Import & Export
Utilities

ExtenDB Parallel Server

Version 1.1

October 2006

HExtenDB




ExtenDB Import & Export Utilities

Table of Contents

. Table of Contents 2

1
2.1 Introduction 3
1.1 Performance Considerations 3
3. 2 XDBLoader 5
2.1 Handling Bad Input Lines 7
2.2 Example Usage 8
4. 3 xdbimpex 9
3.1 Format File and Command Line options 9
3.2 Importing 11
3.3 Exporting 12

Copyright © 2006
AEx<tenDB

Page 2




ExtenDB Import & Export Utilities

1 Introduction

The ExtenDB Parallel Server offers two different tools for importing and exporting
data.

XDBLoader is designed to load data as quickly as possible. It should be used
especially when initially populating the database.

The xdbimpex utility is for both importing and exporting data to and from the
database. It is not as fast as XDBLoader when importing, so using XDBLoader is
recommended.

1.1 Performance Considerations

In populating the database as fast as possible, there are some things to consider.

1. After creating the tables, it is best to load data before creating any indexes or
primary or foreign key constraints. The entire process will complete sooner.

2. Modifying the parameters of the underlying database. You may want to
change the database configuration temporarily to speed up the loading or
data. For example, if using PostgreSQL 8.1:

a. From the PostgreSQL manual: “Temporarily increasing the
checkpoint_segments variable can also make large data loads faster.
This is because loading a large amount of data into PostgreSQL can
cause checkpoints to occur more often than the normal checkpoint
frequency (specified by the checkpoint_timeout configuration
variable). Whenever a checkpoint occurs, all dirty pages must be
flushed to disk. By increasing checkpoint_segments temporarily
during bulk data loads, the number of checkpoints that are required
can be reduced.”

b. From the PostgreSQL manual: “Increase maintenance_work_mem.
Temporarily increasing the maintenance_work_mem configuration
variable when loading large amounts of data can lead to improved
performance. This is because when a B-tree index is created from
scratch, the existing content of the table needs to be sorted. Allowing
the merge sort to use more memory means that fewer merge passes
will be required. A larger setting for maintenance_work_mem may also
speed up validation of foreign-key constraints.”

c. Fsync. Setting fsync in the pg_hba.conf file to false is generally not a
good idea since it does not guarantee writes to disk have occurred, but

Copyright © 2006
AEx<tenDB

Page 3




ExtenDB Import & Export Utilities

can be considered to disable temporarily when doing initial loading of
the database. We recommend leaving it set to the default, true, but
wanted to point out this option nonetheless.

Copyright © 2006
AEx<tenDB

Page 4




ExtenDB Import & Export Utilities

2 XDBLoader

Syntax:

XDBLoader -d

database —-u username [-p password]

-t table [-h host] [-s port]
-1 inputfilename [-f separator] [-c configfilename]
[-b bad_file [-r comment_prefix]]

[-k chunk_count [, autoreducing_rate[,min_intervall]]
-y bad_chunk_directory [-x xrowid]]

[-a] [-n]
[-z NULL]

[-r comment] [—-g quotechars [—-e quoteescape]]
[-v] [-9]

[-o0 connection_options]

The XDBLoader utility is designed to load up data quickly.

One of the best ways to do this is to leverage any loading facility of the underlying
database. PostgreSQL, for example, includes the COPY command for fast loading.
With the xdb.config file properly configured, the XDBLoader will read in data,
determine the destination node destination for the target table, and then pipe the
data into a process running the COPY command for the target node. By default, the
xdb.config file is properly configured for PostgreSQL.

XDBLoader should be executed under the ExtenDB user.

Options:

—a

Added ending delimiter. By default, a field
delimiter is required only between the fields,
not after the final field. Including -a
indicates that a trailing final delimiter is
present.

-b bad_file

If specified, some basic checks will be done on
the lines of the input file, checking if the
correct number of delimiters exist and that
columns defined as not null have values. The
bad lines are written to bad_file, but the load
will continue. See also option -r, in order to
see the rejection causes.

Full path to the xdb.config file that
corresponds to server.

-d database

The ExtenDB database to connect to.

—e char

Quote escape character

-f separator

Separator. The field delimiter.

Generate serial ids. This means that one of
your columns is defined as a serial id, that
your input file does not contain any values for

Copyright © 2006
AEx<tenDB

Page 5




ExtenDB Import & Export Utilities

it, and that you would like ExtenDB to generate
serial values for it.

-h host Host to connect to

-1 inputfile Input file to load from. If not specified, data
is loaded from stdin.

-j Jjdbcurl The JDBC url to use to connect to the ExtenDB
Server

-k chunk_count This instructs the loader to break up

committing the bulk load operations into
“chunks”, every chunk_count rows. This is
useful because normally if even a single insert
fails on the back end, the entire load will
fail. Instead, -k will still allow good
segments of data to be committed, and just flag
bad ones that contain problematic input. The
bad chunks are created as new files at the path
location specified by -o. It is recommended to
try and use a fairly high chunk count if
possible, like 100000, for performance reasons
when loading a lot of data.

-n No transformations; pass through. Just read the
file and try and import as quickly as possible,
without performing any transformations that may
slow down performance.

-0 Connection options, available to most command
line utilities. Available options are mode and
charset. If mode is set to P, the connection to
the database is persisted. The charset option
refers to the character set used. Example: -0
mode=P charset=utf8

-p The password to use when connecting. If not
included, the user will be prompted

-q Quote character.

-r string Remark (comment) string. Lines that start with
this will be ignored. If used in conjunction
with -b, all bad input lines will be written
out to the bad file, preceeded by a comment
line starting with the string here, explaining
the reason for the rejection.

-s port The socket port to connect to. By default it is
6453.

-t table Target table

—-u username The username to use when connecting

-V Verbose mode

-X Used in conjunction with -k and -o, it
indicates that the loader should xrowid
(internal row identifier) in the rejected chunk
files.

-y bad_chunk_directory This is used in conjunction with -k, and

instructs the loader where to create bad chunk
files.

nullvalue

Value that indicates null

Copyright © 2006
“AE<tenDB

Page 6




ExtenDB Import & Export Utilities

2.1 Handling Bad Input Lines

The loader contains additional options for handling input files that may cause errors
when loading. This will allow you to try and continue loading as much data as
possible, even if you encounter an error.

These command line parameters are optional by default, because it does involve
some extra overhead and may slow down your load process. If you know you have
clean data, you can leave these using these options off, otherwise you should find
these to be helpful.

The first of these is by including the -b and, optionally, the —r options. You can
specify a file name following —b. This instructs the loader that you wish to perform
some basic checks before the data is sent to the backends. The basic checks include
checking that the number of delimiters is correct and that the columns defined as
“NOT NULL"” have a value. It will not perform more complicated checks like verify
foreign key constraints.

If an input line fails any of the basic checks, it is written to the file name specified by
the -b option. You can also include -r followed by a comment string like ‘REM’ or *#’.
This will precede each bad line in the bad file with the reason why it failed to load, to
make it easier for the user to clean up and try again.

Note that during the load if you leave off —b and a critical error occurs, like not being
able to find a value for the partitioning column, the process will abort, even if you
included the -k option. If you wish to always continue to try and load data, please
include -b.

The second set of options to use is -k and -y. With -k, the input is broken out into
the “chunk” row count specified. This allows smaller discrete segments of the input
file to be committed if there are not any errors. Should an error occur on one of the
backends, a new file will be created in the directory specified by —-y. This allows the
user to try and clean up any problems and reload the data, potentially in turn
processing it in smaller and smaller chunks until the data is clean.

The bad chunk files are created in the format:

<database_host>_<node_database>_table_<internal_ id>.dump

There is one file per target underlying database. Including the —x option with -k and
-y indicates that the generated xrowid identifier should be included in the bad chunk
files, if being used in the table. While this is not recommended, this gives the user
the flexibility to try and apply the bad chunk file directly to the underlying database,
bypassing XDBLoader.

Copyright © 2006
AEx<tenDB

Page 7




ExtenDB Import & Export Utilities

The -k option also allows you to specify a auto-reduce rate and minimum row
amount, in addition to the chunk size, separated by commas, without any spaces.
The advantage of this is if a chunk is bad, the loader will automatically break it out
into “line count /auto-reduce rate” separate sub-chunks and to retry loading the
rows and narrow down the particular problematic lines. This process is repeatedly
recursively up until the minimum amount of specified rows.

The exact options to use with -k depend on how clean you think your data is. For
performance, if few errors are expected, a large count humber should be used.

Example: -k 100000,10,1.

This will result in a chunk size of 100,000 being used. If a chunk fails, that is broken
out into 10 sub-chunks, resulting in chunks of 10,000 lines being used. Those that
fail will be broken out to 1,000, then 100, then 10, and finally 1. The loader will
have loaded up all of the lines that it could; the only remaining lines in the bad
chunk files are the ones that it could not load up.

Both of these methods of handling bad input lines can be used together: -b to catch
basic input errors on a line-by-line basis, and -k for ones that the underlying
database catches.

2.2 Example Usage

XDBLoader.sh —-d BIGDB -u myuser —-p mypassword —-h localhost
-1 /home/extendb/mig/order_fact.tbl -t orders —-f '|'
-b /home/extendb/mig/bad/order_fact.bad -r '#'
-k 100000,20,1 -y /home/extendb/mig/bad

Copyright © 2006
AEx<tenDB

Page 8




ExtenDB Import & Export Utilities

3 xdbimpex

Like XDBLoader, xdbimpex can also be used to import data. It offers a little more
flexibility at the cost of slower load speeds. In addition, xdbimpex includes the ability
to export data from tables as well.

Modes

There are 2 operating modes, import and export, the modes of which are mutually
exclusive. Import is invoked with the “-i” and export with —=x, where in either case it
is followed by the source or target file.

An optional format file may be used with the “-f” option to allow more complex
mapping information to appear. If the import is relatively simple, the user can also
just enter the desired options on the command line.

3.1 Format File and Command Line options
Importing

[INFILE=file_name]
[TARGET=table_name]
[ OVERWRITING=[0|1] (default is 0)
| IGNORE=[0|1]] (defaultis 0) (at most only one of these two can be set)
[ [ DELIMITER=delimiter]
[ column_name delimited_position, [n...] ] ]
[ADD_TRAILING_DELIMITER=[0]1]] (default is 0)
[ TERMINATOR=terminator ]
[ LOCK=[0|1]] (defaultis 0)
[ SILENT=[0|1]] (defaultis 0)
[ START_LINE=line_num ]
[ END_LINE=line_num ]
[ POSITION_FORMATTED { column_name start:stop, [n...] } ]
[ QUOTED=quote_character ]
[ COMMIT_INTERVAL=integer ]
[ MAX_ERRORS-=integer ]
[ DATA_ERROR_FILE=filename ]

Copyright © 2006
AEx<tenDB

Page 9




ExtenDB Import & Export Utilities

[ DRIVERCLASS=driverclass ] (default to extendb.connect.XDriver)]
[ JDBC_URL=jdbc_url of target database ]

Exporting

[ EXTRACT=query_string ]

[ OUTFILE=file_name ]

[TRIM_TRAILING_SPACES=[0|1] (default is 0)

A table appears below that describes both the command line options and the
format file parameters, depending on the preferred mode of usage.

Format File Value

Command
Line
Option

Description

-f

Specifies a format file to use to allow more complex mapping information
to appear. Followed by the file name for the formatting. Command line
option only.

INFILE

Import (-i), followed by the source file. If no source file specified, data is
read from stdin.

Required for command line operation

TARGET

The target table, if importing

OUTFILE

Export (-x), followed by the query sting and output or target file name.
Required for command line operation

EXTRACT (query string)

The SQL query to run to get the data. If it is just a single word, it is
assumed to be the name of the table and will do a “SELECT * FROM
<table>".

OVERWRITING or IGNORE

-W, -g

Used for handling input records that duplicate existing records on primary
key values. If OVERWRITING is specified, rows will get overwritten with
the new data, provided they have the same value for primary or unique
index as the row to be replaced. If IGNORE is specified, rows will be
ignored with the new data if they have the same value for primary or
unique index as the row to be replaced. If neither option is present, it will
always try and insert the row (default). These are mutually exclusive.

DELIMITER

-d

Default delimiter is pipe (|). Optionally, in the format file, it can be followed
by matching column names with the positional delimited items, to allow the
data to be mapped. Command line option for mapping column names is
not available.

ADD_TRAILING_DELIMITER

-a

Indicates that a final delimiter follows the last field.

TERMINATOR

-Z

Default is carriage return

Copyright © 2006

AExtenDB

Page 10




ExtenDB Import & Export Utilities

LOCK

Whether or not to lock the entire table

SILENT

If Omitted, the number of rows processed will be displayed every 10,000
rows. Default is verbose

START_LINE

Default will begin at 1. This is useful if importing from a large file and
something goes wrong after 210,000 records for example. The import can
be restarted with the same import file, but told to start on line number
210,001.

END_LINE

Default will be the end of file

POSITION_FORMATTED

Used to match column_name with start and stop character positions of
data in the row, for non-delimited, fixed format import files.

QUOTED

Used if data is quoted, surrounded by “ or ‘.

COMMIT_INTERVAL

Default is to commit after each insert. Otherwise, batches will be used, and
the batch will be committed after every COMMIT_INTERVAL number of
rows. It is important to use this for faster loads. A default of 1000 is a
good value to start with.

MAX_ERRORS

-m

Default is 1. Set to any positive integer to instruct the loader to continue
processing up until at least that many errors occur. Setting to 0 (zero) will
ignore all errors, and always continue to load the next line from the file.

DATA_ERROR_FILE

Specifies target file for rows that could not be loaded up successfully. This
way, the user can first try and load entire file, then just work with
problematic data in a separate file that could not be loaded up, and try
again.

JDBC_URL

The JDBC URL for connecting to the server. For example:
jdbc:xdb:BIGDB:myuser/mypassword@extendbhost

DRIVERCLASS

The driver class name, if exporting from other databases, for example, like:
org.postgresql.Driver.

TRIM_TRAILING_SPACES

If set, strings that are read from the source that have trailing spaces in
them will be trimmed when writing to the output file. That is useful for
saving disk space for large files, but it can impact your data- if you were
expecting a column to contain a single space, for example, it will now be
empty.

3.2 Importing

A command line option should be available for use with all the commands unless
there are mapping columns used, as available POSITION_FORMATTED. If the
column order differs in the source file from the target table, the user must use a
format file to describe the mapping and cannot do this via the command line.

Example:

xdbimpex -c 1000 -d

Y -1 customer.dat -t customer

Copyright © 2006

AExtenDB

Page 11




ExtenDB Import & Export Utilities

-j Jjdbc:xdb:BIGDB:myuser/mypassword@extendbhost

This will import the customer.data file into customer, with a pipe delimiter and a
batch size of 1000, using the specified jdbc string.

3.3 Exporting

Examples:

xdbimpex —-x orders.out -t orders
-3j jdbc:xdb:BIGDB:myuser/mypassword@extendbhost

xdbimpex —-x orders.out -y orders

-3j jdbc:xdb:BIGDB:myuser/mypassword@extendbhost

xdbimpex —-x orders.out -y “select * from orders”

-j Jjdbc:xdb:BIGDB:myuser/mypassword@extendbhost

The following example demonstrates using a format file and exporting from a
PostgreSQL database:

xdbimpex —-f format.txt

where format.txt is:

EXTRACT=select * from atable
DRIVERCLASS=org.postgresqgl.Driver
JDBC_URL=]jdbc:postgresqgl://localhost/mydb?user=myuser&passw
ord=mypassword

OUTFILE=/tmp/atable.txt

Copyright © 2006
“AE<tenDB

Page 12




