X Logical Font Description Conventions
Version 1.5
X Consortium Standard

X Version 11, Release 6.4

Jim Flowers

Digital Equipment Corporation

Version 1.5 edited by Stephen Gildea

X Consortium, Inc.

X Window System is a trademark of X Consortium, Inc.

Helvetica and Times are registered trademarks of Linotype Company.

ITC Avant Garde Gothic is a registered trademark of International Typeface Corporation.
Times Roman is a registered trademark of Monotype Corporation.

Bitstream Amerigo is a registered trademark of Bitstream Inc.

Stone is a registered trademark of Adobe Systems Inc.

Copyright © 1988, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the “Software™), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom

the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-

ware.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-

mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.
Copyright © 1988, 1989 Digital Equipment Corporation, Maynard MA. All rights reserved.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies. Digital Equipment Corpora-
tion makes no representations about the suitability for any purpose of the information in this document. This documen-
tation is provided as is without express or implied warranty.

1. Introduction

It is a requirement that X client applications must be portable across server implementations, with
very different file systems, naming conventions, and font libraries. However, font access requests,
as defined by the X Window System Protocol, neither specify server-independent conventions for
font names nor provide adequate font properties for logically describing typographic fonts.

X clients must be able to dynamically determine the fonts available on any given server so that
understandable information can be presented to the user or so that intelligent font fallbacks can be
chosen. It is desirable for the most common queries to be accomplished without the overhead of
opening each font and inspecting font properties, by means of simple ListFonts requests. For
example, if a user selected a Helvetica typeface family, a client application should be able to
query the server for all Helvetica fonts and present only those setwidths, weights, slants, point
sizes, and character sets available for that family.

This document gives a standard logical font description (hereafter referred to as XLFD) and the
conventions to be used in the core protocol so that clients can query and access screen type
libraries in a consistent manner across all X servers. In addition to completely specifying a given
font by means of its FontName, the XLFD also provides for a standard set of key FontProper-
ties that describe the font in more detail.

The XLFD provides an adequate set of typographic font properties, such as CAP_HEIGHT,
X_HEIGHT, and RELATIVE_SETWIDTH, for publishing and other applications to do intelligent
font matching or substitution when handling documents created on some foreign server that use
potentially unknown fonts. In addition, this information is required by certain clients to position
subscripts automatically and determine small capital heights, recommended leading, word-space
values, and so on.

2. Requirements and Goals

The XLFD meets the short-term and long-term goals to have a standard logical font description
that:

. Provides unique, descriptive font names that support simple pattern matching
. Supports multiple font vendors, arbitrary character sets, and encodings

. Supports naming and instancing of scalable and polymorphic fonts

. Supports transformations and subsetting of fonts

. Is independent of X server and operating or file system implementations

. Supports arbitrarily complex font matching or substitution

. Is extensible

2.1. Provide Unique and Descriptive Font Names

It should be possible to have font names that are long enough and descriptive enough to have a
reasonable probability of being unique without inventing a new registration organization. Resolu-
tion and size-dependent font masters, multivendor font libraries, and so on must be anticipated
and handled by the font name alone.

The name itself should be structured to be amenable to simple pattern matching and parsing, thus
allowing X clients to restrict font queries to some subset of all possible fonts in the server.

2.2. Support Multiple Font Vendors and Character Sets

The font name and properties should distinguish between fonts that were supplied by different
font vendors but that possibly share the same name. We anticipate a highly competitive font

X Logical Font Description Conventions X11, Release 6.4

market where users will be able to buy fonts from many sources according to their particular
requirements.

A number of font vendors deliver each font with all glyphs designed for that font, where charset
mappings are defined by encoding vectors. Some server implementations may force these map-
pings to proprietary or standard charsets statically in the font data. Others may desire to perform
the mapping dynamically in the server. Provisions must be made in the font name that allows a
font request to specify or identify specific charset mappings in server environments where multi-
ple charsets are supported.

2.3. Support Scalable and Polymorphic Fonts

If a font source can be scaled to an arbitrary size or varied in other ways, it should be possible for
an application to determine that fact from the font name, and the application should be able to
construct a font name for any specific instance.

2.4. Support Transformations and Subsetting of Fonts

Arbitrary two-dimensional linear transformations of fonts should be able to be requested by appli-
cations. Since such transformed fonts may be used for special effects requiring a few characters
from each of many differently transformed fonts, it should be possible to request only a few char-
acters from a font for efficiency.

2.5. Be Independent of X Server and Operating or File System Implementations

X client applications that require a particular font should be able to use the descriptive name with-
out knowledge of the file system or other repository in use by the server. However, it should be
possible for servers to translate a given font name into a file name syntax that it knows how to
deal with, without compromising the uniqueness of the font name. This algorithm should be
reversible (exactly how this translation is done is implementation dependent).

2.6. Support Arbitrarily Complex Font Matching and Substitution

In addition to the font name, the XLFD should define a standard list of descriptive font properties,
with agreed-upon fallbacks for all fonts. This allows client applications to derive font-specific
formatting or display data and to perform font matching or substitution when asked to handle
potentially unknown fonts, as required.

2.7. Be Extensible

The XLFD must be extensible so that new and/or private descriptive font properties can be added
to conforming fonts without making existing X client or server implementations obsolete.

3. X Logical Font Description

XLFD is divided into two basic components: the FontName, which gives all font information
needed to uniquely identify a font in X protocol requests (for example, OpenFont, ListFonts,
and so on) and a variable list of optional FontProperties, which describe a font in more detail.

The FontName is used in font queries and is returned as data in certain X protocol requests. It is
also specified as the data value for the FONT item in the X Consortium Character Bitmap Distri-
bution Format Standard (BDF V2.1).

The FontProperties are supplied on a font-by-font basis and are returned as data in certain X
protocol requests as part of the XFontStruct data structure. The names and associated data val-
ues for each of the FontProperties may also appear as items of the STARTPROPERTIES...END-
PROPERTIES list in the BDF V2.1 specification.

X Logical Font Description Conventions X11, Release 6.4

3.1. FontName

Each FontName is logically composed of two strings: a FontNameRegistry prefix that is fol-
lowed by a FontNameSuffix. The FontName uses the ISO 8859-1 encoding. The Font-
NameRegistry is an x-registered-name (a name that has been registered with the X Consortium)
that identifies the registration authority that owns the specified FontNameSuffix syntax and
semantics.

All font names that conform to this specification are to use a FontNameRegistry prefix, which is
defined to be the string “~” (HYPHEN). All FontNameRegistry prefixes of the form: +ver-
sion—, where the specified version indicates some future XLFD specification, are reserved by the
X Consortium for future extensions to XLFD font names. If required, extensions to the current
XLFD font name shall be constructed by appending new fields to the current structure, each
delimited by the existing field delimiter. The availability of other FontNameRegistry prefixes or
fonts that support other registries is server implementation dependent.

In the X protocol specification, the FontName is required to be a string; hence, numeric field val-
ues are represented in the name as string equivalents. All FontNameSuffix fields are also
defined as FontProperties; numeric property values are represented as signed or unsigned inte-
gers, as appropriate.

3.1.1. FontName Syntax

The FontName is a structured, parsable string (of type STRINGS) whose Backus-Naur Form
syntax description is as follows:

FontName ::= XFontNameRegistry XFontNameSuffix | PrivFontNameRegistry PrivFont-
NameSuffix
XFontNameRegistry ::= XFNDelim | XFNExtPrefix Version XFNDelim
XFontNameSuffix ::= FOUNDRY XFNDelim FAMILY_NAME XFNDelim WEIGHT NAME
XFNDelim SLANT XFNDelim SETWIDTH_NAME XFNDelim ADD_
STYLE_NAME XFNDelim PIXEL_SIZE XFNDelim POINT_SIZE
XFNDelim RESOLUTION_X XFNDelim RESOLUTION_Y XFNDelim
SPACING XFNDelim AVERAGE_WIDTH XFNDelim CHARSET_REG-
ISTRY XFNDelim CHARSET_ENCODING
Version ::= STRINGS — the XLFD version that defines an extension to the font name
syntax (for example, “1.4”")
XFNExtPrefix := OCTET - “+” (PLUS)
XFNDelim ::= OCTET - “-” (HYPHEN)
PrivFontNameRegistry ::= STRINGS — other than those strings reserved by XLFD
PrivFontNameSuffix ::= STRING8

Field values are constructed as strings of ISO 8859-1 graphic characters, excluding the following:

. “~” (HYPHEN), the XLFD font name delimiter character

. “?7” (QUESTION MARK) and “*” (ASTERISK), the X protocol font name wildcard char-
acters

. “,” (COMMA), used by Xlib to separate XLFD font names in a font set.

. “m” (QUOTATION MARK), used by some commercial products to quote a font name.

Alphabetic case distinctions are allowed but are for human readability concerns only. Conform-
ing X servers will perform matching on font name query or open requests independent of case.
The entire font name string must have no more than 255 characters. It is recommended that
clients construct font name query patterns by explicitly including all field delimiters to avoid

X Logical Font Description Conventions X11, Release 6.4

unexpected results. Note that SPACE is a valid character of a FontName field; for example, the
string “ITC Avant Garde Gothic” might be a FAMILY_NAME.

3.1.2. FontName Field Definitions

This section discusses the FontName:

. FOUNDRY field

. FAMILY_NAME field

. WEIGHT_NAME field

. SLANT field

. SETWIDTH_NAME field

. ADD_STYLE_NAME field

. PIXEL_SIZE field

. POINT_SIZE field

. RESOLUTION_X and RESOLUTION_Y fields
. SPACING field

. AVERAGE_WIDTH field

. CHARSET_REGISTRY and CHARSET_ENCODING fields

3.1.2.1. FOUNDRY Field

FOUNDRY is an x-registered-name, the name or identifier of the digital type foundry that digi-
tized and supplied the font data, or if different, the identifier of the organization that last modified
the font shape or metric information.

The reason this distinction is necessary is that a given font design may be licensed from one
source (for example, ITC) but digitized and sold by any number of different type suppliers. Each
digital version of the original design, in general, will be somewhat different in metrics and shape
from the idealized original font data, because each font foundry, for better or for worse, has its
own standards and practices for tweaking a typeface for a particular generation of output tech-
nologies or has its own perception of market needs.

It is up to the type supplier to register with the X Consortium a suitable name for this FontName
field according to the registration procedures defined by the Consortium.

The X Consortium shall define procedures for registering foundry and other names and shall
maintain and publish, as part of its public distribution, a registry of such registered names for use
in XLFD font names and properties.

3.1.2.2. FAMILY_NAME Field

FAMILY_NAME is a string that identifies the range or family of typeface designs that are all
variations of one basic typographic style. This must be spelled out in full, with words separated
by spaces, as required. This name must be human-understandable and suitable for presentation to
a font user to identify the typeface family.

It is up to the type supplier to supply and maintain a suitable string for this field and font property,
to secure the proper legal title to a given name, and to guard against the infringement of other’s
copyrights or trademarks. By convention, FAMILY_NAME is not translated. FAMILY_NAME
may include an indication of design ownership if considered a valid part of the typeface family
name.

X Logical Font Description Conventions X11, Release 6.4

The following are examples of FAMILY_NAME:

. Helvetica

. ITC Avant Garde Gothic
. Times

. Times Roman

. Bitstream Amerigo

. Stone

3.1.2.3. WEIGHT_NAME Field

WEIGHT_NAME is a string that identifies the font’s typographic weight, that is, the nominal
blackness of the font, according to the FOUNDRY’s judgment. This name must be human-under-
standable and suitable for presentation to a font user. The value “0” is used to indicate a poly-
morphic font (see section 6).

The interpretation of this field is somewhat problematic because the typographic judgment of
weight has traditionally depended on the overall design of the typeface family in question; that is,
it is possible that the DemiBold weight of one font could be almost equivalent in typographic feel
to a Bold font from another family.

WEIGHT_NAME is captured as an arbitrary string because it is an important part of a font’s
complete human-understandable name. However, it should not be used for font matching or sub-
stitution. For this purpose, X client applications should use the weight-related font properties
(RELATIVE_WEIGHT and WEIGHT) that give the coded relative weight and the calculated
weight, respectively.

3.1.2.4. SLANT Field

SLANT is a code-string that indicates the overall posture of the typeface design used in the font.
The encoding is as follows:

Code English Translation Description

“R” Roman Upright design

“1” Italic Italic design, slanted clockwise from the vertical

“0” Oblique Obliqued upright design, slanted clockwise from the ver-
tical

“RI” Reverse Italic Italic design, slanted counterclockwise from the vertical

“RO” Reverse Oblique Obliqued upright design, slanted counterclockwise from
the vertical

“oT” Other Other

numeric Polymorphic See section 6 on polymorphic font support.

The SLANT codes are for programming convenience only and usually are converted into their
equivalent human-understandable form before being presented to a user.

3.1.2.5. SETWIDTH_NAME Field

SETWIDTH_NAME is a string that gives the font’s typographic proportionate width, that is, the
nominal width per horizontal unit of the font, according to the FOUNDRY’s judgment. The value
“0” is used to indicate a polymorphic font (see section 6).

X Logical Font Description Conventions X11, Release 6.4

As with WEIGHT_NAME, the interpretation of this field or font property is somewhat problem-
atic, because the designer’s judgment of setwidth has traditionally depended on the overall design
of the typeface family in question. For purposes of font matching or substitution, X client appli-
cations should either use the RELATIVE_SETWIDTH font property that gives the relative coded
proportionate width or calculate the proportionate width.

The following are examples of SETWIDTH_NAME:

. Normal
J Condensed
J Narrow

. Double Wide

3.1.2.6. ADD_STYLE_NAME Field

ADD_STYLE_NAME is a string that identifies additional typographic style information that is
not captured by other fields but is needed to identify the particular font. The character “[” any-
where in the field is used to indicate a polymorphic font (see section 6).

ADD_STYLE_NAME is not a typeface classification field and is only used for uniqueness. Its
use, as such, is not limited to typographic style distinctions.

The following are examples of ADD_STYLE_NAME:

. Serif

. Sans Serif
. Informal

. Decorated

3.1.2.7. PIXEL_SIZE Field

PIXEL_SIZE gives the body size of the font at a particular POINT_SIZE and RESOLUTION_Y.
PIXEL_SIZE is either an integer-string or a string beginning with “[”. A string beginning with
“[” represents a matrix (see section 4). PIXEL_SIZE usually incorporates additional vertical
spacing that is considered part of the font design. (Note, however, that this value is not necessar-
ily equivalent to the height of the font bounding box.) Zero is used to indicate a scalable font (see
section 5).

PIXEL_SIZE usually is used by X client applications that need to query fonts according to
device-dependent size, regardless of the point size or vertical resolution for which the font was
designed.

3.1.2.8. POINT_SIZE Field

POINT_SIZE gives the body size for which the font was designed. POINT_SIZE is either an
integer-string or a string beginning with “[”. A string beginning with “[” represents a matrix
(see section 4). This field usually incorporates additional vertical spacing that is considered part
of the font design. (Note, however, that POINT_SIZE is not necessarily equivalent to the height
of the font bounding box.) POINT_SIZE is expressed in decipoints (where points are as defined
in the X protocol or 72.27 points equal 1 inch). Zero is used to indicate a scalable font (see sec-
tion 5).

POINT_SIZE and RESOLUTION_Y are used by X clients to query fonts according to device-
independent size to maintain constant text size on the display regardless of the PIXEL_SIZE used
for the font.

X Logical Font Description Conventions X11, Release 6.4

3.1.2.9. RESOLUTION_X and RESOLUTION_Y Fields

RESOLUTION_X and RESOLUTIONL_Y are unsigned integer-strings that give the horizontal
and vertical resolution, measured in pixels or dots per inch (dpi), for which the font was designed.
Zero is used to indicate a scalable font (see section 5). Horizontal and vertical values are required
because a separate bitmap font must be designed for displays with very different aspect ratios (for
example, 1:1, 4:3, 2:1, and so on).

The separation of pixel or point size and resolution is necessary because X allows for servers with
very different video characteristics (for example, horizontal and vertical resolution, screen and
pixel size, pixel shape, and so on) to potentially access the same font library. The font name, for
example, must differentiate between a 14-point font designed for 75 dpi (body size of about 14
pixels) or a 14-point font designed for 150 dpi (body size of about 28 pixels). Further, in servers
that implement some or all fonts as continuously scaled and scan-converted outlines,
POINT_SIZE and RESOLUTION_Y will help the server to differentiate between potentially sep-
arate font masters for text, title, and display sizes or for other typographic considerations.

3.1.2.10. SPACING Field

SPACING is a code-string that indicates the escapement class of the font, that is, monospace
(fixed pitch), proportional (variable pitch), or charcell (a special monospaced font that conforms
to the traditional data-processing character cell font model). The encoding is as follows:

Code English Translation Description

“p” Proportional A font whose logical character widths vary for each glyph. Note that
no other restrictions are placed on the metrics of a proportional font.

“M” Monospaced A font whose logical character widths are constant (that is, every
glyph in the font has the same logical width). No other restrictions
are placed on the metrics of a monospaced font.

“Cc” CharCell A monospaced font that follows the standard typewriter character cell
model (that is, the glyphs of the font can be modeled by X clients as
“boxes” of the same width and height that are imaged side-by-side to
form text strings or top-to-bottom to form text lines). By definition,
all glyphs have the same logical character width, and no glyphs have
“ink” outside of the character cell. There is no kerning (that is, on a
per-character basis with positive metrics: 0 <= left-bearing <= right-
bearing <= width; with negative metrics: width <= left-bearing <=
right-bearing <= zero). Also, the vertical extents of the font do not
exceed the vertical spacing (that is, on a per-character basis: ascent
<= font-ascent and descent <= font-descent). The cell height = font-
descent + font-ascent, and the width = AVERAGE_WIDTH.

3.1.2.11. AVERAGE_WIDTH Field

AVERAGE_WIDTH is an integer-string typographic metric value that gives the unweighted arith-
metic mean of the absolute value of the width of each glyph in the font (measured in tenths of
pixels), multiplied by —1 if the dominant writing direction for the font is right-to-left. A leading
“~” (TILDE) indicates a negative value. For monospaced and character cell fonts, this is the
width of all glyphs in the font. Zero is used to indicate a scalable font (see section 5).

X Logical Font Description Conventions X11, Release 6.4

3.1.2.12. CHARSET_REGISTRY and CHARSET_ENCODING Fields

The character set used to encode the glyphs of the font (and implicitly the font’s glyph repertoire),
as maintained by the X Consortium character set registry. CHARSET_REGISTRY is an x-regis-
tered-name that identifies the registration authority that owns the specified encoding.
CHARSET_ENCODING is a registered name that identifies the coded character set as defined by
that registration authority and, optionally, a subsetting hint.

Although the X protocol does not explicitly have any knowledge about character set encodings, it
is expected that server implementors will prefer to embed knowledge of certain proprietary or
standard charsets into their font library for reasons of performance and convenience. The
CHARSET_REGISTRY and CHARSET_ENCODING fields or properties allow an X client font
request to specify a specific charset mapping in server environments where multiple charsets are

supported. The availability of any particular character set is font and server implementation

dependent.

To prevent collisions when defining character set names, it is recommended that
CHARSET_REGISTRY and CHARSET_ENCODING name pairs be constructed according to

the following conventions:

CharsetRegistry ::
CharsetEncoding ::
StdCharsetRegistryName ::
PrivCharsetRegistryName ::
StdCharsetEncodingName ::
PrivCharsetEncodingName ::
StdOrganizationld ::

StdNumber ::
Organizationld ::
Dot ::

Year :

StdCharsetRegistryName | PrivCharsetRegistryName
StdCharsetEncodingName | PrivCharsetEncodingName
StdOrganizationld StdNumber | StdOrganizationld StdNumber Dot Year
Organizationld STRING8

STRING8—numeric part number of referenced standard

STRING8

STRINGB8-the registered name or acronym of the referenced standard
organization

STRING8-referenced standard number

STRING8-the registered name or acronym of the organization
OCTET-“.” (FULL STOP)

STRING8—numeric year (for example, 1989)

The X Consortium shall maintain and publish a registry of such character set names for use in X
protocol font names and properties as specified in XLFD.

The ISO Latin-1 character set shall be registered by the X Consortium as the CHARSET_REG-
ISTRY-CHARSET_ENCODING value pair: “ISO8859-1".

If the CHARSET_ENCODING contains a “[”’ (LEFT SQUARE BRACKET), the “[” and the
characters after it up to a “]” (RIGHT SQUARE BRACKET) are a subsetting hint telling the font
source that the client is interested only in a subset of the characters of the font. The font source
can, optionally, return a font that contains only those characters or any superset of those charac-
ters. The client can expect to obtain valid glyphs and metrics only for those characters, and not
for any other characters in the font. The font properties may optionally be calculated by consider-
ing only the characters in the subset.

The BNF for the subsetting hint is

Subset :: LeftBracket RangeList RightBracket
RangelList :: Range | Range Space RangeList
Range :: Number | Number Underscore Number
Number :: “0x” HexNumber | DecNumber
HexNumber :: HexDigit | HexDigit HexNumber

X Logical Font Description Conventions

DecNumber ::
DecDigit ::
HexDigit ::

LeftBracket ::

RightBracket ::
Space ::
Underscore ::

X11, Release 6.4

DecDigit | DecDigit DecNumber

CO L 27 1937 4 45 16 1 T] 487] 97
DecDigit | “a” | “b” | “c” | “d” | “e” | “f”

“[” (LEFT SQUARE BRACKET)

“]” (RIGHT SQUARE BRACKET)

“ ” (SPACE)

“_” (LOW LINE)

Each Range specifies characters that are to be part of the subset included in the font. A Range
containing two Numbers specifies the first and last character, inclusively, of a range of characters.
A Range that is a single Number specifies a single character to be included in the font. A
HexNumber is interpreted as a hexadecimal number. A DecNumber is interpreted as a decimal
number. The font consists of the union of all the Ranges in the RangeL.ist.

For example,

-misc-fixed-medium-r-normal--0-0-0-0-c-0-1s08859-1[65 70 80_90]
tells the font source that the client is interested only in characters 65, 70, and 80-90.

3.1.3. Examples

The following examples of font names are derived from the screen fonts shipped with the X Con-

sortium distribution.

Font

X FontName

75-dpi Fonts

Charter 12 pt

Charter Bold 12 pt
Charter Bold Italic 12 pt
Charter Italic 12 pt
Courier 8 pt

Courier 10 pt

Courier 12 pt

Courier 24 pt

Courier Bold 10 pt
Courier Bold Oblique 10 pt
Courier Oblique 10 pt

100-dpi Fonts

Symbol 10 pt

Symbol 14 pt

Symbol 18 pt

Symbol 24 pt

Times Bold 10 pt
Times Bold Italic 10 pt
Times Italic 10 pt
Times Roman 10 pt

-Bitstream-Charter-Medium-R-Normal--12-120-75-75-P-68-1SO8859-1
-Bitstream-Charter-Bold-R-Normal--12-120-75-75-P-76-ISO8859-1
-Bitstream-Charter-Bold-I-Normal--12-120-75-75-P-75-ISO8859-1
-Bitstream-Charter-Medium-I-Normal--12-120-75-75-P-66-ISO8859- 1
-Adobe-Courier-Medium-R-Normal--8-80-75-75-M-50-1SO8859-1
-Adobe-Courier-Medium-R-Normal--10-100-75-75-M-60-1SO8859-1
-Adobe-Courier-Medium-R-Normal--12-120-75-75-M-70-1SO8859-1
-Adobe-Courier-Medium-R-Normal--24-240-75-75-M-150-ISO8859-1
-Adobe-Courier-Bold-R-Normal--10-100-75-75-M-60-1SO8859-1
-Adobe-Courier-Bold-O-Normal--10-100-75-75-M-60-1SO8859-1
-Adobe-Courier-Medium-O-Normal--10-100-75-75-M-60-ISO8859- 1

-Adobe-Symbol-Medium-R-Normal--14-100-100-100-P-85-Adobe-FONTSPECIFIC
-Adobe-Symbol-Medium-R-Normal--20-140-100-100-P-107-Adobe-FONTSPECIFIC
-Adobe-Symbol-Medium-R-Normal--25-180-100-100-P-142-Adobe-FONTSPECIFIC
-Adobe-Symbol-Medium-R-Normal--34-240-100-100-P-191-Adobe-FONTSPECIFIC
-Adobe-Times-Bold-R-Normal--14-100-100-100-P-76-ISO8859-1
-Adobe-Times-Bold-I-Normal--14-100-100-100-P-77-ISO8859-1
-Adobe-Times-Medium-I-Normal--14-100-100-100-P-73-ISO8859-1
-Adobe-Times-Medium-R-Normal--14-100-100-100-P-74-ISO8859-1

3.2. Font Properties

All font properties are optional but will generally include the font name fields and, on a font-by-
font basis, any other useful font descriptive and use information that may be required to use the

X Logical Font Description Conventions X11, Release 6.4

font intelligently. The XLFD specifies an extensive set of standard X font properties, their inter-
pretation, and fallback rules when the property is not defined for a given font. The goal is to pro-
vide client applications with enough font information to be able to make automatic formatting and
display decisions with good typographic results.

Font property names use the ISO 8859-1 encoding.

Additional standard X font property definitions may be defined in the future and private proper-
ties may exist in X fonts at any time. Private font properties should be defined to conform to the
general mechanism defined in the X protocol to prevent overlap of name space and ambiguous
property names, that is, private font property names are of the form: “_" (LOW LINE), followed
by the organizational identifier, followed by “_” (LOW LINE), and terminated with the property
name.

The Backus-Naur Form syntax description of X font properties is as follows:

Properties ::= OptFontPropList
OptFontPropList ::= NULL | OptFontProp OptFontPropList
OptFontProp ::= PrivateFontProp | XFontProp
PrivateFontProp ::= STRINGS | Underscore Organizationld Underscore STRING8
XFontProp ::= FOUNDRY | FAMILY_NAME | WEIGHT_NAME | SLANT |

SETWIDTH_NAME | ADD_STYLE_NAME | PIXEL_SIZE |
POINT_SIZE | RESOLUTION_X | RESOLUTION_Y | SPACING |
AVERAGE_WIDTH | CHARSET_REGISTRY | CHARSET_ENCODING
| QUAD_WIDTH | RESOLUTION | MIN_SPACE | NORM_SPACE |
MAX_SPACE | END_SPACE | SUPERSCRIPT_X | SUPERSCRIPT_Y |
SUBSCRIPT_X | SUBSCRIPT_Y | UNDERLINE_POSITION | UNDER-
LINE_THICKNESS | STRIKEOUT_ASCENT | STRIKE-
OUT_DESCENT | ITALIC_ANGLE | X_HEIGHT | WEIGHT |
FACE_NAME | FULL_NAME | FONT | COPYRIGHT | AVG_CAPI-
TAL_WIDTH | AVG_LOWERCASE_WIDTH | RELATIVE_SETWIDTH
| RELATIVE_WEIGHT | CAP_HEIGHT | SUPERSCRIPT_ SIZE | FIG-
URE_WIDTH | SUBSCRIPT_SIZE | SMALL_CAP_SIZE | NOTICE |
DESTINATION | FONT_TYPE | FONT_VERSION | RASTER-
IZER_NAME | RASTERIZER_VERSION | RAW_ASCENT |
RAW_DESCENT | RAW_* | AXIS_NAMES | AXIS_LIMITS |
AXIS_TYPES

OCTET-*_" (LOW LINE)

STRINGS8-the registered name of the organization

Underscore ::

Organizationld ::

3.2.1. FOUNDRY
FOUNDRY is as defined in the FontName except that the property type is ATOM.
FOUNDRY cannot be calculated or defaulted if not supplied as a font property.

3.2.2. FAMILY_NAME
FAMILY_NAME is as defined in the FontName except that the property type is ATOM.
FAMILY_NAME cannot be calculated or defaulted if not supplied as a font property.

10

X Logical Font Description Conventions X11, Release 6.4

3.2.3. WEIGHT_NAME
WEIGHT_NAME is as defined in the FontName except that the property type is ATOM.
WEIGHT_NAME can be defaulted if not supplied as a font property, as follows:

if (WEIGHT_NAME undefined) then
WEIGHT_NAME = ATOM(“Medium”’)

3.2.4. SLANT
SLANT is as defined in the FontName except that the property type is ATOM.
SLANT can be defaulted if not supplied as a font property, as follows:

if (SLANT undefined) then
SLANT = ATOM(“R”)

3.2.5. SETWIDTH_NAME
SETWIDTH_NAME is as defined in the FontName except that the property type is ATOM.
SETWIDTH_NAME can be defaulted if not supplied as a font property, as follows:

if (SETWIDTH_NAME undefined) then
SETWIDTH_NAME = ATOM(*“Normal™)

3.2.6. ADD_STYLE_NAME
ADD_STYLE_NAME is as defined in the FontName except that the property type is ATOM.
ADD_STYLE_NAME can be defaulted if not supplied as a font property, as follows:

if (ADD_STYLE_NAME undefined) then
ADD_STYLE_NAME = ATOM(*”)

3.2.7. PIXEL_SIZE
PIXEL_SIZE is as defined in the FontName except that the property type is INT32.

X clients requiring pixel values for the various typographic fixed spaces (em space, en space, and
thin space) can use the following algorithm for computing these values from other properties
specified for a font:

DeciPointsPerInch = 722.7

EMspace = ROUND ((RESOLUTION_X * POINT_SIZE) / DeciPointsPerInch)
ENspace = ROUND (EMspace / 2)

THINspace = ROUND (EMspace / 3)

where a slash (/) denotes real division, an asterisk (*) denotes real multiplication, and ROUND
denotes a function that rounds its real argument a up or down to the next integer. This rounding is
done according to X = FLOOR (a + 0.5), where FLOOR is a function that rounds its real argu-
ment down to the nearest integer.

PIXEL_SIZE can be approximated if not supplied as a font property, according to the following
algorithm:

11

X Logical Font Description Conventions X11, Release 6.4

DeciPointsPerInch = 722.7
if (PIXEL_SIZE undefined) then
PIXEL_SIZE = ROUND ((RESOLUTION_Y * POINT_SIZE) / DeciPointsPerInch)

3.2.8. POINT_SIZE
POINT_SIZE is as defined in the FontName except that the property type is INT32.

X clients requiring device-independent values for em space, en space, and thin space can use the
following algorithm:

EMspace = ROUND (POINT_SIZE / 10)
ENspace = ROUND (POINT_SIZE / 20)
THINspace = ROUND (POINT_SIZE / 30)

Design POINT_SIZE cannot be calculated or approximated.

3.2.9. RESOLUTION_X
RESOLUTION_X is as defined in the FontName except that the property type is CARD32.
RESOLUTION_X cannot be calculated or approximated.

3.2.10. RESOLUTION_Y
RESOLUTION_Y is as defined in the FontName except that the property type is CARD32.
RESOLUTION_X cannot be calculated or approximated.

3.2.11. SPACING
SPACING is as defined in the FontName except that the property type is ATOM.

SPACING can be calculated if not supplied as a font property, according to the definitions given
above for the FontName.

3.2.12. AVERAGE_WIDTH

AVERAGE_WIDTH is as defined in the FontName except that the property type is INT32.
AVERAGE_WIDTH can be calculated if not provided as a font property, according to the follow-
ing algorithm:

if (AVERAGE_WIDTH undefined) then
AVERAGE_WIDTH = ROUND (MEAN (ABS (width of each glyph in font)) * 10)
* (if (dominant writing direction L-to-R) then 1 else —1)

where MEAN is a function that returns the arithmetic mean of its arguments.

X clients that require values for the number of characters per inch (pitch) of a monospaced font
can use the following algorithm using the AVERAGE_WIDTH and RESOLUTION_X font prop-
erties:

if (SPACING not proportional) then
CharPitch = (RESOLUTION_X * 10) / AVERAGE_WIDTH

12

X Logical Font Description Conventions X11, Release 6.4

3.2.13. CHARSET_REGISTRY
CHARSET_REGISTRY is as defined in the FontName except that the property type is ATOM.
CHARSET_REGISTRY cannot be defaulted if not supplied as a font property.

3.2.14. CHARSET_ENCODING
CHARSET_ENCODING is as defined in the FontName except that the property type is ATOM.
CHARSET_ENCODING cannot be defaulted if not supplied as a font property.

3.2.15. MIN_SPACE

MIN_SPACE is an integer value (of type INT32) that gives the recommended minimum word-
space value to be used with this font.

MIN_SPACE can be approximated if not provided as a font property, according to the following
algorithm:

if (MIN_SPACE undefined) then
MIN_SPACE = ROUND(0.75 * NORM_SPACE)

3.2.16. NORM_SPACE

NORM_SPACE is an integer value (of type INT32) that gives the recommended normal word-
space value to be used with this font.

NORM_SPACE can be approximated if not provided as a font property, according to the follow-
ing algorithm:

DeciPointsPerInch = 722.7
if (NORM_SPACE undefined) then
if (SPACE glyph exists) then
NORM_SPACE = width of SPACE
else NORM_SPACE = ROUND((0.33 * RESOLUTION_X * POINT_SIZE)/ DeciPointsPerInch)

3.2.17. MAX SPACE

MAX_SPACE is an integer value (of type INT32) that gives the recommended maximum word-
space value to be used with this font.

MAX_SPACE can be approximated if not provided as a font property, according to the following
algorithm:

if (MAX_SPACE undefined) then
MAX_SP