Building a dynamic GUI, configurable at runtime by backend tool.

Manu Goel(manu goel@mentor.com), Mohit Goel(mohit goel@mentor.com)
Mentor Graphics Corporation

Abstract:

Providing a GUI for a tool which has hundreds of possible and completely unrelated
options is a challenging task. The task becomes more complex if more options can be
added in future and the aim is that those should be supported in the GUI seamlessly. A
dynamic GUI, which can be configured at runtime by the backend server, can serve the
purpose nicely. In this paper we talk about such a GUI which can be scaled, tweaked,
modified by the backend tool without any change needed on the GUI side.

Dynamic GUI:

What is a Dynamic GUI (Roy, 2008) and how can it solve certain type of problems in
GUIL.

Dynamic GUIs can handle the cases, where there is a lot of information available to
GUI, but only a very small set of that information is applicable to user at any point of
time. So if GUI stores and manages all the information, then it would become complex
for GUI to manage all the data. GUI also needs to add all the intelligence to cater to
users requirements in a logical manner.

Further, this is not a scalable solution. In order to serve any future development,
changes on the GUI side are must, without that, the new information will not be
available to user. If there is any change in the existing functionality, then this is
dependent on GUI as well to make the corresponding changes before user can actually
use this.

This becomes more and more complex, if such changes are frequent. There is an
additional risk of GUI becoming out of sync with the backend as well. This also needs a
team, which will be constantly maintaining the GUI and will keep on making necessary
changes to keep in sync with backend.

What is the solution? Solution is to build a Dynamic GUI, which can be controlled and
configure by the backend.

To achieve this let’s divide the GUI into two parts. One, the GUI frontend, where all the
information is displayed to user, and the other is backend, where actual changes take
place and new functionality is added. Whenever there is a change in the existing

mailto:manu_goel@mentor.com
mailto:mohit_goel@mentor.com

functionality, or any new functionality is added, it is the backend which is making those
changes. So backend is already aware of the change or what is the new functionality.
We want to keep GUI transparent of such changes. Idea is, to keep the GUI very thin. it
should not store any of the information statically. Whenever GUI needs to display any
information to user, it fetches the information from the backend and whatever user gives
as input, passes that to backend. Backend has all the knowledge to interpret the inputs
given by the user and act accordingly.

Based on user’s input, backend can now control what is the relevant information to user
and show only that. So the tool need to have a very well defined interface between
frontend GUI and the backend tool to pass the information back and forth.

If the information to be passed from backend to frontend and back, is big in nature, then
we need to define a syntax to pass such information, so that both the sides are saved
from parsing the information and can use it easily.

Through this mechanism, backend has all the control of what information and in what
format any of the information is to be displayed to user and it can change it dynamically
based on user’s input.

Since GUI is not storing any information statically and is solely relying on backend for all
the information, if backend makes any changes in the existing functionality, or adds any
new functionality to the existing tool, then that will seamlessly be supported by the GUI.

This also removes the need of a team to manage and maintain GUI because once the
GUI and well defined interfaces are developed; no further changes may be required on
the GUI side, unless there is a change in any of the API.

We will now talk about a case, where we developed such a model to serve a complex
problem we had at Mentor graphics. We will talk in detail about the interface and how
the information will flow from GUI to backend and back to GUI to achieve the
functionality needed,

Case Study:

We will talk about a GUI, which is developed to be used to configure various verification
IPs (Mentor Verification IP, 2014) (Hereon referred as VIPs) developed by DVT division
of Mentor Graphics. The GUI also assist user in connecting the VIP and the DUT to
enable user to use it directly with their next level tool.

These VIPs (Shah, 2011) are standard protocols, which user can plug in their design to
verify certain aspects of their design, for functional verification as well as to find out the
coverage. There are a large number of such VIPs and new VIPs keep on getting added
to the existing pool.

In order to use these VIPs in the design, user first need to configure the VIP of interest
and then connect it to the Design Under Test(DUT).

Configuring the VIP : These VIPs are generic in nature, i.e. they can be used with
any DUT which needs to test the functionality supported by these VIPs. So, to
use these VIPs based on the user design, user need to configure the VIP
according to their design’s need. The configuration process expects user to set a
large number of options (in some cases it may run in to hundreds). Without a
GUI, user needs to know all the options which are required to be set, their
possible values and the functionality as well. User needs to write all of these
options and their values in a file, which will be supplied to the tool while compiling
the design with these VIPs.

Connecting the VIP : These VIPs have a fixed interface, through which the DUT
will interact with the VIP. The interface is a set of pins, through which user need
to connect his design. The number of such pins is typically very large, in most of
the cases there would be more than 50 pins. Again, without a GUI, user needs to
know the name of these pins and then create the top level design unit connecting
the VIP and DUT manually. GUI automatically connects the VIP with the DUT as
expected by the VIP, which user can modify based on the design.

Configuring and connecting these VIPs is a tedious and complex job, and there is a
high risk that user may miss out setting some of the options, or may pass incorrect
values to these options. Further, user may not be aware of the functionality of each
of these options and their possible values, so user needs to go through the user
manual of these VIPs in detail and may have to do a lot of back and forth to find out
the details of each of these options.

Same complexity is applicable for connecting the VIP and DUT as well. For this as

well, user needs to know all the pins and their details, and connect those with the

correct pin of his design.
Both of these tasks are error prone, and in case of any mistake, it is very difficult to
find out about what went wrong.

So the need was a GUI, which can cater following requirements —

e Show the list of all supported VIPs

Assist in configuring the VIP

Show all configuration options in a user understandable format

Provide the functionality of each such option

Provide the possible values any option can take

Show the available pins in the VIP

Assist in connecting the VIP with the DUT

Generate the configuration and connection file, which can be directly used.
Most importantly, GUI should be scalable, i.e. it should support the newly
developed VIPs without much or any effort at all on GUI side.

e Support multiple VIPs to be usable in a single DUT

Complexity:

Providing a GUI for such a requirement was a complex task, because all these different
VIPs have different set of options. Developing a static GUI for each of these VIPs was
not a good idea, both from development as well as maintenance prospect. Further, this
solution was not scalable as well to support newer VIPs in future. A static GUI, showing
all the options for all the VIPs was also not a possible solution because in that case it
would be showing too many options which are not related to the VIP, the user is
interested in. So the need was to build a single GUI which can accommodate all type of
VIPs, while showing only the relevant information for any user at all the times and can
be scaled to support the newer VIPs with a very minimal effort.

Solution:

We came up with an idea of building a dynamic GUI, which starts with no information
and is configured by the backend process at run time based on user inputs. It kind of,
starts with an empty canvas and then builds upon the GUI, based on user input. The
backend tool (VIP container) has all the knowledge and information about all the
supported VIPs, their configuration options, their available pin connections etc.. So
when the GUI comes up, it starts fetching the information from backend as and when
required. The advantage of this approach is, GUI does not need to store any information
statically. It completely relies on the information supplied by the backend. Backend can
configure the GUI at runtime based on users input.

This also makes the GUI scalable to support any VIP which is supported in future. The
backend is also free to modify any of the options without any need for any change on
the GUI side. At the same time, backend also does not need to worry how GUI is going
to show the information it is providing to GUI. Only thing it needs to worry is, provide
right set of information for any option, and rest would be taken care of by GUI.

In order to fetch the information from backend, we wanted to have well defined
interface, so that the information can be fetched efficiently with all the required details
and ensures that both backend and GUI can work seamlessly without bothering about
the functionality of the other side.

We defined a syntax in which the information will be exchanged between GUI and
backend.

First set of information needed is the list of VIPs which are supported by the tool. This is
the list of VIPs like Ethernet, PCls, USB etc., and then they can have sub-category like
USB2, USB3 etc., they again can have sub-sub categories. So the list of VIPs is like a
hierarchy tree, where, it has parent VIP, then children VIPs and so on. Some of these
VIPs may just be symbolic to contain their children and may not be selectable. So the
information returned to GUI will be a recursive list of list of the supported VIPs. GUI will

parse this information and populate the initial view showing the list of available VIPs to
user. The interaction between GUI and backend will look like —

Get the list of VIPs

Backend
Tool

Set the selected VIP
Figure 1: Fetch the list of VIPs

The initial view before user makes any selection will look as shown in the next figure.

QVIP Wizard

E-QVIP
Ethernet

100m
10g
1g

125
PCle
SPI
USB

tusnz
USB3

Figure 2: Initial View of GUI

Now, once GUI is up and user can see the complete set of supported VIPs, user can
select the VIP user is interested in. For using the VIP, top level details are categorized
in three different categories, viz, configuration options, timer options and connectivity.
The backend tool can decide to further sub categorize these configuration and timer
options. Typically the number of these options is large and can run into hundreds, so
these are logically divided in sub categories to be shown in different tabs to make it
easier for user to manage these options.

Once user confirms the VIP user is interested in, GUI needs to know what all different
categories of configuration and timer options are there for that particular VIP. This
ensures that backend can have different set of tabs for different VIPs.

Get the list of Options Tabs

Backend

Tool

Figure 3: Fetch the list of options tabs

The list of tabs is actually a recursive list, so these configuration and timer options can
be sub-divided in different categories, which can further be sub-divided.

Now, GUI has all the categories of these options, GUI need to find out the details of
options in each of these categories.

Get the Options for a Tab

List of Options

Figure 4 : Fetch the options details for each tab

This operation fetches a lot of information required to populate these options tabs. It has
a list of all the options to be shown in each of these tabs along with all other related
information for each option. The details associated for each option are —

- Name of the option

- Type of the option, like Entry Box, Combo box etc

- Possible values or type of values the option can take

- Default Value(If any)

- Tooltip

- Suffix

- If value change impacts next option’s possible value set.

The above two steps are the core of this GUI. Here, backend is controlling and
configuring the GUI. Based on users input, it can change the options dynamically. It
can control how an option should be presented to user, what all possible values the
option can take.

L4 USBUSES

G- Quie
= Ethemet

45000000

37500000
500000 K

Figure 5 : Options Tab

The details of these options are stored in an associative array by the backend in the
format as expected by the GUI and is passed to the GUI in the form of a recursive list.
Upon receiving the information, GUI also stores it in an associative array with option
name as the key. Backend also stores the information with the same key making it
easier to store and parse the information supplied back by GUI.

Based on these details, GUI constructs all the required panes with all the options and
their other detalils.

Now user has all the information of interest available to him. User knows what all
options are required to be set to use the VIP of interest, can see possible set of values,
their types, default value, functionality(through tool tip) of each option etc. This saves
user from making a lot of mistakes, like missing out certain options, setting wrong
values to any option etc. It also saves user a lot of look ups to user manual to
understand the functionality of various options.

If any option has set the flag indicating GUI that its value change will impact the next
options possible value set, then as soon as user makes any changes in that option, the
possible value set for the next option is fetched from the backend.

After filling up the details of various options, user can run a check to validate the options
for correctness. This helps in ensuring that at every stage user has provided right set of
information and makes it easier to fix the errors. Without the GUI, user had no way to
validate the data user has supplied in, and was very difficult to identify the incorrect
entries.

GUI will highlight all user errors whenever user runs the validation step.

L4 USBUSES

=) QVIP
é— Ethernet
125
PCle
SP1
2-UsH

=

Initial inactivity timeout wvalue. VYalue Range 0-128

—

Figure 6 : Highlight an invalid entry

Now with all the options are set and validated, user is ready to connect the DUT with the
VIP. For this GUI needs to know all information needed to create these connections.

Get The Connection details

Pin Details

Figure 7 : Fetch connection details

The connection details are a set of pints, through which the VIP will interact with the
DUT. The information supplied for each of the pin includes —

Pin Name

Width

Direction

Can the pin be left unconnected

Default expected name on the DUT side

Now GUI creates the connections pane, where user is shown all the connections
between VIP and DUT. The connections are done based on the default expected
names as provided by the VIP. However, user can edit the connections for changing the
pin name, keeping any pin unconnected, changing the DUT name etc.

'iE} Quip

mac_host_dut

0|
el

4 4 4 A & A

(,,) w
o=
A A (=38

L/

1.0

it
NE
»
pit
p
™
>
8
>
P
>

-
T

—
=

N
o

| I

Figure 8 : Connections pane

To edit the pin name or leaving it unconnected, user simply needs to double click on the
pin, and then make the necessary changes to that pin. Once user is done with editing
the connections pane, now user is set to generate the Verilog files with setting for all the
required configuration options as well as to connect the DUT and the VIP of interest.

Verilog
Backend Generated

Tool

Figure 9 : Generate Verilog

Before generating the Verilog, all the options will be validated for the correctness again
by the GUI and if there is any error, then that would be highlighted so that user can fix
the error. This ensures that user always have good set of options saved and does not
waste any time in debugging any issue because of incorrect setting of any option. This
operation will generate the Verilog files. These files can directly be plugged in to the tool
which will be compiling the VIP and DUT, which user can further use to run the
simulation.

If user wants to add another VIP to the same DUT, then user can add another VIP
before creating the connections. All options for the additional VIP will be shown to user
and user needs to set them accordingly. When user moves to connection pane, it will
show the DUT and all the VIPs which user has added in to use. The default connections
will be done accordingly. Once user generates the Verilog files, one file for each VIP will
be generated, which will contain all the options and a single file will have the details of
DUT connecting to all the VIPs.

Conclusion:

With such a GUI, which is mostly controlled by backend and changes dynamically
based on users input, the task which would have taken a few days can be done in less
than an hour. Furthermore, user is saved from all the pain of going back and forth to
user manual to understand the functionality and other details of all the options. It also
saves him from making mistakes saving his precious time in debugging the issues due
to incorrect option settings.

Further, on the development side, this GUI is completely scalable. It will automatically
support any VIP which is added in future. Whenever the tool supports a new VIP, all the
backend team needs, add the details of this VIP to the backend database, and GUI will
seamlessly support it. This solution ensures that at all times, user is only seeing the
information which is of use to him.

Backend is also free to make any change in any of the option in future, without any
need of any change on the GUI side.

In the current implementation, the backend stores the database in associative array,
and the interface is also Tcl based, however, the backend is free to choose the
language in such a implementation and they can have their own data structure, as long
as they supply the data in the required format to GUI.

Bibliography

(Shah, 2011) Shah M (2011, 01 11)
http://www.semiwiki.com/forum/showwiki.php?title=PerfectVIPs:Verification+IP+
Wiki Retrieved 10 21, 2014

http://www.semiwiki.com/forum/showwiki.php?title=PerfectVIPs:Verification+IP+
Wiki

(Mentor Verification IP, 2014)

http://www.mentor.com/products/fv/verification-ip Retrieved 10 21, 2014
http://www.mentor.com/products/fv/verification-ip

(Roy, 2008)

Roy Van P (2008, 17 07)
http://www.uclouvain.be/en-43648.htm| Retrieved 10 21, 2014
http://www.uclouvain.be/en-43648.html

http://www.semiwiki.com/forum/showwiki.php?title=PerfectVIPs:Verification+IP+Wiki
http://www.semiwiki.com/forum/showwiki.php?title=PerfectVIPs:Verification+IP+Wiki
http://www.semiwiki.com/forum/showwiki.php?title=PerfectVIPs:Verification+IP+Wiki
http://www.semiwiki.com/forum/showwiki.php?title=PerfectVIPs:Verification+IP+Wiki
http://www.mentor.com/products/fv/verification-ip
http://www.mentor.com/products/fv/verification-ip
http://www.uclouvain.be/en-43648.html
http://www.uclouvain.be/en-43648.html

