© ISO/IEC 2014 – All rights reserved

WORKING DRAFT

 SET DDOrganization "© ISO/IEC 2014 – All rights reserved" © ISO/IEC 2014 – All rights reserved

 SET LibEnteteISO "ISO/IEC WD 15938-6.3" ISO/IEC WD 15938-6.3

 SET LIBTypeTitreISO " 63" 63

 SET DDTITLE4 "Part 6: Reference software" Part 6: Reference software

 SET DDTITLE3 "Information technology — Multimedia content description interface" Information technology — Multimedia content description interface

 SET DDTITLE2 "Technologies de l'information — Interface de description du contenu multimédia — Partie 6: Logiciel de référence" Technologies de l'information — Interface de description du contenu multimédia — Partie 6: Logiciel de référence

 SET DDTITLE1 "Information technology — Multimedia content description interface — Part 6: Reference software" Information technology — Multimedia content description interface — Part 6: Reference software

 SET DDDocLanguage "E" E

 SET DDWorkDocDate "2014-07-11" 2014-07-11

 SET DDDocStage "(20) Preparatory" (20) Preparatory

 SET DDOrganization3 "ISO/IEC" ISO/IEC

 SET DDOrganization1 "ISO/IEC J" ISO/IEC J

 SET DDBASEYEAR ""

 SET DDAmno ""

 SET DDDocSubType ""

 SET DDDocType "International Standard" International Standard

 SET DDpubYear "2014" 2014

 SET DDWorkDocNo "14680" 14680

 SET DDRefNoPart "ISO/IEC 15938" ISO/IEC 15938

 SET DDRefGen "ISO/IEC 15938‑6" ISO/IEC 15938‑6

 SET DDRefNum "ISO/IEC WD 15938-6.3" ISO/IEC WD 15938-6.3

 SET DDSCSecr ""

 SET DDSecr "JISC" JISC

 SET DDSCTitle "Coding of audio, picture, multimedia and hypermedia information" Coding of audio, picture, multimedia and hypermedia information

 SET DDTCTitle "Information technology" Information technology

 SET DDWGNum "11" 11

 SET DDSCNum "29" 29

 SET DDTCNum "1" 1

 SET LIBLANG " 2" 2

 SET libH2NAME "Heading 2" Heading 2

 SET libH1NAME "Heading 1" Heading 1

 SET LibDesc ""

 SET LibDescD ""

 SET LibDescE ""

 SET LibDescF ""

 SET NATSubVer "0" 0

 SET CENSubVer "2" 2

 SET ISOSubVer ""

 SET LIBVerMSDN "STD Version 2.1c2" STD Version 2.1c2

 SET LIBStageCode "10" 10

 SET LibRpl ""

 SET LibICS ""

 SET LIBFIL " 4" 4

 SET LIBEnFileName "C:\15938-6\WD3\w14680.doc" C:\15938-6\WD3\w14680.doc

 SET LIBDeFileName ""

 SET LIBNatFileName ""

 SET LIBFileOld ""

 SET LIBTypeTitreCEN ""

 SET LIBTypeTitreNAT ""

 SET LibEnteteCEN ""

 SET LibEnteteNAT ""

 SET LIBASynchroVF ""

 SET LIBASynchroVE ""

 SET LIBASynchroVD "" ISO/IEC JTC 1/SC 29 /WG 11 N 14680
Date: 2014-07-11
ISO/IEC WD 15938-6.3
ISO/IEC JTC 1/SC 29/WG 11
Secretariat: JISC
Information technology — Multimedia content description interface — Part 6: Reference software
Technologies de l'information — Interface de description du contenu multimédia — Partie 6: Logiciel de référence

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO's member body in the country of the requester:

[Indicate the full address, telephone number, fax number, telex number, and electronic mail address, as appropriate, of the Copyright Manger of the ISO member body responsible for the secretariat of the TC or SC within the framework of which the working document has been prepared.]

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.
Contents
Page
ivForeword

Introduction
v
1
Scope
1
2
Symbols and abbreviated terms
1
2.1
Abbreviations
1
3
Copyright disclaimer for software modules
2
4
Software availability
2
5
XM software architecture
2
5.1
Block diagrams
2
5.1.1
Media database
4
5.1.2
AV decoders
4
5.1.3
Media data
5
5.1.4
Extraction tools
5
5.1.5
Descriptors (Ds) and Description Schemes (DSs)
6
5.1.6
Coding Schemes (CSs)
8
5.1.7
Matching Tools
9
5.1.8
Media Transcoders
11
5.1.9
Applications
11
5.2
Interface Structure
12
6
Systems Reference Software (BiM)
12
6.1
BiM Reference software
12
6.1.1
Introduction
12
6.1.2
Software overview
13
6.2
Access unit navigator
14
6.2.1
Introduction
14
6.2.2
Textual Access Unit Encoder Module
14
6.2.3
Textual Acces Unit Decoder Module
15
7
Systems Reference Software (DDL)
16
8
Visual Reference Software
16
9
Audio Reference Software
17
10
Multimedia Description Scheme Reference Software
17
11
Compilation of the Reference Software
17
12
Usage Information for Individual Descriptors and Description Schemes
17
Annex A (informative) Additional Utility Software
18
Annex B (informative) Providers of Reference Software
19
Annex C (informative) Integration and Interface Templates
20

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 15938‑6 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

This second/third/... edition cancels and replaces the first/second/... edition (), [clause(s) / subclause(s) / table(s) / figure(s) / annex(es)] of which [has / have] been technically revised.

ISO/IEC 15938 consists of the following parts, under the general title Information technology — Multimedia content description interface:

· Part 1: Systems

· Part 2: Description definition language

· Part 3: Visual

· Part 4: Audio

· Part 5: Multimedia description schemes

· Part 6: Reference software
· Part 7: Conformance testing

· Part 8: Extraction and use of MPEG-7 descriptions

· Part 9: Profiles and levels

· Part 10: Schema definition

· Part 11: MPEG-7 profile schemas

· Part 12: Query format

· Part 13: Compact descriptors for visual search

Introduction

This International Standard, also known as "Multimedia Content Description Interface," provides a standardized set of technologies for describing multimedia content. It addresses a broad spectrum of multimedia applications and requirements by providing a metadata system for describing the features of multimedia content.

The following are specified in this International Standard:

Description schemes (DS) describe entities or relationships pertaining to multimedia content. Description schemes specify the structure and semantics of their components, which may be Description Schemes, descriptors, or datatypes.

Descriptors (D) describe features, attributes, or groups of attributes of multimedia content.

Datatypes are the basic reusable datatypes employed by description schemes and descriptors

Systems tools support delivery of descriptions, multiplexing of descriptions with multimedia content, synchronization, file format, and so forth.

This International Standard is subdivided into 13 parts:

Part 1 – Systems: specifies the tools for preparing descriptions for efficient transport and storage, compressing descriptions, and allowing synchronization between content and descriptions.

Part 2 – Description definition language: specifies the language for defining the International Standard set of description tools (DSs, Ds, and datatypes) and for defining new description tools.

Part 3 – Visual: specifies the description tools pertaining to visual content.

Part 4 – Audio: specifies the description tools pertaining to audio content.

Part 5 – Multimedia description schemes: specifies the generic description tools pertaining to multimedia including audio and visual content.

Part 6 – Reference software: provides a software implementation of the International Standard.

Part 7 – Conformance testing: specifies the guidelines and procedures for testing conformance of implementations of the International Standard.

Part 8 – Extraction and use of MPEG-7 descriptions: provides guidelines and examples of the extraction and use of descriptions.

Part 9 – Profiles and levels: provides guidelines and standard profiles.

Part 10 – Schema definition: specifies the schema using description definition language.

Part 11 – Profile Schemas: listing of profile schemas using description definition language.

Part 12 – Query format: contains the tools of the MPEG Query Format (MPQF)

Part 13 – Compact descriptors for visual search: specifies an image description tool for visual search applications

This part contains simulation software for tools defined in Parts 1, 2, 3, 4 and 5 of ISO/IEC 15938. This software has been derived from the verification models used in the process of developing the standard.

Where multimedia content extraction or multimedia content description software is provided, attention is called to the fact that these software modules are provided for the purpose of creating bit streams of descriptors and description schemes with normative syntax. The performance of these software tools should not be taken as indicative of that which can be obtained from implementations where quality and computational optimization are given priority. The techniques used for extracting descriptors or deriving description schemes are not specified by this document. This information can be found in the corresponding sections of Part 1-5.
Information technology — Multimedia content description interface — Part 6: Reference software
1 Scope

The reference software operates on and generates conformant bitstreams. The reference software provides a specific implementation that behaves in a conformant manner. In general, other implementations that conform to ISO/IEC 15938 are possible that do not necessarily use the algorithms or the programming techniques of the reference software.

The software contained in this part is known as eXperimentation Model (XM) and is divided into five categories:

a) Binary format for MPEG-7 (BiM). This software converts DDL (XML) based descriptions to binary format and vice versa as explained in Clause 6 of this document.

b) DDL parser and DDL validation parser. The function of this software module is explained in Clause 7 of this document.

c) Visual descriptors. This software creates standard visual descriptions from associated (visual) media content as explained in Clause 8 of this document. The techniques used for extracting descriptors are informative, and the quality and complexity of these extraction tools has not been optimized.

d) Audio descriptors. This software creates standard descriptions from associated (audio) media content as explained in Clause 9 of this document. The techniques used for extracting descriptors are informative, and the quality and complexity of these extraction tools has not been optimized.

e) Multimedia Description Schemes. This software modules provide standard descriptions of Multimedia Description Schemes as specified in Clause 10 of this document.

2 Symbols and abbreviated terms
2.1 Abbreviations

AV:

Audio-visual

CS:

Coding Scheme

D:

Descriptor

Ds:

Descriptors

DCT:

Discrete Cosine Transform

DDL:

Description Definition Language

DS:

Description Scheme

DSs:

Description Schemes

ISO:

International Organization for Standardization

MDS:

Multimedia Description Schemes

MPEG:

Moving Picture Experts Group

MPEG-7:
Multimedia Content Description Interface Standard (see ISO/IEC 15938)

XML:

Extensible Markup Language

3 Copyright disclaimer for software modules
Each source code module in this specification contains a copyright disclaimer which shall not be removed from the source code module.

In the text of each copyright disclaimer, <MPEG standard> is replaced with a reference to its associated specification, e.g. MPEG-7 Systems (ISO/IEC 15938-1), MPEG-7 Visual (ISO/IEC 15938-3), MPEG-7 Audio (ISO/IEC 15938-4), MPEG-7 Multimedia Description Schemes (ISO/IEC 15938-5).

"This software module was originally developed by <FN1> <LN1> (<CN1>) and edited by <FN2> <LN2> (<CN2>), <FN3> <LN3> (<CN3>), in the course of development of the <MPEG standard>. This software module is an implementation of a part of one or more <MPEG standard> tools as specified by the <MPEG standard>. ISO/IEC gives users of the <MPEG standard> free license to this software module or modifications thereof for use in hardware or software products claiming conformance to the <MPEG standard>. Those intending to use this software module in hardware or software products are advised that its use may infringe existing patents. The original developer of this software module and his/her company, the subsequent editors and their companies, and ISO/IEC have no liability for use of this software module or modifications thereof in an implementation. Copyright is not released for non <MPEG standard> conforming products. <CN1> retains full right to use the code for his/her own purpose, assign or donate the code to a third party and to inhibit third parties from using the code for non <MPEG standard> conforming products. This copyright notice must be included in all copies or derivative works. Copyright 20xx".

<FN>=First Name, <LN>=Last Name, <CN>=Company Name
4 Software availability
...

5 XM software architecture
5.1 Block diagrams
This section provides information about the XM software architecture. The block diagrams give short overviews, and introduce individual components of the XM software. This section also provides the directory locations for the different modules.

The composing elements of the MPEG-7 Reference Software are characterized by their functionality and by their interfaces. They can be configured according to what here is referred as "Key Applications". We can distinguish from the functional point of view:

· "Extraction Applications" (a description data base is built from a media data base)

· "Search and Retrieval Applications" (a description is compared with the descriptions in a database to find the one with the lowest distance)

· "Transcoding Applications" (a media data base is converted into another media data base based on its description)

[image: image1.png]EXTRACTION APPLICATION

Desarpton

database

MPEG-7 Reference Software

Figure 0\IF >= 1 "A."

SEQ Figure
1
 — Schematic diagram of an "Extraction Application" using the XM reference software modules. In the block diagram boxes represent procedural parts, circles represent data structures.
[image: image2.png]SEARCH & RETRIEVAL APPLICATION

Matching tool

MPEG-7 Reference Software

Figure 0\IF >= 1 "A."

SEQ Figure
2
 — Schematic diagram of a "Search and Retrieval Application" using the XM reference software modules. In the block diagram boxes represent procedural parts, circles represent data structures.
[image: image3.png]TRANSCODING APPLICATION

Codng

Matching tool

MPEG-7 Reference Software

Figure 0\IF >= 1 "A."

SEQ Figure
3
 — Schematic diagram of a "Transcoding Application " using the XM reference software modules. In the block diagram boxes represent procedural parts, circles represent data structures.
In the following, the blocks of the "Key Applications" are distinguished. For elements that are related to specific descriptors or description schemes, the interface is given using a DummyType example. This represents the XM integration template and not a normative descriptor or description scheme.
5.1.1 Media database

The media database contains media files, which are supported as input files by the AV decoders. The database file is read from a file and contains one media filename per line. From this media filename all additional input and output filenames can be derived.

5.1.2 AV decoders
Currently the XM supports the following AV decoders:

· Still image decoders: ImageMagick (Ver. 6.8.8 linked as external library, not included in the XM reference software distribution).
· MPEG-1, MPEG-2 video decoders: (XM directory: Decoders/MPEG2Dec).
· MPEG-1 video motion vector extractor: (XM directory: Decoders/MPEG2Dec). This extracts images and motion vectors.

· 3D Objects: (XM directory: Media). This reads a 3D object for 3D shape descriptors.

· Key Points: (XM directory: Media). This reads in a list of key points from a file.

· Audio decoders: (XM directory: Media). They read audio files using external library AFsp version v5r2 from McGill University.
5.1.3 Media data

This is the internal XM representation of the raw media data (one class with different structures depending on the media content type). The class description for media data can be found in the Media XM directory.
5.1.4 Extraction tools
Extraction tools are specific extraction methods defined for each Descriptor and Description Scheme. All the source files are available in the ExtractionUtilities XM directory. The extraction tools extract the descriptions from media data. Because media data can be of significamt size, the extraction is performed on time entities of the media, i.e., if the media is a video the extraction is done frame by frame. Some of the extraction tools may need OpenCV linked with XM as an external library. The interface of the DummyType extraction tool (implementation template) is given below:
//===

class DummyTypeExtractionTool: public DescriptorExtractor

{

 friend DummyTypeExtractionInterface;

public:

 // Null constructor

 DummyTypeExtractionTool();

 // Also connects the Descriptor (result memmory) to the extraction

 // If set to "0" it automatically creates the descriptor

 DummyTypeExtractionTool(DummyTypeDescriptorInterfaceABC

 *DummyType);

 // ID of object type

 virtual const UUID& GetObjectID(void);

 // Object type name

 virtual const char *GetName(void);

// This informs the extractor where the source data comes from

 virtual int SetSourceMedia(MultiMediaInterfaceABC* media);

// Pointer where the description is stored

 virtual DummyTypeDescriptorInterfaceABC*

 GetDescriptorInterface(void);

 virtual int SetDescriptorInterface(DummyTypeDescriptorInterfaceABC

 *aDummyTypeDescriptorInterface);

#ifdef __HasSubTypes /*include this section if sub descriptors exist,

 remove this section if no sub-descriptors exist*/

 /* only needed for manual connection with sub components*/

 virtual SubDummyTypeAExtractionInterfaceABC

 *GetSubDummyTypeAExtractionInterface(void);

 virtual int

 SetSubDummyTypeAExtractionInterface(SubDummyTypeAExtractionInterfaceABC

*aSubDummyTypeAExtractionInterface);

 virtual SubDummyTypeBExtractionInterfaceABC

 *GetSubDummyTypeBExtractionInterface(void);

 virtual int

 SetSubDummyTypeBExtractionInterface(SubDummyTypeBExtractionInterfaceABC

*aSubDummyTypeBExtractionInterface);

#endif /* __HasSubTypes*/

 // initililaize descriptor and extraction process (input media must be known)

 virtual unsigned long InitExtracting(void);

 // performs extraction form input media frame by input media frame

 virtual unsigned long StartExtracting(void);

 // collects descriptor data after all input media frames were processed

 virtual unsigned long PostExtracting(void);

 // Extraction object must no be used, only its interface is allowd to

 // to be used. This function is to get the interface

 virtual DummyTypeExtractionInterfaceABC *GetInterface(void);

 // access is allowed only by class factories for this

 // object. This avoids having to duplicate the

 // ID definition in multiple locations. In the future, we may

 // have to do this. PLEASE DO NOT USE THESE UNLESS YOU ARE

 // IMPLEMENTING A CLASS FACTORY GENERATING THIS OBJECT

 static const UUID myID;

 static const char * myName;

private:

 // Destructor is private to allow creation of

 // object only by using "new"

 virtual ~DummyTypeExtractionTool();

 DummyTypeExtractionInterface m_Interface;

 DummyTypeDescriptorInterfaceABC *m_DescriptorInterface;

 MultiMediaInterfaceABC* m_Media;

 // only used in this dummy type to show extraction function

 unsigned long m_FrameCnt;

#ifdef __HasSubTypes /*include this section if sub descriptors exist,

 remove this section if no sub-descriptors exist*/

 SubDummyTypeAExtractionInterfaceABC *m_SubDummyTypeAExtraction;

 SubDummyTypeBExtractionInterfaceABC *m_SubDummyTypeBExtraction;

#endif /* __HasSubTypes*/

 int m_DummyExtractionParameter;

}; // End class

//===

5.1.5 Descriptors (Ds) and Description Schemes (DSs)

These modules implement the data structure of normative Descriptors and Description Schemes. Low level Video Descriptors are using a dedicated C++ class. This class provides methods to access the elements of the normative descriptions. The source files are located in the Descriptors directory. All other normative Ds and DSs are using the GenericDS class located in the DescriptionSchemes directory. The GenericDS class does not implement the data structure in a dedicated way, but it is an interface to the XML parser library which controls the memory for the tree structure of the instantiated D or DS. The interface of the descriptors class is given for the DummyType descriptor (implementation template) below:

/===

class DummyTypeDescriptor: public Descriptor

{

friend DummyTypeDescriptorInterface;

public:

 DummyTypeDescriptor();

#ifdef __HasSubTypes /*include this section if sub descriptors exist,

 remove this section if no sub-descriptors exist*/

 // constructor which also constructs and/or connects the descriptor object

 DummyTypeDescriptor(SubDummyTypeADecriptorInterfaceABC *aSubDummyTypeA,

 SubDummyTypeBDescriptorInterfaceABC *aSubDummyTypeB);

#endif /* __HasSubTypes*/

virtual const UUID& GetValueID(void);

 virtual const char* GetValueName(void);

 virtual const UUID& GetObjectID(void);

 virtual const char *GetName(void);

 // for reference counting

 virtual void addref();

 virtual void release();

#ifdef __HasSubTypes /*include this section if sub descriptors exist,

 remove this section if no sub-descriptors exist*/

 /* only needed for manual connection with sub components*/

 virtual SubDummyTypeADescriptorInterfaceABC

 *GetSubDummyTypeADescriptorInterface(void);

 virtual unsigned long

 SetSubDummyTypeADescriptorInterface(SubDummyTypeADescriptorInterfaceABC

 *aSubDummyTypeADescriptorInterface);

 virtual SubDummyTypeBDescriptorInterfaceABC

 *GetSubDummyTypeBDescriptorInterface(void);

 virtual unsigned long

 SetSubDummyTypeBDescriptorInterface(SubDummyTypeBDescriptorInterfaceABC

 *aSubDummyTypeBDescriptorInterface);

#endif /* __HasSubTypes*/

 // actual descriptor methods, only in this dummy type example

 virtual long GetDummyContents(void);

 virtual void SetDummyContents(const long val);

 // transformation to GenericDS object (MDS implementaion style)

 virtual unsigned long

 ExportDDL(GenericDSInterfaceABC *aParentDescription);

 virtual unsigned long ImportDDL(GenericDSInterfaceABC *aDescription);

 // access is allowed only by class factories for this

 // object. This avoids having to duplicate the

 // ID definition in multiple locations. In the future, we may

 // have to do this. PLEASE DO NOT USE THESE UNLESS YOU ARE

 // IMPLEMENTING A CLASS FACTORY GENERATING THIS OBJECT

 static const UUID myID;

 static const char * myName;

 virtual DummyTypeDescriptorInterfaceABC *GetInterface(void);

private:

 // private destructor to force reference counting mechanism

 virtual ~DummyTypeDescriptor();

 // reference counter

 unsigned long m_refcount;

 DummyTypeDescriptorInterface m_Interface;

 const bool m_isProprietary;

 static const char * valName;

 static const UUID valID;

#ifdef __HasSubTypes /*include this section if sub descriptors exist,

 remove this section if no sub-descriptors exist*/

 SubDummyTypeADescriptorInterfaceABC *m_SubDummyTypeADescriptorInterface;

 SubDummyTypeBDescriptorInterfaceABC *m_SubDummyTypeBDescriptorInterface;

#endif /* __HasSubTypes*/

 // This is the actual data the D/DSType stores. In this particular

 // dummy example it's just a signed long called m_DummyContents

 long m_DummyContents;

};

/===

5.1.6 Coding Schemes (CSs)

Coding Schemes are specific coding and decoding methods defined for individual Descriptors (Ds) and Description Schemes (DSs). All the source files are available in the CodingSchemes directory. If an individual coding scheme is available, it represents a normative part of the standard. Coding schemes are available for the visual descriptors and some of the audio descriptors to encode or to decode a description into its binary representation. The alternative implementation of the coding scheme box, which is available for all Ds and DSs, allows encoding and decoding of descriptors into its DDL representation using the GenericDSCS which is an interface to the "write to file"- and "read from file"-functions of XML Xerces-C++ external parser library. The interface of the coding schemes is given below on the example of the DummyType coding scheme (implementation template):

//===

class DummyTypeCS: public DescriptionCodingEngine

{

friend DummyTypeCSInterface;

public:

 DummyTypeCS();

// constructor which also constructs and/or connects the descriptor object

DummyTypeCS(DummyTypeDescriptorInterfaceABC

 *DummyType);

virtual const UUID& GetValueID(void);

 virtual const char* GetValueName(void);

 virtual const UUID& GetObjectID(void);

 virtual const char *GetName(void);

 // access is allowed only by class factories for this

 // object. This avoids having to duplicate the

 // ID definition in multiple locations. In the future, we may

 // have to do this. PLEASE DO NOT USE THESE UNLESS YOU ARE

 // IMPLEMENTING A CLASS FACTORY GENERATING THIS OBJECT

 static const UUID myID;

 static const char * myName;

 virtual DummyTypeCSInterfaceABC *GetInterface(void);

 // accessor methods

 virtual EncoderFileIO *GetEncoderStreamBuffer(void);

 virtual int SetEncoderStreamBuffer(EncoderFileIO *aBuffer);

 virtual DecoderFileIO *GetDecoderStreamBuffer(void);

 virtual int SetDecoderStreamBuffer(DecoderFileIO *aBuffer);

 virtual DummyTypeDescriptorInterfaceABC

 *GetDescriptorInterface(void);

 virtual int SetDescriptorInterface(DummyTypeDescriptorInterfaceABC

 *aDummyTypeDescriptorInterface);

 //this function writes the description via the encoder buffer to a file

 virtual int StartEncode();

//this function reads the description via the decoder buffer from a file

 virtual int StartDecode();

private:

 // private destructor to allow construction of objects only by “new”

 virtual ~DummyTypeCS();

 DummyTypeCSInterface m_Interface;

 static const char * valName;

 static const UUID valID;

 // descriptor data

 EncoderFileIO *m_EncoderBuffer;

 DecoderFileIO *m_DecoderBuffer;

 DummyTypeDescriptorInterfaceABC *m_DescriptorInterface;

#ifdef __HasSubTypes /*include this section if sub descriptors exist,

 remove this section if no sub-descriptors exist*/

 SubDummyTypeACSInterfaceABC *m_SubDummyTypeACS;

 SubDummyTypeBCSInterfaceABC *m_SubDummyTypeBCS;

#endif /* __HasSubTypes*/

};

//===

5.1.7 Matching Tools

Matching tools are specific search, or matching methods defined for each Descriptor and Description Scheme. All the source files are available in the SearchUtilities XM directory. Matching tools are not normative in the implementation but they are depending on the specified application of the description.

The matching tools can appear in two different ways: for computing distances between descriptions for the purpose of search and retrieval, and for searching in the descriptions based on a query for the purpose of transcoding. The interface of the matching tool in the case of distance computation is given with the example of the DummyType search tool. Here the whole description is processed in one step. The interface of the search tool for search and retrieval is given below on the example of the DummyType search tool (implementation template):
//===

class DummyTypeSearchTool: public Search

{

friend DummyTypeSearchInterface;

public:

 DummyTypeSearchTool();

 // constructor which also constructs and or connects the descriptor object

 DummyTypeSearchTool(DummyTypeDescriptorInterfaceABC

 *aQueryDescriptorInterface);

 virtual const UUID& GetObjectID(void);

 virtual const char *GetName(void);

 virtual DummyTypeSearchInterfaceABC *GetInterface(void);

 virtual int SetRefDescriptorInterface

 (DummyTypeDescriptorInterfaceABC

 *aDummyTypeDescriptorInterface);

 virtual DummyTypeDescriptorInterfaceABC*

 GetQueryDescriptorInterface(void);

 virtual int SetQueryDescriptorInterface

 (DummyTypeDescriptorInterfaceABC

 *aDummyTypeDescriptorInterface);

 // function to be called for computing the distance between the query and the reference description

 virtual double GetDistance(void);

 static const UUID myID;

 static const char * myName;

private:

 // private destructor to force construction of objects only by using new

 virtual ~DummyTypeSearchTool();

 DummyTypeSearchInterface m_Interface;

 DummyTypeDescriptorInterfaceABC *m_RefDescriptorInterface;

 DummyTypeDescriptorInterfaceABC *m_QueryDescriptorInterface;

#ifdef __HasSubTypes /*include this section if sub descriptors exist,

 remove this section if no sub-descriptors exist*/

 SubDummyTypeASearchInterfaceABC *m_SubDummyTypeASearch;

 SubDummyTypeBSearchInterfaceABC *m_SubDummyTypeBSearch;

#endif /* __HasSubTypes*/

};

//===

The interface in case of transcoding applications is given with the example of the DummyType search tool (distinguished from the previous case with a define in the template file). Here media data is processed which can be very big, e.g., in the case of video data. Therefore, the search is performed on temporal sub-entities of the media, i.e., in the case of video data the search is performed on a frame by frame basis. The interface of the search tool for transcoding is given below on the example of the DSDummyType search tool (implementation template for MDS):
//===

class DSDummyTypeSearchTool: public Search

{

friend DSDummyTypeSearchInterface;

public:

 DSDummyTypeSearchTool();

 // constructor allowing to connect also to the description

 DSDummyTypeSearchTool(GenericDSInterfaceABC

*aQueryDescriptionInterface);

 virtual const UUID& GetObjectID(void);

 virtual const char *GetName(void);

 // pointer to my interface

 virtual DSDummyTypeSearchInterfaceABC *GetInterface(void);

 virtual int SetRefDescriptionInterface

 (GenericDSInterfaceABC *aDSDummyTypeDescriptionInterface);

 virtual GenericDSInterfaceABC* GetQueryDescriptionInterface(void);

 virtual int SetQueryDescriptionInterface

 (GenericDSInterfaceABC *aDSDummyTypeDescriptionInterface);

 // set teh media for transcoding

 virtual int SetMedia(MultiMediaInterfaceABC* media); /* needed ,e.g.,

 to read the time of the image*/

 // called before the first media frame is processed (media must be set)

 virtual double InitSearch(void);

 // called for each media frame

 virtual double StartSearch(void);

 // called after the last media frame was processed

 virtual double PostSearch(void);

 static const UUID myID;

 static const char * myName;

private:

 // private destructor to force construction of objects only by using new

 virtual ~DSDummyTypeSearchTool();

 DSDummyTypeSearchInterface m_Interface;

 GenericDSInterfaceABC *m_RefDescriptionInterface;

 GenericDSInterfaceABC *m_QueryDescriptionInterface;

MultiMediaInterfaceABC* m_Media;

#ifdef __HasSubTypes /*include this section if sub descriptors exist,

 remove this section if no sub-descriptors exist*/

 SubDSDummyTypeBSearchInterfaceABC *m_SubDSDummyTypeBSearch;

 SubDSDummyTypeBSearchInterfaceABC *m_SubDSDummyTypeBSearch;

#endif

};

//===

5.1.8 Media Transcoders

These procedural blocks are part of the functionality of specific application modules. They are not represented by dedicated module classes in the XM software. They need to be integrated in the XM when implementing a specific transcoding application.

5.1.9 Applications

Applications are expressed by the classes combining the modules of a Descriptor or a Description Scheme including modules of their sub-Ds and -DSs. The resulting class implements one of the three key applications specified above. The source files are located in the Applications XM directory. Applications creating a database of the descriptor or description scheme under test (DUT / DSUT), which are of the Extraction Application type, are called Server Applications. Applications using the DSUT data base (Search & Retrieval and Transcoding) are called Client Applications.

5.2 Interface Structure

The components of the reference software, which are corresponding to a descriptor or description scheme, are implemented using a specific interface mechanism. Besides using private and public functions all classes have an individual interface class, which interfaces the public methods of the class itself. This is done to increase the reusability of the code. For example, by making all destructors private it is possible to force a dedicated way of instantiating objects of this class. Furthermore, the interface function has a pure virtual representation by its InterfaceABC class (ABC = Abstract Base Class), which is always used to access the elements of the classes mentioned in the previous sections.

For the reuse of classes to mechanisms are implemented. In case of descriptor class implemented with a C++ class (i.e., for Visual descriptors) not only the data structure with its methods can be reused, but also the description data itself (e.g., multiple visual color description share the same Color Space description). In this case a reference counting mechanism is implemented.

This is not required for the coding scheme classes, the extraction classes, and the search classes. Therefore, these classes do not use a reference counting mechanism. Anyway, this classes use the reference counting mechanism of the descriptor class to manage the memory of the description data.

6 Systems Reference Software (BiM)

This table shows the Reference Software components for Part 1 of ISO/IEC 15938
	Name of the Tool in Part 1
	Name of the Tool in the XM software

	Bit Stream Encoder/Decoder
	BiM

	Access Unit Navigation
	 AccessUnit

6.1 BiM Reference software

6.1.1 Introduction

The BiM reference software is the set of sources, libraries, examples and documentation related to the encoding, decoding and handling of the binary XML format defined by MPEG-7. The package contains different tools, and an intuitive GUI application to control the binarization process of a generic XML source; it is then run independently from the XM reference software.

6.1.1.1 Package content

The BiM reference software contains :

· the implementation sources for the encoding / decoding algorithms

· The set of the external libraries for building and running the programs (i.e. xerces.jar, xerces-c_1_4.dll, gnu-regexp-1.1.3.jar)

· A set of command line tools and GUI applications to apply the binarization on different sources

· A set of example files:

· MPEG-7 XML Schema and a set of MPEG-7 files

· A set of XML files and associated XML-schemas for the binarization of generic files

· A .dll and its sources containing the functions necessary to encode a textual path in a binary path and to decode a binary path from the bit stream into a textual path.

· A short documentation

6.1.1.2 Installation and execution

Prerequisites: the Java Sun JDK (version 1.2.2 or later) is needed to use the BiM reference software. The software can be unzipped anywhere in the target machine. Some libraries (xerces-c_1_4.dll, navigation_path.dll, included) need to be installed in the machine in order to complete the installation. Refer to the readme file for the detailed instruction for your platform.

The execution of the encoding, decoding and GUI tools is controlled by scripts included in the distribution.

6.1.2 Software overview

The reference software functionality can be grouped as follows:

· XML-Schema parsing and validation

The BiM compression algorithm is based on the knowledge of the schema underlying the XML stream. A central part of the reference software is then dedicated to the parsing and validation of XML Schema, and to the building of the objects and automatas used during the encoding / decoding.

The com.expway.schema hierarchy contains the main classes for the validation and internal structure building. Among them, com.expway.schema.GeneralSchemaHandler contains the main entry points for the schema handling.

· Binary Encoding:

The encoding process uses the information built during the schema parsing to scan the input file and to encode the structure of the document and its leaves. The main class for the encoding process is “com.expway.binarisation.GeneralBinaryHandler”: it behaves like a SAX ContentHandler, and all the binarisation is driven by the input XML.

In the encoding process, simple XML-Schema types (xsd:string, xsd:enumeration) have build-in encoding rules, but dedicated encoders can also be associated to particular XML-Schema types to get a fine-grain control over the compression performances of a known XML-Schema.

The “com.expway.ref” package offers an entry point to the command line tools present in the reference software: BiMDecoder, BiMEncoder, BiMGUI.

· Binary Decoding:

The decoding process is somewhat simpler because it does not need to parse the XML-Schema that had been used for the encoding. The decoding uses the decoderConfig informations produced in the schema parsing phase.

The decoders entry points are in “com.expway.binarisation.GeneralDecompression”

6.1.2.1 Main packages

As explained before, the com.expway.schema, com.expway.schema.instance contain the main algorithms for the schema static analysis and structure building.

The encoding phase is handled by the automata-based algorithm implemented mainly in the com.expway.tools.automata and com.expway.tools.compression packages.

The com.expway.tools.expression package contains the encoding infrastructure for XML-Schema related types.

As stated before, the com.expway.ref package contain the entry points for the command line tools.

6.2 Access unit navigator

6.2.1 Introduction

The access unit navigation software builds a separate executable, which is called from the XM process.

It is located in the SystemTools/TextualAccessUnit directory of the Reference Software source tree. For installing the access unit navigation you need to have the Xerces 1.6.0 XML parser to be installed. (see http://xerces.apache.org/xerces-c). The xercesc-1_6_0.dll file location should be specified while compiling the Encoder/Decoder Modules in their respective Project Workspaces.

6.2.2 Textual Access Unit Encoder Module

This module assumes that you have the necessary fragments already available with their respective path (FUContext) information. An input parameter file (input.par) has to be generated by the user which is passed as a command line argument to the module for the encoding to take place.

The format of the input.par file, which is a text file, is as follows:

Example:

DecoderInit

(Signifies the start of the DecoderInit.

SchemaReference

(Contains a URI reference to the Schema

 followed by an optional second URI for

 locationHint.

InitialDescription

(Specifies the first Default AccessUnit

SystemsProfLileLevelIndication(Gives the SystemsProfLileLevelIndication if

 present is followed by the level number on

 the next line.

AddNode

(Signifies the Initial Update Command

/

(Signifies the navigation path (root)

node_main.xml

(Specifies the node file name stored on disk.

AccessUnit

(Signifies the start of the subsequent AU

AddNode

(Signifies the Update Command

/Semantic/

(Signifies the navigation path

node_01.xml

(Specifies the node file name stored on disk.
AddNode

/Semantic/

(Signifies the navigation path

node_02.xml

AccessUnit

(Signifies the start of a new AU

AddNode

/Semantic/

<beginPayload>

(Instead of providing a node file location,

include it inline for small payloads.

<SemanticBase id="soccerstadium-obj">

<Label> <FreeTerm> Soccer stadium </FreeTerm> </Label>

<MediaOccurrence>

</MediaOccurrence>

</SemanticBase>

</beginPayload>

(Payload end indicator
An output file called TeMAccessUnit.xml would be generated which can be fed to the decoder module.

A sample input.par file is provided in the Sample_InputFiles directory of the encoder module reference software.

6.2.3 Textual Acces Unit Decoder Module

For this module two parameters are passed. The first one being the encoded file (e.g., TeMAccessUnit.xml) and the second parameter being the name of the file you want the decoded information to be stored in.

The module takes care of the following:

a) It is able parse through the navigation path and traverse through the DOM tree being built. The modules for this are present in the xpathtype.cpp and xpathtype.hpp files.

b) It is able to Add, Replace and Delete nodes in the DOM Tree based on the FUContext information. The manner in which this is indicated in the path is for eg. /Semantic/SemanticBase[2] means the second Child Node of Semantic which is SematicBase.

It is also able to parse in terms of relative addressing, e.g.:

./ (from the current node onwards.

../ (upward traversal through the tree structure.

Provides for Add/Delete/Replace of attributes in element nodes.

c) It takes care of Validating the document being created (i.e.; Schema Validation) with the Schema. The Schema files have to be present in the same folder as the input files and the reference to the schema file is made in the encoded document itself.

Qname support is available, i.e., Namespace support is provided for.

Provision has been provided for Reset operation.

Based on these features the decoder is able to parse through an AccessUnit file and generate an output description file.

Some sample encoded files (TeMAccessUnit.xml, TeMAccessUnit01.xml and TeMCompatAU.xml) are provided in the Sample_InputFiles folder in the SystemTools/TextualAccessUnits/Decoder folder.

7 Systems Reference Software (DDL)

This Systems components are implemented using the external XML parser library.
	Name of the tool in Part 2
	Name of the Tool in the XM software

	DDL Parser
	External XML parser supporting the DOM API and XML Schema (e.g., Xerces XML parser from Apache)

	DDL Validation Parser
	External XML parser supporting the DOM API and XML Schema (e.g., Xerces XML parser from Apache)

8 Visual Reference Software

This section lists the reference software components of ISO/IEC 15938 Part 3 and its subsequent amendments and corrigenda. Most of the components of this section include a server aplication and a client application. The normative descriptors are implemented using a C++ class. All modules have a binary coding scheme according to the binary syntax of the corresponding visual descriptors, and an interface to the XML parser-based implemented description schemes of ISO/IEC 15938 Part 5. Thus the descriptions may be stored in a binary bitstream file following the binary syntax of each visual descriptor, or in an XML file, which may also be converted to a binary XML formal using the BiM tools. The detailed usage instructions for these modules are located in the Doc/Video directory of the Reference Software source tree.
	Name of the Tool in Part 3
	Clause in Part 3
	Name of the Tool in the XM software

	Grid layout
	5.2
	GridLayout

	Time series
	5.3
	TimeSeries

	Multiple view
	5.4
	MultiView

	Spatial 2D coordinates
	5.5
	Spatial2Dcoordinates

	Temporal interpolation
	5.6
	TemporalInterporation

	GoF/GoP Feature
	5.7
	GoFGoPFeature

	Color space
	6.2
	ColorSpace

	Color quantization
	6.3
	ColorQuant

	Dominant color
	6.4
	DominantColor

	Scalable color
	6.5
	ScalableColor

	Color layout
	6.6
	ColorLayout

	Color structure
	6.7
	ColorStructure

	GoF/GoP Color
	6.8
	GoFGoPColor

	Color temperature
	6.9
	ColorTemperature

	Illumination invariant color
	6.10
	IIColor

	Homogeneous texture
	7.2
	HomoTexture

	Texture browsing
	7.3
	TextureBrowsing

	Edge histogram
	7.4
	EdgeHist

	Region shape
	8.2
	RegionShape

	Contour shape
	8.3
	ContourShape

	Shape 3D
	8.4
	3DShapeSpectrum

	Shape variation
	8.5
	ShapeVariation

	Perceptual 3D shape
	8.6
	Perceptual3Dshape

	Camera motion
	9.2
	CameraMotion

	Motion trajectory
	9.3
	MotionTrajectory

	Parametric motion
	9.4
	ParametricObjectMotion

	Motion activity
	9.5
	MotionActivity

	Region locator
	10.2
	RegionLocator

	Spatio-temporal locator
	10.3
	SpatioTemporalLocator

	Face recognition
	11.2
	FaceRecognition

	Advanced face recognition
	11.2
	AdvancedFaceRecognition

	Image Signature
	11.3
	ImageSignature

	Video Signature
	11.4
	VideoSignature

9 Audio Reference Software
...
10 Multimedia Description Scheme Reference Software
...
11 Compilation of the Reference Software
...
12 Usage Information for Individual Descriptors and Description Schemes
...
Annex A
(informative)
SEQ aaa \h

SEQ table \r0\h

SEQ figure \r0\h
Additional Utility Software
Annex B
(informative)
SEQ aaa \h

SEQ table \r0\h

SEQ figure \r0\h
Providers of Reference Software
Annex C
(informative)
SEQ aaa \h

SEQ table \r0\h

SEQ figure \r0\h
Integration and Interface Templates
Document type: International Standard
Document subtype: REF DDDocSubType * CHARFORMAT
Document stage: (20) Preparatory
Document language: E
C:\15938-6\WD3\w14680.doc STD Version 2.1c2

