20040524 - http://reachme.at/raven - mailto: raven@xs4all.nl

Hello_edit needs riched20.dll.

Hello_edit is case_sensitive: searching/replacing ‘text’ does not find ‘TEXT’.

Hello_edit.exe was written in assembly.

Assembled with Microsoft Macro Assembler 6.14.8444

Linked with Microsoft Incremental Linker 5.12.8078

Resources compiled with Microsoft Windows Resource Compiler 5.00.1823.1

It was written, compiled, linked, tested, under windows 2000/NT, recently XP/98.

(Seems to work, maybe a little different, under windows 95 (no sendinput).)

Items in this doc:

 1 - main window

 2 - buttons and menu

 3 - copybuffers, log, history windows

 4 - replace ! example

 5 - Make a batchfile from a directorylisting

 6 - run a logfile

 7 - copy files to several places: automation

 8 - running hello_batch

 9 - using copybuffers

10 - set currentdirectory

11 - hexview / hexedit (patch)

12 – send text to other program

13 – read text in other program’s memory

14 - styles

15 – the rest of the alt-0 window

16 – Settings and configuration

17 – Indent / UnIndent.

1 - main window

This is the main screen (of version 294.):

[image: image52.png]
2 - buttons and menu

With this program,you can edit a file, and the menu and buttons do the following:

MENU File

Open

[Alt+O]

Open a file.

[>]
Set tab size with the > button: max. 300.

Also works as screen refresh.

Hexopen

[Alt+H]

Open a file as hex.

During hexopen, many buttons are disabled, but some, like edit,

are enabled.

[S-edit]
With this, you can patch 20 chars at a time.

The patch starts at the cursor position.

[<],[>]
Convert hex <> text with the < and > buttons.

Close

[Alt+C]

Close file: flush filename.

Save

[Alt+S]

Save work to file.

Save as

[Alt+V]

Save work with another name.

Save with enter as 0ah

[Alt+J]

Save 'enter' as 0ah; I added this to be able to save unix

scripts, ftp them to a unixmachine, and run them.

Save and run hello_batch.bat
[Alt+.]

Run hello_batch.bat:

Saves text under current name and executes hello_batch.bat with

arguments provided: path name .extension.

So, c:\teti\wro.pli would make: hello_batch c:\teti\ wro .pli.

View log

[Alt+G]

Show log. Log is updated during program execution.

Save logfile

[Alt+9]

Save log.h_e.

Run logfile

[Alt+L]

Run a logfile.

Save configuration

[Alt+N]

Save screencolors & screenposition.

Save current settings (copybuffers,

current directory, other prog caption)

Set current directory

[Alt+U]

Change the directory.

On subscreen:

[Get names]

Copy filenames from directory to screen; full path, can be

easily removed.

Again

[Alt+A]

Restart this program, lose work.

Quit

[Esc.] [Alt+Q]

MENU Edit

Undo

[Ctrl+U]

Cut

[Ctrl+X]

Copy

[Ctrl+C]

Paste

[Ctrl+P]

Select all

[Ctrl+A]

Find

[Alt+F] [Ctrl+F]

Find again

[F3]

Go to

[Ctrl+G]

MENU Other

Refresh screen / tabsize
(>)

Shortcut to the > button.

View history

[Alt+8]

Show old situation 3 steps back, except for 2coll, where 2

steps back and the added file are shown.

Back to step x

[Alt+B]

Reverse to step x.

Other program

[Alt+0]

Select other program to send to;

read text in memory of other program, copy it.

Get and set other program's styles.

MENU Help

Help

[Alt+?] [F1]

This text.

About

An about box.

BUTTONS

[* send text]
Send selected text to other program.

[Color]

Try some backgrounds.

[aDd1]

Add some text at start of each line.

[addE]

Add some text at end of each line.

[6 add at pos]
Add some text at position x.

[^J x, per ln]
Add some text after each xth character, starting counting
anew with each new line.

[^K x]

Add some text after each xth character (not counting enter).

[^L 1 x/ln y]

Add some text on each xth line, after each yth character,

starting counting anew with each new line.

[^M J, ex spc]
Add some text after each xth character, starting counting
anew with each new line, not adding inside word if possible.

[2 columns]

Add a file line per line behind the current lines.

If you want spaces between them, add them first with alt-e.

[^P 2cl<cb3]

Add text from copybuffer 3 line per line behind the current
lines. If you want spaces between them, add them first with
alt-e.

[3 del1]

Delete 1 character at start of each line.

[4 dele]

Delete 1 character at end of each line.

[5 del at pos]
Delete 1 character at position x.

[deleTe from]

Delete lines after x.

[reM.]

Remove some text.

[Y wrd]

Remove whole word, with no character of a-z/A-Z before or
after it;

it doesn't matter if the word itself consists of characters
or not.

[K line from]

Delete each line starting from x.

[^O line upto]
Delete each line upto x.

[Repl.]

Replace some text with some other text.

[Wrd]

Replace whole word, with no character of a-z/A-Z before or
after it; it doesn't matter if the word itself consists of
characters or not.

[I between]

Replace text between A and B with some text.

[sPace it]

Replace some text by spaces, skipping the first occurrence
in a series. (So, if there is a line in between without the
text, the next occurrence is skipped).

[replace !]

Replace !. For this, the text has to be prepared.

Put text between [- and -], and all ! after this will be

replaced by this text.

The best way to keep a ! is to put [-!-] somewhere before
it.

[7 add linenrs.]
Add linenumbers at start of each line;

[at X]

add linenumbers at position x;

[Z end]

add linenumbers at end of each line.

[- fill out]

Fill lines out with spaces to xx.

[^I indent]

Indent starting x ending y with z.

[^D del x left]
Delete all x at beginning of all lines.

[tab <]

Replace tab character with spaces.

[> spcs]

Replace spaces with tab character.

[+<]
Make selection bigger on the left. Especially nice for running logfile.

[-<]
Make selection smaller on the left.

[+>]
Make selection bigger on the right.

[->]
Make selection smaller on the right.

[\]
If text has been selected: edit selection and back to text.

[F2]
If a text gets to big for the textlimit (you can't type

characters on the screen anymore), f2 will enlarge the

textlimit. (Some functions will, as well).

[F4]
If you really want to copy and paste large pieces, or ctrl-v

does not paste all, f4 will enLARGE the textlimit.

Copybuffers: [CTRL-3, 4, 6 to CTRL-0]

CopyBuffers: will copy selected text to the clipboard and

buffers 3, 4, 6 - 0 (a window pops up at startup).

If nothing is selected, they will copy the content of the

buffer to the screen and the clipboard.

So, after using one of these keys, you can also use CTRL-V

to paste it.

Other possibilities:

[CTRL-G]
Go to line x.

Some of the functions will work with selected text. (select text on the screen)

'Hello_edit [filename]' will open the file at startup.

'Hello_edit [name].h_e' will run [name].h_e at startup.

About position: the position to the left of the first character on a line is

position 1 (here the functions with position will not work, there are other

functions for that position). Position can not be greater than 3500.

Other_prog:

At startup, hello_edit will search the first program with the saved caption, and get that handle. If there are more programs with the same caption running, an other one can be retrieved via 'Other - Other program'.
3 - copybuffers, log, history windows

Other screens are:

[image: image2.png] [image: image3.png]
[image: image4.png] [image: image5.png]
[image: image6.png]
And helpscreens that appear if you press f1 on the main screen.

4 - An example for replace !:

[-0-]

Key!1
db
"0x!1",0

Key!2
db
"0x!2",0

Key!3
db
"0x!3",0

Key!4
db
"0x!4",0

[-1-]

Key!0
db
"0x!0",0

Key!1
db
"0x!1",0

Key!2
db
"0x!2",0

Key!3
db
"0x!3",0

Key!4
db
"0x!4",0

[-2-]

Key!0
db
"0x!0",0

Key!1
db
"0x!1",0

Key!2
db
"0x!2",0

Key!3
db
"0x!3",0

Key!4
db
"0x!4",0

[-3-]

Key!0
db
"0x!0",0

Key!1
db
"0x!1",0

Key!2
db
"0x!2",0

Key!3
db
"0x!3",0

Key!4
db
"0x!4",0

Replace ! (alt-!) will give us:

Key01
db
"0x01",0

Key02
db
"0x02",0

Key03
db
"0x03",0

Key04
db
"0x04",0

Key10
db
"0x10",0

Key11
db
"0x11",0

Key12
db
"0x12",0

Key13
db
"0x13",0

Key14
db
"0x14",0

Key20
db
"0x20",0

Key21
db
"0x21",0

Key22
db
"0x22",0

Key23
db
"0x23",0

Key24
db
"0x24",0

Key30
db
"0x30",0

Key31
db
"0x31",0

Key32
db
"0x32",0

Key33
db
"0x33",0

Key34
db
"0x34",0

5 - Make a batchfile from a directorylisting

Alt-u, alt-f can give us :

[image: image1.png][image: image21.png][image: image22.png]
Pressing alt-G will put the names in the main screen, so we could get:

(I removed some names for space)

[image: image23.png]
Select C:\bbo\div\asm\work32\include\, and use alt-M, we now have just the names.

We now save this to a file, so we could get the following file:

[image: image24.png]
then add a space at the end, then 2coll the file:

[image: image25.png]
4x alt_4:

[image: image26.png]
[image: image27.png]alt_D, add 'ren ' (with space).

[image: image28.png]
It also adds the text on the last line, which was an empty line.

We can use backspace or delete to remove this.

Then we can save it as a batchfile, and run it.

6 - Run a logfile

Now comes the log:

[image: image7.png]
We can save this log, and edit it, and run it.

alt-9

edit it

_5*a*Screentext saved a

_9* *Added at end

_6*a*2col a

_c*Deleted 1 at end

_c*Deleted 1 at end

_c*Deleted 1 at end

_c*Deleted 1 at end

_8*ren *Added at front ren

work arg:

_5*a*Screentext saved a

_n*Saved log.h_e

Maybe give it another name...

Put another text on the screen:

[image: image29.png]
Then alt-L, run our logfile.

[image: image30.png]
Save it, and use it.

7 - copy files to several places: automation

We can make a batchfile, eg. log_c.bat:

hello_edit log_c.h_e

We put this in log_c.h_e:

_o*log_copy.h_e*

_o*log_copy2.h_e*

We put this in log_copy.h_e:

copy test to java and havg

_3*test*

_5*java\test*

_5*Havg\test*

We put this in log_copy2.h_e:

copy fri_[tue].001 to java and havg

3*fri[tue].001*

5*java\fri[tue].001*

5*Havg\fri[tue].001*

_o*log_copy3.h_e*

We put this in log_copy3.h_e:

copy fri_[tue].001 to Havg\fri_[tue].002

5*Havg\fri[tue].002*

Now we make sure that test and fri_[tue].001 exist.

Nesting seems to work fine, I do not know how far you can go.

Running logfiles automatically works with *.h_e,

other files will just be read. There is no switch.

Hexviewing files can be automated, but editing (patching) automatically

is not supported.

8 - running hello_batch

This is my hello_batch.bat:

rem @echo off

copy %1%2 %1%2.java

javac %1%2.java

pause

java %2

pause

I typed in a java program:

[image: image8.png]
Then, I hit alt-.:

[image: image9.png]
So, I edited, compiled, and ran my program. How nice.

9 - using copybuffers

The CopyBuffers window shows the current size of text in the clipboard, or displays 'NON-TEXT'.

By using CTRL-3 (for example), in the main screen, without selection,

the text in the buffer is copied to the screen, by using it with selected text,

[image: image31.png]the selection is copied to the buffer.

Copying to a buffer:

[image: image32.png]
CTRL-7 will give us:

[image: image33.png]
[image: image34.png]Now CTRL-7 will give us:

[image: image35.png]

10 - set currentdirectory
This window uses a listbox and a treeview to navigate through directories.

Subdirectories are read when a tree branch is expanded.

This is the first screen:

[image: image36.png]
By pushing 'dir Tree' a treeview opens:

[image: image37.png]
By pushing 'this Dir' in the treeview, the listbox goes to that directory

[image: image38.png]
[image: image39.png]
The treeview shows hidden and system directories, the listview does not.

[image: image40.png]
If you push 'show Files', they are shown, because hidden files are shown.`

[image: image41.png]
11 - hexview / hexedit (patch)

We can view a file in hex, and subsequently we can patch 20 bytes at a time.

S-edit reads 20 bytes from the file, and if you push the 'Write it' button

in the little window, it writes 20 bytes to the file. After this the whole

file is read again.

We can push alt-h to hexview a file: this does not open a current file

in hex, but you get window to choose a file.

After choosing a file, you get something like this:

[image: image42.png]
Maybe we want to find and alter 'TRYAC', so we will the right box on the top of

the screen with TRYAC and hit alt-<, we now get:

[image: image43.png]
We copy this into the clipboard, hit alt-f, paste it, and find it.

[image: image10.png]
[image: image44.png]
NOTE: the righthand screen has not been updated yet. It is updated when you

move the cursor with the keyboard.

This means of course that you have to move the cursor with the keyboard after

you have used the mouse to move the cursor.

We move the cursor to the start of the found bytes, and hit alt-s.

[image: image11.png]
Problem!

Why? Because we are running this hello_exe. Let us get another one.

The same error occurs if the file has been removed or renamed while we

were viewing it.

After we hit alt-s, the filehandle is kept until we hit 'Write it' or 'Cancel',

so then it should not occur.

I copied hello_edit.exe to hello_edit_1.exe, and searched again.

At the right place, I hit alt-s:

[image: image12.png]
We now have to know what we want in HEX.

I will be easy on myself, make 54 55.

[image: image13.png]
And hit alt-w

(By the way, the ... button does nothing. This window has been copied from

the same one that alt-f uses, and the button has not been removed.)

[image: image45.png]
Now we see: URYAC.

(By the way 2: the errors on locking and locking are not used, don't try to

get them)

Startup hello_edit_1:

[image: image46.png]
12 – send text to other program

First choose a program - with alt-0 (0 prg)

[image: image47.png]
Hit alt_T

We get:

[image: image48.png]
This is very important, text is sent to the place where the cursor is in the other program.

Now we are back at the main screen.

Select some text, and hit alt-* (* snd).

[image: image49.png]
[image: image50.png]
Text can be send using SendInput (newer windows method), or keybd_event.

This you can set on the alt-0 window, with alt-S

You can send enters or not, with alt-E on the alt-0 window.

Method can also be changed on the alt-0 window, with alt-M, this may work if

sending to a program will not work. Feel free to try.

13 – read text in other program’s memory
Go to the alt-0 window, select a program in the list, press alt-V.

[image: image51.png]
Now only TEXT is shown. No strange characters here.

You can search with alt-F, go to the Next block, Previous block, a little Up or Down.

Init resets to memory position 0.

Refresh rereads the current position.

At zero going down will bring you to the 4G area, and vice versa.

Blocks overlap quite some, so beware of that.

You can copy the text in the screen to the main screen: alt-T.

Beware of the fact that blocks overlap, so heavy editing is needed if you copy multiple blocks to the main screen with the goal of getting one continuous text.

You can Save the main screen, saVe the main screen as, Clear the main screen.

Memquery will show the permissions hello_edit has in the area.

14 - styles
[image: image14.png]
Hit alt-Y:

[image: image15.png]
These are the styles a window or part has: they are checked. If it is a window,

The window style is meant, if it is a button, the button style, etc.

The last column gives the kind: normal/extended/both.

Columns can be resized by clicking on the column headings.

We can check or uncheck the style, use alt-k to choose normal/extended or both,

and change the styles. This will not always work.

We can choose 2 methods, one with the ‘Set styles’ button, and one with the ‘2’ button. If one doesn’t work, the other may. Or may not.

15 – the rest of the alt-0 window.

Alt-F will bring a window, if possible, to the foreground, so you know if you got the one you want.

Alt-W will toggle the visibility of the window, which can have strange results.

Grab text will copy the GetWindowText to the main screen, to be used there.

Root will get you back to the top list, after you went down:

Down will show you the children of a process, if it has any. Going too far down will first give an empty screen, and then the top list again.

Up will bring you up to the parents again.

Toggle invisibility/caption:

Alt-I will show/hide invisible processes.

Alt-C will show/hide processes without captions.

 (Captionless can only be hidden in the root list)

Memquery will show the permissions hello_edit has in a program's memory.

Memquery screen:

16 – Settings and configuration.
In hello_edit.set are saved everytime hello_edit is closed, or

current settings are saved via the menu:

-the ‘other program’ (to send to)

-the current directory

In hello_edit.scb are saved everytime hello_edit is closed, or

current settings are saved via the menu:

-the copybuffers, but a maximum of 30000 characters per copybuffer

-whether the copybuffer window should stay on top

In hello_config.cfg are saved everytime ‘save coNf.’ is pressed:

-the screenposition

-the backgroundcolor of the main screen

-the textcolor of the main screen

-which method we use to send, when we send text to another program

-whether we include ‘enter’ or not, when we send text to another program

17 – Indent / UnIndent.

[image: image16.png]
We press ctrl-I:

[image: image17.png]
‘begin’, enter

[image: image18.png]
‘end’, enter

[image: image19.png]
(I filled in a space, could be whatever, even alt-e)

enter

[image: image20.png]
Indented!

Now we press ctrl-D, fill in a space, enter, and the indentation is gone.

