
Binary decision diagrams, relational algebra, and Datalog:
deductive reasoning for Tcl

Kevin B. Kenny

Abstract. Future plans for aggressive optimization of the Tcl language require making assumptions about the behaviour
of Tcl scripts with respect to the predictability of their operations. For example, non-local side effects from traces,
modifying the core language, and variable aliasing will defeat many optimization schemes. Determining the safety of
optimizations requires, in effect, proving theorems about scripts. This paper describes a deductive database - an in-
memory relational database whose values all belong to finite domains with total ordering - intended to support this
effort. The database is implemented atop a library for Binary Decision Diagrams (BDD's), a compact data structure
representing expressions in first-order logic. This library is used to implement multiway finite-domain decision
diagrams, which represent the relations of the database. The database is in turn manipulated in a 'little language' called
Datalog, a limited dialect of Prolog that allows for recursive operations impossible in a traditional programming
language such as SQL. This language has been used to prototype limited versions of certain critical program analyses,
such as dead code elimination, calculation of reaching definitions, and data type inference.

1) Introduction
Discussions among the Tcl developers in recent years have
revealed that aggressive optimization of Tcl programs will
require detailed knowledge of the data types of values.
Rather than changing Tcl to require declaration of variable
types – a fundamental change to the language – the author
of this paper is exploring the possibility of, in a useful set
of cases, inferring the types of values from the contexts in
which they appear.

Doing so will require quite a lot of deductive logic:
essentially, proving theorems about a program's behaviour.
Useful concepts will include “calling a given procedure
will establish no traces, redefine no core commands, have
no side effects on variables in the caller's scope, etc., given
the assumption that none of those things has happened
before the procedure's execution.” Even more useful will
be the small conclusions that depend on these broad safety
assertions: “at this point in the program, the variable X is
known to contain a native integer, and code may be
generated that exploits that fact.”

The detailed assumptions are similar to the analyses that
sophisticated Java compilers must go through in
performing “points-to” analysis: when presented with an
Object, what classes can it actually be a member of? A
significant recent body of effort in this sort of analysis was
done in the bddbddb system [WHAL06]. This system is
quite sophisticated: it is an implementation of the Datalog

query langauge atop Binary Decision Diagrams, and is
capable of handling quite complex compilation problems.
Unfortunately, examining the code showed that it would
not fit into Tcl's way of doing things without major
redesigns, and instead, a deduction system for Tcl was
implemented de novo. This paper describes the resulting
system.

In Section 2, Binary Decision Diagrams (BDD's) are
presented. These are compact representations for Boolean
functions over arbitrary sets of variables. Section 3
describes how BDD's can be used to represent relations in
a database when column values are all drawn from totally
ordered finite domains. Section 4 digresses into an
important detail about application performance that
informs the design of the data definition language. Section
5 provides an example of manipulating a database at the
'assembly language' level of relational algebra. Section 6
discusses briefly the language used to perform logical
deductions. Section 7 offers another implementation
digression, discussing the handling of logical negation.
Finally Section 8 contains some preliminary concrete
examples of the sort of deductions that can be drawn from
Tcl code and offers some directions for future
development.

2) Binary decision diagrams:
the “engine”

The lowest level support for deductive reasoning in this

project is a C library, tclbdd, that implements Binary

Decision Diagrams (BDD's), a data structure first
described by R.E. Bryant [BRYA86]. (A gentler
introduction to Binary Decision Diagrams is available as
[ANDE97]. BDD's are a compact representation for
Boolean expressions of an arbitrary number of variables.

To understand how BDD's work, first consider
representing a Boolean function as a complete binary tree
of its truth table. At each level N of the tree, the value of
the Nth variable is checked, and a branch is chosen
according to it. (This condition is sometimes stated as
requiring an ordered BDD, or OBDD.) The leaves of the

tree are the special nodes ⊥ and ⊤, representing the

constant values 'false' and 'true' respectively.

A BDD can be constructed from a complete binary tree by
repeatedly applying two rewrite rules to it:

1. If both edges leaving a node M go to the same
node N, eliminate the node M and make any
edges that enter it go to N instead.

2. If two or more nodes exist that test the same
variable and have edges that go to the same pair
of nodes, coalesce them into a single node.

These conditions are sometimes described as requiring a
reduced, ordered BDD (ROBDD).

Figure 1 shows this process applied to the diagram that

represents the Boolean formula, (A∨B)∧C . In the

first step, the node that tests variable C and has both edges
going to is removed. The three nodes that all test⊥

variable C and go to if the value is 0 and ⊥ ⊤ if it is 1 are

all collapsed down into a single node. In the second step,
the node that tests variable B but goes to the same node for
both its values is removed.

BDD's have a number of properties that make them useful
for representing complex Boolean formulas:

• While in general their size is exponential in the

number of variables, for most practical problems
the size has a small polynomial bound. In some
sense, the functions whose BDD's grow
exponentially are uninteresting. For example, the
complete binary tree for the N-ary
EXCLUSIVE OR function grows exponentially
with N, while the BDD grows only linearly.

• Any function has a unique representation as a

BDD, enabling functions to be tested for equality
(or evaluated for tautology or satisfiability) in
constant time.

Well-understood algorithms are available for manipulating
BDD's:

• combining them using Boolean algebra, with

unary, binary and ternary operators.

• applying the quantifiers ∃ and ∀.

• composition: replacing a variable in an function

with another expression or renaming varaiables in
a function.

Figure 1: Reduction of a binary decision diagram

A

0 1

B

0 1

B

0 1

C

0 1

C

0 1

C

0 1

C

0 1

⊥ ⊤

A

0 1

B

0 1

B

0 1

C

0 1

⊥ ⊤

A

0 1

B

0 1

C

0 1

⊥ ⊤

• simplification: finding a less complex expression

that will yield the same value given some
assumption about the variables.

• enumerating all sets of variable values that will

satisfy a given expression.

In the implementation described in this paper, a set of
BDD's is represented by a TclOO object. The methods that
perform logical operations, quantification, simplification
and enumeration are written in C for performance.

As an example, let us use TclBDD to construct the binary

decision diagram for the expression, (A∨B)∧C ,

query it to find the values of A and C that make the
expression true for at least one value of B, and enumerate
the result. The “assembly language computation for this is
shown in Figure 2.

The program begins by constructing a BDD system. It
names three variables A, B, and C, making them variable
numbers 0, 1, and 2 respectively. It constructs the BDD for
the given expression, and removes B from the BDD by

applying the ∃ quantifier to it. Finally, it enumerates

exhaustively all the values of A and C that make the
resulting expression true. Unsurprisingly, it yields the
result:

A=0 C=1
A=1 C=1

showing that the formula is satisfiable if and only if C is
true.

For a larger case demonstrating the power of BDD's to
represent complex expressions, the interested reader is

referred to the test case bdd-40.1 in the test suite for the

tclbdd library. This test sets up the familiar “eight

queens” problem: how many ways are there to place eight
queens on a chessboard such that no queen attacks another.
This problem is a classical example of problems that
require backtracking search, but the tclbdd system solves it
with ease and with no backtracking. It represents each
square of the board with a Boolean variable, and computes
the logical AND of all the restrictions that no two queens
may be in the same row, column or diagonal. It runs in the
blink of an eye, despite the fact that at some points in the

calculation, it is representing over 1018
 combinations

of possibilities.

3) Finite domain decision
diagrams: the “assembly
language”

The next level of support for deductive reasoning in this
project is the layer that implements Finite Domain
Decision Diagrams (FDDD's). FDDD's are a structure
introduced by Whaley and Lam in the 'bddbddb' project
[WHAL05] specifically for program flow analysis. They
represent tuples of values over totally ordered finite
domains. In other words, every value in a tuple can be
replaced with a small integer. Each value in a tuple is a
member of a different named domain, and all tuples in a
given set have values drawn from the same sequence of
domains. (Domains in a set of tuples are analogous to
columns in a table within a relational database.)

The FDDD representation derives from the BDD
representation in a natural way. Each domain is associated
with a set of Boolean variables in the BDD corresponding
to the bits of the binary representation of its values. A
domain with sixteen members, for instance, will require at
least four BDD variables to represent it. A tuple is then an
AND-term in the boolean expression. A BDD's Boolean
expression will be true if and only if the corresponding
tuple is present in the set.

The operations of relational algebra have a natural

package require tclbdd

Create the system
bdd::system create sys

Name some variables
sys nthvar A 0
sys nthvar B 1
sys nthvar C 2

Construct X=(A|B)&C
sys | temp A B; # temp = A | B
sys & X temp C; # X = temp & C

For what values of A and C is the
expression true for some B?
sys exists result {B} X

Enumerate the result exhaustively
sys foreach_sat s result {
 bdd::foreach_fullsat res {0 2} $s {

puts "A=[lindex $res 0]\
 C=[lindex $res 1]"
 }
}

Figure 2: Simple first-order logic

mapping onto BDD's. The most important ones to consider
are joins, replacements, negations, projections, set unions,
and selection.

Joining turns out to be simply a Boolean AND operation.
Replacement of one domain with another is a rewriting of
the Boolean expression to replace the first domain's
variables with those of the second domain, an operation
that is provided by the BDD library. Negation (creating a
table containing all possible rows absent from a given
table) is a Boolean NOT operation. Projection (reducing a
relation by removing a column) is applying existential
quantification to the column's variables. The union of two
sets is the logical OR of their Boolean expressions.

Selection is a special case of join. A set is constructed
containing the values to be sought, and the newly
constructed set is joined with the set being searched to
yield the rows with the desired values.

There is also a special equality relation between any pair

of domains. The relation A==B contains exactly those pairs

of tuples that have the same values in domain A as in

domain B. Joining this relation to any other relation has the

effect of performing a self-join.

4) A digression: ordering of
variables

It turns out that one critical feature in the design of a
FDDD database is the ordering of the variables in a BDD.
A poor ordering can easily result in a BDD that grows
exponentially in size with the number of entities being
represented, while a good ordering may be nicely linear.

Consider for instance, a table, suc, containing two four-bit

fields a and b. A tuple suc(a,b) is present if and only if

a=b+1.

If the BDD is constructed using the naïve variable order

(a2, a1, a0, b2, b1, b0), listing the bits of the

values from most significant to least significant, then the
size of the BDD is 44 nodes. (Its first three levels are a

complete binary tree over the values of a.) If instead, the

variables are interleaved, (a2, b2, a1, b1, a0,

b0), the size drops to 17 nodes, and there are no more

than three nodes at each level. The difference is even more
striking as the size of the domains grows: with eight-bit
columns, there are 764 nodes in the concatenated
representation but only 37 in the interleaved.

Alas, the problem of determining the optimum variable
ordering is NP-hard [BOLL96]. Fortunately, there are a
number of good heuristics. So far, in the experiments that
the author has conducted with this project, a good ordering
was obtainable simply by interleaving the bits of columns
that were thought to be “closely related” and occasionally
reversing their endian-ness.

The database definition for the FDDD allows specifying

the domains using three commands, domain,

interleave and concatenate. The domain

command defines a single domain, accepting its size in bits

and endian-ness. The interleave and concatenate

commands each accept any number of partial database

definition (the result of domain, interleave, or

concatenate), and produce a new database definition

by taking their arguments and interleaving or
concatenating them in the bit ordering. Thus, the definition

of the database containing the (properly interleaved) suc

relation will look like:

database create db \
 [interleave \
 [domain a 8 bigendian] \
 [domain b 8 bigendian]]
db relation suc a b

5) The FDDD assembly
language

Given this infrastructure, what the FDDD package
provides is a set of methods that compile BDD code to
manipulate the database. Because this is still “assembly
language” level, the code is still verbose and somewhat
unreadable. Nevertheless, it would be good to walk
through one complete example to show the sorts of
operations that are available at the FDDD level.

A) Creating a database
We will use as an example a database containing
information about the ancestry of a certain well-known

family. There will be three columns, p1, p2, and p3, each

four bits wide, and all interleaved. There will be one

predefined relation, parentOf(p1,p2) which contains

a tuple (a , b) if and only if a is a parent of b. Figure 3

shows how the database is defined.

Since the database can accept only small integers as
column values, we create a mapping between personal

names and small integers: $p($name) gives the integer

for $name, and [lindex $people $i] gives the

name of person $i. The simple code in Figure 4 is the

usual design pattern for setting up a finite domain.

Next, we load the parentOf relation. The database

objject provides a [loader] method that emits a Tcl

command that will import a row. (Most of the FDDD
methods work by emitting Tcl code, rather than by
performing a requested action directly.) Figure 5 gives the
code.

Now we want to create a grandparentOf relation that

contains a tuple (a ,b) if a is a grandparent of b: that

is, if a is a parent of some value c, and c is a parent of b.

Expressing this in terms of the lowest level relational
primitives is a bit awkward. The most effective way to
approach it appears to be:

1. Create a new relation t1, that will contain a tuple

(a , c) if a is a parent of c.

2. Create a new relation, t2, that will contain a

tuple (c ,b) if c is a parent of b.

3. Join the two relations. The result, t3, will have a

tuple (a , c ,b) for every combination of

(a , c) from t1 and (c ,b) from t2.

4. Project away the common column c, leaving a

relation grandparentOf, containing a tuple

(a , b) if a is a grandparent of b.

Figure 6 shows the code that performs these four steps.

Note that the replace, join, and project methods

all return bursts of code that in turn perform the requested
actions. For this reason, they are substituted into a script
that is then evaluated.

db relation t1 p1 p3
db relation t2 p3 p2
db relation t3 p1 p2 p3
db relation grandparentOf p1 p2
eval [subst {
 [db replace t1 parentOf p3 p2]
 [db replace t2 parentOf p3 p1]
 [db join t3 t1 t2]
 [db project grandparentOf t3]
}]

Figure 6: Creating a 'grandparentOf' relation

We now have enough information in the database to
answer the question, “who are the grandchildren of
Elizabeth?” To pose the question we do the following:

1. Create a relation t4, consisting of the single

value Elizabeth in the column p1.

2. Join that relation to the grandparentOf relation,
yielding the desired result.

3. Enumerate the values in the result.

bdd::fddd::database create db \
 [bdd::fddd::interleave \

 [bdd::fddd::domain p1 4] \
 [bdd::fddd::domain p2 4] \
 [bdd::fddd::domain p3 4]]

db relation parentOf p1 p2

Figure 3: Creating a database for ancestry

set i 0
set people {
 Andrew Anne Beatrice Charles Edward
 Elizabeth Eugenie George Harry
 James Louise William
}
foreach x $people {
 set p($x) $i
 incr i
}

Figure 4: Naming objects in a finite domain

interp alias {} parentOf {} \
 {*}[db loader parentOf]
parentOf $p(Elizabeth) $p(Charles)
parentOf $p(Elizabeth) $p(Anne)
parentOf $p(Elizabeth) $p(Andrew)
parentOf $p(Elizabeth) $p(Edward)
parentOf $p(Charles) $p(Harry)
parentOf $p(Charles) $p(William)
parentOf $p(Andrew) $p(Beatrice)
parentOf $p(Andrew) $p(Eugenie)
parentOf $p(Edward) $p(Louise)
parentOf $p(Edward) $p(James)
parentOf $p(William) $p(George)

Figure 5: Loading a relation

The program that carries out these steps is shown in Figure
7. When run, it produces the result,

Harry
Beatrice
Louise
Eugenie
James
William

6) Datalog: a high level
language for deductive
reasoning

Now that we have a relational database in hand, we need a
way to manipulate and query it. As we have seen, the
FDDD library provides low-level manipulators (join,
project, union, and so on), but it is lacking in both power
and user-friendliness. We need something better for the
purpose of program analysis. It is tempting to say that for a
relational database, there is only one language that makes
sense: SQL. Nevertheless, for the application of program
flow analysis, SQL would be a horrible choice. The issue
is that most questions to be answered with flow analysis
are fundamentally graph-theoretic. Their answers,
generally speaking, depend on transitive closures, or
recursive queries.

The classic example that SQL has trouble with is the
relation, “a is an ancestor of b.” In the example from
Section 5, we can do “a is a grandparent of b” fairly easily,
as shown in Figure 8.

SELECT x.parent AS grandparent,
 y.child AS grandchild
FROM parentOf x
LEFT JOIN parentOf y
ON y.parent = x.child

Figure 8: 'Grandparent' relation in SQL

The answer to 'who are Elizabeth's descendants?' is less
straightforward. In standard SQL-99 (which is widely
ignored by database vendors), a query like Figure 9 could
do the job.

The syntax is awkward, and the standard SQL version is
not widely available (although various databases
implement their own, equally awkward, versions of
recursive query).

Instead, the project embeds an implementation of the
Datalog database manipulation language. [CERI89]
Datalog is a subset of Prolog, intended to support efficient
manipulation of relational data structures. A Datalog
program comprises some set of facts, rules, and queries. A

Create a singleton relation to hold 'Elizabeth'
db relation t4 p1
interp alias {} x {} {*}[db loader t4]
x $p(Elizabeth)

Create a relation holding Elizabeth's grandchildren
db relation result p1 p2
eval [subst {
 [db join result grandparentOf t4]
}]

Enumerate Elizabeth's grandchildren
db enumerate row result {
 puts [lindex $people \
 [dict get $row p2]]
}

Figure 7: Who are Elizabeth's grandchildren?

WITH RECURSIVE temp(anc, desc) AS (
 SELECT parent, child FROM parentOf WHERE parent = 'Elizabeth'
 UNION
 SELECT anc, child FROM temp JOIN parentOf ON parent = desc
) SELECT desc FROM temp

Figure 9: Recursive query in SQL

fact is simply an assertion that something is true about a
specific relation:

parent($a, $b).

A rule gives a way to deduce new facts from what is
known. Ancestry can be specified in two short rules:

ancestorOf(p1, p2) :- parentOf(p1, p2).
ancestorOf(p1, p2) :-
 ancestorOf(p1, p3), parentOf(p3, p2).

And a query simply reports information to a calling
program:

ancestorOf($anc, p2)?

Recursion is implicit: any rule that depends, directly or
indirectly on itself, is iterated to a fixpoint.

The Datalog compiler, of course, has to include a little bit
of glue to interface the Datalog and Tcl languages. It's
fairly simple, and designed for writing Tcl procedures.
Each Datalog program can refer to the values in Tcl
variables, and each Datalog program is augmented with an
initialization block (a Tcl script executed before the
Datalog program runs), a Tcl variable that will be used to
hold a row of a result (expressed as a dict), a Tcl script that
is executed once per query result, and a finalization block
(a Tcl script execute once after the Datalog program
terminates). A sample Tcl script wrapping the above three
lines of Datalog looks like Figure 10.

Given the procedure in Figure 10, the Tcl command:

puts [descendantsOf Elizabeth]

lists all of Elizabeth's children, grandchildren and great-
grandchildren:

Andrew Harry Beatrice Louise Edward
Eugenie Anne James Charles William
George

7) Another digression:
handling negation

Datalog, as originally envisioned, had no negated terms:
there was no way to say “A is true if B is false.” The lack
of negation stemmed from two things: first, a relational
database typically has no way of dealing with the
combinatorial explosion of enumerating nonexistent rows,
and second, allowing uncontrolled negation would lead to
problems without a fixpoint:

A(x) :- ~A(x).

or problems without a unique fixpoint:

A(x) :- ~B(x). B(x) :- ~A(x).

Nevertheless, negation is needed for a great many tasks.
For instance, let us consider the question, “who is an only
child?” The predicate, “a is an only child” is most easily
formulated as “a has a parent, but has no siblings,” as
shown in Figure 11.

The first problem, that of the combinatorial explosion, is
not an issue for BDD's. The BDD of a relation's
complement is exactly the same size as that of the relation
itself. The second problem, the possibility of constructing
a system without a fixpoint, needs to be solved with some
rigor for what negation means. The current implementation
provides stratified negation semantics, which is fairly
mainstream for Datalog implementations. In stratified
negation, each rule is assigned a stratum number. A rule

db relation ancestorOf p1 p2
proc descendantsOf {ancestor} [bdd::datalog::compileProgram db {
 variable p
 variable people
 set anc $p($ancestor)
 set result {}
} {
 ancestorOf(p1, p2) :- parentOf(p1, p2).
 ancestorOf(p1, p2) :- ancestorOf(p1, p3), parentOf(p3, p2).
 ancestorOf($anc, p2)?
} d {
 lappend result [lindex $people [dict get $d p2]]
} {
 return $result
}]

Figure 10: Datalog program, embedded in Tcl, to solve the 'ancestorOf' relation

that depends only on facts has a stratum of zero. A rule X
that depends on another rule Y must have a stratum
number that is at least Y's stratum number. If it depends on
the negation of rule Y, its stratum must be strictly greater
than Y's stratum number. This scheme avoids dependency
cycles involving negation.

In the example from Figure 11, stratification is

straightforward. The parentOf relation, being a ground

term, is at stratum 0. The siblingOf relation, being

dependent only on ground terms, is at stratum 1. The

hasSibling relation depends only on non-negated

stratum-1 terms and is also at stratum 1. The onlyChild

relation depends on a negated stratum-1 term and is
relegated to stratum 2. The content of the relations is
computed in order by stratum. Negated terms are
computed using the “closed world hypothesis” in which a
term not known to be true is assumed to be false. The
resulting model is guaranteed to be logically consistent.

Stratified negation may prove not to be sufficient, and the
author suspects that the package will need to provide an
option for well-founded negation, [GELD91] which allows
for recursion through negation, as long as the result yields
a model in which if any literals are true, their complements
are false, and vice versa. (There may be literals whose
value is undetermined by the program.)

8) Where is this going?
The current status of the project is that the BDD and

FDDD libraries and the Datalog compiler are all available
in reasonably complete form, with test suites and manual
pages, from the author's Fossil repository at
https://chiselapp.com/user/kbk/repository/tclbdd/. The
remainder of this paper is considerably more speculative,
and reports on the results of early “proof of concept”
experiments with Datalog and the analysis of Tcl
programs.

In most cases, aggressive optimization will depend on
inferring the data types of values in Tcl programs. Without
some sort of type inference, Tcl's processing of code
includes large amounts of run-time type identification,
type coercion (“shimmering”), and packaging of values
into Tcl_Obj structures. All of this can be avoided, for
example, in numeric-intensive code if we can prove facts
like “A is an integer at point B in the code.”

As a simple example, the first experiment is the cos

procedure shown in Figure 12, which computes the cosine
of a number using a Maclaurin series approximation. This
example has the property that in an ideal world, the types
of all objects would be identified perfectly, and the
procedure could be compiled entirely down to machine
code.

The first part of the experiment is to retrieve the bytecode

that Tcl's compiler generates for the cos procedure, and

convert it to a form more amenable to analysis: in this
instance, three-address code. The conversion logic onsists

mostly of a [switch] command and bookkeeping to

keep track of the depth of the Tcl execution stack, and is

db relation siblingOf p1 p2
db relation hasSibling p1
db relation onlyChild p1
proc onlyChildren {} [bdd::datalog::compileProgram db {
 variable p
 variable people
 set result {}
} {
 siblingOf(p1,p2) :- parentOf(p3, p1), parentOf(p3, p2), p1 != p2.
 hasSibling(p1) :- siblingOf(p1,_).
 onlyChild(p1) :- parentOf(_,p1), !hasSibling(p1).
 onlyChild(p1)?
} d {
 lappend result [lindex $people [dict get $d p1]]
} {
 return $result
}]
puts [onlyChildren]

Figure 11: Who is an only child?

https://chiselapp.com/user/kbk/repository/tclbdd/

not shown here. The initial converted program, prior to any

optimization, appears as xxx. In it, {var X} denotes a

named variable; {temp N} denotes a value on the stack,

and {literal V} denotes a constant value. The

conversion is sloppy and straightforward. For instance,

[set j 0] was translated by the bytecode compiler to

“push 0 to the top of the stack; pop the stack and put the

popped value in variable j,” and this translation came

forward literally into the three-address code.

There are then some ground facts that are asserted about
the operations:

• reads(pc,v) – The instruction at pc reads the

value of v.

• writes(pc,v) – The instruction at pc writes

the value of v.

• isCopy(pc) – The instruction at pc is a copy.

• noSideEffect(pc) – The instruction at pc is

free of unknown side effects (such as aliasing
variables, establishing traces, evaluating scripts).

• seq(pc1,pc2) – The instruction at pc is

immediately followed by pc2 on at least one

execution path.

These facts will be used for the analyses that follow.

There are a few optimizations that can be done early, in
order to reduce the sheer volume of code that sophisticated
analyses must process. The first of these is copy
propagation – the removal of useless data motion. For
example, the sequence:

copy {temp 0} {literal 0}
copy {var j} {temp 0}

can (provided that {temp 0} is not used elsewhere) be

replaced by:

copy {var j} {literal 0}

Performing copy propagation is ordinarily a fairly major
task in an optimizer, requiring sophisticated data structures
and voluminous code. In Datalog, it's mostly a matter of

identifying that a statement st reads a given value v, that

value v is a copy of value v2, and that every definition of

either v or v2 that reaches st goes through either a copy

v:=v2 or v2:=v. The Datalog code is more complex

than anything we've seen yet, but is still less than a page of
code. It appears in Figure 14 on page 10. The Tcl action for

the code is trivial: rewrite the statement at st, replacing v

with v2.

Copy propagation has done absolutely nothing to reduce
code size, but once it's been done, there will be (we hope)
a fair number of statements that are dead – they do nothing
but write values that are never read. Dead code elimination
is the next step in the process: find those points! It begins
with the analysis of reaching definitions: “the assignment

of a value v at location st is potentially read at location

st2”. This one can be done in three Datalog statements

(Figure 13).

With reaching definitions available, dead code analysis is
also straightforward. A statement is live if it has

 proc cos {x {n 16}} {
set j 0
set s 1.0
set t 1.0
set i 0
while {[incr i] < $n} {
 set t [expr {-$t*$x*$x / [incr j] / [incr j]}]
 set s [expr {$s + $t}]
}
return $s

 }

Figure 12: Numeric-intensive procedure - optimization example

flowsTo(_, st, st2) :- seq(st, st2).
flowsTo(v, st3, st2) :-
 flowsTo(v, st3, st),
 !writes(st, v),
 flowsTo(v, st, st2).
reaches(v, st, st2) :-
 writes(st, v),
 flowsTo(v, st, st2),
 reads(st2,v).

Figure 13: Reaching definitions

uncontrolled side effects, if it writes a value that is read by
a live statement, or if it does something other than generate
a value. All statements that assign to an unused value are
dead and can be removed from the instruction sequence.

The effect of copy propagation and dead code elimination,
together with the related but simpler operation of reverse
copy propagation, in which a copy of an instruction's
result, rather than of its operand, is removed, is to decrease

code volume by a factor of two. (This decrease consists
almost entirely of eliminating temporary variables
introduced by the brutally simple translation of stack-
oriented code.) Figure 15 on page 11 shows the

transformation that takes place for the cos procedure.

% Determine for each pair of variables what statements copy
% between variables of the pair, in either direction.

isCopyBetween(st,v,v2) :- isCopy(st), reads(st, v2), writes(st, v).
isCopyBetween(st,v,v2) :- isCopy(st), reads(st, v), writes(st, v2).

% copyTransparent(st, st2, v, v2) means 'there is a path from st to
% st2 on which no code writes to either v or v2'.

copyTransparent(st, st2, _, _) :- seq(st, st2).
copyTransparent(st, st2, v, v2) :- copyTransparent(st, st3, v, v2),

 !writes(st3, v), !writes(st3, v2),
 noSideEffect(st3),

 copyTransparent(st3, st2, v, v2).

% writesOneOf(st, v, v2) means 'st writes either v or v2'

writesOneOf(st, v, _) :- writes(st, v).
writesOneOf(st, _, v) :- writes(st, v).

% nonCopyReaches(v, v2, st2) means 'on at least one code path,
% an assignment to either v or v2 that is not a copy between them
% reaches the statement st2'

nonCopyReaches(v, v2, st2) :- writesOneOf(st, v, v2),
 !isCopyBetween(st, v, v2),
 copyTransparent(st, st2, v, v2).

% copyReaches(v, v2, st2) means 'on at least one code path, a
% copy v := v2 reaches statement st2 without any intervening code
% changing v or v2'

copyReaches(v, v2, st2) :- isCopy(st), reads(st, v2), writes(st, v),
 copyTransparent(st, st2, v, v2).

% A statement is a candidate for copy propagation if it reads a
% variable v, variable v obtains its value by copying variable v2 on
% at least one code path, and every reaching definition of variable
% v and variable v2 goes through either v := v2 or v2 := v before
% reaching the statement.

copyPropagatable(st, v, v2) :- reads(st, v),
 copyReaches(v, v2, st),
 !nonCopyReaches(v, v2, st).

copyPropagatable(st, v, v2)?

Figure 14: Copy propagation in Datalog

The next significant transformation is to reduce the
program to Static Single Assignment (SSA)
form[CYTR91]. In this form, all assignments of a value
have distinct names. If more than one assignment of a
value reaches a given point in the code, the multiple
reaching assignments are replaced by a pseudo-function φ
whose arguments enumerate the reaching definitons. This
form allows reading out directly all the reaching
definitions of a given value, or all the places that a given
value reaches, and is critical to type analysis. The actual
requirements for the placement of φ-functions are
somewhat complicated (the reader is referred to [CYTR91]
for the details), but one fairly short Datalog program
serves to identify the points at which φ-functions need to
be inserted and another serves to replace references to
values with references to the appropriate φ results. The
resulting transformed program can be seen in Figure 16.

We are finally ready to perform type analysis on this
program. The SSA form gives us more or less complete

information about data flows, and now all analysis of types
can be abstracted without detailed reference to the
program's control flow.

Figure 15: Code improved by copy propagation

0: copy {temp 0} {literal 0}
1: copy {var j} {temp 0}
2: copy {temp 0} {literal 1.0}
3: copy {var s} {temp 0}
4: copy {temp 0} {literal 1.0}
5: copy {var t} {temp 0}
6: copy {temp 0} {literal 0}
7: copy {var i} {temp 0}
8: jump {pc 26}
9: copy {temp 0} {var t}
10: uminus {temp 0} {temp 0}
11: copy {temp 1} {var x}
12: mult {temp 0} {temp 0} {temp 1}
13: copy {temp 1} {var x}
14: mult {temp 0} {temp 0} {temp 1}
15: add {var j} {var j} {literal 1}
16: copy {temp 1} {var j}
17: div {temp 0} {temp 0} {temp 1}
18: add {var j} {var j} {literal 1}
19: copy {temp 1} {var j}
20: div {temp 0} {temp 0} {temp 1}
21: copy {var t} {temp 0}
22: copy {temp 0} {var s}
23: copy {temp 1} {var t}
24: add {temp 0} {temp 0} {temp 1}
25: copy {var s} {temp 0}
26: add {var i} {var i} {literal 1}
27: copy {temp 0} {var i}
28: copy {temp 1} {var n}
29: lt {temp 0} {temp 0} {temp 1}
30: jumpTrue {pc 9} {temp 0}
31: copy {temp 0} {var s}
32: return {} {temp 0}

0: copy {var j} {literal 0}
1: copy {var s} {literal 1.0}
2: copy {var t} {literal 1.0}
3: copy {var i} {literal 0}
4: jump {pc 13}
5: uminus {temp 0} {var t}
6: mult {temp 0} {temp 0} {var x}
7: mult {temp 0} {temp 0} {var x}
8: add {var j} {var j} {literal 1}
9: div {temp 0} {temp 0} {var j}
10: add {var j} {var j} {literal 1}
11: div {var t} {temp 0} {var j}
12: add {var s} {var s} {var t}
13: add {var i} {var i} {literal 1}
14: lt {temp 0} {var i} {var n}
15: jumpTrue {pc 5} {temp 0}
16: return {} {var s}

0: copy {var j 0} {literal 0}
1: copy {var s 1} {literal 1.0}
2: copy {var t 2} {literal 1.0}
3: copy {var i 3} {literal 0}
4: jump {pc 13}
5: uminus {temp 0 5} {var t phi 13}
6: mult {temp 0 6} {temp 0 5} {var x input}
7: mult {temp 0 7} {temp 0 6} {var x input}
8: add {var j 8} {var j phi 13} {literal 1}
9: div {temp 0 9} {temp 0 7} {var j 8}
10: add {var j 10} {var j 8} {literal 1}
11: div {var t 11} {temp 0 9} {var j 10}
12: add {var s 12} {var s phi 13} {var t 11}
13: phi {var j phi 13} {var j 0} {var j 10}
14: phi {var s phi 13} {var s 1} {var s 12}
15: phi {var t phi 13} {var t 2} {var t 11}
16: phi {var i phi 13} {var i 3} {var i 13}
17: add {var i 13} {var i phi 13} {literal 1}
18: lt {temp 0 14} {var i 13} {var n input}
19: jumpTrue {pc 5} {temp 0 14}
20: return {} {var s phi 13}

Figure 16: [cos] procedure in SSA form

Figure 17 shows the dependency graph for the values in

the [cos] procedure.

The current procedure for type analysis has not yet been
formulated in Datalog, because initial experiments
regarding type inference were conducted before the
Datalog compiler was available. Instead, it works by
analyzing strongly connected components of the graph of
dependencies among values.

What is implemented so far is a simple type algebra

incorporating the types, int, entier, double,

boolean and string (together with a numeric type

that represents the union of entier and double, and an

int&boolean type that represents the intersection of

int and boolean, the values 0 and 1. Error: Reference

source not found shows the hierarchy.

Working through the variables in dependency order gives
the following set of conclusions:

1. {var t 2} is a double.

2. {var x input} is of unknown type (without

further examination of the calling context).

3. {var j 0} is an integer.

4. {var j 8}, {var j 10} and {var j phi

13} form a dependency loop. Loops are handled

by assuming the most restrictive data type
possible for each value and then relaxing the type
constraints that lead to inconsistencies. This
iteration deduces that all three of these values are
also integers.

5. A similar analysis deduces that {temp 0 5},

{temp 0 6}, {temp 0 7}, {temp 0 8},

{var t 11}, and {var t phi 13} , which

form a dependency loop, are all doubles.

6. {var s 1} is a double.

7. The loop of variables {var s 12} and {var

s phi 13} are also doubles.

8. {var i 3} is both an integer and a boolean.

9. The loop of variables {var i 13} and {var

i phi 13} are integers.

10. {var n input} is of unknown type (without

examination of the calling context).

11. {temp 0 14} is a boolean.

This analysis actually constitutes a fairly complete type
extraction for the given procedure. About the only way to

Figure 17: Variable dependencies abstracted from control flow

improve it would be to add retrograde analysis. We could
detect, for instance, that {var x input} flows only into a
context that will yield an error if it is not a number, and
generate specialized code to convert it only once.
Similarly, we could detect that {var n input} is always,
only, compared with a number, and generate specialized
code assiming that it, too, is numeric.

9) Conclusions
The Datalog compiler, and the underlying inference
engine, presented in this paper are in relatively polished
form. They should be of value to systems that wish to
analyze large data sets over finite domains, and can
support complex recursive queries over those data sets.
Needless to say, no software is ever entirely “complete” in
terms of its feature set, and this library is no exception.
Specific areas that could be improved include optimization

of relational queries (the system as implemented does not
make use, for instance, of combinations of Boolean
formulas with quantifiers), the support of imperative
languages for BDD and FDDD manipulation, and the
extension of Datalog to well-founded semantics and
retractions.

The application of the library to Tcl code analysis, by
comparison, is in its infancy. The example put forth in
Section 8 merely scratches the surface as a “proof of
concept” and indicates what may be possible in terms of
identifying the types of values.

If this type identification can be done competently, there is
reason to hope that a useful subset of Tcl code can be
reduced to machine code by a Just-In-Time compiler. Such
a reduction could yield a tremendous (perhaps as many as
30- or 40-fold) performance gain in numeric- or list-
intensive Tcl code, and would eliminate one major reason
for escape into C.

References
[ANDE97] Andersen, Henrik Reif. ", An Introduction to Binary Decision Diagrams." Lecture notes, IT University of
Copenhagen, 1997, http://aima.eecs.berkeley.edu/~russell/classes/cs289/f04/readings/Andersen:1997.pdf
[BOLL96] Bollig, Beate, and Ingo Wegener. " Improving the Variable Ordering of OBDDs Is NP-Complete." IEEE
Transactions on Computers 45:9 (1996) 993-1002. http://dx.doi.org/10.1109/12.537122
[BRYA86] Bryant, R.E.. " Graph-Based Algorithms for Boolean Function Manipulation." IEEE Transactions on Computers
BC-35:8 (1986) 677-691. http://dx.doi.org/10.1109/TC.1986.1676819
[CERI89] Ceri, S., C. Gottlob, L. Tanca. " What You Always Wanted to Know about Datalog (and Never Dared to Ask)."
IEEE Transactions on Knowledge and Data Engineering 1:1 (1989) 146-166.
[CYTR91] Cytron, Ron; Ferrante, Jeanne; Rosen, Barry K.; Wegman, Mark N.; and Zadeck, F. Kenneth. " Efficiently
computing static single assignment form and the control dependence graph." ACM Trans. on Prog. Lang. and Sys. 13:
(1991) 451-490.
[GELD91] Van Gelder, Allen, Kenneth A. Ross and John S. Schlipf. " The Well-Founded Semantics of General Logic
Programs." Journal of the ACM 38:3 (1991) 620-650. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.121.6788&rep=rep1&type=pdf
[WHAL05] Whaley, John, Dzintars Avots , Michael Carbin , Monica S. Lam . " Using Datalog with binary decision
diagrams for program analysis." Proc. 3rd Asian Symp. on Programming Languages and Systems (ASPLAS '05) : (2005) .
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.8258&rep=rep1&type=pdf
[WHAL06] Whaley, John, bddbddb, 2006, http://bddbddb.sourceforge.net/

