
Tcl-On-Track
Website tools for TclHttpd

Clif Flynt
Noumena Corporation,

8888 Black Pine Ln,
Whitmore Lake, MI 48189,

http://www.noucorp.com
clif at noucorp dot com

October 20, 2014

Abstract

Tclhttpd is a powerful and versatile web server. But while Tclhttpd has
many tools for making web pages, it has few tools for making web sites.

Tcl-On-Track is designed to make it easy to create websites. It includes
drop-in packages for blogs, user management, announcing events, and
shopping carts as well as a tool for customizing CSS files and collections
of CSS recipes for common page layouts.

1 Introduction

In the early days of the web, just making a set of pages was considered pretty
cool. Anyone familiar with vi or emacs could hack together a page, put in some
href links between pages and presto, a website was born.

This changed quickly as people realized that a set of pages should have a
consistent look and feel with similar heads, tails and display conventions. The
initial solution of pasting identical HTML into each page to create a consistent
look across pages got old quickly and developers looked for programmatic
ways to generate the boilerplate sections of their pages.

CGI scripts and dynamic content addressed the issue of common heads,
tails and generated content, but CGI scripts are slow and dynamic content tools
weren’t always easy to use.

Tclhttpd provides support for active content in files and programmatic gen-
eration of content with template (.tml files), Application Direct urls that map
a distinct URL directly to a Tcl procedure and with the Url PrefixInstall
command that maps entire hierarchies to Tcl procedures.

The template file support allows developers to embed Tcl scripts within a
web page by placing the script between square braces. This allows the de-
veloper include processing within a web page. The Application Direct and
Domain Mapping tools allowed programmatic generation of html pages.

One problem with CGI scripts, template files and url-to-procedure map-
ping is that these techniques encourage the intermingling of HTML and code.
This has led to many muddy website designs in which data processing and
display formatting are hopelessly intertwined.

While the template and domain mapping constructs make the developer’s
life simpler by making it easy to construct web pages with common head and
tail procedures, they don’t provide the website developer with prebuilt layout
tools or higher level functions like blogs or content management.

The Ars Digita project addressed the problem of higher-level tools under
AOLServer by including many packages like storefronts, blogs, and photo
archives with the Ars Digita distribution.

Unfortunately, the learning curves for AOLServer, Oracle and Ars Digita
are each steep. Setting up an Ars Digita site is not for the faint of heart.

The follow-on system, OpenACS, reduces the entry cost by simplifying the
packages and using postgres instead of Oracle, but it’s still a mammoth project
that’s hard for a newcomer to pick up.

Ruby On Rails gave website designers a powerful set of tools for creating
websites, it was designed for simplicity and low entry cost. It supports build-
ing a cookie-cutter web site easily and also supports expansion via custom
Ruby code.

Tcl On Track merges the Rails and Ars Digita models by providing sam-
ple index.tml files for common layouts, a set of (mostly) independent modules
that can be copied into the custom folder to provide features like announce-
ments, blogs and user management, programmatic wrappers for common CSS
patterns, and a tool for customizing CSS definition files.

The initial release of Tcl On Tracks uses a filesystem based content manage-
ment system with an sqlite database to track registered users.

The rationale for using files instead of placing content in a database was
two-fold:

• To make the package quicker to develop (I was under a time-crunch to
develop websites).

• To make the system simple for an unskilled user (anyone can upload a
text file to a folder).

Like Rails, Track was designed to implement a Model-View-Controller pat-
tern for websites. The design calls for a set of models that accept data in some
system-specific format and convert it into a standard format for other appli-
cations to further process. Thus, there are modules that can read PDF files,
modules that recognize pure Tcl scripts, ones that process pure text and ones
that accept pure HTML.

Each of these modules generates a list of plain-text items with no formatting
information. The lists are designed to be passed to other scripts to have html
formatting information added.

As with most real-world applications, the implementation isn’t quite as
dogmatic as it might be.

2 Components

Tcl on Tracks consists of these components:

• TclOO Model controllers that return data as lists.

• Tcl namespace commands to reformat lists of data as html snippets.

• Sample index.tml files to stitch together the digested snippets into
common page layouts.

• Sample css definition files to implement common page layouts.

• Tclsh and Wish applications to generate and customize CSS definitions.

2.1 Models with TclOO

The Model level components of the MVC pattern are built using TclOO. Each
class’s methods return data in a consistent format. Since the data to be digested
can come in many formats, the classes are implemented as a base class that
provides methods to process semi-digested data and mixins that interact with
different representations of data and return a semi-digested format that the
base class can rework.

For example, the announce class, which displays short teasers with links
to a full announcement looks somewhat like the following example. (This ex-
ample is simplified from actual code to make the pattern more obvious.)

oo::class create announce {
variable State
variable teasers

##
constructor {args}--
Create Announce object
Arguments
args
dictionary with
def Type of mixin to add
folder Full path to toplevel folder of announcements
lines Number of lines in a teaser
depth How far down a file tree to search for announcements.

order Display announcements oldest or newest first
May be -decr or incr for lsort order
#
Results
New object is created.
Data repository may be accessed
#

constructor {args} {
variable State

lines - number of lines to show in teaser.

array set State {
lines 8
order -decr

}

Update state from args
...

mix in specific data handler
oo::objdefine [self] mixin Ann_$State(type)

Call mixin method to fill teaser array
my updateTeasers

}
}

Mixin class for announcements that exist in PDF format

oo::class create Ann_pdf {
method updateTeasers { } {

variable State

foreach fl [glob -nocomplain $State(folder)/*.pdf] {

set txt [exec /usr/local/bin/pdftotext -l 1 $fl -]

set count 0
foreach l [split $txt \n] {

lappend newText $l
if {[incr count] > $State(lines)} {

break
}

}

set txt [join $newText \n]
set teasers($fl) $txt

}
}

method showPage {} {
upload PDF file

}
}

As shown above, an object’s creation call must include a -def option to
mix in the proper raw data handlers.

In a website, the tclhttpd template files interact with the base class methods
to get lists of values. The lists are either formatted within the .tml file or are
passed to view procedures to be formatted into html.

The initial design called for model methods to return simple lists. As more
complex pages were developed, it’s became necessary to expand the return
to lists of lists. With more real-world experience, it’s becoming obvious that
this technique is also limited. The next major revision of Tracks will have the
models return digested data as a Tcl dict.

The Models included in the initial Tracks release are:

blogOO
Blog pages with user comments, teaser overviews.

announceOO
Show announcements with no user comments, teaser overviews.

itemOO
More complex announcements with more items.

navOO
Returns title/URL pairs for navigation bars.

2.2 Views created with procedures

A common goal of software engineers is to find repeated functionality and
extract it into procedures. A web pages offer a rich field for finding repeated
patterns to be extracted.

The view functions accept data in a known format and return html. These
procedures don’t require a class hierarchy, so namespaces are used to organize
the procedures.

These procedures range in complexity from simple procedures that gener-
ate html snippets (similar to the html package in tcllib), to those that return
complex html strings including generating customized HTML headers, page
tops, and user registration forms with back-end validation and database inter-
actions.

The pattern for the simple functions resembles

proc doStuff {data} {
set rtn <SOMETAG>
foreach item $data {

append rtn "\n<OTHERTAG>[SomeProcess $item]"
}
append rtn "\n<CLOSETAG>"
return $rtn

}

Another repeated pattern is the HTML header and page top. Every web
page needs to construct a header. While the headers will be similar, you may
not want them to be identical.

The tracks::head procedure is an expansion of the standard html::head
procedure. It invokes html::head to create the base header using values pro-
vided with html::headTag, html::meta and others. It then merges values
from the command line dictionary for CSS and title values, adds a DOCTYPE
directive, and customized meta tags, and per-page CSS directives as defined in
a configuration file.

The extra header meta tags are defined in a per-folder array that can be
placed in the .tml file as shown in this code snippet:

namespace eval ::track {
Define a site name
set trackState(siteName) "C. Flynt"

Customized meta tags by folder
#
array set meta {

/ {
keywords {novels, stories, science fiction, historical, fantasy}
description {c.flynt fiction author}
author {C. Flynt}
}

Novels {
keywords {novels, fiction, science fiction, historical, fantasy}
description {Free fiction samples}
author {C. Flynt}
}

Blog {
keywords {blog, fiction, science fiction, historical, fantasy, writing, res$
description {Blog personal, how to,}
author {C. Flynt}

}
}

Define extra head tags for folders

array set headTags {
/ {

{link rel="stylesheet" href="/noucorp.css"}
{link rel="stylesheet" href="/cflynt.css"}

}
}

}

A non-repeated pattern that didn’t need an Object Oriented approach is
user management. The Tracks package includes registration, login and change
password procedures that return a form which can be embedded within the
developer’s web-page framework.

The procedures implemented in the view methods include:

• Page Layout

layout.tcl
Procedures to do basic page layout

css.tcl
CSS recipes for common page widgets (box with header, two col-
umn, etc)

formCSS.tcl
A template driven form processor that doesn’t need cookies. Adapted
from the form processor in Practical Programming in Tcl/Tk

track.tcl
Support tools for the track package.

redirectTo.tcl
a Direct Url front end for showing text files

• User Management

newuser.tcl
Uses formCSS.tcl to generate and validate a new user.

changePwd.tcl
Uses formCSS.tcl to allow a user to change a password.

login.tcl
Provides validate and process procedures for a login form.

• Data converters

def.tcl
Reads content definition files (tcl scripts)

file.tcl
Reads pure text content files

folders.tcl
Navigates folder based hierarchy.

html8.tcl
Converts text to html, adding paragraph markers for blank lines,
etc.

tagTweak.tcl
Balances tags when extracting subsets of pages as teasers/blurbs.

html.tcl
Extended html support for Style and generating tables and lists.

debugPg.tcl
Tools to assist in debugging pages.

2.3 Tools

Chrome and Firefox provide tools to help a web designer tweak CSS. The abil-
ity to enter some CSS and immediately see the effect makes understanding the
tricky interactions faster.

Even with these tools, hand edited CSS files get cumbersome very quickly.
The tracks package includes two tools for generating and tweaking CSS

files. These applications are:

makeCSSTemplate.tcl
Scans .tml files and generates a css template with Tcl variables linked to
the CSS classes.

genCSS.tcl
GUI to set Tcl variable values and generate a CSS file.

The genCSS.tcl application is shown below. It maps Tcl variables to vari-
ous div.something and span.something constructs and view what the settings
will be.

The Patternswindow lets the user set patterns of variable names to select
and a value to assign to elements that match that pattern. When assigning
values to variables the patterns are read from top to bottom, and each match is
assigned the associated value. Thus the more generic patterns (*Background)
come first and more specific patterns (NavbarBackground) come later.

Figure 1: http://www.cflynt.com/

These two tools were used for some sets of web pages and proved easier
to use than hand-editing the CSS files, but the underlying concepts are too
simplistic and don’t make good use of CSS hierarchies.

I don’t expect to distribute these tools with the initial Tracks release.

3 Use

Using Tracks is simple:

• Decide on the layout you want.

• Copy the appropriate index.tml file to your folder.

• Cut/Paste appropriate code into the .tml file.

• Customize index.tml and or .tml for your site (set name, title, etc)

• Add content files to website

• Tweak CSS

The index.html page for the www.cflynt.com site is shown below.
The folder name is assigned to the variable id, which is also used to the

name the object that will process the content files in this folder and return di-
gested data to the web pages.

This technique for generating the object name allows the index.tml file
to be used in any folder without modifying that section of the page code. The
downside is that it allows a potential name conflict if two folders in the website
hierarchy have the same name. If there are folder name collisions, the user will
need to edit the file and set id to a unique value.

[folders::top -title "$track::trackState(siteName)"]
[Doc_Dynamic]
<div class="scroll">

[
set lst {}
set id [string trim [file tail [file dirname $page(filename)]] /]

if {[info command $id] eq ""} {
announce create $id -folder [Doc_Root] -type text -depth 1

}
foreach {in trio} [$id getTeasers] {

lappend lst [lindex $trio 1] [lindex $trio 2] $id,$in
}
css::showBoxes $id /MkPg SPid $lst

]
</div>
</body>
</html>

which generates this page:

Figure 2: http://www.cflynt.com/

The home folder for this site contains:

• Folders for Navbar

About
Contains bio information, about the company, contact info, etc.

Blog
A set of folders with blog entries and comments

Free Stuff
A set of folders with free short stories

Novels
A set of folders with novel teasers

imgs
Common images referenced by pages (logo, etc)

• MainPage Contents

20140727-News.txt, 20140729-News.txt ...
Announcements for the main page body. File name is massaged for
box title.

abstract.htm
An abstract for the top header.

teaser.tcl
Short blurbs for news items. Automatically generated.

• Pages immediately available

index.tml
Home page.

changePassword.tml
Change password form.

login.tml
Login form.

newuser.tml
Registration form.

welcome.tml
Welcome after registration page.

• Website administrivia

cflynt.css
The CSS file.

favicon.ico
The icon file.

robots.txt
Instructions for Robots.

notfound.tml
Error page for 404 errors.

The folders::top command creates the top of the web page and the page
header. It scans the existing folders to see if there is information that should be
included in the top from subordinate folders (in this case, there is none).

4 High Level HTML and CSS Constructs

A web page of average complexity has a great deal of text devoted to page
layout.

One of the goals of the Tcl On Tracks project is to reduce the amount of
typing that the web developer needs to do. There are many common form,
table and css constructs that can be hidden in a procedure to generate the more
complex html.

A simple example is to take two sets of html text and create two columns.
The procedure to handle this is shown here:

proc 2ColElements {col1Html col2Html } {
return [subst {

<div class="grid2col">
<div class="col2Left">

$col1Html

</div>
<div class="col2Right">

$col2Html
</div>

</div>
}]

}

The web page snippet would resemble this:

Initialize the lists to avoid duplicating the page
when it is reloaded.
set lst1 {}; set lst2 {}

$id is an object created for the current folder
getTeasers returns an id and the target URL, title and text
to display as a list triplet of data.
#
foreach {in1 trio1 in2 trio2} [$id getTeasers] {

lappend lst1 [lindex $trio1 1] [lindex $trio1 2] $id,$in1
lappend lst2 [lindex $trio2 1] [lindex $trio2 2] $id,$in2

}

Convert the lists to a set of html displaying headers
as an HREF and then the text. The sections of each box
are in a CSS div.
set html1 [css::showBoxes $id showAnnounce.htm BLid $lst1]
set html2 [css::showBoxes $id showAnnounce.htm BLid $lst2]

Make a two column display
css::2ColElements $html1 $html2

The formCSS.tcl package provides a more complex reformatting of data.
This package has been used by the www.tcl.tk/community/tcl20xx reg-
istration pages for over a decade. It is an expansion on the forms program
described by Brent Welch in Practical Programming in Tcl/Tk.

The form is generated and generic processing is done with the Form MultiPostProcess
procedure.

##
proc formCSS::Form_MultiPostProcess {id fields nextPage}--
Process a form
Arguments
id The identifier for this form
fields A list of elements to display in the form
fields format
{type req key {text/selections} default}

input 1/0 key Label-beside {}
select 1/0 key Label-beside {choice list}
submit {} key {text} defaultP
break {} {} {} {}
nextPage The next page for this mess, relative or full URL
#
Results
If first pass, new html page is defined and returned.
If second pass, $id.validate is invoked
if valid form data, $id.calculate or $id.process
may be called to process data.
#

The somewhat cryptic description of the fields list is just a long list with the
type of data to receive, followed by a boolean for whether or not it’s required,
the HTML name to use for the form value, the prompt and a possible default
value.

Selection elements are handled slightly differently with the last value being
pairs of label/values.

set formDef {
textInput 1 email "Email:" {}
select 1 mailinglist "Join Mailing List?" { Yes 1 No 0}

}

An added feature of the formCSS package is support for user-defined val-
idation and form processing procedures. These are registered before the form
is created with commands like the command shown below.

In the example, the id declared for the form would be newuser. This com-
mand registers the newuser::validate procedure with the form. When a
browser submits a form, the form is checked to confirm that all required fields
have data, and then the validation procedure is invoked. If that returns true,
then the the process procedure is invoked.

formCSS::setProc newuser.validate ::newuser::validate 1
formCSS::setProc newuser.process ::newuser::addUser 1

5 Design Constraints

The tclhttpd engine provides several very powerful tools for building web
pages.

It also provides ways to muddy the separation between data processing
and data presentation.

The ability to put Tcl scripts into a index.tml file is a powerful tool for al-
lowing the user to tweak data while generating the html code. It also provides

a hair-trigger weapon for shooting yourself in the foot by doing processing in
the web page.

The Direct URL facility is much cleaner than CGI scripting, but as with
putting data processing code in a index.tml file, there is a strong temptation
to put html directives in a Direct URL or new Document Direct procedure,
muddying the separation between data and presentation.

The primary design goal of Tcl On Track has been to keep the Model-View-
Controller separation truly separate, with all Model code in procedures, and
all presentation code in the .tml files.

The mud in this has been the desire to simplify verbose HTML and CSS
constructs like forms and page layout.

The Tracks library has procedures that accept data in pre-digested formats
and then returns a large amount of formatted HTML code. These procedures
don’t have any understanding of the page or data contents, they just take a list
and return HTML or CSS.

6 Future

Every implementation of a design demonstrates the flaws of the design and
suggests features for the next, better design.

The creator of Ruby on Rails mentioned in one writeup that the Rails project
came after he wrote several other web frameworks.

The current version of Tcl On Track is the second major revision and rework.
As such it has fewer (or at least different) bad choices from the first functional
design which was adequate for creating slightly complex websites.

The next rework will focus on codifying rules for what belongs in a index.tml
file vs what functionality belongs in the model and view procedures.

While the current CSS tools are functional, the CSS definition and editing
application generates very verbose CSS scripts. They don’t even use the simple
and obvious techniques for simplifying a CSS definition.

The sample pages and view functions need to be reworked to make better
use of the cascading nature of CSS. The current pages are naive in their CSS
usage.

Tcl-On-Track has not actually been released, but when a codeset escapes it
will be made available at http://www.noucorp.com.

