
TEX’s Language within the History of Programming Languages

Jean-Michel HUFFLEN
LIFC (FRE CNRS 2661)
University of Franche-Comté
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Abstract

We connect some representative statements of TEX’s language to some analogous
features belonging to programming languages, from a point of view related to
history. Some features that look strange now are explained easily if we consider
the time when TEX came out. By comparing programming in TEX with other
paradigms, we also show what TEX can do easily and what is tedious for it.
Keywords programming in TEX, history of programming languages, program-
ming paradigms.

Streszczenie

Ła֒czymy kilka typowych elementów je֒zyka TEX z analogicznymi elementami wła-
ściwymi dla je֒zyków programowania z historycznego punktu widzenia. Niektóre
z nich wygla֒daja֒ dziwnie, ale łatwo je wyjaśnić, biora֒c pod uwage֒ czas ukaza-
nia sie֒ TEX-a. Porównuja֒c programowanie w TEX-u z innymi paradygmatami
pokazujemy z czym TEX radzi sobie z łatwościa֒, a co sprawia mu kłopot.

Słowa kluczowe programowanie w TEX-u, historia je֒zyków programowania,
paradygmaty programowania.

Introduction

TEX is widely known as a wonderful typeset engine.
Its typeset process is controlled by means of com-
mands—end-users can add their own commands—
written using a language with expressive power com-
parable to programming’s. This language allows
computation, as well as alternative and loop state-
ments ruled by performing tests that are interpreted
as true or false. This language, fully used in the
plain TEX format1, is described in [30]. Aspects
in connection with programming are emphasised in
some other books introducing users to this format:
e.g., [9, 13], the most representative reference from
this point of view being [32], as far as we know.
Writing applications using TEX’s language pro-

ceeds from a particular programming paradigm, as

1 To be fit for use, the definitions provided by TEX’s core
need to be organised in a format. The first format, de-
veloped by Donald E. Knuth, is plain TEX [30]; other for-
mats are LATEX [33], defined by Leslie Lamport, AMS-TEX—
the American Mathematical Society’s format—defined by
Michael D. Spivak citespivak1986, and ConTEXt, defined by
Hans Hagen [16].

illustrated by the examples of ‘pure’ programming
given in [30, Exercise 20.20] (giving the first prime
numbers, counting the non-blank characters of a
string). Some features are fascinating, some make
difficult the programming of some operations. We
could give rough or exhaustive comparison between
the statments of TEX and those used within other
programming languages. That probably would lead
us to a simple conclusion: TEX is very suitable for
programming the layout’s part of a word processor,
tedious elsewhere. We could think so, after reading
[40], which develops the example of giving the first
prime numbers sketched in [30, Exercise 20.20]. In
fact, this style can be quite familiar to people who
get used to programming with macros, as in lan-
guages such that C [29], C++ [46] and some Lisp2

dialects [45, § 3.3].
Our purpose is different: TEX’s first version

came out in 1978, some of its features typically be-
long to the languages of the seventies. We show

2
LISt Processing. These dialects are the successors of

the Lisp language created by John McCarthy [35].
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how the difficulties caused by such choices have been
managed within TEX, and compare the process of
elaborating TEX’s language with the evolution of
programming languages. In the first section, we
take a glance at the programming languages con-
temporary with TEX’s first version. Then we exam-
ine some particular points, in particular how TEX’s
main statements have been built according to a co-
herent way, even if the approach for designing them
was not the same in other programming languages.

We assume that readers are quite familiar with
the basic constructs in TEX. However, being a TEX

guru is not required. Some examples using other lan-
guages are given, but we think that readers should
understand them, at least roughly.

A glance at ‘old’ programming

When TEX was designed, some important program-
ming languages had already appeared, but were not
really devoted to dealing with strings, in the sense
that an advanced word processor has to do such
task. In fact, Donald E. Knuth wanted to write
just a typesetting language, and not a programming
language as well; he said ‘if there were a universal
simple interpretive language, naturally I would have
latched onto that right away’ [31, pp. 648–649].

The oldest programming language, fortran3

[21] was used for scientific applications using numer-
ical computation. Strings were mainly used to dis-
play messages and were called Hollerith constants
w.r.t. fortran’s terminology. The use of strings
was improved in fortran iv, issued in 1966 [23],
and fortran 77 [2], but was still tedious. In addi-
tion, let us remark that at this time, the fortran
language did not allow programming without ‘goto’
statements: fortran 77 did not provide a ‘while’
statement, that is, a loop statement with an unspec-
ified number of iterations.
cobol4 [11] is the second-oldest language and

the most used at this time. It is a wordy language—
programs using it are verbose—oriented to data
processing, especially file processing in batch mode,
but had good data typing for the time. Nevertheless,
it does not have a rich library of procedures deal-
ing with strings. However, let us remark that some
arithmetic operations of this language have syntax
close to TEX’s:

(cobol) (TEX)
ADD 1 TO X \advance\x by 1

MULTIPLY 2 BY Y \multiply\y by 2

DIVIDE 3 INTO Z \divide\z by 3

3 FORmula TRANslating system.
4 COmmon Business Oriented Language.

Algol5 is the first programming language whose
syntax looks ‘modern’ and has been defined rigor-
ously: since this time, the bnf6 notation [4] has
been used to describe grammars of programming
languages in a formal way. However, the first ver-
sion, Algol 60 [37] does not have a string type. This
point had been slightly improved in Algol 68 [49],
but with a small library of functions dealing with
strings. More generally, the successors of Algol, in-
cluding general languages such as pl/17 [22] and
Pascal [50] implemented strings by arrays of char-
acters. In addition to the concatenation operator
‘+’ provided by Algol 688, pl/1 included INDEX and
SUBSTR functions for searching a string and extract-
ing a substring. Packed arrays of characters, in-
cluded in Pascal, allow the values being this type to
be written in a compact form. But in fact, the op-
erations programmers can apply to strings are the
operations they can apply to (packed) arrays of char-
acters.
We can observe the same point— lack of rich

libraries for strings—about most of specialised lan-
guages of this time: jovial9 [42], which is an ex-
tension of a preliminary version of Algol 60 includ-
ing real-time aspects, the first versions of Lisp—the
first functional programming language10—[45], es-
pecially used within Artificial Intelligence area, and
another functional programming language designed
and implemented early: apl11 [24], used for numer-
ical computation and well-known because of its very
compact syntax.
As far as we know, the only ‘early’ language

aimed at processing strings nicely was snobol12

[15], in the sense that this language allowed high-
level operations such as pattern-matching. As an
example, Figure 1 gives a program in snobol 4 dis-
playing the number of words within an input text.
As it can be seen, syntax looks old, but strings are
viewed as a whole, without reference to a compos-
ite structure like an array. Pattern-matching has

5 ALGOrithmic Language.
6 Backus-Naur Form.
7 Programming Language Number one.
8 . . . denoted by ‘||’ in pl/1.
9 Jules’ Own Version of the International Algorithmic

Language. ‘ial’ was the name of the preliminary version of
Algol 60.
10 Functional programming is a style of programming that

emphasises the evaluation of expressions, rather than ex-
ecution of statements in imperative style, as in languages
like Pascal or C. Expressions in a functional programming
language—which supports and encourages this style—are
formed by using functions to combine basic values. In addi-
tion, functions may be used as arguments or results of other
functions.
11 A Programming Language.
12 StriNg-Oriented symBOlic Language.
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* Such a line is a comment. A word is defined to be a contiguous run of letters, digits, apostrophe or
* hyphen. ‘=’ is for the assignment operator and strings are concatenated simply by writing one after the
* other, as we do for the values of WORD and WORDPATTERN. First, our pattern — the value of
* WORDPATTERN— matches up to but not including the elements of WORD, and then, it matches one or
* more characters in WORD. If &TRIM is set to 1, trailing blanks are removed when a line is input. &UCASE
* (resp. &LCASE) stands for upper-case (resp. lower-case) letters.

&TRIM = 1

WORD = "’-" ’0123456789’ &UCASE &LCASE

WORDPATTERN = BREAK(WORD) SPAN(WORD)

* Read a line, and go to the statement referenced by DONE if this operation fails (‘:F’). Then perform the
* pattern-matching operation: if it fails, read the following line. Pattern-matching is expressed by
* ‘SUBJECT PATTERN’, left to the ‘=’ sign. Replacing the matched string can be expressed, right to the ‘=’
* sign. ‘:(NEXTLINE)’ means for going unconditionally to NEXTLINE.

NEXTLINE LINE = INPUT :F(DONE)

NEXTWORD LINE WORDPATTERN = :F(NEXTLINE)

N = N + 1 :(NEXTLINE)

* We rely upon the fact that the system initialises N to an empty string. It is converted to zero when N is
* incremented — see above — or by means of ‘+N’ in next statement:

DONE OUTPUT = +N ’ words’

END

Figure 1: Counting words within a string: program in snobol 4.

nice expressive power, including pattern-matching
with replacement: in fact, snobol already devel-
oped ideas later put into action in some modern
script languages, such as awk13 [1] and Perl14 [48].
Last, let us notice how alternatives are programmed
in this language: each statement either succeeds or
fails. Transfers of control (‘goto’s’) are specified at
the end of a statement: it may be unconditional—
‘:(...)’—or may occur only if the statement has
succeeded— ‘:S(...)’—or failed— ‘:F(...)’. See
some examples in Figure 1.
In comparison to this program in snobol, we

put down the same function written in the Scheme
programming language [27]— the modern Lisp di-
alect— in Figure 2. The behaviour is more ‘clas-
sical’: an iteration along the string, by means of
the internal function thru15. Let us notice that the
whitespace characters located at the beginning and
the end of the string do not count, as we did in the
program given in Figure 1.

We do not pretend to be exhaustive about this
overview; for example, we did not mention some di-

13
Aho,Weinberger, Kernighan, the three authors of this

language.
14 Practical Extraction and Report Language.
15 Readers interested in an introductory book to Scheme

can refer to [43].

dactic languages, like basic16 [28], intended to in-
troduce people to programming. As a matter of
fact, we do not want to write the history of early
programming languages17. Our purpose is just to
emphasise the fact that often, early programming
was not really applied to strings. Besides, the first
word processors18 did not output texts with layout
comparable to TEX’s. In addition, let us recall that
at this time, ‘non-conventional’ languages— for ex-
ample, functional languages—were supposed to be
inefficient. On another hand, no ‘universal’ language
has really succeeded. Ada will attempt to become
such, but in 1978, when TEX’s first version came
out, only the final requirements were finalized by
the American Department of Defense, and the first
version of this language will be issued only in 1983
[3]. All these points probably explain that Donald E.
Knuth wanted to design his own language for ruling
the operations of typesetting texts.

A small example

Let us begin our analysis of TEX’s statements by
programming in TEX the example already shown in

16 Beginner’s All-purpose Symbolic Instruction Code.
17 Readers interested in this topic can refer to [41].
18 For example, troff, the word processor included in the

first distribution of the Unix system [8].
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(define (count-words string-0)

;; Here a word is defined as a sequence of non-whitespace characters.
(let ((string-length-0 (string-length string-0)))

(let thru ((index 0)

(skipping-whitespace? #t) ; Are we skipping whitespace characters or
(nb-of-words 0)) ; non-whitespace ones? ‘#t’— resp. ‘#f’— stands for

; ‘true’—resp. ‘false’.
(if (= index string-length-0) ; We have just run out of the string. . .

nb-of-words ; . . . and we return how many words have been counted.
(let ((next-index (+ index 1)))

;; nb-of-words is given another value only when we are skipping consecutive whitespace
;; characters—except those possibly beginning string-0— and encounter a
;; non-whitespace one.
(cond ((char-whitespace? (string-ref string-0 index))

(thru next-index #t nb-of-words))

(skipping-whitespace? (thru next-index #f (+ nb-of-words 1)))

(else (thru next-index #f nb-of-words))))))))

Figure 2: Counting words within a string: program in Scheme.

Figures 1 and 2: counting words within a string. For
sake of simplicity, we assume that this string does
not contain active characters or command names.
The complete text of our command \countwords

is given in Figure 3 and if we trace the commands
defined over there on a small example, we get:

\countwords{TeX is great} =⇒
\reachnospace TeX is great\enditer =⇒
\onnospace eX is great\enditer =⇒
\next\iteralongword eX is great\enditer =⇒
\skipword X is great\enditer =⇒
\next\iteralongword X is great =⇒
\skipword\ is great\enditer =⇒
\next\iteralongword\ is great\enditer =⇒
\skipword is great\enditer =⇒
\next\reachnospace is great\enditer =⇒
\onnospace s great\enditer =⇒
... =⇒
\skipword t\enditer =⇒
\next\iteralongword t\enditer =⇒
\skipword\enditer =⇒
\next\iteralongword\enditer =⇒
\enditer\iteralongword =⇒
\number\nbofwords =⇒
3

In other words, whilst we are going through
the string, the two commands \reachnospace and
\iteralongword put the first character in the value
of the \next command. The \onnospace command
checks the category code of this first character, and
as soon as a non-whitespace character is encoun-
tered, the \nbofwords counter is incremented and

we are eating the other letters of the word by means
of the commands \iteralongword and \skipword.
If a whitespace character is encountered whilst the
\skipword command is running, we are calling the
\reachnospace command, that skips the consecu-
tive whitespace characters possibly put after this
whitespace character— that is done by:

{\afterassignment...\let\next= }

—then we are calling the \onnospace command.
When we are reaching the end of the string, the
process ends up by processing:

• either \enditer\reachnospace,
• or \enditer\iteralongword,
depending on the character—whitespace or not—
terminating the string. This style of programming
may look strange, but is very common in TEX for
going along a string: similar examples—and more
explanations to understand them—are given in [30,
Exercise 20.20] and [32, ¶ 426].
As shown by this example, there is no distinc-

tion between scanner and parser in TEX, that is, no
distinction between lexical and syntactic analysis.
There is only one analyser, which returns either a
whitespace character, or another character, different
from ‘\’, or the complete name of a command. Let
us remark that we can explain such a convention
easily because of the history: this notion was not
obvious for the first programming languages. This
distinction does not exist in fortran, either19. As

19 That indirectly caused a spatial engine to be lost: read-
ers interested in this pitfall can refer to [12] for a survey.
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\newcount\nbofwords

\def\countwords#1{%

\nbofwords=0

\def\reachnospace{%

\afterassignment\onnospace\let\next=}%

\def\onnospace{\ifcat\noexpand\next A%

\advance\nbofwords by 1%

\let\next=\relax%

\fi%

\next\iteralongword}%

\def\iteralongword{%

\afterassignment\skipword\let\next= }%

\def\skipword{%

\ifcat\noexpand\next\space%

\let\iter=\reachnospace\else%

\let\iter=\iteralongword%

\fi%

\ifcat\noexpand\next\relax\else%

\let\next=\relax%

\fi%

\next\iter}%

\def\enditer##1{\number\nbofwords}%

\reachnospace#1\enditer}

Figure 3: Counting words within a string:
program using plain TEX ’s macros.

another example, there is no syntactic analysis in
pl/1 in the sense of a parser of modern language,
because there is no reserved keywords: the compiler
must do a first pass only to determine where the
‘actual’ keywords are, the other occurrences of these
words being ‘simple’ identifiers.

Mixfixed terms in TEX

TEX allows a kind of pattern-matching for the argu-
ments of its commands. For example, the command
producing the square root symbol in plain TEX could
be defined as:

\def\root#1of#2{...}

(‘$\root 3 of 2$’ produces ‘ 3
√

2’). As far as we
know, TEX is the first language providing this fea-
ture20. It is not very well-known among LATEX users:
Leslie Lamport recommends them to systematically
surround commands’ arguments by braces and get
rid of the TEX command \def. According to his
view, it should be replaced by \newcommand and
\renewcommand, provided by the LATEX format [33,
§ 6.1.4].

20 There is something equivalent in some Lisp dialects, but
rarely used.

(let ((n 2005))

(let ((f (lambda (x) (+ x n))))

(let ((n 0))

;; Hereafter, we use funcall because the
;; call of f is computed: f is a variable.
(funcall f 0)))) =⇒lexically 2005

=⇒dynamically 0

Figure 4: Lexical and dynamic scope in Lisp.

Suchmixfixed terms have been used in algebraic
specification languages21: in obj [14], in the pluss22

language, part of the Asspegique23 toolbox [6]. The
description of the cigale parser used within this
toolbox is given in [47]. This parser for mixfixed
terms was adapted for the glider24 language [20]:
see [25] for more details. The casl25 language [7]
allows mixfixed terms, too:

root of : . . .

(‘ ’ is for a placeholder).

Command management in TEX

When identifiers are given values, in any language,
an important question is ‘how are these identifiers
bound?’ By reference or by value? That is, a se-
mantics based on share or copy? Both are allowed
within TEX, respectively by means of the commands
\def and \let. If we consider:

\def\newcmd{\oldcmd}

unless the \newcmd command is redefined, it will
always behave like \oldcmd, even if \oldcmd is re-
defined. On the contrary:

\let\newcmd=\oldcmd

reads that the \newcmd command is bound to the
present value of \oldcmd. If it is changed, \newcmd
will be still bound to the same value. In fact, when a
command is to be redefined and the ‘new command’
depends on the ‘old command’, the method is:

\let\cmdsaved=\cmd

21 This kind of languages aim to describe the behaviour
of software by means of mathematical models, namely alge-
bras. Interesting properties— completeness, coherence,. . . —
can be studied formally within this framework.
22 Proposition of a Language Useable for Structured

Specifications.
23 In French, ASsistance à la SPÉcification alGébrIQUE,

that is, assistance in algebraic specification.
24
General Language for the Incremental Definition and

Elaboration of Requirements.
25
Common Algebraic Specification Language. This lan-

guage has been designed by an international workgroup aim-
ing to join efforts from different teams, in order to produce a
unified algebraic specification language.
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(defun map-1 (f l)

(if (null l)

()

(cons (funcall f (car l))

(map-1 f (cdr l)))))

(map-1 (lambda (x) 0) ’(1)) =⇒dynamically (0)

(map-1 (let ((l ’(0)))

(lambda (x) (car l)))

’(1)) =⇒dynamically (1)

Figure 5: Variable capture within a dynamically
scoped Lisp interpreter.

\def\cmd{...\cmdsaved...}

that is, the ‘old command’ is previously saved by
means of the \let macro.
We think that the \edef command is an in-

termediate form, comparable with a lexical closure
within a Lisp dialect. To explain this notion, let us
consider the Lisp expression given in Figure 4 and
remark that the body of the local function f con-
tains the n variable. Let us apply this f function, if
we consider the value of n:

• at run-time, the language is dynamically scoped ;
• at the time of the definition of f, the language
is lexically scoped.

Historically, the first Lisp dialects chose the dy-
namic scope, because that is easy to put it into ac-
tion efficiently. But it is incorrect from a mathe-
matical point of view, because it causes variable cap-
tures. Consider the example given in Figure 5 within
a dynamically scoped Lisp interpreter26: map-1 is a
function that applies an f function to each element
of a list, and returns the list of the results of f. A
simple example is given with a constant function re-
turning zero. But if we reformulate this function by
using an l variable, this variable is captured by the
l variable belonging to map-1’s definition. To avoid
such an error, we could rename the first or second
variable l, but such an evaluation should not rely
upon variables’ names.
Dynamic scope is of interest in when some vari-

ables can be redefined. For example:

(let ((*print-base* 8))

(write 2005))

displays the 2005 number in the octal number sys-
tem, that is, 3725. Most often, this write function

26 For example, Emacs Lisp [34], the language of the emacs
editor, is dynamically scoped.

(let ((n 2005))

(let ((f #’(lambda (x) (+ x n))))

(let ((n 0))

(funcall f 0)))) =⇒ 2005

Figure 6: Lexical closure within a Lisp dialect.

is used when the *print-base* variable defaults to
10, and we can redefine it for a particular use.
Redefining commands is allowed by TEX: for

example, users can redefine the layout of a para-
graph by changing its left and right additional mar-
gins. This is done by redefining the two commands
\leftskip and \rightskip. TEX is dynamically
scoped. But how to avoid variable captures? As
far as possible, implementors of Lisp dialects at-
tempt not to evaluate the body of a function unless
this function is applied. To avoid variable captures,
they put into action lexical closures: a function en-
closes the environment of its definition. Generally27,
a lexical closure is expressed by means of the form
‘(function ...)’, abbreviated in ‘#’...’, as shown
in Figure 6. Naturally, this function form is useless
for lexically scoped Lisp dialect, that is why it does
not exist in Scheme, lexical closures are implicit for
any function expression28.

TEX’s behaviour is to expand commands until
there is only ‘pure’ text. It seems that Donald E.
Knuth preferred ‘immediate’ expansion to lexical
closure, so there is a way—the \edef macro—to
expand the body of a command as soon as this com-
mand is defined, as shown in Figure 7. In addition,
when TEX came out, lexical closures were heavy to
be put into action. However, the \edef macro does
not replace a lexical closure completely. First, all the
commands are expanded, as far as possible, so Don-
ald E. Knuth introduced a \noexpand command, in
order to delay such an operation if need be29. Sec-
ond, the predefined commands might be redefined
inadvertently30. TEX is protected against such er-
rors by using the ‘@’ character as a constituent of

27 Most of dynamically scoped Lisp interpreters provide
lexical closures, but not all: Emacs Lisp does not. The
function form exists within this language, but for another
purpose.
28 Common Lisp [44], one of modern Lisp dialects, is lex-

ically scoped, too, and using the function form is needed
whenever a value is viewed as a function.
29 This \noexpand command is used in Figure refhb-figure-

cw-tex to prevent the expansion of the \next command. If
its value is a macro, it is retained instead of being run.
30 For example, when we apply our map-1 function, defined

in Figure 5, we can rename our local variable l within the ex-
pression ‘(let ((l ...)) ...)’. . . provided that we know

28 Bachotek, 30 kwietnia – 3 maja 2005
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\def\kind{lexical}

\edef\firstversion{%

I’m using \kind\ scope.\par}

\def\secondversion{%

I’m using \kind\ scope.\par}

\def\kind{dynamic}

Figure 7: Lexical and dynamic definitions in TEX.

the names of basic commands, end-users cannot re-
define.

Evaluation

As mentioned in the introduction, TEX’s commands
can be viewed as macros and in such a case, their
arguments are not evaluated before applying it, they
are just bound to #1, #2, . . . Such a behaviour,
close to a call by name in ‘traditional’ programming
languages, had been expressed by the nlambda con-
structor within Lisp’s first versions:

((lambda (x) x) (+ 1 2)) =⇒ 3

((nlambda (x) x) (+ 1 2)) =⇒ (+ 1 2)

From a theoretical point of view, the call by name
ensures that the result of an evaluation—the nor-
mal form of a term, w.r.t. lambda-calculus’ termi-
nology [5]— is reached if it exists. But it is inef-
ficient because an argument is evaluated each time
it occurs within a function’s body, that is why im-
plementors of functional languages generally prefer
calls by value, that is, arguments are evaluated be-
fore applying a function31.
The \expandafter command may be viewed as

the way to implement calls by value in TEX, in the
sense that:

\expandafter T0T1

expands T1 before applying the T0 command. In ad-
dition, this command may play the role of an eval-
uation function, like the eval function provided in
most Lisp dialects. Let us assume that we would
like to define some commands as identity functions,
except for the ‘\’ character, e.g.:

\def\bachoTeX{bachoTeX}

that it conflicts with the l variable belonging to map-1’s def-
inition. This means that we should read the source of this
definition before using this function.
31 Some evaluations may loop endlessly, e.g;:

((lambda (y) z)

((lambda (x) (x x)) (lambda (x) (x x))))

whereas a strategy based on calls by name terminates, but
since the normal form of a term is unique, the call by value
is not really a bad strategy.

Such commands can be defined by a command gen-
erator like:

\def\cmdid#1{%

\expandafter\def\csname#1\endcsname{#1}}

\cmdid{bachoTeX}

Similarly, other TEX macros can control the evalua-
tion of the tokens put after a command: \futurelet
(resp. \afterassignment, used in Figure 3) peeks
(resp. reads) a token at the input flow.

Active characters

An important point within TEX is the notion of ac-
tive characters, that can run commands as soon as
they are read. There is a similar notion in most Lisp
dialects: readers use a readtable, and special char-
acters of this readtable can be defined as macro-
characters. For example, parentheses are macro-
characters—begin and end of a list— in the stan-
dard readtable of Lisp. In Figure 8, we show how to
define braces as macro-characters, so the input :

{the new list}
is read as ’(the new list). We define a Common
Lisp32 function associated with the left brace char-
acter, and the right brace character has the same
meaning than a right parenthesis.

Types

From a theoretical point of view, a language is said
strongly typed if variables are typed33, (simply)
typed if each expression belonging to the language
is given a type34. TEX matches the second case,
even if the type information is not given by type ex-
pressions but by macros themselves. For example,
the \numbermacro, described in [26], only accepts a
number as its argument. Likewise, the \setlength
command of the LATEX format accepts a command
and a dimension as its two arguments. As a third
example, the commands ‘if...’— e.g., the \ifcat
command, used in Figure 3—define types of condi-
tional expressions, depending on the way to perform
tests. Some are done on-the-fly—e.g., the tests

32 Readtables exist in Common Lisp—we used them
when we built the parser of the fp2 (Functional Parallel
Programming) language [17]—but they have not been in-
cluded in Scheme—so MlBibTEX’s parser can use such a fea-
ture and reads characters one by one [19]—which is a ‘basic’
Lisp. Similarly, we can notice that Ω [39], one of TEX’s suc-
cessors, gave up active characters.
33 This definition includes languages with type inference,

as in the sml (Standard MetaLanguage) language [38]: end-
users do not have to put type expressions when a variable is
introduced, but the type-checker does this job.
34 The notion of type does not imply the presence of type

errors: if we consider the pl/1 language [22], a type mismatch
never raises an error, there is a conversion to a suitable type.
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;;; In Scheme and Common Lisp, a character is denoted by ‘#\〈character〉’.
(set-macro-character #\{ #’(lambda (input-s char)

(declare (ignore char))

;; Because of this declaration, a compiler cannot complain if it finds
;; out that the char variable does not appear within the function’s
;; body. Note that the read-delimited-list function, used below, is
;; predefined in Common Lisp.
(list ’quote (read-delimited-list #\} input-s))))

(set-macro-character #\} (get-macro-character #\))) ; The closing brace has the same effect
; than a closing parenthesis.

Figure 8: Defining the behaviour of a macro-character in Common Lisp.

done by \if, \ifcase, \ifcat, \ifdim, \ifeof,
\ifhbox, \ifhmode, \ifinner, \ifmmode, \ifnum,
\ifodd, \ifvbox, \ifvmode, \ifvoid, \ifx—some
are made by replacement : the tests defined by means
of the \newif command. When such a test oc-
curs, the generated command must be already set
to ‘\...true’ or ‘\...false’. For example, the
\ifpdf command, allowing users to dispatch dffer-
ent commands for TEX and pdfLATEX and provided
by the ifpdf package, defaults to \pdffalse and is
defined as follows:

\newif\ifpdf

\ifx\pdfoutput\undefined\else%

\ifx\pdfoutput\relax\else%

\ifcase\pdfoutput\else\pdftrue\fi%

\fi

\fi

This way to define tests may look strange now, but
let us recall that when TEX came out, such expres-
sions were not unified like today. In fortran iv,
the result of a test was a transfert of control (‘goto’).
In snobol—cf. Figure 1—tests were based on the
success or failure of a statement.

Conclusion

Here is the end of our trip around some main com-
mands of TEX. We have not been exhaustive and
did not go thoroughly into the commands for type-
setting. We have preferred to focus on aspects close
to ‘pure’ programming. That is not heretic since
some theoricians proved that a Turing machine can
be programmed using TEX [10, 36]. Moreover, we
personally confess that we give some examples us-
ing TEX within a lecture entitled Advanced Func-
tional Programming [18], as part of emphasising the
difference between lexical and dynamic scope.
Often our comparisons with other programming

languages have referred to Lisp dialects: that may

appear subjective, but let us remark that this class
oflanguages aims to express programs and data us-
ing the same notation35. So does TEX since the
content of an input file mixes texts to be typeset
and commands. In addition, Lisp dialects have been
used successfully to experiment new techniques of
programming.

TEX is a complete tool from a theoretical point
of view as well as a practical one. Its maturity prob-
ably results from a long and complex process. Some
commands have a complex definition, but that is not
a real drawback for most end-users who can directly
type their texts and simply use suitable packages.
The problem is the future: who will be able to main-
tain TEX and make it evolve if new requirements ap-
pears? So the TEX community has launched some
projects aiming to provide a ‘better TEX’. Some
people are thinking about a new language for a new
word processor. We think that our work can help
them, by giving some correspondences with features
indisputably belonging to programming. In addi-
tion, we have mentioned some directions that have
gone on with some TEX’s features. We also have
mentioned what is old in TEX, in comparison to
what is done elsewhere now, what is still in good
style.
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kerdőlépések. Tertia Kiadó, Budapest. április
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