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Abstract. Future plans for aggressive optimization of the Tcl language require making assumptions about the behaviour
of Tcl scripts with respect  to the predictability of their operations. For example,  non-local  side effects from traces,
modifying the core language, and variable aliasing will defeat many optimization schemes. Determining the safety of
optimizations requires, in effect, proving theorems about scripts. This paper describes a deductive database - an in-
memory relational database whose values all belong to finite domains with total ordering - intended to support this
effort. The database is implemented atop a library for Binary Decision Diagrams (BDD's), a compact data structure
representing  expressions  in  first-order  logic.  This  library  is  used  to  implement  multiway  finite-domain  decision
diagrams, which represent the relations of the database. The database is in turn manipulated in a 'little language' called
Datalog,  a  limited  dialect  of  Prolog  that  allows  for  recursive  operations  impossible  in  a  traditional  programming
language such as SQL. This language has been used to prototype limited versions of certain critical program analyses,
such as dead code elimination, calculation of reaching definitions, and data type inference.

1) Introduction
Discussions among the Tcl developers in recent years have
revealed that aggressive optimization of Tcl programs will
require  detailed  knowledge  of  the  data  types  of  values.
Rather than changing Tcl to require declaration of variable
types – a fundamental change to the language – the author
of this paper is exploring the possibility of, in a useful set
of cases, inferring the types of values from the contexts in
which they appear.

Doing  so  will  require  quite  a  lot  of  deductive  logic:
essentially, proving theorems about a program's behaviour.
Useful  concepts  will  include  “calling  a  given  procedure
will establish no traces, redefine no core commands, have
no side effects on variables in the caller's scope, etc., given
the  assumption  that  none  of  those  things  has  happened
before the procedure's execution.” Even more useful will
be the small conclusions that depend on these broad safety
assertions: “at this point in the program, the variable X is
known  to  contain  a  native  integer,  and  code  may  be
generated that exploits that fact.”

The detailed assumptions are similar to the analyses that
sophisticated  Java  compilers  must  go  through  in
performing “points-to” analysis:  when presented with an
Object,  what classes can it  actually be a member of? A
significant recent body of effort in this sort of analysis was
done in the bddbddb system  [WHAL06]. This system is
quite sophisticated: it is an implementation of the Datalog

query  langauge  atop  Binary  Decision  Diagrams,  and  is
capable of handling quite complex compilation problems.
Unfortunately,  examining the code showed that  it  would
not  fit  into  Tcl's  way  of  doing  things  without  major
redesigns,  and  instead,  a  deduction  system  for  Tcl  was
implemented  de novo.  This paper describes the resulting
system.

In  Section  2,  Binary  Decision  Diagrams  (BDD's)  are
presented. These are compact representations for Boolean
functions  over  arbitrary  sets  of  variables.  Section  3
describes how BDD's can be used to represent relations in
a database when column values are all drawn from totally
ordered  finite  domains.  Section  4 digresses  into  an
important  detail  about  application  performance  that
informs the design of the data definition language. Section
5 provides an example of manipulating a database at the
'assembly language' level of relational algebra. Section     6
discusses  briefly  the  language  used  to  perform  logical
deductions.  Section  7 offers  another  implementation
digression,  discussing  the  handling  of  logical  negation.
Finally  Section  8 contains  some  preliminary  concrete
examples of the sort of deductions that can be drawn from
Tcl  code  and  offers  some  directions  for  future
development.



2) Binary decision diagrams: 
the “engine”

The lowest  level  support  for  deductive reasoning in this

project  is  a  C library,  tclbdd,  that  implements  Binary

Decision  Diagrams  (BDD's),  a  data  structure  first
described  by  R.E.  Bryant  [BRYA86].  (A  gentler
introduction to Binary Decision Diagrams is available as
[ANDE97].  BDD's  are  a  compact  representation  for
Boolean expressions of an arbitrary number of variables.

To  understand  how  BDD's  work,  first  consider
representing a Boolean function as a complete binary tree
of its truth table. At each level  N of the tree, the value of
the  Nth  variable  is  checked,  and  a  branch  is  chosen
according  to  it.  (This  condition  is  sometimes  stated  as
requiring an  ordered BDD, or OBDD.) The leaves of the

tree  are  the  special  nodes  ⊥ and  ⊤,  representing  the

constant values 'false' and 'true' respectively.

A BDD can be constructed from a complete binary tree by
repeatedly applying two rewrite rules to it:

1. If both edges leaving a node M go to the same 
node N, eliminate the node M and make any 
edges that enter it go to N instead.

2. If two or more nodes exist that test the same 
variable and have edges that go to the same pair 
of nodes, coalesce them into a single node.

These conditions are sometimes described as requiring a
reduced, ordered BDD (ROBDD).

Figure 1 shows this process  applied to the diagram that

represents the Boolean formula,  ( A∨B)∧C . In the

first step, the node that tests variable C and has both edges
going  to   is  removed.  The  three  nodes  that  all  test⊥

variable C and go to  if the value is 0 and ⊥ ⊤ if it is 1 are

all collapsed down into a single node. In the second step,
the node that tests variable B but goes to the same node for
both its values is removed.

BDD's have a number of properties that make them useful
for representing complex Boolean formulas:

• While in general their size is exponential in the

number of variables, for most practical problems
the size has a small polynomial bound. In some
sense,  the  functions  whose  BDD's  grow
exponentially are uninteresting. For example, the
complete  binary  tree  for  the  N-ary
EXCLUSIVE OR  function  grows  exponentially
with N, while the BDD grows only linearly.

• Any  function  has  a  unique  representation  as  a

BDD, enabling functions to be tested for equality
(or  evaluated  for  tautology  or  satisfiability)  in
constant time.

Well-understood algorithms are available for manipulating
BDD's:

• combining  them  using  Boolean  algebra,  with

unary, binary and ternary operators.

• applying the quantifiers ∃ and ∀.

• composition: replacing a variable in an function

with another expression or renaming varaiables in
a function.

Figure 1: Reduction of a binary decision diagram
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• simplification: finding a less complex expression

that  will  yield  the  same  value  given  some
assumption about the variables.

• enumerating all sets of variable values that will

satisfy a given expression.

In  the  implementation  described  in  this  paper,  a  set  of
BDD's is represented by a TclOO object. The methods that
perform  logical  operations,  quantification,  simplification
and enumeration are written in C for performance.

As an example, let us use TclBDD to construct the binary

decision  diagram  for  the  expression,  ( A∨B)∧C ,

query  it  to  find  the  values  of  A and  C  that  make  the
expression true for at least one value of B, and enumerate
the result. The “assembly language computation for this is
shown in Figure 2. 

The  program  begins  by  constructing  a  BDD  system.  It
names three variables  A,  B, and  C, making them variable
numbers 0, 1, and 2 respectively. It constructs the BDD for
the given  expression,  and  removes  B from the BDD by

applying  the  ∃ quantifier  to  it.  Finally,  it  enumerates

exhaustively  all  the  values  of  A and  C that  make  the
resulting  expression  true.  Unsurprisingly,  it  yields  the
result:

A=0 C=1
A=1 C=1

showing that the formula is satisfiable if and only if  C is
true.

For  a  larger  case  demonstrating the power  of  BDD's  to
represent  complex  expressions,  the  interested  reader  is

referred to the test case bdd-40.1 in the test suite for the

tclbdd library.  This  test  sets  up  the  familiar  “eight

queens” problem: how many ways are there to place eight
queens on a chessboard such that no queen attacks another.
This  problem  is  a  classical  example  of  problems  that
require backtracking search, but the tclbdd system solves it
with  ease  and  with  no  backtracking.  It  represents  each
square of the board with a Boolean variable, and computes
the logical AND of all the restrictions that no two queens
may be in the same row, column or diagonal. It runs in the
blink of an eye, despite the fact that at some points in the

calculation, it is representing over  1018
 combinations

of possibilities.

3) Finite domain decision 
diagrams: the “assembly 
language”

The next level of support for deductive reasoning in this
project  is  the  layer  that  implements  Finite  Domain
Decision  Diagrams  (FDDD's).  FDDD's  are  a  structure
introduced by Whaley and Lam in the 'bddbddb'  project
[WHAL05] specifically for  program flow analysis.  They
represent  tuples  of  values  over  totally  ordered  finite
domains.  In  other  words,  every value in  a  tuple  can be
replaced with a small integer. Each value in a tuple is a
member of a different named domain, and all tuples in a
given set  have values drawn from the same sequence of
domains.  (Domains  in  a  set  of  tuples  are  analogous  to
columns in a table within a relational database.)

The  FDDD  representation  derives  from  the  BDD
representation in a natural way. Each domain is associated
with a set of Boolean variables in the BDD corresponding
to  the  bits  of  the  binary  representation  of  its  values.  A
domain with sixteen members, for instance, will require at
least four BDD variables to represent it. A tuple is then an
AND-term in the boolean expression.  A BDD's  Boolean
expression will  be true if  and only if  the corresponding
tuple is present in the set.

The  operations  of  relational  algebra  have  a  natural

package require tclbdd

# Create the system
bdd::system create sys

# Name some variables
sys nthvar A 0
sys nthvar B 1
sys nthvar C 2

# Construct X=(A|B)&C
sys | temp A B; # temp = A | B
sys & X temp C; # X = temp & C

# For what values of A and C is the 
# expression true for some B?
sys exists result {B} X

# Enumerate the result exhaustively
sys foreach_sat s result {
    bdd::foreach_fullsat res {0 2} $s {

puts "A=[lindex $res 0]\
            C=[lindex $res 1]"
    }
}

Figure 2: Simple first-order logic



mapping onto BDD's. The most important ones to consider
are  joins, replacements, negations, projections, set unions,
and selection.

Joining turns out to be simply a Boolean AND operation.
Replacement of one domain with another is a rewriting of
the  Boolean  expression  to  replace  the  first  domain's
variables with those of the second domain, an operation
that is provided by the BDD library. Negation (creating a
table  containing  all  possible  rows  absent  from  a  given
table) is a Boolean NOT operation. Projection (reducing a
relation  by  removing  a  column)  is  applying  existential
quantification to the column's variables. The union of two
sets is the logical OR of their Boolean expressions.

Selection  is  a  special  case  of  join.  A set  is  constructed
containing  the  values  to  be  sought,  and  the  newly
constructed  set  is  joined  with  the  set  being  searched  to
yield the rows with the desired values.

There is also a special equality relation between any pair

of domains. The relation A==B contains exactly those pairs

of  tuples  that  have  the  same  values  in  domain  A as  in

domain B. Joining this relation to any other relation has the

effect of performing a self-join.

4) A digression: ordering of 
variables

It  turns  out  that  one  critical  feature  in  the  design  of  a
FDDD database is the ordering of the variables in a BDD.
A poor  ordering  can  easily  result  in  a  BDD that  grows
exponentially  in  size  with  the  number  of  entities  being
represented, while a good ordering may be nicely linear. 

Consider for instance, a table, suc, containing two four-bit

fields a and b. A tuple suc(a,b) is present if and only if

a=b+1.

If the BDD is constructed using the naïve variable order

(a2, a1, a0, b2, b1, b0), listing the bits of the

values from most significant to least significant, then the
size of the BDD is 44 nodes. (Its first three levels are a

complete binary tree over the values of a.) If instead, the

variables  are  interleaved,  (a2, b2, a1, b1, a0,

b0),  the size drops to 17 nodes,  and there are no more

than three nodes at each level. The difference is even more
striking as the size of the domains grows: with eight-bit
columns,  there  are  764  nodes  in  the  concatenated
representation but only 37 in the interleaved.

Alas,  the  problem of  determining  the  optimum variable
ordering  is  NP-hard  [BOLL96].  Fortunately,  there  are  a
number of good heuristics. So far, in the experiments that
the author has conducted with this project, a good ordering
was obtainable simply by interleaving the bits of columns
that were thought to be “closely related” and occasionally
reversing their endian-ness.

The database definition for the FDDD allows specifying

the  domains  using  three  commands,  domain,

interleave and  concatenate.  The  domain

command defines a single domain, accepting its size in bits

and endian-ness. The interleave and  concatenate

commands  each  accept  any  number  of  partial  database

definition  (the  result  of  domain,  interleave,  or

concatenate), and produce a new database definition

by  taking  their  arguments  and  interleaving  or
concatenating them in the bit ordering. Thus, the definition

of the database containing the (properly interleaved)  suc

relation will look like:

database create db \
    [interleave \
        [domain a 8 bigendian] \
        [domain b 8 bigendian]]
db relation suc a b

5) The FDDD assembly 
language

Given  this  infrastructure,  what  the  FDDD  package
provides is  a set  of  methods that  compile BDD code to
manipulate  the  database.  Because  this  is  still  “assembly
language” level,  the  code is  still  verbose and  somewhat
unreadable.  Nevertheless,  it  would  be  good  to  walk
through  one  complete  example  to   show  the  sorts  of
operations that are available at the FDDD level.

A) Creating a database
We  will  use  as  an  example  a  database  containing
information  about  the  ancestry  of  a  certain  well-known

family. There will be three columns, p1, p2, and p3, each

four  bits  wide,  and  all  interleaved.  There  will  be  one

predefined relation,  parentOf(p1,p2) which contains

a tuple (a , b)  if and only if a is a parent of b. Figure 3

shows how the database is defined.



Since  the  database  can  accept  only  small  integers  as
column  values,  we  create  a  mapping  between  personal

names and small integers:  $p($name) gives the integer

for  $name,  and  [lindex $people $i] gives  the

name of person  $i.  The simple code in  Figure 4 is  the

usual design pattern for setting up a finite domain.

Next,  we  load  the  parentOf relation.  The  database

objject  provides  a  [loader] method  that  emits  a  Tcl

command  that  will  import  a  row.  (Most  of  the  FDDD
methods  work  by  emitting  Tcl  code,  rather  than  by
performing a requested action directly.) Figure 5 gives the
code.

Now we want to create a  grandparentOf relation that

contains a tuple (a ,b) if  a is a grandparent of b: that

is, if a is a parent of some value c, and c is a parent of b.

Expressing  this  in  terms  of  the  lowest  level  relational
primitives  is  a  bit  awkward.  The most  effective  way to
approach it appears to be:

1. Create a new relation t1, that will contain a tuple

(a , c )  if a is a parent of c.

2. Create  a  new  relation,  t2,  that  will  contain  a

tuple (c ,b)  if c is a parent of b.

3. Join the two relations. The result, t3, will have a

tuple  (a , c ,b)  for  every  combination  of

(a , c )  from t1 and (c ,b)  from t2.

4. Project  away  the  common column  c,  leaving  a

relation  grandparentOf,  containing  a  tuple

(a , b)  if a is a grandparent of b.

Figure 6 shows the code that  performs these four steps.

Note that  the  replace,  join,  and  project methods

all return bursts of code that in turn perform the requested
actions. For this reason, they are substituted into a script
that is then evaluated.

db relation t1 p1 p3
db relation t2 p3 p2
db relation t3 p1 p2 p3
db relation grandparentOf p1 p2
eval [subst {
    [db replace t1 parentOf p3 p2]
    [db replace t2 parentOf p3 p1]
    [db join t3 t1 t2]
    [db project grandparentOf t3]
}]

Figure 6: Creating a 'grandparentOf' relation

We  now  have  enough  information  in  the  database  to
answer  the  question,  “who  are  the  grandchildren  of
Elizabeth?” To pose the question we do the following:

1. Create  a  relation  t4,  consisting  of  the  single

value Elizabeth in the column p1.

2. Join  that  relation to  the  grandparentOf  relation,
yielding the desired result.

3. Enumerate the values in the result.

bdd::fddd::database create db \
    [bdd::fddd::interleave \

 [bdd::fddd::domain p1 4] \
 [bdd::fddd::domain p2 4] \
 [bdd::fddd::domain p3 4]]

db relation parentOf p1 p2

Figure 3: Creating a database for ancestry

set i 0
set people {
    Andrew Anne Beatrice Charles Edward
    Elizabeth Eugenie George Harry
    James Louise William
}
foreach x $people {
    set p($x) $i
    incr i
}

Figure 4: Naming objects in a finite domain

interp alias {} parentOf {} \
    {*}[db loader parentOf]
parentOf $p(Elizabeth) $p(Charles)
parentOf $p(Elizabeth) $p(Anne)
parentOf $p(Elizabeth) $p(Andrew)
parentOf $p(Elizabeth) $p(Edward)
parentOf $p(Charles) $p(Harry)
parentOf $p(Charles) $p(William)
parentOf $p(Andrew) $p(Beatrice)
parentOf $p(Andrew) $p(Eugenie)
parentOf $p(Edward) $p(Louise)
parentOf $p(Edward) $p(James)
parentOf $p(William) $p(George)

Figure 5: Loading a relation



The program that carries out these steps is shown in Figure
7. When run, it produces the result,

Harry
Beatrice
Louise
Eugenie
James
William

6) Datalog: a high level 
language for deductive 
reasoning

Now that we have a relational database in hand, we need a
way  to  manipulate  and  query  it.  As  we  have  seen,  the
FDDD  library  provides  low-level  manipulators  (join,
project, union, and so on), but it is lacking in both power
and  user-friendliness.  We need  something  better  for  the
purpose of program analysis. It is tempting to say that for a
relational database, there is only one language that makes
sense: SQL. Nevertheless, for the application of program
flow analysis, SQL would be a horrible choice. The issue
is that most questions to be answered with flow analysis
are  fundamentally  graph-theoretic.  Their  answers,
generally  speaking,  depend  on  transitive  closures,  or
recursive queries.

The  classic  example  that  SQL has  trouble  with  is  the
relation,  “a is  an  ancestor  of  b.”  In  the  example  from
Section 5, we can do “a is a grandparent of b” fairly easily,
as shown in Figure 8.

SELECT x.parent AS grandparent,
       y.child AS grandchild
FROM parentOf x
LEFT JOIN parentOf y 
ON y.parent = x.child

Figure 8: 'Grandparent' relation in SQL

The answer to 'who are Elizabeth's  descendants?'  is  less
straightforward.  In  standard  SQL-99  (which  is  widely
ignored by database vendors), a query like Figure 9 could
do the job.

The syntax is awkward, and the standard SQL version is
not  widely  available  (although  various  databases
implement  their  own,  equally  awkward,  versions  of
recursive query). 

Instead,  the  project  embeds  an  implementation  of  the
Datalog  database  manipulation  language.  [CERI89]
Datalog is a subset of Prolog, intended to support efficient
manipulation  of  relational  data  structures.  A  Datalog
program comprises some set of facts, rules, and queries.  A

# Create a singleton relation to hold 'Elizabeth'
db relation t4 p1
interp alias {} x {} {*}[db loader t4]
x $p(Elizabeth)

# Create a relation holding Elizabeth's grandchildren
db relation result p1 p2
eval [subst {
    [db join result grandparentOf t4]
}]

# Enumerate Elizabeth's grandchildren
db enumerate row result {
    puts [lindex $people \
              [dict get $row p2]]
}

Figure 7: Who are Elizabeth's grandchildren?

WITH RECURSIVE temp(anc, desc) AS (
  SELECT parent, child FROM parentOf WHERE parent = 'Elizabeth'
  UNION 
  SELECT anc, child FROM temp JOIN parentOf ON parent = desc
) SELECT desc FROM temp

Figure 9: Recursive query in SQL



fact is simply an assertion that something is true about a
specific relation:

parent($a, $b).

A rule  gives  a  way  to  deduce  new  facts  from  what  is
known. Ancestry can be specified in two short rules:

ancestorOf(p1, p2) :- parentOf(p1, p2).
ancestorOf(p1, p2) :- 
  ancestorOf(p1, p3), parentOf(p3, p2).

And  a  query  simply  reports  information  to  a  calling
program:

ancestorOf($anc, p2)?

Recursion is  implicit:  any  rule  that  depends,  directly  or
indirectly on itself, is iterated to a fixpoint.

The Datalog compiler, of course, has to include a little bit
of  glue  to  interface  the  Datalog  and  Tcl  languages.  It's
fairly  simple,  and  designed  for  writing  Tcl  procedures.
Each  Datalog  program  can  refer  to  the  values  in  Tcl
variables, and each Datalog program is augmented with an
initialization  block  (a  Tcl  script  executed  before  the
Datalog program runs), a Tcl variable that will be used to
hold a row of a result (expressed as a dict), a Tcl script that
is executed once per query result, and a finalization block
(a  Tcl  script  execute  once  after  the  Datalog  program
terminates). A sample Tcl script wrapping the above three
lines of Datalog looks like Figure 10.

Given the procedure in Figure 10, the Tcl command:

puts [descendantsOf Elizabeth]

lists  all  of  Elizabeth's  children,  grandchildren and great-
grandchildren:

Andrew Harry Beatrice Louise Edward 
Eugenie Anne James Charles William 
George

7) Another digression: 
handling negation

Datalog, as originally envisioned, had no negated terms:
there was no way to say “A is true if B is false.” The lack
of negation stemmed from two things:  first,  a  relational
database  typically  has  no  way  of  dealing  with  the
combinatorial explosion of enumerating nonexistent rows,
and second, allowing uncontrolled negation would lead to
problems without a fixpoint:

A(x) :- ~A(x).

or problems without a unique fixpoint:

A(x) :- ~B(x). B(x) :- ~A(x).

Nevertheless, negation is needed for a great  many tasks.
For instance, let us consider the question, “who is an only
child?” The predicate, “a is an only child” is most easily
formulated  as  “a  has  a  parent,  but  has  no  siblings,”  as
shown in Figure 11.

The first problem, that of the combinatorial explosion, is
not  an  issue  for  BDD's.  The  BDD  of  a  relation's
complement is exactly the same size as that of the relation
itself. The second problem, the possibility of constructing
a system without a fixpoint, needs to be solved with some
rigor for what negation means. The current implementation
provides  stratified negation  semantics,  which  is  fairly
mainstream  for  Datalog  implementations.  In  stratified
negation, each rule is assigned a stratum number. A rule

db relation ancestorOf p1 p2
proc descendantsOf {ancestor} [bdd::datalog::compileProgram db {
    variable p
    variable people
    set anc $p($ancestor)
    set result {}
} {
    ancestorOf(p1, p2) :- parentOf(p1, p2).
    ancestorOf(p1, p2) :- ancestorOf(p1, p3), parentOf(p3, p2).
    ancestorOf($anc, p2)?
} d {
    lappend result [lindex $people [dict get $d p2]]
} {
    return $result
}]

Figure 10: Datalog program, embedded in Tcl, to solve the 'ancestorOf' relation



that depends only on facts has a stratum of zero. A rule X
that  depends  on  another  rule  Y  must  have  a  stratum
number that is at least Y's stratum number. If it depends on
the negation of rule Y, its stratum must be strictly greater
than Y's stratum number. This scheme avoids dependency
cycles involving negation.

In  the  example  from  Figure  11,  stratification  is

straightforward. The  parentOf relation, being a ground

term,  is  at  stratum 0.  The  siblingOf relation,  being

dependent  only  on  ground  terms,  is  at  stratum  1.  The

hasSibling relation  depends  only  on  non-negated

stratum-1 terms and is also at stratum 1. The onlyChild

relation  depends  on  a  negated  stratum-1  term  and  is
relegated  to  stratum  2.  The  content  of  the  relations  is
computed  in  order  by  stratum.  Negated  terms  are
computed using the “closed world hypothesis” in which a
term not  known to be  true  is  assumed to  be false.  The
resulting model is guaranteed to be logically consistent. 

Stratified negation may prove not to be sufficient, and the
author suspects that the package will need to provide an
option for well-founded negation, [GELD91] which allows
for recursion through negation, as long as the result yields
a model in which if any literals are true, their complements
are  false,  and  vice  versa.  (There  may be  literals  whose
value is undetermined by the program.)

8) Where is this going? 
The  current  status  of  the  project  is  that  the  BDD  and

FDDD libraries and the Datalog compiler are all available
in reasonably complete form, with test suites and manual
pages,  from  the  author's  Fossil  repository  at
https://chiselapp.com/user/kbk/repository/tclbdd/.  The
remainder of this paper is considerably more speculative,
and  reports  on  the  results  of  early  “proof  of  concept”
experiments  with  Datalog  and  the  analysis  of  Tcl
programs.

In  most  cases,  aggressive  optimization  will  depend  on
inferring the data types of values in Tcl programs. Without
some  sort  of  type  inference,  Tcl's  processing  of  code
includes  large  amounts  of  run-time  type  identification,
type  coercion  (“shimmering”),  and  packaging  of  values
into  Tcl_Obj  structures.  All  of  this  can  be  avoided,  for
example, in numeric-intensive code if we can prove facts
like “A is an integer at point B in the code.”

As  a  simple  example,  the  first  experiment  is  the  cos

procedure shown in Figure 12, which computes the cosine
of a number using a Maclaurin series approximation. This
example has the property that in an ideal world, the types
of  all  objects  would  be  identified  perfectly,  and  the
procedure  could  be  compiled  entirely  down to  machine
code. 

The first part of the experiment is to retrieve the bytecode

that Tcl's compiler generates for the  cos procedure, and

convert  it  to  a  form more  amenable  to  analysis:  in  this
instance, three-address code. The conversion logic onsists

mostly  of  a  [switch] command  and  bookkeeping  to

keep track of the depth of the Tcl execution stack, and is

db relation siblingOf p1 p2
db relation hasSibling p1
db relation onlyChild p1
proc onlyChildren {} [bdd::datalog::compileProgram db {
    variable p
    variable people
    set result {}
} {
    siblingOf(p1,p2) :- parentOf(p3, p1), parentOf(p3, p2), p1 != p2.
    hasSibling(p1) :- siblingOf(p1,_).
    onlyChild(p1) :- parentOf(_,p1), !hasSibling(p1).
    onlyChild(p1)?
} d {
    lappend result [lindex $people [dict get $d p1]]
} {
    return $result
}]
puts [onlyChildren]

Figure 11: Who is an only child?

https://chiselapp.com/user/kbk/repository/tclbdd/


not shown here. The initial converted program, prior to any

optimization, appears as xxx. In it,  {var X} denotes a

named variable; {temp N} denotes a value on the stack,

and  {literal  V} denotes  a  constant  value.  The

conversion  is  sloppy  and  straightforward.  For  instance,

[set j 0] was translated by the bytecode compiler to

“push 0 to the top of the stack; pop the stack and put the

popped  value  in  variable  j,”  and  this  translation  came

forward literally into the three-address code.

There are then some ground facts that are asserted about
the operations:

• reads(pc,v) – The instruction at pc reads the

value of v.

• writes(pc,v) – The instruction at  pc writes

the value of v.

• isCopy(pc) – The instruction at pc is a copy.

• noSideEffect(pc) – The instruction at pc is

free  of  unknown  side  effects  (such  as  aliasing
variables, establishing traces, evaluating scripts).

• seq(pc1,pc2) –  The  instruction  at  pc is

immediately  followed  by  pc2 on  at  least  one

execution path.

These facts will be used for the analyses that follow.

There are a few optimizations that can be done early, in
order to reduce the sheer volume of code that sophisticated
analyses  must  process.  The  first  of  these  is  copy
propagation  –  the  removal  of  useless  data  motion.  For
example, the sequence:

copy {temp 0} {literal 0}
copy {var j} {temp 0}

can (provided that  {temp 0} is not used elsewhere) be

replaced by:

copy {var j} {literal 0}

Performing copy propagation is ordinarily a fairly major
task in an optimizer, requiring sophisticated data structures
and voluminous code. In Datalog, it's mostly a matter of

identifying that a statement st reads a given value v, that

value v is a copy of value v2, and that  every definition of

either v or v2 that reaches st goes through either a copy

v:=v2 or  v2:=v.  The  Datalog  code  is  more  complex

than anything we've seen yet, but is still less than a page of
code. It appears in Figure 14 on page 10. The Tcl action for

the code is trivial: rewrite the statement at st, replacing v

with v2.

Copy propagation has done absolutely nothing to reduce
code size, but once it's been done, there will be (we hope)
a fair number of statements that are dead – they do nothing
but write values that are never read. Dead code elimination
is the next step in the process: find those points! It begins
with the analysis of reaching definitions: “the assignment

of a value  v at location  st is potentially read at location

st2”.  This one can be done in three Datalog statements

(Figure 13).

With reaching definitions available, dead code analysis is
also  straightforward.  A  statement  is  live  if  it  has

    proc cos {x {n 16}} {
set j 0
set s 1.0
set t 1.0
set i 0
while {[incr i] < $n} {
    set t [expr {-$t*$x*$x / [incr j] / [incr j]}]
    set s [expr {$s + $t}]
}
return $s

    }

Figure 12: Numeric-intensive procedure - optimization example

flowsTo(_, st, st2) :- seq(st, st2).
flowsTo(v, st3, st2) :- 
    flowsTo(v, st3, st),
    !writes(st, v),
    flowsTo(v, st, st2).
reaches(v, st, st2) :- 
    writes(st, v), 
    flowsTo(v, st, st2), 
    reads(st2,v).

Figure 13: Reaching definitions



uncontrolled side effects, if it writes a value that is read by
a live statement, or if it does something other than generate
a value. All statements that assign to an unused value are
dead and can be removed from the instruction sequence.

The effect of copy propagation and dead code elimination,
together with the related but simpler operation of reverse
copy  propagation,  in  which  a  copy  of  an  instruction's
result, rather than of its operand, is removed, is to decrease

code volume by a factor of two. (This decrease consists
almost  entirely  of  eliminating  temporary  variables
introduced  by  the  brutally  simple  translation  of  stack-
oriented  code.)  Figure  15 on  page  11 shows  the

transformation that takes place for the cos procedure.

% Determine for each pair of variables what statements copy
% between variables of the pair, in either direction.

isCopyBetween(st,v,v2) :- isCopy(st), reads(st, v2), writes(st, v).
isCopyBetween(st,v,v2) :- isCopy(st), reads(st, v), writes(st, v2).

% copyTransparent(st, st2, v, v2) means 'there is a path from st to
% st2 on which no code writes to either v or v2'.

copyTransparent(st, st2, _, _) :- seq(st, st2).
copyTransparent(st, st2, v, v2) :- copyTransparent(st, st3, v, v2),

                                         !writes(st3, v), !writes(st3, v2),
                                   noSideEffect(st3),

                                         copyTransparent(st3, st2, v, v2).

% writesOneOf(st, v, v2) means 'st writes either v or v2'

writesOneOf(st, v, _) :- writes(st, v).
writesOneOf(st, _, v) :- writes(st, v).

% nonCopyReaches(v, v2, st2) means 'on at least one code path,
% an assignment to either v or v2 that is not a copy between them
% reaches the statement st2'

nonCopyReaches(v, v2, st2) :- writesOneOf(st, v, v2),
                                    !isCopyBetween(st, v, v2),
                                    copyTransparent(st, st2, v, v2).

% copyReaches(v, v2, st2) means 'on at least one code path, a
% copy v := v2 reaches statement st2 without any intervening code
% changing v or v2'

copyReaches(v, v2, st2) :- isCopy(st), reads(st, v2), writes(st, v),
                                 copyTransparent(st, st2, v, v2).

% A statement is a candidate for copy propagation if it reads a
% variable v, variable v obtains its value by copying variable v2 on
% at least one code path, and every reaching definition of variable
% v and variable v2 goes through either v := v2 or v2 := v before
% reaching the statement.

copyPropagatable(st, v, v2) :- reads(st, v),
                                     copyReaches(v, v2, st),
                                     !nonCopyReaches(v, v2, st).

copyPropagatable(st, v, v2)?

Figure 14: Copy propagation in Datalog



The  next  significant  transformation  is  to  reduce  the
program  to  Static  Single  Assignment  (SSA)
form[CYTR91].  In this form, all  assignments of a value
have distinct  names.  If  more than one assignment  of  a
value  reaches  a  given  point  in  the  code,  the  multiple
reaching assignments are replaced by a pseudo-function φ
whose arguments enumerate the reaching definitons. This
form  allows  reading  out  directly  all  the  reaching
definitions of a given value, or all the places that a given
value reaches, and is critical to type analysis. The actual
requirements  for  the  placement  of   φ-functions  are
somewhat complicated (the reader is referred to [CYTR91]
for  the  details),  but  one  fairly  short  Datalog  program
serves to identify the points at which  φ-functions need to
be  inserted  and  another  serves  to  replace  references  to
values with references to the appropriate  φ results. The
resulting transformed program can be seen in Figure 16.

We  are  finally  ready  to  perform  type  analysis  on  this
program. The SSA form gives us more or less complete

information about data flows, and now all analysis of types
can  be  abstracted  without  detailed  reference  to  the
program's control flow. 

Figure 15: Code improved by copy propagation

0: copy {temp 0} {literal 0}
1: copy {var j} {temp 0}
2: copy {temp 0} {literal 1.0}
3: copy {var s} {temp 0}
4: copy {temp 0} {literal 1.0}
5: copy {var t} {temp 0}
6: copy {temp 0} {literal 0}
7: copy {var i} {temp 0}
8: jump {pc 26}
9: copy {temp 0} {var t}
10: uminus {temp 0} {temp 0}
11: copy {temp 1} {var x}
12: mult {temp 0} {temp 0} {temp 1}
13: copy {temp 1} {var x}
14: mult {temp 0} {temp 0} {temp 1}
15: add {var j} {var j} {literal 1}
16: copy {temp 1} {var j}
17: div {temp 0} {temp 0} {temp 1}
18: add {var j} {var j} {literal 1}
19: copy {temp 1} {var j}
20: div {temp 0} {temp 0} {temp 1}
21: copy {var t} {temp 0}
22: copy {temp 0} {var s}
23: copy {temp 1} {var t}
24: add {temp 0} {temp 0} {temp 1}
25: copy {var s} {temp 0}
26: add {var i} {var i} {literal 1}
27: copy {temp 0} {var i}
28: copy {temp 1} {var n}
29: lt {temp 0} {temp 0} {temp 1}
30: jumpTrue {pc 9} {temp 0}
31: copy {temp 0} {var s}
32: return {} {temp 0}

0: copy {var j} {literal 0}
1: copy {var s} {literal 1.0}
2: copy {var t} {literal 1.0}
3: copy {var i} {literal 0}
4: jump {pc 13}
5: uminus {temp 0} {var t}
6: mult {temp 0} {temp 0} {var x}
7: mult {temp 0} {temp 0} {var x}
8: add {var j} {var j} {literal 1}
9: div {temp 0} {temp 0} {var j}
10: add {var j} {var j} {literal 1}
11: div {var t} {temp 0} {var j}
12: add {var s} {var s} {var t}
13: add {var i} {var i} {literal 1}
14: lt {temp 0} {var i} {var n}
15: jumpTrue {pc 5} {temp 0}
16: return {} {var s}

0: copy {var j 0} {literal 0}
1: copy {var s 1} {literal 1.0}
2: copy {var t 2} {literal 1.0}
3: copy {var i 3} {literal 0}
4: jump {pc 13}
5: uminus {temp 0 5} {var t phi 13}
6: mult {temp 0 6} {temp 0 5} {var x input}
7: mult {temp 0 7} {temp 0 6} {var x input}
8: add {var j 8} {var j phi 13} {literal 1}
9: div {temp 0 9} {temp 0 7} {var j 8}
10: add {var j 10} {var j 8} {literal 1}
11: div {var t 11} {temp 0 9} {var j 10}
12: add {var s 12} {var s phi 13} {var t 11}
13: phi {var j phi 13} {var j 0} {var j 10}
14: phi {var s phi 13} {var s 1} {var s 12}
15: phi {var t phi 13} {var t 2} {var t 11}
16: phi {var i phi 13} {var i 3} {var i 13}
17: add {var i 13} {var i phi 13} {literal 1}
18: lt {temp 0 14} {var i 13} {var n input}
19: jumpTrue {pc 5} {temp 0 14}
20: return {} {var s phi 13}

Figure 16: [cos] procedure in SSA form



Figure 17 shows the dependency graph for the values in

the [cos] procedure.

The current procedure for type analysis has not yet been
formulated  in  Datalog,  because  initial  experiments
regarding  type  inference  were  conducted  before  the
Datalog  compiler  was  available.  Instead,  it  works  by
analyzing strongly connected components of the graph of
dependencies among values. 

What  is  implemented  so  far  is  a  simple  type  algebra

incorporating  the  types,  int,  entier,  double,

boolean and  string (together with a  numeric type

that represents the union of entier and double, and an

int&boolean type  that  represents  the  intersection  of

int and boolean, the values 0 and 1.  Error: Reference

source not found shows the hierarchy.

Working through the variables in dependency order gives
the following set of conclusions:

1. {var t 2} is a double.

2. {var x input} is of unknown type (without

further examination of the calling context).

3. {var j 0} is an integer.

4. {var j 8}, {var j 10} and {var j phi

13} form a dependency loop. Loops are handled

by  assuming  the  most  restrictive  data  type
possible for each value and then relaxing the type
constraints  that  lead  to  inconsistencies.  This
iteration deduces that all three of these values are
also integers.

5. A similar analysis deduces that  {temp 0 5},

{temp 0 6},  {temp 0 7},  {temp 0 8},

{var t 11}, and {var t phi 13} , which

form a dependency loop, are all doubles.

6. {var s 1} is a double.

7. The loop of variables  {var s 12} and  {var

s phi 13} are also doubles.

8. {var i 3} is both an integer and a boolean.

9. The loop of variables  {var i 13} and  {var

i phi 13} are integers.

10. {var n input} is of unknown type (without

examination of the calling context).

11. {temp 0 14} is a boolean.

This  analysis  actually  constitutes  a  fairly  complete  type
extraction for the given procedure. About the only way to

Figure 17: Variable dependencies abstracted from control flow



improve it would be to add retrograde analysis. We could
detect, for instance, that {var x input} flows only into a
context that will yield an error if it is not a number, and
generate  specialized  code  to  convert  it  only  once.
Similarly,  we could detect  that  {var  n  input} is  always,
only,  compared with a  number,  and generate specialized
code assiming that it, too, is numeric. 

9) Conclusions
The  Datalog  compiler,  and  the  underlying  inference
engine, presented in this paper are in relatively polished
form.  They  should  be  of  value  to  systems that  wish  to
analyze  large  data  sets  over  finite  domains,  and  can
support  complex  recursive  queries  over  those  data  sets.
Needless to say, no software is ever entirely “complete” in
terms of its  feature set, and this library is  no exception.
Specific areas that could be improved include optimization

of relational queries (the system as implemented does not
make  use,  for  instance,  of  combinations  of  Boolean
formulas  with  quantifiers),  the  support  of  imperative
languages  for  BDD  and  FDDD  manipulation,  and  the
extension  of  Datalog  to  well-founded  semantics  and
retractions.

The  application  of  the  library  to  Tcl  code  analysis,  by
comparison,  is  in  its  infancy.  The  example  put  forth  in
Section  8 merely  scratches  the  surface  as  a  “proof  of
concept” and indicates what may be possible in terms of
identifying the types of values. 

If this type identification can be done competently, there is
reason  to  hope that  a  useful  subset  of  Tcl  code  can  be
reduced to machine code by a Just-In-Time compiler. Such
a reduction could yield a tremendous (perhaps as many as
30-  or  40-fold)  performance  gain  in  numeric-  or  list-
intensive Tcl code, and would eliminate one major reason
for escape into C.  
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