
An Implementation of Comprehensive Static Analysis of
Tcl Syntax and Scoping

Justin Egli
Mentor Graphics Corporation

8005 SW Boeckman Rd.
Wilsonville, OR, 97070

justin_egli@mentor.com

Sridhar Srinivasan
Mentor Graphics Corporation

8005 SW Boeckman Rd.
Wilsonville, OR, 97070

sridhar_srinivasan@mentor.
com

Robin Albrecht
Mentor Graphics Corporation

8005 SW Boeckman Rd.
Wilsonville, OR, 97070

robin_albrecht@mentor.
com

ABSTRACT
In our tool framework, Calibre PERC [1], we use Tcl as the
command language. Users write rule decks in Tcl to perform
complex electrical and design rule checks. Large rule decks
can take several hours to days to run; due to the interpreted
nature of Tcl, it is difficult for the deck writer to debug
simple but fatal errors in the Tcl rule deck, such as invalid
variable usage, invalid global variable usage across different
interpreter scopes, illegal use of commands and other scoping
errors. To mitigate these mistakes we wanted to extend a
Tcl static analyzer to identify these errors before they are
encountered in the field. In our paper we will describe how
we identify these problems by static analysis.

1. INTRODUCTION
Modern silicon manufacturing and design technology in-

volves multiple teams from different companies coming to-
gether. The EDA companies develop tools that design houses
use to create the design and use foundry process and design
development kits to verify their designs. Our tool framework
is used in physical and circuit verification flows by design
companies with process rule decks created by manufacturing
foundries like TSMC, IBM, Global Foundries, etc., In Fig-
ure: 1, Calibre is the physical verification tool provided by
EDA company Mentor Graphics, Design Database is owned
by design house that is building the design, Foundry PDK,
runsets or rules are provided by the foundry where the de-
sign is going to be manufactured. The rule decks that work
with our physical verification tools are put together using
our proprietary control language which includes Tcl (Fig-
ure: 2). Usually these rule decks are encrypted to protect
foundry IPs. Since Tcl is an interpretive language [2] [3]
rule deck errors can occur in the field, where it is cumber-
some and expensive in terms of both man power and time
to fix these design kits. Typical errors that are encountered
in the field:

• Syntax errors like uninitialized variables and use of
variables without declaring: Since Tcl is an interpre-
tive language, it is possible that certain variables get
initialized in loop or branching code that may not be
executed in the field.

• Invalid global variable use across interpreters: To en-
able encryption and multi-threading, our tool frame

Figure 1: Typical Tool Flow Setup.

work will instantiate new Tcl interpreters, global vari-
able use across these interpreters are invalid.

• Syntax errors in custom Tcl commands: These are caused
by invalid command options or invalid use of Tcl com-
mands that are part of our APIs.

2. EXISTING METHODOLOGIES
In the tool flow explained in section 1, during the design

stage the design database is verified using the verification
tool and the runset provided by the foundry at the design
house. In cutting edge designs, the runset, verification tool
features and the design are all in development concurrently.
The foundry that provides the runset usually encrypts the
content to protect their process IP. If there is an error in the
runset, then currently they have to debug that in the field
by providing multiple versions of the runset with some print
statements. This can be very tedious and time consuming.
To prevent potential field issues, the runset developer usu-
ally creates a lot of testcases to ensure that his rule deck is
performing the checks appropriately. If the testcase does not
cover all possible scenarios then there can be syntax error
hiding in the runset, ready to explode at the design house.

2.1 A Typical Rule Deck Error Scenario
Refer to Figure: 3, it shows an command syntax error hid-

ing in the section analyzing the capacitances. If the runset
quality assurance test suite did not exercise the runset with
a testcase containing a capacitor, then this will never be
caught during regression testing. When an error like this
shows up at the design house, since the runset is encrypted

Figure 2: Runset/Rules.

it needs an expert from the foundry team to debug it. To
make this worse the design house and foundry are from dif-
ferent continents.

In this paper we present a Tcl static analyzer that can
check errors early on, where the runset developer could use
it as a linter to catch these bugs before the runset get shipped
to their customer, avoiding expensive debugging time.

3. OUR IMPLEMENTATION
We first began with the hopes of finding a static analy-

sis tool that would already check for some of error cases we
were most worried about. The first case we were worried
about was the use of uninitialized variables due to poten-
tially changed execution paths. Unfortunately, none of the
tools we evaluated successfully checked this simple case. It
soon became apparent that we would have to add most of
the functionality we wanted ourselves. With this informa-
tion in mind, we chose an open source Tcl static analyzer
called Nagelfar as our starting point. Nagelfar offered the
most complete error checking and was a good initial frame-
work for our use [4]. The following is a list of functionality
that we wanted in our analyzer.

1. Support for the Tcl ”source” command.

2. Tracking use of global variables and identified potential
use of un-initialized variables involving control struc-
tures such as if-then-else constructs.

3. Command and function dependency graph and check-
ing call groups.

To detect these error messages we first needed to make
more detailed information available on the scope of vari-
ables and add support for evaluating code beyond a sin-
gle file. Most of our customers opted to organize their rule

Figure 3: Command Syntax Error Hiding.

decks in different files and include them with the source com-
mand. Further analysis targeting variable usage in control
constructs was developed to track the instantiation and us-
age of variables in conditional constructs like if statements.
Variable references needed to detect the proper namespace
that was being accessed for later evaluation against illegal
shared access.

3.1 Tracing Through Included Files (Tcl Source
Command)

The first feature that we added was the ability to follow
the Tcl ”source” command and analyze the specified file.
This is a fairly simple step in the analysis process; upon
encountering the command in a file, the analyzer only needs
to open the file and evaluate it in place. The behavior of
the source command is fairly easy to replicate. It searches
for the file in the context of the position of where the script
began. An example is provided below:

set filePath [lindex $args 0]

set firstDir [lindex [file split $fileName] 0]

if {$firstDir != "/" && $firstDir != "~"} {

Join source path with path of the current

#file, parseFile returns the initial file

#specified for parsing

set filePath [file join \

[file dirname [parseFile]] \

$filePath]

}

if {[file exists $filePath] && \

[file readable $filePath]} {

Begin in place parsing of this file

parseSubFile $filePath $currentState

} else {

analysisMsg error "Couldn’t parse file $filePath"

}

The important part of handling most source commands is
correctly recognizing the path that should be used to find
the file. While the above code will handle most cases, there
are ways of changing the current directories in Tcl, where
this approach would not work. One way to cover these cases
is to add an argument the parser recognizes that allows one
to specify paths. Then expand this code so it searches from
the path folders to find the specified file. This simple and
robust way of evaluating the effects of source commands
provides us with the ability to handle projects that organize
their code over multiple files.

3.2 Global and Namespace Variable Scoping
To implement some of the checks regarding variable usage

we needed to expand the amount of information the ana-
lyzer was tracking. In particular it needed information on
the scope in which these variables were used. It was not
enough to split up variables by their function scoping as
was being done previously. We extended variable handling
to fully resolve the namespace and include namespace in-
formation. We also expanded the function parsing to keep
track of when arguments were used to create variables in
a namespace. This way, variables defined dynamically by
namespace functions would be tracked.

To resolve the variable name, we needed to be aware of the
local scope it was in. If it was in a function, then the vari-
able does not reference any scopes outside of the local scope
unless it specifically has a namespace specifier in it, or if it
is created via the use of the namespace command. Outside
of functions, any variable reference is in the context of some
namespace. We can resolve these by keeping track of the
current namespace we are executing in. Any variables with-
out a namespace specifier in it will be “set” in the current
namespace, but if they are used, we first search the current
namespace if they are defined, then look at the global names-
pace. This is because Tcl will fall back to referencing the
variable in the global namespace if it isn’t defined in the cur-
rent one. Furthermore, we need to fall back to this behavior
when dealing with relative namespace references. A relative
namespace reference is when there is no namespace speci-
fier “::” at the front of the reference, these references will
treated just as the regular references are. Sets will always
set in reference to the current namespace, reads will check
the current namespace, then check the global namespace if
nothing exists in reference to the current one.

Returns a list of one or two entries.

If there is only one entry, that is the

#only possible reference. If there is two,

#then there is two possible paths with the

#first getting the highest priority.

proc getFullVariable {var {isSet 0}} {

if {[currentProc] != "" && \

![isNamespacePath $var]} {

Variable local to a function

return [list $var]

} else {

Not in function or has a namespace

#specifier

if {[string first "::" $var] == 0} {

Global specifier, only one

#possible reference

return [list $var]

}

Some kind of relative path; Get

#current namespace

set ns [currentNamespace]

if {$ns == "" || $isSet} {

In global Namespace, only

#return path relative to global

OR Set operation, always refer

#to path relative to current ns

return [list "${ns}::$var"]

}

A read operation return two possible

#paths, relative to local then global

return [list "${ns}::$var" "::$var"]

}

}

The analyzer still needed more information to completely
understand when uninitialized variables were potentially be-
ing used; in particular, it needed to know when these vari-
ables were being used in control structures. A stack was
added that keeps track of entered control structures; when a
control branch is entered, such as an if, elseif, or else state-
ment, the branch is assigned a unique id and a combined
group id that describes the entire structure. When variables
are set we can look at the current control we are in and add
that information to the variable. When a variable is used,
we can check to see if the control information of the variable
being accessed is still in the control stack. If the unique id
is in the stack, the variable is being accessed in the same
control, or one of the controls that is a child of it, and we
know it has been set. If the id isn’t in the stack, we know
that it has been used in a situation where it might not have
been set and we can generate a warning or error.

If the variable is set in all possible branches, such as when
an ’if’ construct ends in a ’else’ statement and each branch
has a set for the variable, then we know that we should treat
the variable as if it is always set. Some extra information
needs to be tracked in the controls to accomplish this, there
needs to be an index that increments for each control in the
same control group and a flag indicating if the control is an
else statement. Each parsed set operation can add to a list of
branches associated with the control group for the variable
being set. When the final else statement is encountered, the
index can be checked against the branch list to see if it is set
in each branch. If it’s set in all the branches, the variable
will then be set in the parent structure. Unless there are
no more parent control structure, in which case it will be
considered set for the rest of the global or function scope it
is in.

setVariableInControl is only run when

#the variable to be set is not set and

#the parser is in a control.

proc setVariableInControl {var} {

set control [currentControl]

set i 0

while {1} {

set cntrlId [lindex $cntrl 0]

set cntrlGrpId [lindex $cntrl 1]

set index [lindex $cntrl 2]

set isElse [lindex $cntrl 3]

lappend parsedVars(cntrl,$var) $cntrlId

lappend parsedVars(cntrl,$cntrlGrpId,$var)\

$cntrlId

If we are an else statement, we are

#at the end of the structure

set branchCount \

[llength $parsedVars(cntrl,$cntrlGrpId,$var)]

if {$isElse && branchCount == $index)} {

Check if we have set the variable

#as many times as there are branches

#in this controlGroup. If we have it

#has been set in each branch.

array unset parsedVars \

"cntrl,$cntrlGrpId,$var"

if {([llength $::cntrlStack] - $i) == 1 } {

Top entry in control stack;

#setting in parent means we are

#set in the global/local scope.

Stop tracking as a control variable

array unset parsedVars "cntrl,$var"

return

} else {

Set in parent control structure

#and loop around

incr i

set cntrl \

[lindex $::cntrlStack end-$i]

continue

}

}

Finished setting control info.

return

}

}

Checking usage of variables against this control info can
be accomplished by the following:

if {[info exists parsedVars(cntrl,$var)]} {

foreach setCntrlId $parsedVars(cntrl,$var) {

foreach cntrl $::cntrlStack {

if {$setCntrlId == [lindex $cntrl 0]} {

return exists

}

}

}

return maybe

}

If the variable has control information attached to it, check
if we are in one of the controls that set it. If we are, it is

accessible. If it isn’t, it may or may not be accessible de-
pending on which branches may have been taken.

3.3 Call Graphs and Threading
To identify and prevent shared global usage across inter-

preters, the analyzer needed to know which function calls re-
fer to global variables and how these variables are accessed.
We began with a simple call graph. As each function is
parsed, an array entry is created for the function with a list
of each function it calls. This creates a graph where the
’top’ node is the global context. We can now use this graph
to organize functions into call groups, which is a grouping
of functions by threads. Given a list of functions that act as
entry points for separate threads, we can build this graph.
Any nodes that follow these entry points and have no parents
that are from a different group can be assigned to a specific
call group. By making use of the improved namespace han-
dling we can create an array that maps each function to all
the global variables they use. Any global variable accesses
by the call group functions are specific to that thread and
these variables can be marked as belonging to that thread.
When we come across a variable that has already been used
by a different thread, we can issue a warning against shared
usage across threads. Also, any functions which are shared
between multiple call groups will generate warnings for any
global variable usage within.

Adds a call to the callgraph, called everytime

#a command is parsed.

proc addCall {cmd} {

Get the calling function

set caller [currentProc]

if {$caller == ""} {

Instead set parent as calling namespace

set caller [currentNamespace]

}

if {![info exists $::CallGraph($caller) ||

[lsearch -exact $::CallGraph($caller)\

$cmd == -1]} {

lappend ::CallGraph($caller) $cmd

lappend ::CallGraph($cmd,parents) $caller

}

}

proc parseGraph {groupProcs} {

CallInfo contains information on which

#group(s) a function belongs to

CallInfo($group) List of all functions

#belonging to $group

CallInfo(shared) List of functions shared

#between groups

CallInfo(known,$proc) Group $proc belongs

#to (if not shared)

array set ::CallInfo [list shared {}]

foreach group $groupProcs {

lappend ::CallInfo($group) $group

set ::CallInfo(known,$group) $group

foreach proc $::CallGraph($group) {

parseGroup $group $proc

}

}

checkGlobals

}

Parse callgraph and organize functions by group

proc parseGroup {group proc {sharedParent 0}} {

If we encounter a shared function we can

#stop traversing this node, it has already

#had all it’s children marked.

if {[lsearch -exact $::CallInfo(shared) $proc]\

!= -1} {

return

}

Anything with a shared parent is also a

#shared function

if {$sharedParent} {

unset -nocomplain ::CallInfo(unknown,$proc)

lappend $::CallInfo(shared) $proc

Mark all child functions as shared too

foreach leaf $::CallGraph($proc) {

parseGroup $group $leaf $sharedParent

}

}

Check to see if parents belong to same group

foreach parent $::CallGraph($proc,parents) {

If Parent matches group, continue

#checking parents

if {[info exists \

::CallInfo(known,$parent)]} {

if {$::Callinfo(known,$parent) \

== $group} {

continue

}

Shared;mark all descendants shared

parseGroup $group $proc 1

return

}

Parent is unknown, stop checking and

#try again when parent is parsed

return

}

Known and in group

lappend ::CallInfo($group) $proc

set ::CallInfo(known,$proc) $group

Parse child functions

foreach leaf $::CallGraph($proc) {

parseGroup $group $proc

}

}

Check global usage against graph info and see

#if any are shared

proc checkGlobals {} {

Start by looping through each global variable

foreach var [arrayName ::GlobalsUse] {

set usedIn ""

Check each function that uses it

foreach proc $::GlobalsUse($var) {

Usage in shared functions is

#automatically marked as an error

if {[lsearch -exact $::CallInfo(shared)\

$proc] != -1} {

analysisMsg "Global $var used in\

shared function $proc"

continue

}

If used in a group, check group

#versus previous usage group

if {[info exists \

::CallInfo(known,$proc)]} {

set group $::CallInfo(known,$proc)

if {$usedIn == ""} {

set usedIn $group

} elseif {$usedIn != $group} {

analysisMsg "Global $var used in $group\

($proc) after use in $usedIn"

}

}

}

}

}

4. ISSUES
These examples shown above were done as a proof of con-

cept and as a learning tool. There are some cases where
they may not work properly or cause errors. Some of the
array keys could be corrupted depending on the naming
of variable or functions in the user’s scripts. The array
parsedVars(cntrl,$var,$id) could have values overwrit-
ten if the script contains variables named “a” and “a,1”. We
make the assumption that reasonable variable naming con-
ventions are followed by the script writers.

Other issues include dealing with possible obfuscation or
other redirections in Tcl. Our callgraph and function group
handling code does not handle renamed functions for exam-
ple.

5. CONCLUSION
We have presented an implementation of several static

analysis algorithms for use with Tcl. We covered the current
state of static analysis in the Tcl community and detailed
ways in which to expand it. We tried to highlight the bene-
fits of using static analysis in scenarios where testing with an
interpreted language can miss simple mistakes. Currently,
most testing and debugging approaches in the Tcl commu-
nity are manual, adding ’puts’ statements to see information;
we believe good static analysis tools can make this process
quicker, more thorough, and will improve productivity.

References
[1] Mentor Graphics Corp. Calibre PERC User’s Manual.

Mentor Graphics Corp, Wilsonville, OR, 97070, 2014.

[2] Brent B. Welch; Ken Jones. Practical Programing in Tcl
and Tk. Prentice Hall, Upper Saddle River, NJ, 07458,
2003.

[3] Volunteers. Tcl developer xchange,
http://www.tcl.tk/man/tcl8.4/, 2005.

[4] Peter Spjuth. Nagelfar,
http://sourceforge.net/projects/nagelfar/, 2014.

