jpsReg – A registry key interface package

[image: image1.png][_[CIx]

inE it o)
riMaskEdtT

T~ IniCheckbax!
C InRadcButtont

[ IniadioGroup
C one

C Tw
C Thee

i




Introduction

Most applications require their current state to be stored to the registry for later use when the application is restarted. Accessing the registry is not specifically difficult, but it can be tedious. The jpsReg component package simplifies the process by providing sub-classed versions of the common components, which can be linked directly to registry based settings. The whole process is co-ordinated using a container class component (TIniSource) which provides a centralised means of loading and storing registry setting for a whole collection of registry aware components. Typically the OnCreate method of a form would initiate the load from registry process (with a single method call), and the Destroy method would initiate a store to registry process. While the application is running any user parameter setting using a Preferences… dialog, for example, can be made to update the registry entries when the OK button is pressed.

The registry aware components simply specify four extra properties in the object inspector. These specify a registry key (Section) and value name (Item), a default value (if the value is not in registry initially) and the TiniSource which is co-ordinating the registry access. The actual value stored under a key is the components usual data property (e.g. Text for a T(Ini)Edit).

Groups of registry aware components can be linked to different TIniSource object, allowing co-ordination of registry access at a lower level than the entire Registry hive for the application. A TIniSource object has only one property (IniFile) which specifies a master key under HKEY_CURRENT_USER. All components contained by the TIniSource will add to a hierarchy of Keys and Values, under this key, based on their Section and Item properties.

TIniSource has two public methods (ReadValues and WriteValues). These trigger the registry load and store mechanism for all contained registry aware components.

Components

TIniSource
The registry aware component container

TiniEdit
Registry aware TEdit which stores its Text property to the registry

TIniMaskEdit 
Registry aware TMaskEdit which stores its Text property to the registry

TIniCheckbox 
Registry aware TCheckbox which stores its Checked property to the registry

TIniRadioButton 
Registry aware TRadioButton which stores its Checked property to the registry

TIniRadioGroup 
Registry aware TRadioGroup which stores its ItemIndex property to the registry

TIniSpeedButton 
Registry aware TSpeedButton which stores its Down property to the registry

Component Interface and use.

TIniSource

TIniSource = class(TComponent)

  public
    procedure ReadValues;

    procedure WriteValues;

  published
    property INIFile : String;

  end;

This can be dropped onto any form in the application or be created dynamically at run-time. Since it inherits behaviour directly from TComponent make sure you construct and parent the object correctly if using dynamic creation. I most circumstances you will just drop the component on the main form, or a user preferences dialog.

Simply rename the component as required (e.g. iniSrcMine) and provide a value for the INIFile property. It makes sense to use the same name as the application for INIFile, but there is no restriction other than it must be a valid registry key name. Add code to the OnCreate method of the form to cause the registry values to be loaded (e.g. iniSrcMine.ReadValues;). Put the command to write new values to the registry in the event handlers for those actions that require the registry to be updated. (e.g. the OnClose method for the form may have the command iniSrcMine.WriteValues; in it.

TIniEdit

TIniEdit = class(TEdit)

  published
    property Section: String;

    property Item: String;

    property Default: String;

    property IniSource: TIniSource;

  end;

This component and all the following components behave exactly like their immediate ancestors during normal use within an application. The only difference is that when its container TIniSource component executes its ReadValues or WriteValues methods it causes the registry values to be transferred. A design time select the INISource property using the property editor in object inspector. Set appropriate Section and Item properties.

TIniSource.ReadValues will cause the registry key HKEY_CURRENT_USER/<TIniSource.INIFile>/TIniEdit.Section to be accessed and the value of TiniEdit.Item to be read (if it exists) into its Text property. If the key does not exist, the Text value is replaced by the value of the Default property.

TIniSource.WriteValues will cause the registry key HKEY_CURRENT_USER/<TIniSource.INIFile>/TiniEdit.Section to be accessed and the value of TiniEdit.Item to be replaced with its Text property.

By building a default value into the object at design time it supersedes the necessity to provide a registry value during the installation process.

TIniMaskEdit

TIniMaskEdit = class(TMaskEdit)

  published
    property Section: String;

    property Item: String;

    property Default: String;

    property IniSource: TIniSource;

  end;

This behaves exactly like a TMaskEdit component except that the registry aware properties are added and work in exactly the same way as the TIniEdit component.

TIniCheckBox

TIniCheckbox = class(TCheckBox)

  published
    property Section: String;

    property Item: String;

    property Default: Boolean;

    property IniSource: TIniSource;

  end;

As before, this is basically a TCheckbox, but the registry aware element allows you to specify a default registry setting for the Checked property.

TIniRadioButton

TIniRadioButton = class(TRadioButton)

  published
    property Section: String;

    property Item: String;

    property Default: Boolean;

    property IniSource: TIniSource;

end;

As before, this is basically a TRadioButton, but the registry aware element allows you to specify a default registry setting for the Checked property.

TIniRadioGroup

TIniRadioGroup = class(TRadioGroup)

  published
    property Section: String;

    property Item: String;

    property Default: Integer;

    property IniSource: TIniSource;

  end;

As before, this is basically a TRadioGroup, but the registry aware element allows you to specify a default registry setting for the ItemIndex property.

TIniSpeedButton

TIniSpeedButton = class(TSpeedButton)

  published
    property Section: String;

    property Item: String;

    property Default: Boolean;

    property IniSource: TIniSource;

  end;

As before, this is basically a TSpeedButton, but the registry aware element allows you to specify a default registry setting for the Down property.

Hints for using jpsReg

· Replace you standard components with the registry aware versions for those controls that need their state storing to the registry. It is best to do this during the application development process. It is not straightforward to change a TEdit component for a TIniEdit component after the application is completed, as all event handlers and properties will have to be patched in manually.

· Do split your registry values into logical groups for your application using the Section property to make them easier to manage within the application.

· Consider using TIniSource components on every form that has a need to interact with the registry so that registry changes are localised. jpsReg allows all your registry aware components to be linked to one TIniSource component, but inter-form linking requires some management of the uses clauses in your units, and you have to be careful that all forms with registry aware components on them are constructed before calling the ReadValues method.

Terms and Conditions

jpsReg is free for personal use, but should you find the product useful you are required to register with JPSGraphics for a fee of £20 sterling. Payment should be made by cheque in sterling to John P Scott at 30 Adder Hill, Great Boughton, CHESTER, CH3 5RA. Folding money is welcome in any currency at the current exchange rate plus 5% for handling.

The term useful means that you use jpsReg regularly for your own personal programming projects or you distribute applications incorporating jpsReg, whether or not those applications are distributed for profit.

JpsReg is provided ‘as is’ and JPSGraphics makes no warranty as to the suitability or fitness for any particular purpose of jpsReg. JPSGraphics accept no liability for damage or loss caused by the use of jpsReg howsoever that loss or damage might be caused.

Contact details

John P Scott

JPSGraphics

30 Adder Hill

Great Boughton

CHESTER

CH3 5RA

UK

Telephone: +44 (0) 7801 442691

Fax: +44 (0)1244 318784

E-Mail: jpsgraphics@realmail.co.uk

Demo application with


default components








