Authors: Tarun Goyal, Roshni Lalwani
tarun_goyal@mentor.com
roshni_lalwani@mentor.com

Title: Co-existence of a GUI and the main terminal: How was it achieved with the
DFTVisualizer GUI with TCL/TK as the implementation language and the related changes?

Abstract: Most of the tools can either be invoked in GUI or non-GUI mode but not both at the same
time. However, with DFTVisualizer we have been able to make the non-GUI shell and DFTVisualizer co-
exit bringing about significant advantages to a customer, especially when the GUI is used for debugging
purposes. However, such a change in user interaction methodology brings with it a set of challenges of
interaction with the console and managing data through TCL interpreters. This paper will analyze such
issues and present an approach to accomplish the co-existence well.

[1 - tgoyal @inndftvis2.inn.mentorg.com:1019 - remote desktop o= =]
-
Session Edit View Bookmarks Settings Help
/bsr_i1/vin 66 x CSE
% /bsr_il/vin 67 File Edit Tools Mindows Help
/bsr_il/bsc_dosync -
e, [[/bsr17bsc dosynerixss B W B o | 2 @) || | 5] 58] 501) v || 01 i s]] i v]]] 5 SMener
/bsr_il/bsc_dosync/reg latch out —
— - - Find i 4 (| =
CS /bsr_il/bsc_dosync/reg_serial_output i - ﬁEl“ ﬂJjﬁlﬁﬂj
/bsr_il/bsc_dosync/ix31 [———————————————— =
J—ai 42 /bsr_il/bsc v dout 7 Hierarchy | Library | Clacks | DRC Violations | 3] | [/bsr_il/bsc_clka | search | Opbions << | [Exact Search
/:5 C%i/:“f"f:““:f?“ji ‘ch out Instance Hame | =€ | searcn results:
/bsr_il/bsc_v_dout_7/reg_latch_ou 4l test_design_eck_tep_bscan oot Tka/res_serial_outputwn/bsr_il/bsc_clkal
ﬂﬁ /bs r_{l/bsc_v_daut_?/reg_serlal_nutput 5 bsr_it bsr_
. |/bsr_il/bsc_v_dout 7/ix31 4.4 bsc_clka bo_d
., |/bsr_il/bsc_v_dout 6 *" bee_clkh be 4
/bsr_il/bsc_v_dout_6/ix33 o [bed Opti.
/bsr_il/bsc v deut 6/reg latch out o beo_clock bod |- Sesrch Depth———————————————————
/bsr_il/bsc_v_dout 6/reg serial output gl bsc_dosync be_1 (v Entire Hierarchy [Speoified Hierarchy
/bsr_i1/bsc v dout 6/ix31 ¢
bsr_il/bsc_v_dout 5 M bso cd ket - Search f
/bsr_il/bsc_v_dout 5 i bsc_sdt_chanrels_inl b1 earch frea
ber 1/ v-dout o/ reg, Latch_aut A et charmelo. e A e
/bs riil./bscividnut75/regiseria{ output A bsc_edtupdate ket Z (" AIL Levels Of Likrary Cells
— v - — - M bzc_pllsync bo_1 Lg " Any Level OF Design or Likrary Cells
N - - bsc_re bc_1
SETUP> // command: find design_names , il bec_scan_en ho_1 :_’ —Search For
bsc_scan_en_int bc_1 ¥ Instances
=== No matching netlist instance found yj JA— b1 {r::::s And Hets
4l bsc_tclk bo_d
SETUP> // command: find design names ° f’ﬁ bec_v_addr_0 bo_1
+ - V-artr - Limit Dizplaysd Matches To: [25
o o bsc_v_addr_1 bo 1
7;: Fu:;g 4 ni't(hst instances === 8 bsc_v_sddr_2 be_1
sr_il/bsc_clka
- - bsc_v_addr_3 bo_1
/bsr_il/bsc clka/vin 68 : bsc_v_addr_d bo_ 1
RUM l/bsr i1/bsc_clkafreg serial output I beev_addr 8 e 1
X DF /bsr_il/bsc_clka/ix21 kil i—— - —
JEcur I=RIN= |2] i
168 |[SETUP= [Cansale al
Monday [Sukmod? /rbsr_id bsc_edt_channels_ini
Zora10 ["]| @BUILD NEW GUI | [RUN NEW GUI - TARUN Shell ‘

Summary: It has been observed that a fabless designer would like to switch between the main shell
and the GUI depending on the comfort level of the underlying process he is working on. GUI becomes
really handy when a user has limited exposure to a particular design methodology; however the design
process becomes faster when in non-GUI mode given that he understands the subject really well. Under
such situations, it is important to give the flexibility to a user to move the between the 2 modes without
actually exiting the tool. Further, the GUI should also be given a console in GUI so that he can execute
scripts/commands from within the GUI itself along with several other advantages such as hyperlinking
etc. that a console can offer to add value to the design process of a fabless design engineer.

We present the pseudo code as under for starting the main console on a main interpreter while
registering the DFTVisualizer GUI on a slave one. The approach is extensible and can be adopted easily

mailto:tarun_goyal@mentor.com
mailto:roshni_lalwani@mentor.com

by anyone who wishes to make such a transition. The following explains the algorithm and other
necessary details that are required to accomplish the task of having a TCL based GUI and a TCL based

main shell in parallel.

Setting up things for main-shell and DFTVisualizer GUI co-existence

TCL Initialization function doing the requisite setting

Tclappinit()
{

// Calculate platform specific info and set it properly to invoke the GUI

tcl_lib_relative =gen_lib_relative + "/tcl" + TCL_VERSION;

tck_lib_relative = gen_lib_relative + "/tk" + TK_VERSION;

// eltclsh make the main console tclish in nature and can accept all tcl tk commands
eltclsh_lib_relative = gen_lib_relative + "/eltclsh-1.11.1

// initialise the master interpreter on which the main shell/console shall be registered
tclinterpreters_[Masterinterpreter] = Tcl_Createlnterp();

// Override default Tcl pre init script because of the bug during creation of slave interp
// 1t will also set tcl_library and tk_library appropriately
setTclPrelnitScript(tclpath, tkpath);

// initialise the master interpreter
Tcl_Init(masterinterp())

// initialise the slave interpreters one of which will have the DFTVisualizer GUI
// Very important to note here that GUI gets to the slave interp
for (unsigned i(0); i < TclinterpreterTag_END; ++i) {
TclinterpreterTag tag(static_cast<TclinterpreterTag>(i));
if (MasterlInterpreter == tag) { continue; }
if ((Dftvinterpreter == tag) && !createDftvinterp()) { continue; }
tclinterpreters_[tag] = Tcl_CreateSlave(masterinterp(), nameOf(tag).c_str(), 0);

}

// initialise eltclsh which forms the backbone for TCLishing of the main console and set it up properly
for (unsigned i(0); i < TclinterpreterTag_END; ++i) {

TclinterpreterTag tag(static_cast<TclinterpreterTag>(i));

Tcl_Interp* interp(getTclinterp(tag));

if (linterp) { continue; }

Tcl_SetVar(interp, "eltclsh_library", eltclshpath.c_str(), TCL_GLOBAL_ONLY);

}

// Setup all the interpreters with proper TCL variable values

for (unsigned i(0); i < TclinterpreterTag_END; ++i) {
Tcl_ListObjAppendElement(interp, auto_path, Tcl_NewStringObj(genlibpath.c_str(), -1));
Tcl_ListObjAppendElement(interp, auto_path, Tcl_NewsStringObij(tclpath.c_str(), -1));

Tcl_ListObjAppendElement(interp, auto_path, Tcl_NewsStringObj(tkpath.c_str(), -1));
Tcl_CreateCommand(interp, "TclAppPrompt", TclAppPrompt,

(ClientData)NULL, (Tcl_CmdDeleteProc *)NULL);
Tcl_Eval (interp, "set tcl_promptl TclAppPrompt");

/* Create a body for unknown and Call Tessent_Unknown from unknown.

* The reason for this indirection is because some packages (e.g. itcl) use [info body unknown] during runtime.

*Using UPLEVEL to 1: Make the additional indirection transparent to our unknown handler.

* 2: Explode the var arg list (args) back to individual arguments before calling our unknown handler.

*/

// string TessentUnknownBody = "if {[info command ::Tessent_Unknown] !=\"\"}{return [uplevel
Tessent_Unknown Sargs]}";

string TessentUnknownBody = "if {[info command ::Tessent_Unknown] !=\"\"} {\n";

TessentUnknownBody +=" set newcmd [linsert Sargs 0 ::Tessent_Unknown]\n";

TessentUnknownBody +=" uplevel 1 [list ::catch Snewcmd ::tcl::UnknownResult
:tcl::UnknownOptions]\n";

// Create a new Tcl command called Tessent_Unknown and bind it to our unknown handler
Tcl_CreateObjCommand(interp, "Tessent_Unknown", UnknownCmd, (ClientData)NULL, NULL);
Tcl_Eval(interp, unknownDef.c_str());

}
}

DFTVisualizer GUI interaction with “main shell”/”kernel” for GUI operations
Now, Visualizer GUI has to interact with the main shell in the form of commands and it is done is

Visualizer GUI as follows:
//call the C registered TCL command from tcl/tk
c_DftKernelExecute “Scommand”

// since proper escaping / issuing modern commands, on DFTVis Transcript is the onus of the user.
string tclemd(data);;
if(lisCallFromTranscript()) {
// first convert the command into 3_2_1 syntax
tclemd = ConvertToModernCommand(tclemd);
// special handling in case there are escape characters in the command
tclemd = ComTcl_EscapeForTcl(tclemd, false, true);

// execute the command in the core command handler

// DFTApp is the class that manages the command execution of

// the main shell

DftApp::get().execCommand(data, msg, lisCallFromTranscript(), lisCallFromTranscript())))

ELTCHSH to make main shell TCLish
Meanwhile, we have adopted “eltclsh” (editline tcl shell) an interactive shell for the TCL programming

language. It provides command line editing, history browsing as well as variables and command
completion thanks to editline features. The completion engine is programmable in a way similar to tcsh,
and comes with an intelligent completion for the full TCL language by default. eltclsh is an open-source
software released under a BSD license. In order to use eltclsh as the main shell command, following

needs to be done:
// Setting the variables for eltclsh and calling the initialize function of eltclsh
// which runs a while(1) loop for “smart” input options on main shell
Tcl_SetVar(interp, "eltclsh_library", eltclshpath.c_str(), TCL_GLOBAL_ONLY);
if (Eltclsh_Init(interp) != TCL_OK) {

Msg::Error("Failed to initialize eltclsh.");

return TCL_ERROR,;

Please note that the pure eltclsh needs to be tailored to the tool own needs while performing the
handshaking between the command dictionary (for example) to do command completion. Following is
the routine that we have implemented at our end that helps accomplish the same. It would be good to
mention here that all the Tcl CreateCommand registered commands on a given TCL interpreter are
visible to the “eltclsh” as well and is used while performing various key functions such as TAB
completion, arrows keys, history etc.

Making ELTCLSH to work with our GUI

// Our Custom command-line completion procedure that operate on a3_2_1 commands

unsigned char elTcINewCompletion(EditLine *el, int ch)

{
ElTclinterpinfo *iinfo; const Linelnfo *linfo;
// get context on which the commands registered will show up and matched against
el_get(el, EL_CLIENTDATA, &iinfo); linfo = el_line(el);

// compute current command line: it is the concatenation of the current command
// (any incomplete lines entered so far) plus the current editline buffer

cmd[1] = Tcl_DuplicateObij(iinfo->command);

cmdLline = Tcl_NewStringObj(linfo->buffer, linfo->cursor - linfo->buffer);
Tcl_AppendObjToObj(cmd[1], cmdLine);

// call the procedure that generates completion matches

sprintf(buffer, "%d", iinfo->windowSize);

cmd[0] = Tcl_NewStringObj("el::Get_Completion_Data", -1); // this is captured below
Tcl_IncrRefCount(cmd[0]); Tcl_IncrRefCount(cmd([2]);

if (Tcl_EvalObjv(iinfo->currentinterp, 3, cmd, TCL_EVAL_GLOBAL) != TCL_OK) {

printf("\n Command Error: %s\n", Tcl_GetVar(iinfo->currentinterp, "errorinfo", TCL_GLOBAL_ONLY));
el_beep(el); return CC_REDISPLAY;
}

// handles different cases based on number of matches
// no match

if (count == 0) return CC_ERROR;
Tcl_GetIntFromObj(iinfo->currentinterp, matchList[2], &start);
el_deletestr(el, linfo->cursor - linfo->buffer - start);

// Unique Match
if (count == 3) {
el_insertstr(el, Tcl_GetStringFromObj(matchList[1], NULL));
return CC_REFRESH;

}

// Multiple Match
if (count ==4) {
Tcl_ListObjGetElements(iinfo->currentinterp, matchlList[0], &count, &matches);
// ask user if matches exceed threshold
if (count > iinfo->completionQueryltems) {
printf("\nDisplay all %d possibilit%s? [y/n] ", count, count>1?"ies":"y");
fflush(stdout);

// process the information based on “y”/”n” received by the user

// restore back the text user typed before pressing TAB
el_insertstr(el, Tcl_GetStringFromObj(matchList[1], NULL
return CC_REDISPLAY;

}
}

// put the results on the standard output
fputs(Tcl_GetStringFromObj(matchList[3], NULL), stdout);
}
}

// TCL proc that gives data to above function
proc Get_Completion_Data {partialWord windowsSize} {
// Given a partialWord and windowsSize, return the following list
// output = [list matchList display start formattedDisplay]
// Note : Uses el::matches (of “eltcIsh”) to obtain the matches first

// Step 1: Verify whether we should have TAB completion
if {{Sauto_completion_flag} {return {}}

// Step 2: Prevent TAB on empty shell
set regexpr {*[\t\n]*$}
set regexpVal 0

// Use catch, otherwise regexp will crash on some cases (like unmatched paranthesis)
catch {set regexpVal [regexp Sregexpr SpartialWord]}
if {SregexpVal} {return {}}

// Step 3: Obtain the matchList: Format is [start end matches]
// this is the function that performs the matches with commands registered with the interpreter

// and return the options
set matchList [matches SpartialWord 1]
set returnList [list {} 0 0 0 0]

// Step 4: Parse the matchList
set matchListSize [llength SmatchlList]
if {SmatchListSize == 0} {
// If there is no match, return NULL
} elseif {SmatchListSize == 1} {
// If there is unique match, return with appended space

}

// Step 5: Find the largest common substring
set actualList [list]; set formatList [list]; set first true; set intersectString

set intersectString [largestSubString SactualList SformatList]

// Step 6: Get Formatted display for multicol multirow display
set formatString [GetFormattedString SformatList SwindowSize]

return [list SactualList SintersectString $SstartVal SformatString]
}

}

Using “eltclsh” in the application (or GUI) side
“eltclsh” is used on the application side (DFTApp in our case) under different scenarios as follows in

order to provide the smart command editing functionalities

Case 1: In order to disable it for some commands/commands not following a given syntax: e.g. we want
eltclsh to honor only 3_2_1 and not support “3 2 1” syntax we disabled it for latter case.
/* Turn Off TAB Auto-completion for LEGACY “3 2 1“commands */
if (GlobalCommandDictSingleton::getCommandDict().commandStyle() == CommandDict::LEGACY) {
int status = Tcl_Eval(interp, "::el::Set_Auto_Completion 0");
if (status != TCL_OK) {
Msg::Error("Failed to Disable TAB Auto-Completion. Reason: %s", Tcl_GetStringResult(interp));

return TCL_ERROR;

}
Tcl_ResetResult(interp);

}

Case 2: Retrieving the history of commands
int status = Tcl_Eval(currentinterp(), "el::get_history_data history_line");
if (status != TCL_OK) {
printf ("\nFailed to access History Info. Reason : %s\n", Tcl_GetStringResult(currentinterp()));
} else {
const char* line = Tcl_GetStringResult(currentinterp());
if (line) sscanf(line, "%d", &size);

}

Case3: Adding the command to the eltclsh history
string command = string("el::add_history_data ") + string("{") + line + string("}");
status = Tcl_Eval(currentinterp(), command.c_str());
if (status != TCL_OK) {
printf ("\nFailed to edit History Info. Reason : %s\n", Tcl_GetStringResult(currentinterp()));
}

Case 4: Showing the completion matches on pressing the tab
cmd[0] = Tcl_NewsStringObj("el::Get_Completion_Data", -1);
cmd[1] = Tcl_NewStringObj(partialWord.c_str(), -1); // such as “se” for “set_system_mode”
cmd[2] = Tcl_NewsStringObj(buffer, -1);

int status = Tcl_EvalObjv(currentinterp(), 3, cmd, TCL_EVAL_GLOBAL);
if (status != TCL_OK) {
printf ("\nUnable to successfully find autocompletion tokens. Reason : %s\n",
Tcl_GetStringResult(currentinterp()));
Tcl_ResetResult(currentinterp()); return "";

}

int count = 0; Tcl_Obj **matchlList = 0;
cmd[0] = Tcl_GetObjResult(currentinterp());
Tcl_ListObjGetElements(currentinterp(), cmd[0], &count, &matchList);

/* no match */
if (Count == 0) return llll;

Tcl_GetIntFromObij(currentinterp(), matchList[2], &start);
display = string(Tcl_GetStringFromObj(matchList[1], NULL));
if (count == 3) return "";
if (count == 4) {
Tcl_ListObjLength(currentinterp(), matchList[0], &matchCount);

return string(Tcl_GetStringFromObj(matchList[3], NULL));
}

DFTVisualizer GUI transcript made “mirror image” of main shell

Further GUI should have a console that helps to issue commands and have helpful features for the
operations in it. Here, the text widget has been enhanced in such way that it mirrors the shell window of
the DFT tools. This means that all messaging, commands issued, error messages, which are shown in
shell window of the DFT tool are also now seen in this text widget. The text widget also supports tab,
history and UP/Down arrow keys. This text widget also displays the line with error messages, commands
and the warning messages in a red, black and green color respectively. The errors messages, commands
and warning messaged are highlighted with different color to help the user point out the problematic
line easily thus helping the user to debug the issue further. Some of relevant text in the widget for e.g.
files names, instance names, DRC ID and lines are also displayed as hyperlinks. When the user clicks on
these hyperlinks, the relevant information is shown in the other windows of the tool, helping the user to
debug the issues related to Design for Test. The following flowchart depicts how the mirroring of the
DFTVisualizer console and the main shell has been done in our tool.

To mirror the command execution in console, the command entered, command result and prompt
displayed on shell/console, gets also displayed in console/shell and for that three callbacks have been
set.
1. PrologueCallback (prologue_callback)
This callback gets called before the command execution. This callback is set to display the
command entered on shell in console and vice versa.
2. CommandResultRedirectCallback
The callback is called when the command is executed .In this callback the command results are
stored in internal buffer
3. EpilogueCallBack(epilogue_callback)
The callback is called after the command execution and it displays the command prompt that
displayed on shell in console and vice versa.

The following pseudo code depicts the mirroring of console to Shell window

// initialize the callbacks

int IntializeCallBacks (Tcl_Interp *interp) {
prologue_callback(prologue_callback);
command_result_redirect_callback(command_result_callback);
epilogue_callBack(epilogue_callback)

}
Pseudo code for mirroring the command entered on shell
// if the command is issued on Shell then mirroring the same to console

// this callback is get called before the command execution
bool prologue_callback string& commandString) {
showCommandInConsole(command.c_str());

}

// this callback is gets called when the command is executed
Void command_result_redirect_callback (const char* result)

{

// add commands result into to the internal buffer
appendCommandResultToBuffer(text);

bool epilogue_callBack (const string& command, int status) {
display_textFromBuffer_in_console(); // text of internal buffer is displayed in console
redirect_prompt_from_shell_to_console(); // display the prompt displayed in console

Pseudo code for mirroring the command entered on console
// this callback is get called before the command execution
bool prologue_callback string& commandString) {
show_command_in_shell(command.c_str());
}
// this callback gets called when the command is executed
void command_result_redirect_callback (const char* result)
{
display_command_result_in_shell(text);
}
bool epilogue_callBack (const string& command, int status) {
redirect_prompt_from_console_to_shell(); // display the prompt in shell

Mirroring of Tab Support in console

When a tab key is pressed after entering some text on command prompt in shell window, then all the
relevant commands starting with the text get displayed in the shell window. The same feature has been
implemented in console window. The following snapshot shows the example of tab support in Console.

ATPG> res Press the tab key

reset_au_faults reset_di_faults reset_state
ATPG> Tea

read read_cell_library
read_cont ig_data read_cpt
read_fault_=ites resd_faults
read_flat_mode1l read_modelfile
read_patterns read_procfile
read_sdc read_sdf

read_upf read_verilog
read_vizualizer_preferences read_window_content=s
ATPG> read_ Press the tab key =1
read_cell_likbrary read_conf iz_data
read_cpf read_fault_sites
read_fault= read_flat_modese1
read_mod=1lFile read_patterns
read_proctile read_=dc

readd_=sdf read_upt
reacd_verilos read_vizualizer_pireferences
read_window_contents

AaTPG: Fead_

Figure : Tab Support In Console.

Flow of Tab support in console
The shell runs on master interpreter and the console on slave interpreter. To have tab key support in
console, the results from master interpreted are in stored string and then the same are displayed in the
console window.
Pseudo code for tab support in console

// Tcl method called when tab key is pressed after entering some text on console

Proc tabExpandMethod {tab_str} {

set _tabResultString [Get_Tab_Completion_Data_From_Shell Stab_str
foreach tabStr StabResultString {
// display each tabStr in proper column format.

}
}

int Get_Tab_Completion_Data_From_Shell {} {
elTclParseCommand()
// format the results in proper columns
formatCommandResults and return

}

The history command and up/down arrow are also supported in similar way as that of tab support.

Conclusion
In this paper, we have observed the different aspects of co-existence of TCL based interpreter (eltclsh)
and TCL based GUI (DFTVisualizer) along with a GUI console that mirrors the main shell and how all this

was carried out in our tools. Similar approach could be easily adopted in your tools in order to make the
non-gui and gui mode coexist.

Bibliography
TCL/TK wiki, http://wiki.tcl.tk
Eltclsh: http://wiki.tcl.tk/11176

http://wiki.tcl.tk/

