Overview

� CORBA speci�es the following functions of
an Object Request Broker (ORB)

{ Interface De�nition Language (CORBA IDL)

{ A mapping from CORBA IDL onto C, C++, and

Smalltalk

{ An Interface Repository

. Contains meta-info that can be queried at run-

time

{ A Dynamic Invocation Interface

. Used to compose method requests at run-time

{ A Basic Object Adaptor (BOA)

. Allows developers to integrate their objects with

an ORB
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CORBA Services

� CORBA provides the following mechanisms

{ Parameter marshalling

{ Object location

{ Object activation

{ Replication and fault tolerance

� COSS extends CORBA to provide services
like

{ Event services

{ Naming services

{ Transactions

{ Object lifecycle management
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Key Research Question

Can CORBA be used to transfer

medical images e�ciently over

high-speed networks?

� Our goal was to determine this empirically

before adopting the CORBA communica-

tion model wholesale
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Performance Experiments

� Enhanced version of TTCP

{ TTCP measures end-to-end, oneway bulk data

transfer

{ Enhanced version tests C, ACE C++ wrappers,

and CORBA

� Parameters varied

{ 64 Mbytes of data bu�ers ranging from 1 Kbyte

to 128 Kbyte (by powers of 2)

{ Socket queues were 8k (default) and 64k (maxi-

mum)

{ Networks were 155 Mbps ATM and 10 Mbps Eth-

ernet

� Compiler was SunC++ 4.0.1 using highest

optimization level
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TTCP Con�guration for C and

ACE C++ Wrappers
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TTCP Con�guration for CORBA

Implementations
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CORBA Implementations

� 2 implementations of TTCP using 2 ver-
sions of CORBA

{ IDL string and IDL sequence

typedef sequence<char> ttcp_sequence;

interface TTCP_Sequence

{

oneway void send (in ttcp_sequence ttcp_seq);

};

interface TTCP_String

{

oneway void send (in string ttcp_string);

};

{ Orbix 1.3 and ORBeline 1.2

. Couldn't directly reuse source code since neither

ORB supported same IDL ! C++ mapping

. Also, neither ORB supported CORBA 2.0
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CORBA Sender Implementation

� Obtain reference to target objects via bind

factory:

// Use locator service to acquire bindings.

TTCP_String *t_str = TTCP_String::_bind ();

TTCP_Sequence *t_seq = TTCP_Sequence::_bind ();

// ...

// String transfer.

char *buffer = new char[buffer_size];

// Initialize data in char * buffer...

while (--buffers_sent >= 0)

t_str->send (buffer);

// Sequence transfer.

ttcp_sequence sequence_buffer;

// Initialize data in TTCP_Sequence buffer...

while (--buffers_sent >= 0)

t_seq->send (sequence_buffer);
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CORBA Receiver Implementation

� Implementation class for IDL interface that

inherits from automatically-generated CORBA

skeleton class

class TTCP_Sequence_i

: virtual public TTCP_SequenceBOAImpl

{

public:

TTCP_Sequence_i (void): nbytes_ (0) {}

// Upcall invoked by the CORBA skeleton.

virtual void send (const ttcp_sequence &ttcp_seq,

CORBA::Environment &IT_env)

{

this->nbytes_ += ttcp_seq._length;

}

// ...

private:

// Keep track of bytes received.

u_long nbytes_;

};
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CORBA Receiver Main

� Initializes object implementations and goes

into CORBA event loop

int main (int argc, char *argv[])

{

// Implements the Sequence object.

TTCP_Sequence_i ttcp_sequence;

// Implements the String object.

TTCP_String_i ttcp_string;

// Tell the ORB that the objects are active.

CORBA::BOA::impl_is_ready ();

/* NOTREACHED */

return 0;

}
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Performance over ATM and

Ethernet
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C and ACE Performance over

ATM and Ethernet
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Orbix and ORBeline Performance

over ATM and Ethernet
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Primary Sources of Overhead for

CORBA

� Data copying

� Demultiplexing

� Memory allocation

� Presentation layer formatting
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High-Cost Functions

� C and ACE C++ Tests

{ Transferring 64 Mbytes with 128 Kbyte bu�ers

Test %Time #Calls msec/call Name

----------------------------------------------

C sockets 99.6 527 92.8 _write

(sender)

C sockets 99.3 7201 6.2 _read

(receiver)

ACE C++ wrapper 99.4 527 87.3 _write

(sender)

ACE C++ wrapper 99.6 7192 6.2 _read

(receiver)
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High-Cost Functions (cont'd)

� Orbix String and Sequence Tests

Test %Time #Calls msec/call Name

----------------------------------------------

Orbix Sequence 94.6 532 89.1 _write

(sender) 4.1 2121 1.0 memcpy

Orbix Sequence 92.7 7860 6.1 _read

(receiver) 4.8 2581 0.6 memcpy

Orbix String 89.0 532 85.6 _write

(sender) 4.6 2121 1.1 memcpy

4.1 2700 0.7 strlen

Orbix String 86.3 7744 5.7 _read

(receiver) 5.5 6740 0.4 strlen

4.5 2581 0.9 memcpy
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High-Cost Functions (cont'd)

� ORBeline String and Sequence Tests

Test %Time #Calls msec/call Name

----------------------------------------------

ORBeline Sequence 91.0 551 74.9 _write

(sender) 5.2 6413 0.4 memcpy

1.8 1032 0.8 __sigaction

ORBeline Sequence 89.0 7568 5.8 _read

(receiver) 5.1 7222 0.3 memcpy

3.3 1071 1.5 _poll

ORBeline String 83.8 551 83.9 _write

(sender) 5.4 920 3.2 strcpy

4.3 5901 0.4 memcpy

3.9 1728 1.2 strlen

1.1 1032 0.6 __sigaction

ORBeline String 85.4 7827 5.5 _read

(receiver) 4.6 6710 0.3 memcpy

4.2 1702 1.3 strlen

2.8 1071 1.3 _poll
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Evaluation and Recommendations

� Understand communication requirements and

network/host environments

� Measure performance empirically before adopt-
ing a communication model

{ Low-speed networks often hide performance over-

head

� Insist CORBA implementors provide hooks
to manipulate options

{ e.g., setting socket queue size with ORBeline was

hard

� Increase size of socket queues to largest

value supported by OS

� Tune the size of the transmitted data bu�ers

to match MTU of the network
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Evaluation and Recommendations

(cont'd)

� Use IDL sequences rather than IDL strings

to avoid unnecessary data access and copy-

ing

� Use write/read rather than send/recv on

SVR4 platforms

� Long-term solution:

{ Optimize DOC frameworks

{ Add streaming support to CORBA speci�cation

� Near-term solution for CORBA overhead on
high-speed networks:

{ Integrate DOC frameworks with OO encapsula-

tion of network programming interfaces
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Concluding Remarks
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� To be e�ective for use with performance-

critical applications over high-speed networks,

CORBA implementations must be optimized

� Key optimization points are illustrated above
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