[image: image1.png]

Software and Information Technology Consulting

Postmortem Toolkit for Visual Basic

In a previous life I developed applications on mainframe computers and, once in a while, I would be the recipient of reams of greenbar computer printout. This was not a good thing. Indeed such occasions could ruin your whole day, for this was the dreaded “core dump”, spewed out by the operating system whenever a program choked and died. Sometimes bad things happen to good programs.

We called this mountain of paper that some tree gave its life for, a postmortem, or PM for short, because it contained a snapshot of the internals of the program at the moment it croaked. Though not a pretty sight, those gory details made it possible for programmers to pick through the remains for clues as to the cause of the program’s untimely demise.

Much has changed since then. Nowadays, you might receive an incident report that a program has crashed and burned and the user may have noted that the program displayed a plaintive cry for help just before it “abended” (as we used to say in the old days). The message would likely be a cryptic “Type mismatch” or “Invalid procedure call or argument”. What is the perplexed programmer supposed to make of that? There is not much you can do in the way of an autopsy.

Not all problems result in fatal errors. Sometimes a program just doesn’t behave quite the way you expected. Either way, it can be quite difficult to figure out the problem in a production environment. In addition to capturing error information, we need the ability to look back in time at the inner workings of the program as it was executing.

What we need is a postmortem capability for VB programs. Not like one of those nasty mainframe-style things, but a simple log containing only the essential information we need to track down the cause of the problem.

With that, I give you the Postmortem Toolkit – a VB add-in that allows you to build such a capability into your web-based and Windows-based applications as they are developed.

The Toolkit will help you deliver supportable applications; it is easy to use and won’t cost you a dime. These are some of its features:

· Easily adds a standard error handler to any routine.

· Identifies the module, routine and the exact line of code where the error occurred.

· Captures the application’s call path, even in a multitiered system.

· Has a trace capability that can be switched on or off easily.

· When running under NT / Windows 2000, also writes errors to the system event log.

· When used with regular Windows front-ends it captures the screen shot at the time the error occurred, allows for user comments to be entered and has a print capability.

Installation

The first thing to do is register the add-in with Windows. Open a command prompt window, go to the folder where you placed the Toolkit and enter C:\WINNT\SYSTEM32\regsvr32.exe "ApexCGI VB Add-In.dll".

You will have to change the path if regsvr32.exe is in a different folder on your machine. If registration is successful you will get a message to that effect, and next time you load VB you will find the Postmortem Toolkit under VB’s Tools menu as shown in Figure 1.

[image: image1.png]Selecting this menu entry brings up the window shown in Figure 2.

[image: image2.png]
Error Handling Philosophy

The Toolkit adds code to your programs based on a generic framework for handling fatal errors. The key word here is fatal. It is important to make the distinction between what does and does not constitute a fatal error.

A fatal error is not a business rule violation, such as rejecting a credit card purchase because the owner of the card has not paid his bill for the past six months. Neither is it an exception condition that can be reasonably anticipated, such as attempting to write to a floppy disk when there is no disk in the drive. In both these cases the application can be designed to handle the situation, take corrective action and continue processing.

A fatal error is an unforeseen circumstance that the program does not know how to handle. While an unexpected condition may not necessarily bring the program to its knees, the philosophy behind the standard error handler is that all such conditions will force program termination and are thus fatal to the program. I chose not to attempt to continue the program and possibly mask the error or cause a different error to occur as a result. This approach also ensures that the error will be fixed quickly and not left to fester.

Configuration Options

Because adding traces to programs can degrade performance, we need a way to switch tracing on and off as required. For this and other configuration options I have used an initialization, or .INI (“innie”), file. I prefer this to editing the registry because it is easier and safer to make changes and you may not always have access to the registry.

[image: image3.png]The Postmortem.ini file looks like this:

	Parameter
	Meaning

	Folder
	The path of the folder where you want to write the log files.

	FilenamePrefix
	The first part of the name given to log files. The current date and the extension .txt will be appended to the prefix, so there will be a separate log created for each day.

	DaysToKeep
	The number of days to keep the log files before they are deleted automatically.

	Trace
	Set to True or False to switch tracing on or off.

I like to leave tracing switched on during development and user acceptance testing and when the application is first moved to production. Once everything has settled down and running OK I disable tracing but may switch it on again temporarily if problems arise later.

Log Files

Program trace data and error details are written to standard text files so they can be displayed easily using tools such as Notepad, or a browser in ASP applications. A new log file is created each day and old files are deleted automatically after the number of days specified in the initialization file. All writing to the log file is accomplished using the WriteLog routine. It uses the Scripting Runtime, which must be included in VB’s references as shown in Figure 3.

[image: image4.png]
By default, every line written to the log is prefixed by the system time but this can be overridden if required. Any time you want to record any information in the log file, you simply add a line of code like this:

WriteLog "Initializing Program"

WriteLog checks that tracing has been enabled before writing to the log.

While most of the work is done for you, you must decide what information you think would be useful to help debug any problems that may arise. The Toolkit optionally starts you off by writing the name of every routine entered, together with the name of the module. You can expand on this by adding such things as parameters passed to a routine, function return values, etc. Logging SQL can be particularly useful if you are generating dynamic SQL because you can copy the SQL statements from the log file and debug them with a database tool such as Query Analyzer.

Error Handling

Something very strange happens to software when the programmer hands it over to the users for testing. The program – that was working perfectly – develops bugs, which are often inconsistent in nature.

Users can be amazingly creative and totally merciless in the ways they abuse your program and always manage to find some way to beat it into submission. The kinds of problems revealed here can be subtle and difficult to duplicate. This is where the postmortem capability pays off big time.

The inconsistent nature of these types of problems is caused by conditions that are not readily apparent, such as conflicts with other users of the application. I have found sequence errors to be a significant cause of inconsistent behavior. This is when you have to repeat a series of events in a certain order to make the problem manifest itself. These errors are often closely tied to specific data values. Changing a value or altering the sequence makes the problem go away.

When errors occur we must gather as much information as possible if we are to resolve the problems in a timely fashion. The error handler provided with the Toolkit does everything for you automatically.

[image: image5.png]Figure 4 shows the error message screen generated from one of the test programs included with the code you download.

The form allows users to enter any comments they think may be helpful while the incident is still fresh in their minds. If they go ahead and click the Print button, a nicely formatted one-page report is produced (Figure 5) containing all the information captured at the time of the error together with the comments entered by the user. The form is modal and the only way to close it is to click the End button, which also puts the application out of its misery.

[image: image6.png]Error Test Fatal Error

Description:
(Line # 26) Division by zero

Error:
11

Application:
Error test
Version:
1.0.0

Date:
02-24-2001
Time:
11:37:38

Computer:
MYCOMPUTER
User name:
Administrator

Module:
frmtest
Routine:
cmdDisplayError_Click

Control order:
frmTest.cmdLogError -> frmTest.List1 -> frmTest.Check(1) -> frmTest.Check(0) -> frmTest.Option(1) -> frmTest.Combo1 -> frmTest.cmdLogError -> frmTest.cmdDisplayError

Path:
frmTest.cmdDisplayError_Click -> frmTest.CalledRoutine1 -> frmTest.CalledRoutine2

User comments:
This is a test of the error handler…

Except for the screen shot, the same information is recorded in the log file, together with any trace information you may have added. Even if you have tracing switched off, fatal errors are always recorded in the log file and also in the Windows’ event log (compiled programs running on Windows NT and 2000 only– the event log does not exist in Windows 95 and 98). Applications that do not use a regular Windows user interface such as ASP components will not produce this screen but the applicable information will still be recorded in the log files.

The control order shows the order in which the application’s controls received the focus, including the indexes of control arrays. When combined with the screen shot, it gives a pretty clear picture of what the user was doing at the time of the error and has proved to be very useful in resolving the sequence-of-events type of errors. To include controls in this display, add "StdGotFocus Me" to their GotFocus events at development time.

The path shows the calling sequence of each module and routine when the error occurred. This information is captured even across components of a multitiered application. When combined with the trace information, it makes it very easy to see what the program was doing at the time and to be able to duplicate the error condition. Conflicts are easier to spot because other users’ information is also included in the trace log when this information is captured in the middle or lower tiers of an application (in a multitier application, you will probably not want to write client trace information to the log).

Note the line number in the error description. It pinpoints the exact line in the program where the error occurred. The value of this feature cannot be overstated but it is not easy to come by without the aid of the Toolkit.

Line Numbers

Erl is a poorly documented VB function that returns the line number of any code that causes an error – providing, of course, that you have used line numbers. And there’s the rub.

Line numbers are a throwback to earlier versions of the Basic programming language and it is possible that you have never seen them used in any VB programs. Yet VB supports line numbers and occasionally you see tips advocating their use. However, if you have ever tried using them you know how difficult they are to work with and you soon give up on them.

Here’s the dilemma: you want to use line numbers because they are an incredibly useful debugging aid but you do not want to use line numbers because they are too hard to manage. It's a love/hate thing.

The solution is to use the Toolkit, which can add the line numbers for you painlessly. When developing your code you can leave out the line numbers. Before compiling the program just click on the “Add Line Numbers” button to number all the lines of code.

Actually, VB will give you an error if you try to number certain lines such as the first Case statement in a Select clause (go figure) so the Toolkit ignores these. I usually keep two versions of the code – the release version with line numbers and the development version without line numbers. However, the toolkit can also remove the line numbers for you if you want.

Using the Toolkit

When you begin a new VB project, you must add one or two code modules from the Toolkit. All projects need the ErrorHandler.bas file, which provides the code to support error handling and logging. If the program is a standard Windows executable, it also needs the ErrorDisplay.frm file, which is the form shown in Figure 4.

All you have to do is click the “Add Code Modules to Project” button and the Toolkit will add the appropriate modules for you. It also adds the Postmortem.ini file to your project folder. You will probably want to edit this file to change the parameter settings described earlier.

To include the built-in error handling functionality into your program, add an error handler to all your routines so that they look something like this:

Private Sub MyRoutine()

On Error GoTo Err

WriteLog MODULE_NAME & ".MyRoutine"

(Your code goes here)

Exit Sub

Err:

TrapError MODULE_NAME, "MyRoutine", Erl

End Sub

Writing this kind of code gets old real fast so let the Toolkit do the grunt work for you. Amongst other things, the Toolkit window (Figure 2) is a replacement to the “Add Procedure” tool that comes with VB. This version lets you specify the data types for properties and functions, and adds code for logging and error handling. Just enter the name of the routine, select the options you want, and click the “Create New Routine” button. If you create property procedures, the Toolkit will also add the module level variables for you.

Apart from the benefits realized by using a standard framework, the Toolkit makes you more productive because it can write code with the error handing faster than you can write it without error handling. All routines follow this structure, which keeps the code clean and simple. This example shows the following:

· MODULE_NAME is a module level constant containing the name of the current module, e.g.,

Private Const MODULE_NAME As String = "MyModule"

· WriteLog is a routine provided by the Toolkit to the write the trace information discussed earlier.

If you are developing a multitier application, you may decide to use logging only on the server components for performance reasons. If you do not want this line of code generated for the client components, uncheck the “Add Logging” check box.

· TrapError is one of three possible error handlers that come with the Toolkit. The others are LogError and DisplayError. Which one you use depends on the type of program and whether or not the routine is called by another routine.

Any routine that is being called by another routine, including components in a multitier application, should use TrapError, which captures the error information, builds the call stack and raises the error to the calling routine or component.

DisplayError displays the error screen shown in Figure 4 and is for use by the top-level calling routine in a standard EXE program, which is usually an event like a button click. It also writes the error information to the log file.

LogError is for use by the top-level routine in a VB component that does not have a user interface such as an Active Server component. In this case the information is logged and raised to ASP but no error screen is displayed.

The good news is that you do not have to remember the names of these error handlers. The Toolkit already knows what kind of program you are developing - you just tell it whether the routine is a called routine or the top-level calling routine and it will take care of the details.

When you create event code, you usually click on a control, select the event you want such as a button click and VB creates an empty routine for you. To add the trace and error handling code to these routines click the “Add to Existing Routine” button while you are positioned in the empty routine.

There are always exceptions to the rules. There is a little gotcha to be aware of when adding an error handler to a Class_Terminate event. Somewhat perversely, if an error occurs here, VB will not raise the error to the code that destroyed the object. Any error raised from a Class_Terminate event will be treated as an unhandled error (I guess Microsoft forgot to consult me on this one). There is not much you can do about it other than record the error and continue processing. The Toolkit knows when it is in a Class_Terminate event and adds the special error handling code automatically.

Finally, another little detail that seems to bite everyone at some point: when running your program in debug mode, make sure to set the Visual Basic option on the Tools/Options General tab to “Break on Unhandled Errors” or the error handling mechanism will not kick-in.

Mike Stanley

Senior Applications Architect

Apex Consulting Group, Inc.

E-mail: mstanley@apexcgi.com

Figure 5 – Error Report Produced by the Fatal Error Screen.

It includes a screen shot of the client area of the active form at the time the error occurred.

Figure 1 – Postmortem Toolkit Added to VB's Menu

Figure 2 – Postmortem Toolkit

[Postmortem]

Folder=X:\MyApp

FilenamePrefix=MyApp Log

DaysToKeep=10

Trace=True

Figure 3 – VB's References Dialog

The application was developed using version 5.1.0.5010 of the Scripting Runtime

Figure 4– Fatal Error Screen Generated by the Toolkit

Apex Consulting Group, Inc.

P.O. Box 636, Wilmington, MA 01887 (Tel: 617.489.9000 (Fax: 781.944.1988 (www.apexcgi.com
Page 1 of 8
Apex Consulting Group, Inc.

P.O. Box 636, Wilmington, MA 01887 (Tel: 617.489.9000 (Fax: 781.944.1988 (www.apexcgi.com
Page 8 of 8

