
Tcl/Tk based Framework – A Lynchpin in Development of Instruments for Remote Sensing
Authors
Amit Dave (amitdave@sac.isro.gov.in), Jitendra Sharma, Ashutosh Dutt, Anil
Sukheja, Ashish Mishra and D.R.Goswami

PCEG/SEDA, Space Applications Centre (ISRO), Ahmedabad-380015, India

Abstract
Space Applications Centre, ISRO develops Electro-Optical sensors for Indian
Remote Sensing (IRS) program, Inter-planetary missions and airborne imaging
campaigns. The sensors are of various types, complexities and their development
has a typical develop-test-use cycle. A centralized system for Characterization and
Performance parameter Evaluation of sensors – named XSCoPE, provides an end to
end solution for data acquisition, parametric evaluation, visualizations and archival.

A set of in-house developed tools called 'Arsenal' meet the parametric evaluation
requirements. A pure Tcl shell around the Arsenal tools, called Arsenal Shell (ASH!)
glues them with the standard Unix tools to meet the specific requirements. An
ASH!Server has been built using Tcl on Linux based systems to facilitate
communication with the client applications. Tcl/Tk has been chosen because of its
simplicity in building the server applications, package based architecture, gluing,
error handling, GUI and output processing. With the help of simplified data structures
of Tcl, the server could be designed in such a way that the cluster of similar servers,
meet the load balancing requirements to support multiple and simultaneous sensor
development. Sensor specific requirements and common requirements are met with
the help of 'macros' which provide abstraction.

The paper describes how various Tcl features have been applied to realize complex
scientific software applications, exhaustively used in various sensor development
programs such as ISRO’s Mars Orbiter Mission (MOM) to meet the overall objectives
of sensor development.

Keywords
Remote Sensing, ISRO, performance parameters, Tickle, Widgets, GUI, network,
Tcl/Tk

[1] Introduction to XSCoPE
The sensors for space-borne, air-borne and inter planetary science applications pose
different developmental challenges. Their development life cycle includes
conceptualization, realization, testing and optimization. For different category of
sensors, the requirements differ in terms of following activities:

• Data Acquisition: Interfaces and data rates

• Data architecture

• Parametric evaluation, algorithms and optimizations

• Visualizations

Figure-1 shows the centralized system for characterization and performance
evaluation, XSCoPE.

Figure-1: XSCoPE System

The XSCoPE system supports these developmental activities from the bread board
level to the flight model of the sensors. It computes sensor performance parameters
like Signal to Noise Ratio (SNR), Modulation Transfer Function (MTF), Band-to-Band
Registration (BBR), Distortion, Spectral Response, Radiometric calibration
coefficients etc. Apart from the above listed requirements, following activities are
also required to be carried out during various development phases of a sensor:

• Data Archival;

• Making test results, reports and data available to users;

• Keeping session data up to date on all servers in cluster environment;

• Software configuration and system management.

To meet these requirements the XSCoPE system is designed with a layered
approach as discussed below and shown in Figure-2.

[2] Layered Architecture of XSCoPE

A. Layer-0 Arsenal Tools
A set of in-house developed tools called ‘Arsenal’ forms the bottom most layer. It is
meant for number crunching, data analysis and is optimized for performance and
actually deals with the data to perform various operations like data acquisition, data
realignment, rearrangement, computation of various parameters, formatting etc.

Figure-2: Layered Structure of XSCoPE

B. Layer-1 Arsenal Shell
Outer layer ASH! – a pure Tcl shell – is a collection of packages. Each package
meets one or more requirements by gluing Arsenal tools and standard Unix
commands together. A package represents a Tcl command and supports multiple
options in standard Tcl syntax. Certain common tasks applicable to all packages are
handled by the abstraction mechanism, implemented by overriding procs. Object
oriented approach makes an abstract package that provides option processing, help,
entry point, execution and cleanup mechanism. Options and internal variables of the
packages have been encapsulated using their private namespaces.

C. Layer-2 ASH!Server
Outermost layer is called an 'ASH!Server' built on top of the shell to extend the shell
features, by facilitating communication with the client applications. Clients provide a
graphical interface and invoke a series of commands for performing various end-user
tasks.

With this framework, an application to meet a new requirement can be easily
developed. Tcl/Tk has been used in building Layer-1 and Layer-2; as the nature of
the software is such. Tcl allows building large applications using package based
architecture, namespaces and error handling.

[3] Applications of Tcl/Tk Features
This section lists the Tcl/Tk features, which helped in developing various system
components.

A. Gluing
Tcl’s ‘exec’ command and its options allow invoking Arsenal tool and other Unix
commands, opening command pipeline, reading output and status from the pipe.
Moreover, the command output can be re-directed to different channels. This gluing
feature is useful in various packages.

B. Packages and Namespaces
All ASH! commands have been encapsulated in different packages and it is the
smallest entity, which can be individually developed, tested and maintained.
Packages have their own namespaces to keep variables and avoid cluttering. This is
essential for the large software projects during development and maintenance.
Moreover, being an interpreted language, packages can be re-loaded in the running
server without shutting it down. Package versioning ensures the appropriate and up-
to-date revision of the source code on all servers.

With the extension capability [1][2] using the C/C++ code, an ‘ipc’ package has been
developed to support inter-process communication. It supports semaphore, message
queue and shared memory using standard POSIX calls.

C. Error handling
Tcl’s error handling mechanism, which provides error command and associated
global variables viz. the errorCode and errorInfo, is useful for generating error stack
while delivering the error. This makes the end product robust and almost ‘crash-
proof’.

D. Abstraction and Overriding
Object oriented features provide abstraction to the packages for standardizing
certain common features across the packages. The command option processing,
initialization, cleanup, help and installation-check procedures have been developed
using this feature.

E. Data Structures
Standard data structures supported by Tcl viz. the strings, lists and associative-
arrays have been used throughout the software. Over and above the basic
structures, those provided by ‘dict’ and ‘tdom’ have been used for registry and larger

datasets, which has enabled in-memory data representation for holding client
session data.

F. Communication over network
Client-server communication has been built using 'socket' for implementing
communication mechanism. ‘http’ provides a way of representing ASH! objects as
standard URLs and is used for communication with the web server.

G. Widgets
With Tk, GUI applications can be built very fast and with the help of BWidget
package support, almost all GUI controls are possible. A GUI for the test application
for the ASH!Server has been developed using the standard Tk and BWidget
controls.

The application uses Canvas widget to produce an icon based view of the data
objects on the server. Tree widget is used to present another view for navigation and
associate callback actions with the data objects. The ‘ASH!>’ prompt and console
has been created with the Text widget.

H. Image display
Tk provides in-built support for bitmaps and GIF file formats. With other extensions, it
is possible to display popular file formats like JPG and PNG. With this support the
sensor data can be presented as an image in an application. This has been used
extensively in the client applications built using Tk.

I. Cross platform support
The client application called ASH!Client is targeted to run on Linux as well as
Windows. The Tcl/Tk cross-platform feature provides mechanisms to configure
application for different platforms. With the help of ‘AndroWISH’ the application could
be migrated to Android tablet without any change.

J. Database support
‘oratcl’ package has been used to interface with the Oracle database and methods
are established for database assisted features.

K. Un-manned system
‘expect’ extension [3] has made the system administration – an unmanned job.
Couple of ‘expect’ scripts combined with Linux’s rsync is powerful enough to archive
sensor data on storage and syncing the contents in participating cluster servers.

To summarize, following advantages have been derived using Tcl/Tk features:

• A protocol [4] has been devised over TCP/IP for controlling the lab instruments
like Micro-positioner, Mono-chromator, Power Supply, Digital Multi-Meter etc.
Controlling agents have been developed to establish communication between

XSCoPE and instruments using interfaces like RS-232, USB, GPIB and
Ethernet network. Automation [5] scripts have been built for certain test
benches requiring repeated tasks involving human intervention.

• A server has been designed in such a way that the cluster of similar servers
make an ASH!Cluster. The cluster meets the load balancing requirements for
supporting multiple and simultaneous sensor developments.

• Series of ASH! extension commands put together with other Tcl control
structures, a set of macros have been devised. With the help of namespaces,
they are classified as global or local that provides abstraction to enable
sensor specific processing.

• With ease of learning [1][6][7], Tcl allows reduced application development time
in response to a new requirement. The entire application has been built with
version 8.4 which is available just out of the Linux box. Additional packages
have been made part of the installation with ‘auto_path’ support.

• A lot of Tcl scripts have been developed to perform the offline data analysis
tasks to cater to various project requirements.

[4] ASH! Packages
The packages listed in Table-1 are part of the Arsenal Shell as of now. The
packages fall in different classes as per their application. These classes are:

1. Data acquisition
2. Pre-processing
3. Parametric evaluation
4. Offline data analysis
5. Visualizations
6. Results generation
7. Data archival
8. System management and monitoring

Table-1: Classification of ASH! Packages

Class Packages
Data acquisition acquire, icp, satinfo
Pre-processing bpc, dark, filter, split
Parametric evaluation ashexpr, bbr, bitops, calana, chi, compu, fft, ltc,

psf, qstat, radc, snr, srm, stagc, swrc
Offline data analysis extract, header, selection
Visualizations img, imgproc, plot, splot, view
Results generation convert, xresult
Data archival dbase, store
System management
and monitoring

bg, commonlib, context, help, macro, misc,
project, system, vars, webif

[5] Current Applications

A. ASH!> Test bed
For testing and verification of the package functionality, a test bed called a
ASH!Client has been developed. It offers an ASH!> prompt, command output area, a
visualization for server side objects, command history and other GUI based actions,
as shown in Figure-3.

Figure-3: ASH!Client using Tk

B. Application for Evaluating MOM Instruments
Figure-4 shows the test bench application developed for performance evaluation of
MOM sensors.

Figure-4: MOM Test and Evaluation Application

C. Example Macro
A typical macro with ASH! commands put together, is shown in Figure-5 as an
example. The macro acquires data for LISS3 multispectral camera for three spectral
bands and produces objects like data and plots.

Figure-5: Typical Example Macro – A Language of Checkout

[6] Future Applications
1. With AndroWISH, the Tcl/Tk code can be migrated to the Android tablets. This

will allow limited area mobility around the test bench in laboratories for instrument
interface.

2. With JSON support, the ASH! client-server interface can be greatly simplified.
3. TclHttpd [8] provides a way of extending the applications through web to ease the

client-server interface.
4. With Tcl’s very small memory foot-print, the interpreter can be embedded in an

on-board [9] hardware/computer. This is an ideal solution for the platforms like
Landers and Rovers for planetary exploration missions.

5. Using the extensive database support, work flow requirement can be met to ease
the simultaneous sensor development activities.

[7] Conclusion
ASH! project is developed in-line with the Tcl philosophy of extensibility. Packages
and macros provide the extension capability to ASH! to make it amenable for
continuous evolution for the future sensor development requirements.

With the layered structure, the computational needs, performance requirements,
system related requirements and development responsibilities are handled at
different layers. Tcl ‘connects’ or ‘stitches’ the layers together.

So far, the clients have been developed in Tk, PHP, Java and LabVIEW. Application
porting on Android for different applications has also been explored. This proves the
strength of Tcl in designing framework. To meet the overall sensors checkout and
evaluation requirements, the framework plays a crucial central role.

Acknowledgements
The authors would like to thank to Shri A.S. Kiran Kumar, Director, SAC-ISRO for
providing opportunity to work for the development of Checkout and Evaluation

software for all IRS and inter-planetary sensors and providing valuable inputs time to
time. We sincerely acknowledge constant guidance and encouragement by Shri. Saji
A. Kuriakose, Deputy Director, SEDA.

References
[1] Clif Flynt, “Tcl/Tk – A Developer’s Guide”, 2nd Edition
[2] D.J. Asson, A. Bose, A. Krueger, “A Tcl/Tk-Based, Intelligent Graphical Editor for

Preparing HST Programs”, Astronomical Data Analysis Software and Systems V,
ASP Conference Series, Vol. 101, 1996

[3] Don Libes, “Exploring Expect”, O’Reilly Inc., ISBN 1-56592-090-2
[4] Amit Dave, Jitendra Sharma, Ashutosh Dutt and Anil Sukheja, “Generic protocol

for seamless control of test instrumentation towards realization of electro-optical
sensors”, IEEE Recent Advances in Intelligent Computational Systems, Sep
2011.

[5] Design Space Explorer, Quartus II FPGA DesignTool by Altera
[6] John K. Ousterhout, “Tcl and the Tk Toolkit”, Addison-Wesley, ISBN 0-201-

63337-X
[7] Web portal www.tcl.tk online reference.
[8] Brent Welch, “The TclHttpd Web Server”, Scriptics Corporation
[9] David E. Smyth, “Tcl and Concurrent Object-Oriented Flight Software: Tcl on

Mars”, Mars Pathfinder Flight Software Team, JPL/NASA

