
18’th Annual Tcl Association

Tcl/Tk Conference

Proceedings

Manassas, VA

October 24-2, 2011

©Copyright 2011 Tcl Association

All Rights Reserved

No part of this publication may be reproduced, stored in a retrieval system

or transmitted in any form, or by any means electronic, mechanical, photo-

copying, recording orothewise without the prior consent of the publisher.

Individual authors retain full re-distribution rights for their contributions to

these proceedings.

Proceedings of the 16’th Annual Tcl/Tk Conference

ISBN: To be assigned.

Special thanks to Dawson Cowals for designing

the Tcl Association logo.

For graphic design or web development consult-

ing please visit him on the web at

 http://www.dawsoncowals.com/

Cover and section art courtesy of the Civil War Trust.

http://www.dawsoncowals.com/

Table Of Contents

iii

NaTcl: Native Client Tcl Port ……………………………………………………….. 4

 A. Ferrieux

A History of ‘Tcl in the Browser’ …………………………………………………… 13

 S. Landers

Itcl in Javascript ………………………………………………………………………. 28

 A. Wiedemann

Tk Widgets in Javascript………………………………………………………………. 55

 A. Wiedemann

JTcl and Swank: What’s new with Tcl and Tk on the JVM…………………………... 77

 B. A. Johnson, T. Poindexter, D. Bodoh

Jim Tcl A Small Footprint Tcl Implementation ………………………………………. 94

 S. Bennett

Tcl at the NSCL: a 30 (15?) year retrospective……………………………………… 109

 R. Fox, Staff and Students of the NSCL

A CMake-Based Cross Platform Build System for Tcl/Tk …………………………. 121

 C. Yapp

WyattERP: A Non-Sissy ERP Application Development Platform ………………… 130

 K. Bateman, B. Barney

Fluid Dynamics experiments With Tcl ………...…………………………………….. 152

 R. Fox, V. Khane

因循 Agent Based Modeling with Coroutines ………………………………..……….159

 S. D. Woods

An Overview of the Next Scripting Toolkit ………………………………………… 169

 G. Neumann, S. Sobernig

Tcl/GSoC 2011 ………………………………………………………………………. 203

 A. Kupries

A Novel Method for Representing Hierarchies in a Relational Database Using

 Bignums and SQLIte ………………………………………………………….. 209

 S. Huntley

An Efficient text mining application for log file analysis in an emulation

 environment using Tcl/Tk with C …………………………………………….. 219

 M. Shayam

Maintainable, Shareable and Easily Creatable & Updateable toolbar,

 menubar, statusbar— pillars of any GUI application ………………………….. 224

 T. Goyal

Efficient Communication Strategies of Enterprise Tcl/Tk Application

 with Multi Process System: — A study ……………………………………… 235

 K. Gaurav, T. Gupta, M. Bhatia

A Versatile Beowulf Task Distribution Application ………………………………… 241

 C. Flynt

iv

Tcl 2011

Manassas, VA

October 24-28, 2011

Keynote Talk

Proceedings of the Tcl 2011 1 Manassas, VA October 24-28 2011

Proceedings of the Tcl 2011 2 Manassas, VA October 24-28 2011

NaTcl : Native Client Tcl Port

Proceedings of the Tcl 2011 3 Manassas, VA October 24-28 2011

NaTcl : Native Client Tcl Port
Alexandre Ferrieux, France Telecom

1. What is Native Client ?

In 2010, Google started the NativeClient, aka "NaCl" project, which is a new sandboxing paradigm for
browser expansion. The idea is to get the best of two worlds: the speed of (nearly) native code, and the safety
of sandboxed environments. The various trust boundaries are illustrated below:

This little miracle is achieved by jailing the native code (".nexe") inside two sandboxing layers:

the outer sandbox:

This is a traditional process-level sandboxing (chroot, ulimit, etc). It encloses the entire NaCl
plugin-process.

•

the inner sandbox:

This one is the real jewel inside NaCl. It is a machine-code-level verification pass and execution
context that is run when loading the .nexe, applying an extensive list of checks, among which:

•

no dangerous instructions (like the one invoking syscalls)♦
all constant jumps fall on N-byte boundaries and in allowed range♦

Proceedings of the Tcl 2011 4 Manassas, VA October 24-28 2011

all computed jumps are preceded by an AND operation restricting them to N-byte boundaries
and allowed range

♦

the runtime narrows the addressable memory (x86 segment registers)♦
These constraints together make it impossible for malevolent code to hide syscalls, either in shifts of
the instruction decoding frame, or in data (which are necessarily not executable).

For code to be eligible as an .nexe, it must be compiled and linked with a modified gnu toolchain
guaranteeing the invariants above. Any violation implies instant rejection at load time.

The N-byte boundary scheme does impact both code size (padding by NOPs) and speed (L1i cache).
The NaCl team says they are moderate though. Our own Tcl case demonstrates that the performance
loss (wrt truly native Tcl) is indeed bearable.

This double safety legitimates Google's boasting a bulletproof plugin architecture; moreover, the complete
isolation from the OS implies that .nexes are only processor-specific: all exchanges with the outside world
(the Chrome browser) are done through a new API (aptly named "Pepper" in this salty context). So an x86
.nexe will run unmodified on Windows, Linux, and x86-MacOS.

The Pepper API, which is still in fast expansion, progressively opens up various goodies to the .nexe:

exchanges with the Javascript context•
sound•
direct access to the frame buffer•
(soon) access to accelerated 2D and 3D graphics•

However, some things will by definition never be allowed within NaCl:

naked sockets•
access to the whole local filesystem•

This is obviously the price to pay for the absolute trust that NaCl aims to deserve.

2. NaTcl

2.1 Why ?

In April 2011, Google opened NaCl to outside developers. The motivation for porting Tcl to it stemmed from
a general frustration about not (easily) having Tcl in browsers. To the non-JS world, NaCl comes across as an
opening to alternate languages.

(for other -- and promising ! -- methods to bring Tcl into the browser landscape, see Steve Landers' paper.)

But the real trigger was Colin Mc Cormack's unwinking enthusiasm and support, backed by his deep
knowledge of the whole field (WubTk in perspective).

2.2 Wait a minute

NaTcl : Native Client Tcl Port

Proceedings of the Tcl 2011 5 Manassas, VA October 24-28 2011

The salient issue that comes to mind when thinking about an NaCl port of Tcl is clearly the isolation from the
OS. First, one may ask, How are we supposed to do interesting things in such a neutered environment ?

The answer is, of course: use the browser (and its JS context) as a proxy to the real world. Despite the
limitations mentioned above, it can still do many things: GUI (of course); fetch intra-domain URLs; access
app-restricted local config or user-selected normal files.

Bottom line: we don't need those missing syscalls anyway !

2.3 How ?

Given the unavailibility of syscalls at link level, two approaches were considered:

cut "high" : separate Tcl's language and data manipulation core from more peripheral OS-related
primitives;

•

cut "low" : take it as a whole, faking syscalls.•

While the first approach is cleaner, it implies a fair amount of code surgery, which in turn makes it hard to
keep in sync with the mainstream codebase. Cutting "low", on the other hand, means a very small set of
changes, at the expense of error message clarity ('no such file or directory' instead of 'invalid command name
"open"').

After a couple of nanoseconds weighing the options, cutting low sounded like the way to go. This means that
the starting point of the porting effort is a list of trivial syscall/libc definitions, typically setting errno to
something not-too-alien, and returning the adequate value for failure (NULL or -1). See naclMissing.c.

Once syscall plugging was done, a few ancillary adaptations followed:

Compatibility headers defining the (unused) structs passed to the emulated syscalls, not provided by
the NaCl toolchain's includes. See naclCompat.h

•

Toplevel bootstrapping glue calling Tcl_CreateInterp(), wrapping init.tcl, and passing data back and
forth to JS. See naclMain.c

•

JS support code. See loader.js.•
Incremental build system adaptations: parameterize and call ../unix/configure; patch the generated
Makefile.

•

The bootstrapping code circumvents the absence of local filesystem access by stringifying the contents of
init.tcl. This was preferred over a full-fledged VFS by the same reasoning as above: to keep it incremental,
refrain from pulling in a significant mass of code.

Note that init.tcl is the only file needing this special handling, because once the interp is initialized, Tcl scripts
can take over. For example, [source] is emulated (in init.tcl) by a Tcl coroutine that yields back to JS while the
requested URL is fetched by the browser (with a vanilla XHR).

A further motivation for this approach is size and modularity: .nexes tend to be hefty, so as soon as at least
two NaTcl-based applications exist (wishful thinking), it is best to share the generic Tcl .nexe in the browser's
cache and let the individual apps [source] their specific code (which may be cached too) at init time.

NaTcl : Native Client Tcl Port

Proceedings of the Tcl 2011 6 Manassas, VA October 24-28 2011

2.4 Putting the pieces together

Once we have a working Tcl interpreter, properly adapted to the peculiar syscall-less link environment, the
next step is to integrate it into the JS context's lifecycle. This task is outstandingly easy when Everything Is A
String ;-). To be fair, JS also takes part in this, with its own eval() function. Indeed, we can set up a very
simple "JS trampoline":

 (JS) String result = natcl.eval("some Tcl code");
 (JS) eval(result);

•

It is important to note that these two lines are not in a tight "while(true)" loop; instead, they are typically
invoked from within a JS event handler, which in turn may be set up by (a side effect of) the "eval(result)"
line. As a consequence, as long as "some Tcl code" takes a small time to complete (or to [yield]), the JS
interpreter and associated browser-borne GUI stay responsive. The coupling between NaTcl and the browser
is thus identical to the Tcl/Tk one.

2.5 First real example: the "balls" demo

One of the many showcases of HTML5 features is the Google "balls" demo at

http://www.html5canvastutorials.com/labs/html5-canvas-google-bouncing-balls

It is a modest JS script simulating bouncing balls relaxing to fixed positions drawing a Google logo, and
disturbed by the hovering mouse:

It is an interesting porting exercise for NaTcl, because:

it features quickly-moving graphics (at 30fps)•
it also involves a bit of physics calculations•
it leverages the browser's beautiful antialiased circles•

An additional self-imposed constraint was to use a Tk-like API in the NaTcl script. This is at variance with the
natural JS canvas API, which is lower-level (exposes a Repaint callback and immediate-mode graphics). But
as it turns out, bridging this gap is fairly simple. Basically, it amounts to mapping the current state (items,
coordinates) of the Tcl-level canvas to a JS data structure used in the JS Repaint function.

This setup allows the interactive loop to only exchange with Tcl a (stringified) array of integers, feeding them
into a Repaint function that was typically JIT-compiled once for all. The resulting speed is adequate, in that
30fps can still be held on an average-powered laptop.

NaTcl : Native Client Tcl Port

Proceedings of the Tcl 2011 7 Manassas, VA October 24-28 2011

http://www.html5canvastutorials.com/labs/html5-canvas-google-bouncing-balls

2.6 Performance analysis

(to be completed with current Nacl+Chrome)

Bottom line:

the NaTcl balls demo uses roughly thrice the CPU used by the original pure-Javascript code at the
same frame rate.

•

pure Tcl code, not hampered by the I/O with the JS context, runs marginally slower than native Tcl on
the same platform.

•

One thing about the string I/O bottleneck: the NaCl team promised the advent of TypedArrays in the Pepper
API, which will allow to populate JS data with native values (like lists and integers) from within NaCl. This
points to a promising optimization of the transmission of a bunch of coordinates, directly from Tcl's Lists and
Integers to JS's. TBC, when Google delivers.

2.7 NaTk

The "balls" demo shows that, with NaTcl in hand, a JS newbie (like me) can whip up a non-ridiculous
coupling with the HTML5 canvas. The fundamental reason is that while the String is a handy common
ground, each side knows to back it with more efficient representations.

Now, within this general string-coupling strategy, many forms of Tcl-side syntax and JS-side tricks are
obviously possible. In particular, if you replace the JS newbie with a JS+Tcl expert like Colin, you get NaTk
(based on ideas from WubTk). Learn more about it in Steve's paper.

3. Ecosystem

Despite the OS agnosticism, the portability dream is a bit spoilt by having NaCl only on Chrome (or
Chromium) right now. Though the project is opensource, and Google initially targeted it as a multi-browser
plugin, the reaction from competing browsers has been, as could be expected, lukewarm to say the least.
Tough.

Still, NaCl retains some headroom in two areas:

The Chrome App Store: there, dependency on Chrome is by design. Moreover, the download size is
also part of the tradition, since the apps are installed locally (in a more persistent form of cache). Find
a killer app, write it in NaTcl, publish, reach fame, then don't forget to mention "Powered by Tcl" ;-)

•

The Android browser. The NaCl inner sandbox also exists for ARM CPUs (though in a less polished
state than x86 and x86_64), and the NaCl team is committed to integrating it into the Android browser
as soon as the x86 branches' bugcount reaches zero.

•

4. Afterword

When we were all mulling over Tcl and browsers in the Spring 2011, various ideas were discussed, among
which Steve's amazing ones. In hindsight, NaTcl is less sexy than them, especially with its position under fire
in the browser war. Still, it strikes a different balance between effort (minimal) and outcome (medium). And
anyway, the observation of intimate contact between Tcl and Javascript was personally enriching.

NaTcl : Native Client Tcl Port

Proceedings of the Tcl 2011 8 Manassas, VA October 24-28 2011

ACKs

Colin McCormack, for the initial spark, many good ideas and optimizations, and NaTk.•
Cameron Laird, for patient proofreading and key side-questions•
Brad Chen (from Google), for his sheer skills at taming rogue instructions on any processor•
Steve Landers, for exploring the opposite approach and succeeding !•

Bibliography

NaCl page on Google Code: https://sites.google.com/a/chromium.org/dev/nativeclient•
NaCl inner sandbox concepts by Brad Chen:
http://www.youtube.com/watch?v=L8m9U7p_Ntk&feature=related

•

NaTcl branch on core.tcl.tk: http://core.tcl.tk/tcl/timeline?r=ferrieux-nacl•
Wiki page by Colin et al, to get started with NaTcl: http://wiki.tcl.tk/28211•

NaTcl : Native Client Tcl Port

Proceedings of the Tcl 2011 9 Manassas, VA October 24-28 2011

https://sites.google.com/a/chromium.org/dev/nativeclient
http://www.youtube.com/watch?v=L8m9U7p_Ntk&feature=related
http://core.tcl.tk/tcl/timeline?r=ferrieux-nacl
http://wiki.tcl.tk/28211

Proceedings of the Tcl 2011 10 Manassas, VA October 24-28 2011

Tcl 2011

Manassas, VA

October 24-28, 2011

Tcl and Browsers

Proceedings of the Tcl 2011 11 Manassas, VA October 24-28 2011

Proceedings of the Tcl 2011 12 Manassas, VA October 24-28 2011

A History of 'Tcl in the Browser'
(and a new, perhaps even better, approach)

Steve Landers
steve@digitalsmarties.com

Abstract

Tcl has been running in browsers since the early days of the Internet. And yet
this deployment model is still not mainstream in the Tcl world. With the
dominance of the iPad in tablet computing, and the well known limitations on
scripting languages in the iOS computing environment, the need for a browser-
based Tcl solution is becoming greater.

This talk will survey the various approaches to implementing Tcl in a browser,
including historical solutions such as WebRouser and the venerable Tcl Plugin,
Java-based solutions such as Æjaks, Javascript solutions such as IncrTcl in
Javascript, and native code solutions such as NaTcl. The pros and cons of each
approach will be compared, along with other approaches such as implementing
the TEBC in Javascript. Finally, the talk will introduce a new effort involving
the use of LLVM and the Emscripten technology to translate a Tcl interpreter
(in this case, Jim Tcl) to optimized Javascript.

The Motivation

The need to run Tcl in a browser has been apparent since the early days of the Internet. But the
motivation for doing so has changed over time.

In 1993 there was no scripting language for the available browsers, and it was soon recognized
that Tcl could fill the void.

A team led by Mike Doyle at the Center for Knowledge Management at the University of
California, San Francisco, began discussing the first web application architecture in 1993. One of
the team, David Martin, knew John Ousterhout from his student days at University of California,
Berkeley. Martin suggested they look at creating a Tcl interpreter (with socket communications
and security added) as one of the first plug-ins, so as to provide an easy means for creating
interactive content. That ultimately turned into WebWish, which was developed to run on Eolas'
WebRouser in 1995 [1].

Proceedings of the Tcl 2011 13 Manassas, VA October 24-28 2011

So the initial motivation was to get a scripting language in the browser, and arguably Tcl was the
first. With a bit of luck and a lot less politics Tcl could have been ubiquitous. As it was,
Javascript became the default scripting language when the first version of Javascript (then called
LiveScript) shipped in the beta releases of Netscape Navigator in September 1995.

While Javascript is a capable language, Tcl had the added
attraction of wide portability from embedded systems
through to mainframe computers. It wasn't just the potential
for portability of code that was the attraction, perhaps more
importantly it was the portability of skills.

And so the emphasis changed from getting “a” scripting
language to getting “our” scripting language in the browser.
Doing so would have benefits beyond portability, including
increased productivity and new deployment options.

It is the experience of many in the Tcl/Tk community that
the productivity available from Tcl-related technology is
significantly more than that available from Javascript. In
particular, from Tcl's string handling and Tk's development
model that includes the command-based objects, the gridded geometry manager and
asynchronous events with call-backs.

Deployment through a browser offers the hope of “zero install”, or “minimal install”
applications. In large system installations getting approval for inclusion of a new application in
the Standard Operating Environment (SOE) can take years of effort, so this can be the difference
between a product from a smaller developer being ignored or adopted.

But in recent years there is another, perhaps ultimately more significant, motivation: relevancy
in a world increasingly focussed on mobile applications. Mobile computing has been the fastest
growing area of IT for the last few years and is dominated by two platforms – Apple's iOS and
Google's Android.

As has been widely reported, there are significant barriers (including technical, legal and merely
perceived) to implementing applications in scripting languages on iOS. Put differently, Apple's
clear preference is for native (i.e. compiled) applications to be implemented in Objective-C and
scripted applications in Javascript. To that extent, the iOS Webkit-based browser (Mobile Safari)
is optimized to support Javascript through technologies such as the Nitro engine [3].

It is the opinion of this author that a Tcl port to iOS is technically feasible (although significant
ongoing effort would be required to implement and maintain bindings to the iOS APIs). And it
would not break Apple licensing agreements to deploy applications as a Starpack [4] providing
that Tcl's ability to run arbitrary code was disabled.

Anyway I know only one
programming language worse than
C and that is Javascript. [...] I was
convinced that we needed to build-
in a programming language, but the
developers, Tim first, were very
much opposed. It had to remain
completely declarative. Maybe, but
the net result is that the
programming-vacuum filled itself
with the most horrible kluge in the
history of computing: Javascript.

Robert Cailliau[2]

Proceedings of the Tcl 2011 14 Manassas, VA October 24-28 2011

But even if this effort were practical (as opposed to merely feasible), there is still the issue that
deployment of every application would need to go through the iTunes App Store. And herein is a
significant problem: many Tcl/Tk applications are custom built for specific customers. This just
doesn't fit with the App Store model.

So it seems that in the case of iOS, the only practical solution is to find a way to deploy Tcl/Tk
applications in a browser.

The situation on Android is a less restrictive. The preferred application language is Java but C is
supported, and there is the Scripting Layer for Android, which has allowed a number of
languages to be ported. There was a port of Tcl to the Android [5] however there was no GUI
support, no interface to native APIs and the installation was complicated (requiring a jail broken
device). Unfortunately it appears the Tcl Android port no longer works with later Android
releases.

To summarise, the motivation for Tcl in a browser, even from the earliest days of the Internet,
were:

• portability (both of code and skills)
• productivity (and, in particular, the benefits of Tk)
• deployment

And to this we add the elephant in the room – mobile applications, in particular on the iPad.

The Timeline

This timeline will look at the more significant implementations of Tcl in the browser. Perhaps it
would be more accurate to say deploying “Tcl applications through a browser”, because a
number of these solutions still run Tcl on the server. This has implications for offline operation,
which is increasingly important for mobile applications.

1995 – Eolas WebRouser

In 1995 Eolas released a version of WebRouser, an applet-enabled web browser based on Eolas'
enhanced version of NCSA Mosaic that could run Tcl/Tk scripts using Eolas' WebWish Tcl
plugin. WebRouser and WebWish were presented in the cover story in the February 1996 issue of
Dr Dobb's Journal [6]. WebWish was the first Web Tcl implementation and one of the first
plugins supported in a browser.

Pros
• Tcl and Tk
• security model
• web application support

Cons
• installation requires a plugin
• no longer available (Mosaic based)

Proceedings of the Tcl 2011 15 Manassas, VA October 24-28 2011

1996 – The Tcl Plugin

In 1996 Jeff Hobbs produced a “proof of concept” Tcl plugin for Netscape following a visit to
the Tcl group that was then at SunLabs. Jacob Levy (part of that group) produced the first Tcl/Tk
plugin for Netscape and Laurent Demailly worked on the 2.0 implementation [7]. Version 3.0
[8] can still be installed in Firefox and Internet Explorer.

The Tcl Plugin made use of the Safe-Tcl [9] interpreter to provide a sandboxed security model.
Safe-Tcl disables the Tcl commands that could potentially be harmful to the underlying system,
but provides a mechanism by which these can be re-enabled in a controlled way by suitably
authorised personnel.

On the positive side, the plugin still works and can be used to deploy applications on Firefox and
Internet Explorer, although the installation isn't straightforward.

Pros
• Tcl and Tk
• Safe-Tcl security model
• still available on Firefox and IE

Cons
• installation – requires a plugin
• no WebKit (Safari, Chrome) port
• not available on mobile devices

1998 – Proxy Tk

In 1998 Mark Roseman and his team at TeamWave software implemented ProxyTk, a Java
applet user interface toolkit for Tcl [10]. The small Java applet (50k bytes in size) ran in a
browser to provide the user interface, and communicated with a Tk-like API running in a Tcl web
server. Unlike the two previous browser plugin examples, in ProxyTk the application was split
between the user interface running in the browser and the application Tcl code running on the
server, with an efficient protocol connecting the two. The Tk commands on the server were
“translated” into Java widgets in the client.

ProxyTk was ahead of its time but unfortunately it was swallowed in a corporate takeover and
never reached its full potential.

Pros
• Tcl and Tk
• client / server
• real Tcl on the server

Cons
• subset of Tk features
• installation – requires a plugin
• requires Java to be enabled
• no longer available

2003 - TkWeb

In 2003 Roy Keene wrote TkWeb [11], an attempt at rendering Tcl/Tk scripts using HTML. And
around the same time Wilfred J. Hansen published a technical note about Rendering Tcl/Tk

Proceedings of the Tcl 2011 16 Manassas, VA October 24-28 2011

Windows as HTML [12]. Both of these were experiments aimed at proving the practicality of
retaining the Tk API while rendering Tk widgets in a browser by generating HTML.

TkWeb took unmodified Tcl/Tk code and produced a Tcl/CGI application that could be run in a
browser, without the need of a plugin. As such, it could be considered as the “logical” ancestor
to more recent projects such as WubTk, discussed later.

Pros
• Tcl and Tk
• Javascript, potential iOS support

Cons
• subset of features
• experimental
• no offline support

2006 – Æjaks

In 2006 Tom Poindexter developed Æjaks [13] – which “combines the server-side Ajax-based
windowing system, Echo2, with the powerful simplicity of the Tcl language” . Æjaks is a thin
layer over Echo2 [14] , a Java and Javascript-based platform for building interactive web-based
applications. It translates Echo2 objects into Tcl objects, accessible behind a Tk-like object
interface.

Æjaks used the Jacl interpreter [15] (an alternative implementation of Tcl 8.0 written in Java) so
many recent Tcl features aren't available. The plan is to update Æjaks to JTcl [16], a modernised
version of Jacl which provides a high degree of compatibility with Tcl 8.4.

A consideration with Æjaks is that, although Echo2 provides excellent cross-browser
compatibility and uses modern Javascript techniques, it doesn't have the same amount of
community acceptance or contributed widgets as other Javascript Web frameworks – in
particulary jQuery [17] and jQueryUI [18].

 Æjaks is a very capable system, and definitely one to consider for Tk-based web development.
But being client/server it can't fully address the iPhone / iPad market.

Pros
• Tcl + Tk-like
• Javascript, potential iOS support

Cons
• subset of features
• no offline support

2007 – JsTcl

In 2007 Stéphane Arnold implemented JsTcl [19] , a Tcl implementation in Javascript. JsTcl was
a transliteration of Picol [20], a Tcl interpreter in 550 lines of C code by Salvatore Sanfilippo.

Proceedings of the Tcl 2011 17 Manassas, VA October 24-28 2011

While very limited, it did demonstrate that a Tcl interpreter in Javascript is practical.

Pros
• Javascript, potential iOS support

Cons
• experimental, with limited features

2010 – WubTk

In 2010 Colin McCormack developed WubTk, a Tk-like API that maps Tk commands run in a
Tcl interpreter on a server to jQueryUI widgets running in a browser.

jQuery is a cross-browser JavaScript library designed to simplify the client-side scripting of
HTML. jQueryUI is a library that “provides abstractions for low-level interaction and animation,
advanced effects and high-level, themeable widgets” built on top of jQuery.

WubTk combined the approach of TkWeb (i.e. generating html) with the power and simplicity of
jQueryUI.

WubTk is (as the name indicates) implemented on top of the Wub [21] pure-Tcl web server,
although it isn't tied to Wub. It supports a gridded geometry manager and many common
widgets. Each WubTk instance has a persistent state which is retained between requests from the
browser.

WubTk has been used to deploy custom commercial applications, and was used to demonstrate a
Tcl/Tk application deployed on an iPad and iPhone during August 2010: most likely the first
time this occurred.

As demonstrated at the Tcl2010 conference [22], WubTk allows the integration Tcl, Tk, jQuery,
HTML5 [23] and CSS3 [24]. This allows Tcl/Tk developers to use modern web features such as
multimedia and 3D graphics without losing the productivity that Tk is well known for.

Pros
• Tcl and Tk
• Javascript, iOS support

Cons
• subset of Tk
• no offline use
• Tcl only on the server-side

2011 – NaTcl

Developed in 2011 by Alexandre Ferrieux, NaTcl [25] is Tcl running in the Native Client (NaCl)
[26] sandbox of the Google Chrome browser [27]. This allows the Tcl interpreter to run securely
within the browser environment at speeds similar to the standard Tcl interpreters on the same
platform, with full access to the Chrome DOM [28].

Proceedings of the Tcl 2011 18 Manassas, VA October 24-28 2011

NaTcl was one of the first scripting language running on the Native Client. As noted in the
original announcement, it is the first whose name fits well with the Google naming conventions
(sodium chloride and sodium tetrachloride) [29].

NaTcl is a significant development in running Tcl within a browser. And although currently
limited to Chrome, there is potential for ubiquity if the Native Client becomes accepted as a
standard in the WebKit-based browser world (which includes Safari and Chrome). But that is
definitely not guaranteed, given Apple's desire to control what goes on iOS.

Pros
• speed
• full Tcl
• interface with the DOM

Cons
• no Tk binding
• Chrome only, so no iOS
• plugin (of sorts)

2011 – incrTcl in Javascript

Also developed during 2011 has been incrTcl in Javascript [30], by Arnulf Wiedemann. Starting
life as an enhanced version of JsTcl, it is an attempt to have a more complete version of a Tcl
interpreter written in Javascript.

As well as supporting more basic Tcl features, it supports incr Tcl features and more recent
features such as namespaces, dicts and the expand operator. In addition, a number of Tk widgets
are supported, including implementations of TkTable, BWidget tree and the paned window.

This is an impressive effort, starting with the original 1000 lines of code in JsTcl it is currently
(as of October 2011) around 22,000 lines of code.

Pros
• Tcl and Tk
• Javascript, potential iOS support

Cons
• partial implementation
• speed

2011 – NaTk

Not only does Tk provide a compelling abstraction for specifying user interfaces in native
applications, as WubTk demonstrated the Tk model is also beneficial for web applications.
But WubTk was tied to the client/server Wub-based architecture, so in 2011 Colin McCormack
re-implemented the WubTk concepts and produced a “Tk over HTML/CSS” called NaTk, the
goal being to demonstrate it with NaTcl.

While still a “proof of concept”, NaTk shows a way forward. In theory, it could be used to
provide a Tk implementation for any browser-based Tcl implementation such as NaTcl or incrTcl
in Javascript.

Proceedings of the Tcl 2011 19 Manassas, VA October 24-28 2011

And, as has been noted previously, it goes beyond Tk allowing the development of hybrid
applications that allow more advanced HTML5 features such as multimedia, CSS
transformations and 3D to be used from Tcl via a Tk-like API.

Summary

So in 2011 we are left with several options for deploying Tcl applications via a browser:
• the Venerable Plug-in - not easy to deploy and is restricted to Netscape/Mozilla/Firefox or

Internet Explorer (so no iOS deployment)
• Æjaks - requires a server so no offline use and no client-side Tcl
• WubTk, also requires a server but with the advantage of HTML5 integration and iOS

deployment
• NaTcl - restricted to Chrome (so no iOS deployment) and no Tk (yet)
• incrTcl in Javascript, which is still under development

Arguably none are ready for prime time, albeit they are close.

Oh no, not again1

With this in mind, in mid 2011 Gerald Lester, Steve Huntley and Steve Landers began discussing
ways to provide Tcl/Tk on the iPad. All agreed that the only practical way is to use Javascript
and map Tk onto HTML5, since a port of Tcl (let alone Tk) isn't likely to be practical.

Three basic approaches to providing Tcl were identified:

• translate application Tcl code to Javascript

• implement the TEBC engine in Javascript

• implement Tcl in Javascript

Lester was to address the first, Landers the second and all three considered the last, especially in
the light of incrTcl in Javascript. This paper addresses the second approach and an unexpected
development that introduced a new option for the third.

TEBC in Javascript

TEBC is an abbreviation for TclExecuteByteCode – the part of the Tcl interpreter that actually
executes the Tcl Bytecodes.

1 “Curiously enough, the only thing that went through the mind of the bowl of petunias as it fell was 'Oh no, not
again'. Many people have speculated that if we knew exactly why the bowl of petunias had thought that we
would know a lot more about the nature of the universe than we do now” - Douglas Adams, The Hitch Hiker's
Guide To The Galaxy

Proceedings of the Tcl 2011 20 Manassas, VA October 24-28 2011

This approach is initially quite attractive, because it would (in theory) allow any arbitrary Tcl
byte-code to be compiled using a real Tcl interpreter and then run in a browser.

After discussions with Miguel Sofer, it became apparent that there are real difficulties with this
option, and it isn't worth pursuing. Perhaps that is understating the forcefulness of Miguel's
argument.

The first problem is the complexity of the TEBC code. To quote Donal Fellows, '… an example
of how to not write your code — TEBC currently looks like a bomb exploded in it .. but hard to
do in any other way; optimized bytecode executors usually are huge balls of spaghetti' [31].

Leaving aside this complexity, there is another practical consideration: not all Tcl commands are
byte-coded, and so Javascript implementations would still be needed for those. This in itself
pushes the TEBC solution closer to the “Tcl in Javascript” approaches.

And finally, there is the intangible but nevertheless real concern about the constraints upon
developing (or even replacing) the TEBC engine that would result from having a second widely
deployed implementation “in the wild”.

The Unexpected Development

In May 2011 Fabrice Bellard announced a PC emulator written in Javascript that was fast enough
to run Linux in a browser [32] "I did it for fun, just because newer JavaScript engines are fast
enough to do complicated things” Bellard said [33].

The emulator is available at on Ballard's home page at http://bellard.org. Once Linux is
downloaded it boots in a surprisingly fast 5 seconds when run on Safari 5.1 on a 2.8 GHz iMac
i7. The Javascript code for the emulator weighs in at around 120KB. An outstanding
achievement by any standard.

The technique used by Bellard was hand-coded Javascript using W3C Typed Arrays. A
discussion on Stack Overflow goes into more details about the technical aspects [34].

While this development isn't directly related to the topic of Tcl in a browser, it did show that a
modern Javascript interpreter is fast enough to emulate PC hardware. And if that is the case,
then surely it would be fast enough to run a Tcl interpreter?

But implementing a Tcl interpreter in Javascript from scratch would be a significant project.

Fortunately, there is an alternative.

Emscripten

Steve Huntley had already flagged Emscripten [35] (a C to Javascript translator) and Steve
Landers began looking into it as a way to take an existing Tcl interpreters written in C and
translate it to Javascript.

The goal of the Emscripten project is simple: to allow any C/C++ code to run on the web.

Proceedings of the Tcl 2011 21 Manassas, VA October 24-28 2011

Emscripten is a compiler that converts LLVM [36] bitcodes into Javascript. It can use either the
llvm-gcc or clang compilers, and so supports both C and C++ (or any other language supported
by these compilers).

The performance of the generated code is acceptable, without being stellar. Currently it is around
10 times slower than gcc -O3. But this will almost certainly get better with improvements over
time to LLVM, Emscripten, Javascript optimisers and Javascript engines.

Already a number of languages have been ported to Javascript using Emscripten, including
Python, Ruby and Lua. The goal became to add Tcl to that list.

The first decision was which Tcl to use. While the core Tcl release is an obvious choice, there
are a number of potential problems in using it for this project:

• it is a relatively large code base

• it contains feature that are not relevant to a browser environment (e.g. threads, file I/O)

• it isn't easily modularised

One of the small Tcl interpreters like Picol would have also been an option, but this would have
been too limiting.2

But there is an alternative that is modular, small and with most key Tcl features: Jim Tcl.

Jim Tcl

Originally developed by Salvatore Sanfilippo, and now maintained by Steve Bennett, Jim is a
small footprint re-implementation of Tcl that is particularly suited for embedded environments
[37].

Jim implements a large subset of Tcl and adds many advanced features like references with
garbage collection, closures, a built-in Object Oriented programming system, functional
programming commands, and first class arrays.

Jim is also quite small, around 10k lines of code and a binary size of between 100-200 kB
depending on the modules used.

Jim passes many Tcl unit tests, and many Tcl programs run unmodified, but it is best to think of
Jim's relationship with Tcl as one of programmer portability than necessarily program portability.

So the plan became to treat the browser as an embedded system and to compile Jim Tcl to
Javascript using Emscripten.

2 the author has subsequently found that Tom Poindexter built Picol using Emscripten at about the same time

Proceedings of the Tcl 2011 22 Manassas, VA October 24-28 2011

Jim JS

Clearly the project needs a better name than Jim JS but (in a move somewhat atypical for an
open source project) the decision was made to actually get the software working instead of
investing time and effort in a cute name or flashy website. But I digress …

Emscripten requires specific versions of LLVM and Clang or LLVM-GCC, along with one or
both of the SpiderMonkey or V8 Javascript engines. Given these specific requirements an
Ubuntu virtual machine was created to avoid clashes with existing compiler toolchains, and also
to facilitate sharing the development environment. As an aside, the ability to check-point and
restart the virtual machine (a feature of VMware and other products) greatly facilitated the
testing of the configuration.

Once installed, it was a matter of selecting the Jim Tcl modules, creating a build script that calls
the Jim Tcl Makefile as appropriate, then waiting for it to break.

And break it did. But fortunately there are good examples in the Python build system, plus
Emscripten includes a make proxy tool that converts normal build commands to those
appropriate for Emscripten. The result was 2.4 MB of rather dense and obtuse Javascript.

Invoking the generated Javascript in a browser is relatively straight forward: define an html
form containing an input field for the Tcl code, along with two Javascript functions: one to
evaluate the entered text by passing it to a predefined function in the generated Javascript, one to
print the results.

 function execute(text) {
 printed = false;
 Module.run(text);
 if (!printed) {
 print('<small><i>(no output)</i></small>');
 }
 }

 function print(text) {
 console.log(text);
 var output = document.getElementById('output');
 if (output) output.innerHTML += text + '
';
 printed = true;
 }

In a typical application (rather than a test environment) the Module.run() function would be
invoked from Javascript, either directly or as the result of an AJAX operation. The generated
Javascript can make calls to any Javascript function, and so it would be straightforward to add a
facility to make DOM calls from Tcl.

In early tests it was found that simple commands like “set i 10” worked, but compound
commands like “set i 10 ; set j 20” did not, nor did expr and many other commands. The root
cause seemed to be memory management issues, as a diagnostic from the Emscripten runtime
support code flagged that something was trying to allocate zero btyes.

Proceedings of the Tcl 2011 23 Manassas, VA October 24-28 2011

A discussion with Steve Bennett quickly identified the problem: rather than test that the
requested allocation size is not zero, Jim Tcl relies on the memory management library to return
zero bytes if it is. Once this was identified it was easily fixed in the Jim JS runtime code.

The next issue was that many commands worked, but others such as expr caused Jim to exit with
no error message. The solution was found by enabling various DEBUG_SHOW options within
the Jim Tcl C headers. This caused Jim to display debugging information:

For example:

command = expr 1
==== Tokens ====
[0]@1 ESC 'expr'
[1]@1 SEP ' '
[2]@1 ESC '1'
[3]@1 EOF ''
==== Script ====
[0] LIN
[1] ESC expr
[2] ESC 1
==== Expr Tokens ====
[0]@0 INT '1'
[1]@0 EOL ''
_strtoull is not a function jim.js:32571

This shows that a C library function (strtoull) has not been implemented in the Emscripten
Javascript runtime, but by undefining HAVE_LONG_LONG when building Jim the equivalent
(and implemented) strtoul is generated.

Futher testing showed there were several runtime functions that were partially implemented. For
example, not all strtol(3) parameters are supported. The solution is to implement a wrapper
function in Javascript that accepts the calls used by Jim Tcl and maps them to the appropriate
Emscripten runtime function.

This shows the basic steps in finishing the port of Jim Tcl to Javascript:

• run a test and look for the missing Javascript functions
• adjust the Jim configuration to avoid generating missing functions

• or implement a wrapper function in Javascript to convert to existing but
incompatible runtime functions

• or implement a new function in Javascript

At this point in time (October 2011) this is an ongoing activity.

Performance and Optimization

Anecdotally, performance is quite acceptable. For example, testing on an iMac 2.8 GHz i7
results in the following using ActiveTcl 8.6b1.2 and Jim in the browser:

Proceedings of the Tcl 2011 24 Manassas, VA October 24-28 2011

time {set a 10} 100000

ActiveTcl 8.6b1.2 0.25151566 microseconds per iteration

Jim/Firefox 18 microseconds per iteration

Jim/Safari 16 microseconds per iteration

time {set a 10; set b $a} 100000

ActiveTcl 8.6b1.2 0.42748254 microseconds per iteration

Jim/Firefox 30 microseconds per iteration

Jim/Safari 27 microseconds per iteration

So that's 60-80 times slower than "native" (let's say an order of magnitude) on a simple
operation, with essentially no optimization.

As mentioned, the generated Jim Javascript code is around 2.4 Mb in size. Whilst this isn't
outrageous, it can be improved significantly by running it through a Javascript optimizer such as
Google's Closure compiler []. The resulting jim.js is around 650 kB, it obviously loaded more
quickly but was not measurably faster to execute. Other Javascript optimizers are yet to be tried.

Summary and Conclusions

The need for Tcl/Tk deployment in a browser is no less now than it was in the early nineties.

And in spite of several efforts over the years the average Tcl developer is still not in a position to
deploy an application in a browser. But with the growth in mobile computing, and in particular
iOS, the need has never been greater.

There are at least three projects underway that could meet this need in varying degrees (NaTcl,
Jim JS and incrTcl in Javascript). And in many ways all three are complementary.

If one was to crystal-ball gaze, there is a scenario where Jim JS is used to get ubiquity, NaTcl for
the case when performance is needed, with parts of incrTcl in Javascript for it's excellent widget
support.

But dreaming even more, imagine a hand-crafted, fast Javascript implementation of Tcl (that
took the lead from the Linux in a Browser project) combined with a more complete NaTk
(providing Tk over HTML and HTML5/CSS3 integration).

And not just for deploying applications in a browser. As shown by Entice [38] and other tools,
desktop applications with embedded browsers are both viable and attractive. So perhaps the next
generation of Tk should not be based on X11, Windows or Cocoa, but on Javascript, HTML and
CSS.

Tk9 anyone?

Proceedings of the Tcl 2011 25 Manassas, VA October 24-28 2011

References

[1] WebRouser Announcement – http://1997.webhistory.org/www.lists/www-talk.1995q3/0566.html
[2] Interview with Robert Cailliau -

http://en.wikinews.org/wiki/Wikinews:Story_preparation/Interview_with_Robert_Cailliau
[3] Javascript Engine - http://en.wikipedia.org/wiki/JavaScript_engine
[4] Starpack – http://wiki.tcl.tk/3663
[5] Tcl Android – http://wiki.tcl.tk/27643
[6] WebRouser – Dr Dobb's Journal, Issue #244, February 1996

[7] Levy, J. A Tk Netscape Plugin. Proceedings of the Fourth Annual Tcl/Tk Workshop. July, 1996.
http://www.usenix.org/publications/library/proceedings/tcl96/full_papers/levy/index.html

[8] Tcl/Tk Plugin Version 3 – http://www.tcl.tk/software/plugin/
[9] Safe-Tcl – http://labs.oracle.com/techrep/1997/smli_tr-97-60.pdf

[10] Roseman, Mark Proxy Tk: A Java applet user interface toolkit for Tcl. Proceedings of the Seventh
Annual Tcl/Tk Conference, February 2000,
http://www.usenix.org/events/tcl2k/full_papers/roseman/roseman_html/

[11] TkWeb – http://www.rkeene.org/projects/tkweb/
[12] Hansen, Wilfred J. Rendering Tcl/Tk Windows as HTML. Proceedings of the Tenth Annual Tcl/Tk

Conference, July 2003 http://www.tcl.tk/community/tcl2004/Tcl2003papers/rendering.doc
[13] Æjaks – http://aejaks.sourceforge.net/Aejaks_Home
[14] Echo2 – http://echo.nextapp.com/site/echo2
[15] Jacl – http://wiki.tcl.tk/1637
[16] JTcl – http://jtcl.kenai.com/
[17] JQuery – http://jquery.com
[18] JQueryUI – http://jqueryui.com
[19] JsTcl – http://wiki.tcl.tk/17972
[20] Picol – http://wiki.tcl.tk/17893
[21] Wub – http://wiki.tcl.tk/wub
[22] Landers, Steve WubTk - Tcl/Tk Apps Anywhere. Proceedings of the Seventeenth Annual Tcl/Tcl

Conference, October 2010,
http://www.tclcommunityassociation.org/wub/proceedings/Proceedings-
2010/SteveLanders/WubTk/wubtk.pdf

[23] HTML5 – http://en.wikipedia.org/wiki/HTML5
[24] CSS3 – http://en.wikipedia.org/wiki/CSS3
[25] NaTcl – http://wiki.tcl.tk/28211
[26] Google Native Client – http://en.wikipedia.org/wiki/Google_Native_Client
[27] Google Chrome – http://www.google.com/chrome
[28] DOM – http://en.wikipedia.org/wiki/Document_Object_Model
[29] Google native code browser plug-in gets tickled – The Register, April 14, 2011

http://www.theregister.co.uk/2011/04/14/tcl_on_native_client/
[30] incrTcl in Javascript – http://wiki.tcl.tk/28293
[31] TEBC – http://wiki.tcl.tk/22133
[32] Fabrice Bellard – Javascript PC Emulator – Technical Notes - http://bellard.org/jslinux/tech.html
[33] cnet News - Javascript: Now powerful enough to run Linux, May 17, 2011,

http://news.cnet.com/8301-30685_3-20063563-264.html

Proceedings of the Tcl 2011 26 Manassas, VA October 24-28 2011

[34] StackOverflow discussion on Bellard's performance tricks – http://stackoverflow.com/q/6245191
[35] Emscripten – http://github.com/kripken/emscripten/wiki
[36] LLVM - http://llvm.org/
[37] Jim Tcl – http://jim.berlios.de/
[38] Landers, Steve Entice – Embedding Firefox in Tk . Proceedings of the Thirteenth Annual Tcl/Tcl

Conference, October 2006 -
http://www.tcl.tk/community/tcl2007/papers/Steve_Landers/Entice.pdf

Proceedings of the Tcl 2011 27 Manassas, VA October 24-28 2011

Itcl in Javascript

An implementation of Tcl/Itcl using Javascript.

A paper for the Eighteenth Annual Tcl/Tk Conference

Proceedings of the Tcl 2011 28 Manassas, VA October 24-28 2011

http://wiki.tcl.tk/27865
http://wiki.tcl.tk/27865
http://wiki.tcl.tk/27865

Abstract

Incr Tcl in Javascript (also called: itcl in Javascript) is a
work in progress, which started about February 2011.
It's intention is to extend the existing [Tcl in Javascript]
an interpreter for the Tcl language written in
Javascript with a lot of additional features and
commands as well as an implementation of itcl in
Javascript. During implementation there was the need
for optimizing parsing and evaluation of Tcl
statements, which resulted in a partial parsing
strategy.

Proceedings of the Tcl 2011 29 Manassas, VA October 24-28 2011

Contact information

Arnulf Wiedemann

Lechstr. 10

D-86931 Prittriching

Email: arnulf@wiedemann-pri.de

Proceedings of the Tcl 2011 30 Manassas, VA October 24-28 2011

Inhaltsverzeichnis
Abstract...2
Contact information...3

1The Idea..6
2How it started...7
3Design Goals for Implementation of Itcl in Javascript......................................9
4Performance issues...16
5Tcl Javascript Objects..17

5.1 [TclCallframe js Object]...17
Parameters:..17

5.2 [TclCommand js Object]..17
Parameters:..17

5.3 [TclDict js Object]..18
Parameters:..18

5.4 [TclEvalStatement js Object]...18
Parameters:..18

5.5 [TclInterpAlias js Object] ..18
Parameters:..18

5.6 [TclInterp js Object]..18
Parameters:..18

5.7 [TclNamespace js Object]..19
Parameters:..19

5.8 [TclNode js Object]..19
Parameters:..19

5.9 [TclObject js Object]..19
Parameters:..19

5.10 [TclPackage js Obejct]...20
Parameters:..20

5.11 [TclParser js Object]..20
Parameters:..20

5.12 [TclParseStatement js Object] ..20
Parameters:..20

5.13 [TclResolve js Object]..20
Parameters:..20

5.14 [TclStatement js Obejct]..20
Parameters:..20

5.15 [TclTest js Object]..21
Parameters:..21

5.16 [TclTestResult js Object]..21
Parameters:..21

5.17 [TclTrace js Object]...21
Parameters:..21

5.18 [TclVariable js Object]...21
Parameters:..21

5.19 [TclWord js Object]..22
Parameters:..22

5.20 [TclWordPart js Object]...22
Parameters:..22

6Itcl Javascript Objects for Tcl..23
6.1 [ItclClasses js Object]..23

Proceedings of the Tcl 2011 31 Manassas, VA October 24-28 2011

Parameters:..23
6.2 [ItclClass js Object]...23

Parameters:..23
6.3 [ItclCommand js Object]...23

Parameters:..23
6.4 [ItclFunction js Object]...23

Parameters:..23
6.5 [ItclFunctionParam js Object]...24

Parameters:..24
6.6 [ItclObject js Object]...24

Parameters:..24
6.7 [ItclOption js Object]...24

Parameters:..24
6.8 [ItclVariable js Object]...24

Parameters:..24
6.9 TclItclDict..25

Parameters:..25
6.10 TclItclHelper..25

Parameters:..25
7Status..26

Proceedings of the Tcl 2011 32 Manassas, VA October 24-28 2011

1The Idea
During looking for a suitable tool to run Tcl in a browser I found [Tcl in
Javascript] also named JsTcl. I found it interesting but with too few features
from Tcl, so I decided to enhance that. JsTcl is an implementation of a Tcl
interpreter written in Javascript and the parser is based on [Picol]. An
implementation in Javascript has the big advantage, that it is running on most
browsers, also there are some incompatibilities to take care of between the
browsers. One advantage is, that you don't need to compile and link and
besides the browser incompatibilities you don't have to worry about the
platform you are running on.

Proceedings of the Tcl 2011 33 Manassas, VA October 24-28 2011

2How it started
When looking for a frontend/client for [ATWF] and [Reporting Tools with Tcl] I
did spend some time checking all the available stuff. For a [Tcl] client it was
easy there I decided to use a [Tclkit]/[Starkit], but in a browser, the only
existing possibility is the [Tcl/Tk plugin], but there I knew that there were
some problems and it was not much updated in the past.

So I was thinking about generating [HTML] code on the server side with [Tcl].
At that time I was also checking what of the existing [javascript] based
libraries could be used especially [jQuery] and [YUI]. Both had a lot of
interesting features. I also found [Tcl in Javascript] and was thinking about
using that as an interface for making either [jQuery] or [YUI] functionality
available with a [Tcl] wrapper.

When looking closer at that and playing with it I did like it a lot, but was soon
missing [Tcl] functionality I wanted to use.

That was the start of the [incr Tcl in Javascript] project. At the beginning I was
only adding some (from my point of view) functionality, which I was missing
most.

The general idea already used/implemented by Stéphane Arnold was to have
TclObjects (TclObj) implemented as [javascript Object]s ([TclObject js Object]),
which hold a [Tcl] value that can be converted into the different types needed
like:

•string

•integer

•real

•boolean

•list

I have added to these types:

•dict

•stmt

•word

•word_part

The „dict“ type holds - as in the Tcl C-implementation - the internal
representation of a Tcl dictionary.

I started with implementing [namespace]s. This was done by having a
[javascript Object] [TclNamespace js Object] that did have properties for the
relevant information and was used in a similar way as the TclNamespace
struct in the C implementation. It contains references to the parent
[namespace] and a list of the child namespace references. There was some
basic implementation of a callframe available, I modified that to use a
[TclCallframe js Object], which had additional properties like the currently
executed statement for introspection, the used [namespace] for that callframe
etc.

For [namespace]s also the [Tcl] parser ([TclParser js Object]) had to be

Proceedings of the Tcl 2011 34 Manassas, VA October 24-28 2011

extended to understand the [namespace] syntax for command and variable
names.

The [TclNamespace js Object] was designed to allow different types of
namespace:

•Tcl.NAMESPACE a “normal” [Tcl] [namespace]

•Tcl.ITCL_CLASS an [itcl] class [namespace]

•Tcl.ITCL_EXTENDED_CLASS an [itcl] extendedclass [namespace]

•Tcl.TYPE_CLASS an [itcl] type [namespace]

For the [itcl] namespace types there was designed a resolve_commands
reference for allowing implementation of namespace command resolvers.

This Object includes method for registering class commands and for
registering subcommands, which is used for implementing namespace
ensembles. A list of superclasses is provided here as well as entries for a class
constructor and a class destructor.

Later on there was added support for namespace variables which are handled
with a reimplementation in [javascript] of the equivalent C-functions
lookupVariableEx, lookupSimpleVariable, GetNamespaceForQualName and
FindNamespaceVar.

Proceedings of the Tcl 2011 35 Manassas, VA October 24-28 2011

3Design Goals for Implementation of Itcl in
Javascript

The internal types of a [TclObject js Object] (in the C-Implementation a
TclObj) are:

•OBJECT_TYPE_TEXT

•OBJECT_TYPE_LIST

•OBJECT_TYPE_INTEGER

•OBJECT_TYPE_REAL

•OBJECT_TYPE_BOOL

•OBJECT_TYPE_DICT

•OBJECT_TYPE_STMTS

•OBJECT_TYPE_STMT

•OBJECT_TYPE_WORD

•OBJECT_TYPE_WORD_PART

•OBJECT_TYPE_EXPR_TREE

Parsing rules for Tcl script input are corresponding to the [Dodekalog].

The reason for partially parsing the Tcl input is mostly performance and to
some extent later on easier handling of the execution of a statement. Partially
parsing is done in the following way: all the tokenizing for Tcl is done, but no
variables are expanded, no bracket commands are executed and braced parts
are handled as one token. And also within quoted strings the parts, which
have later on to be expanded are parsed into separate “word_part” [TclObject
js Object]s. Same is done for array names and array references.

Tokens returned from parsing are:

•TOKEN_WORD_SEP

•TOKEN_STR

•TOKEN_EOL

•TOKEN_EOF

•TOKEN_ESC

•TOKEN_CMD

•TOKEN_VAR

•TOKEN_EXPAND

•TOKEN_PAREN

Proceedings of the Tcl 2011 36 Manassas, VA October 24-28 2011

•TOKEN_BRACE

•TOKEN_VAR_ARRAY

•TOKEN_VAR_ARRAY_NAME

•TOKEN_ARRAY_NAME

•TOKEN_VAR_COMPOSED

•TOKEN_BRACED_VAR

•TOKEN_QUOTED_STR

•TOKEN_COMMENT

•TOKEN_DECIMAL

•TOKEN_INTEGER

•TOKEN_REAL

•TOKEN_BOOLEAN

•TOKEN_HEX

•TOKEN_OCTAL

•TOKEN_MINUS

•TOKEN_PLUS

•TOKEN_MUL

•TOKEN_DIV

•TOKEN_MOD

•TOKEN_LT

•TOKEN_GT

•TOKEN_LE

•TOKEN_GE

•TOKEN_NE

•TOKEN_EQ

•TOKEN_NOT

•TOKEN_RP

•TOKEN_AND

•TOKEN_OR

•TOKEN_EXOR

•TOKEN_AND_IF

•TOKEN_OR_IF

•TOKEN_STR_EQ

•TOKEN_STR_NE

•TOKEN_STR_IN

•TOKEN_STR_NI

Proceedings of the Tcl 2011 37 Manassas, VA October 24-28 2011

•TOKEN_STR_PARAM

•TOKEN_STR_CMD

•TOKEN_NO_WORD_SEP

•TOKEN_EXPR

•TOKEN_STMTS

For “normal” Tcl code the tokens from TOKEN_WORD_SEP to
TOKEN_COMMENT are returned

Tokens TOKEN_DECIMAL to TOKEN_STR_NI are returned for expression like
parts in if, while and in the expr command. The last few ones are used
internally for partially parsed statements.

Proceedings of the Tcl 2011 38 Manassas, VA October 24-28 2011

Examples:

•String Token Value

•$abc TOKEN_VAR abc

•${abc def} TOKEN_BRACED_VAR

▪TOKEN_BRACE

▪TOKEN_STR abc

•${abc def} TOKEN_BRACED_VAR

•x(y) TOKEN_ARRAY_NAME x0x01y

•$x(y) TOKEN_VAR_ARRAY

•${x}(y) TOKEN_VAR_ARRAY_NAME

•[set a 1] TOKEN_CMD

•{a y} TOKEN_BRACE a y

•“abc” TOKEN_QUOTED_STRING abc

•“abc[x a]$y{d e f}yyy” TOKEN_QUOTED_STRING

▪TOKEN_STR abc

▪TOKEN_CMD x a

▪TOKEN_VAR y

▪TOKEN_BRACE d e f

▪TOKEN_STR yyy

•xyz TOKEN_STR xyz

•{*} TOKEN_EXPAND “”

Some commands use a statement part as en expression to be evaluated and to
return a value of true or false like if and while for the condition or the Tcl expr

Proceedings of the Tcl 2011 39 Manassas, VA October 24-28 2011

command. For these the condition is parsed to an expression tree existing of
nodes ([TclNode js Object]). When tokenizing an expression string first all
parts are put into nodes objects and these [TclNode js Object]s are placed in a
tree with the operator as the parent node and the operands as the child nodes.
A paren “(“ is also a parent node. The nodes are first put in parsing order in
the expression tree and afterward the expression tree is reorganized
according to the precedence rules o the operators.

Operators are:

•+ TOKEN_PLUS

•- TOKEN_MINUS

•* TOKEN_MUL

•/ TOKEN_DIV

•% TOKEN_MOD

•< TOKEN_LT

•> TOKEN_GT

•<= TOKEN_LE

•>= TOKEN_GE

•!= TOKEN_NE

•== TOKEN_EQ

•! TOKEN_NOT

•(TOKEN_PAREN pseudo operator used for precedence handling

•) TOKEN_RP pseudo operator used for precedence handling

•& TOKEN_AND

•| TOKEN_OR

•^ TOKEN_EXOR

•&& TOKEN_AND_IF

•|| TOKEN_OR_IF

•eq TOKEN_STR_EQ

•ne TOKEN_STR_NE

•in TOKEN_STR_IN

•ni TOKEN_STR_NI

Precedence rules are (as in C):

Proceedings of the Tcl 2011 40 Manassas, VA October 24-28 2011

TOKEN_OR_IF 1

TOKEN_AND_IF 2

TOKEN_OR 3

TOKEN_EXOR 4

TOKEN_AND 5

TOKEN_EQ 6

TOKEN_NE 6

TOKEN_LT 7

TOKEN_GT 7

TOKEN_LE 7

TOKEN_GE 7

TOKEN_PLUS 9

TOKEN_MINUS 9

TOKEN_MUL 10

TOKEN_DIV 10

TOKEN_MOD 10

TOKEN_PAREN 12

TOKEN_STR 99

Reorganizing is done in flipping nodes that have a higher precedence:

if precedence of node is greater than the precedence of the left node and the
node is not a TOKEN_PAREN flip nodes.

•set the parent->child_left to child_left of the node

•set parent of the node to child_left

•set child_left of the node to child_left->child_right

•set child_left->child_right to the node

•reorganize child_left

Some tokens are used only internal during parsing:

Proceedings of the Tcl 2011 41 Manassas, VA October 24-28 2011

TOKEN_EOL the separator for a Tcl statement either
“\r”, “\n” or a “;”

TOKEN_WORD_SEP space or tab between words

TOKEN_ESC for signaling the different parts of a word
like in yyy[a b]ccc

one part is yyy one part is the TOKEN_CMD “a b”
and one

part is ccc. In between TOKEN_ESC is returned
to signal

these parts

TOKEN_EOF at the end of the code to parse

Some tokens are only used within expression trees:

TOKEN_INTEGER 1 to n digits 0-9

TOKEN_DECIMAL an integer with a leading unary “+” or “-”

TOKEN_REAL a decimal with a “.” as the fraction separator, a
fraction and an

exponent with e+/-nnn syntax

TOKEN_BOOLEAN the Tcl values for a boolean, true/false/0/1
…

TOKEN_HEX 0x followed by 0-9A-Fa-f characters

TOKEN_OCTAL 0-7 1 to n characters

Proceedings of the Tcl 2011 42 Manassas, VA October 24-28 2011

4Performance issues
The original implementation of Tcl in Javascript was parsing every statement
byte by byte when executing Tcl code.

When starting I used that for a while too, but when trying to implement itcl in
Tcl, there were big performance problems. One point was the complete
parsing of a statement when executing Tcl code, second problem was having
itcl implemented in Tcl, which forced a twice time interpretation when
interpreting a class definition once by javascript for running Tcl second by Tcl
for parsing itcl.

So I decided to write the itcl interpreter in javascript too and as a second
issue for better performance to parse initial Tcl code only once and then keep
something like an intermediate code a “partially parsed” form of Tcl
statements.

Because of Tcl's dynamic structure, that partially parsed form did not extend
variable references or commands in braces etc. but did mostly a tokenizing, so
the low level parsing had to be done only once. That did help a lot to increase
performance. Nevertheless it would be useful in the future to have something
similar to the Tcl bytecode and to have an interpreter for that intermediate
format written in javascript. Designing and implementing such an
intermediate language and an interpreter for it could perhaps be a future
[GSoC] project.

There are three types that are used for a partially parsed Tcl statement. A Tcl
statement is mapped to a “stmt” type, the parts of a Tcl statement like the
command name and the params are represented as „word“ (statement part)
and because a statement part can be composed of different sub parts. A sub
part - named a “word_part” - is available, that can be:

•a variable reference within a quoted string

•a name constructed form a string part for example an array name

•a command part in brackets etc..

To hold that parsed information there are 3 different [javascript Object]s:

•[TclStatement js Object]

•[TclWord js Object]

•[TclWordPart js Object]

see below for details.

Later on there was another improvement of performance in implementing a
cache for variable and command access depending on the callframe and using
some epoch mechanism like it is used in TclOO for determining if the cache is
still up-to-date. As every command and variable object (javascript Object) has
an id in it the maximum id for variables/commands is used to determine, if the
cache is still usable, as creating a variable/command modifies that maximum
id and renaming/deleting a variable/command has to remove the
corresponding cache entries.

Proceedings of the Tcl 2011 43 Manassas, VA October 24-28 2011

Implementing that cache mechanism together with more often using the
partially parsed statements gave a performance improvement of 400% for
simple setting or getting a variable! “There is still some room for
improvements” - as one of my former colleagues used to say - concerning
performance.

Proceedings of the Tcl 2011 44 Manassas, VA October 24-28 2011

5Tcl Javascript Objects

5.1 [TclCallframe js Object]

Parameters:

•interp

•type

Container for a Tcl callframe. A callframe is a [javascript Object] which is
pushed on a stack built from a [javascript Array] when a proc or method is
called. Contains all local variables, these are in a [javascript Object]: variables
as [TclVariable js Object]s and the name as the index, and information about a
possible [itcl] object, when the command was an [itcl] object. There is also a
type of a callframe, which can be – as in the C implementation -

•CALL_TYPE_PROC

•CALL_TYPE_METHOD

•CALL_TYPE_UPLEVEL

•CALL_TYPE_UPVAR

•CALL_TYPE_EVAL

After the call the callframe object is popped from the stack again.

5.2 [TclCommand js Object]

Parameters:

•name

•func

•privdata

A TclCommand represents either a Tcl proc or a Tcl command implemented as
a javascript function. The func argument is either javascript implementation of
a Tcl command or a Tcl sub command or it is the javascript implementation of
the Tcl proc command and in that case the privdata argument contains an
array with the arglist and the body. This object also contains a call function,
which checks, if there are execution traces and adds the enterstep and
leavestep traces, so the interp knows which ones to call and it evaluates the
enter trace, if one exists.

Now the functions code is executed with the calling arglist. For javascript
functions it just executes them, for a Tcl proc the relevant javascript
implementation function is called. This pushes a new callframe onto the
callframe stack and prepares the arglist for Tcl including handling of the
special args argument. During that part also the contents of the arglist, which
can be a braced word is extracted. The the handling of optional arguments is
done with filling in default values, if the argument is not there. The arglist is

Proceedings of the Tcl 2011 45 Manassas, VA October 24-28 2011

the stored as local variables in the callframe, so one can set and get these
variables using the formal parameter names.

Also the level info for the info level command is prepared and pushed onto the
callframe. After that evaluation of the body is done.

Now the level_info is popped off the callframe and the callframe is popped off
the callframe stack. Following this the leave and leavestep traces are taken of
the interpreter and if there is a leave trace that is called with the result of the
executed code.

5.3 [TclDict js Object]

Parameters:

•interp

A container for the functions which build the dict ensemble. The dicts itself
are [TclObject js Object]s. The implementation is very similar to the C-
implementation in that it stores the keys and values for the keys in an
associative array and the sequence of the keys in and additional array. Every
value can be another dict. Conversion between the dict representation and the
string representation and vice versa is done in the [TclObject js Object] when
needed.

5.4 [TclEvalStatement js Object]

Parameters:

•Interp

•statement_parser

Javascript functions to evaluate preparsed Tcl statements and words, if the
latter for example is a braced command.

5.5 [TclInterpAlias js Object]

Parameters:

•src_path

•src_cmd

•target_path

•target_cmd

•params

A container for holding information on mapping a Tcl command to another Tcl
command. Right now the src_path and target_path have to be the same
(interpreter) and must be empty for the current interpreter. When looking up
a command to call the interpreters alias list is first searched for a relevant
command and after that the command is looked up in the namespace etc.

Proceedings of the Tcl 2011 46 Manassas, VA October 24-28 2011

5.6 [TclInterp js Object]

Parameters:

•win

•start_dir

A container which holds all the information necessary for an Tcl interpreter
like the stack for the callframes, the stack for the namspaces etc.

5.7 [TclNamespace js Object]

Parameters:

•interp

•ns_name

•privdata

A container for managing all the information for a Tcl namespace including an
itcl class. With all the functions for looking up commands and variables and
creating and deleting namespaces.

5.8 [TclNode js Object]

Parameters:

•interp

•name

•node_type

•child_left

•child_right

A container for holding a node of an expr tree used in if, while and expr Tcl
command

5.9 [TclObject js Object]

Parameters:

•interp

•value

•type

A TclObject holds - as in the C implementation – information about a Tcl
values. That can be a string, an integer, a dict and additionally here a
statement, a word, an expr tree etc.

The type determines the initial type of the object. This type can change when
shimmering.

Possible types are:

Proceedings of the Tcl 2011 47 Manassas, VA October 24-28 2011

•OBJECT_TYPE_TEXT

•OBJECT_TYPE_LIST

•OBJECT_TYPE_INTEGER

•OBJECT_TYPE_REAL

•OBJECT_TYPE_BOOL

•OBJECT_TYPE_DICT

•OBJECT_TYPE_STMTS

•OBJECT_TYPE_STMT

•OBJECT_TYPE_WORD

•OBJECT_TYPE_WORD_PART

•OBJECT_TYPE_EXPR_TREE

5.10 [TclPackage js Obejct]

Parameters:

•interp

Container for holding all information of a Tcl or Tk package like the script for
loading the package, the version umber etc. Including functions for the sub
commands.

5.11 [TclParser js Object]

Parameters:

•Text

The base container for parsing Tcl statements. Also includes all the functions
necessary to parse Tcl statements and get back the words and word parts of a
Tcl statement..

5.12 [TclParseStatement js Object]

Parameters:

•interp

Container for parsing a normal Tcl statement or an expr of an if, while or expr
Tcl command. It builds as a side effect an expr tree or the
statements/statement/word/word_part info when parsing. Both cases use
TclParser object to get the input parsed into tokens.

5.13 [TclResolve js Object]

Parameters:

•interp

Proceedings of the Tcl 2011 48 Manassas, VA October 24-28 2011

•type

A container for resolving variable and function references for itcl
classes/objects

5.14 [TclStatement js Obejct]

Parameters:

•interp

•file_name

•line_no

•word_obj

Container for holding info for a parsed Tcl statement. It contains a list of
words, which in turn can contain a list of word_parts and both can contain
statements (a list of statement info) when the statement contained a word
which for example was a proc body.

5.15 [TclTest js Object]

Parameters:

•Interp

A container for the functions for building a tcltest test case and running it.

5.16 [TclTestResult js Object]

Parameters:

•interp

•test_name

•test_description

•expected_result

•result

A container for storing the result of a tcltest tcl test case, including an error
message for a failing test etc.

5.17 [TclTrace js Object]

Parameters:

•interp

•type

•name

Proceedings of the Tcl 2011 49 Manassas, VA October 24-28 2011

•ops

•command

A container for holding information for Tcl traces for variable, command and
execution traces.

5.18 [TclVariable js Object]

Parameters:

•interp

•name

•type

A container for a Tcl variable contains a [TclObject js Object] and additional
information like the type of the variable etc.

5.19 [TclWord js Object]

Parameters:

•interp

•token

•value

•file_name

•last_line_no

•line_no

•stmts

A container for a part of a Tcl statement. Can contain a list of statements, if it
is for example the body of a proc.

5.20 [TclWordPart js Object]

Parameters:

•interp

•token

•value

•stmts

A container for information of parts of a TclWord, for example the parts of a
string, when the string contains a variable reference or a braced command
etc.

Proceedings of the Tcl 2011 50 Manassas, VA October 24-28 2011

6Itcl Javascript Objects for Tcl
Objects used for implementing itcl classes and itcl objects. They hold the
information needed to describe the itcl class/object

6.1 [ItclClasses js Object]

Parameters:

•interp

Contains references to all itcl classes/class objects (ItclClass).

6.2 [ItclClass js Object]

Parameters:

•interp

•name

•full_name

•class_type

Contains information about itcl class methods, variables, types, options etc.

6.3 [ItclCommand js Object]

Parameters:

•name

•class_name

•func_type

•protection

•func

•params

•body

This is the container an itcl method, same as TclCommand is for Tcl procs

6.4 [ItclFunction js Object]

Parameters:

•interp

Proceedings of the Tcl 2011 51 Manassas, VA October 24-28 2011

6.5 [ItclFunctionParam js Object]

Parameters:

•interp

•definition

•min_args

•max_args

•have_args_arg

•usage

•default_args

Definition of the parameter signature of an itcl method/proc

6.6 [ItclObject js Object]

Parameters:

•Interp

•name

•class_obj

•constructor_args

Container for an itcl object, contains set of class variables for that object of all
classes n inherited classes.

6.7 [ItclOption js Object]

Parameters:

•interp

A container for an itclextended class option (like a Tk option) with all the
information about the name and class of the option, a possible default value, a
possible script for cget, configure and validate or a possible variable
containing a cget, configure or a validate method

6.8 [ItclVariable js Object]

Parameters:

•interp

Container for an itcl variable with the possible protection, init value and
config script and the type (variable or common)

Proceedings of the Tcl 2011 52 Manassas, VA October 24-28 2011

6.9 TclItclDict

Parameters:

•interp

still a leftover from the time when itcl basics were in Tcl and parsed from Tcl.
Nowadays the itcl parsing is implemented in js too (deprecated should
possibly be removed, have to check).

6.10 TclItclHelper

Parameters:

•Interp

still a leftover from the time when itcl basics were in Tcl and parsed from Tcl.
Nowadays the itcl parsing is implemented in js too (deprecated should
possibly be removed, have to check).

Proceedings of the Tcl 2011 53 Manassas, VA October 24-28 2011

7Status
The interpreter is in the middle of the implementation, there are still a lot of
sub commands missing and there is the need for test cases, as I know already
about some problems/bugs and there will be a lot of bugs still in there, which
have not yet been found because of missing test cases. Right now there has
been spent more time to the second topic [Tk Widgets in Javascript] to be able
in the near future to have some demos, which show some of the functionality.
There is also the need for more examples/demos.

Proceedings of the Tcl 2011 54 Manassas, VA October 24-28 2011

Tk Widgets in Javascript

An implementation of Tk widgets using Javascript.

A paper for the Eighteenth Annual Tcl/Tk Conference

Proceedings of the Tcl 2011 55 Manassas, VA October 24-28 2011

http://wiki.tcl.tk/27865
http://wiki.tcl.tk/27865
http://wiki.tcl.tk/27865

Abstract

Tk in Javascript is a work in progress, which started
about May 2011 and is part of the incr Tcl in Javascript
project is, which is intended to be one possible
frontend/client part of ATWF and Reporting Tools with
Tcl. It tries to implement Tk widget using javascript
and DOM trees.

That includes a mapping of for example
button/label/entry widgets to something which can be
done with HTML parts in creating DOM trees and
adding properties and attributes to the DOM nodes,
that includes mapping of Tk option model to javascript
style model and properties of DOM nodes.

Second goal is to map Tk event handling and bind
functionality to the javascript event model and the
javascript event listeners/handlers. There are also
more complex widgets in work like Tree, Tktable,
panedwindow, combobox etc.

The selection on which widgets are implemented first
is driven by: what is needed for a reporting
environment, that includes the decision on which
options are implemented first.

Proceedings of the Tcl 2011 56 Manassas, VA October 24-28 2011

Contact information

Arnulf Wiedemann

Lechstr. 10

D-86931 Prittriching

Email: arnulf@wiedemann-pri.de

Proceedings of the Tcl 2011 57 Manassas, VA October 24-28 2011

Inhaltsverzeichnis
Abstract...2
Contact information...3

1How it started...6
2The initially implemented Tk widgets...7

2.1 [TkWidget js Object]..7
Parameters:..7

2.2 [TkButton js Object]..7
Parameters:..7

2.3 [TkEntry js Object]..7
Parameters:..7

2.4 [TkFrame js Obejct]...8
Parameters:..8

2.2 [TkLabel js Object]..8
Parameters:..8

2.3 [TkToplevel js Object]..8
Parameters:..8

3Implemented Widgets...9
4Tk Options...10

4.1 [TkStandardOptions js Object]..10
Parameters:..10

4.2 [TkOptionTemplate js Object]...10
Parameters:..10

4.3 [TkOption js Object]..10
Parameters:..10

5Javascript Objects for Tcl usage..11
5.1 [JsDomNode js Object] ...11

Parameters:..11
5.2 [JsOption js Object]...11

Parameters:..11
5.3 [JsOptionTemplate js Object]...11

Parameters:..11
5.4 [JsStandardOptions js Object]...11

Parameters:..11
6Tk Javascript Objects..12

6.1 [TkEventSequence js Object]..12
Parameters:..12

6.2 [TkGrid js Object]..12
Parameters:..12

6.3 [TkObject js Object]..12
Parameters:..12

6.4 [TkPack js Object]...13
Parameters:..13

7BWidget Tk Widgets..14
7.1 [TkTree js Object]..14

Parameters:..14
7.2 [TkLabelEntry js Object]...14

Parameters:..14
7.3 [TkScrollableFrame js Object]..14

Parameters:..14

Proceedings of the Tcl 2011 58 Manassas, VA October 24-28 2011

8TkTable Widget...15
8.1 [TkTable js Object]..15

Parameters:..15
9Advanced Tk Widgets..16

9.1 TkPanedWindow..16
Parameters:..16

10YUI revisited...17
11Status..18

Proceedings of the Tcl 2011 59 Manassas, VA October 24-28 2011

1How it started
During the implementation of [incr Tcl in Javascript] there did raise the
question, how to get easy and efficient access to the DOM information. First
idea was to give a user direct access to javascript DOM commands using a Tcl
wrapper, but that would force the user to learn a lot of javascript and its
model for widgets and events. So after some thoughts in that direction it
seemed better to try to map Tk functionality to javascript DOM and event
model. There followed the decision on directly using DOM for the
implementation without first using HTML code and let the browser convert
that to the DOM info.

Next there was the need to find out how to map basic Tk widgets to the DOM
model like:

•button

•entry

•frame

•label

•toplevel

As I had in mind to use that as a client/frontend for [Reporting Tools with Tcl],
these were the base widgets for starting.

After some experiments I decided to use <div> for a label widget, <button>
for a button widget, <input> for an entry widget and again <div> for a frame
widget and a toplevel widget.

Proceedings of the Tcl 2011 60 Manassas, VA October 24-28 2011

2The initially implemented Tk widgets

2.1 [TkWidget js Object]

Parameters:

•interp

•name

•full_name

•type

To hold all the relevant information for a [Tk] [widget] a [TkWidget js Object]
was implemented, which stores in it's properties for example the widget name
(i.e. .fr.b1), a reference to the DOM node, the type of the widget (for example
Tk.WIDGET_TYPE_BUTTON) a reference to a javascript Object with
properties for that instance of the widget, a list of allowed options for that
widget and a list of bind infos.

The javascript Objects for the above mentioned widget are:

•[TkButton js Object]

•[TkEntry js Object]

•[TkFrame js Object]

•[TkLabel js Object]

•[TkToplevel js Object]

The instances for the widgets are implemented very similar to the
implementation of itcl class objects as new commands, The javascript object
used for this is [TkObject js Object]. It contains as properties the path name
and a reference to the [TkWidget js Object].

2.2 [TkButton js Object]

Parameters:

•interp

•path_name

•widget_obj

A container for holding information for a Tk button widget instance.

2.3 [TkEntry js Object]

Parameters:

•interp

•path_name

•widget_obj

Proceedings of the Tcl 2011 61 Manassas, VA October 24-28 2011

A container for holding information for an Tk entry widget instance.

2.4 [TkFrame js Obejct]

Parameters:

•interp

•path_name

•widget_obj

A container for holding information for a Tk frame widget instance.

2.2 [TkLabel js Object]

Parameters:

•interp

•path_name

•widget_obj

A container for holding information for a Tk label widget instance.

2.3 [TkToplevel js Object]

Parameters:

•interp

•path_name

•widget_obj

A container for holding information for a Tk toplevel widget instance.

Proceedings of the Tcl 2011 62 Manassas, VA October 24-28 2011

3Implemented Widgets
All Tk widget commands are implemented in namespace ::tk but for
compatibility there are interp aliases to be able to use for example button
without the ::tk:: namespace prefix for creating a new button instance.

So we have the following commands:

•::tk::button

•::tk::entry

•::tk::frame

•::tk::label

•::tk::toplevel

From experiments I found out, that you need a <div> element around most of
these widgets to be able to force width and height requirements and also
when packing these widgets. So in HTML a button widget would look like so:

<div>

 <button>button1</button

</div>

The sub commands for a button could not be implemented directly as a
namespace ensemble, as the button itself is implemented like an itcl class, so
that namespace cannot be additionally be used for a namespace ensemble.

So for example the cget and configure command of a button widget are
implemented as ::tk::button::configure and ::tk::button::cget and are handled
like itcl class methods. As a result you can use .b1 cget … and .b1 configure
..., if .b1 has been created as a button widget instance using: button .b1 …

But be aware: a Tk widget instance is no class object and a sub command of
the widget is no class method. It is only handled very similar to these parts, to
be able to use common code!

Proceedings of the Tcl 2011 63 Manassas, VA October 24-28 2011

4Tk Options
Now there was the question on how to get all the different standard and
widget specific options mapped to the style properties of a DOM element.

4.1 [TkStandardOptions js Object]

Parameters:

•interp

For handling of all the possible options (including Tk standard options), the
attachment of the allowed options to a widget type and a mapping between Tk
options and javascript options a [TkStandardOptions js Object] has been
implemented.

It contains all the possible options of the Tk widgets according to the Tk
option model with configure name, option name, option class and default
value for an option and for every widget type there is a list containing all the
options, which are allowed for a specific widget.

The allowed options are used for checking against illegal options and for
producing an error message with the allowed options.

4.2 [TkOptionTemplate js Object]

Parameters:

•interp

•configure_name

•alias_name

•option_name

•option_class

•default_value

To hold information for one specific option a [TkOptionTemplate js Object] is
used. It has properties for configure name, option name, option class and the
default value as well as a possible alias name for example -background for the
-bg option.

4.3 [TkOption js Object]

Parameters:

•interp

•option_template_obj

•option_value

The [TkOption js Object] contains a reference to the [TkOptionTemplate js
Object] for the relevant option and a property for the current value (this is

Proceedings of the Tcl 2011 64 Manassas, VA October 24-28 2011

used for fast reference instead of looking it up in the DOM tree). Maybe this
will change in the future to save space.

Proceedings of the Tcl 2011 65 Manassas, VA October 24-28 2011

5Javascript Objects for Tcl usage

5.1 [JsDomNode js Object]

Parameters:

When working with rhino (a command line javascript interpreter for Linux) it
was necessary for being able to test simple DOM related parts easily to
implement a dummy javascript Object for at least creating and appending
DOM nodes. This has been done with the implementation of [JsDomNode js
Object]. It has functions for creating elements and setting attributes and
appending elements, as that functionality is not available in rhino.

5.2 [JsOption js Object]

Parameters:

•interp

•configure_name

A container for a javascript option to be mapped to an Tk option.

To hold information for one specific option a [JsOptionTemplate js Object] is
used.

5.3 [JsOptionTemplate js Object]

Parameters:

•interp

•configure_name

Used in [JsStandardOptions js Object] to hold information about a specific
style property.

It has properties for configure name and a container for sub options, as in
javascript options can be structured like border can be set directly identical
for all 4 sides or via borderTop, borderLeft, borderRight and borderBottom.

The [TkStandardOptions js Object] contains references to the
[TkOptionTemplate js Object] for the relevant option.

5.4 [JsStandardOptions js Object]

Parameters:

•interp

A container which initializes the standard javascript options and has a simple
mapping between Tk option and js options (not yet complete)

Proceedings of the Tcl 2011 66 Manassas, VA October 24-28 2011

6Tk Javascript Objects
As a base for the Tk bind command a simple parser for an event sequence has
been implemented, which can parse the modifier, type and detail parts. This
information is stored in a [TkEventSequence js Object].

6.1 [TkEventSequence js Object]

Parameters:

•interp

•modifier1

•modifier2

•type

•detail

A container for storing information about a [Tk] [event] sequence for use for
example by the [Tk] [bind] command.

For positioning widgets within a browser window [Tk] [pack] and [grid]
commands have been implemented. [Tk] [grid] command is still very
rudimentary and not yet really usable.

6.2 [TkGrid js Object]

Parameters:

•interp

•widget_obj

Container for grid information for example the widgets and the row/column
info etc.

6.3 [TkObject js Object]

Parameters:

•interp

•name

•widget_obj

Container for a [Tk] [widget]. This is the instantiated command object, which
is created when a [Tk] [widget] like a [button] for example is instantiated. It
contains a [TkWidget js Object], which holds the specific info for that instance
of the widget. Also all the specific option values for that widget are collected
here and can be modified and fetched using the configure and cget sub
command of the widget.

When setting an option with the configure command, the option name and

Proceedings of the Tcl 2011 67 Manassas, VA October 24-28 2011

value are mapped from the [Tk] values to the the style or attribute name and
the appropriate value for javascript.

For example the Tk option -foreground is mapped to the javascript style
attribute “color” and the -text option of a Tk button is mapped to the
“textContent” field when using Firefox. That is still a different field name for
IE, which has yet to be implemented.

6.4 [TkPack js Object]

Parameters:

•interp

•widget_obj

Container for pack information for example the widgets and other related info.
The pack command appends DOM nodes created for the different widgets as
DOM nodes with no connection to the visible window content to an existing
DOM node for example the node of the HTML <body> tag. For a [toplevel]
[widget] a HTML <div> node is created and appended to the <body> tag.

The style attributes width and height have to be provided as a “100px” pixel
value with “px” at the end and determine the width and height of the toplevel
widget/window.

For implementing the -side left and -side right option of the pack command
one can use the style attributes {float: left} and {float: right} respectively.

For -side top the style float part is omitted, for -side bottom I have not yet
found out how to do that. To avoid wrapping of widgets it is normally
necessary to have style attribute display set to {display: table-row}, if you
have {float: left} or {float: right} but, what a pitty not always, there are
special cases where you also for that case have to use {display: block} I have
not yet found out all the rules on how to use that. For the small test cases it
works, but I am pretty sure there are still a lot of failing cases.

Proceedings of the Tcl 2011 68 Manassas, VA October 24-28 2011

7BWidget Tk Widgets

7.1 [TkTree js Object]

Parameters:

•interp

•path_name

•widget_obj

A container for holding information for a BWidget Tree widget. That one was
rather hard, as in the end it is implemented as an own table for every node in
the tree. That is necessary as otherwise you do not easily get all the columns
of the tree rendered with the same size.

I have got inspiration from a treeview implementation from GubuSoft and
from YUI treeview. The tick is to use little images for the opentree, closetree
and for the lines between the nodes and the image for the node. The last field
in the table does not handle overflow, so that the text labels can be as long as
they are needed.

There is an event handler attached to the opentree and closetree images and
another one to the node image and the node text, these can also be different
using the Tk bindImage and bindText options.

The opentree and closetree event handlers just set the first level sub nodes
style of the selected node to {display: none}, which makes that subtree
invisible after rendering (it needs no space any more and looks like the nodes
have been removed). When opening the tree again one just has to set the sub
nodes style to {display: block} or {display: table-row} and the subtree is
visible again.

7.2 [TkLabelEntry js Object]

Parameters:

•interp

•path_name

•widget_obj

A container for holding information for a BWidget LabelEntry widget. It
combines a label (a <div>) element with an entry (a <input>) element,
surrounded by another <div> element (in principle a frame). You can set the
configure options for the label and the entry part.

7.3 [TkScrollableFrame js Object]

Parameters:

•interp

•path_name

Proceedings of the Tcl 2011 69 Manassas, VA October 24-28 2011

•widget_obj

A container for holding information for a BWidget ScrollableFrame widget. It
combines a frame (a <div>) element with another frame and for the second
frame the style attribute overflow is set to {style: auto}. The sub command
getframe returns that inner frame path name (DOM element).

Proceedings of the Tcl 2011 70 Manassas, VA October 24-28 2011

8TkTable Widget

8.1 [TkTable js Object]

Parameters:

•interp

•path_name

•widget_obj

A container for holding information about a TkTable table widget. This one is
tricky too. It is built with 5 tables. The outermost is used to hold four other
tables:

•top_left_table

•top_right_table

•bottom_left_table

•bottom_right_table

This is necessary for being able to have title rows and title cols which are not
scrolled. Top_left_table has the part in the top left corner with the row parts
and col parts, which are never scrolled. Top_right_table has the title row
parts, which are only scrolled horizontally when the table is scrolled.
bottom_left_table has the title cols, which are only scrolled vertically when the
table is scrolled, and bottom right table contains the rows and columns which
are visible and can be scrolled horizontally and vertically.

Here are also the scrollbars and when scrolling depending on the direction
either the top_right_table is scrolled accordingly or the bottom_left_table. This
is done by setting the scrollLeft or scrollTop attribute of these tables to the
same value as the corresponding value of the bottom_right_table when
scrolling the bottom_right_table. With that trick it looks like both tables are
scrolling synchronous.

When calculating the position and table of a cell title rows and title cols have
to be taken in account on deciding which of the four tables holds the desired
cell. And for giving back the index of a cell has to be done the same way for
getting the absolute index of the cell.

When the -command option is used, every cell gets attached the click event
and in the event handler the command script is called with the pah name of
the table and the index of the cell in nn,nn syntax are passed as parameters to
the script.

Proceedings of the Tcl 2011 71 Manassas, VA October 24-28 2011

9Advanced Tk Widgets

9.1 TkPanedWindow

Parameters:

•interp

•path_name

•widget_obj

A container for holding information about a panedwindow widget. A
panedwindow is built as a <div> element. Every adding of a pane adds two
<div> elements, one for the sash, and one for the pane.

The sash element knows about the 2 surrounding <div> elements and
changes their sizes when dragging the sash. When more than one sash
element exist, the second sash element is also moved, when the first one
reaches that and the pane before or after that second sash element
(depending on the direction of the moving) is also changed in size.

Two sash elements can touch each other that means the pane in between has
size 0. And all the sashes can be moved to the left or right or to the bottom or
top border.

The -side option when adding a pane determines – as with the pack command
– how the panes are arranged.

Proceedings of the Tcl 2011 72 Manassas, VA October 24-28 2011

10YUI revisited
Because of a lot of still missing base functionality in the Tk implementation in
Javascript the YUI Implementation and functionality has been revisited and
inspected again. Because of some functionality, which was needed and was
available there the decision was made to extract some base functionality to
use here. After analyzing YUI to see how to use parts without need for ant
build system a solution was found to use parts of YUI without using the build
system, which resulted in only 2 lines to be added to a source file for using it
here. For easily being able to enhance with Tk specifics there was the decision
to do a fork of the sources and start only with limited set of modules from YUI.
The name for that fork is TUI (Tcl User Interface), but up to now 90% of
original code is still used (for the modules taken over, which is only a smaller
part of the full implementation about 20-25%). There have been about 25.000
lines of the source code adapted for TUI usage (not much had to be modified).

After that the implementation of “derived classes” has been started to build a
button widget with YUI functionality.

The next part (still in progress) is the implementation of a Tktable widget.
There exists a datatable implementation, but that has only title lines and there
are always at least one title line. Titlecols functionality is missing completely
and also the tag functionality is missing so there has been started an
implementation of a Tktable widget based on the TUI functionality and
similar to the datatable implementation of YUI. As in YUI scrolling will be
done with a plugin attached to Tktable widget.

Other widgets like Tree, panedWindow, ScrollableFrame etc. will follow.

Proceedings of the Tcl 2011 73 Manassas, VA October 24-28 2011

11Status
The implementation is in the middle of the minimal necessary functionality.
Work will continue to get a version, which has at least the minimal necessary
functionality to be able to serve as a frontend for [Reporting Tools With Tcl] to
build a minimal reporting system together with [ATWF]. As with [incr Tcl in
Javascript] there are missing tests and demos.

Proceedings of the Tcl 2011 74 Manassas, VA October 24-28 2011

Tcl 2011

Manassas, VA

October 24-28, 2011

Tcl Interpreters

Proceedings of the Tcl 2011 75 Manassas, VA October 24-28 2011

Proceedings of the Tcl 2011 76 Manassas, VA October 24-28 2011

Introduction
The Java Virtual Machine [Lind99] has
become a platform on which a variety of
computer programming languages can be
executed. While originally written to exe-
cute Java programs that had been com-
piled into Java byte codes, it is now used
to run languages such as Clojure, Groovy,
Jacl, JRuby, Jython, Rhino and Scala
[WikiJVM]. Some of these, like Scala,
appeared originally as a language on the
JVM, and others, like Jacl, are JVM im-
plementations of existing languages.
Jacl, which is an implementation of Tcl
[Ost10], was one of the first non-Java lan-
guages on the JVM and appeared shortly
after the initial development of Java
[Lam97].

While there is an abundance of alternative
programming languages on the JVM,
there are relatively few implementations of
graphical user interface toolkits besides
the AWT and Swing toolkits that come
standard with most Java distributions.
The primary alternatives have been
Swank, SWT (the Standard Widget
Toolkit), and quite recently JavaFX. While
SWT is largely implemented on top of na-
tive platform widgets and JavaFX is im-
plemented with its own windowing toolkit,
Swank is a layer on top of the Swing wid-
gets that provides an interface to the pro-
grammer that is analogous to that of the
Tk toolkit [Ost10].

JTcl and Swank:
Whatʼs new with Tcl and Tk on the JVM

1Bruce A. Johnson, 2Tom Poindexter, & 3Dan Bodoh

1 bruce@onemoonscientific.com, One Moon Scientific, Inc, Westfield, NJ and University
of Maryland, Baltimore County
2 tpoindex@gmail.com
3 dan.bodoh@gmail.com

Abstract
JTcl is an implementation of the Tool Command Language (Tcl) written in Java and is
derived from the Jacl project. The current release (2.0) of JTcl implements a large ex-
tent of Tcl 8.4 syntax and commands, limited only by the API restrictions of the Java Vir-
tual Machine. Swank is an implementation of the TK GUI toolkit implemented using the
Java Swing GUI API. Most Tk 8.4 widgets and commands have been implemented as
well as additional ones based on Swing widgets. This paper describes the current state
of these projects and gives examples of their use.

Proceedings of the Tcl 2011 77 Manassas, VA October 24-28 2011

mailto:bruce@onemoonscientific.com
mailto:bruce@onemoonscientific.com
mailto:tpoindex@gmail.com
mailto:tpoindex@gmail.com
mailto:dan.bodoh@gmail.com
mailto:dan.bodoh@gmail.com

In this paper we’ll discuss recent devel-
opments in the Tcl and Tk on the JVM, fo-
cussing on the language implementation
JTcl, and the Tk-style graphical user in-
terface toolkit Swank.

JTcl
JTcl is a fork of Jacl, an implementation of
Tcl written in Java [Lam97]. Jacl was writ-
ten during the period of Tcl/C 8.0 devel-
opment and contains Java equivalents of
many internal data structures, most impor-
tantly the notion of Tcl objects to hold bi-
nary representation of numeric data types,
efficient list and array structures, and im-
plementation of most of Tcl 8.0's com-
mands. Jacl does not implement the Tcl
byte code compiler and runtime [Lew96],
nor the Tcl fileevent command and sup-
porting event system that allows for event
driven I/O. After initial development by
the original authors, Jacl development
was performed by individuals rather than
as an official port of the Tcl Core Team.
During this time Jacl development slowed
to mostly bug fixes but did result in a few
major improvements, a port of the Incr Tcl
object system [DeJ05] and the Tcl-to-Java
compiler (TJC) [DeJ06]. Development of
core Tcl commands and features did not
keep synchronized with mainline Tcl de-
velopment. Despite Jacl's slow progress,
it had proved useful in a number of com-
mercial products, open source projects
and proprietary internal projects. Jacl was
used by IBM in its WebSphere Application
Server and One Moon Scientific's
NMRView products [John04], as well as
the open source Swank and Æjaks pro-
jects [Poin07].

Jacl Modernization
Jacl modernization was selected as one
of the Tcl Core Team projects during the
Google Summer of Code 2009 [Szul09].
The goal of the project was to bring Jacl's
language features to the level of Tcl/C 8.4.
Tcl 8.4 was chosen as a target level for
several reasons. First, it represented a
stable base of Tcl compliance that could
be achieved by implementing new com-
mands or augmenting existing ones.
Second, the project was limited to one
student for one summer, so the work
product of the GSOC project was limited.
Third, current Tcl/C version 8.5 contained
many structural changes, such as the ex-
pand syntax which would require a con-
siderable amount of interpreter changes.
The target of the GSOC project was de-
rived by comparing the current set of Jacl
command definitions with the Tcl/C 8.4
definitions. Many of the command imple-
mentations required relatively little addi-
tional code to support a particular com-
mand option, larger code rework was re-
quired to implement commands such as
[regex] and [regsub]. These commands
relied on moving from a custom underly-
ing regular expression library to use the
Java java.util.regexp package.

While the GSOC 2009 Jacl Modernization
project yielded many improvements, it did
not reach full Tcl 8.4 compliance. The
GSOC project relied on command de-
scriptions based on the Tcl 8.4 manual
pages, so while many command options
were added or improved, strict compli-
ance to Tcl/C test cases was not tested.
The Jacl implementation of [regex] and
[regsub] improved significantly to match
Tcl 8.4, but many edge cases were not
addressed. Addition of a event system

Proceedings of the Tcl 2011 78 Manassas, VA October 24-28 2011

and [fileevent] also proved to be too ambi-
tious, requiring more time that was avail-
able.

The JTcl project was formed to continue
development of Jacl and complete the
work of the GSOC Jacl Modernization
project. The project founders decided that
a fork was the best way to achieve its
goals. Jacl was a part of the TclJava pro-
ject, which produced the the Jacl inter-
preter as well as TclBlend, a Tcl extension
that enables use of Java classes and ob-
jects from the the Tcl/C runtime. Much of
the TclJava packaging and build system
was designed to support the use of the
java package in both Jacl and TclBlend
environments. JTcl project members had
no interest in the TclBlend extension and
instead would focus entirely on the Java
implementation of Tcl.

In addition to furthering Tcl 8.4 compli-
ance, a number of other improvements
were desired. First, Java code develop-
ment is greatly enhanced by the use of
Java-centric Integrated Development En-
vironments (IDEs) such as Eclipse, Net-
beans and IntelliJ, so the structure of the
JTcl source code should be arranged to
support easy use by Java IDEs.. Second,
the build system in Jacl using make would
be replaced with a Java-centric build sys-
tem. While make could be used to com-
pile and package JTcl, Java oriented build
systems ant and maven are better sup-
ported by Java IDEs. Third, packaging
the JTcl system would be in a single jar
file for simple installation, as opposed to
the Jacl system packaging in five sepa-
rate jar files. Lastly, extraneous source
code such as the TclBlend extension
would be removed entirely.

Tcl Compliance and Test Suite
The Tcl language for any particular ver-
sion is described in man pages and other
documentation, but the definitive source
of Tcl compliance is represented by the
Tcl test suite. The test suite is usually de-
veloped in conjunction with a particular
version of Tcl to ensure that the inter-
preter's result for any give operation
matches expected results.

The Jacl project contained a test suite that
matched Tcl 8.0 compliance and was en-
hanced as changes were made to the
source code. For JTcl, the Tcl 8.4 test
suite was imported and used to measure
Tcl compliance. JTcl integrates the Tcl
test suite through the JUnit test facility.
JUnit is a Java oriented test environment,
roughly equivalent to the tcltest Tcl pack-
age. When running JUnit in a Java envi-
ronment, the normal usage is to run a test
method that invokes methods on an ob-
ject under test, and asserts that actual re-
sults are equal to expected results.
Since JUnit is widely supported by Java
IDEs, the Tcl test suite in JTcl is invoked
through JUnit classes. This allows testing
of JTcl source code directly from the IDE,
without requiring a compile/test cycle.

The Tcl test suite contains generic tests
that should run the same on any execu-
tion platform as well as many tests that
are specific to the platform. For example,
a particular test may only run on a Win-
dows platform, while an equivalent test
may only run on a Unix environment. A
Java JVM presents a single virtual ma-
chine that (mostly) eliminates machine
and platform differences. As a result, only

Proceedings of the Tcl 2011 79 Manassas, VA October 24-28 2011

the tests that are labeled as generic are
tested in JTcl.

Even with running only the generic Tcl
tests in JTcl, many differences in test re-
sults were observed and many of which
were false negative results. Erroneous
test results generally fell into the following
categories:

1. Differences in error messages –
when a test would check for specific
error messages, differences between
JTcl and Tcl/C would often arise as er-
ror callback messages may contain
slightly different text. Most of these
differences are a result of Tcl/C's byte
code compiler, which returns errors
stating “...while compiling...” vs. the
pure interpreter's error messages
“...invoked from within....”.

2. Ordering of results - many Tcl com-
mands return unordered results, e.g.
[info commands]. Due to JTcl's use of
native Java libraries for hash maps in-
stead of Tcl's C coded ones, key lists
were returned with different orderings.

3. Unsupported functions of the JVM –
the Java JVM does not support many
low level system functions, so Tcl
commands such as [file stat] are lim-
ited to the operations that can be per-
formed.

4. Regexp differences – JTcl makes use
of the Java library java.util.regexp
package for regular expression han-
dling, whereas Tcl uses the Spencer
ARE library coded in C. While most
common Tcl ARE regular expressions
are accepted in JTcl via direct use of
java.util.regexp or through emulation,
some Tcl ARE expressions such as the

Basic-RE meta-character ('b') are not
supported.

To work around these differences, the JTcl
JUnit base class is designed to run a Tcl
test suite test file with a list of expected
failure cases. Each failure case returned
by the test suite is examined to note the
type of the failure, and when the differ-
ence could be categorized as one of the
above cases, that case was added to the
expected failure list. The result of the ex-
pected failure lists allow the entire test
suite to be run, with a better indication of
positive or negative results. Numerous
Tcl command implementation classes
were modified to pass the Tcl test suite.

Code Modernization / IDE support

While the main focus of the JTcl project is
to continue the effort of making JTcl con-
form to the Tcl language 8.4 test suite,
and number of other efforts were done to
modernize the code. “Modernize” is
somewhat a subjective term. The JTcl
project's definition of modernization in-
cludes reforming the code as if the JTcl
code was being developed new by skilled
Java programmers using accepted Java
development best practices and tools.

 The existing Jacl Java code was origi-
nally developed to closely mimic the Tcl/C
version. This was likely done for ease of
the initial port to Java. JTcl has the follow-
ing changes to the source code, besides
those made for test suite compliance:

1. Source packages – Java code can be
organized into distinct packages (i.e.,
namespaces). This promotes grouping
similar source code classes by func-
tion. In JTcl, the package tcl.lang.* is

Proceedings of the Tcl 2011 80 Manassas, VA October 24-28 2011

used for core interpreter classes,
t c l . l a n g . c m d . * f o r c o m m a n d s ,
tcl.lang.channel.* for I/O classes, etc.
Standard JTcl packages java, itcl, and
tjc were moved to tcl.pkg.* packages.
Included Tcl library code (e.g., *.tcl
files) was moved from Java source
code directories to resource directo-
ries.

2. Code formatting – much Jacl's
source code had specific hand-
formatted conventions, such as ASCII
form-feed characters (^L) to separate
methods, comments within method ar-
guments, debug-only code fragments.
JTcl code is reformatted using auto-
mated tools for consistency, and de-
bug specific code is removed in favor
of using the IDE's debug and break-
point facilities.

3. Block comments converted to
Javadoc comments – Jacl code con-
tains many block comments that pre-
cede methods, but these were not in
the format to support the Javadoc
tools for creating automated source
code documentation. Where practical,
source code block comments in JTcl
are Javadoc formatted.

4. IDE/build tool friendly directory lay-
out – the project directory layout was
changed to easily support Java IDEs
and build tools. src/main/java contains
the Java source code, src/main/
resources contain Tcl library code, src/
test/java contains Java JUnit code,
src/test/resources contain test Tcl code
(i.e., the Tcl test suite.) Additional di-
rectories contain the project website
source code, maven assembly de-
scriptors, runtime startup scripts, etc.

Packaging / Tcllib
Recent Jacl distributions have included
the Incr Tcl and Tcl-to-Java compiler
packages. Jacl's packaging favored
separate jar files for the Jacl core inter-
preter and each extension. JTcl instead
packages all core and extension compo-
nents into a single jar file. Jacl also in-
cludes Tcllib as part of its packaging.
Tcllib is a large collection of Tcl coded li-
braries.. Some modules of Tcllib that
only support Tcl versions 8.5 and 8.6 are
excluded in the JTcl distribution.

Packaging all core and library compo-
nents of JTcl into a single jar file allow the
interpreter to be started as simply as java
-jar jtcl.jar, though a more common usage
still utilizes helper scripts. The JTcl
startup scripts jtcl (for Linux/Unix/
MacOSX/Cygwin/Msys environments) and
jtcl.bat (Windows) allow for additional jar
files to be included via the normal
CLASSPATH environment variable, as
well as runtime Java JVM parameters to
be easily modified.

The JTcl website is included in the project
and is built using the maven build system.
The JTcl source Javadoc files are also
built during website generation.

RegExp Improvements
The regular expression engine class,
tcl.lang.Regex, is new in JTcl and used by
[regsub], [regexp] and [lsearch -regexp].
This class brings the full power of TCL 8.4
Advanced Regular Expressions (ARE) to
JTcl, with a few caveats. The older Basic
Regular Expressions (BREs) and Ex-
tended Regular Expressions (EREs) are
not supported, although EREs that are
identical to AREs and not explicitly re-

Proceedings of the Tcl 2011 81 Manassas, VA October 24-28 2011

quested with the 'e' embedded option are
supported.

A primary implementation goal was to
make use of java.util.regex.Pattern and
java.util.regex.Matcher [Oracle2004],
rather than writing a custom engine based
on the C library used in Tcl 8.4. A
tcl.lang.Regex instance combines the
steps of compiling a regular expression
and matching it on an input string, and
contains all the functionality required to
implement [regsub] and [regexp].

The tcl.lang.Regex.compile() method is
responsible for converting a Tcl regular
expression to a Java Pattern instance.
This method parses the Tcl regular ex-
pression, building a Java regular expres-
sion in a Stringbuffer, and compiles the
Java regular expression into a Pattern
instance.

Many aspects of the conversion of Tcl
regular expression syntax to Java syntax
are merely direct translations. For exam-
ple, a static Hashmap is used to translate
Tcl's character classes and escape se-
quences to Java's equivalent, such as
[:alnum:], to \pAlnum and [:ESC:] to
\\033.

More complex translations are required
for those elements that are similar in the
two regular expression languages, but dif-
fer in minor details or at boundary condi-
tions. For example, an empty Tcl regex
matches before every character in the
string, and after the last character. Java's
empty regex is similar, but does not match
after the last character. So a Tcl empty
regex is translated to ^|(?!$) for Java.
Many similar complex translations are

needed for the embedded options, which
are similar to but not exactly like the
java.util.regex.Pattern match flags.

Tcl does contain some regex features that
are not available in Java. These are emu-
lated with more complex Java expres-
sions. For example, the Tcl \M (match at
the end of a word) has no direct Java
equivalent, so i t is t ranslated to
(?=\W|$)(?<=\w) (look ahead for a word
character and behind for non-word char-
acter).

T h e d e c i s i o n t o u s e
java.util.regex.Pattern led to one incom-
patibility in JTcl regular expressions. Tcl
always attempts to match the longest
string starting from the outermost levels to
the inner levels of parentheses. With al-
ternation (A|B) Tcl chooses the longest
match of all the branches. Java evaluates
the regular expression from left to right,
and returns the first successful match,
even if it's not the longest. This incom-
patibility will not affect most common uses
of [regexp] and [regsub].

Pattern syntax error information returned
by Tcl is replicated by translating the mes-
sage from the java.util.regex. Pattern-
SyntaxException thrown by the Java
Pattern.compile(). However, Java is
more forgiving about poor regular expres-
sion syntax, and therefore some expres-
sions that would generate an error in Tcl
may be interpreted as literal characters in
JTcl.

Code refactoring was done to collapse the
[regexp] and [regsub] common code into
tcl.lang.Regex. The matched input sub-
string state information used by [regexp

Proceedings of the Tcl 2011 82 Manassas, VA October 24-28 2011

-all] and [regsub -all] was delegated to
java.util.regex.Matcher, simplifying the
code.

An apparent Tcl 8.4 bug was replicated in
the JTcl code: a difference between re-
gexp and regsub. The command [regexp
-all -inline {a*} {a}] returns one match, {a}.
The similar command [regsub -all {a*} {a}
{Z}] returns {ZZ}, one Z for the match of
{a} with {a}, and a second Z for a zero-
length match after the 'a'. The
java.util.regex.Matcher match groups
are used for code simplicity, with a special
case in the [regexp] implementation for
this inconsistency.

Process Pipelines for [exec] and
[open]
Process pipelines for [exec] and [open “|
command”] and the Tcl 8.4 [exec] input
and output redirection were added to JTcl,
using pure Java. The tcl.lang.Pipeline
class parses an [exec]- or [open]-style
pipeline string and builds a chain of
tcl.lang.process.TclProcess instances
for the chain of operating system com-
mands in the pipeline. Each TclProcess
instance is made aware of its neighbor
TclProcess (or its redirected input and
output) with a tcl.lang.process.Redirect
instance. The Pipeline instance can
manage any of the [exec] redirectors The
[open “| command”] command uses a
c h a n n e l v i e w o f P i p e l i n e ,
tcl.lang.channel.PipelineChannel.

The tcl.lang.process.TclProcess class is
abstract with currently one concrete sub-
class: tcl.lang.process.JavaProcess.
JavaProcess is a pure Java implementa-
t ion using java.lang.Process and
java.lang.ProcessBuilder. This code

organization allows for future develop-
ment of platform-specific TclProcess
subclasses that use native code, or a
Java 7 subclass that makes use of the
new redirection capabilities of Process-
Builder.

The tcl.lang.process.TclProcess sub-
class is responsible for handling its own
i n p u t a n d o u t p u t r e d i r e c t i o n .
JavaProcess is limited by the capabilities
of the Java 1.5 and 1.6 API, which does
not expose the operating system's pipe
and file descriptor inheritance mecha-
nisms. All pipelines and redirection must
u s e P r o c e s s . g e t I n p u t S t r e a m () ,
Process.getOutputStream() , and
Process.getErrorStream(). To create a
pipe, a new thread is created with an in-
s t a n c e o f t c l . l a n g . p r o c e s s .
TclProcess.Coupler which reads the up-
stream JavaProcess's output stream and
writes to the downstream JavaProcess's
input stream.

These limitations in the Java API create
some incompatibilities between a Tcl pipe-
line and a JTcl pipeline. A pipeline
launched in the background by JTcl can-
not outlive the JTcl process itself because
JTcl, rather than the operating system, is
managing the pipe.

The Java Process API use of the Input-
Stream class for standard input and the
lack of file descriptor inheritance in the
API creates problems for JTcl's tclsh emu-
lation, tcl.lang.Shell, when using [exec].
With Java's InputStream, the only way to
detect an end-of-file condition is to do an
InputStream.read(). But doing the read
will take at least one byte from the stan-
dard input. So the JavaProcess instance

Proceedings of the Tcl 2011 83 Manassas, VA October 24-28 2011

for an exec'd process can take an extra
byte from standard input that it may not
need, stealing that byte from the JTcl
shell itself. A simple example is shown
below.

Contents of the file testStdin.txt:
exec head -1
this line should go to head and to
stdout
puts {this line should be inter-
preted by the JTcl shell}
exit

This file is sent to the JTcl shell via stan-
dard input:

$java tcl.lang.Shell <
testStdin.txt
Two possible cases occur – the first is the
expected output:
this line should go to head and to stdout
this line should be interpreted by the JTcl
shell

T h e s e c o n d c a s e i s w h e n t h e
JavaProcess instance for 'head' steals an
extra byte
this line should go to head and to stdout
couldn't execute “uts”: no such file or di-
rectory

These incompatibilities are relatively mi-
nor, and could be fixed with the Java 7
capabilities of ProcessBuilder which
support true file descriptor inheritance at
the operating system level.

The [pid fileid] command is supported on
Posix systems on at least some JVMs by
looking for a field named “pid” in the
java.lang.Process instance with a value
the same as that re turned by
Process.getClass().getDeclaredField

(“pid”). If this fails, -1 is returned as the
process id.

File Events and the New Channel Sub-
system
Significant improvements were made to
the channel subsystem for JTcl to support
non-blocking I/O, Unicode, and to fix fail-
ing tests in the Tcl 8.4 test suite. Both
[fcopy] and [fileevent] are supported,

The [fcopy] command simply copies from
one channel to another within a separate
Java thread, and uses the existing JTcl
event queue to execute the callback script
when [fcopy] completes. If possible, a
byte copy is made to avoid the Unicode
encoding and decoding step, and an effi-
cient buffering is enabled.

The [fileevent] command depends on the
new non-blocking I/O implemented in the
channel subsystem. The fileevent itself is
d e s c r i b e d w i t h t w o o b j e c t s ,
tcl.lang.channel.FileEventScript and
tcl.lang.channel.FileEvent. The in-
stance of FileEventScript exists for the
lifetime of a fileevent, and schedules new
instances of FileEvent on the JTcl event
queue. Each FileEvent instance, when it
comes off the queue, tests for readability
or writability of the channel and executes
the fileevent script as necessary.

As or ig ina l l y coded in Jac l , the
tcl.lang.channel.Channel abstract class
is the root object for all types of channels.
Much of the channel code was re-written
in a more Java-like fashion, replacing the
literal C-to-Java translation. Subclasses of
Channel are shown in Table 1.

Proceedings of the Tcl 2011 84 Manassas, VA October 24-28 2011

In order to support the JTcl enhancements
and fixes, Jacl's TclInputStream and
TclOutputStream classes were replaced
w i t h a c h a i n o f s u b c l a s s e s o f
java.io.InputStream, java.io.Reader,
j a v a . i o . O u t p u t S t r e a m , a n d
java.io.Writer.

The input side of a Channel uses the fol-
lowing chain of InputStreams and Read-
ers:

Channel.getInputStream() presents an
InputStream view of the data on the
channel. For example, a FileChannel
uses java.io.FileInputStream.

Eof InputFi l ter reads by tes f rom
Channel.getInputStream() and adds the
end-of-file byte configured by the channel.

InputBuffer reads bytes from the EofIn-
putFilter, provides a resizable read buffer
and implements non-blocking reads. It
performs non-blocking reads by perform-
ing EofInputFilter.read() in a separate
thread. All byte read operations on the
channel are taken from this InputStream.

MarkableInputStream reads bytes from
the InputBuffer and allows for look-ahead
in the stream.

UnicodeDecoder reads bytes from the
MarkableInputStream and converts to
Unicode using the encoding configured by
the channel.
EolInputFilter reads characters from
UnicodeDecoder and performs the con-
figured end-of-line translation on the

Table 1Table 1

Java Class Description

SeekableChannel Abstract class that adds seek() and tell()

FileChannel Extends SeekableChannel to implement file I/O

ResourceChannel Implements reading of a Java resource using a
“resource:” prefix on the file name

ReadInputStreamChannel Bridges a Tcl channel to a Java InputStream

AbstractSocketChannel Abstract class that has common code for socket
channels

ServerSocketChannel Implements Tcl server sockets

SocketChannel Implements Tcl sockets

TclByteArrayChannel Used internally to bridge Tcl channels to Tcl byte
arrays

Proceedings of the Tcl 2011 85 Manassas, VA October 24-28 2011

channel. All character read operations on
the channel are taken from this Reader.

The output side of a Channel uses the
following chain of OutputStreams and
Writers:

EolOutputFilter is written to by the chan-
nel when it performs character writes. It
performs the configured end-of-line trans-
lation on the channel.

UnicodeEncoder is written to by Eol-
OutputFilter, and translates Unicode
characters to bytes according to the en-
coding configured on the channel.

OutputBuffer is written to by Unico-
deEncoder as well as by the channel
when it performs byte writes. It provides a
resizable buffer, but unlike InputBuffer,
does not handle non-blocking writes.

EofOutputFilter is written to by Output-
Buffer and adds the end-of-file character
that the channel is configured to use.

NonBlockingOutputStream is written to
by EofOutputFilter, and performs its
O u t p u t S t r e a m . w r i t e () a n d
OutputStream.flush() in a separate
thread for non-blocking writes.

Channel.getOutputStream() is written to
by NonBlockingOutputStream, and pro-
vides an OutputStream view of the chan-
nel data.

Testing Sockets and File Events
A hallmark of Tcl is its event system that
allows writing of servers with a minimal
amount of code. An example of this is the
DustMote script [Kapl02] that implements

a web server in merely 41 lines of code.
We found that DustMote running under
JTcl could readily serve a web site (the
document root was set to the content of
the www.onemoonscientific.com site) indi-
cating that the fileevent and server socket
code functions as expected.

As a further test, multiple simultaneous
instances of JTcl were set up calling a
script using the [http::geturl] command to
pull a file from the DustMote server. As
described above the fcopy command initi-
ates a separate Java thread to do the file
copy to the clients socket and we indeed
observed that the Thread usage by Dust-
Mote increased proportionally to the num-
ber of clients accessing it.

Swank
The success of Tcl as a programming lan-
guage comes not only from the intrinsic
value of Tcl, but its companion Graphical
User Interface Toolkit, Tk. Tk has become
so successful that it is used not only as
the GUI toolkit for Tcl, but also with other
languages such as Python. Without a
Java implementation of Tk, JTcl would not
be able to fill many of the programming
niches accessible to Tcl. Tk widgets are,
however, programmed with low level calls
to each platforms native graphics system
and replicating this in Java would be a
large task.

Developing Swank
Two key factors allowed for the feasibility
of developing Swank (“Tk in Java”) in a
reasonable period of time. Swing, the pri-
mary Java user interface toolkit, provides
a rich variety of widgets with similar func-
tionality to Tk widgets. For example, the
Tk toplevel widget is similar to the Swing

Proceedings of the Tcl 2011 86 Manassas, VA October 24-28 2011

http://www.onemoonscientific.com
http://www.onemoonscientific.com

JFrame widget, the button to JButton, the
menu to JMenu, etc. Using the Swing
widgets meant that the behavior of Swank
would not be as similar to Tk as it would if
the Swank widgets were developed with
lower level Java graphic operations. On
the other hand, adopting Swing meant
that a great deal of coding work could be
skipped. Furthermore,using the Swing
widgets provides a richer set of behaviors
than the original Tk widgets.

The second key factor was the introspec-
tion capabilities of the JTcl language.
Much of the code that forms the basis of
Swank is generated by JTcl scripts that
determine the fields and methods of each
Swing component and then automatically
produce Java code that provides a Tk-like
interface to the components. This gener-
ates a large number of configuration op-
tions for each widget. Some of these map

Table 3Table 3Table 3Table 3

Swing Tk Swing Tk

JDesktopPane jdesktoppane JProgressBar jprogressbar

JComboBox jcombobox JScrollPane jscrollpane

JDialog jdialog JSplitPane panedwindow

JEditorPane html JTabbedPane jtabbedpane

JInternalFrame JInternalframe JTable jtable

JOptionPane joptionpane JToolBar jtoolbar

JPasswordField jpasswordfield JTree jtree

JPopupMenu jpopupmenu JWindow jwindow

Table 2Table 2Table 2Table 2

Swing Tk Swing Tk

JButton button JRadioButtonMenuItem radiobutton (on menus)

JCheckBox checkbutton JScrollBar scrollbar

JFrame toplevel JSlider scale

JLabel label JSpinner spinbox

JList listbox JTextArea message

JMenu menu JTextField entry

JMenuBar menubar JTextPane text

JPanel frame JFrame (composite) labelframe

JRadioButton radiobutton JPanel (customized) canvas

Proceedings of the Tcl 2011 87 Manassas, VA October 24-28 2011

coincidentally to the names and functions
of Tk configuration options. In other
cases, JTcl code is used to specifically
generate Java code for Tk options. In
some of these cases it is only necessary
to generate code that parses the appro-
priate Tk option and maps it to an existing
Java Swing method. In other cases spe-
cific Java code is written to enable the
correct action in response to the specified
option. This Java code is inserted in the
generated Java file.

In earlier versions of Swank we made
available nearly all configuration options
of the Swing widgets as Tk-style configu-
ration options. Starting with version 3.0
the code generator has been changed to
limit the options to a predefined list that
leaves out many of the more obscure
Swing configuration options. This leads to
a simpler toolkit that presents options
more consistent with that of the Tk toolkit.

Swank Widgets
Swing widgets and the Tk style com-
mands used with Swank to create them
are listed in Table 2. These are the wid-
gets that have a particularly close corre-
spondence between the Tk widget and
the Tk-style widget as implemented in
Swank.

Some Swing widgets don’t have a direct
correspondence to existing Tk widgets,
but were deemed useful enough that they
should have a Tk style command in
Swank. These are listed in Table 3.
Some of them do have analogous Tk
commands that are available in exten-
sions like the table and combobox wid-
gets. Others, like the panedwindow, exist

in Tk, but the Swank implementation has
significant differences.

The behavior of most of the widgets in
these tables is largely a product of that of
the underlying Swing widget. The two
most complex Tk widgets, text and can-
vas, required substantial Java code to re-
produce the behavior of the Tk widgets.
The canvas widget, in particular, is almost
entirely implemented by Swank specific
Java code. This widget is based on the
Swing JPanel, which essentially provides
an empty screen area on which to draw
by overriding its paintComponent
method.

Swank Canvas Widget
The Swank canvas widget provides most
all of the features of the Tk canvas, plus
some additional capabilities. Colors are
one area where the Swank canvas is dis-
tinguished from that of Tk. In Swank, ob-
jects like rectangles and ovals can have
gradient or texture fills, and the colors for
all Swank canvas items can be transpar-
ent.

Configuration Options
Additional configuration options are avail-
able for Swank canvas items. For exam-
ple, while Tk lines can have arrows at one
or both ends of the line, lines on the
Swank canvas allow for different styles
(arrow, square, circle, diamond or nothing)
at each end. All Swank canvas items also
support a -rotate configuration item. A
common style when generating diagrams
is the placing of a text label on a shape.
To facilitate this, rectangles and ovals on
the Swank canvas can be configured with
a text option (and corresponding font and
text color options).

Proceedings of the Tcl 2011 88 Manassas, VA October 24-28 2011

Additional Canvas Items
Several additional canvas item types are
present in Swank. In addition to normal
text items, the Swank canvas adds htext
items. These support many HTML tags
and some CSS styles (as implemented by
Java Swing HTML endowed text widgets).
For example, an htext item could have an
H2 header, superscripts, bold and italic
text or be laid out as a table using HTML
table tags.

Connection items are unique in that their
coordinates are specified in terms of a
fraction of the bounds of two other items
on the canvas. In this way it is easy to
produce diagrams where dragging one
item around maintains a displayed con-
nector to a second item without needing
to write Tcl level code to reposition the
connector. Annotation items combine a
line with an arrow at one end and a text
string at the other.

Affine Transforms
All Swank canvas items can have an Af-
fine transform associated with them. The
standard Swank canvas includes frac-
tional transforms that allow canvas draw-
ing in fractional positions of the canvas,
allowing, for example, a rectangle to fill
the top half of a canvas, no matter how
the canvas is resized. This capability is
extensively used in the NMR analysis
program dataChord where custom canvas
items add transforms to the canvas that
allow items to be drawn relative to the first
items position. In this way labels and an-
notations positioned near features of the
NMR spectrum remain positioned relative
to the NMR feature, no matter how the
whole spectrum is zoomed or panned.
Additionally, the whole Swank canvas has

an Affine Transform associated with it, the
scale of which is changed with the canvas
"zoom" subcommand. This allows one to
zoom the view of the entire canvas in or
out.

Handle Selection
A standard feature of many programs for
creating diagrams or illustrations is the
ability to select, move and resize items on
the drawing canvas using various mouse
actions. This can be implemented in a Tk
program by drawing selection indicators
and handles with explicit canvas items,
but it seemed such a common paradigm
that we added low level support to the
Swank canvas for these actions.
All items can be selected using an "hse-
lect" subcommand. Any items that are se-
lected are displayed with selection han-
dles. When the mouse enters a handle
the cursor is changed to an "appropriate"
resize cursor. The handles are not im-
plemented as separate canvas items, but
are fundamentally displayed by the under-
lying Java code at appropriate positions
on the bounds of the item. Moving and
resizing selected items is the responsibil-
ity of "user code" and is not part of
Swank, but is easily implemented.

Scene Graph
Advanced graphics applications often ar-
range the display items as a collection of
nodes in a graph structure known as a
Scene Graph. Rendering of the items is
then done by traversing the scene graph
and rendering each viewable item.
Whether or not items are rendered in front

Proceedings of the Tcl 2011 89 Manassas, VA October 24-28 2011

http://en.wikipedia.org/wiki/Scenegraph
http://en.wikipedia.org/wiki/Scenegraph

of or behind other items depends on their
relative position in the scene graph. A
scene graph is being developed for the
Swank canvas. As currently implemented
the Swank canvas scene graph is imple-
mented by adding a new "-node" configu-
ration option for each item on the canvas
and adding a new node item type. Each
traditional item on a canvas (arc, rectan-
gle, line etc.) exists as leaf node on the
graph and can not have other items at-
tached. Only the new node item can have
descendants, which may be traditional
display items, or additional nodes.

If nodes are not specified the canvas acts
as the traditional Tk canvas, effectively
being a scene graph with one root node
and zero or more visual items that are
rendered in order of their attachment to
the root node. The scene graph is ren-
dered in a depth-first (post-ordered) fash-
ion with children at each node rendered
from left to right (first to last added). The
bounding box (returned with the "canvas
bbox" command) is the union of the
bounds of all the items below that node.
Node items are also rendered if they have
a non empty fill or outline parameter. They
are rendered as rectangles whose size is
the same as the bounding box described
above. Note that if the fill parameter is set,
and is not transparent, all items below that
node will be obscured as the node is
drawn after the items below it on the
graph.

The raise and lower canvas subcom-
mands have a modified behavior with re-
spect to scene graphs that have more
than one node. A raise command issued
without a "aboveThis" argument will move
the specified items to be the last items of

the node to which they are attached. If an
"aboveThis" argument is specified, the
aboveThis item must be attached to the
same node as any items to be moved.
Thus raise (and the comparable holds for
lower) will only change the display order
of items relative to other items attached to
the same node (but, note that node items
themselves can be raised or lowered).

Charts
Charts are implemented using JFreeChart
[Gilb11]. In the Swank implementation
they are essentially just another item that
can be placed on the canvas. The chart
shown in Figure 1, for example, is not im-
plemented by using a multiple individual
canvas items, as would be done in Tk, but
is instead a single chart item that can
readily be resized and repositioned on the
canvas.

The canvas charts, illustrate a significant
advantage of working in the JVM envi-
ronment. Working with the C implementa-
tion of Tcl/Tk one would need to find a
charting library that works on all the major
environments (Mac, Windows, Linux, etc.)
and then ensure that it compiles, links and
runs on these. Integrating such a library
might require significant knowledge of the
build environment of each operating sys-
tem. Using such a library also requires an
ongoing commitment to update the library
and build environment for new operating
system releases. With the JVM ap-
proach,however, one needs only ensure
that the libraries jar files are available on
the build and run classpaths and one has
a high level of confidence that the applica-
tion will run on any platform implementing
a compatible version of the JVM.

Proceedings of the Tcl 2011 90 Manassas, VA October 24-28 2011

Figure 1. This figure is a screenshot of the program dataChord Spectrum
Analyst which is a Java program that integrates JTcl and Swank. The primary
window is used for displaying Nuclear Magnetic Resonance (NMR) spectra, but
also provides for rich annotation features by the user. The NMR spectra are
analyzed, in part, using tools available from the Apache Commons Math libary
[ACM11]. The spectra are rendered as custom items on the Swank canvas, so
multiple spectra can be rendered in various positions and orientations on the
canvas. The screenshot is somewhat contrived to show various Swank canvas
items: a rectangle with a transparent, gradient color, two ovals joined by a
connector item, an htext item showing the user of superscript and bold text, and
a chart item, implemnted using the JFreeChart library.

Much of the data analysis of dataChord Spectrum Analyst is implemented as
JTcl scripts, and as a client-server program it relies heavily on the file, channel
and socket capababilites of JTcl.

Proceedings of the Tcl 2011 91 Manassas, VA October 24-28 2011

Canvas3D
Besides the standard Tk-like canvas,
Swank includes a canvas suitable for dis-
playing 3D objects. The implementation
is at present fairly limited, but does pro-
vide the ability to draw spheres, cylinders,
cones, and text. The actual 3D graphics
are implemented using Java3D.
Building and Packaging
Swank is built and packaged using the
same maven-based infrastructure as used
by JTcl. The primary build result is a zip
file that forms a “batteries included” distri-
bution, that includes JTcl (which as dis-
cussed above includes incr Tcl, the TJC
Tcl to Java Compiler, and much of Tcllib),
the chart canvas item code (including
JFreeChart jar files), and the canvas3d
package.

Helper scripts for starting a Swank envi-
ronment are included and are analogous
to those described above for JTcl. Tk dis-
tributions include a program called “wish”.
Swank provides helper scripts called
“wisk” (and wisk.bat on Windows) that
start up the same type of environment that
“wish” does. Also included are helper
scripts, swkcon (and swkcon.bat on Win-
dows). These start up Swank with a
Swank implementation of the TkCon con-
sole [Hobbs09].

Conclusions
Together, JTcl and Swank, provide an en-
vironment for developing applications that
is very similar to that of Tcl and Tk. Most
programs that will run with Tcl 8.4 will run
unchanged on JTcl. Swank has a greater
level of differences to Tk, but provides a
high level of compatibility along with addi-
tional widgets and capabilities, especially
with regards to the canvas widget.

A large advantage of developing in the
JTcl/Swank environment is the ability to
take advantage of other libraries imple-
mented in Java. The developer can have
a high level of confidence that the combi-
nation of JTcl and Swank with other Java
libraries will run unchanged on any plat-
form with the JVM. An example of this is
the program, dataChord Spectrum Analyst
(Figure 1), which is written to use JTcl and
Swank, and integrates in a cross-platform
way libraries for math, statistics and chart-
ing.

JTcl is hosted at http://jtcl.kenai.com/ and
Swank at http://swank.kenai.com/. In-
stallers, source code, documentation,
mailing lists and bug trackers are avail-
able for both projects at these sites.

References
[ACM11]
Commons Math: The Apache Commons
Mathematics Library
http://commons.apache.org/math/

[DeJ05]
Incr Tcl extension for Jacl
TclJava project
http://sf.net/projects/tcljava
http://sourceforge.net/mailarchive/messag
e.php?msg_id=1134245

[DeJ06]
TJC : A Tcl to Java Compiler
Mo DeJong
Thirteenth Annual Tcl/Tk Workshop, 2006
http://modejong.com/publications.html

[Gilb11]
JFreeChart
David Gilbert

Proceedings of the Tcl 2011 92 Manassas, VA October 24-28 2011

http://jtcl.kenai.com
http://jtcl.kenai.com
http://swank.kenai.com
http://swank.kenai.com
http://www.jfree.org/jfreechart
http://www.jfree.org/jfreechart
http://sf.net/projects/tcljava
http://sf.net/projects/tcljava
http://sourceforge.net/mailarchive/message.php?msg_id=1134245
http://sourceforge.net/mailarchive/message.php?msg_id=1134245
http://sourceforge.net/mailarchive/message.php?msg_id=1134245
http://sourceforge.net/mailarchive/message.php?msg_id=1134245
http://modejong.com/publications.html
http://modejong.com/publications.html

http://www.jfree.org/jfreechart

[Hobbs09]
TkCon Project
Jeffrey Hobbs
http://tkcon.sourceforge.net/

[John04]
"From C to Java, Scientific Data Analysis
with Java, Jacl and Swank"
Bruce A. Johnson
11'th Annual Tcl/Tk Conference
http://www.tcl.tk/community/tcl2004/Paper
s/

[Kapl02]
DustMote
http://wiki.tcl.tk/4333

[Lam97]
"Jacl: A Tcl Implementation in Java"
Ioi K. Lam, Brian Smith
Fifth Annual Tcl/Tk Workshop, 1997
http://www.usenix.org/publications/library/
proceedings/tcl97/lam.html

[Lew96]
"An On-the-fly Bytecode Compiler for Tcl"
Brian T. Lewis
Fourth Annual USENIX Tcl/Tk Workshop,
1996
http://www.usenix.org/publications/library/
proceedings/tcl96/lewis.html

[Lind99]
 “The Java™ Virtual Machine Specifica-
tion, 2nd Ed.”, T. Lindholm and F. Yellin,
1999, Prentice Hall.

[Oracle2004]
http://download.oracle.com/javase/1,5.0/d
ocs/api/overview-summary.html

[Ost10]
“Tcl and the Tk Toolkit, 2nd Ed.”, John. K.
Ousterhout and Ken Jones, 2010,
Addison-Wesley.

[Poin07]
Aejaks Project
Tom Poindexter
http://sf.net/projects/aejaks

[Szul09]
Tcl/Tk Community Google Summer of
Code 2009
Jacl Modernization Project
http://wiki.tcl.tk/23812

[WikiJVM]
JVM Languages
http://en.wikipedia.org/wiki/JVM_language
s

Proceedings of the Tcl 2011 93 Manassas, VA October 24-28 2011

http://www.jfree.org/jfreechart
http://www.jfree.org/jfreechart
http://tkcon.sourceforge.net
http://tkcon.sourceforge.net
http://www.tcl.tk/community/tcl2004/Papers/
http://www.tcl.tk/community/tcl2004/Papers/
http://www.tcl.tk/community/tcl2004/Papers/
http://www.tcl.tk/community/tcl2004/Papers/
http://wiki.tcl.tk/23812
http://wiki.tcl.tk/23812
http://wiki.tcl.tk/23812
http://wiki.tcl.tk/23812

Jim Tcl
A Small Footprint Tcl Implementation

Steve Bennett,
WorkWare Systems

http://www.workware.net.au/
steveb@workware.net.au

July 2011

Abstract

Jim Tcl is a modern implementation of Tcl, designed to be small, modular, easy to
build and easy to embed. Along with a high degree of compatibility with Tcl 8.5,

Jim Tcl includes a number of innovative features such as lambdas, garbage
collection, object-oriented I/O and signal handling. This paper presents a detailed

look at some of the most interesting aspects of Jim Tcl.

The Jim Tcl [1] project was begun in 2005 by
Salvatore Sanfilippo, largely as a testbed for new
features such as functional programming support
which were difficult to retrofit to Tcl1 and required
some practical experimentation. Since then, Jim Tcl
has acquired many new features, both standard Tcl
features and features unique to Jim Tcl and has
improved in stability and speed.

1. THE STATE OF JIM TCL
Jim Tcl v0.71, which was released in June 2011;

• Runs on at least: Mac OS X, Linux (many
architectures), FreeBSD, QNX, eCos, Solaris,
cygwin, msys/mingw and Haiku.

• Includes many C and Tcl optional components,
including: glob, tclcompat, tree, rlprompt, oo, binary,
load, package, readdir, array, clock, exec, file, posix,
regexp, signal, aio, eventloop, pack, syslog, nvp,
readline, sqlite, sqlite3, win32

• Passes over 3700 unit tests

• Is between 100KB and 220KB in size depending on
selected components, platform and build options

• Has 127 built-in commands

A Short History of Jim Tcl
The Jim Tcl project has been active for over six years.

Date Who Description
Feb 2005 antirez Initial public version

Sep 2005 antirez Enter low activity maintenance period

Jun 2008 oharboe Take over as maintainer

Jul 2008 oharboe Change to FreeBSD license

Nov 2008 steveb Begin port of missing Tcl functionality

Oct 2009 oharboe Move to git

Jul 2010 oharboe Release 0.51

Oct 2010 steveb Release 0.63 - Merge workware port

Jan 2011 steveb Release 0.70 - Including utf-8 support

Jun 2011 steveb Release 0.71

The very first publicly released version of Jim Tcl
included support for references and garbage collection
as well as a handful of core commands.
Subsequent releases have added many new core
commands, optional extensions and significant Tcl
compatibility.
The following graph shows the evolution of Jim Tcl in
both size (features) and speed. A standard set of
performance benchmarks is run for every, single
commit to the public repository in order to monitor the
size, speed and correctness over time.

1 In this paper, the term Tcl will be used to refer to the original, official Tcl implementation — http://tcl.sourceforge.net/ while Jim Tcl will be
used to refer to the Jim Tcl implementation — http://jim.berlios.de/

Permission to make digital or hard copies of this work is granted
without fee provided that copies are reproduced in full and bear
this notice. To copy otherwise requires prior specific permission.

Proceedings of the Tcl 2011 94 Manassas, VA October 24-28 2011

http://www.workware.net.au
http://www.workware.net.au
mailto:steveb@workware.net.au
mailto:steveb@workware.net.au
http://jim.berlios.de/
http://jim.berlios.de/
http://tcl.sourceforge.net
http://tcl.sourceforge.net
http://jim.berlios.de
http://jim.berlios.de

Jim Tcl on Linux, 266MHz ARM, gcc 4.2.4 -Os 2

The Philosophy of Jim Tcl
When reimplementing an existing system, it can be
difficult to balance competing goals of compatibility
and whatever is driving the need for a new
implementation. Jim Tcl strives to be a small footprint
implementation, in both code size and memory usage,
however this goal often competes with the goal of Tcl
compatibility.
The philosophy of how Jim Tcl balances it’s goals can
be summarised as:

Jim Tcl attempts to avoid gratuitous
incompatibilities with Tcl, while being open to
the addition of new features which improve the
usability and usefulness of Jim Tcl. Any large
feature, including Tcl-compatible features, must
be optional at compile time.

The expression of this philosophy can be seen, for
example, in the implementation of regular expressions
(regexp, regsub) in Jim Tcl. To minimise the footprint,
there are three options available (at compile time):

1. Disable regular expression support
2. Use the system-provided POSIX regex support to

provide ERE3 regular expression support. (This is
the default)

3. Use the built-in regex support to provide (a
significant subset of) ARE4 regular expression
support, including UTF-8.

Note that this approach necessarily leads to some
differences between Jim Tcl and Tcl, and even
between different configurations of Jim Tcl, but the
size difference is significant.

Configuration Size (bytes)

Jim Tcl, system regex 3500

Jim Tcl, built-in regex 9878

Jim Tcl, built-in regex + utf-8 9929

Tcl 8.5.8 54892

2 Note that executable size represents the default configuration, which includes additional components over time.
3 ERE — POSIX Enhanced Regular Expressions (see also BRE — Basic Regular Expressions)
4 ARE — Advanced Regular Expressions

Proceedings of the Tcl 2011 95 Manassas, VA October 24-28 2011

Jim Tcl does not attempt to present a stable C API. The
ability to change the API from release to release
allows new features to be added to Jim Tcl far more
rapidly than would otherwise be the case. With the
primary target for Jim Tcl being embedded scenarios,
recompiling applications when upgrading to a later
release is an acceptable tradeoff.

Similarities with Tcl

Today, Jim Tcl passes several thousand test cases,
most of which are fully compatible with Tcl. Jim Tcl
includes support for almost all of the core Tcl
commands, including: append, array, switch, catch,
break, continue, string, list, llength, lindex, lsort,
lsearch, regexp, regsub, upvar, uplevel, foreach, dict,
lassign, lset, exec, format, scan, binary and many
more. In addition Jim Tcl supports {*}, loadable
modules, modifying the environment to exec via the
$env array, binary strings, UTF-8 strings, dictionaries
and tailcall.
Many Tcl scripts will work unchanged, especially
those which avoid the use of namespaces, safe
interpreters, threading, traces and, of course, Tk. Jim
Tcl implements the Dodekalogue [2].
Developers familiar with Tcl have been able to almost
seamlessly make the transition to Jim Tcl.

Missing features and capabilities

Jim Tcl omits support for a number of Tcl features,
usually due to one of the following reasons.
1. The functionality has little relevance, or at least is

not critical, for an embedded system or embedded
application (namespaces, safe interpreters)

2. The functionality is too large and/or complex to
consider adding (dynamic encodings, byte code
compiler)

3. There has been no interest in the feature by
someone willing to work on it (coroutines, Tk)

The following is an abbreviated list of features
missing from Jim Tcl compared with Tcl 8.5:

• Namespaces

• Traces (variable traces and execution traces)

• Byte code compilation

• Safe interpreters

• Threads

• Dynamic encodings (fconfigure -translation, etc.)

• Tk
In addition, a number of commands omit certain
options and/or subcommands, such as lsort -dictionary
-stride -unique, clock add, string wordend, wordstart.

Jim Tcl-specific features and capabilities

The Jim Tcl project started as a platform to experiment
with new features, especially those related to
functional programming such as closures, references,
garbage collection, lambdas and tail calls. The
ongoing development of Jim Tcl maintains the
philosophy of pushing the boundaries when
implementing new features, while still carefully
considering the pros and cons with maintaining Tcl
compatibility.
The following are some of the unique features of Jim
Tcl, the first three of which will be explored in greater
depth in the remainder of this paper.

• Functional programming support, including
references, closures, lambdas and garbage collection

• Accurate tracking of source locations and source
accurate error messages

• Fast, simplified packaging system

• Built-in line editing

• Procs allow default args anywhere (TIP #288)

• Procs support automatic upvar syntax: &ref

• Expression shorthand syntax: $(...)

• Procs can be stacked and invoked with upcall

• Signal handling

• Integers are 64-bit on supported platforms

• Supports ‘jimsh -e’ for immediate evaluation

• Object Oriented I/O

• Built-in support for syslog, IPv6, UDP, UNIX
domain sockets and pipes on supported platforms

• Automatic conversion between list, dict and array

• Very modular with many features such as clock,
regexp, binary, exec, glob, package and even I/O
being optional

• Very easy to cross compile

• Single source file bootstrap jimsh can be built with
just a C compiler.

Jim Tcl is not simply a cut-down version of Tcl. Many
of these features are designed to simplify code,
simplify deployment and provide a very capable
dynamic language, especially for embedded systems.
For example, built-in support for signal handling,
UDP, UNIX domain sockets and syslog make it
possible to build small, but highly capable scripts and
daemons with no additional libraries or components
required.

Proceedings of the Tcl 2011 96 Manassas, VA October 24-28 2011

http://wiki.tcl.tk/10259
http://wiki.tcl.tk/10259

2. SOURCE ACCURATE ERROR
MESSAGES

One of the downsides of a language as dynamic as Tcl
is that it can be difficult to provide accurate source
information in error messages since any string can
potentially be evaluated as a script and that string
could have been created in arbitrarily many ways.
This issue was significant in our product, µWeb [3]
which formerly used TinyTcl [4] (based on Tcl 6.7) as
the scripting engine. While TinyTcl provides a small
footprint scripting language and allowed for rapid
development, it also deferred some errors until
runtime. The following was the typical result of a
runtime error:

µWeb with TinyTcl — runtime error message

In µWeb, Tcl scripts are defined in “page description
files” from which they are parsed and embedded in C
code. The stack trace as shown above describes the
error, but it can be difficult to match up with the
original source.
One of the most compelling reasons to move from
TinyTcl to Jim Tcl was the better error reporting.
Compare the same error when using Jim Tcl as the
scripting engine.

µWeb with Jim Tcl — runtime error message

Notice that the exact line number is identified for each
level of the stack trace, even though the original
source has been parsed and embedded in C code.

buttons.page

Identification of the exact location of the error makes
it significantly easier for our customers, especially
those new to the platform or Tcl to find and fix errors.
Below we discuss how Jim Tcl implements source
tracking in such a way that it is both accurate in a
highly dynamic language, and economical in resource
usage.

Accurate Source Tracking — How it Works

In Tcl versions up to approximately 8.3, Tcl_Eval(),
the heart of the Tcl interpreter parsed and evaluated
scripts for every command. A while loop with 1000
iterations re-parsed the commands in the body of the
loop 1000 times. While this made the interpreter
simpler and consumed less memory, it had poor
performance with some scripts. Starting with Tcl 8.4
and the introduction of the byte code compiler, parsing
and execution were separated, resulting in a dramatic
increase in performance. While Jim Tcl eschews the
complexity and size of a byte code compiler and
evaluation engine, it similarly separates parsing and
evaluation for a significant performance boost.
The approach to parsing scripts into an internal
representation is at the heart of how Jim Tcl manages
source location information, and the core structure
used is the Jim “Object”, or Jim_Obj.

 1: title "Test: Buttons"
 2: label "Buttons"
 3:
 4: storage none
 5:
 6: summary {Test submit buttons}
 7:
 8: init -tcl {
 9: proc check_button {name} {
10: set y [string match abc* $NAME]
11: }
12: }
...omitted...
59: button other {
60: label Other
61: editmode none
62: submit -tcl {
63: set x [check_button $field]
64: cgi success "Got [cgi get text]"
65: }
66: }

Proceedings of the Tcl 2011 97 Manassas, VA October 24-28 2011

http://livepage.apple.com/
http://livepage.apple.com/
http://tinytcl.sourceforge.net/
http://tinytcl.sourceforge.net/

Jim Objects
Similarly to the Tcl_Obj structure in Tcl, Jim uses a
reference counted Jim_Obj structure to cache an
appropriate internal representation for “objects” in
order to improve performance. Simple internal
representations are used for (64 bit) integers, floating
point values and strings, while more complex internal
representations are used for more complex objects
such as scripts, expressions, variables and commands.
Consider the following script:

After parsing and evaluating, these three “words”
become the following three Jim_Obj structures:

string incr

type command
int-rep pointer to struct Jim_Cmd
string x

type variable
int-rep pointer to variable value plus scope info
string 3

type int
int-rep Integer 3 as a 64 bit value

While the string value is available whenever required,
the internal representation acts as a cache for the most
recent use of the value. For example if this command
is executed in a loop, the command, variable and
integer are immediately accessible without parsing or
conversion.
Although this approach uses more memory than the
simpler re-parsing approach, the additional memory
required is modest while the performance gains are
significant. It also makes it possible to associate
additional information with each “word” or “token”.
The following explains how these specialised internal
representations are used to carefully track source
locations through the interpreter.
Script Parsing
Consider the following simple script.

test.tcl

incr x 3

 1: set x abc
 2: if {[string match -x* $x]} {
 3: puts "$x matches"
 4: } else {
 5: puts "$x does not match"
 6: }

When this script is evaluated via the source command
(and thus Jim_EvalFile()), or via Jim_EvalSource()
the original source filename and line number are
known. A Jim_Obj structure is created for the script
with a type of “source” and the filename and line
number of the first line of the script are recorded.

string set x abc\nif {[string match -x*...

type source
int-rep test.tcl:1

Initial Jim_Obj representation of the script

When this script is evaluated (which will be
immediately in this case), the script is parsed and
converted to a “script” object with an internal
representation as follows:

string set x abc\nif {[string match -x* $x]}...
type script
int-rep test.tcl:1 plus script token list

Jim_Obj representation after conversion to script

Where the token list associated with the script is:

Token
Type

string type, int-rep

LIN scriptline line=1

ESC set source (test.tcl:1)
ESC x source (test.tcl:1)
ESC abc source (test.tcl:1)

LIN scriptline line=2
ESC if source (test.tcl:2)
STR [string match -x* $x] source (test.tcl:2)
STR \nputs "$x matches"\n source (test.tcl:2)
ESC else source (test.tcl:4)
STR \nputs "$x does not

match"\n
source (test.tcl:4)

Token list after conversion to script

Every token in the script becomes a Jim_Obj, initially
of type “source” which records the original source
location of that token.
When the script is evaluated, the internal
representation of each Jim_Obj in the token list is
converted as required from the “source” object.

Proceedings of the Tcl 2011 98 Manassas, VA October 24-28 2011

Token
Type

string type, int-rep

LIN scriptline line=1

ESC set command

ESC x variable

ESC abc source (test.tcl:1)

LIN scriptline line=2

ESC if command

STR [string match -x* $x] expression
STR puts "$x matches" source (test.tcl:2)

ESC else compared-string

STR puts "$x does not
match"

script (test.tcl:4 plus
token list)

Token list after evaluating script

Notice how the object associated with each word of
evaluated script has changed internal representation
based on how it is used. Most objects have lost the
original source location (each object can have only
one internal representation). However any “script”
objects (such as the “else” arm) retain the source
location. Also the “scriptline” object for each
command in the script retains the source location.
This continues for each script which is executed,
where the source location in the original “source”
object is propagated into the token list of the script.

When source tracking is not possible

Now it is possible to create situations where the source
information is totally lost, or was never available. For
example:

• A script which was entered via a UI element such as
a GUI widget or web form (probably a bad idea!)

• A script which was read from a file without the use
of ‘source’ or ‘package require’

• A script which was “composed” from strings which
have no source information.

All of these scenarios are likely to be less common in
practice than scripts which are executed or derived
from source files. In some of these situations there is
essentially nothing that can be done, however it would
be possible to provide a Tcl command to set source
information. Consider the following possible approach
to adding source information to a string where
‘makesource’ returns a new string with the given
source information added.

set f [open script.tcl]
set buf [$f read]
eval [makesource $buf script.tcl 1]

Tcl access to source information

In addition to providing for more informative error
messages, Jim Tcl makes source information available
directly to Tcl scripts through the ‘info source’
command and through the stack introspection
command ‘info frame’. Consider the script:

The ‘info source’ command examines the given string
(object) and returns any source information associated
with that string. The above script produces:

Whenever a command is evaluated, the current source
information is propagated. During proc invocation,
this information is stored in the stack frame and is
available via the ‘info frame’ command. The higher
level commands ‘stacktrace’ and ‘stackdump’ provide
access to this “live stack trace” information. The same
information is used when an error occurs and the stack
is unwound. When an error is caught with ‘catch’, this
stack trace is available via the ‘info stacktrace’
command as well as via the ‘-errorinfo’ key in the
options dictionary.

Case Study — µWeb

The µWeb Embedded Web Framework makes use of
Jim Tcl’s ability to preserve and access source
information both during parsing and at runtime as
explained in the following diagram.
Source location is tracked from the original page
definition files with Jim Tcl as a Domain Specific
Language (DSL) parser, through the generated code
where this information is used by the runtime Jim Tcl
interpreter to produce accurate error messages which
relate back to the original page definition files.

 1: # test3.tcl
 2: puts [info source {}]
 3:
 4: proc a {} {
 5: }
 6:
 7: puts [info source [info body a]]
 8:
 9: set b {
10: one
11: two
12: three
13: }
14: puts [info source [lindex $b 1]]

$ jimsh test3.tcl
test3.tcl 2
test3.tcl 4
test3.tcl 11

Proceedings of the Tcl 2011 99 Manassas, VA October 24-28 2011

generated C
code

C compiler,
Linker

Web
Application

page files
page files

page files
page files

µWeb Source Location

Preservation with Jim Tcl

Page files are Tcl scripts parsed
as a DSL. They include
“scriptlets” which are executed at
runtime

37: button clear {
38: label "Clear Log"
39: help "Clear the log display"
40: editmode newline
41: submit -tcl {
42: cgi success "Message log cleared"
43: file delete /var/log/messages
44: }
45: }

The µWeb compiler is a Jim Tcl
script. It uses the live stack trace
information to provide source-
accurate error messages and also
‘info source’ to record the original
source location of “scriptlets”.

static const struct elem_button_t elem15[] = {
 {
 ...
 .submit_script.script = "\n"
"cgi success \"Message log cleared\"\n"
"file delete /var/log/messages\n"
"\n",
 .submit_script.filename = “syslog.page”,
 .submit_script.line = 41,
 }
};

libjim

“scriptlets” are executed at
runtime by the Jim Tcl interpreter
via Jim_Eval_Named(). Runtime
errors can therefore provide
accurate source information.

µWeb
“compiler”

The Jim Tcl interpreter for the
target platform is linked into the
application.

Proceedings of the Tcl 2011 100 Manassas, VA October 24-28 2011

Domain Specific Language (DSL) Parser
Early versions of µWeb used Tcl as the DSL parser.
However changing to use Jim Tcl as the DSL parser
had a number of benefits.
1. Supports identical Tcl-based DSL syntax
2. Error messages from the parser are more

informative
3. Source location information is available for passing

to the runtime interpreter
4. It is easy to ship the DSL parser as a single

executable with Jim Tcl embedded.

Source Location in the Tcl Test Framework

Jim Tcl includes a pure-Tcl implementation of tcltest
to run the unit test suite. This implementation takes
advantage of the source location information to
provide the exact location of unit test failures.

The Jim Tcl version of tcltest provides error locations

If a test fails because of a mismatch between the result
and the expected result, the location of the test body is
given with ‘info source’.
If a test fails because it returns an unexpected error,
the location of the error is given with ‘info stacktrace’.

Experimental code coverage tool

The dynamic nature of Tcl, especially the inability to
distinguish code from data can make code coverage
analysis difficult. Nonetheless, a simple 50-line Jim
Tcl script is able to provide useful code coverage
information by simply recording the source location of
every command executed.5

Code coverage output shows which arm was not taken

$./jimsh tests/list.test
list-1.13 ERR basic tests
At : tests/list.test:32
Expected: 'xa {{}} b'
Got : 'a {{}} b'
--
FAILED: 1
! tests/list.test:32!list-1.13
--

$./jcov test.tcl
 1: set x abc
 2: if {[string match -x* $x]} {
####: puts "$x matches"
 -: } else {
 3: puts "$x does not match"
 -: }

Experimental Jim Tcl Debugger.

Although not yet available in the official Jim Tcl
distribution, a pure-Tcl implementation of an
interactive debugger has been developed which uses
the source location information to display the source
code associated with the currently executing code as
well as listing source for any procedure and managing
breakpoints by source location.

Experimental Interactive Debugger

$./jimdb test.tcl
Jim Tcl debugger v1.0 - Use ? for help

@ test.tcl:1 set x abc
> 1 set x abc
 2 if {[string match -x* $x]} {
dbg> n
=> abc
@ test.tcl:2 if {[string match -x* $x]} ...
 1 set x abc
> 2 if {[string match -x* $x]} {
 3 puts "$x matches"
dbg> p $x
abc
dbg> ?
 s step into w where
 n step over l [loc] list source
 r step out v local vars
 c continue u up frame
 p [exp] print d down frame
 b [loc] breakpoints t [n] trace
 ? [cmd] help q quit
dbg> l alias
@ stdlib.tcl
 1 # Create a single word alias (proc)
 2 # e.g. alias x info exists
 3 # if {[x var]} ...
* 4 proc alias {name args} {
 5 set prefix $args
 6 proc $name args prefix {
 7 tailcall {*}$prefix {*}$args
 8 }
 9 }
 10
 11 # Creates an anonymous procedure
 12 proc lambda {arglist args} {
dbg> b puts
Breakpoint at puts (tclcompat.tcl:21)
dbg>

5 Both the code coverage tool and the debugger rely on an experimental command trace feature

Proceedings of the Tcl 2011 101 Manassas, VA October 24-28 2011

3. THE JIM TCL PACKAGE SYSTEM

Tcl has a sophisticated package system for loading Tcl
source and binary modules as packages. This system is
also complex and potentially slow as pkgIndex.tcl files
are searched and parsed.
Consider the following simple invocation.

A total of 115 files are opened and read

The need to create and deploy pkgIndex.tcl files can
also be awkward.6

Simple Package System

With the focus of Jim Tcl on embedded environments,
it is appropriate to take a much simpler approach to
packaging7. The Jim Tcl packaging system:

• Has no version support. Versions are managed
through filenames

• Has no index files and no autoload support

• Is fast

• Is easy to understand

• Is easy to deploy
The Jim Tcl packaging system works as follows:
1. The package subsystem maintains a list of loaded

packages.
2. The command ‘package require foo’ searches each

directory in $::auto_path for either foo.so or foo.tcl.
If either file is found, the package is deemed to be
located (even if loading the package fails).

$ cat pkgtest.tcl
package require blah
$ strace -e strace=open tclsh8.5 t.tcl
open("/usr/share/tcltk/tcl8.5/init.tcl",...
open("t.tcl", ...
open("/usr/share/tcltk/tclIndex", ...
open("/usr/lib/tcltk/tclIndex", ...
open("/usr/local/share/tcltk/tclIndex", ...
open("/usr/local/lib/tcltk/tclIndex", ...
open("/usr/lib/tclIndex", ...
open("/usr/share/tcltk/tcl8.5/tclIndex",...
open("/usr/share/tcltk/tcl8.5/tm.tcl", ...
open("/usr/share/tcltk/tcllib1.12/interp/
pkgIndex.tcl", ...
open("/usr/share/tcltk/tcllib1.12/png/
pkgIndex.tcl", ...
...etc..

3. Once the file is found, it is loaded either as a binary
module or as a Tcl script.

Some notes:
1. Package names must be lower case — foo not Foo.
2. Binary loadable modules are named foo.so on all

platforms.
3. The entry point for the module foo.so is Jim_fooInit
4. Versions are expected to be handled by including

the version in the name. For example ‘package
require foo2’.

5. The $:auto_path list is initialised based on the
install prefix (<prefix>/lib/jim) plus the
environment variable $JIMLIB, although
applications which embed the Jim Tcl interpreter
can add additional directories as appropriate.

Static vs dynamic packages

Jim is designed to be modular. This means both being
able to omit features not required, but also making it
easy to incorporate features. One example is static Tcl
extensions. Pure-Tcl extensions such as glob, stdlib,
tclcompat and binary can easily be built as static
extensions in libjim and jimsh by simply selecting
them with ./configure.

Similarly, C-based extensions can be built either as
static extensions or loadable modules.

External loadable extensions

Building loadable modules can be difficult on different
platforms. Jim Tcl provides a helper script to make
building C-based extensions as loadable modules easy
on any supported platform.

Building a loadable module is easy

The build-jim-ext script uses the configuration-time
settings to invoke the compiler and linker as
appropriate, including for cross compilation.
This is a “mini-TEA” [5] for Jim Tcl.

$./configure --with-ext=”binary glob”

$ build-jim-ext hello.c extra.c
Building hello.so from hello.c extra.c
Compile: hello.o
Compile: extra.o
Link: hello.so
Test: load hello.so
Success!

6 This is not intended as a criticism of the Tcl package system, which is very powerful. Rather it explains why Jim Tcl uses a much simplified
approach.
7 The Jim Tcl packaging system is similar to the Tcl Module support introduced in Tcl 8.5 (http://wiki.tcl.tk/12999)

Proceedings of the Tcl 2011 102 Manassas, VA October 24-28 2011

http://wiki.tcl.tk/327
http://wiki.tcl.tk/327
http://wiki.tcl.tk/12999
http://wiki.tcl.tk/12999

4. REFERENCES, GARBAGE
COLLECTION, CLOSURES AND
LAMBDAS

Jim Tcl provides two features which are combined to
provide garbage collected lambdas and closures. These
are static variables and garbage collected references.

Static Variables and Closures

As an extension to Tcl, Jim Tcl allows procedures to
define static variables. This is a lifetime and scoping
mechanism which is similar to namespace variables in
Tcl, but associated with a procedure rather than a
namespace.
Static variables come into existence when a procedure
is created and live until the procedure is deleted. These
static variables are accessible (scoped) only to the
procedure. Consider the following example.

An extra parameter is specified in the procedure
definition 8 which declares and initialises a static
variable, adder.
Since the scope of the static variable is limited to the
proc, it is convenient to use this mechanism to avoid
name clashes instead of global variables.
Now consider a slight change to the procedure
definition which does not initialise the static variable.

In this case, the static variable is not initialised
directly, but is implicitly initialised from a variable
with the same name in the surrounding scope.
Static variables can be used to implement closures,
where a procedure captures a variable from the
enclosing scope. Note that the variable captures the
value rather than a reference to the variable from the
enclosing scope due to Tcl’s value semantics (although
see the section on references below). Closures are
particularly useful when used with lambdas.

. proc a {x} {{adder 5}} {
 return [incr x $adder]
 }
. a 3
8

. set adder 10

. proc a {x} {adder} {
 return [incr x $adder]
 }
. a 3
13

References

Tcl is a language with value semantics and thus there
is no notion of an explicit reference type9. This
simplifies the language in many ways, but it makes
certain problems more difficult. Jim Tcl adds support
for references primarily as a means to implement
garbage collection.
A reference can be thought of as a value which
contains (or refers to) another value, thus providing a
level of indirection. As we will see, this level of
indirection allows the contained values to be garbage
collected.
References provide three important features:
1. The ability to store (and retrieve) a value
2. A managed namespace providing a unique name

every time a reference is created
3. An associated finalizer to invoke when a reference

is no longer accessible (garbage collection)
Consider the following example:

The command 'ref' creates a references to the value
specified by the first argument. (The second argument
is a "type" used for documentation purposes). The
returned value is a unique reference with a special
string format which allows the contained value to be
retrieved, and also allows references to be easily
identified.
The command 'getref' is the dereferencing operation
which retrieves the value stored in the reference. The
companion command ‘setref’ allows the value stored
in the reference to be replaced.
Note that a reference is simply a string, so a copy of
the reference ($r2) refers to the same contained value.
In this example, no finalizer is specified. Finalizers
provide the mechanism for garbage collection as
discussed below.

. set r [ref "One String" test]
<reference.<test___>.00000000000000000000>
. getref $r
One String
. set r2 $r
<reference.<test___>.00000000000000000000>
. setref $r "New String"
New String
. getref $r2
New String

8 By adding an extra argument to proc, the syntax is backward compatible with Tcl
9 Of course Tcl is a very flexible language. References can be emulated through the use of global (or namespace) variables, where the name
of the variable is the reference. This approach, however, doesn’t allow for garbage collection which is the primary purpose for references in
Jim Tcl.

Proceedings of the Tcl 2011 103 Manassas, VA October 24-28 2011

Garbage Collection

Normally, all values in Tcl are passed by value. As
such values are copied and released automatically as
necessary. With the introduction of references, it is
possible to create values whose lifetime transcend
their scope.
Consider the following example where a reference is
created with a finalizer.

The finalizer command ‘f’ is associated with the
reference when it is created. (The ‘collect’ command is
available to manually run the garbage collector, and
returns the number of objects discarded. Normally the
garbage collector runs automatically10.)
The first time that ‘collect’ is invoked, a variable ‘r’
exists which contains the reference. Because the
reference is accessible the garbage collector has
nothing to do. However the second time ‘collect’ is
invoked, ‘r’ no longer contains the reference.
Therefore, when the garbage collector runs it finds this
dangling reference and discards it, first invoking the
associated finalizer.
The finalizer is passed two arguments, the reference
and the contained value, which it may use to perform
any necessary cleanup.
The finalizer for a reference may be examined or
changed with the 'finalize' command.

The garbage collector works similar to the Boehm GC
algorithm for C/C++ [6]. Here, the special string
format makes it easy to identify strings which may be
valid references. During garbage collection, the string
representations of all objects are scanned for strings
which could be valid references. If a given reference
no longer exists in any string, the contained object is
unreachable and can be collected.

. proc f {ref value} {puts "F $ref $value"}

. set r [ref 123 test f]
<reference.<test___>.00000000000
. collect
0
. set r ""
. collect
F <reference.<test___>.00000000000 123
1

. finalize $r
f
. finalize $r newf
newf

Lambda

Jim Tcl provides a lambda command which provides
suppor t for garbage col lec ted anonymous
‘functions’ (Tcl procedures)11 and closures.
Consider the following example.

An anonymous procedure is created and stored in the
variable ‘adder’. The procedure takes one argument
which it adds to the static variable ‘x’ and returns the
result. The procedure name ‘$adder’ may be used
anywhere a command name is required.
The anonymous procedure is garbage collected. Once
it is no longer accessible (perhaps when the procedure
which defined it ends), the garbage collector is free to
delete the procedure.
The implementation of the lambda command is
remarkably simple.

The lambda command takes the same arguments as
‘proc’ except the name of the procedure is omitted. A
reference is created as a unique, anonymous name for
the new command. In this case the ability for the
reference to contain a value is not used. The reference
finalizer simply deletes the procedure. ‘tailcall’ is used
here simply as an efficiency mechanism to avoid the
creation of an additional call frame.
Lambdas can be convenient as sorting functions.

. set adder [lambda a {{x 0}} {incr x $a}]

. $adder 1
1
. $adder 2
3
. set adder ""

Creates an anonymous procedure
proc lambda {arglist args} {
 set name [ref {} func lambda.finalizer]
 tailcall proc $name $arglist {*}$args
}

proc lambda.finalizer {name val} {
 rename $name {}
}

. set list {1 50 20 -4 2}
1 50 20 -4 2
. lsort -command [lambda {a b} {expr {$a -
$b}}] $list
-4 1 2 20 50

10 The garbage collector runs synchronously. Whenever a new reference is created, the garbage collector will run if a certain number of
references have been created or a certain period of time has passed. This means that if references are not used, garbage collection has no
impact on performance.
11 See http://en.wikipedia.org/wiki/Anonymous_function

Proceedings of the Tcl 2011 104 Manassas, VA October 24-28 2011

http://en.wikipedia.org/wiki/Boehm_garbage_collector
http://en.wikipedia.org/wiki/Boehm_garbage_collector
http://en.wikipedia.org/wiki/Boehm_garbage_collector
http://en.wikipedia.org/wiki/Boehm_garbage_collector
http://en.wikipedia.org/wiki/Anonymous_function
http://en.wikipedia.org/wiki/Anonymous_function

Lambda Example

The following example shows how lambdas can be
useful. First note that Jim Tcl supports object-oriented
I/O commands. That is, in addition to the Tcl-
compatible:

Jim Tcl supports:

This has the advantage that it is easy to “wrap” a file
handle with a procedure.
The “open |...” syntax in Jim Tcl is implemented in
pure-Tcl by wrapping a file handle with a lambda.

set f [open temp.txt]
set data [read $f]
set pos [tell $f]
close $f

set f [open temp.txt]
set data [$f read]
set pos [$f tell]
$f close

 1: # 'open "|..." ?mode?" will invoke
 2: # this wrapper around exec/pipe
 3: # Note that we return a lambda
 4: # which also provides the 'pid' command
 5: proc popen {cmd {mode r}} {
 6: lassign [socket pipe] r w
 7: try {
 8: if {[string match "w*" $mode]} {
 9: lappend cmd <@$r &
10: set pids [exec {*}$cmd]
11: $r close
12: set f $w
13: } else {
14: lappend cmd >@$w &
15: set pids [exec {*}$cmd]
16: $w close
17: set f $r
18: }
19: lambda {cmd args} {f pids} {
20: if {$cmd eq "pid"} {
21: return $pids
22: }
23: if {$cmd eq "close"} {
24: $f close
25: # And wait for the child
26: # processes to complete
27: foreach p $pids {os.wait $p}
28: return
29: }
30: tailcall $f $cmd {*}$args
31: }
32: } on error {error opts} {
33: $r close
34: $w close
35: error $error
36: }
37: }

At line 19, a lambda is created which wraps the file
handle ‘$f’. Most subcommands are simply passed
through to ‘$f’ via the tailcall at line 30, however the
new subcommand ‘pid’ is implemented at line 20 and
the subcommand ‘close’ is extended at line 23.

Jim Tcl OO

The Jim Tcl OO system uses static variables and
references to implement a pure-Tcl OO system [7]
with multiple inheritance in 58 lines of code.

Using the OO package

The ‘tree’ package included with Jim Tcl is largely
compatible with struct::tree from tcllib and is
implemented as an OO class.

5. CONCLUSION

Jim Tcl contains many more unique features than
presented here, while remaining faithful to the
Dodekalogue. Tcl has seen a number of small
additions over time such as {*} list expansion, lassign,
and exec redirection improvements which have made a
huge difference to usability and usefulness of Tcl.
Similarly, the unique features of Jim Tcl enhance its
usability and facility while remaining small, fast and
modular.
Not only has Jim Tcl provided a modern Tcl
implementation for embedded systems, it has proven
an effective platform for testing improvements to the
Tcl language itself.
It is my hope that future releases of Tcl can benefit
from the experience gained from implementing these
improvements.

6. REFERENCES
[1] http://jim.berlios.de/
[2] http://wiki.tcl.tk/10259
[3] http://uweb.workware.net.au/
[4] http://tinytcl.sourceforge.net/
[5] http://wiki.tcl.tk/327
[6] http://en.wikipedia.org/wiki/Boehm_garbage_collector
[7] http://jim.berlios.de/documentation/oo/

$ jimsh
. package require oo
. class Account {bal 0}
. Account method deposit {x} {incr bal $x}
. Account method see {} {return $bal}
. set a [Account new {bal 100}]
<reference.<Account>.00000000000000000000>
. $a deposit 50
150
. $a deposit 25
175
. $a see
175

Proceedings of the Tcl 2011 105 Manassas, VA October 24-28 2011

http://jim.berlios.de/documentation/oo/
http://jim.berlios.de/documentation/oo/
http://wiki.tcl.tk/10259
http://wiki.tcl.tk/10259
http://jim.berlios.de/
http://jim.berlios.de/
http://wiki.tcl.tk/10259
http://wiki.tcl.tk/10259
http://uweb.workware.net.au
http://uweb.workware.net.au
http://tinytcl.sourceforge.net
http://tinytcl.sourceforge.net
http://en.wikipedia.org/wiki/Boehm_garbage_collector
http://en.wikipedia.org/wiki/Boehm_garbage_collector
http://jim.berlios.de/documentation/oo/
http://jim.berlios.de/documentation/oo/

Proceedings of the Tcl 2011 106 Manassas, VA October 24-28 2011

Tcl 2011

Manassas, VA

October 24-28, 2011

Invited Talk

Proceedings of the Tcl 2011 107 Manassas, VA October 24-28 2011

Proceedings of the Tcl 2011 108 Manassas, VA October 24-28 2011

Abstract—The National Superconducting Cyclotron
Laboratory (NSCL) is an NSF funded laboratory that performs
basic nuclear physics research on nucleus-nucleus collisions
innvolving systems that are far from stability. The operation
of the NSCL has been funded by the National Science
Foundation since 1980.

The NSCL has developed and used several Tcl based
applications and tool. These tools are used by a broad
community of researchers and accelerator technologiest This
retrospective will examine the impact of presenting the NSCL
staff with Tcl based tools and toolkits. A speculative look
forward at the role of Tcl within the NSCL as it constructs the
DOE funded Facility for Rare Isotope Research (FRIB)

I. INTRODUCTION
The National Superconducting Cyclotron Laboratory (NSCL)
is an National Science Foundation (NSF) funded laboratory
that conducts basic research in Nuclear Physics. Software
based on and using Tcl have been used at the NSCL for a
number of years. The purpose of this paper is to describe the
ways in which Tcl has been and is now used at the NSCL. Tcl
application case studies will also be provided where
appropriate.

 In December 2008, the Department of Energy (DOE) selected
Michigan State University and the NSCL as the location of a
new laboratory; the Facility for Rare Isotope Research (FRIB).
FRIB is scheduled to begin operation around 2018. The
potential application areas and barriers to the use of Tcl will
be discussed as well.

The remainder of the paper will be organized as follows:
• The NSCL will be described with a layman’s introduction

to the motivation behind the research this done here.
• A brief overview of the FRIB project, its purpose,

schedule and remaining administrative hurdles will be
given.

• A historical perspective of the introduction of Tcl to the
NSCL will then be described. Some speculative work in
progress will be described.

• Taxonomy of the use of Tcl at the NSCL will be
presented along with case studies illustrating each of the
elements in this taxonomy.

• Conclusions about the use of Tcl in the past will be
presented along with a bit of crystal ball gazing regarding
the role of Tcl in the future of the NSCL/FRIB.

II. THE NSCL AND OUR RESEARCH
What is now the NSCL first started producing accelerated
nuclei 1961 when it commissioned the K-50 cyclotron. In
1982 the NSF funded the construction of a K500 (500MeV/A)
cyclotron, and later (1989) a K800 cyclotron which
outperformed its design specifications and was therefore
renamed the K1200. An n NSF grant in 2000 supported
running a coupling line between the K500 and K1200 to
improve primary beam intensity and to build a fragment
separator which started the NSCL on its career as a radioactive
beam facility.

Figure 1 Schematic of the accelerator and separator

Figure 1 above shows a schematic of the beam production
facility. An ECR ion source (not shown in the schematic)
injects partially stripped ions into the K500 at the top center of
the picture (a small grey human figure is provided for scale).
Beam extracted from the K500 is transported along a coupling
line to the K1200 where it is run through a foil that increases
the ionic charge. The more fully stripped ions are injected
into the K1200 (lower left). The K1200 beam is then
extracted and is transported to a target at the entry of the
A1900 fragment separator (running lower left to upper right).
The fragment separator selects the desired secondary beam
which is then transported to the experimental target.

Figure 2 shows a floor plan of the experimental part of the
facility. Each experimental area (to the right of the A1900

Tcl at the NSCL: a 30 (15?) year retrospective
Ron Fox and the Staff and Students of the National Superconducting Cyclotron Lab

Michigan State University

Proceedings of the Tcl 2011 109 Manassas, VA October 24-28 2011

fragment separator in the floor plan) has an experimental
target as well as detector and electronics packages that are
specialized for specific types of experiments and the apparatus
in that area.

Figure 2 NSCL experimental area floor plan

A. Why do radioactive beam experiments.
In this section we present a brief motivation for the research
done at the NSCL.

Figure 3 chart of the nuclei

Figure 3 above shows a chart of the nuclei. Each isotope
consists of a fixed number of protons (Z) (which identify the
element) and neutrons. The sum of the neutron and proton
count is referred to as A which is roughly the nuclear mass.
In figure 3 above, stable nuclei are in black. Those which are
lighter or darker shades of grey are unstable.

There is a strong belief amongst astrophysicists that most of
the heavy elements in the universe have been, and still are
being created in nuclear reactions in stars, and that those
processes involve decay chains with nuclei far from stability.
The nuclei involved in the production of stable heavy elements
are shown in Figure3 in the bands labeled rp-process and r-
process as well as a band, not labeled that participate in the p-
process. An understanding of the rates of these decays and,
where several decays are possible, the branching-ratios
between these decays is critical to an understanding of how

the elements we now see were created and what their actual
abundances are.

Collisions of heavy ions and unstable neutron rich nuclei
create momentary nucleon densities that approach the
densities and compositions of supernovae and even neutron
stars. The number of nucleons present is already sufficient to
help reach an understanding of the liquid-gas phase transition
in nuclear matter as it occurs under these stressed conditions.

In short we can imagine the work done at the NSCL as
bringing the heavens to earth, allowing us to study what
happens in the interiors of stars that are, for now, only
observable at a distance.

B. Stopped and Reaccelerated Beams

The technique used at the NSCL to create radioactive isotope
beams is called projectile fragmentation. This is because we
select from the remains of the projectile after it has interacted
with the A1900 production target. This has the advantage that
the secondary beam will have energies that are essentially
those of the primary beam. The secondary beam can therefore
be easily transported from the separator exit to the
experimental target.

Projectile fragmentation requires beams of sufficient
minimum energy. This minimum required energy arises,
among other things, from the fact that in order to get two
positively charged nuclei to interact, we must jam them close
enough together that they overcome the electric repulsive
force between them and come within the much shorter range
of the nuclear strong force. For example with a primary beam
of 16O on a production target of 5Be, a very light projectile on
a typical production target, this coulomb barrier is already
20MeV. In practice we use much heavier projectiles and
consequently we need higher energies to provide sufficient
incident energy to create the desired isotopes. This is because
the coulomb barrier goes up like the product of the number of
protons in the two nuclei.

While the resulting energetic secondary beams are useful for a
broad variety of experiments, there are still a large set of
interesting experiments for which we would like to have lower
secondary beam energies. The NSCL has developed several
methods to stop these high energy beams (the most energetic
are moving at about ½ the speed of light)! We have just
finished commissioning a reaccelerating LINAC which will
allow us to study radioactive isotopes at energies from a few
hundreds of KeV to 5MeV.

Proceedings of the Tcl 2011 110 Manassas, VA October 24-28 2011

Figure 4 Producing low energy radioactive beams.

The reacceleration line is shown schematically in Figure 4. As
most of the stopping techniques allow the ions to recombine
with electrons the EBIT charge breeder shown in Figure 4 is
required to restore a high charge state to the ions so that the
LINAC can efficiently accelerate the resulting stopped beam.
Reaccelerated beam experiments are scheduled to start in
2012.

III. FACILITY FOR RARE ISOTOPE BEAMS
Many of the interesting isotopes shown in figure 3 are labeled
as “Terra Incognita”. This is because they have not been
generated at sufficient intensities to allow experiments with
them to be performed. This is unfortunate as the r-process is
believed to take place in this neutron rich realm. The r-
process is believed to have produced many of the heavy
elements in the collapsing cores of supernovae. In the r-
process, as the nuclear matter are compressed, the inner core
becomes neutron rich and the nuclei in the less dense outer
core can rapidly capture neutrons (r-process is an abbreviation
of rapid neutron capture) resulting in very neutron rich, and
short lived nuclei. These nuclei decay by sequential β- decay
which converts neutrons to protons, increasing the atomic
number (Z) and moving these unstable nuclei step by step
closer to the line of stability.

Once more the rates of these reactions, the half lives of these
nuclei are important to an understanding of how stars work
and how we wound up with the distribution of elements we
have today.

To create these neutron rich elements close to the neutron
drip-line requires higher intensity and higher energies than can
be produced by the accelerator systems at the NSCL. To meet
that research need, the Nuclear Science Advisory Council
(NSAC), in a report presented to the DOE in August 2007,
recommended that “DOE and NSF proceed with solicitation of
proposals for a FRIB based on the 200MeV, 400kW
superconducting heavy-ion driver linac at the earliest
opportunity.”[1]. In this passage FRIB is an acronym for a
“Facility for Rare Isotope Beams” and is pronounced eff-rib.

As a result of a competitive proposal process, the DOE
selected Michigan State University and the NSCL to construct
this facility in 2008. “The Facility for Rare Isotope Beams
(FRIB) will be a new national user facility for nuclear science,
funded by the Department of Energy Office of Science (DOE-
SC) Office of Nuclear Physics and operated by Michigan State
University (MSU). FRIB will cost approximately $600 million
to establish and take about a decade for MSU to design and
build.” [2]

Figure 5 shows the schedule for the construction of this
facility. The milestones labeled CD-n are critical decision
reviews. These are making or break reviews of the project
progress. The NSCL has successfully passed the CD-1 review
and is actively preparing for CD-2 at the time this paper has
been written. CD-3 approves the start of the construction and
CD-4 is a pre-startup approval.

Michigan State University as further committed funds to
support an early start of conventional construction in 2012
approximately one year ahead of schedule.

Figure 5 FRIB timeline.

Figure 6 FRIB as planned.

Proceedings of the Tcl 2011 111 Manassas, VA October 24-28 2011

Figure 6 shows the current plan for FRIB. The plan allows for
a re-use of the experimental areas and much of the fragment
separator, by placing a stacked multistage LINAC driver in a
tunnel to the south of the current building. The plan also
provides for a later upgrade to the LINAC energiesw by
adding space for extensions to two of the planned LINAC
segments.

The future looks bright for making the early completion date
of late 2017 paving the way for physics runs to start in 2018.

IV. TCL AT THE NSCL

A. History of the First Adoption
The first use of Tcl/Tk at the NSCL traces back to the
commissioning of the S800 spectrograph. The S800 is used
by over 50% of the experiments at the NSCL. The
spectrograph is shown in figure 7 below:

Figure 7 S800 Spectrograph

For scale, note the three experimenters at the base of the
spectrograph.

The S800 is usually run with two detector packages. The white
box at the top of the S800 is the focal plane of the
spectrograph and contains 2-d position sensitive detectors as
well as particle Id detectors, and instrumentation to provide
time of flight information through the spectrograph. The
experiment target is located at the base of the spectrograph
and is often surrounded by an experiment specific detector
package.

In 1996 when the S800 was commissioned, the readout
systems associated with the detector packages were not
powerful enough to handle both packages while maintaining a
reasonable dead time. Therefore it was decided to use a
readout system for each of the detector packages and to do
event building via a reflective memory system that connected
the readout nodes.

The readout computers at that time were controlled by RS-232
ports that were connected to terminal servers. We needed a
simple method to provide a control interface to users while
sending duplicate commands to both systems.

In the previous year, the NSCL had hosted the IEEE 9’Th
Biennial conference on Real-time Computer Applications in
Nuclear, Particle and Plasma Physics (RT-95). At that
conference, Gene Oleynik et al. presented a paper describing
the run control system of the FNAL DART data acquisition
system, a far more distributed system than required by NSCL
experiments.

The DART team chose Tcl as the basis of an implementation
of a group communication protocol inspired by the ISIS
Distributed Toolkit [3]. They also chose to build user
interfaces from Tk. From Oleynik’s paper: “We chose TCL
because of its extensible interpretive procedures. For
graphics, we chose TK…our experience has been that
interfaces can be built more quickly with TK than from X…or
Motif…The ocp GUI…took on the order of ½-1 hour...We
feel this is a big success of the TCL/TK approach.”[4]
(Capitalization of Tcl and Tk from that paper).

Based on this endorsement of Tcl/Tk and a similarity between
the applications (the Readout systems could be thought of as a
group containing two members and communication with them
implemented as a group communication problem), the S800
run control software was implemented completely in Tcl/Tk.
A low level group communication mechanism was built on top
of the [socket] command, it was possible to specify an
arbitrary number of target system for the group (S800 focal
plane only experiments could then use the same software). A
simple state machine was built to manage the system state
diagram. On top of all of this Tk was used to build a GUI
with which the experimenters interacted.

Our experience with using Tcl/Tk for this project was similar
to that of the Fermilab group. The entire system came
together in a matter of a day or so, including the time required
to learn the few bits of the Tcl/Tk language needed to
implement the software.

B. Coupled Cyclotron Facility and adoption of Tcl/Tk.
Wide-spread use of Tcl/Tk at the NSCL did not occur until the
software development group was tasked with creating a new
data acquisition and data analysis tools for the coupled
cyclotron facility (proposed in 1994 funded in 1996 and
commissioned in 2001).

The functional goals of this development project included:

Proceedings of the Tcl 2011 112 Manassas, VA October 24-28 2011

• Breaking the NSCL’s dependency on proprietary
software (specifically VMS and Tru64).

• Providing better accessibility to the software in the
readout computers (which up until now had been
embedded computing systems with a very minimal
operating system).

• Providing near turnkey online analysis solutions with
a high degree of flexibility with a low accessibility
threshold to researchers that were not trained
computer professionals.

• Provide a high degree of extensibility and
customizability for all these systems.

We had as an additional goal to introduce the researchers at
the NSCL to modern (at the time) programming techniques.

The data Acquisition system was largely implemented in C++,
introducing object oriented techniques to the researchers
which, at the time, were largely a FORTRAN speaking
community. Each piece of software that required user
interaction embedded a Tcl interpreter with an extended set of
commands to control the functions of that program. This
philosophy is in keeping with Ousterhout’s original motivation
for developing Tcl as described in the Preface to [5].

A block diagram of the data acquisition system as it is
typically used is shown below in figure 8. Components that
embed a Tcl interpreter or that are entirely written in Tcl are
indicated.

Figure 8 Structure of NSCLDAQ.

The solid arrows represent the flow of event data while the
dotted lines represent control flow. Tcl is involved in all but
two of the nine boxes in figure 8, and in the case of the boxes
to the right of the figure, each box may represent more than
one program used by the experiment.

The system was ready for use two years ahead of schedule, in
1999 as evidenced by a description of the data acquisition
system and the analysis program SpecTcl in two NSCL 1999
Annual report articles. The gain from using Tcl is best
described by a quote from one of those articles:
“Components we provide are often used in ways we did not
anticipate. This is a good thing. We intend to use the Tcl/Tk

scripting language as a base command language for all
components of the system. This allows us to support run-time
extensions of the functionality of the software and its user
interface via Tcl/Tk scripting. It also allows support for
compile time extensions of the command set via C++ wrapper
classes around the Tcl command registration procedures.
Tcl/Tk scripting provides a common basis for automating
tasks within the data acquisition system. The Tk component
provides powerful GUI creation and modification tools
available to all interactive components” [6].

V. HOW TCL AND TK ARE USED AT THE NSCL.
Tcl and Tk are used in the following ways at the NSCL:
• An embedded command language for applications.
• To provide application specific languages and

configuration languages.
• To provide enabling components on which pure Tcl/Tk

scripts can be built.
• As a scripting language for applications.

The remainder of this section will provide case studies and
references to the uses of Tcl/Tk described above.

A. Tcl/Tk as an embedded command language.
Embedding Tcl/Tk and application specific extensions as the
command language for an application was the original intent
of Tcl. Using Tcl in this way provides several free benefits:
• Common flavor of command language across all

applications.
• Ability of application users to automate commonly

performed operations as Tcl scripts and [proc]s.
• Ability, via the Tk package facility to provide a GUI

front end to the application and for the users of the
application to either extend or replace this GUI with one
more suited to their use of the application.

• Ability via a well defined internal API and the [package
require] command to provide a plug-in architecture that
provides for extensions to the application base
functionality, and the ability to selectively add these plug-
ins at run-time.

The flagship Tcl/Tk application at the NSCL is nsclSpecTcl
[8] the online/offline event analysis/histogramming
application. Users have extended it in many ways that were
not originally foreseen in the design including the replacement
of its visualization package with a Tcl/Tk client called SpecTk
[9]. Both SpecTcl and SpecTk were described in earlier Tcl
conferences.

B. Application specific languages and configuration

Applications that operate in this way use Tcl and extensions to
steer the way they operate. The normal pattern of usage is that
sometime during the execution of a program, a Tcl interpreter

Proceedings of the Tcl 2011 113 Manassas, VA October 24-28 2011

is created and possibly extended. A script is sourced into the
interpreter and used to build data structures that define how
the program will operate.

The readout software for the focal plane of the A1900
fragment separator uses this technique in its simplest form. A
configuration file that consist of a bunch of Tcl [set]
commands provide values to Tcl variables that are examined
by the C++ level software and used to instantiate readout
objects for the various detector packages that can live in the
A1900 focal plane.

Taking this to its logical extension, [10] describes using Tcl as
a basis for a domain specific language that describes and
configures the digitizer devices used in a nuclear physics
experiment. The Readout software uses scripts in this
language to initialize and configure the described modules and
to construct the operations required to read out those modules
in response to an event trigger.

The experiment configuration script is also processed
NSCLSpecTcl selecting the set of event processors required to
process raw events into parameters, and to turn those
parameters into an initial set of raw spectra. This technique
brings Tcl’s high level of abstraction into the domain of
defining an experiment leading to what the experimenter
believes to be ‘programming free’ experimental setups.

Figure 9 shows an actual segment of a configuration script
used to describe the readout of the Particles And Non-
Destructive Analysis (PANDA) detection system used by the
Finish nuclear safety organization (STUK)[20]:

C. Enabling components and their applications

An enabling component usually takes the form of a Tcl
loadable package. The package is normally written by the
software development group and provides access to some
facility that is not easily accessed by Tcl itself. Researchers
use these packages to write pure Tcl scripts to perform
operations that they would otherwise find difficult.

While several packages have been written that could be
classified as enabling components (including plug-in for
nsclSpecTcl), this section will focus on the capabilities and
application of two of them, Vme and epics.

1) Vme package
Many hardware components in experiments run at the NSCL
are VME cards. VME bus started out as a multi-master
computer bus and is now an ANSI/IEEE standard
(ANSI/IEEE 1014-1987). As used at the NSCL, however, this
bus is largely an instrumentation bus, providing power and
data transfer to a host system for experimental electronics.

The Vme package provides access to this backplane from Tcl
scripts. The package itself was described in [11]. It provides
a mechanism for declaring interest in address windows within
the VME and performing simple pokes and peek operations
within those windows.

Researchers typically use this package to build graphical user
interfaces to control devices that are not in the primary event
data flow. Figure 10 below is a screen shot from one of these
applications, the discriminator control program for the
CAEsium iodide Detector Array (CAESAR) [12]:

Figure 10 CAESAR discriminator control panel.

This application was written by Andrew Ratkiewicz and
NSCL nuclear physics graduate student.

2) Epics Tcl package

The Experimental Physics and Industrial Control System [13]
(EPICS) is a control system in common use at accelerator labs.
EPICS is used to control accelerators and also to provide
control over some experimental devices. For example, the
S800 magnets are all controlled via EPICS.

madc create dsssd1.x -base 0x40000000 -id 4 -ipl 0
madc config dsssd1.x -gatemode common -gategenerator
disabled
madc config dsssd1.x -inputrange 8v
madc config dsssd1.x -timestamp on -timingsource vme \
 –timingdivisor $madcTimeDivisor
madc config dsssd1.x -thresholds $thresholds(dsssd1.x)
stack create event
stack config event -trigger nim1
stack config event -modules [list fadc
stack config event -delay 40
set adcChannels(dsssd1.x) $xstrips
lappend adcChannels(dsssd1.x) timestamp

Figure 9 Sample Experiment configuration

Proceedings of the Tcl 2011 114 Manassas, VA October 24-28 2011

For some experiments it is critical to be able to know the state
of the beam line leading up to the experiment or the state of
the experimental devices themselves. Furthermore,
accelerators tend to be one-of-a-kind devices and when
commissioning them it is not always clear what human
operator interface is actually required. The Epics Tcl package
was built to address these needs. It enables physicists
accelerator physicists and operators to rapidly build monitor
and control interfaces via Tcl/Tk as well as via snit epics
specialized mega widgets that are provided with the package.

The package itself was presented at Tcl 2007[14]. It provides
mechanisms to access EPICS channels (called Process
Variables in EPICS nomenclature), to bind them to variables
and to bind traces to them. A feature of the EPICS package
that supports programming in the large is the ability for a one-
to-many binding of process variable to Tcl variables, along
with application wide process variable coalescence. This
allows the programmer to specify an Epics channel, and link
variables to it without being concerned about whether the
execution trace of the program has already linked to the same
process variable elsewhere. Changes in the underlying
process variable update all linked variables. Changes in any
one linked variable set the corresponding Epics process
variable eventually triggering and update of all process
variables.

The Epics package played a key role in the debugging and
commissioning of the ReA3 re-accelerator. Two accelerator
operators build the entire control and monitoring console for
ReA3 as a set of Tk applications build on the Epics package.

Figure 11 below shows a screen shot the ReA3 beam line
monitor application.

Figure 11 The ReA3 ROCS beam line monitor application.

3) SpecTcl
SpecTcl itself can be thought of as both an enabling
technology and an application. Daniel Bazin has implemented

a commonly used graphical user interface front end on top of
SpecTcl. This front end is shown below in Figure 12:

Figure 12 SpecTcl GUI front end

Many other experimental groups have leveraged SpecTcl, and
Tk to produce control panels of their own that select data
sources or steer the analysis performed by their experiment
dependent code.

D. Pure Tcl uses

Tcl and especially Tk are also used as a language to write
complete applications. One very successful application is an
access controlled ‘TclServer’. This is simply a Tcl script that
accepts connections from a well defined set of client and
accepts Tcl commands over a socket from them. The server is
often used in conjunction with a Tcl script that manages a pool
of server ports and serves as a directory for those ports
enabling clients to discover the ports on which various
applications are listening for connections.

VI. CONCLUSIONS AND A LOOK FORWARD

To date, it is safe to say that Tcl/Tk have removed a great deal
of the programming load from the software development
group at the NSCL. That load has been transferred to end user
community by a mixture of tool and application building. An
educational program to teach the basics of Tcl to the first
generation of graduate students was also useful as knowledge
tends to be passed down from one generation of graduate
students to the next.

The transfer of programming load from a software
development group to the user community is only possible in a
community that has a relatively high technical level. The
NSCL research staff fit that profile. In our community the end
users were actually grateful for the empowerment that Tcl/Tk
and the tools we wrote provided. It allowed them to quickly
iterate between versions of user interfaces to see what worked
best for their application needs. If we had been involved in
each iteration of every application, I can only imagine the
frustration that would set in. In the end it is likely that model f

Proceedings of the Tcl 2011 115 Manassas, VA October 24-28 2011

development would have led to a willingness to settle for sub-
optimal solutions.

This empowerment has some cost as well:
• Bad code can be written in any language and physicists

are renowned for their ability to demonstrate this fact.
This has led to a number of Tcl applications that are
essentially un-maintainable even by the group that wrote
it. This also results from the rapid cycling of generations
of graduate students who are often tasked to develop
support code for research groups.

• In addition to knowledge being passed from graduate
student to graduate student, folklore is passed as well.
This folklore is usually based on a poorly understood
solution to a problem that was not well understood in the
first place. It can take a great deal of effort to dispel the
folklore and associated rituals that spring up around it.

• While the users generally develop user interfaces that
meet their needs, they do so by learning the minimum
needed to do this. This means that:

o Interfaces might benefit from the use of widgets
the users are not familiar with.

o There are no user interface standards between or
even within groups. That results in having to
learn each application from scratch rather than
being able to start with knowledge gained from
the use of other applications.

The use of Tcl in the nuclear physics community has been
largely driven by the widespread adoption of NSCLSpecTcl
by the NSCL user community. As such it is appropriate to
look in to the future to try to understand what the data
acquisition and analysis environment might be at FRIB.

As users have become more comfortable with object oriented
techniques, they have also adopted object oriented tools.
• Root[15], developed by R. Brun at al. at CERN for LHC

experiments is gaining increasing popularity for late stage
data analysis amongst all users in the nuclear physics
community.

• Python [16] is also gaining in importance as a scripting
language in the community.

• Finally with the advent of good Java implementations of
the Abstract Interfaces for Data Analysis (AIDA) [17],
physicists are also increasingly turning to Java and its
large (though sometimes cumbersome) set of libraries.

If Tcl/Tk is to compete it must meet several challenges:
• One or more OO toolkits must be sold effectively to break

the impression that Tcl is only an imperative language.
• Software groups that support nuclear physicists must be

encouraged to forge interfaces between Tcl and existing
software such as Root and AIDA based applications such
as the Java Analysis Studio (JAS) [18], or the Python
based Hippo Draw [19]. Jacl and Swank may be of some
use in the AIDA front and a set of effective Tcl bindings
to Root would help there.

• The benefits of the simplicity of the Tcl language and the
speed with which that simplicity enables development
must be actively sold.

• The fact that Tcl is an ‘old’ language needs to be placed
in context. C is still a highly used language, however it
dates from 1969-1973 while Tcl originally emerged in
1988.

In conclusion, I believe that Tcl has provided a great deal of
benefit to the nuclear physics community. If, however it is to
continue to be of use to that community there are several
significant challenges and hurdles that must be overcome.

VII. REFERENCES
[1] Report to the NSAC of the Rare-Isotope Beam Task
Force August 20, 2007 available online at
http://science.energy.gov/~/media/np/nsac/pdf/docs/nsacrib_fi
nalreport082007_dj.pdf
[2] http://frib.msu.edu
[3] Reliable Distributed Computing with the ISIS Toolkit

[4] Fermilab DART Run Control G. Oleynik et al. IEEE Trans
Nucl. Sci NS43 No. 1 February 1996 pp 20-24.

Birman, VanRenesse Wiley 1994 ISBN: 978-0-8186-5342-1

[5] Tcl and the Tk Toolkit

[6] Development status and deployment of the next generation
NSCL Data Acquisition System R. Fox, E. Kasten NSCL 1999
Annual report available online at

 J. Ousterhout Addison-Wesley 1994
ISBN 0-201-63337-X pg xvii

http://groups.nscl.msu.edu/nscl_library/pub/annual_reports/199
9/fox_deployment.pdf
[7] Status of the SpecTcl Data Analysis Package R. Fox, C.
Bolen, J. Rickard NSCL 1999 Annual report available online at
http://groups.nscl.msu.edu/nscl_library/pub/annual_reports/199
9/fox_spectcl.pdf
[8] NSCLSpecTcl Meeting the Needs of Preliminary Nuclear
Physics Data Analysis R. Fox, C. Bolen, K. Orji, J. Venema
Presented at Tcl 2004 available online at :
http://www.tcl.tk/community/tcl2004/Papers/RonFox/fox.pdf
[9] SpecTk: a displayer for SpecTcl – or how even a physicist
can build a high level application with Tcl/Tk D. Bazin
Presented at Tcl 2005 available online at:
http://www.tcl.tk/community/tcl2005/abstracts/scienceandTech/
SpecTk.pdf
[10] A Domain Specific Language for defining Nuclear
Physics Experiments Ron Fox 15’Th Annual Tcl Association
Conference Proceedings October 2008 pp105-111
[11] The Vme Package at the NSCL; Large leverage from a
Small Extension R. Fox presented at Tcl 2007 and available
online at
http://www.tcl.tk/community/tcl2007/papers/Ron_Fox/vmepack
age.pdf
[12] CAESAR – A high-efficiency CsI(Na) scintillator array for
in-beam γ-ray spectroscopy with fast rare-isotope beams D
Weisshaar, A Gade, T Glasmacher, G F Grinyer, D Bazin, P
Adrich, T Baugher, J M Cook, C A Diget, S McDaniel, A
Ratkiewicz, K P Siwek, K A Walsh Nuclear Instruments and
Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated
Equipment (2010) Volume: 624, Issue: 3, Pages: 615-623
[13]Experimental Physics and Industrial Control System ANL
introduction at http://www.aps.anl.gov/epics/about.php

Proceedings of the Tcl 2011 116 Manassas, VA October 24-28 2011

http://science.energy.gov/~/media/np/nsac/pdf/docs/nsacrib_finalreport082007_dj.pdf�
http://science.energy.gov/~/media/np/nsac/pdf/docs/nsacrib_finalreport082007_dj.pdf�
http://frib.msu.edu/�
http://groups.nscl.msu.edu/nscl_library/pub/annual_reports/1999/fox_deployment.pdf�
http://groups.nscl.msu.edu/nscl_library/pub/annual_reports/1999/fox_deployment.pdf�
http://groups.nscl.msu.edu/nscl_library/pub/annual_reports/1999/fox_spectcl.pdf�
http://groups.nscl.msu.edu/nscl_library/pub/annual_reports/1999/fox_spectcl.pdf�
http://www.tcl.tk/community/tcl2004/Papers/RonFox/fox.pdf�
http://www.tcl.tk/community/tcl2005/abstracts/scienceandTech/SpecTk.pdf�
http://www.tcl.tk/community/tcl2005/abstracts/scienceandTech/SpecTk.pdf�
http://www.tcl.tk/community/tcl2007/papers/Ron_Fox/vmepackage.pdf�
http://www.tcl.tk/community/tcl2007/papers/Ron_Fox/vmepackage.pdf�
http://www.aps.anl.gov/epics/about.php�

[14] Tcl/Tk Tools for EPICS Control Systems R. Fox presented
at Tcl 2007 available on line at:
http://www.tcl.tk/community/tcl2007/proceedings/Gui/epics.p
df
[15] http://root.cern.ch
[16] http://www.python.org
[17] http://aida.freehep.org
[18] http://jas.freehep.org/jas3
[19] http://www.slac.stanford.edu/grp/ek/hippodraw/index.html
[20]PANDA – A novel instrument for non-destructive sample
analysis

 J. Turunen, K. Parajarvi, R. Pollanen, H. Toivonen
Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment
V 613, No. 1, 21 January 2010, Pages 177-183

Proceedings of the Tcl 2011 117 Manassas, VA October 24-28 2011

http://www.tcl.tk/community/tcl2007/proceedings/Gui/epics.pdf�
http://www.tcl.tk/community/tcl2007/proceedings/Gui/epics.pdf�
http://root.cern.ch/�
http://www.python.org/�
http://aida.freehep.org/�
http://jas.freehep.org/jas3�
http://www.slac.stanford.edu/grp/ek/hippodraw/index.html�

Proceedings of the Tcl 2011 118 Manassas, VA October 24-28 2011

Tcl 2011

Manassas, VA

October 24-28, 2011

Applications I

Proceedings of the Tcl 2011 119 Manassas, VA October 24-28 2011

Proceedings of the Tcl 2011 120 Manassas, VA October 24-28 2011

A CMake-Based Cross Platform Build System for Tcl/Tk

Clifford Yapp
Quantum Research International Inc.

Prepared under contract W911QX-06-F-0057 for the U.S. Army Research Laboratory∗

October 6, 2011

Abstract

Defining build logic for a large software
package in multiple software development
environments entails a large up-front im-
plementation cost and an ongoing mainte-
nance burden. CMake is an open source
cross–platform build tool that allows devel-
opers to define relatively abstract build logic
that is automatically translated into a va-
riety of build system formats, reducing the
burden of supporting multiple development
environments. BRL-CAD’s integration of
Tcl/Tk as a sub-build motivated the develop-
ment of Tcl/Tk build logic compatible with
BRL-CAD’s new CMake logic. This paper
presents a new CMake based build system
for Tcl/Tk and a number of popular Tcl/Tk
extensions.

Introduction

Large scale software projects require the development
and maintenance of build logic governing the compi-
lation, packaging, and installation source code. This
logic is the interface between compilation tools (com-
pilers, documentation processors, etc.) that actu-
ally translate code into usable form and the code it-
self. As such, it is the build logic that must identify
any idiosyncrasies present in the system’s compila-
tion tools and libraries. Once identification is com-
plete, the build system must also generate instruc-
tions the compiler can use to compensate for these
differences. Over the years, each major software de-
velopment platform has created systems to manage
this process. Microsoft Windows has Visual Studio,
Mac OS X has XCode, and most Unix/Linux style

platforms have some form of Make, often augmented
by GNU Autotools. Each of these tools manages this
process for different versions of their specific plat-
form, but generally support only that specific plat-
form. This presents a challenge for cross–platform
projects such as Tcl/Tk, which must build in all of
these environments to achieve their goals.

The responsibilities of the build logic include (but
are not limited to) listing source files, identifying
compilation tools and options needed for files, identi-
fying target libraries and executables, and sometimes
expressing the logic for generating user-installable
packages of the finished package. While specific com-
pilation instructions are typically unique to each op-
erating system and tool, the actual task to be accom-
plished is often the same. For example, when building
a C library, many if not all of the C files themselves
are common to all platforms. Despite this common-
ality, the addition of a single new C file requires al-
tering not one but n build files where n is the number
of build systems that need to be defined in order to
support all targeted development platforms.

CMake[3] is a metabuild system designed to alle-
viate much of this problem by abstracting build logic
one level above makefiles, XCode projects, and Vi-
sual Studio projects. Given portable source code, the
build logic is expressed in a CMakeLists.txt file that
gets translated by CMake into platform native logic
using generators. The developer then uses the stan-
dard system tools to complete the build, and logic
common to all platforms is expressed (and need only
be updated) in a single set of build files.

Tcl/Tk faces precisely this cross-platform devel-
opment problem, making the project a good concep-
tual match for CMake. However, until now Tcl/Tk’s

∗Approved for public release; distribution is unlimited.

Proceedings of the Tcl 2011 121 Manassas, VA October 24-28 2011

existing build systems have proved adequate for most
real-world production use. The marginal benefits of
CMake were insufficient to justify both the effort
of re-implementing Tcl/Tk’s build system and the
disruption of existing work-flows. Given these con-
straints, it is understandable that a cross–platform
CMake build had not already been implemented for
Tcl/Tk.1

Motivation and Requirements

BRL-CAD[1] is an open source Computer Aided De-
sign software package developed by the Ballistic Re-
search Laboratory (now the U.S. Army Research
Laboratory.) BRL-CAD has made extensive use of
Tcl/Tk since the earliest days of its development. Be-
cause so many of BRL-CAD’s core abilities depend
on Tcl/Tk, availability of Tcl/Tk on a targeted plat-
form is a core requirement for deploying BRL-CAD
on that platform. BRL-CAD has a long-standing pol-
icy: if system versions of required libraries are ei-
ther absent or insufficiently modern at configuration
time, the BRL-CAD build will utilize local copies of
those libraries. As part of comprehensive configu-
ration control, testing and dependency management,
BRL-CAD bundles pre–configured copies of all ex-
ternal dependencies. In addition, it has occasionally
been necessary to modify such libraries (Tcl among
them) to support BRL-CAD’s needs or fix bugs en-
countered. Modifications are contributed back up-
stream to the primary development teams when pos-
sible. It is much simpler to use upstream sources
than to maintain a separate version of the source
code. However, BRL-CAD deployment cannot wait
on those fixes propagating through both the upstream
acceptance and customer system upgrade processes.
Moreover, the BRL-CAD developers need to be able
to verify and validate BRL-CAD functionality for a
given configuration that is independent of any plat-
form environment. Consequently, BRL-CAD must be
able to compile its own local copy of Tcl/Tk at need.

Tcl/Tk has supported multiple platforms for
many years, but it currently uses the Tcl Extension
Architecture (TEA) autoconf macro system on plat-
forms using Make and either NMake or Visual Stu-
dio (MSVC) project files for native2 Windows com-
pilation. This presented a difficulty for the BRL-
CAD project in that neither of these systems inte-
grated well with BRL-CAD’s own build systems. As

a workaround, BRL-CAD used custom Microsoft Vi-
sual Studio files on Windows. On other platforms
Tcl/Tk’s own build system was usable with a Make-
file.am wrapper. This approach worked but repre-
sented an undesirable ongoing maintenance overhead.

In the summer of 2010, the decision was made to
unify BRL-CAD’s build system infrastructure into a
single CMake–based system in order to reduce long
term maintenance costs and simplify building Win-
dows releases. As most of BRL-CAD’s core develop-
ers do not use Windows on a day–to–day basis for de-
velopment, a single cross platform build system would
mean build logic written or updated on non-Windows
platforms would stand a good chance of working with-
out extensive effort. However, to achieve the desired
result the new system would have to build not just
BRL-CAD but all of its bundled dependencies – in-
cluding Tcl/Tk.

The initial attempt to integrate Tcl/Tk into a
CMake-based BRL-CAD build made use of CMake’s
ExternalProject Add functionality for triggering ex-
ternal build systems as sub-builds. Had this worked
smoothly on all platforms, it would have been the
simplest solution. With Make–based systems, the at-
tempt was reasonably successful despite the drawback
of requiring installation of the sub-build libraries be-
fore the CMake build itself could proceed. MSVC
proved to be a considerably greater challenge – be-
tween difficulties integrating Visual Studio project
files and the problems involved with running NMake
build scripts from within Visual Studio, the initial
attempts to integrate Tcl/Tk’s own Windows build
files were not successful. Rather than continue to
struggle with the complexity of triggering multiple
external build systems on multiple platforms, focus
shifted to the integrated approach – implementing
enough CMake logic to build the parts of Tcl/Tk
needed for BRL-CAD. Implementing CMake build
logic for Tcl/Tk would reduce the maintenance bur-
den to a single system for all platforms and integrate
well with BRL-CAD’s new build logic.

A CMake-based build system for Tcl/Tk needs to
satisfy the following requirements:

1. Build Tcl/Tk successfully on Windows (using
MSVC), Linux, FreeBSD, Solaris, and Mac OS
X from a single set of CMake build files.

2. Implement enough of the Tcl/Tk–specific com-
pilation macro logic in CMake to support build-

1Twylite’s Coffee project uses CMake to build Tcl, but is primarily focused on Windows: see http://dev.crypt.co.za/coffee
2“Native” in this case being defined as building without the use of Unix compatibility environments such as Cygwin.

Proceedings of the Tcl 2011 122 Manassas, VA October 24-28 2011

ing Tcl/Tk on BRL-CAD’s target platforms –
the goal was to avoid significantly altering the
Tcl/Tk source code itself.

3. Run tclsh and wish from within the build di-
rectory, without requiring installation. This is
a necessity for BRL-CAD, which makes use of
Tcl in its own build logic and must run tclsh
prior to the installation step.

4. Support compilation of Tcl/Tk extensions, ei-
ther in conjunction with BRL-CAD’s own copy
of Tcl/Tk or using a system Tcl/Tk. BRL-
CAD sometimes needs to compile Tcl/Tk ex-
tensions even if a system Tcl/Tk satisfies the
feature and version requirements, hence build
logic for those extensions needs to support both
cases.

Building Tcl/Tk – What It Takes

CMake provides very general mechanisms for express-
ing build logic, but still requires that any project-
specific compiler options be included by the devel-
oper. It also requires that specific functionality tests
for libraries, header checks, function checks, etc. be
set up in the CMakeLists.txt file(s) according to the
needs of the particular software in question. Hence,
the first step in writing new build logic for Tcl/Tk
was to examine the existing build logic to determine
what functionality it provides.

Tcl Extension Architecture – Strong TEA

The venerable TEA system[4] implements a large
number of tests designed to identify platform specific
issues and quirks that may affect Tcl when trying
to build. It also defines standard layouts, platform
specific compiler flags, and a wide variety of other
settings evolved over many years. It utilizes autoconf
from the GNU Autotools suite.

There are two versions of this logic – one in
Tcl/Tk proper whose macros use a SC prefix (SC
standing for Scriptics) and an extended version using
the TEA prefix used with extensions. Both files are
named tcl.m4, and a comparison of the two reveals a
great deal of shared code, but the tcl.m4 with TEA
prefixes is regarded as the “official” TEA. System
functionality tests (such as missing POSIX headers)
required for compilation were of primary interest to a
CMake effort. Detection of installed Tcl/Tk config-
urations is the responsibility of the FindTCL.cmake

macro – that being the case, it was not necessary to
translate TEA macros pertaining to Tcl/Tk configu-
ration detection into the primary CMake build logic.

Because platforms such as HPUX, IRIX, and SCO
Unix are no longer supported by BRL-CAD, logic
specific to supporting them was not needed in the
first–cut implementation of CMake logic. Hence, the
decision was made to only implement as much of
TEA’s functionality as was needed for BRL-CAD’s
target platforms rather than attempting a full TEA
implementation in CMake from the get–go.

Visual Studio, NMake, and MSYS/MinGW

Microsoft Windows–based software compilation is ac-
complished using a wide variety of development en-
vironments, some of which bear little resemblance
to the standard Unix tools. One of the most com-
mon tools for building software on Windows is Vi-
sual Studio’s Integrated Development Environment.
Visual Studio also provides a command line utility
called “nmake” which is similar in spirit to the Unix
style Make. The open source community has pro-
duced compilation environments for Windows, no-
tably GNU gcc within the Cygwin Unix emulation en-
vironment and the MinGW environment (often used
with MSYS) which can produce native Windows bi-
naries. Tcl’s README indicates that the Cygwin
environment is not supported – MinGW/MSYS and
Visual C++ 6.0 + nmake.exe are the standard tools.

Visual C++ compiler flags have little in common
with those supported by most open source C/C++
compilers, and there is not really a direct MSVC ana-
log to the Autotools configure step. Feature detection
on Windows is generally restricted to Unix-style em-
ulation environments such as Cygwin. The introduc-
tion of CMake allowed for many new possibilities in
that respect when building on Windows.

The Structure of Tcl/Tk – Separate But In-
tertwined

The first survey of the Tcl/Tk building system
prompted the question “why not just generate a
tcl config.h header file to hold all of these options,
instead of building up definitions on the command
line?” A small trial quickly demonstrated that there
is indeed a reason for the current Tcl/Tk approach.
Tk makes use of “internal” Tcl headers. In order to
build Tk, it is necessary to specify the location of
a Tcl source archive. These internal Tcl headers in
turn need proper definitions from the configuration

Proceedings of the Tcl 2011 123 Manassas, VA October 24-28 2011

logic. However, when building Tk, a hypothetical
Tcl generated tcl config.h header is not guaranteed
to be present. If the Tk and Tcl builds are treated
as separate systems, Tk would have to re-generate
the Tcl configuration header in addition to its own
and sort out how Tk headers might pull in either or
both tcl config.h and tk config.h. Under the circum-
stances, it is simpler just to supply any needed defi-
nitions via command line arguments to the compiler
– these are passed through to all headers as needed.

Unfortunately, this use of “internal” headers is
also a fact of life in several common third party
Tcl/Tk packages. Tcl/Tk 8.6 is introducing a new
pkgs directory to help address this problem, but that
only avoids the issue by allowing sub-build logic to as-
sume a fixed parent location for source files. Another
approach, used by the Visualization ToolKit (VTK),
is to include local copies of various versions of the
Tcl/Tk internal headers with the package source it-
self. Regardless of the approach used, it complicates
the building (and build logic) of Tcl/Tk extensions.

Beyond straight C compilation, Tcl/Tk exten-
sions also require pkgIndex.tcl files that instruct
Tcl/Tk how to load that particular extension. This
is of particular concern to BRL-CAD, because expe-
rience has shown it is all too easy to create confusing
and dysfunctional situations when multiple Tcl/Tk
installations are present. If Tcl’s auto path variable
happens to be set in such a way that a local Tcl/Tk
finds packages in a system Tcl/Tk installation, the
results can be “almost working” runs of Tcl scripts
that fail in cryptic and mysterious ways.

The CMake Build System

A full introduction to CMake is beyond the scope of
this paper – for a more complete overview see Martin
and Hoffman[2]. The focus here will be on differences
between the TEA build system and CMake, as well
as CMake solutions to particularly tricky compilation
and installation issues.

Running CMake

Building Tcl/Tk with CMake is similar to the TEA
build cycle, but the command line syntax and config-
uration options are somewhat different – see Table 1
for a mapping between TEA options and CMake.3

CMake itself can be run one of three ways
– either as a straight command line program
(cmake), with a curses based interface (ccmake),
or with a graphical interfaces based on the Qt
toolkit (cmake-gui). To specify settings on the
command line, the prefix “-D” is used – e.g.
-DCMAKE INSTALL PREFIX=”prefix” instead of
–prefix=”prefix”. All three front ends support the
same basic abilities, although the Qt graphical inter-
face in particular supports some nice extra features
that help a new developer discover the system. When
using the graphical or curses–based interfaces instead
of the command line, configuration (detecting system
characteristics) and generation (actual writing of the
build files) are separate operations. The command
line cmake binary combines both of these steps into
one operation.

Layout

The basic source code layout of Tcl/Tk has not been
altered, but the location of the CMake files relative
to the source files is different than the correspond-
ing TEA/win32 files. While the unix subdirectory
contains the bulk of the TEA logic and the win sub-
directory contains Windows specific build files, the
primary CMakeLists.txt file that specifies sources for
all platforms lives in the top level directory. The li-
brary and doc subdirectories have their own CMake-
Lists.txt files due to the specialized nature of the logic
they require (more on this later,) but all C source
code is handled by the top-level CMakeLists.txt file.

Macros defining CMake logic specific to Tcl/Tk
are in a new top-level directory called CMake, in
keeping with standard CMake conventions. Among
the files present here is tcl.cmake, which is the closest
match in the CMake logic to the original SC prefix
tcl.m4 file.

For convenience, the current Tcl/Tk 8.6b2 CMake
logic is organized with one higher top-level directory
above Tcl/Tk and other extensions for which CMake
build logic has been implemented. A small CMake-
Lists.txt file in this directory suffices to unify all of
the subdirectories (tcl, tk and any extensions) into a
single build. Among other benefits, this combines all
configure stages for all of the packages into a single
configure step – once a particular test is run for a par-
ticular subdirectory, CMake does not need to repeat

3With CMake, it is generally much better practice to run the configuration and building routines in a working directory
other than the top-level source directory – either a subdirectory in the source tree or a directory entirely outside the source
tree. For examples in this paper, a subdirectory named “build” located in the top-level source directory will be assumed.

Proceedings of the Tcl 2011 124 Manassas, VA October 24-28 2011

Table 1: Configuration Options – TEA vs. CMake
Feature TEA CMake
Run configuration ../configure cmake ..
Specify location of sources –srcdir=”DIR” “DIR”
Installation prefix –prefix= CMAKE INSTALL PREFIX
Executable prefix –exec-prefix=”EPREFIX” Not Implemented
Symlinks for manpages –enable-man-symlinks Not Implemented
Compress manpages –enable-man-compression Not Implemented
Add suffix to manpages –enable-man-suffix=STRING Not Implemented
Enable Threads –enable-threads (off) TCL THREADS (AUTO)
Build Shared Libraries –enable-shared (on) BUILD SHARED LIBRARIES (ON)
Enable 64 Bit support –enable-64bit (off) TCL ENABLE 64BIT (AUTO)
Disable rpath support –disable-rpath (on) N/A
Use CoreFoundation (OSX) –enable-corefoundation (on) TCL ENABLE COREFOUNDATION (ON)
Allow dynamic loading –enable-load (on) TCL ENABLE LOAD (ON)
Debugging Symbols –enable-symbols (off) Several CMake options
Use nl langinfo –enable-langinfo TCL ENABLE LANGINFO (ON)
Enable “unload” command –enable-dll-unloading TCL ENABLE DLL UNLOADING (ON)
Enable DTrace support –enable-dtrace (off) Not Implemented
Package as frameworks (OSX) –enable-framework (off) Not Implemented
Specify encoding –with-encoding (iso8859-1) TCL CFGVAL ENCODING

(Defaults to cp1252 on Windows, else iso8859-1)
Install timezone data –with-tzdata (autodetect) TCL TIMEZONE DATA (AUTO)
Use Aqua windowingsystem (OSX) –enable-aqua (no) TK ENABLE AQUA (AUTO)
Use XScreenSaver –enable-xss (on) TK ENABLE XSS (AUTO)
Use freetype/fontconfig/xft –enable-xft (on) TK ENABLE XFT (AUTO)
Specify tcl source directory –with-tcl= TCL SRC PREFIX

TCL BIN PREFIX
Use X11 –with-x (auto)

it for the next. This painless integration of sub–builds
is an important feature for BRL-CAD, and will hope-
fully prove a useful convenience for other developers.

Running from the Build Directory

One convenience offered by CMake is sophisticated
control over the handling of run–time search paths
(RPATH). With the correct options set, CMake’s
generated build files will set RPATH values to the cor-
rect values for build directory execution when compil-
ing executables, and then automatically adjust them
to the correct installation values when “make install”
is run. This means developers do not even have to set
LD LIBRARY PATH to run from the build directory,
and using built-but-not-installed software within the
build process itself becomes simpler.

Tcl/Tk has an additional complication beyond
standard RPATH issues – pkgIndex.tcl files have to
be correct for build paths in the build directory and
install paths in the installation directory. The CMake
solution implemented for this problem is to generate
two pkgIndex.tcl files – one in the correct place rela-
tive to the build path locations of Tcl/Tk’s files, and
the other in a non-functional (within the build di-
rectory) location with the instructions to install that

version when the time comes for installation. See Fig-
ure 1 for an example of the CMake code that achieves
this for the Tk package.

Man Pages

Tcl and Tk use a shell script named installManPage
to generate a large number of manual pages from
a base set that are present in the Tcl/Tk doc sub-
directory. This poses something of a problem in
that CMake does not know ahead of time what files
this script will generate, and thus cannot incorporate
those generated files into its own install commands.
One option would be to list explicitly every file gener-
ated by the installManPage script in the CMake logic,
but this would be both extremely verbose and a main-
tenance burden. The solution currently in place runs
the installManPage script during the configure stage
and has CMake itself identify all the files generated.
CMake is then aware of the full file list and can gen-
erate proper installation commands. The most sig-
nificant drawback of this approach is that man page
changes impacting the list of generated files require
re-running CMake instead of simply re-running the
build logic, but that appears to be the price that must
be paid in order to allow CMake to perform installa-

Proceedings of the Tcl 2011 125 Manassas, VA October 24-28 2011

pkgIndex . t c l − i n s t a l l a t i o n l o c a t i o n
g e t t a r g e t p r op e r t y (TK LIBLOCATION tk LOCATION ${CMAKE BUILD TYPE})
get f i l ename component (TK LIBNAME ${TK LIBLOCATION} NAME)
f i l e (WRITE ${CMAKE CURRENT BINARY DIR}/pkgIndex . t c l

”package i fn eeded Tk ${TK PATCH LEVEL}
[l i s t load [f i l e j o i n $d i r ${LIB DIR} ${TK LIBNAME}] Tk] ”)

i n s t a l l (FILES ${CMAKE CURRENT BINARY DIR}/pkgIndex . t c l DESTINATION l i b / tk${TK PATCH LEVEL})

pkgIndex . t c l − bu i ld d i r e c t o r y l o c a t i o n
FILE(WRITE ${CMAKE LIBRARY OUTPUT DIRECTORY}/ tk${TK PATCH LEVEL}/pkgIndex . t c l

”package i fn eeded Tk ${TK PATCH LEVEL}
[l i s t load [f i l e j o i n $d i r ${CMAKE LIBRARY OUTPUT DIRECTORY} ${TK LIBNAME}] Tk] ”)

Figure 1: Example CMake pkgIndex.tcl generation logic

tion of the manual pages. BRL-CAD needs CMake
to manage these generated files to ensure they are
incorporated in binary packages, and the current ap-
proach meets that requirement. The routines only
generate the pages if sh and sed are present, so the
MSVC build does not use them.

Package Installation

Tcl includes a number of scripts that are installed in
lib/tcl8, with subdirectories and file names based on
the scripts themselves – for example, http/http.tcl
is installed to lib/tcl8/8.4/http-2.7.5.tm in Tcl 8.5
and lib/tcl8/8.6/http-2.8.2.tm in Tcl 8.6. This loca-
tion and naming appears to be based on the package
version number and required Tcl/Tk version in the
script itself. Initially the destination for each file was
hard–coded in the library CMakeLists.txt file, but
this proved problematic moving from Tcl 8.5 to Tcl
8.6. Current logic uses CMake’s regular expression
facilities and parses the required information from
the tcl scripts themselves. This macro places all tcl8
script files correctly based on their own contents.

SC / TEA Macros

Most of the time spent in converting Tcl/Tk’s build
logic to CMake involved studying the macros in
tcl.m4 and determining how to express their logic
in CMake. After a few false starts a systematic ap-
proach proved necessary – a tcl.cmake file was orga-
nized along the same lines as tcl.m4, and whenever
a test from tcl.m4 proved necessary the correspond-
ing functionality was implemented in tcl.cmake. As of
the time of this writing all SC tcl.m4 macros have not
been implemented (see Table 2) but enough of them
exist to successfully build on BRL-CAD’s target plat-
forms and more will be implemented if needed. Some
of the TEA functionality (in particular, identifying

Tcl configurations) has been expressed elsewhere in
the new CMake build.

Dependent Options

Another feature available in CMake is a type of op-
tion that is displayed or not displayed based on values
assigned to other options - a dependent option. Tk’s
CMake build logic makes use of this feature for fea-
tures requiring the presence of X11 - the CMake GUI
will not list those options for the user if the current
windowing system is Win32 or Aqua. The Xft option
is actually conditional on multiple variables - the Tk
windowing system must be X11 and both xft and
Freetype need to be found for TK ENABLE XFT to
be displayed as an option. The code that achieves
this is displayed in Figure 2.

Tcl/Tk Extensions

CMake uses pre–package routines, typically in files
named according to the FindPKG.cmake template,
and the find package command to locate system in-
stallations of packages and libraries. CMake includes
a FindTCL.cmake, but it proved insufficient for BRL-
CAD. This necessitated the implementation of a new
version, which has been submitted for upstream in-
clusion in CMake. Its distinct features include:

1. Detection of the windowing system in use by the
found Tcl/Tk version (Aqua, X11, etc.). This
is particularly important on Mac OS X.

2. Successful detection of a second system instal-
lation of Tcl/Tk if the first fails to satisfy speci-
fied criteria – for example, if X11 is required on
OS X, the system Tcl/Tk framework will fail
but an X11 version (if installed) will be found
instead.

Proceedings of the Tcl 2011 126 Manassas, VA October 24-28 2011

i n c lude (CMakeDependentOption)
CMAKE DEPENDENT OPTION(TK ENABLE XFT ”Use f r e e t ype / f on t c on f i g / x f t ” ON

”TK SYSTEM GRAPHICS STREQUAL x11 ;FREETYPE FOUND; ${X11 Xft FOUND}” OFF)

Figure 2: Dependent Xft option definition in Tk.

3. Finer control of what is needed from a Tcl/Tk
installation – for example, if Tcl without Tk is
sufficient for a particular project, an option can
be defined to indicate that to FindTCL.

BRL-CAD requires not just Tcl/Tk but a host of
Tcl/Tk extensions and all of those extensions needed
CMake logic of their own. For the most part routines
already defined for Tcl/Tk in combination with the
new FindTCL.cmake proved sufficient for both local
and system Tcl/Tk extension compilation scenarios,
but there were a few significant exceptions.

The use of internal Tcl headers remains a signif-
icant complication for compilation of Tcl/Tk exten-
sions, and a system installation of Tcl/Tk is not suf-
ficient in such cases – the Tcl source code must be
available, just as in the case of Tk. In the case of
BRL-CAD this situation is usually workable due to
the Tcl source code being guaranteed to be available
in BRL-CAD’s own source tree. Currently BRL-CAD
requires Tcl/Tk 8.5, but in order to support more
general cases (such as using an 8.6 system Tcl/Tk)
extensions need more than the Tcl/Tk 8.5 headers.
Rather than accept that limitation, experiments are
underway using a solution from the VTK codebase.
Local copies of various versions of the internal headers
are included in the extension’s own source tree. The
new FindTCL.cmake identifies the system Tcl/Tk
version numbers and the correct internal headers are
included from the extension’s own source tree. This
avoids requiring the developer to locate and down-
load source trees that match the installed Tcl/Tk.
Use of such local copies runs the risk of crashes if the
system Tcl/Tk should happen to have modifications
not compatible with the standard headers, but the
same problem exists when downloading the Tcl/Tk
sources themselves. The only sure solution is to build
a local copy of Tcl/Tk as well, which defeats the
purpose of using a system Tcl/Tk installation. In-
cluding the internal headers does increase the size of
the extension source trees somewhat (approximately
2.4 megabytes, uncompressed,) but it is a relatively
clean solution to an otherwise thorny configuration
management problem.

Longer term, it would be ideal if extensions were
no longer required to use non-public APIs to extend
Tcl/Tk (or were rewritten to not use them if they
don’t really need to.) Working with the situation
as it exists today header inclusion appears to be the
most flexible and functional option available.

Extensions currently built with CMake in BRL-
CAD include tkhtml, tktable, togl, incrTcl, iwidgets,
and tkpng.

Results

Except for the lengthening of Tcl’s configure step due
to the inclusion of installManPage processing in the
CMake configuration, the time needed for configura-
tion and compilation is within ten percent when com-
paring a TEA based build and a CMake based build.
The performance numbers below were generated on
a Gentoo Linux machine with an AMD Athlon II X2
245 Processor. All builds are single core (e.g. make
with no -j flag).

Operation TEA (sec) CMake (sec)
Tcl Configure 6.3 8.4
Tcl Build 48.2 50.5
Tk Configure 2.8 4.0
Tk Build 35.8 38.7
Total Time 93.1 101.6

In addition to matching TEA’s compilation perfor-
mance, CMake has successfully generated working
Tcl/Tk build logic on Windows (MSVC), Mac OS X,
FreeBSD, Linux, and Solaris (using gcc.) Generators
used successfully so far include Visual Studio 8, Vi-
sual Studio 10, Unix Makefiles and XCode. There are
a number of other possible generators to test, include
Eclipse, KDevelop3, NMake Makefiles and MinGW
Makefile. Clean integration with BRL-CAD’s own
logic simplifies cross–platform BRL-CAD develop-
ment, and the new system has already replaced BRL-
CAD’s earlier Windows compilation logic in produc-
tion use.

It is difficult to compare the size and complexity
of build systems – the following table reports the line

Proceedings of the Tcl 2011 127 Manassas, VA October 24-28 2011

counts for Tcl’s autoconf4, Windows5 and CMake6

build systems. This is a raw number (without at-
tempting to filter comments) and it should be noted
again that the CMake build does not claim to imple-
ment all features of the TEA system.

Autoconf Windows CMake
7111 5746 4342

The initial implementation of a working Tcl/Tk
build with CMake consumed about 12 man-weeks
of effort, although the work was actually performed
part-time over the course of one year. Initial efforts
used the modified Tcl/Tk 8.5.9 codebase present in
BRL-CAD’s source tree. Subsequent work has fo-
cused on the latest 8.6 beta release. The initial 8.5 to
8.6 conversion of the CMake build system involved a
few hours for the initial effort, and a couple of days
for subsequent clean-up work in preparation for this
paper.

Conclusions and Future Work

The Tcl/Tk CMake build is already the production
method of BRL-CAD’s Tcl/Tk compilation on Win-
dows, and is being phased in on all other supported

platforms. Based on experience accumulated thus
far, building Tcl/Tk with CMake represents a fast,
effective, low maintenance, and cross–platform solu-
tion. It is expected that the new system will reduce
BRL-CAD’s long term maintenance costs, particu-
larly when it comes to supporting seamless portabil-
ity to Windows.

The largest remaining task is to finish surveying
the TEA build options and identify any tests or set-
tings in the current CMake logic that are inconsis-
tent with Tcl/Tk’s Autotools build system. Other
remaining items include general clean-up and addi-
tion of CPack logic to generate source tarballs, Linux
RPM, Mac OS X pkg and Windows NSIS installers.
Currently the build does not support running from
the build directory when multiple configurations such
as those used in MSVC and XCode (Debug, Release,
etc.) are present – it may be desirable to generalize
existing routines to support such configurations.

The BRL-CAD project will be maintaining and
enhancing this new build system as part of its ongo-
ing development, and invites other Tcl/Tk users and
developers to build on what has been accomplished
to date.

References

[1] BRL-CAD Development Team, BRL-CAD – an Open Source Solid Modeling System, http://brlcad.org

[2] Martin, K. and B. Hoffman, Mastering CMake: A Cross-Platform Build System , Kitware Inc., 2003

[3] Kitware, Inc., CMake - Cross Platform Makefile Generator, http://www.cmake.org

[4] Welch, B. and M. Thomas, “The Tcl Extension Architecture” 7th USENIX Tcl/Tk Conference, Austin,
TX, Feb. 14-18 2000.

4In the unix subdirectory – .in files and .m4 files
5In the win subdirectory: buildall.vc.bat makefile.bc makefile.vc rules.vc tcl.dsp tcl.dsw Makefile.in configure.in aclocal.m4
6Contents of CMake + CMakelists.txt files + FindTCL.cmake

Proceedings of the Tcl 2011 128 Manassas, VA October 24-28 2011

Table 2: Mapping of TEA macros to CMake
SC Macros TEA Macros CMake Macros
SC PATH TCLCONFIG TEA PATH TCLCONFIG
SC PATH TKCONFIG TEA PATH TKCONFIG
SC LOAD TCLCONFIG TEA LOAD TCLCONFIG (part of FindTCL.cmake)
SC LOAD TKCONFIG TEA LOAD TKCONFIG (part of FindTCL.cmake)
SC PROG TCLSH TEA PROG TCLSH (part of FindTCL.cmake)
SC BUILD TCLSH TEA PROG WISH (part of FindTCL.cmake)
SC ENABLE SHARED TEA ENABLE SHARED
SC ENABLE FRAMEWORK
SC ENABLE THREADS TEA ENABLE THREADS SC ENABLE THREADS
SC ENABLE SYMBOLS TEA ENABLE SYMBOLS
SC ENABLE LANGINFO TEA ENABLE LANGINFO SC ENABLE LANGINFO
SC CONFIG MANPAGES
SC CONFIG SYSTEM TEA CONFIG SYSTEM
SC CONFIG CFLAGS TEA CONFIG CFLAGS
SC SERIAL PORT TEA SERIAL PORT SC SERIAL PORT
SC MISSING POSIX HEADERS TEA MISSING POSIX HEADERS SC MISSING POSIX HEADERS
SC PATH X TEA PATH X (use FindX11.cmake)

TEA PATH UNIX X (use FindX11.cmake)
SC BLOCKING STYLE TEA BLOCKING STYLE
SC TIME HANDLER TEA TIME HANDLER SC TIME HANDLER
SC BUGGY STRTOD TEA BUGGY STRTOD
SC TCL LINK LIBS TEA TCL LINK LIBS SC TCL LINK LIBS
SC TCL EARLY FLAG TEA TCL EARLY FLAG
SC TCL EARLY FLAGS TEA TCL EARLY FLAGS
SC TCL 64BIT FLAGS TEA TCL 64BIT FLAGS SC TCL 64BIT FLAGS
SC TCL CFG ENCODING SC TCL CFG ENCODING
SC TCL CHECK BROKEN FUNC SC TCL CHECK BROKEN FUNC
SC TCL GETHOSTBYADDR R SC TCL GETHOSTBYADDR R
SC TCL GETHOSTBYNAME R SC TCL GETHOSTBYNAME R
SC TCL GETPWUID R SC TCL GETPWUID R
SC TCL GETPWNAM R SC TCL GETPWNAM R
SC TCL GETGRGID R SC TCL GETGRGID R
SC TCL GETGRNAM R SC TCL GETGRNAM R
SC TCL IPV6 SC TCL IPV6

TEA PREFIX
TEA SETUP COMPILER CC
TEA SETUP COMPILER
TEA MAKE LIB
TEA LIB SPEC
TEA PRIVATE TCL HEADERS
TEA PUBLIC TCL HEADERS
TEA PRIVATE TK HEADERS
TEA PUBLIC TK HEADERS
TEA PATH CONFIG
TEA LOAD CONFIG
TEA LOAD CONFIG LIB
TEA EXPORT CONFIG
TEA PATH CELIB
TEA INIT
TEA ADD SOURCES
TEA ADD STUB SOURCES
TEA ADD TCL SOURCES
TEA ADD HEADERS
TEA ADD INCLUDES
TEA ADD LIBS
TEA ADD CFLAGS
TEA ADD CLEANFILES

Proceedings of the Tcl 2011 129 Manassas, VA October 24-28 2011

WyattERP: A Non-Sissy ERP Application Development Platform
Authors: Kyle Bateman Bret Barney

Development History

Original flat-file, command-line C programs
My partner and I started Action Target in 1986. The only computer I had access to at the time
was a Wicat Systems 68000 with an operating system that was kind of a cross between VMS and
Unix. It had a decent C compiler and supported any number of ASCII terminals. Having learned
C pretty well in college, I was comfortable building any kind of simple application I needed. So
as the business grew, I began tracking things like inventory and production runs in simple flat
files with command-line driven programs to manipulate the data.

My idea of a database at the time was the Unix password file. However, I didn't really care for
the colon as a field delimiter so I started using a pipe character since it didn't ever occur in my
data. Eventually I had a whole suite of programs for dealing with various aspects of the business.
I could track my customers, my employees and my vendors. I could also write A/P checks and
payroll checks, and I had an accurate bank account balance and a pretty elegant purchasing
system.

By about 1993, I was running into trouble with my hardware. Wicat had gone out of business and
I literally had a shed full of their old computers to keep my systems running. But I could see that
it wouldn't last forever and so I was looking for a more permanent platform I could migrate to. I
was not at all impressed with the Microsoft platform and it was clear that a port to DOS would
be a lot more work than a port to Unix. So I was getting ready to bite the bullet and buy SCO
Unix when I first heard about Linux. I knew instantly it was for me and set forth to get my first
system up and running.

I think it only took me a couple of weeks to get my whole system ported over to my first
slackware box running a pre-1.0 kernel. My old command-line utilities worked very well on
Linux. And with the help of a terminal server, my old Wicat computers became dumb terminals.
And as they had problems or as I needed to scale, I could buy new Wyse terminals to keep me
going.

Life was pretty good until I hit my next scaling hurdle. In about 1998, it was becoming clear that
the business was growing out of my system. I had multiple salesman who wantied to be able to
access customer files at the same time. My file locking prevented them from overwriting each
other, but it also prevented simultaneous access of various parts of the data. In addition, there
was increasing pressure to expand the system to include better accounting and more elaborate
tracking of various processes in the business. People were also becoming more accustomed to
graphical environments and it was getting harder and harder to get people to be productive with
the command-line interfaces. I knew it was time to change again.

Proceedings of the Tcl 2011 130 Manassas, VA October 24-28 2011

Up until that time, I had been of the opinion that "Any program worth anything could and should
be written in C." My experience with interpreted languages was limited to Basic and Forth which
I considered to be toys--certainly not for use in serious projects. I had heard of databases but
didn't really know much about them. I had seen and used graphical programs, but it seemed like
an unimaginably complex job to write one so I wasn't sure where to start.

My research on databases lead me to Postgresql. It seemed like the best choice for several
reasons: It had early support for triggers, stored procedures and transactional integrity, and it had
a good developer community and was working toward compliance with published standards. So I
set forth to learn SQL and database architecture.

At the same time, I wanted to learn how to make GUI applications. My research on this lead me
to Tcl/Tk. At that time, I didn't find much to compete with Tk for a graphical toolkit. Since it
seemed to be inseparably linked to Tcl, I set forth to learn how to use this new (and strange)
programming language.

I remember reading for several hours trying to figure out what in the heck a "widget" was. But
eventually, it started coming together. And before long I had a simple customer database running
with a Tcl/Tk front end and a Postgresql backend.

First pass
I eventually came to call this first attempt my "pass one" version. My Tcl (and SQL)
programming was somewhat awkward at that point. For me, Tcl was just the language I had to
use in order to get Tk--which is what I really needed to put my graphical widgets on the screen.
But an interesting thing began to happen: The more I used Tcl, the more I began to understand
the genius of its simplicity. Over time it became the language of choice for many type of tasks.

Specifically, I came to understand the benefits of an interpreted language. Previously I had put a
lot of stock in the processing speed of a compiled C program. After all, isn't it better to have a
program execute in 100 us, rather than 100 ms? Well, eventually I determined that it isn't always
that important. Really, if the difficulty of the program development cycle gets reduced to the
point that the application can come into existence at all, I don't really care how fast it executes as
long as it is fast enough to keep my employees productive. I could buy faster computers. But I
could only code so fast. And I had begun to see how much more I could do and how much faster
I could turn it out in Tcl/Tk than I had been able to do in C. I recognized that it wasn't always
pretty and not always something I could have readily sold to others. But it was doing the job for
my company and we were beginning to see productivity benefits from the new programs.

Also a part of pass one was figuring out how to deal with the objects I was creating in the
backend. In Postgres, it wasn't always easy to modify the database (at least for a beginner). And
besides that, I just felt uneasy about the idea of issuing create commands and then later issuing
alter commands to modify things in place. I didn't really trust the idea of the newly altered
version of my database existing only inside the black box of Postgres. I had come from the world
of C programming where there was source code, and there was object code. Source code was the
authoritative description of the program. Object code was just an instantiation of the real
program for this or that target machine. But the object code could be deleted at any time and re-

Proceedings of the Tcl 2011 131 Manassas, VA October 24-28 2011

created as needed from the authoritative source document.

Issuing alter commands to the database felt kind of like using a binary editor to change your
compiled object code. What would be the point of that? The next time the program would be
compiled, the changes would be lost. Dumping the altered schema from the database felt to me
more like running a dis-assembler--reverse engineering at best. I wanted a way to author my
schema outside of Postgres in an authoritative source document. And then I wanted to be able to
instantiate that schema inside the database any time (and as many times as) I wanted.

That was the beginnings of what would eventually be called Wyseman (WyattERP Schema
Manager). At that point, it was a collection of text files and shell scripts. The main concept was
simple though: I created chunks of SQL code capable of creating (and destroying) each of the
objects (tables, views, functions, etc.) I wanted in the database. Then, I recorded which objects
were dependent upon which other objects. Using my scripts, I could then remove any object
from the database, and rebuild it fresh from my source documents. If the object had other
dependent objects, those objects could be included in the process as well. If the object list
contained tables, the data from those tables would first be saved out to files. Then, once the fresh
schema components had been created, the data would be imported back in.

Second pass
By the time I had a bare cores of modules running for the business, I had began to become
disgusted with my own programming style. I had started to figure out how to make Tcl more
modular and object oriented by using namespaces more effectively and by structuring my code
better. I had begun to understand the concept of building up more complex GUI components
(mega-widgets). And I was getting better with hiding complexity in libraries so my main
program could become simpler and cleaner.

Pass two was my next step to implement these changes. Unfortunately, the new structure was
totally incompatible with my pass one programs. But as I began to port each application to the
new structure, most of my reusable code got tucked into a main library. And my applications got
much shorter and cleaner. Often a fairly complex application like a customer contact manager
could be expressed in about 150 lines of code. All the rest was now in a library--available for use
by other applications.

I began to standardize the way my widgets and mega-widgets would operate. This was modeled
after the way basic widgets behave in Tk itself. Each widget was implemented in its own
namespace. Each one had a constructor. And when a new widget was instantiated using that
constructor, it would always create a widget command for the new instance (a global command
with the same name as the widget instance itself) which could be used to access all the
functionality in the widget. Each new widget module had "class variables" and "instance
variables" much like you would expect in a C++ object. But these were not managed by an OOP
language--just by discipline and convention in the coding style.

Tk widgets allowed a suite of command line parameters and switches which could optionally be
abbreviated. So I adopted this same structure in my widgets. I added a further extension of this
concept which I called "Dynamic Lists." A dynamic list looks just like a set of command line

Proceedings of the Tcl 2011 132 Manassas, VA October 24-28 2011

arguments such as: “-switch1 value1 -switch2 value2 -switch3 value3” except in certain
instances, some of the switches can be omitted from commonly used parameters such as: “value1
value2 value3” This way, common parameters could be given in a pre-determined order as
shown above. Or all values could be prefixed with a named switch and then given in any order.
Additionally, switches could be spacified more than once on the command line. For items that
can only hold a single value, the last occurring switch on the line would take presidence. For
some items, the system could collect and use all specified values.

Also using dynamic lists, my megawidgets could strip the values out of the command line that
they wanted to use. All other switches could remain in argv and simply be passed down to
subordinate widgets. So for example if I had a mega version of an entry widget that also included
a label widget, my megawidget could strip off the command line information about how to build
the label. But things like -background and -length (native to an entry) could just get passed down
to the entry widget itself. This made the megawidget appear to inherit all the characteristics of
the component widgets it used internally.

Another important part of pass two was the introduction of Wyseman. I had wrestled with the
way I was managing my schema objects using text files and shell scripts. I liked the concept of
maintaining an external and authoritative source document for the creation of the database
schema. I dabbled with the idea of a completely GUI front-end for creating database objects, but
it seemed like that had already been done in a number of different ways. I experimented with
Filemaker for a time, but I found it very limiting. After all, I wasn't trying to make database
design accessible for less experienced users. I was trying to bring better organization and
management to potentially very complex schemas. I determined that an abstraction layer
between me and the database would only limit the functionality I would be able to access in the
abstraction layer. I needed something that would allow me to continue to access every obscure
feature Postgresql was able to offer. And while helping with keeping my database objects
documented and organized, I also wanted a way to hide the complexity of some of my more
elaborate objects such as a macro processor.

Finally, I needed a data dictionary for my objects. In pass one, things like column titles and pop-
up context helps were all over the place. I wanted to be able to create and document the objects
one time and in one place and then relieve the application of the burden of supplying that
information.

I really tried to not do Wyseman in Tcl. After all, I was starting to like Tcl--a lot. I was worried
that I had just substituted one dogmatic approach (all programs should be written in C) for
another new one (all programs should be written in Tcl). Having previously written a full-on
macro language entirely in m4, I experimented with that. I re-considered doing it in C. I tried
XML. I tried creating a database schema and storing my sql chunks inside tables in the database
(cool from a purist point of view, but introduced a nasty bootstrap dilemma).

In the end, I came back home to Tcl. I determined that my dynamic list format was probably the
best and cleanest structure for storing my schema data. The Tcl syntax turned out to be pretty
good for storing SQL chunks. Once inside a set of literal quotes ({}) I could express pretty much
anything SQL needed, without having to further quoting or escaping. I wrote a fairly simple
macro scanner to look inside quoted SQL for escapes back into the TCL interpretor and viola! I

Proceedings of the Tcl 2011 133 Manassas, VA October 24-28 2011

had macro capacity.

The fact that I was writing in native Tcl and storing chunks of native SQL meant that I had
preserved the full power of both languages. Instead of being limited to what I could express just
in SQL, I could also write Tcl procedures capable of churning out etremely complex SQL objects
(like views with long lists of columns and/or rules). I could hide the complexity and messyness
of repetitive tasks (like implementing insert and update rules on views).

I did a one-time port of all my object descriptions into the new format, rebuilt the database from
my new objects, and reimported my old data. It worked pretty much flawlessly. And I never
turned back or regretted the decision to implement Wyseman in Tcl.

Third pass - Wylib
My borderline ADD never seemed to allow me to fully port all of my applications from one pass
to the next. By the time I had finished porting about 80% of my applications to pass two, it was
becoming obvious what I needed to do next. And I was more anxious to get onto it than to sit
around porting really obsolete code to newly obsoleted code. I was ready for pass three.

I was starting to feel like my stuff might be good enough for other people to start using it.
Grateful for what open source had done for me, I determined to release something under an open
source license. I had already come up with the idea for the name WyattERP but then I found out
that some AS400 people were already using it. But it looked like their project was slowing dying,
so I kept the name and registered the domains myself.

I began by taking all my shared code from pass two and pulling out the parts that were specific to
the ATI implementation. That core of the code became the central library, Wylib (WyattERP
Library). Wylib includes wrappers for all the standard Tk widgets. It also includes all the
standard mega widgets and support functions for making a WyattERP database application.

As I stripped out site dependent code, it had to go somewhere. So I came up with the idea of a
site library. You can name your site library anything you want--just tell Wylib about it by setting
the environment variable WYLIB_SITELIB and it will automatically get loaded if it exists. The
site library can include any number of customizations to each of the standard modules in wylib.
It can also include any other modules that the site designer needs that are specific to his
implementation.

As I continued this porting process, it became obvious that there were some modules that didn't
really fit into either Wylib or the site library. For example, we developed interfaces to the FedEx
web site and to the asterisk phone server. While these were too application specific to really fit
into Wylib, still they could be applicable to multiple sites. And so Waplib (WyattERP Application
Library) was born.

I dutifully posted early versions of Wylib on the WyattERP website complete with some sample
applications. But the demands of the business did not leave me with much time to maintain the
distribution. There were many things about the ATI implementation that were proprietary to the
business model and so could not really be open sourced without compromising ATI's competitive
edge in its market. So I found that I really had to concentrate on keeping the ATI implementation

Proceedings of the Tcl 2011 134 Manassas, VA October 24-28 2011

moving forward and I wasn't able to keep the open source project and its sample applications
current and useable. Because there wasn't much in the way of a useable schema design with the
project, I think people couldn't really get the hang of it just by downloading the project. So
although I left the project site up, I resigned myself to the fact that I would have to just
concentrate on keeping our in-house code moving forward rather than devoting time to the open
source project.

The next few years were very challenging for me at ATI. It was time to implement a fully GAAP
compliant accounting model in the ERP. This took even more time and so any hope of devoting
time to the open source project was delayed even further. But with effort, we were able to
complete a fully functioning general ledger with most of the data coming from the standard
operations modules.

Next, it became necessary to move the business into a new larger facility. I redesigned the way
material management would work and implemented a full inventory control system using
WyattERP. That took another year or two to get that fully up and running.

Fourth pass - In Process
As always, the ADD started kicking in again around the time pass three was getting close to
completion (but never done). Again, it was time to implement lessons learned from past efforts.
In pass three, I had wanted to make WyattERP move useable to other sites. Wylib was a good
stab at this for the front-end. Wyseman was also fully functional for multiple sites. The main
weakness, however had always been in the schema itself. Although I had released a run-time
library for the front end, and a tool for managing the schema, my schema itself had always
remained closed and proprietary.

By this time, my job duties at ATI were starting to taper off a little. I had also gradually
diversified my holdings to include several other businesses to include a farm and a private loan
company. Through the development of the accounting functions for ATI, I had learned a good
deal of accounting. A lot of the lessons learned were after the fact, so there were a number of
things I would have done differently. But I had not yet had the energy to create ERP's for these
new businesses. And they were simple enough that I could track them pretty effectively in
Gnucash.

But as time has gone by and they are getting more and more complex, I have been feeling more
need to get them set up on a real ERP.

So one goal of pass four is to create an actual open source schema to go with Wylib and
Wyseman. This is now called Wyselib (WyattERP Schema Library). It turns our that Wyseman is
pretty good at selectively pulling multiple bits of SQL together from any number of sources. So
the idea is to create a set of independent schema modules. Then the site author can pick which
modules he can use "out of the box." And which ones he wants to do custom. In some cases, he
might be able to use the standard modules and just add a few custom columns.

Ideally, Wyselib would evolve into a basic functioning schema to include all the basic functions
of a simple business. For example: employee tracking, payroll, customer tracking, orders,

Proceedings of the Tcl 2011 135 Manassas, VA October 24-28 2011

material management, inventory, vendor tracking, purchase orders, and so forth.

My goal is to create a schema which I can use to run my current businesses--each one as a
different site, but sharing all the code possible in both the front end and the back end. Ideally, I
would like to incorporate all the lessons learned from the creation of the ATI schema (although
many of the implementation details of ATI's business model will still remain proprietary).

Underlying Philosophy
As WyattERP evolved through its various stages of development, several philosophies slowly
evolved. Some of these were based on my own beliefs about how to best run a business. Others
had more to do with leveraging the strengths of Tcl, SQL and Linux. In many cases, the lessons
were learned by first doing it the wrong way and then improving things in later iterations.

Small Main/Configuration File
In the early days of software development, it was not uncommon to distribute source code to the
end user. Likely this was a necessity because no developer would be able to perfectly anticipate
the varying needs of every end user. Inevitably, users would need to customize their software
somehow to better server the unique needs of their business or institution.

But commercial developers didn't really like distributing their source code because it was too
hard to maintain a competitive edge when you are showing everyone exactly how you do things
in your code. So in order to facilitate closed source development and still maintain the ability to
do a certain amount of customization, it became necessary to invent the "configuration file." In
this context, I use the term "configuration file" to mean any sort of data or procedural code,
modifyable by the end user, that an application might read at startup or while running to tell it
how to behave with respect to the end-user's specific needs.

Often site configurations are maintained in a setup file. And the existence of a setup file implies
the need for a specified syntax or language in which to express the setup. The existence of a
language for the setup file implies the need for a parser to read and interpret the setup file. And
the parser as well as the language itself needs to be thoughtfully constructed so that it gives the
end user sufficient access to all the complexities of the application necessary to customize the
application well enough for each diverse end user's needs.

Experienced programmers will recognize the fact that they often end up in the parser business in
order to configure their applications. In fact, Tcl was invented for the very purpose of creating a
standardized syntax for configuring applications. The idea was to create a small, portable parser
which could be included inside any larger application. This way, the application could be
configured with this Toolkit Configuration Language (TCL) and programmers could then
concentrate on writing the rest of the application without having to invent a new syntax and
parser each time.

The interesting thing is, in order to make a toolkit configuration language that could be used by
any application for any purpose, it would certainly need to be powerful. Specifically, it would
need to be "Turing Complete" or include conditionals, branching, internal variables and the like.

Proceedings of the Tcl 2011 136 Manassas, VA October 24-28 2011

Essentially, it would need to be a complete programming language--which Tcl turned out to be.

Then, the programmer is faced with an interesting dilemma. Now that the configuration language
is a complete programming language, and the end user can express arbitrarily complex
procedural and/or data structures in the configuration code, where does the application end and
the configuration begin. In essence, the application becomes a library of specialized functions
that perform tasks specific to its area of expertise. But it is the site-specific configuration code
which, in the end, can control that application telling it how to behave in the end users'
environment.

So why is the library the top-level object calling the site-specific code. Shouldn't it be the other
way around? At least with open source development, it is easy to do this by turning the
configuration paradigm up-side-down.

In this structure the main program, implemented in Tcl, becomes the application. Endowed with
a powerful lower level set of library functions, it can call upon those functions in a very high
level way to define the operating parameters of the program. If there are two or more
applications which operate similarly but on different data or in a different way, ideally the main
would contain only that data and those procedures which differ between the two functions. All
commonalities would be expressed in shared code and data contained in the shared libraries.

In the ideal case, this makes the main program relatively small and concise (just like an ideal
configuration file). All the real work is being done in the shared code. The site specific code
(now in the main loop) can access all the richness of the shared libraries, but it is not limited to a
pre-conceived set of configuration options. Rather, it also enjoys the full power of the underlying
programming language itself. So the programmer can go to any depth necessary in producing
application specific code.

Module Pyramid
With this code structure, we end up with a pyramid-shaped set of modules or components.

Any time features are needed or added, it is peferrable to add them at the lowest level where they
may appropriately belong. That way, code can be shared by as many different processes as

Proceedings of the Tcl 2011 137 Manassas, VA October 24-28 2011

possible.

The front-end code structure above is fairly well organized in pass three and beyond. One
purpose for pass four is to apply these principles to the way the back end is constructed. A
similar pyramidal diagram can be constructed for the database schema construction:

Exposed Model GUI
Immediately upon using a Wylib-based application, you will notice a very different GUI
presentation. This is intentional. Most applications start with the premise that screen real estate is
going to be limited. You typically have a single menu bar of some kind across the top, and then a
series of virtual screens or pages you can access by pushing the right navigation buttons. Web
sites tend to follow this paradigm. You can only view one page at a time so you have to navigate
from one page to the next to get your job done.

While there is nothing inherently wrong with this approach, Wylib lends itself better to an
approach that might be called a "dashboard" or "control panel" view. The goal here is to get as
much data as possible to present on the screen at once and to minimize the amount of navigating
that will be necessary in order to do the job. While this approach tends to have a steeper learning
curve, my experience is that in an enterprise people can eventually become more productive
when the number of mouse clicks can be reduced.

The other important principle is what I call "exposed model." Relational databases are very
powerful. The foreign key relationships established in the database tie records together in a way
that explains how they are related to each other. For example, we may have one table containing
a list of customers. Another table might contain a list of orders.

In the exposed view paradigm, we would try to make it relatively easy to show both the list of
customers and the list of orders on the screen simultaneously (not requiring you to navigate
between them one at a time). Then if you select a given customer for editing, the list of orders
should automatically update to show the orders associated with that customer. In this way, the
user will begin to understand the foreign key relationships intuitively--even if they don't know
what a foreign key is.

So WyattERP applications will typically have a single menu bar at the top like traditional
applications. However it will also contain multiple panes, each of which may have its own menu

Proceedings of the Tcl 2011 138 Manassas, VA October 24-28 2011

bar. And it will be possible to launch other top-level windows for simultaneous display, each of
which will have its own menu bar and containing its own panes and their associated menu bars.

In most cases, these new top-level windows express a class of sorts which can be instantiated on
the screen any number of times. So in our example, we could have multiple lists of customers
showing at once and each one could have its own relational list of orders as well.

Model, View, Controller
Model-view-controller (MVC) is a software architectural method which lends itself well to
application development in WyattERP. MVC was not, in the strict sense, in my mind through the
early development of the ATI ERP. However, I was very mindful of the need for multiple,
simultaneous views accessing a common core of data.

As I studied MVC and attempted to use it in later architecture, I was convinced that it could be
helpful in future design phases of WyattERP and Wylib applications. Rather than going into
depth in this paper about how MVC works, I would refer the reader to Wikipedia or some other
good resource for a detailed explanation. But the basic concept is simple:

The model represents the state of the project or enterprise. It contains all data that expresses how
things have progressed so far. And as more progress is made, the model records the new state of
the data (and optionally, a record of the changes along the way). So for a business, we will keep a
list of our customers and another list of our employees. Each time a customer or employee is
added, the data will change and the model will keep track of this state along the way.

It is the job of the model designer to evaluate the real world problem (the enterprise) and
determine a way to represent the salient quantities in that reality in tables, rows and columns.
Anyone who has designed a relational database before knows that this task can seem deceptively
simple until you start trying to pack actual real-world data into your model. So the goal is to find
a model sufficiently complex that it can represent the bulk of your real-world cases while being
sufficiently simple that your users can effectively interact with it.

The controller portion in the MVC method contains rules about how data changes in the model.
In Postgresql and similar products, triggers and rules can certainly constitute a part of the
controller layer. For example when we push a button in our GUI to issue a payroll check to one
of our employees, there will typically be a set of procedural functions that will have to be
performed before allowing the data to be recorded. We might first check to see that valid work
time has been recorded by the employee. We might check to see if overtime needs to be paid or if
withholdings need to be made. These are all examples of rules or restrictions on how and when
the model is allowed to change.

Since WyattERP is based on the client-server model of Postgresql, a lot of our controller code is
bound to be running on the back end. However, it is usually awkward to have all control logic
happening in the back end. For example, when adding a new employee record, it is usually a
good idea to make sure the user has included a birthdate and a valid taxpayer ID number. Ideally,
we would disallow the record addition until these are specified.

While this type of a data check can (and should) be performed in the back end, it should

Proceedings of the Tcl 2011 139 Manassas, VA October 24-28 2011

probably also be screened in the front end as well where we are more likely to be able to issue a
more user-friendly and specific error message. So in WyattERP, the controller layer is expected
to be as much as possible in the back end, but understood to also occupy some space in the front
end.

The view consists of the widgets shown on the screen and the buttons or links the user might
click in order to accomplish the desired tasks. Ideally, any number of views can exist at one time.
And when the user performs an action on the database, he should access the same set of control
code regardless of which view he is in. And he should operate consistently and transactionally on
the same set of data in the model regardless of which view he is using. Furthermore, when the
data changes in the model, all applicable views should ideally update to reflect the change.

Permission Model
When WyattERP is used in a multiple user environment, there will typically need to be some
kind of restrictions on which data can be viewed and modified by which users. For example, in a
business environment you might want one person to deposit the checks and a totally different
person to apply the income to invoices. One person might enter new employees in the database
while a different person might issue payroll checks. In this way, there are greater controls on the
data and less chance for someone to do something they shouldn't.

WyattERP starts by creating a basic permission model using Wyseman. When schema
components are created, you can specify modules (essentially groups or roles) that will be able to
access those objects in various ways. Each module permission is created with three different
levels: limit, user, and super. So if I create a table and tell it that the "entim" (entity information
manager) module will be accessing it, Wyseman will create three roles: entim_limit, entim_user,
and entim_super. Additionally, you define which types of accesses each of the three levels will
get to the object. For example entim_limit might have select only permission to the table. We
might give entim_user the ability to insert and update. But we might only give entim_super
delete permissions.

Wyseman allows for a fairly compact syntax to represent which modules and levels get what
access to which objects in the database. If your schema includes a user table, you can use Waplib
functions to add and revoke permissions to the modules you have defined.

Additionaly, there is support for role groups (like "finance" or "sales" for example, each of which
can contain module permissions of various levels. This will allow you to grant a set of module
permissions to a user based on their job description.

In addition to granting select, insert, update and delete to database tables, it is sometimes
desirable to limit a user's access to certain columns within a table. While Postgresql has support
for column-level permissions, WyattERP lends itself well to simply creating a custom view for
each module. When defining the view, you can specify separately which fields can be selected,
inserted, and updated. Wyselib contains helpful macro functions to help you manage this without
creating a large code footprint.

Other fine grained permission controls might include such things as limiting access to a table

Proceedings of the Tcl 2011 140 Manassas, VA October 24-28 2011

based on a location or the time of day. These can easily be handled by rules and triggers within
the database.

Main Components

Wlib - WyattERP Library
Wylib contains Tcl and Tk functions which are considered to be site independent and also
generic enough that they would be likely to be shared by a wide variety of applications. Wylib is
designed to be used with or without Tk. So support and maintenance scripts can require it as well
as GUI applications. If you don't want the GUI components, just don't invoke them.

Some of the more common GUI components will be introduced here:

Dbp (Database Preview):
This widget can display all or some of the records from a single table in the database. It looks
somwhat like a spreadsheet, showing rows and columns of data. Controls are fairly standard to a
multi-column listbox you might see in another application.

This widget is built upon a similar but lower-level widget called an MLB (multi-listbox) which
does most of the same things, but is not associated with a database. Rather, it can contain any
abitrary data.

Typically, you would use the standard LoadBy button in the menu bar of the Dbp to select a
certain class of records you are interested in. Then you would double click on one of the records
to "execute" (do something interesting with) it. The Dbp can be operated in a mode where
multiple records can be executed at once if wanted.

It is very common to link a Dbp to a Dbe widget (see below). In this case, executing a record will
load it into the Dbe.

A Dbp will largely configure itself from the data dictionary created by Wyseman. However, you
can specify additional configuration parameters such as the default order in which fields will
appear and what action functions will appear.

top::add [eval dbp::dbp $w.p -ewidget $w.e {-m clr -m def -m rld -m all -m prv -m sel
-m nxt -m lby -m see -m aex}] entp
pack $w.p -side top -fill both -expand yes

Proceedings of the Tcl 2011 141 Manassas, VA October 24-28 2011

Dbe (Database Edit):
This widget can contain a single record from a single table at one time. Typically, it gets loaded
up with a record somehow (often from an associated Dbp). This will allow you to view and edit
the contents of the record. Then when you are ready, you can commit your changes back to the
database.

A Dbe typically requires a bit more configuration than a Dbp. For example, we need to define
where the various fields will appear in the editing pane. While this could probably be done
automatically, a human-crafted layout will usually yield a more pleasing result.

Data Editors:
Wylib contains a wide array of editor widgets for a variety of data values. For example, there is a
widget just for selecting dates. Another one is good at selecting the time of day. One displays a
listbox with a number of values to choose from. Another will prompt for the input of a number,
but displays a calculator for use in coming up with your answer.

These data selection widgets can be specified as data-entry helpers in a Dbe, or as part of a pop-
up dialog (or anywhere else for that matter).

 top::add [eval dbe::dbe $w.e -pwidget $w.p p -table ent_v {-m clr -m
adr -m upr -m dlr -m prv -m rld -m nxt -m {ldr -s Ld} -m sep} -bg blue -
bd 3] ente
pack $w.e -side top -fill both

Illustration 1: Standard Dbp Widget

Proceedings of the Tcl 2011 142 Manassas, VA October 24-28 2011

Standard Widget Wrappers
There are a handful of features that I really wished were built into the standard Tk widgets.
Absent these, I opted to create a standard wrapper around each one. So Wylib contains classes
such as "wentry" which is the Wylib wrapper for an entry. This includes support for a pop-up
context help feature, and a way to store the various values that have been used in the entry (a
history stack).

Similarly, there is a wrapper around each of the standard Tk widgets. The wrapper gets renamed
over the global native widget. So later invocations of a standard "entry" will actually call the
wrapped widget, getting the enhanced Wylib entry features.

Utility Tcl Code
Wylib also contains a handful of support functions such as the interface to the Postgresql API.
Other examples include support for printing from standard widgets, parsing command line
parameters, and interfacing with internet sockets.

Test Suit
While admittedly short on documentation, there is a test folder containing a variety of example
scripts to test the various widgets and features. These were typically used during development of
the widgets, but can serve as an additional source of useage examples.

Waplib - WyattERP Application Library
In the early development, Wylib contained everything that was considered "sharable code." But
over time, it began to get cluttered with lots of fairly esoteric code that didn't get uesd very often.
Waplib became the new home of such code. With the new development of reusable schema
components in Wyselib, Waplib also holds the standard front-end support functions to interface
to these standardized back-end objects.

Examples of estoteric but sharable code includes a module for interfacing to the Federal Express
web site, an a module for creating Nacha (direct deposit) payroll files. It also includes a module
for generating paper checks and a graphing module for creating gantt charts (in development).

Wyseman
Wyseman is actually a package that includes a command line tool (wyseman), a graphical
interface (wysegi) for examining and changing data in the database, and a run-time library for
accessing the data dictionary. When invoked, wysegi will show a list of tables and views in the
database.

Proceedings of the Tcl 2011 143 Manassas, VA October 24-28 2011

These database objects are displayed in a standard Wylib preview widget (Dbp) so you have
access to all the standard features it offers (such as Loadby, ordering and so forth). If you double
click on an object, wysegi will attempt to open a standard Wylib editing widget (Dbe) which will
allow you to edit the selected record. These widgets are all automatically generated solely from
data available in the data dictionary, so the layout of fields is not as optimized as you might see
in a human generated layout.

Most of the time, the database designer should not have to access the data dictionary directly.
Rather, the standard Wylib widgets will access it for you in order to display column titles,
context helps and so forth. However, it us useful to know what it contains--especially when
coding your Wyseman files.

To see the data dictionary, look at the tables contained (using wysegi) in the "wm" schema. For
example, you will see a table that holds a titles and helps for each table in the system. Another
table holds similar descriptions for table columns. A third table holds values for certain
enumerated-value columns you will create.

As you create your own database design, you will author files (described below) that will define
the database objects, will populate the data dictionary, and will define how various object data
will be displayed on the screen.

At the heart of Wyseman is the wyseman command line utility itself. It will parse your schema
description files. And according to how you invoke it, it can build some or all of your schema
(your collection of database objects). Or it can destroy (and optionally rebuild) specified portions
of it as well.

The Wyseman parser (just the Tcl interpretor itself) understands the following new commands
which mirror their SQL counterparts:

• table
• view
• sequence
• index
• function

Proceedings of the Tcl 2011 144 Manassas, VA October 24-28 2011

• rule
• schema

Each of these objects can be created by invoking the command, followed by a Wylib dynamic list
of parameters which include:

• Name <object name>

• create <create script>

• drop <drop script>

• grant <module permissions>

• version <object version>

• text <title description>

With the first 5 of these able to be expressed with their switches omitted as long as they are in
this exact order. So, for example, we might create a table with the following code:

table base.ent_link {base.ent} {
org_id int4 references base.ent (ent_id) on update cascade
, mem_id int4 references base.ent (ent_id) on update cascade on delete

cascade
, primary key (org_id, mem_id)
, role varchar
, supr_path int[]
subst($glob::stamps)

}

Note that we do not have to insert the words "create table <name>" in the create script. We can
just start enumerating the column creation portion of the syntax. Wyseman will fill in the blanks
if it thinks it needs to .But if it see the words "create table" at the beginning of your script, it will
know not to try.

Likewise, there is no drop script specified. Unless there is something fancy involved in dropping
this object, just let Wyseman create that part for you. For a table it is just "drop table <name>" so
it can figure that out just fine.

Most SQL objects behave this way, you can take certain shortcuts as long as you fill in the parts
that can't be figured out. For example, if you create a trigger that calls a function, Wyseman will
include the function name in the object dependency list for you (if you haven't done it already).

The dependency list should just be a list of all the object names in the database that must exist
before you can create this object. So if you create a view that is based on a table and a function,
you should list that table name and function name in the dependency list as shown in the
example:

Proceedings of the Tcl 2011 145 Manassas, VA October 24-28 2011

view base.ent_link_v {base.ent_link base.ent_v} {
select eval(fld_list $base::ent_link_se el)

 , oe.name as org_name
 , me.name as mem_name
 , el. oid as _oid

from base.ent_link el
join base.ent_v oe on oe.ent_id = el.org_id
join base.ent_v me on me.ent_id = el.mem_id;

eval(rule_insert base.ent_link_v base.ent_link $base::ent_link_v_in {} $glob::stampin)
eval(rule_update base.ent_link_v base.ent_link $base::ent_link_v_up
$base::ent_link_pk {} $glob::stampup)
eval(rule_delete base.ent_link_v base.ent_link $base::ent_link_pk)
} -grant {
 {entim s {i u d}}
}

The grant parameter simply specifies a list including a module permission and a sub-list showing
the (possibly abbreviated) permissions to allow to users of levels limit, user and super within that
permission. Wyseman will create all the necessary roles if they do not already exist in the
database. Remember that in Postgresql, objects like tables and views exist only within a specified
database However roles, exist across all databases within your current instance. This could cause
you some headaches if you are trying to create multiple Wyseman databases within a single
instance.

The object name consists of the exact name of the object as you would refer to it in SQL. For
functions, this includes the parenthesis and the full parameter list. This is necessary because
Postgresql allows you to overload function names (more than one function with the same name).
The Postgresql parser does not care if you put spaces between function parameters, but if you put
those spaces in the name of your object in Wyseman it will remove them to create the object
name. So when you refer to the object as a dependency of another object, you had better specify
it with no spaces in the parameter list (see the example below):

function {base.priv_role(name,varchar,varchar)}

The procedural language plpgsql also allows alias names for parameters in the declaration. These
will be stripped out as well when forming the official object name. So make you do so when
referring to the object as a dependency.

function {equip_logdep(ei int4, se int4, td date)} {equip_items_v equip_dep
equip_caldep(varchar,numeric,numeric,int4,int4)} { returns boolean
language plpgsql as $$

In addition to the standard SQL objects outlined above, there is one "catch-all" object creator
called "other." This is just like "table," "view," or any of the other object creators. Except you
need to specify a full SQL create and drop script. Not much can be assumed by Wyseman in this
case. This command might be used to create a custom type, aggregate, or operator as shown here:

function neqnocase(text,text) {} {

Proceedings of the Tcl 2011 146 Manassas, VA October 24-28 2011

returns boolean language plpgsql immutable as $$
begin return upper($1) != upper($2); end;

$$;}
other neqnocase_o neqnocase(text,text) {

create operator !=* (leftarg = text,rightarg = text,procedure =
neqnocase, negator = =*);

} {drop operator !=* (text,text);}

There is a command called "tabtext" which is used for defining titles and context helps for tables,
columns, and values. For example, to create the text information for the table defined in the
example above, we would include the following:

tabtext base.ent_link {Entity Links} {Links to show how one entity (like an employee)
is linked to another (like his company)} {
 {org_id {Organization ID} {The ID of the organization entity that the
member entity belongs to}}
 {mem_id {Member ID} {The ID of the entity that is a member of
the organization}}
 {role {Member Role} {The function or job description of the
member within the organization}}
 {supr_path {Super Chain} {An ordered list of superiors from the top
down for this member in this organization}}
} -errors {
 {NBP {Illegal Entity Org} {A personal entity can not be an organization
(and have member entities)}}
 {PBC {Illegal Entity Member} {Only personal entities can belong to
company entities}}
}

Note that this same chunk of text can optionally be specified as a parameter to the table or view
command itself (using the -text switch).

Another command called "tabdef" is used to define the default way in which columns and values
will be displayed in the Wylib GUI. This is not really the same kind of data dictionary
information provided by the tabtext command in that this is a little more specific to the point that
we are using Tk as a front-end. Realistically, the data expressed inside the tabdef command could
be parsed by other front-end generating code. But at the moment all Wyseman does with it is it
creates a Tcl library which will be required by Wylib (assuming you make it and put in the right
place). It will include properly Tcl-formatted argument lists for attachment to the Dbe (and in
some cases, Dbp) widgets. I have given some thought to also moving some of this data to the
back end, but at the moment that is not being done. A typical tabdef command looks like this:

tabdef base.ent_link -focus org_id -fields {
 {org_id ent 6 {1 1} -just r}
 {mem_id ent 6 {1 2} -just r}
 {role ent 30 {1 3} -spf exs}
}

When this dynamic list is parsed, it is simply re-formatted as follows:

Proceedings of the Tcl 2011 147 Manassas, VA October 24-28 2011

package provide wmd_acme 1.0
namespace eval wmd_acme {
 namespace export base.ent_link
 proc base.ent_link {{tag {_}}} {
 switch $tag {
 {} {return {-focus org_id}}
 org_id {return {-style ent -size 6 -sub {1 1} -just r}}
 mem_id {return {-style ent -size 6 -sub {1 2} -just r}}
 role {return {-style ent -size 30 -sub {1 3} -spf exs}}
 {_} {return {org_id mem_id role}}
 }
 }
}

This code can be referenced directly by Wylib to display the column widgets on the screen the
way the user wants.

Note that there are some fairly esoteric switches that can be specified in the tabdef columns.
Because each widget at each level just strips off the argument that it wants or needs, you should
be able to specify any kind of switch here, all the way down to the background color of an entry
in the Dbe.

To discover all the various switches that can be specified, one must understand that a Dbe
(database editor widget) consists of an Mdew (Multi data editing widget). An Mdew consists of
multiple Dew's (Data Editing Widgets). Dew's consist of a data field (an entry, a text box, a
checkbox, a menu button, etc.) and a prefixing label. If you study the available options to each of
these classes and understand that the capabilities are essentially inherited as you move up to the
megawidget, you can quickly discover what options will be available to you. Until then, to get
started, just follow some of the examples provided for the various types of data fields.

Finally, the "define" command is included as a macro facility. Remember that you are in native
tcl all the while in your schema description file. So you can use all the power of Tcl including
set, for, while and so forth. But on occasion, it is nice to have a small macro processor as well.

So you can define a macro using define as follows:
 define Tquant {case when a = %1 then b else 0 end}

This would then be invoked as simply:
 Tquant(z)

Which would expand to:
 case when a = z then b else 0 end

A macro can have any number of parameters which you would refer to in your definition as %1,
%2, %3. Or it can have no parameters. However, if it has no parameters, you must still invoke it
with empty parenthesis as follows:
 define myDef() 1234

Proceedings of the Tcl 2011 148 Manassas, VA October 24-28 2011

 field int not null default myDef(),

In the sample schema provided, normal database objects are defined in a file with a ".wms"
extension. All the tabtext stuff is in a file with a ".wmt" extension. And all the tabdef items are in
a file with a ".wmd" extension.

While this is not a strict requirement of Wyseman, it does make it easier to specify which objects
you want when it comes to build time. Wyseman command line commands can get pretty
complex so I usually use a Makefile to do most of the work. For more complex database designs,
there can be a lot of different files to pull object definitions out of. When I start including
Wyselib schema components, it can get even more complex.

So I now create a little Tcl script called "modules" in the build directory. This command will
produce a list of schema definition files. And optionally, it can find ones that match one or more
specified extensions. So for examples, I can specify:
 ./modules wms wmt

And it will give me the names of all the *.wms and *.wmt files I need for my schema. I can then
call $(./modules) from inside my makefile to avoid long lists of files and/or directories where
I might be pulling from.

Wyselib - WyattERP Schema Library
The last component is Wyselib. When I first developed the ATI schema, it was all closed and
proprietary. Only Wylib, Waplib, Wyseman and so forth were open sourced. I did create a couple
of small sample schemas for people to play with to get the idea. But I quickly found that I didn't
have the time nor the desire to maintain those sample schema.

So in pass four, I am now moving certain core functions into the new Wyselib. The idea is to
build up the operating schema for a couple of my other businesses strictly on Wyselib with a very
small corpus of site specific code if necessary. Since this stuff can all be open source, it will be
something (hopefully) other people can use. And it will be something I have an incentive to
maintain.

If it turns out to be good enough, I may want to go back to the ATI schema and back-port
sections of the schema to the Wyselib stuff.

So far, wyselib has a set of payroll withholding functions (actually these are being used in the
ATI schema now). It has an experimental base module which consists of a common core for
tracking users (entities), their addresses and communication points, and what permissions they
have. I also have a module for tracking employees which uses a new nifty kind of pseudo table
that actually overlays the entity table. This is very experimental, but it looks like it will have
some very cool benefits when fully implemented.

Customers and vendors are planned to be implemented similarly to employees. And I am
including some basic accounting and asset management structures as well.

Proceedings of the Tcl 2011 149 Manassas, VA October 24-28 2011

Conclusion
As I reflect on the history of WyattERP, I am happy that it has done such good things for Action
Target. We have been able to build a very successful company on a home-grown ERP, and grown
through all the stages of our development so far. We are able to maintain GAAP accounting, and
track millions of dollars of material flow and other transactions, reconciled in a precise and
accountable way.

I had grand plans to see WyattERP used more in the open source community. But it has been
largely a one-man show. And I have always had my hands full just meeting ATI's needs. So far, it
has been difficult to give the support necessary to maintain the package in a way the open source
community could benefit from. However, I continue to be open to the idea. I just think it would
require a few other parties who were interested in using the system for their own needs and who
would be willing to collaborate on the project to fill in the parts that are missing (like
documentation, and other refinements).

I have several other hopes for the future as well. WyattERP has never really been configured for
web-wide deployment. At the moment, it has to run on a Linux front-end because of a number of
dependencies hastily written into the code. In recent years, I have begun to install the hooks
which would allow true multi-platform deployment. But some effort would still be required in
order to get there.

In order to use WyattERP for my farm, it will be necessary to achieve this in some degree. For
example, one use will require a laptop (probably windows) connected via wireless ethernet to
track cattle as they are processed in the field. I would like to be able to just use any old laptop,
just hit a web page, and be able to download whatever I need in order to get the application
started.

Some people have talked about writing a php or flash front-end for WyattERP. But to tell the
truth, the thing that is so cool about it is that it is written in Tcl/Tk. The dashboard design
paradigm would be quite a lot of work to re-create inside a browser as well.

So of late, I have become convinced that a well designed starkit might be the best answer. I
would like to be able to click a link on a web page and have that download a basic starkit. That
application would allow me to connect to the Postgresql database and log in with my credentials.
Once the system knew who I was and what module permissions I had, it could then determine
what applications I needed. I think these applications could then be downloaded right into my
starkit by way of starsync or a similar mechanism.

Once the system had all the latest code for the application(s) I needed, I could have a simple
dialog pop up to ask what app to run and the user would be ready to go.

This approach would enjoy several benefits. First, the front-end code could run more or less as-is
without needing to be ported to another language or platform. All views would look and act the
same regardless of whether they were running over the web or in the main office. The
deployment model would benefit from all the advantages of a self-updating starkit. The database
author could simply worry about deploying the latest code to a central repository and all his users
would automatically get the latest stuff each time they connected to the database.

Proceedings of the Tcl 2011 150 Manassas, VA October 24-28 2011

There are quite a few things I would like to do differently and better when it comes to
accounting. There has historically been quite a divide between operations software and
accounting software. My experiences of recent years have taught me a lot about what
accountants, auditors and banks are looking for in a reporting system. My experiences building
several successful businesses have taught me a lot about what operations folks need in order to
make their businesses work.

All too often businesses are satisfied to let the operations people shop for their own solution and
let the accounting people do a different solution. IT is often successful in creating a more-or-less
automated export from the operations system to the accounting system. But it is quite rare that
the bridge works in both directions. And it is very rare that the data remains completely
consistent between the two sides.

I still don't believe that a successful business can just buy its software off the shelf. Most of the
innovators I have seen became successful by developing something in-house that allowed their
vision for their own business logic to flourish. After all, if you run your business on someone
else's ERP, you are really trusting them to write your business logic. And your competitors can
replicate your business quite completely simply by buying the same software you bought.

But when innovators find a new way to do things that is more effective than the competition,
they need a way to implement that novel logic in their ERP. They need a way to cook up a
system that will capitalize on what they have done that is novel and better. WyattERP provides a
platform that can allow that rapid development without the distractions from writing all the GUI
and database support code from scratch.

Proceedings of the Tcl 2011 151 Manassas, VA October 24-28 2011

Abstract—Computer Automated Radioactive Tracking

(CARPT) has emerged as a powerful Technique for mapping
fluid flow under a variety of conditions. This paper describes the
adaptation of a general purpose nuclear physics event-based data
acquisition system to the needs of the CARPT apparatus at
Missouri University of Science and Technology. The resulting
software is a C++ multithreaded framework which communicates
via events with a thread running a Tcl interpreter. The Tcl
scripts run by the interpreter provide Experimental control,
online-data analysis and data storage for later offline analysis.

I. INTRODUCTION

Understanding how fluids flow through chemical reactor
vessels is an important piece in the puzzle of optimizing many
industrial processes. Ab-initio fluid dynamic calculations and
even simulations are not able to provide solutions for realistic
reactors. Furthermore since larger reactors, as well as those
which several material phases (e.g. solids, liquids and gasses
in the same vessel) are optically opaque, experiments to track
fluid flow in these reactors are not trivial..

 As one often quoted author in the field says: “Multiphase
reactors are widely used in petroleum, chemical,
petrochemical, pharmaceutical and metallurgical industries as
well as in materials processing and pollution abatement….the
physical phenomena that affect the fluid dynamics of such
systems are not yet entirely understood. This makes a priori
predictions of important process parameters… very
difficult.”[1] Figure 1 at right is a schematic of a Circulating
Fluidized Bed (CFB) reactor that gives an idea of the scale of
these devices. An understanding of the flow of fluids through
reactors like this and others is essential to the optimization of a
large variety of industrial processes.

The remainder of this paper is organized as follows:

• The CARPT method is introduced and described.
• The computer problem being solved is described.
• We describe how the base NSCL VM-USB readout

framework was modified to meet the needs of this
system.

II. TRACING FLUID FLOW WITH RADIOACTIVE SOURCES

1. National Superconducting Cyclotron Laboratory Michigan State
University.

2. Missouri University of Science and Technology Very High
Temperature Reactor (VHTR) consortium.

In recent years, introducing radioactive tracers into the flow of
fluidized reactors has been a fruitful way to perform
experimental studies of the fluid dynamics of these devices.
One such method, called Computer Automated Radioactive
Particle Tracking involves injecting a radioactive source that
has neutral buoyancy into the fluid being studied.

Figure 1 CFB reactor prototype [2]

Detectors placed around the reactor vessel track the position
and velocity of the source as a function of time. Normally
sources composed of 46Sc are used. 46Sc decays emitting a β-

and a γ-ray with characteristic energies of 900KeV, 1.0 and
1.3 MeV. NaI, detectors sensitive to the long ranged γ are
used to track the particle. This is shown schematically in
Figure 2.

The position of the source is determined by measuring the
count rates in the detectors as a function of time.
Position/intensity maps obtained during calibration runs are
then used to derive the time evolution of the position and

Fluid Dynamics experiments with Tcl
Ron Fox1, Vaibhav Khane2

Proceedings of the Tcl 2011 152 Manassas, VA October 24-28 2011

vector velocity of the particle. This simple sounding
procedure is actually quite complex because:

• A good knowledge of detector efficiencies is required
t o understand what a specific detector rate means.

• Detector acceptance depends on angle of incidence.
• Pile-up either due to a highly active source or the

recovery time of the detectors need to be factored in
(While the signal rise times of NaI crystal is quite
fast, the fall time can be several 10s of
microseconds).

• The rector contents can absorb gamma rays resulting
in a position dependent attenuation of the
rawintensity.

Figure 2 Schematic of a CARPT system.

The flow of data analysis is shown in Figure 3.

Figure 3 Flow of CARPT data analysis

III. HARDWARE PROBLEM AND SOLUTION

The Chemical & Biological Engineering Dept. at Missouri
University of Science and Technology Rolla (MST) performs
CARPT studies of several types of reactors. In early 2010
they contacted the first author of this paper about upgrading
their system. Figure 4 shows a block diagram of their system
at that time:

Figure 4 Original system block diagram.

Of concern to the MST group were the bottom three elements
of Figure 4. Those devices are no longer manufactured.
Additionally, the software on the Windows PC was not
sufficiently flexible, nor reliable.

CAMAC [3] (Computer Automated Measurement and
Control) is a very old instrumentation bus. It was first used in
the Automotive industry adopted by the nuclear physics
community about that time, and standardized for use in
nuclear physics data acquisition systems in 1972
(ESONE/EUR 4100). The IEEE standardized the system, bus
controllers and host interfaces and software APIs for
FORTRAN Programs in 1982 (IEEE standards 585,683, 596,
595, 726, 675, 758 inter alia).

The goal of the project was to replace and modernize the
CAMAC readout system/host interface and computers while
retaining the existing analog electronics and CAMAC
instrumentation. While it would have been nice to update the
computer interfaces from CAMAC to something more recent,
that was beyond the budgetary scope and capabilities of this
project.

Many smaller nuclear physics labs have a significant
investment in CAMAC electronics and are “trapped” in this
technology either because they are insufficiently funded to
replace their electronics or they don’t have sufficient on-site
expertise to convert their software once they do replace their
hardware. To meet the needs of those laboratories, Weiner
Plein & Baus Elektronik markets a USB CAMAC crate
controller the CC-USB. Thanks to modern gate array
technology, this module provides much of the functionality of

Proceedings of the Tcl 2011 153 Manassas, VA October 24-28 2011

the three CAMAC interface modules used in the original
system in a single simply laid out module.

A block diagram of the CC-USB is shown in Figure 5. This is
taken from the module’s manuals. The block referred to as
“Stacks” in the figure allows operation lists to be downloaded
and triggered by various conditions.

The specifications require that scaler readouts be triggered at
relatively stable timed intervals. The CC-USB contains
onboard resources that allow a periodic pulse to be generated
on one of its outputs. The stability of this timing signal is on
the order of one part in 12.5ns which is far superior to the
required timing. The periodic output pulse is then cabled to
the input that triggers execution of the CC-USB primary
event readout list.

The CC-USB connects to a host computer via a USB A to B
cable, such as that used to connect many USB printers.

IV. SOFTWARE
This section is subdivided as follows:

• First an overview of the requirements of the software
is presented.

• Second a description of the NSCL DAQ CC-USB
readout software is given.

• The modifications performed on the base software
are described along with some of the operational
characteristics of the resulting software.

A. Software requirements

In order to understand the software requirements and data
acquisition modes it is important toknow a bit about the
electronics. Each gamma ray interacts with the NaI in the
detector to produce light. This light is collected, amplified
turned into an electrical pulse by means of a photo multiplier
tube. The resulting electrical pulse is then electronically
amplified. If the pulse rises above a threshold, it is counted

by a channel in the scaler module. The number of counts in a
scaler channel per unit time represents the intensity of the
source as seen by each detector. The algorithms in Figure 3
can map those intensities to positions given position./intensity
map.

In production data runs, the source is moving, this leads to the
common mode of data taking. The scalers are allowed to
count for some dwell time, and then read and cleared. The
output from a production run is a file that consists of a record
of the scaler counts for each dwell period and the length of the
dwell period. The precision to which the positions and
velocities of the source can be reconstructed therefore depends
on the dwell time as well as other factors.

In addition to production runs there are two other modes of
data taking:

• Threshold hunt mode.
• Position calibration mode.

NaI detectors are sensitive to gamma-rays as well as cosmic
background and the gamma rays emitted by background
sources. It is the leading edge discriminator (LED) that
determines which pulses are counted and which are not. The
threshold hunt mode provides information to the
experimenters to help them set the LED thresholds. In this
mode, a source is placed where all detectors can see it. After
each dwell time the discriminator threshold is incremented.
Differentiating the counts with respect to the dwell time
produces a crude spectrum with discriminator settings as the
channel number. The position of the peak(s) due to the source
provides the discriminator settings.

The original system required that the output file from
threshold hunt data taking be fed into software that then did
the peak location. The requirements for the new system were
to produce the same output file but also provide support for
visualizing spectra constructed from these data so that the
results of the peak finding software could be double checked.

Position calibration mode is required to produce intensity to
position maps. In this mode of data taking, a source is placed
at a known position in the system with the detectors mounted
in their production data taking positions. After each dwell
time the source is moved to a different position. The output f
this mode is a file that contains a map of counts as a function
of position. These data are used to reconstruct positions from
production runs. Having a correct setting for the LED is a
precondition for this sort of run.

B. NSCL DAQ CC-USB base software

In [4] I reported on a software system that provides a domain
specific language to describe nuclear physics experiments to
data acquisition software. The system described in [4]
interfaced to digitizers resident in a VME [5] backplane via a
USB-VME controller. What was not mentioned in that paper
was that a similar system was also written that interfaces to

Figure 5 Block diagram of CC-USB

Proceedings of the Tcl 2011 154 Manassas, VA October 24-28 2011

CAMAC via the CC-USB. This CAMAC system was used as
the starting point for the CARPT data acquisition system.

This section focuses on the structure of the Readout software,
shown in Figure 6.

Figure 6 Structure of original CCUSB readout

The main thread embeds a Tcl interpreter with a few
additional commands to control data taking. If the user
requests that a data taking run start, the acquisition thread is
started. The acquisition thread processes the configuration file
through an extended captive Tcl interpreter, sets up the CC-
USB, downloads readout lists and starts taking data.

Data from the CC-USB come in 8Kbyte buffers. As each
buffer is received from the CC-USB it is passed to the output
thread. The output thread normally does some light weight
reformatting so that the resulting buffer is correctly structured
for the NSCL data acquisition system. The reformatted buffer
is sent to the NSCL DAQ data distribution server which
makes it available to interested clients.

The slow controls thread runs an additional Tcl interpreter. It
accepts TCP/IP connections and performs CAMAC operations
on behalf of the client. If acquisition is active the slow
controls thread requests a pause in data taking, performs the
requested operation then resumes data taking.

This Slow controls thread is required because on Linux, USB
programming via libusb allows only one process to access
each USB device. Furthermore, single shot CAMAC
operations cannot be executed on the CC-USB when data
taking is in progress.

C. Modifications to the base software.
Figure 7 shows the modified structure of the Readout
program.

Figure 7 Structure of modified software.

The major difference between Fig. 6 and Fig 7 is that in Fig 7,
the output thread has been rewritten to queue Tcl events back
to the main thread’s interpreter. The Tcl_Event struct used
has been extended to hold the raw scaler data.

When the interpreter in the main thread dispatches the event,
the event handler reformats the raw scaler data into a list of
Tcl lists. Each inner list is the set of scaler values. Each outer
list one dwell time worth of data (several scaler dwell times fit
in a single VM-USB buffer). The resulting list is passed to the
Tcl proc onEvent which performs mode dependent processing
of the data.

This architecture:

1. Removes the need to run the NSCL data acquisition
system, which is serious overkill for this application.

2. Allows the online processing of scaler data to be
done in Tcl scripts.

The Tcl scripts sourced into the main thread’s interpreter
interact with the slow controls thread to set discriminator
thresholds and output widths. These scripts provide GUI’s
that intrat with the slow controls thread over a Tcp/IP socket
allowing that part of the architecture to remain unchanged
(normally a separate GUI process interacts with the slow
controls thread).

Tcl scripts were then written for each of the three modes of
data taking. A ‘master’ Tcl script allows the user to select
which operating mode they want to run. In the case of the
discriminator hunt mode, Plotchart [6] was used to display the
spectrum and a cursor position indicator was provided to allow
the users to read the discriminator threshold setting directly
from the resulting spectrum.

Figure 8 below shows a spectrum from the threshold scan
mode when a 137Cs and a 60Co source were both counted by
the detectors. Note that 60Co emits γ-rays at both 1.3 an
1.7MeV providing a pair of peaks close together in the energy
spectrum.

Proceedings of the Tcl 2011 155 Manassas, VA October 24-28 2011

Figure 8 Spectrum from threshold hunt mode.

V. CONCLUSIONS
Tcl provided an ideal platform on which to develop the
software for this project. Since the data rates are quite low
(typical dwell times are a few seconds, each data point
delivering 32 x 32 bits of data), Tcl scripts were more than
equal to the task of handling these data, even in the more
challenging threshold scan run where data were actually
analyzed online.

The original structure of the readout software made the
modifications required to handle the data at the script level
relatively easy. Once those modifications were written,
development went at the speed of Tcl. Thanks to Arjen
Markus’s Plotchart package, providing the spectra of the
threshold hunt mode could be easily displayed and trivial
mouse motion event handlers written to allow the user to pick
off the correct LED thresholds from the plots.

VI. REFERENCES
[1] Opaque Multiphase Reactors: Experimentation, Modeling
and Troubleshooting” M.P. Dudukovich Oil & Gas Science
and Technology Rev.
[2]

 IFP V 55 (2000) #2 pp 135-158.
Final Report: Flow mapping in a Gas-Solid Riser via

Computer Automated Radioactive Particle Tracking (CARPT)

[3] ANSI/IEEE

M. Al-Dahan et al. Washington University

IEEE Standard Modular Instrumentation and
Digital Interface System (CAMAC) 585
[4] A Domain Specific Language for defining Nuclear Physics
Experiments Ron Fox

 1982 IEEE

Proceedings of the 15’th Annual Tcl/Tk
Conference
[5] VME IEEE 1014-1987 (note more common is VME 64
which is specified by ANSI/VITA 1-1994).

 Tcl Association Press. ISBN 978-0-578-00296-5.

[6] Plotchart Arjen Markus http://wiki.tcl.tk/11265

137Cs

60Co

Proceedings of the Tcl 2011 156 Manassas, VA October 24-28 2011

http://wiki.tcl.tk/11265�

Tcl 2011

Manassas, VA

October 24-28, 2011

Tcl Techniques

Proceedings of the Tcl 2011 157 Manassas, VA October 24-28 2011

Proceedings of the Tcl 2011 158 Manassas, VA October 24-28 2011

因循
Agent Based Modeling with
Coroutines

Presented at the 18th Annual Tcl/Tk Conference (Tcl‘2011)
Manassas, VA

Sean Deely Woods
Senior Developer
Test and Evaluation Solutions, LLC
400 Holiday Court
Suite 204
Warrenton, VA 22185
Email: yoda@etoyoc.com
Website: http://www.etoyoc.com

Abstract:

Coroutines have been introduced into the Tcl/Tk core with version 8.6. And many developers
ask "what on Earth would I do with them?" This paper describes how coroutines are used to
model human actors following complex, interdependent procedures. During the paper, we will
develop a coroutine based general use architecture for task management. We will also describe
some of the common edge cases to look out for.

This paper is based on my experience developing the Integrated Recovery Model for T&E Solu-
tions.

Proceedings of the Tcl 2011 159 Manassas, VA October 24-28 2011

mailto:yoda@etoyoc.com
mailto:yoda@etoyoc.com
http://www.etoyoc.com
http://www.etoyoc.com

Introduction to Coroutines
What are Coroutines?

I was looking for a definition for corou-
tines, and I found a Chinese expression,
因循 [yīn xún] which translates1 to:

• to continue the same old routine
• to carry on just as before
• to procrastinate

They are a form of cooperative multi-
tasking. Depending on your application,
they could replace threads. (de Maura,
2004)

Coroutines were introduced with TIP
#328, and have been available in the Tcl
core since Tcl/Tk 8.6a2. (Sofer, 2008)

This paper will focus on the application
of coroutines for discrete time simula-
tions. More specifically modeling human
agents in naval casualty scenarios within
T&E Solutions Integrated Recovery
Model (IRM).
A Simple Example

Let’s write a very simple task. Imagine
we have a toy train. We want it to stop
when it reaches a destination. Our envi-
ronment provides a few functions:

• close_enough - Returns true if the agent is close
enough to the target to be considered “there”.

• location - Returns the current position of the agent.
• motor_direction - A procedure that calculates

which direction is the target, Ahead (+1), Behind (
-1), or Stop (0)

• move_train - Move the agent for one time step
• place_train - Manually set the position of the agent

to an absolute location
• speed - Applies power to the agent’s wheels: For-

ward (+1), Reverse (-1), or Stop (0)

Our microcontroller runs a Tcl-like in-
terpreter, so the script for our task looks
something like this:

Run the script and we’ll see:

Of course, if this were running in a real
microcontroller we wouldn’t have a
move_train routine. The laws of physics
would take care of movement, and our
task would simply be a monitor. We’ll get
to that later.

But bear with me, as I’m going to take
this same logic and make it into a corou-
tine:

proc	
 move_to	
 B	
 {
	
 puts	
 “Starting	
 towards	
 $B”
	
 set	
 x	
 [location]	

	
 while	
 {![close_enough	
 $x	
 $B]}	
 {
	
 	
 set	
 x	
 [location]
	
 	
 puts	
 “I	
 am	
 at	
 $x”
	
 	
 speed	
 [motor_direction	
 $x	
 $B]
	
 	
 move_train
	
 }
	
 speed	
 0.0
	
 puts	
 “Arrived	
 at	
 $B”
}
place_train	
 0.0
move_to	
 100.0
puts	
 “(Toot	
 Toot)”

Starting	
 towards	
 100.0
I	
 am	
 at	
 0.0
I	
 am	
 at	
 1.0
I	
 am	
 at	
 2.0
...
I	
 am	
 at	
 98.0
I	
 am	
 at	
 99.0
I	
 am	
 at	
 100.0
Arrived	
 at	
 100.0
(Toot	
 Toot)

1 Translation according to: http://www.websaru.com/因循.html

Proceedings of the Tcl 2011 160 Manassas, VA October 24-28 2011

http://www.websaru.com
http://www.websaru.com

Let’s go ahead and run our example, I’ll
explain the notation in a second:

Our output is the same, even though
the proc move_to no longer calls
move_train.

We use the coroutine command to create
travel_to. travel_to, in turn, calls our
move_to proc. The caller of travel_to sees
whatever value is yielded or returned by
move_to. And this arrangement we use
to drive the while loop, which actually
moves the train.

Try move_to on it’s own and you’ll see:

proc	
 move_to	
 B	
 {
	
 puts	
 “Starting	
 towards	
 $B”
	
 set	
 x	
 [location]	

	
 while	
 {![close_enough	
 $x	
 $B]}	
 {
	
 	
 set	
 x	
 [location]
	
 	
 puts	
 “I	
 am	
 at	
 $x”
	
 	
 speed	
 [motor_direction	
 $x	
 $B]
	
 	
 yield	
 1
	
 }
	
 speed	
 0.0
	
 puts	
 “Arrived	
 at	
 $B”
	
 return	
 0
}
place_train	
 0.0
coroutine	
 travel_to	
 move_to	
 100.0
while	
 {[travel_to]}	
 {
	
 move_train
}
puts	
 “(Toot	
 Toot)”

Starting	
 towards	
 100.0
I	
 am	
 at	
 0.0
I	
 am	
 at	
 1.0
I	
 am	
 at	
 2.0
...
I	
 am	
 at	
 98.0
I	
 am	
 at	
 99.0
I	
 am	
 at	
 100.0
Arrived	
 at	
 100.0
(Toot	
 Toot)

The error is pretty self-explanatory. The
yield command only makes sense to the
Tcl interpreter within the confines of a
coroutine.

Note that the “Starting towards” and
“Arrived at” strings print only once, even
though we call travel_to 100 times. That
is because our coroutine picks up on the
next call where it left off, at the yield.

yield can take an argument. That value
is returned to the caller, as though it were
given in a return.

Once a coroutine calls return it dies. If
we to call travel_to after our while loop
terminates we would would see:

Let’s tweak our example. Say we would
like our train to return to the place it left
from.

Our coroutine now calls a proc
travel_circuit which calls our earlier proc

place_train	
 0.0
move_to	
 100.0
ERROR:	

yield	
 can	
 only	
 be	
 called	
 in	
 a	
 coroutine

travel_to
ERROR:	

invalid	
 command	
 name	
 "travel_to"

proc	
 travel_circuit	
 {A	
 B}	
 {
	
 	
 move_to	
 $B
	
 	
 puts	
 "(Toot	
 Toot)"
	
 	
 move_to	
 $A
	
 	
 puts	
 "(Toot	
 Toot)"
	
 	
 return	
 0
}
place_train	
 0.0
coroutine	
 travel	
 travel_circuit	
 0	
 100
while	
 {[travel]}	
 {
	
 move_train
}
puts	
 "(Done)"

Proceedings of the Tcl 2011 161 Manassas, VA October 24-28 2011

move_to. But it calls it twice with two
different destinations.

The bot moves from A to B, reverses di-
rection, and moves from B to A. The
coroutine picks up wherever the yield
left it. Even if the yield is inside of an-
other procedure!

Coroutines and TclOO

Now, the next question you surely
have. Can I use coroutines with TclOO?
Yes!

Let’s rebuild our example in object ori-
ented code. The rest of the class is defined
elsewhere. There’s only one method that
is interesting at the moment:

Starting	
 towards	
 100.0
I	
 am	
 at	
 0.0
I	
 am	
 at	
 0.0
I	
 am	
 at	
 1.0
I	
 am	
 at	
 2.0
...
I	
 am	
 at	
 98.0
I	
 am	
 at	
 99.0
I	
 am	
 at	
 100.0
Arrived	
 at	
 100.0
(Toot	
 Toot)
Starting	
 towards	
 0.0
I	
 am	
 at	
 100.0
...
I	
 am	
 at	
 1.0
I	
 am	
 at	
 0.0
Arrived	
 at	
 0.0
(Toot	
 Toot)

while	
 -­‐>
	
 	
 travel	
 -­‐>
	
 	
 	
 	
 travel_circuit	
 -­‐>
	
 	
 	
 	
 	
 	
 move_to	
 -­‐>
	
 	
 	
 	
 	
 	
 	
 	
 while	
 -­‐>
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 yield

Instead of running as a procedure,
move_to is now a method in a TclOO ob-
ject zephyr, of class train. travel_circuit is
still a procedure, but we pass it the name
of the object, and it calls the object’s
methods.

And we find that despite all of these
changes, our example still works:

oo::define	
 train	
 {
	
 method	
 move_to	
 {B}	
 {
	
 	
 set	
 x	
 [my	
 location]
	
 	
 puts	
 "[self]	
 Starting	
 towards	
 $B"
	
 	
 while	
 {![close_enough	
 $x	
 $B]}	
 {
	
 	
 	
 set	
 x	
 [my	
 location]
	
 	
 	
 puts	
 "[self]	
 I	
 am	
 at	
 $x"
	
 	
 	
 my	
 speed	
 [motor_direction	
 $x	
 $B]
	
 	
 	
 yield	
 1
	
 	
 }
	
 	
 puts	
 "[self]	
 Arrived	
 at	
 $B"
	
 	
 my	
 speed	
 0.0
	
 	
 return	
 0
	
 }
}
proc	
 travel_circuit	
 {train	
 A	
 B}	
 {
	
 	
 $train	
 move_to	
 $B
	
 	
 puts	
 "(Toot	
 Toot)"
	
 	
 $train	
 move_to	
 $A
	
 	
 puts	
 "(Toot	
 Toot)"
	
 	
 return	
 0
}
train	
 create	
 zephyr
zephyr	
 place_train	
 0.0
coroutine	
 travel	
 \
	
 	
 travel_circuit	
 zephyr	
 0.0	
 100.0
while	
 {[travel]}	
 {
	
 zephyr	
 move_train
}
puts	
 "(Done)"

Proceedings of the Tcl 2011 162 Manassas, VA October 24-28 2011

The coroutine has no problems de-
scending into an object and exercising its
methods. In fact, we could call out to
multiple objects within a coroutine, and
the coroutine would properly react as the
specific object. Conversely, multiple
coroutines could also call this same
method.

Just to show this is an ordinary object, if
we call that method outside of a corou-
tine, I still get the same error as our ear-
lier move_to procedure:

Coroutines as Objects

A useful property of coroutines is that
they maintain their own internal state. If I
define a variable, the value of that vari-
able is preserved in between calls.

::zephyr	
 Starting	
 towards	
 100.0
::zephyr	
 I	
 am	
 at	
 0.0
::zephyr	
 I	
 am	
 at	
 0.0
::zephyr	
 I	
 am	
 at	
 1.0
...
::zephyr	
 I	
 am	
 at	
 98.0
::zephyr	
 I	
 am	
 at	
 99.0
::zephyr	
 I	
 am	
 at	
 100.0
::zephyr	
 Arrived	
 at	
 100.0
(Toot	
 Toot)
::zephyr	
 Starting	
 towards	
 0.0
::zephyr	
 I	
 am	
 at	
 100.0
::zephyr	
 I	
 am	
 at	
 99.0
::zephyr	
 I	
 am	
 at	
 98.0
...
::zephyr	
 I	
 am	
 at	
 1.0
::zephyr	
 I	
 am	
 at	
 0.0
::zephyr	
 Arrived	
 at	
 0.0
(Toot	
 Toot)
(Done)

zephyr	
 move_to	
 100.0
ERROR:	

yield	
 can	
 only	
 be	
 called	
 in	
 a	
 coroutine

Let’s suppose we are a lazy high
schooler, and we want to solve the classic
Two Trains Problem2.

Instead of using algebra, we will brute
force the solution with Tcl code. We begin
by modeling each train with a coroutine.
That coroutine calculates an updated po-
sition for the train every time step, and
yields the current position:

Our simulator is no longer looking for
when the train reaches the destination.
Instead, we are interested in when the
position of train_a crosses train_b. Since
the position of A is counting up, and B is
counting down, we’ll be at our solution
point the iteration where A surpasses B in
value:

Train A, traveling 70 miles per hour
(mph), leaves Westford heading toward
Eastford, 260 miles away. At the same
time Train B, traveling 60 mph, leaves
Eastford heading toward Westford.
When do the two trains meet? How far
from each city do they meet?

proc	
 advance	
 {start	
 end	
 speed}	
 {
	
 	
 set	
 x	
 $start
	
 	
 if	
 {	
 $start	
 <	
 $end	
 }	
 {
	
 	
 	
 	
 set	
 dX	
 [expr	
 $speed*$::dt]
	
 	
 }	
 else	
 {
	
 	
 	
 	
 set	
 dX	
 [expr	
 -­‐1.0	
 *	
 $speed	
 \
	
 	
 	
 	
 	
 	
 	
 *	
 $::dt]
	
 	
 }
	
 	
 while	
 1	
 {
	
 	
 	
 	
 set	
 x	
 [expr	
 {$x	
 +	
 $dX}]
	
 	
 	
 	
 yield	
 $x
	
 	
 }
	
 	
 return	
 $x
}

2 Text of the problem copied from:http://mathforum.org/dr.math/faq/faq.two.trains.html

Proceedings of the Tcl 2011 163 Manassas, VA October 24-28 2011

http://mathforum.org/dr.math/faq/faq.two.trains.html
http://mathforum.org/dr.math/faq/faq.two.trains.html

Run our simulation to get our answer:

Notice that we are running two copies
of the same procedure at the same time.
The fact they ran inside of two different
coroutines meant that each had a differ-
ent set of parameters, and each main-
tained a different recollection of X for
every time step.

Discrete Time Agents
The simulations I work with play very

much like board game. The scenario is
broken into “steps”. The steps are broken
into phases, so that each actor gets a
chance to affect the simulation equally.

However, some physical phenomena
don’t tend to happen in neat 1 second in-
tervals. Up until now, we have taken for
granted that our agents move at a con-
stant speed. Most simulations must ac-
count for momentum.

Before I’m accused of having a one
track mind, let us transition away from
examples with trains, and into problems I

set	
 ::dt	
 [expr	
 {1/60.0}]
coroutine	
 move_a	
 advance	
 0	
 260	
 70
coroutine	
 move_b	
 advance	
 260	
 0	
 60
while	
 {1}	
 {
	
 	
 set	
 a	
 [move_a]
	
 	
 set	
 b	
 [move_b]
	
 	
 if	
 {$a	
 >	
 $b}	
 break
}
puts	
 "They	
 Met	
 at..."
puts	
 "$a	
 From	
 Westford"
puts	
 "[expr	
 260-­‐$b]	
 From	
 Eastford"
puts	
 "(Done)"

They	
 Met	
 at...
140.0000000000001	
 From	
 Westford
120.0	
 From	
 Eastford
(Done)

deal with in the real world. Well, real, vir-
tual world.
Crew Movement

The major application thus far for
coroutines within the IRM is modeling
crew behavior.

Now you may be wondering, why did I
start with so many examples of moving
in one dimen-
sion? Crew can
move in 2 di-
mensions, with a
limited ability to
move in the
third dimension
via stairways
and ladders.

Well, it turns
out that once the
crew member
has selected a
route, he or she
breaks the path
into segments.
Each of those
segments is a
line or spline,
and we can consider the movement along
it to be the very same one dimensional
“Am I there yet?” problem that I opened
this paper with.
Exception Handling

However, we have a few other rules
that come into play.

Because we are calculating a route in a
ship that can include spaces that are on
fire, flooded, or both, it’s a very real pos-

Proceedings of the Tcl 2011 164 Manassas, VA October 24-28 2011

sibility that no route exists between two
points. In that case we must fail our task.

An agent may find him or herself in a
hazardous situation, or discover that a
compartment he/she was intending to
route through is inaccessible. If that is the
case, he/she should withdraw to a safe
location and compute a new route.

We also have to account for the fact that
this task may be interrupted. And when
we get control back, the agent may be in a
different location than where we had in-
tended to be.

In agent based modeling there are a dif-
ferent grades of exceptions. I imagine
there are canonical terms for them, but I
classify them as blocks, conflicts, and
punts.

A block exception is when something
external temporarily impedes the pro-
gress of our agent. The task simply bides
it’s time until the blockage has cleared.

method	
 movement	
 location	
 {
	
 	
 set	
 here	
 [my	
 location]
	
 	
 if	
 {[my	
 isNearby	
 $destination]}	
 {
	
 	
 	
 	
 return	
 0
	
 	
 }
	
 	
 set	
 route	
 [crewroute	
 find	
 $here	
 \
	
 	
 	
 	
 	
 $destination]
	
 	
 if	
 {[llength	
 $route]==0}	
 {return	
 -­‐1}
	
 	
 my	
 route	
 $route
	
 	
 while	
 1	
 {
	
 	
 	
 	
 if	
 {[my	
 goal]	
 !=	
 $destination}	
 {
	
 	
 	
 	
 	
 	
 return	
 2
	
 	
 	
 	
 }
	
 	
 	
 	
 if	
 {[my	
 hazard_detect]}	
 {
	
 	
 	
 	
 	
 	
 my	
 withdraw
	
 	
 	
 	
 	
 	
 return	
 2
	
 	
 	
 	
 }
	
 	
 	
 	
 if	
 {[my	
 isNearby	
 $destination]}	
 {
	
 	
 	
 	
 	
 return	
 0
	
 	
 	
 	
 }
	
 	
 	
 	
 yield	
 1
	
 	
 }
}

A conflict exception is when two tasks
require the same resource for mutually
exclusive goals. A higher power sorts out
which task gets priority. But the loser of
that battle will have to restart from
square one the next time it’s called.

A punt exception is one which termi-
nates the task because the conditions that
justify the task’s existence are no longer
valid.
Standardize Yield and Return Codes

One trouble with coroutines is that once
they return a value, they cease to exist.
Calling a completed coroutine will cause
an error.

In my systems, I
use the code re-
turned to tell us the
fate of the coroutine.
An active coroutine
yields a 1. Any
other value indi-
cates that the corou-
tine terminated, and
will need to be re-
started.

The caller can interpret these codes, and
react accordingly.
Task Nesting

It’s very useful to break large goals into
smaller goals that can be reused. We often
have a crew member go out to a device,
operate it, and come home.

Fighting with a large army under your
command is nowise different from fighting
with a small one: it is merely a question of
instituting signs and signals.
--Sun Tsu, The Art of War, Chapter V

Code Meaning

-­‐1 Exception

0 Normal	

Exit

1 Running

2 Waiting

3 Blocked

Proceedings of the Tcl 2011 165 Manassas, VA October 24-28 2011

But our toplevel task may want to re-
spond to exceptions in it’s own way.

I’ve found it useful to employ a bit of
syntactic sugar in the form of the subtask
command.

With subtask, we assume that a posi-
tive value (even if non-one) will not allow
the program to continue. A zero indicates
success, and allows the program to con-
tinue. A negative value represents an ex-
ception that should be punted.

Without subtask, the method above
would look like:

(And continue on to fill the entire col-
umn on the right.)

method	
 attend	
 {objective}	
 {
	
 	
 set	
 location	
 [objective	
 location	
 \
	
 	
 	
 	
 $objective]
	
 	
 #	
 Go	
 to	
 the	
 device
	
 	
 while	
 1	
 [subtask	
 movement	
 $location]
	
 	
 #	
 Operate	
 the	
 device
	
 	
 while	
 1	
 [subtask	
 mitl	
 $objective]
	
 	
 #	
 Return	
 home
	
 	
 set	
 home	
 [my	
 home]
	
 	
 while	
 1	
 [subtask	
 movement	
 $home]	
 	

	
 	
 return	
 0
}

method	
 attend	
 {objective}	
 {
	
 	
 set	
 location	
 [objective	
 \
	
 	
 	
 	
 location	
 $objective]
	
 	
 #	
 Go	
 to	
 the	
 device
	
 	
 while	
 1	
 {
	
 	
 	
 set	
 result	
 [movement	
 \
	
 	
 	
 	
 	
 $location]
	
 	
 	
 if	
 {	
 $result	
 <	
 0	
 }	
 {	

	
 	
 	
 	
 	
 return	
 -­‐1
	
 	
 	
 }	
 elseif	
 {	
 $result	
 >	
 0	
 }	
 {
	
 	
 	
 	
 	
 yield	
 1
	
 	
 	
 }	
 else	
 {
	
 	
 	
 	
 	
 break
	
 	
 	
 }
	
 	
 #	
 Operate	
 the	
 device
	
 	
 while	
 1	
 {
	
 	
 	
 	

The implementation for subtask is as
follows:

Note, subtask doesn’t run code, it
builds code. That block of code becomes
the body of the while loop.

subtask can take options (positive,
negative, and zero) which allow the de-
veloper to control the agent’s reactions to
the sub-task’s return code.
High Level Tasks

Agents often have to deal with compet-
ing goals. Because we’ve gone through
the trouble of standardizing our return
and yield codes, it’s easy to detect when
one goal is running, and could poten-
tially block another task from running.

Let’s refactor our methods so that we
have three top level goals. One is to “at-
tend”. If the agent is assigned a device,
he/she will walk to and operate the de-
vice. How the agent receives the assign-
ment can vary. It is quite possible that af-
ter completing the first assignment the
agent could have received a communica-
tion to do a second or a third. So it

proc	
 subtask	
 {cmd	
 args}	
 {
	
 set	
 positive	
 {yield	
 1}
	
 set	
 negative	
 {return	
 $result}	

	
 set	
 zero	
 {return	
 0}
	
 foreach	
 {f	
 v}	
 $args	
 {set	
 $f	
 $v}
	
 foreach	
 f	
 {
	
 	
 	
 positive	
 negative	
 zero	
 cmd
	
 }	
 {
	
 	
 lappend	
 replace	
 %${f}%	
 [set	
 $f]
	
 }
	
 return	
 [string	
 map	
 $replace	
 {
	
 	
 set	
 result	
 [{*}%cmd%]
	
 	
 if	
 {	
 $result	
 <	
 0	
 }	
 {%negative%}	
 \
	
 	
 elseif	
 {	
 $result	
 >	
 0	
 }	
 {%positive%}	
 \
	
 	
 else	
 {%zero%}
	
 }
}

Proceedings of the Tcl 2011 166 Manassas, VA October 24-28 2011

wouldn’t be very efficient to walk home
after each time.

The next goal is to return home, but
only if we have nothing to do.

Preempting either goals is the safe-
ty_check. safety_check is a reflex that
will cause the agent to flee a space if he or
she detects danger.

We also include a method “task” which
will kick off a coroutine if it isn’t operat-
ing yet, or evaluate one iteration of a
coroutine that does exist.

You can see all of this put together in an
example on the right.
Multitasking

All of this is work as built up to a sys-
tem for multitasking that, while power-
ful, turns out to be simple and relatively
uninteresting. Because coroutines are en-
gaged in cooperative multitasking the
loop for running an entire simulation
with a few hundred agents can be as
simple as:

In the IRM I have a routine no more
complex than this that runs 40 odd crew
members, 30 automated devices (which
also behave as agents), and still operates
in real time3.

proc	
 simulation_step	
 {}	
 {
	
 	
 physics_step
	
 	
 foreach	
 agent	
 [agent::list]	
 {
	
 	
 	
 	
 $agent	
 behavior
	
 	
 }
}

3 Granted with a lot of the heavy calculations optimized in C.

method	
 attend	
 {}	
 {
	
 set	
 objective	
 [my	
 get_assignment]
	
 if	
 {	
 $objective	
 eq	
 {}	
 }	
 {return	
 0}
	
 set	
 location	
 [objective	
 \
	
 	
 	
 	
 location	
 $objective]
	
 	
 #	
 Go	
 to	
 the	
 device
	
 	
 while	
 1	
 [subtask	
 \
	
 	
 	
 	
 {movement	
 $location}	
 negative	
 {
	
 	
 	
 	
 	
 	
 record_failure	
 $objective
	
 	
 	
 	
 	
 	
 cancel_assignment	
 $objective
	
 	
 	
 	
 	
 	
 return	
 0
	
 	
 	
 	
 }]
	
 	
 #	
 Operate	
 the	
 device
	
 	
 while	
 1	
 [subtask	
 mitl	
 $objective]
	
 	
 cancel_assignment	
 $objective
	
 	
 return	
 0
}

method	
 go_home	
 {}	
 {	

	
 	
 set	
 home	
 [my	
 home]
	
 	
 while	
 1	
 [subtask	
 movement	
 $home]	
 	

	
 	
 return	
 0
}

method	
 safety_check	
 {}	
 {
	
 	
 if	
 {![my	
 hazard_check]}	
 {return	
 0}
	
 	
 set	
 dest	
 [my	
 escape_route]
	
 	
 my	
 route	
 [route	
 $dest]
	
 	
 while	
 1	
 {
	
 	
 	
 	
 if	
 {![my	
 hazard_check]}	
 {return	
 0}
	
 	
 	
 	
 yield	
 1
	
 	
 }	
 	

	
 	
 return	
 1
}

method	
 task	
 name	
 {
	
 set	
 coro	
 [self]/coro_$name
	
 if	
 {[info	
 command	
 $coro]	
 ==	
 {}	
 }	
 {
	
 	
 return	
 [coroutine	
 $coro	
 [self]	
 $name]
	
 }	
 else	
 {
	
 	
 return	
 [$coro]
	
 }
}

method	
 behavior	
 {}	
 {	

	
 	
 my	
 variable	
 task_status	
 	

	
 	
 set	
 task_status	
 {}
	
 	
 foreach	
 task	
 {
	
 	
 	
 	
 safety_check
	
 	
 	
 	
 attend
	
 	
 	
 	
 go_home
	
 	
 }	
 {
	
 	
 	
 	
 set	
 status	
 [my	
 task	
 $task]
	
 	
 	
 	
 dict	
 set	
 task_status	
 $status
	
 	
 	
 	
 if	
 {$status	
 >	
 1}	
 break
	
 	
 }
	
 	
 return	
 $task
}

Proceedings of the Tcl 2011 167 Manassas, VA October 24-28 2011

Conclusions
Coroutines, while not new as a concept,

are new to Tcl. In this paper I have have
demonstrated that coroutines can be used
to run complex discrete time simulations.
And not just run, but run simply.

Coroutines are particularly well suited
for simulations:
• That require multitasking across multiple

agents
• Operate in discrete time
• Are amenable to cooperative multitasking.

Bibiliography
de Moura, Ana Lu ́cia and Ierusalimschy,
Roberto, 2004, Revisiting Coroutines,
(PUC-RioInf.MCC15/04 June, 2004),
http://www.inf.puc-rio.br/~roberto/docs/M
CC15-04.pdf, (October, 8 2011)

Sofer, Miguel and Madden, Neil, Corou-
tines, (Tip #328, Revision: 1.6),
http://www.tcl.tk/cgi-bin/tct/tip/328.html,
(October 9, 2011)

Proceedings of the Tcl 2011 168 Manassas, VA October 24-28 2011

http://www.inf.puc-rio.br/~roberto/docs/MCC15-04.pdf
http://www.inf.puc-rio.br/~roberto/docs/MCC15-04.pdf
http://www.inf.puc-rio.br/~roberto/docs/MCC15-04.pdf
http://www.inf.puc-rio.br/~roberto/docs/MCC15-04.pdf
http://www.tcl.tk/cgi-bin/tct/tip/328.html
http://www.tcl.tk/cgi-bin/tct/tip/328.html

An Overview of the Next Scripting
Toolkit
Gustaf Neumann and Stefan Sobernig

{firstname.lastname}@wu.ac.at

Tcl/Tk 2011 Conference, October 2011

Abstract
This paper introduces the Next Scripting Framework (NSF) and the Next Scripting
Language (NX). The paper presents features such as the definition of object systems,
parametric objects, initialization and interfacing to object states, creating object be-
havior, and designing object interfaces and interactions. Along the way, we review
some syntactic additions and developer support tools for developing NSF/NX pro-
grams. Our goal is to provide a comprehensive overview of the NSF/NX features, in-
cluding hands-on code examples, by comparing NX to its next relative XOTcl.

A Toolkit for Developing A Family of OO Languages
The Next Scripting Framework (NSF) and the object system NX have been developed
between 2008 and 2011 at the Institute for Information Systems and New Media of
the Vienna University of Business and Economics. These systems continue a research
line and a development effort, starting in the late 90s, to develop better language
support for adopting OO Design Patterns, for managing program variability by first-
class abstractions (e.g., aspect and feature modularization), and for creating different
object-oriented languages in Tcl, as well as special-purpose application languages;
e.g., embedded, textual DSLs [15]. As the first code artifact, XOTcl was presented in
2000 [4] and introduced novel language constructs: filters, as well as per-object, per-
class, and transitive mixin classes [7]. XOTcl heavily influenced the design of TclOO
[5], which is in many respects a simplified and streamlined descendant of XOTcl.

The Next Scripting Framework (NSF) generalizes many ideas of XOTcl. NSF allows
for fully scripted definitions of object systems, while preserving (and even improving)
the performance properties of C-based implementations. For example, the scripted
NSF implementation of XOTcl 2.0 is significantly faster than the C-based XOTcl 1.6
implementation [3].

Proceedings of the Tcl 2011 169 Manassas, VA October 24-28 2011

NSF lets the Tcl programmer create several object systems in a single interpreter. Ob-
ject systems are initially created without any predefined behavior (methods), granti-
ng the object system designer (Tcl developer) the full freedom of defining and naming
method interfaces. With scriptable object systems and new composition techniques
(e.g., method aliasing), NSF adds to Tcl’s support for language-oriented program-
ming [8].

While XOTcl 2.0 is designed for backward compatibility with XOTcl 1.* scripts, the
Next Scripting Language (NX) is the result of an extensive re-design and perfective
refactoring of XOTcl. This further development builds on the experience of several
large-scale development projects (i.e., several hundred thousand lines of Tcl/XOTcl
code, 10+ developers, etc.). The NX language is designed to ease language learning
by novices (e.g., by using "mainstream" terminology, higher orthogonality of method
interfaces, smaller core interfaces), to improve maintainability (e.g., preventing com-
mon errors) and to encourage developers to create better structured programs. Pro-
viding different types of interface abstraction, code evolution and collaborative devel-
opment between several developers are facilitated.

The remainder of this paper expands on key features of the NSF/NX programming
toolkit. In this feature presentation, we want to stress the advancements achieved
since our Tcl’09 paper [3]. First, we introduce some basics of the object system model
(in particular, entity and relationship types) underlying any NSF-based language. In
a subsequent step, we guide through the major contributions: Concrete syntax en-
hancements (scripted init-blocks, prefixes for instance variables and methods), new
language abstractions (method ensembles, method aliases, properties), and added
language expressiveness (object parametrization, parameter types). We also sketch
out the developer support provided by the NSF/NX toolkit, including DTrace integra-
tion and a memory debugging facility, generator support for developing Tcl/C APIs
and extension libraries, a functional testing environment (nx::test), and a documen-
tation generator (nxdoc). We conclude by reporting performance data collected for
the NSF/NX language runtime.

Scripted Definition of Object Systems
NSF offers a low-level API providing a small set of primitive commands to define
the behavior of tailored object systems. An object system is formed from a subset of
the (extensible) base features with free naming support. The notion of object systems
stresses objects as the first-class entities. Objects can be related differently, including
meta-class/class, class/instance, mixin, and composition relations [4]. For managing
object states, APIs of different expressiveness and complexity (primitive setter/getter
commands, accessor/mutator methods, slots) can be adopted. For defining object be-
havior, methods can be defined for various scopes (e.g., object, class, mixin) and ad-

Proceedings of the Tcl 2011 170 Manassas, VA October 24-28 2011

vanced forms of implementation reuse (e.g., method aliasing of Tcl procs and Tcl/C
commands) are available in addition to forwarders. Method properties such as rede-
finition and call protection can be specified. Parametric objects and methods can be
realized using a unified parametrization infrastructure, equipped with non-positional
and positional parameters and parameter type annotations.

Once defined, multiple object systems can coexist in a single Tcl interpreter, the ob-
ject systems can be used interleaved in a script. For example, NX is provided as a
purely scripted Tcl package (loadable via "package require") in the same way as the
backward-compatible XOTcl 2.0 object system.

The Next Scripting Framework (NSF) provides a set of about 30 language-program-
ming primitives in the nsf namespace. The primitive
nsf::objectsystem::create allows for declaring a pair of root objects for an
NSF object system: a root class (first argument) and a root meta-class (second argu-
ment).

Listing 1: A minimal NSF Object System

Create an object system with the base classes named "myObject" and
"myClass"
nsf::objectsystem::create myObject myClass

Bind a pre-existing method for creating objects from the methods
pool in "nsf::methods" as "+" to "myClass". After this method is
registered, every class/meta-class of this object system can use "+"
to create objects or classes.
nsf::method::alias myClass + nsf::methods::class::create

Bind a pre-existing method for deleting objects from the methods
pool in "nsf::methods" as "-" to "myObject". Once this method is
defined, every object of this object system can be deleted using
"-".
nsf::method::alias myObject - nsf::methods::object::destroy

Create an application class using the method "+":
myClass + C

Create an instance of the application class:
C + c1

Delete the instance using the method "-":
c1 -

As can be seen from Listing 1, the names of the base classes (myObject and
myClass) are provided to the command nsf::objectsystem::create as the
first two arguments. The root objects determine elementary relationship types be-
tween the objects living in a given object system and describe common behavior for
all objects. The creation command for the object system covers several tasks: To be-
gin with, the memory stores for the root objects are created. Once allocated and reg-

Proceedings of the Tcl 2011 171 Manassas, VA October 24-28 2011

istered as Tcl commands, the root objects are put into elementary relations to each
other (e.g., instance-of and superclass/subclass relations; see below). Finally, the es-
sentially behavior-less root objects (i.e., their empty method records) can be populat-
ed with behavior by the language designer.

Figure 2. The NX Object System

While the bare root objects do not carry any predefined or built-in methods accessible
at the script level, the NSF engine requires the root objects to support basic lifecycle
operations (e.g., object creation, deletion, recreation etc.). These methods might not
only be called in the script, but also from within the NSF engine. For these cases, one
can optionally bind methods to the system callbacks during the definition of the ob-
ject system (not shown above). In this sense, the root objects implement interfaces
required by the NSF engine (see RootMetaClass and RootClass in Figure 2).

When implementing these two required interfaces, the language designer has con-
siderable degrees of freedom: First, one can choose custom names (selectors) for
the system methods. Second, one can bind either predefined or custom method
implementations to these selectors. Third, upon declaring the object system by

Proceedings of the Tcl 2011 172 Manassas, VA October 24-28 2011

nsf::objectsystem::create, one can define custom default bindings for the
system methods without exposing them as accessible methods.

nsf::objectsystem::create myObject myClass
nsf::method::alias myClass + ::nsf::methods::class::create
nsf::method::alias myObject - ::nsf::methods::object::destroy

nsf::is class myObject ; # --> 1
nsf::is metaclass myObject ; # --> 0

nsf::is class myClass ; # --> 1
nsf::is metaclass myClass ; # --> 1

nsf::relation myObject class ;# --> ::myClass
nsf::relation myObject superclass ;# -->

nsf::relation myClass class ;# --> ::myClass
nsf::relation myClass superclass ;# --> ::myObject

The creation of an object system establishes characteristic and mutual ties between
the root meta-class myClass and the root class myObject. Most importantly, myOb-
ject is defined as an instance of myClass (the class of myObject is myClass),
and myClass is a subclass of myObject (the superclass of myClass is myObject).
Therefore, every class is an object and inherits the general object behavior.

This relational triad between root meta-class and root class underlies any NSF object
system and is automatically established by nsf::objectsystem::create. A lan-
guage designer can obtain the same relational setting by declaring the relations ex-
plicitly, using the NSF primitive nsf::relation.

Listing 3: System Methods Specification for the NX Object System

namespace eval ::nx {

nsf::objectsystem::create ::nx::Object ::nx::Class {
-class.alloc {alloc ::nsf::methods::class::alloc}
-class.create create
-class.dealloc {dealloc ::nsf::methods::class::dealloc}
-class.objectparameter objectparameter
-class.recreate {recreate ::nsf::methods::class::recreate}
-object.configure configure
-object.defaultmethod {defaultmethod ::nsf::methods::object::defaultmethod}
-object.destroy destroy
-object.init {init ::nsf::methods::object::init}
-object.move move
-object.unknown unknown

}

}

Proceedings of the Tcl 2011 173 Manassas, VA October 24-28 2011

Scripted Init-Blocks - Defining Objects Block-wise

NSF defines a set of about 30 primitive commands in the ::nsf namespace for fur-
ther defining the object system. For application developers, however, the necessary
functionality offered by the NSF primitive commands is exposed by the object system
(e.g., the info method for introspection) directly.

The NX object system (see Figure 2) is entirely defined using these language-pro-
gramming primitives. Listing 3 depicts the relevant script fragment for creating the
NX root objects (nx::Object, nx::Class), as well as for tailoring the provided sys-
tem method interfaces.

The NX Concrete Syntax

In the tradition of nesting evaluable Tcl scripts as definition units (e.g., proc bodies,
looping constructs, namespace scripts), NX objects can evaluate scripts in their con-
text upon request or upon initialization. The scripted init-blocks are evaluated at the
end of object initialization and are typically used for defining variables, properties
and methods. A block-wise notation helps avoid redundancy (i.e., tediously repeated
object names) and allows for grouping related declaration statements.

Consider a bare example. Instead of defining a class and its structural features (i.e.,
relations, properties, and methods) via separate Tcl commands …

nx::Class create ASuperClass
nx::Class create AClass

AClass superclass ASuperclass
AClass property aProperty
AClass public method aMethod {} {...}

one can specify a script for every object/class definition which is evaluated in the con-
text of the newly created entity:

nx::Class create ASuperClass

nx::Class create AClass -superclass ASuperClass {
:property {aProperty 0}
:public method aMethod {} {...}

}

Proceedings of the Tcl 2011 174 Manassas, VA October 24-28 2011

The Colon Prefix - Shortcutting Self Calls and Self-Variable Access

The create method accepts the name of the entity to be created (here AClass) and
optional, non-positional parameters for configuring the entity; referred to as object
parameters. After the object parameters, an optional script might be provided which
is called the init script. In this example, all commands in the init script are prefixed
by a single colon, which means that they denote methods dispatched on the current
object (here AClass). This is achieved by using a special-purpose command resolver
[3].

Scripted init-blocks are equally available for declaring all kind of objects, i.e., direct
instances of nx::Object or instances of arbitrary application classes.To create in-
stances of the previously defined class AClass, one can write:

AClass create a0
AClass create a1 -aProperty 10
AClass create a2 {

:public method foo {} {...}
}

While the instance a0 is created without object parameters (using just the defaults),
the instance a1 is initialized by object parameters, and a2 uses a scripted init block
for defining an object-specific method foo.

By leveraging Tcl’s variable and command resolver infrastructure, NSF introduces
colon-prefixed names for referencing instance variables and for specifying method
calls with implicit receivers for little syntactic overhead. The colon prefix refers to the
current object for the scope of scripts evaluated in an object’s context (e.g., in init
scripts or in method bodies).

AClass create a2 {

set :x 1; # set an instance variable named "x"

:public method foo {} {
set x 1 ; # set a method-scoped variable
set :x 1 ; # set an instance variable
set ::x 1 ; # set a global variable
incr :x ; # access an instance variable
puts "var x value ${:x}"; # refer to value of an instance variable

}

:foo
}

Proceedings of the Tcl 2011 175 Manassas, VA October 24-28 2011

Slim Method Set - Easing API Learning

In the above listing, each colon-prefixed variable reference resolves to an instance
variable named x stored with the object a2. When requesting instance variable sub-
stitution, the dollar sign must be preceded by the colon-prefixed variable name pro-
tected by a pair of curly braces, for example: ${:x}. A colon-prefixed command name
(such as :public) corresponds to an invocation of a method of the same object. For
example, :foo corresponds to my foo in XOTcl.

Each NSF object system provides a core API through its base classes. The perceived
usability [2] of APIs is affected by various cognitive properties, including the API’s
conceptual chunks needed for frequent programming tasks (e.g., introspection) and
the penetrability of an API. An ultimate design goal was therefore to keep the core
interface of NX as concise and as consistent as possible. As a result of this design ef-
fort and new implementation techniques being available (e.g., extensible method en-
sembles), the NX core API consists of only 44 methods, as compared to 124 in XOTcl,
while exhibiting a functional superset of the XOTcl core API.

Table 1. Comparison of the Number of Predefined Methods in NX and XOTcl

NX XOTcl

Methods for Objects 20 51

Methods for Classes 3 24

Info-methods for Objects 15 25

Info-methods for Classes 6 24

Total 44 124

In addition to the reduced interface sizes, the NX core APIs also benefit from the
capacity of creating method interfaces in a hierarchical manner. The figure below
sketches the tree-like structure of the info introspection available for all instances
of nx::Object. Each sub-level of the hierarchical interface (e.g., callable, has,
filter, and mixin) groups introspection operations which relate to the same lan-
guage construct to be introspected (e.g., mixins or filters) or which identify a partic-
ular introspection scope. For example, info callable refers to the methods dis-
patchable on a given object rather than the ones defined by it (info methods).
Hierarchical method interfaces allow the language or application developer to define
working frameworks [2] within an API. At the same time, the hierarchically organized
interfaces can still be extended and refined by standard means of method combina-

Proceedings of the Tcl 2011 176 Manassas, VA October 24-28 2011

tion (e.g., mixin classes) at each sub-level. This API structuring technique is the result
of using method ensembles(find details below).

Figure 4. Hierarchical Method Interfaces: An Excerpt from the 'info' Method
Ensemble

Parameter Types and Parameter Options - Con-
straining and Transforming Parameter Values
Tcl provides the command string is to check whether a provided string has certain
properties, i.e., whether it can be converted into an internal representation with a cer-
tain value format. NSF extends this value checking for specifying method parame-
ters and method return values, as well as object interfaces. A method is specified by a
method signature, i.e., the number of method parameters (in/out), their names, and
value constraints defined over the permissive arguments. An object is configured by
object parameters.

Value constraints for method and object parameters can be specified with built-in and
custom defined parameter type checkers. They apply to both positional and non-po-
sitional parameters. The range of built-in constraints includes object-type checks and
predefined Tcl value classes. Table 2 below presents selected examples of parameter
types and options. Additionally, custom defined value checkers can be provided by
defining special-purpose methods.

For all types of value checkers, parameter options can be specified to define the
multiplicity class and the optionality of the parameters. Moreover, parameters can
be turned into method and forwarder dispatches, using disposition parameters. For
multivalued object parameters, an incremental getter/setter API is available, offering
the per-element operations add and delete.

These provided value checkers can also be used to perform representational transfor-
mations on parameter values (e.g., normalizing values). This syntactic value checking

Proceedings of the Tcl 2011 177 Manassas, VA October 24-28 2011

can be en- or disabled for the scope of an interpreter; in the sense of an optional rep-
resentational "type system" [1].

Listing 5: Parameter Types for Arguments and Return Values

nx::Class create C {

Define method "set" with an optional positional parameter "value":
:public method set {varName value:optional} {
....

}

Define method "foo" with a non-positional parameter "opt" having a
default value and a positional parameter "x" with the value
constraint "integer":
:public method foo {{-opt true} x:integer} {

....
}

Define a method "bar" with a non-positional
parameter "objs" carrying the value constraint "object" under the
multiplicity class "1..n" and a positional parameter "c" with value
constraint "class" for a multiplicity of "0..1":
:public method bar {-objs:object,1..n c:class,0..1} {

...
}

Bind the Tcl command ::incr as a method (an alias) to the class and specify
that it always returns an integer value:
:public alias incr -returns integer -frame object ::incr

Define a forwarder that has to return an integer value:
:public forward plusOne -returns integer ::expr 1 +

}

Value checking is fully integrated with the argument parser and the error handler for
scripted and for C-implemented methods. For C-implemented methods, value check-
ing provides the internal representations (e.g. integers, boolean, objects, classes, etc.)
as arguments to the underlying C functions [3]. This greatly helps implement C ex-
tensions, such as the MongoDB binding described later in this paper.

Table 2. Thumbnail Descriptions of Common Parameter Types and Parameter Options

Parameter type/op-
tion

Description

Value constraints

integer The argument must be a 32-bit Tcl integer (string is integer).

boolean The argument must be one of the acceptable Tcl boolean values, e.g. 0, 1, true,
false (string is boolean).

Proceedings of the Tcl 2011 178 Manassas, VA October 24-28 2011

Parameter type/op-
tion

Description

object
? type=className ?

The argument must refer to an existing object (i.e., an instance of the root class
nx::Object). If the type option is provided, the object’s class must correspond to
an existing class className.

class
? type=metaClassName ?

The argument must refer to an existing class (i.e., an instance of the root meta-class
nx::Class). If the type option is provided, the class' meta-class must correspond to
an existing meta-class namedmetaClassName.

Multiplicities

0..*, 0..n Specifies that the argument can be either an empty list (i.e., "" or [list]) or a list
with any number of elements (unbound cardinality). If the argument is a non-empty
list (element cardinality > 0), each element is then tested against the value constraint
specified.

0..1 Specifies that the argument can either be an empty list (i.e., "" or [list]) or a list
with exactly one element (cardinality: 1). If the argument is a non-empty list (element
cardinality > 0), the element is then tested against the value constraint specified.

1..*, 1..n Specifies that the argument must be a non-empty list with an unbounded number of
elements (cardinality > 1). Each element is then tested against the value constraints
specified.

Requiredness/Optionality

required An argument for the parameter must be provided. Note: Positional parameters are
considered required implicitly.

optional An argument for the parameter may be omitted in the arguments vector. Note: Non-
positional (named) parameters are considered optional implicitly.

Disposition

alias
? method=methodName ?

The parameter specifies a method dispatch to a method identified by the parameter
name or, if the method option is provided , to a methodmethodName. An unqualified
name resolves to a method for the scope of the called object.

forward
method=forwardSpec

The parameter specifies a forward dispatch, according to the mandatory method type
which contains the forward specification forwardSpec.

Various

switch The parameter is specified as a flag, i.e., a non-positional parameter which does not
accept an explicit argument. If the flag is provided, the default value (0 for false) is
toggled. The default value can be set explicitly to change the toggle direction.

incremental The object parameter representing a multivalued instance variable should be mutable
through per-element ("incremental") setter methods, including methods for adding
and deleting single elements.

Proceedings of the Tcl 2011 179 Manassas, VA October 24-28 2011

Object Parameters - Configuration Interfaces for Objects

Like method signatures declaring positional and non-positional parameters with de-
fault values and value constraints, NX provides parameters for initializing and config-
uring objects and classes. The parametric object interfaces are derived from the class
definitions. In conventional OO languages, object creation and initialization are real-
ized by chained constructor methods, risking unwanted interactions in classification
hierarchies (e.g., common constructor anomalies [9]). The less ambiguous object ini-
tialization through object parameters and scripted init-blocks complements the use
of constructors.

Recall the classic example of a compositional anomaly resulting from pairing con-
structor chaining and dynamic method binding in a class hierarchy. The following
code listing reproduces an example for creating partially initialized objects for XOTcl,
adopted from [12].

xotcl::Class create A
A instproc init args {
2) Invoke method "m", dispatching to B.m()!
my m

}
A instproc m {} {
...

}

A subclass, possibly defined by a different module (e.g., Tcl package)
xotcl::Class create B -superclass A -parameter {b}
B instproc init {s} {
1) Pass control to the superclass constructor
next ; # dispatching A.init()
3) Initialize and define the instance variable "b"
my instvar b
set b $s

}
B instproc m {} {
4) Returning instance variable 'b', which is expected to be
already initialized and defined
my instvar b
return $b

}

B create b1 "ZAP!"; # --> can't read "b": no such variable while executing "return $b"

The numbering of the comments (1, 2, 3, and 4) reflects the "intended" unfolding
of the control flow during the creation of an instance of B. The anomalous behavior
manifests in terms of step 3 effectively occurring after step 4. This is due to the dis-
patch to m, which is contracted by the superclass constructor A init, causing an
preemptive attempt to access of B's instance variable b, yet to be initialized and de-
fined in the subclass constructor B init.

Proceedings of the Tcl 2011 180 Manassas, VA October 24-28 2011

This is only one example of various kinds of constructor anomalies discussed in [9].
A further critical kind of anomalies is that construction protocols, though automat-
ically inherited down a class hierarchy (at least in NX and XOTcl), can be easily
breached — maybe intentionally, maybe accidentally — by simply omitting a next in
a subclass constructor. NX, as well as XOTcl, are even more vulnerable to such anom-
alies due to the considerable degrees of freedom during object configuration (e.g., dis-
patching to init or accessor methods in arbitrary orders) and due to the composi-
tional complexity incurred by mixin classes and transitive mixins.

The object parameter facility in NX relaxes this vulnerability to constructor-based pa-
rametrization anomalies considerably. Rewriting the above example in NX yields, for
example:

nx::Class create A {
:method init {} {
:m

}
:public method m {} {

...
}

}

nx::Class create B -superclass A {
:property b:required
:public method m {} {

return ${:b}
}

}

B create b1 -b "ZAP!"
B create b2; # --> required argument 'b' is missing, should be: ::b2 configure -b ...

Object parameters provide means for discriminating between four separated stages
when constructing objects:

1. Creation: This is a class-side event, with the operations for allocating a mem-
ory store etc. being performed in the scope of the instantiating class.

2. Parametrization: At this stage, the argument vector passed to the object cre-
ation procedure (i.e., -b "ZAP!") is evaluated against the object parameter
specification of the newly created instance. This specification represents the
concatenation of all object parameters (e.g., A property b:required) go-
ing up the entire inheritance path of the instance’s class. The parameter spec-
ifications can also contract the mandatoriness or value ranges of parameter
values, along with default values etc.

3. Setup by Init Script: After having completed the parametrization stage, the
object is fully initialized as stipulated by the object parameter specification.
The evaluation of the init script block is performed to allow for continued set-

Proceedings of the Tcl 2011 181 Manassas, VA October 24-28 2011

Object Variables and Properties - Defining Object State

up of the newly constructed object. This step can only be performed once, i.e.,
at construction time, as the init script is not preserved.

4. Setup by Constructor: Finally, the chain of initmethods provided is invoked
upon. Note that in NX, the init methods do not receive any intermediary
results of previous object construction or residuals of the initial vector of
construction arguments as input arguments. In NX, constructor methods are
therefore not equipped for initializing the initial state of an object. Still, they
serve as important extension points during object construction.

NX supports defining instance variables with and without accessor methods. While
internally accessible instance variables are defined via the method variable, exter-
nally accessible instance variables are equipped with accessors (setter/getter meth-
ods). In addition, so accessible instance variables can also be exposed as object para-
meters by the object interface. Instance variables with accessors are created using the
property keyword. Value checkers can be specified for instance variables defined
via variable and via property. Properties can also be accessed through an incre-
mental getter/setter interface (add, delete). The following listing gives three show-
case examples, including the specification of default values and parameter types with
property and variable, respectively:

nx::Class create AClass {
:property {aProperty:integer 0}
:variable aVariable:integer 0
:property {multiProperty:1..*,integer,incremental 0}
:create a1

}

#
property plus setter/getter methods
#
::a1 aProperty; # returns "aProperty" (0) through the so-named getter method
::a1 aProperty 1; # sets "aProperty" through the so-named setter method

#
variable without setter/getter methods
#
::a1 aVariable; # no getter method: ::a1: unable to dispatch method 'aVariable'
::a1 aVariable 1; # no setter method: ::a1: unable to dispatch method 'aVariable'
::a1 eval {set :aVariable}; # internally, the instance variable is accessible/mutable

#
property with incremental setter/getter methods
#
::a1 multiProperty; # returns 0
::a1 multiProperty delete 0; # removes an element from the list
::a1 multiProperty add 1; # adds an element to the list and returns 1
::a1 multiProperty add 2 end; # adds another element and returns "1 2"

Proceedings of the Tcl 2011 182 Manassas, VA October 24-28 2011

Aliases and Forwarders - Method-Level Reuse

Methods
Like XOTcl, NX offers open class and open object definitions. This means, for ex-
ample, that it is possible to define a class or an object without methods and to add
methods dynamically at runtime. NX supports scripted and C-implemented methods.
Scripted methods are defined via a predefined keyword method. When method is ap-
plied on a class, an instance method is defined (i.e., a method applicable to instances
of the class); when method is applied on an object, an object-specific method is de-
fined. The method definition can be refined by modifiers such as public and pro-
tected to request call protection and by the keyword class to refer explicitly to the
class object. One can use class method to define methods applicable to the class
object. Such methods are sometimes referred to as "class" or "static" methods. Sim-
ilarly, one can use class variable or class property to define variables and
properties for the class object.

In addition to defining scripted methods as outlined above, NX supports reusing pre-
existing method definitions for a class or for an object by means of method aliases and
method forwarders. For aliasing a method, NX provides the method alias. Aliasing
means registering a method by a distinct name with an object. This method alias can
refer to the implementation of a method of another object/class, a Tcl proc, or even a
Tcl/C command.

In NX, the idea of assembling the base class interfaces from a set of core C-imple-
mented commands [3] is extended to a general-purpose aliasing mechanism in NX
(not to be confused with Tcl’s interp aliases). Method aliases are one foundation of
traits and method ensembles (we go into more details in later sections). Aliases serve
for bootstrapping an object system and are an essential instrument for object system
developers (as presented earlier in Listing 1).

Listing 6: Method Aliases and Method Forwarders

nx::Class create C
:property {a 0}
:public alias incr -returns integer -frame object ::incr
:public forward plusOne -returns integer ::expr 1 +

}

C create c1 ;# create instance c1
c1 incr a ;# increments instance variable "a" to 1
c1 incr a ;# increments instance variable "a" to 2

puts [c1 a] ;# outputs 2

Proceedings of the Tcl 2011 183 Manassas, VA October 24-28 2011

Method Ensembles - Implementing Hierarchical Method Interfaces

puts [c1 plusOne [c1 a] * 100] ;# outputs 201
puts [c1 a] ;# outputs 2

The alias statement in Listing 6 are taken from Listing 5. It defines a public instance
method named incr of the class C, which reuses the implementation of the C-im-
plemented Tcl command ::incr. The parametrization by -frame object has the
effect that variable names provided as arguments to the newly defined method incr
refer to instance variables. Note that all arguments provided to a method alias are al-
ways passed unmodified to the underlying command implementation.

A method forward is somewhat similar to a method alias except that one can extend
and rewrite the provided argument vector. The definition of the method plusOne
reuses the Tcl command ::expr and adds 1 + at the front of the provided argument
vector to complete the Tcl expression.

In general, a method forward is more flexible than a method alias, but less efficient.
Apart from efficiency, method aliases have another important property: For a method
alias, introspection returns the method parameter specification of the alias target (if
available). Parameter introspection is not possible for a method forward.

The capacity of objects to act as message receivers [3] has been further refined into
the concept of ensemble objects and method ensembles. Resembling Tcl’s idiom of
sub-commands and namespace ensembles, ensemble methods establish hierarchical
and compound method names in an extensible fashion. From the perspective of a
method client, not only a single but multiple Tcl words are the selectors of a method
implementation. As for the method provider, a complex protocol (e.g., introspection
through info) can be organized into several related ensemble method implementa-
tions.

Central to the compositional feature of ensemble methods is the idea of breaking
up otherwise monolithic methods with heavy conditional branching (e.g, extensive
switch threading) into distinct units, i.e., ensemble methods [11]. At the same time,
the ensemble methods remain grouped by a parent method selector. Consider the fol-
lowing example:

Listing 7: Definition of Ensemble Methods without Language Support

Object create o {

Define method "foo", the parent method selector:

Proceedings of the Tcl 2011 184 Manassas, VA October 24-28 2011

:public method foo {sub args} {
#
Define sub-methods behavior via "switch" statement
#
switch -exact -- $sub {
sub1 {
ensemble method 'foo sub1': provide a custom parser for "args"

}
sub2 {
ensemble method 'foo sub2': provide a custom parser for "args"

}
default {
unknown handling
set m "[current method]: unknown sub-method '$sub'. Available: sub1 sub2"
return -code error $m

}
}

}
}

o foo sub1 arg1 arg2; # OK
o foo sub2 -np1 arg1 -np2 arg2 arg3; # OK
o foo sub3; # --> foo: unknown ensemble method 'sub3'. Available: sub1 sub2

While this switch-threaded method implementation certainly mimics sub-commands
(i.e., foo sub1 and foo sub2) to a certain extent, there are considerable limita-
tions, potentially affecting code evolution and maintenance tasks:

1. Homogeneous vs. Heterogeneous Signatures: To begin with, there is a ten-
sion between providing heterogeneous signatures for ensemble methods and
reusing the built-in parameter processing infrastructure. In the above exam-
ple, the intention is to constrain foo sub1 to requiring two positional pa-
rameters only, while foo sub2 accepts two non-positional parameters. The
parent method foo effectively shares its method parameter specification with
its children, with the variable argument vector (args) not enforcing any fur-
ther parameter constraints on behalf of the ensemble methods. This leaves the
developer with the only option to enforce the signature constraints specific to
each ensemble method in the respective switch branch by providing for cus-
tom argument parsing.

2. Blinded introspection: The built-in object introspection is not aware of the
very existence of the ensemble methods nested under foo, nor their possibly
deviating method parameter specifications. For example, o info methods
foo and o info callable methods won’t reveal the two ensemble meth-
ods foo sub1 and foo sub2. As one of the consequences, introspection
cannot be leveraged to implement ensemble methods. In the above example,
the list of available ensemble methods must be maintained explicitly for gen-
erating the unknown error message.

Proceedings of the Tcl 2011 185 Manassas, VA October 24-28 2011

3. Nesting level limitations: Any implementation variant based on conditional
control structures (e.g., switch threading) risks adding further complexity
with each further nesting level added to an ensemble method hierarchy (e.g.,
foo sub1 sub4). As each nesting level turns into a nested conditional, e.g.,
scattered across several switch threads in the example above, the implemen-
tation suffers from extra complexity due to dealing with parameter specifica-
tions and unknown handling for ensemble methods.

4. Unknown handling: The built-in unknown handling of NX is an important
meta-programming vehicle. The native unknown handling is sidetracked by
the requirement for the switch-local unknown handling. That is, the default
switch branch replaces the otherwise responsible unknown method for ob-
jects. Also, unknown handling must be implemented for each and every
method ensemble repeatedly; unless facilitated by a piece of meta-program-
ming. Adding nesting levels further complicates this form of ensemble-specif-
ic unknown handling.

5. Method combination: Combining ensemble methods with refining ensemble
methods provided by intrinsic (superclasses) or by extrinsic classification
(mixin classes) is hindered. First, the scope for combining methods is the par-
ent selector only. In our example, refining methods can only hook onto the
selector foo, without further specifying an ensemble method as its refine-
ment target. Second, using next chaining in a linearized order of refining foo
methods becomes non-obvious and error-prone as the scope of next calls is
the top-level method only.

6. Method reuse: The type and the implementation of ensemble methods cannot
be reused. This is, to a large extent, due to the limitations of method combi-
nation (see the previous item). However, ensemble method implementations
based on conditionals are also not accessible to other composition techniques,
most importantly method aliases.

Besides, the effects of excessive tangling throughout conditional blocks (e.g., the
"Switch Statement Smell" in [10]) and the non-orthogonal extensibility for method
ensembles are the consequences. To overcome these limitations, NX supports ensem-
ble methods natively. Ensemble methods are implemented by an advanced form of
object delegation hierarchies. A variant of method objects [10], referred to as ensem-
ble objects, are recorded as methods with a registration object. In the above exam-
ple, o acts as the registration object for an ensemble object foo, so that foo becomes
dispatchable as the method member o foo. To avoid common pitfalls of method
objects, in particular self schizophrenia, special dispatch semantics apply: First, ex-
clusively per-object methods of the ensemble objects provide the leaf methods in a
method ensemble hierarchy. Second, the dispatch to an ensemble method is bound
to the self-object context of the registration object. With some syntactic sugar, which

Proceedings of the Tcl 2011 186 Manassas, VA October 24-28 2011

Public, Protected, and Private - Module Encapsulation versus
Method Combination

effectively hides the declaration ensemble objects and the building of their delegation
hierarchies, NX allows one to rewrite the example from Listing 7 as:

Listing 8: Definition of Ensemble Methods with Language Support

Object create o {
:public method "foo sub1" {p1 p2} {

...
}
:public method "foo sub2" {-np1 -np2 p3} {

...
}

}

o foo sub1 arg1 arg2; # OK
o foo sub2 -np1 arg1 -np2 arg2 arg3; # OK
o foo sub3;
--> Unable to dispatch sub-method "sub3" of ::o foo; valid are: foo sub1, foo sub2

Such method ensembles can be incrementally extended, indirected by mixins and fil-
ters, and easily shared between objects through method aliasing. To complete the
support for ensemble methods, object introspection is fully aware of ensemble meth-
ods. One can resolve the entire method path, for which a given ensemble method is
registered, from within the ensemble method (via nx::current methodpath). Al-
so, introspection makes the unfolded method paths available for querying by method
path patterns (using e.g. /obj/ info methods ?-path? … ?pattern?).

A primary reason for putting units of code (i.e., object, classes) into relation (e.g.,
instance-of, superclass/subclass) is to establish various kinds of reuse between these
code-units. These relations establish ways of accessing, using, or mutating structural
and behavioral features (primarily instance variables and methods) of these units.
For example, by method combination (using the next primitive) a subclass may use
the methods of its superclasses. A similar reuse can be achieved by mixin classes, by
traits or, at the method level, by method aliases and method forwards.

When reusing complex units of code (e.g. deep class hierarchies), which have possibly
been developed by different teams and which have been constantly refactored, one
danger arises from unwanted interactions, such as the accidental shadowing of meth-
ods. The example of a constructor anomaly given earlier falls into this category of un-
wanted interactions.

The more relations between code-units are established and the more bloated object
interfaces become, the more likely unwanted interactions will occur. To manage such

Proceedings of the Tcl 2011 187 Manassas, VA October 24-28 2011

interactions, it is important to define explicit and strict module interfaces [14]. The
literature employs the notion ofmodule encapsulation for describing means to regu-
late the accessibility, the use, and the changeability of module features by other mod-
ules [13].

NX supports stronger means for module encapsulation than XOTcl. The design goal
of NX was to encourage encapsulation by language constructs rather than prohibiting
access at all. For example, denying any access to an object’s state would make seri-
alization of objects from the scripting language impossible since the serializer needs
access to all internals. NX adds the following means of module encapsulation:

1. In NX, the object state (instance variables) is better protected than in XOTcl
by not providing any publicly available, built-in accessor methods to all in-
stance variables. XOTcl, on the contrary, exposed the methods set and un-
set; or, the general variable importer instvar. The access to instance vari-
ables from within instance methods is encouraged in NX via Tcl’s variable re-
solvers and the colon prefix.

2. The redefinition of behavioral object features (in particular methods and
properties) can be restricted by declaring the object features redefine-protect-
ed.

3. NX provides a fine-grained mechanism to establish method call-protection
between objects and classes. An object can expose three different method sets
at the same time:

a. The public method set is usable by any client object, without restric-
tions. The methods of this set can be targeted by self-calls (e.g., :bar
in the example below), next-calls, and command-calls (i.e., when spec-
ifying the object’s Tcl command name as receiver: a1 foo).

b. The protected set restricts the method’s use to self-calls and next-
calls. That is, calling upon the method set through the command ref-
erence of the object is forbidden.

c. The private interface is restricted to self-calls and to call sites de-
fined for the same class or object scope as the called method.

nx::Class create A {
#
Public interface of class "A"
#
:public method foo args {

:bar ; # invoke protected method of current object
}

#
Protected interface of class "A"
#

Proceedings of the Tcl 2011 188 Manassas, VA October 24-28 2011

:protected method bar {} {
: -local baz ; # invoke private method of current object with "-local" flag
...

}

#
Private interface of class "A"
#
:private method baz {} {

...
}

}
A create ::a1

In the above listing, the method modifiers public, protected, and private are
used to add methods to these three method sets. If omitted, the default call protection
in NX is protected. This default can be altered by configuration. From within meth-
ods of the instance ::a1, the protected and the private method sets can be effectively
used. The method call statement :bar represents a self-call to the protected method
set. The invocation of a private method is performed via : -local baz. The flag
-local indicates to call only methods from the private method set. The flag -local
at the call site makes the intention clear to use only a method declared for the same
class context. It cannot be invoked from within methods of subclasses (as the follow-
ing example shows), nor from methods of superclasses.

However, when the methods foo, bar, and baz are called from the "outside" (i.e.,
from instances of other classes, or from the top-level namespace), neither the protect-
ed, nor the private methods of A are callable:

a1 foo; # command-call to public interface --> OK
a1 bar; # command-call to protected interface --> ::a1: unable to dispatch method 'bar'
a1 baz; # command-call to private interface --> ::a1: unable to dispatch method 'baz'

Let us now introduce a superclass/subclass relation between the classes A and B, with
the sublcass B defining its own public method set consisting of the methods bar and
baz:

nx::Class create B -superclass A {
:public method bar {} {

next ; # next-call to protected interface --> OK
}
:public method baz {} {

next ; # next-call does not reach the private method
}

}

B create ::b1
b1 bar; # command-call to public interface --> OK

Proceedings of the Tcl 2011 189 Manassas, VA October 24-28 2011

The public method B bar shadows A bar. Because B bar can be called unrestrict-
edly, it can be invoked from the outside. Since protected methods are available for
next-calls, A bar can be reused via next in this context.

The method B baz is part of the public interface of class B and defines a next-call.
While A baz is a candidate target for this next-call, however, since private meth-
ods are not available to next-calls, the invocation of next behaves exactly like A baz
would not have been defined.

The redefinition protection and the call protection in NX are implemented by a set
of properties assignable to method implementations through NSF primitives. Based
on these property assignments, the language runtime regulates the modification of
the method implementations (redefinition protection) and determines the availabil-
ity of method implementations as message receivers depending on the caller context
(call protection). This low-level interface allows the NSF language developer to spec-
ify custom redefinition and call protection schemes. For example, for XOTcl 2.0, the
default call protection mode is so implemented as public.

To summarize, discriminating between public and protected methods provides
for defining explicit object interfaces (i.e., intended ways of having classes and objects
reused by client objects). The private modifier helps hide implementation details
and helps avoid unwanted method combinations due to name clashes in, e.g., mixin
classes or traits.

Support for Advanced Feature Composability: Traits
NX supports the concept of per-object, per-class, and transitive per-class mixins [7].
In addition to mixins, NX adds a variant of traits [6] as a scripted language extension.
Traits realize a composition mechanism for the reuse of methods. Contrary to other
forms of reuse (e.g. inheritance of methods in a class hierarchy or via mixin classes),
the methods defined in traits are materialized in the target objects and classes. For
the implementation of the traits, method aliases provide the necessary implementa-
tion infrastructure. Every method inherited from a trait can be modified, deleted etc.
by subsequent method definitions for a given class. This gives more fine-grained con-
trol over the reuse of methods and overcomes the "total composition ordering" limi-
tation of mixins [6]. Consider the following example of a simple trait called tRead-
Stream which provides the interface to a stream:

package require nx::trait

nx::Trait create tReadStream {
#
Define the methods provided by this trait:

Proceedings of the Tcl 2011 190 Manassas, VA October 24-28 2011

#
:public method atStart {} {expr {[:position] == [:minPosition]}}
:public method atEnd {} {expr {[:position] == [:maxPosition]}}
:public method setToStart {} {set :position [:minPosition]}
:public method setToEnd {} {set :position [:maxPosition]}
:public method maxPosition {} {llength ${:collection}}
:public method on {collection} {set :collection $collection; :setToStart}
:public method next {} {
if {[:atEnd]} {return ""} else {
set r [lindex ${:collection} ${:position}]
:nextPosition
return $r

}
}
:public method minPosition {} {return 0}
:public method nextPosition {} {incr :position 1}

This trait requires a method "position" and a variable
"collection" from the base class. The definition of the trait is
incomplete in these regards.
:requiredMethods position
:requiredVariables collection

}

Define a class ReadStream with properties position and collection which uses
the trait. The method require trait checks the requirements of the trait and im-
ports the methods of the trait into the class ReadStream:

nx::Class create ReadStream {
:property {collection ""}
:property {position 0}
:require trait tReadStream

}

One can now create an instance of the class ReadStream …

ReadStream create r1 -collection {a b c d e}

to test the behavior of the composed class:

% r1 atStart
1
% r1 atEnd
0
% r1 next
a
% r1 next
b

Proceedings of the Tcl 2011 191 Manassas, VA October 24-28 2011

NX supports simple and composite traits, with a composite trait definition inheriting
from another trait.

MongoDB Mapping
The NSF development toolkit features a Tcl/C-API generator and Tcl_Obj type con-
verters for developing NSF/C extensions. By using these helpers, we developed a
MongoDB binding for NX. The C-implemented part of this extension integrates with
the C client library of MongoDB. The extension also provides an NX/Tcl package for
integration of NX objects with MongoDB.

The MongoDB extension provides both a low-level interface and a high-level, object-
oriented interface based on NX. By using this high-level API, one can create NX class-
es and objects which are equipped with additional capabilities for defining (prop-
erty, index), retrieving (find), and storing (save) objects in MongoDB. The ex-
ample below shows an excerpt from the "Business Insider" data model, a frequently
cited MongoDB showcase [16]. The listing depicts the entity definitions for postings,
authors, comments, tags etc. Using the parameter option embedded, one can created
embedded (nested) documents with the required multiplicity. In this example, we al-
so use the incremental setter interface for creating tags.

package require nx::mongo

nx::mongo::db connect -db "tutorial"
#
Create the application classes based on the "Business Insider" data
model. Note that instances of the class "Comment" can be embedded in
a posting (property "comments") as well as in a "Comment" itself
(property "replies"). All comments in this example are multivalued
and declared "incremental" (i.e., one can use slot methods "... add
..." and "... delete ..." to add/remove values of the multivalued
attributes).
#
nx::mongo::Class create Comment {

:property author:required
:property comment:required
:property replies:embedded,incremental,type=::Comment,0..n

}

nx::mongo::Class create Posting {
:index tags
:property title:required
:property author:required
:property ts:required
:property comments:embedded,incremental,type=::Comment,0..n
:property tags:incremental,0..n

}

Create a Posting
set p [Posting new -title "Too Big to Fail" -author "John S." \

-ts "05-Nov-09 10:33" -tags {finance economy} \

Proceedings of the Tcl 2011 192 Manassas, VA October 24-28 2011

-comments [list \
[Comment new -author "Ian White" -comment "Great Article!"] \
[Comment new -author "Joe Smith" -comment "But how fast is it?" \
-replies [list [Comment new -author "Jane Smith" -comment "scalable?"]]] \

]]

We add an additional comment at the end of the list of the comments
using the incremental operation "add" ...
$p comments add [Comment new -author "Gustaf N" -comment "This sounds pretty cool"] end

... and we add yet another tag ...
$p tags add nx

... and save everything
$p save

Now fetch the first entry with the tag "nx"
set q [Posting find first -cond {tags = nx}]
....

Infrastructure and Toolkit
For developing object systems and programs in NSF/NX, a rich development en-
vironment is available. Monitoring the runtime performance is possible through a
DTrace binding and a native measurement facility. Detecting skewed refcounts is fa-
cilitated by a built-in monitoring facility for Tcl_Objs which complements Tcl’s mem-
ory command. For defining Tcl/C APIs based on the uniform parametrization infra-
structure of NSF, an API generator based on a declarative API specification language
can be used. Functional tests can be managed using the nx::test environment, a
documentation generator (nxdoc) takes Javadoc-styled Tcl comment blocks as input
and outputs to various templating backends (e.g., YUIDoc markup documents or wiki
pages).

The following listing shows a D script for DTrace which turns DTrace probes on and
off during a script run. The D script measures (when activated) the time spent in
methods called on nx::Object. Finally, it provides a graph produced by the DTrace
quantize aggregator function.

/* -*- D -*-
*
* Quantize time between method-entry and method-returns for calls on nx::Object
*
* Activate tracing between
* nsf::configure dtrace on
* and
* nsf::configure dtrace off
*
*/

nsf*:::configure-probe /!self->tracing && copyinstr(arg0) == "dtrace" / {

Proceedings of the Tcl 2011 193 Manassas, VA October 24-28 2011

self->tracing = (arg1 && copyinstr(arg1) == "on") ? 1 : 0;
}

nsf*:::configure-probe /self->tracing && copyinstr(arg0) == "dtrace" / {
self->tracing = (arg1 && copyinstr(arg1) == "off") ? 0 : 1;

}

/*
* Measure time differences on method calls on nx::Object
*/
nsf*:::method-entry /self->tracing && copyinstr(arg1) == "::nx::Object"/ {
self->start = timestamp;

}

nsf*:::method-return /self->tracing && copyinstr(arg1) == "::nx::Object" && self->start/ {
@[copyinstr(arg1), copyinstr(arg2)] = quantize(timestamp - self->start);
self->start = 0;

}

The snippet below shows how DTrace can be applied to monitor the evaluation of a
NSF/NX test script, as well as how the result is rendered (showing here just a small
part of the output). The NSF distribution contains some more examples for using
DTrace with NSF/NX.

% sudo TCLLIBPATH=. dtrace -F -s dtrace/timestamps-q.d -c "./nxsh tests/object-system.test"
....
::nx::Object eval

value ------------- Distribution ------------- count
4096 | 0
8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2
16384 | 0
32768 |@@@@@@@@@@@@@ 1
65536 | 0

::nx::Object vars
value ------------- Distribution ------------- count
2048 | 0
4096 |@@@@@@@@@@@@@@@@@@ 4
8192 |@@@@@@@@@@@@@@@@@@@@@@ 5
16384 | 0

A Synthetic Performance Evaluation
This section presents a first performance comparison between NX and XOTcl 2.0, on
the one hand, and XOTcl 1.6.0, on the other hand. The measurement design is com-
parable to the one presented in [3]. The data for NX, XOTcl 2.0, and XOTcl 1.6.0 were
gathered running on top of the same Tcl versions (especially Tcl 8.5.10 and Tcl 8.6b2)
and using the same machine (3.33 GHz Intel Core 2 Duo) under Mac OS X 10.6.8.
All C-programs and Tcl libraries were compiled with gcc 4.2.1 and identical compiler
flags (in particular, -O3).

Proceedings of the Tcl 2011 194 Manassas, VA October 24-28 2011

The first probes used to gather execution times were adopted from the methcall
benchmark of the OO shootout (http://wiki.tcl.tk/2428). By doing so, the results can
be related to previously published benchmark reports for other Tcl object systems.

In addition, probes for object creation and object deletion times are included. To be
precise, we measured the average execution time to create and to destroy a single ob-
ject while creating/destroying 100.000 objects.

Table 3. Comparison of the OO Shootout Benchmark, Object Creation and Deletion

NX 2.0
Tcl 8.5.10

NX 2.0
Tcl 8.6b2

XOTcl 2.0
Tcl 8.5.10

XOTcl 2.0
Tcl 8.6b2

XOTcl
1.6.0

Tcl 8.5.10

TclOO 0.6
Tcl 8.5.10

TclOO
0.6.3

Tcl 8.6b2

OO Shootout: methcall
(n=30.000)

0.57 0.79 2.07 2.78 2.61 1.40 2.07

Object create
(n=100.000)

35.63 40.19 39.71 45.46 56.77 48.56 49.85

Object destroy
(n=100.000)

20.95 23.21 20.97 22.89 25.77 269.70 257.98

The first table row gives the OO shootout methcall timings. It reports the average tim-
ing for 30.000 iterations of the method call probe. The second and third rows show
the timings for object creation and deletion. The timing measure is the average exe-
cution time per operation in micro seconds (hence, smaller values indicate a better
performance).

Figure 9 visualizes the measurement provided in Table 3 in terms of performance
improvements relative to XOTcl 1.6.0 (index: 100). The higher the indices, the more
substantial is the relative improvement. The chart shows that NX is 4.5 times faster
than XOTcl 1.6.0 for the OO Shootout methcall probe, both running Tcl 8.5.10. The
methcall performance of NX 2.0 under Tcl 8.6b2 slightly decreases. Despite this, both
NX probes give the best result. The methcall script used for XOTcl 1.6.0 and for XOT-
cl 2.0 are the same (i.e., the new language features of XOTcl 2.0 are not used). For Tcl
8.5.10, XOTcl 2.0 is about 26% faster than XOTcl 1.6.0. The object creation and object
deletion probes draw a similar picture. NX is the fastest under Tcl 8.5.10. TclOO ap-
pears to be especially slow on destroying objects, both under Tcl 8.5.10 and Tcl 8.6b2.

Proceedings of the Tcl 2011 195 Manassas, VA October 24-28 2011

Figure 9. Performance Improvements (relative to XOTcl 1.6.0) on the OO
Shootout Benchmark, Object Creation and Deletion.

The second set of measurement probes aims at capturing the execution timings of
method dispatches for different parameter handling and argument parsing tasks. The
method implementations used as probes have trivial bodies (no-ops might be treated
differently by the byte-code compiler). The first probe, args0, is a method without
parameters. The method args3 specifies three positional parameters, np2 expects
two non-positional parameters and np2args3 has two non-positional and three po-
sitional parameters. None of the parameter specifications in these probes contains
parameter value constraints, which would have to be scripted in XOTcl 1.6.0 and
TclOO, inducing a considerable performance penalty.

nx::Class create C {
:public method args0 {} {return 1}
:public method args3 {x y z} {return $x}
:public method np2 {{-a 10} {-b 100}} {return $a}
:public method np2args3 {{-a 10} {-b 100} x y z} {return $x}

}
#
Measuring the following method invocation on instance "c1" of class "C":
c1 args0
c1 args3 1 2 3
c1 np2
c1 np2args3 -a 20 -b 200 1 2 3

Table 4 presents the collected probe throughput in terms of calls per seconds (higher
numbers are better). The results are illustrated as a chart in Figure 7. XOTcl 2.0 is
not reported separately in this test since it builds upon the same parameter/argument
handling infrastructure as NX. The NX timings apply to XOTcl 2.0. Also, the compar-
ison for non-positional parameter handling does not cover TclOO, since it does not
feature a built-in implementation for non-positional parameters. A pure Tcl imple-
mentation would be substantially slower.

Proceedings of the Tcl 2011 196 Manassas, VA October 24-28 2011

Table 4. Calls per Seconds on Method Dispatches

NX 2.0
Tcl 8.5.10

NX 2.0
Tcl 8.6b2

XOTcl 1.6.0
Tcl 8.5.10

TclOO 0.6
Tcl 8.5.10

TclOO 0.6.3
Tcl 8.6b2

args0 3,074,463 2,113,561 1,360,003 2,499,743 1,942,890

args3 2,609,651 1,815,349 1,175,925 2,069,303 1,711,060

np2 2,198,836 1,553,550 481,428 n.a. n.a.

np2args3 1,440,079 1,116,283 250,525 n.a. n.a.

Figure 10 provides a graph with values of Table 3 illustrating the performance index
against XOTcl 1.6.0 (which has for every test a performance index of 100). These tests
show that especially for non-positional argument handling NX improves substantially
over XOTcl 1.6.0, by factors of up to 5.75. NX shows the best performance profile for
all parameter handling tests. Similar to the methcall probes above, when NSF is com-
piled against Tcl 8.6b2, the parameter handling performance degrades significantly
as compared to the same NSF version built against Tcl 8.5.10.

Figure 10. Performance Improvements on Method Dispatches (as compared to
XOTcl 1.6.0)

Summary and Availability
For this paper, we were motivated to present a comprehensive overview of the fea-
tures of the Next Scripting Toolkit, and the Next Scripting Language (NX) in partic-
ular. We gave a first insight into advancements for the NX concrete syntax (i.e., init
blocks and the colon prefix) and discussed the basics of object and method parame-
ters. The overview was completed by walking the reader through the enhancements
for defining behavioral features of objects, i.e., method aliasing, method ensembles,

Proceedings of the Tcl 2011 197 Manassas, VA October 24-28 2011

and method call protection. The interplay of these features was demonstrated by in-
troducing NX traits as an important composition technique. We concluded by hinting
at developer support tools (e.g., DTrace) and at first libraries realized for NX, most
importantly a MongoDB binding for NX.

NSF, NX and XOTcl 2.0 will become publicly available at the time of the Tcl/Tk 2011
Conference from http://next-scripting.org/.

References
• [1] Bracha G. (2004): Pluggable Type Systems. In Proceedings of the

OOPSLA’04 Workshop on Revival of Dynamic Languages (RDL 2004).

• [2] Clarke S., Becker C. (2003): Using the Cognitive Dimensions Framework
to evaluate the usability of a class library. In Proceedings of the 15h Workshop
of the Psychology of Programming Interest Group (PPIG 2003), Keele, UK
(pp. 359—336).

• [3] Neumann G., Sobernig S. (2009): XOTcl 2.0 — A Ten-Year Retrospective
and Outlook. In Proceedings of the Sixteenth Annual Tcl/Tk Conference,
Portland, Oregon, 2009. Tcl Association.

• [4] Neumann G., Zdun U. (2000): XOTcl — An Object-Oriented Scripting
Language. In Proceedings of the 7th USENIX Tcl/Tk Conference (cl2k),
Austin, TX, USA, 2000.

• [5] Fellows D.K. et al. (2008): Object Orientation for Tcl. TIP#257, finalized
in September 2008. URL http://www.tcl.tk/cgi-bin/tct/tip/257.html.

• [6] Ducasse S., Nierstrasz O., Schärli S., Wuyts R. , Black A. P. (2006): Traits:
A mechanism for fine-grained reuse. ACM Trans. Program. Lang. Syst. 28(2):
331-388 (2006).

• [7] Zdun U., Strembeck M., Neumann G. (2007): Object-Based and Class-
Based Composition of Transitive Mixins, Information and Software Technol-
ogy, 49(8) 2007.

• [8] Fowler M. (2009). Language Workbenches: The Killer-App for Domain
Specific Languages? http://www.martinfowler.com/articles/languageWork-
bench.html, last accessed: July 7, 2009, 2005

• [9] Cohen T., Gil, J. (2007): Better Construction with Factories. Journal of
Object Technology, 6(6), 103—123.

• [10] Fowler, M. (2003): Refactoring - Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Proceedings of the Tcl 2011 198 Manassas, VA October 24-28 2011

• [11] Renner P., Rauschmayer A. (2005): TUBE - Structure-Orientation in
a Prototype-Based Programming Environment. In Proceedings of the 2005
International Conference on Programming Languages and Compilers, PLC
2005, Las Vegas, Nevada, USA, June 27-30, 2005 (pp. 194-200). CSREA
Press.

• [12] Fähndrich M., Leino, K. R. M. (2003): Declaring and Checking Non-null
Types in an Object-Oriented Language. In Proceedings of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Lan-
guages, and Applications (OOPSLA 2003), Anaheim, California, USA, New
York, NY, USA, 2003 (pp. 302-312). ACM.

• [13] Schärli N., Black A. P., Ducasse S. (2004): Object-oriented Encapsulation
for Dynamically Typed Languages. In Proceedings of the OOPSLA’04. ACM.

• [14] Buschmann, F. & Henney, K. (2003). Explicit Interface. In Proceedings
of EuroPLoP 2003, Irsee, Germany, 2003.

• [15] Sobernig, S., Gaubatz, P., Strembeck, M., & Zdun, U. (2011). Comparing
Complexity of API Designs: An Exploratory Experiment on DSL-based
Framework Integration. In Proceedings of the 10th International Conference
on Generative Programming and Component Engineering (GPCE’11), Port-
land, OR, USA, 2011.

• [16] White, I. (2009). How This Web Site Uses MongoDB, URL:
http://www.businessinsider.com/how-we-use-mongodb-2009-11, last ac-
cessed: October 8, 2011.

Proceedings of the Tcl 2011 199 Manassas, VA October 24-28 2011

Proceedings of the Tcl 2011 200 Manassas, VA October 24-28 2011

Tcl 2011

Manassas, VA

October 24-28, 2011

Tcl Google Summer of Code 2011

Proceedings of the Tcl 2011 201 Manassas, VA October 24-28 2011

Proceedings of the Tcl 2011 202 Manassas, VA October 24-28 2011

Tcl/GSoC 2011

Andreas Kupries ActiveState Software Inc. 409 Granville Vancouver, BC CA

andreask@ActiveState.com

ABSTRACT
As in previous years the Tcl Community took again part in
Google’s Summer Of Code[1], under the auspices of the Tcl
Community Association[2].

1. OVERVIEW
Google’s Summer Of Code[1] (short: GSoC) is a global

program that offers student developers stipends to write
code for various open source software projects. The Tcl
Community participated again this year, for the fourth time
in a row. As in previous years this participation was man-
aged by the Tcl Community Association[2] (short: TCA)
as the mentoring organization, the same organization which
runs the US Tcl Conferences, like this one.

The main entrypoint to the program for the community
itself can be found on the Tcler’s Wiki [8].

2. PAST
Starting in 2007, we applied five times, and were accepted

four times, with only our very first application not getting
accepted by Google. This year was our fifth application and
fourth participation.

Through negotiations by previous program administrators
we usually got just shy of 10 slots for our projects[8], with
our usual argument the fact that the Tcl Community Asso-
ciation[2] acts as an umbrella for smaller organizations with
Tcl related projects. An example for this is the aMSN chat
client[3]. This dropped a bit last year. The full statistics for
the past years[4] are shown in table 1 below.

2006 2007 2008 2009 2010
Students 630 950 1125 1000 1026
Organizations 102 >130 175 150 150
Average 6.18 <7.31 6.44 6.66 6.84
Tcl - - 9 9 7

Table 1: Statistics of past four years

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tcl ’2011 Manassas, VI, USA
.

3. PRESENT
Matthew Burke[6], our program administrator of the past

years served as a backup this year, with me moving from
backup to the main position.

In the slot allocation game/roulette we got seven slots,
the same as last year, and a similar tick above the average,
as can be seen in table 2 for the final statistics[4] below.

2011
Students 1115
Organizations 175
Average 6.37
Tcl 7

Table 2: Final statistics for 2011

Our projects for this year are listed in table 3 1 on the next
page, with larger descriptions in the upcoming sections. The
overall timeline we followed is shown in table 4.

3.1 W3C Widgets Compliant Content Pack-
aging for XoWiki/OpenACS

[10] by Michael Aram
Mentor: Gustaf Neumann

Content packaging has
the purpose to provide
a platform and renderer-
independent interchange

format for a set of resources (content). Content packaging
has high relevance for content exchange, i.e. for reusing and
sharing content among different platforms. In the area of
learning management systems content packaging has a long
tradition, where a range of standards has evolved over the
last years and decades (for example the SCORM or Common
Cartridge, which both profile a generic packaging format).
Although content packaging is getting increasingly more im-
portant as evermore learning resources become available, the
e-learning community is rather small compared to the over-
all web development community. With the rise of rich In-
ternet applications and mobile apps, several alternative ap-
proaches for rich content distribution have been developed
outside of the e-learning communities: small, web-based
applications/web-content packages commonly referred to as
”widgets”. One reason for the high interest in widgets is
that major vendors developed user agents integrated into
operating systems and web-based platforms. However, com-
pared to the respective standards in the e-learning world,
these new packaging standards are in several respects even
more restricted, i.e. less powerful. On the other hand, they

1The same table can also be found at[9]

Proceedings of the Tcl 2011 203 Manassas, VA October 24-28 2011

Student Project Mentor
Michael Aram W3C Widget Packaging Standard Compliant

Content Packaging Infrastructure for OpenACS
Gustaf Neumann

Krzysztof Kwasniewski Debugging tools for NRE Miguel Sofer
Michal Poczwardowski Tcl Plugin for Netbeans Arnulf Wiedemann
S. M. Saurabh Extending and Evolving CRIMP Kevin Kenny
Lars Hellstrom stasher: Tcl Obj intRep as cache also at script

level
Donal Fellows

George Andreou Create a binding to the Hwloc library Andreas Kupries
Saurabh Kumar Micro-benchmarking extension: access to CPU

performance counters
Edward Brekelbaum

Table 3: 2011 Projects, Students, and Mentors

January 24 Program announced.

Organizations

February 28 Organization application window opens.
March 11 Deadline for organization applications.
March 14-17 Submission review.
March 18 Publication of accepted organizations.

Students

March 18-27 Discussion of ideas between students and organizations.
March 28 Student application wind opens.
April 8 Deadline for student applications.
April 10-21 Organizations rank and review student applications.
April 22 Ranking/scoring deadline. Mentor sign-up deadline.
April 25 Publication of accepted students.

Coding

Community bonding sudents to mentors.
May 23 Coding period starts.
July 11-15 Mid-term evaluations.
August 15 Soft-end of coding. Scrub code, test, document.
August 22 Hard end of coding period.

Post-Mortem

August 22-26 Final evaluations.
August 29 Final results announced.
August 30 Students can begin submitting the require code samples.
October 22-23 Mentor Summit at Google.
October 24-28 Tcl Conference At Manassas

Table 4: 2011 Timeline

provide some aspects, which the e-learning standards have
not tackled at all yet (e.g. Device APIs). In sum, the inves-
tigation of the overlaps and differences between these worlds
seems to be worthwhile.

In general, the content packages described so far are typ-
ically deployed as a single (archive) file and hold some form
of configuration / manifest file describing the content. In
addition to that, the packaged content might be allowed to
use some form of API provided by the run time environ-
ment. Hence, from a technical perspective, there is a range
of aspects within this ”content packaging field” that could
be abstracted from the different standards into a generic
implementation. As a consequence, the standard specific
content packages could be generated by specializations of
this universal component.

The main goal of the project was to write an OpenACS
package for generating W3C widgets out of learning mate-
rials that reside within OpenACS and its major content au-
thoring tool XoWiki. Moreover, the package aims to provide
means to also generate content packages adhering to other
important (vendor specific) formats. As a result, the Ope-
nACS package ”xocp” has been created in the course of the
GSoC. In a nutshell, the xocp package provides an infras-
tructure for generating content packages that comply with

various specifications, for example ”W3C Widgets”, ”Opera
Widgets” or ”SCORM”. In general, ”xocp” acts as a ”back-
end” API to be used by other packages or by developers. In
particular, ”xowiki” is considered to be the main authoring
environment for end users and a focus is put on the packag-
ing of XoWiki-based content (e.g. wiki text books).

3.2 Debugging tools for NRE

[11] by Krzysztof Kwasniewski
Mentor: Miguel Sofer

The Tcl core has be-
come a lot harder to de-
bug since NRE’s adop-
tion. The problem is in-

trinsic to the nature and goals of the NRE: C keeps a stack
of “who called me” frames, NRE does its best to replace it
with a stack of “who do we call next” callbacks. But

1. Most debugging tools like gdb are designed for C.

2. Bug analysis requires understanding the path that leads
to failure, not so much what would have happened af-
ter that.

Tcl on the other hand is a lispy language built onto C -
a 100procedural substrate. The NRE is a mechanism that
enables features like coroutines and proper tailcalls.

Proceedings of the Tcl 2011 204 Manassas, VA October 24-28 2011

All’s well when all’s well, but when things go boom in the
night the tools designed for C get lost too. Today the only
way to understand what is happening is a tedious manual
inspection of the NRE stack, which allows the deduction
of the execution history if there were no intervening tail-
calls. It is hard work that requires a lot of concentration
and knowledge of the internals.

The extension to Gdb developed over the summer has the
following capabilities:

1. Allows inspection of the NRE stack in a way more less
similar to what Gdb offers for the C stack.

2. Parses and displays Tcl Obj structures as strings. When
a Tcl Obj has its string representation, that one is
used, however sometimes only the internal representa-
tion is present and in that case for the most common
Tcl Obj structures the string representation is created
on the basis of the internal representation.

3. Displays the contents of the Tcl HashTable structure.

4. Currently the best way of extending Gdb requires us-
ing Python and that is why my extension was devel-
oped with that language. Many Gdb users would how-
ever much rather use another languages of their choice
for developing extensions to Gdb, like Tcl. For that
reason I have also developed IO channels enabling a
user to extend Gdb with virtually any programming
language.

For more information on the capabilities and limitations
of my project, please read the documentation available in
the project’s repository [12].

The code will be maintained until at least the end of the
next edition of the GSoC program unless earlier many sig-
nificant changes are introduced to the extension by someone
else, in that case I may not be able to maintain the code.
During the time of the maintenance I will fix all the bugs
found in the extension.

I will try to commit some time for adding new functions to
the extension providing I get any ideas for further develop-
ment from the community - in this sense the future of this
extension also depends on the Tcl community. The exact
amount of time spent on the further development is hard to
assess.

To sum the above up - I will try to support this extension
for at least a year and providing someone will use and need
it, this period may be extended.

3.3 Tcl Plugin for Netbeans

[13] by Michal Poczwardowski
Mentor: Arnulf Wiedemann

Tcl is available as a
plugin for Eclipse, it
would be helpfull to also
have the same functions

within netbeans.
The student would research how to write a plugin for net-

beans and how to use available features like execution trace
to drive debugging for Tcl within netbeans.

Netbeans for Tcl has been successfully brought to ver-
sion 1.0, which can be downloaded from the netbeans plu-
gin page. The student (Michal) has proposed to do further
work on the Plugin, especially for Itcl which is not really
functioning yet. And he will do bug fixes. Additionally he
plans to add autocompletion for editing and maybe other
features like debugging for itcl in javascript.

3.4 Extending and Evolving CRIMP

[14] by S. M. Saurabh
Mentor: Kevin Kenny

CRIMP, aka ”C Raster
Image Manipulation Pack-
age”, is a package for im-
age processing with Tcl.

While it already provides the most basic algorithms it has
not much of advanced or very advanced algorithms.

This project aimed at extending the package with more
algorithms.

The project resulted in the addition of edge detection al-
gorithms (Canny Sobel/Deriche), noise generators of vari-
ous types, Wiener-based denoising, and the beginnings of
FFT/LPT-based affine image registration. As part of the
latter we got implementations of the log-polar transform
(LPT) and a new image type for “complex” images, with
associated operations.

Next up are the completion of the image registration func-
tionality, and working on integrating the new pieces with the
changes coming from my own work with the not-yet-released
critcl v3.

3.5 stasher: Tcl Obj intRep as cache also at
script level

[15] by Lars Hellström
Mentor: Donal Fellows

The aim of this project
is to make Tcl’s inter-
nal mechanism of dual-
ported Tcl Obj’s (which

cache information about a value for fast access) available at
the script level.

The stasher package has reached a point of being fully
functional and stable. It is possible that further develop-
ment will happen, in particular concerning making use of
TclOO classes, but first more experience should be gath-
ered of using the current interface; it may well turn out to
be sufficient for what one would do in practice. The imme-
diate focus will instead be on producing utility commands
that make use of stashers to accelerate argument parsing.

3.6 Create a binding to the Hwloc library

[16] by George Andreou
Mentor: Andreas Kupries

This is a larger idea
spun out of the idea for
extending CRIMP, no-
tably the ticket propos-

ing to enhance the package’s performance through paral-
lelization and/or threading. As a foundation for that we
need some introspection into the machine Tcl runs on, i.e.
number of processors, cores per processor, threads per core,
etc.

The HWloc library, aka ”Portable Hardware Locality”
provides all this information, and more. As such it is nat-
ural to create a Tcl binding for it to lift the information it
provides up to the level of scripts.

The project was successful, creating a draft binding to the
most important pieces of hwloc’s functionality, i.e. creating,
reading, and writing of topologies, navigation, plus CPU
and memory binding of threads and processes.

Currently still left is the writing of proper documentation
and test suite before a 0.1 release can be made. When that is
done people working with the Thread package, thread pool
implementations and the like should start working with the
binding, to determine if the API as is is useful to them, like
for sizing a thread pool to the available resources or multiple
thereof, pinning threads of the pool to processing units, etc.

Proceedings of the Tcl 2011 205 Manassas, VA October 24-28 2011

3.7 Micro-benchmarking extension

[17] by Saurabh Kumar
Mentor: Edward Brekelbaum

The goal of this project
is to design and imple-
ment a Tcl extension
with commands to inter-

act with the CPUs harware counters. Initially the goal is to
code an extension that works under Linux using its infras-
tructure for performance counters.

If time permits, we will research the possibility of porting
the extension to Windows and/or OSX. This will entail find-
ing out about interfaces analogous to the Linux Performance
Counters, (possibly) redesigning parts of the extension’s C-
code so that it can be configured to work with the three
different APIs, and coding a portable extension.

The project was a success and the support for the Linux
and Windows operating systems is in working condition. For
Linux, the “Performance Application Programming Inter-
face” library [18] has been used to gain access to the CPU
counters and the results are very precise and accurate for the
latest Linux kernels. The support for Microsoft Windows is
based on the “Performance Inspector” [19] and is not as ac-
curate as the Linux version. The typical events which can
be traced using the extension include various cache events,
number of different type of CPU instructions, total number
of CPU cycles etc.

Currently we do not see an obvious way to implement the
utility for Mac OS and we will try to find a way to go about
it in future. We will also try to make the output data for
Windows OS more precise.

4. FUTURE
For a mentoring organization Google’s Summer Of Code[1]

is pretty much a year-round operation. Simply look back at
the timeline (Table 4 on the previous page).

Next up in this cycle is starting the preparations for 2012,
i.e., updating our application[7], restarting the collection of
project ideas, and reaching out to prospective students and
mentors in general. The last point is one of the more im-
portant things to do, not only for us as a mentoring organi-
zation, but for the Tcl community at large too, to make a
general effort of spreading awareness of Tcl and its commu-
nity as a viable (and fun) scripting language which doesn’t
has to hide.

APPENDIX
A. REFERENCES
[1] Google, GSoC.

http://socghop.appspot.com/

[2] Tcl Community Association.
http://www.tclcommunityassociation.org/

[3] aMSN.
http://www.amsn-project.net/,
http://wiki.tcl.tk/12783

[4] GSoC Statistics. http://code.google.com/p/
google-summer-of-code/wiki/ProgramStatistics

[5] Andreas Kupries.
http://wiki.tcl.tk/26

[6] Matthew Burke.
http://www.seas.gwu.edu/∼mmburke/

[7] Tcl Org Application 2011.
http://wiki.tcl.tk/27864

[8] Google Summer Of Code on Tcl’ers Wiki.
http://wiki.tcl.tk/25801

[9] GSoC 2011 Executed Projects.
http://wiki.tcl.tk/28291

[10] W3C WPS Compliant Packaging Infrastructure for
OpenACS, Michael Aram.
http://wiki.tcl.tk/28188 Idea,
http://wiki.tcl.tk/28538 Execution

[11] Debugging tools for NRE, Krzysztof Kwasniewski.
http://wiki.tcl.tk/28091 Idea,
http://wiki.tcl.tk/28334 Execution

[12] NRE Source Repository
http://chiselapp.com/user/krzykwas/repository/

nredebug1/index

[13] Tcl Plugin for Netbeans, Michal Poczwardowski.
http://wiki.tcl.tk/28110 Idea,
http://wiki.tcl.tk/28292 Execution

[14] Extending and Evolving CRIMP, S. M. Saurabh.
http://wiki.tcl.tk/27866 Idea,
http://wiki.tcl.tk/26953 Execution

[15] stasher: Tcl Obj intRep as cache also at script level,
Lars Hellstrom.
http://wiki.tcl.tk/28288 Idea, Execution

[16] Create a binding to the Hwloc library, George
Andreou.
http://wiki.tcl.tk/28167 Idea,
http://code.google.com/p/tcl-hwloc Execution

[17] Micro-benchmarking extension: access to CPU
performance counters, Saurabh Kumar.
http://wiki.tcl.tk/28157 Idea,
http://code.google.com/p/tcl Execution

[18] Performance Application Programming Interface
http://icl.cs.utk.edu/papi

[19] Performance Inspector
http://perfinsp.sourceforge.net

Proceedings of the Tcl 2011 206 Manassas, VA October 24-28 2011

http://socghop.appspot.com/
http://www.tclcommunityassociation.org/
http://www.amsn-project.net/
http://wiki.tcl.tk/12783
http://code.google.com/p/google-summer-of-code/wiki/ProgramStatistics
http://code.google.com/p/google-summer-of-code/wiki/ProgramStatistics
http://wiki.tcl.tk/26
http://www.seas.gwu.edu/~mmburke/
http://wiki.tcl.tk/27864
http://wiki.tcl.tk/25801
http://wiki.tcl.tk/28291
http://wiki.tcl.tk/28188
http://wiki.tcl.tk/28538
http://wiki.tcl.tk/28091
http://wiki.tcl.tk/28334
http://chiselapp.com/user/krzykwas/repository/nredebug1/index
http://chiselapp.com/user/krzykwas/repository/nredebug1/index
http://wiki.tcl.tk/28110
http://wiki.tcl.tk/28292
http://wiki.tcl.tk/27866
http://wiki.tcl.tk/26953
http://wiki.tcl.tk/28288
http://wiki.tcl.tk/28167
http://code.google.com/p/tcl-hwloc
http://wiki.tcl.tk/28157
http://code.google.com/p/tcl
http://icl.cs.utk.edu/papi
http://perfinsp.sourceforge.net

Tcl 2011

Manassas, VA

October 24-28, 2011

Applications II

Proceedings of the Tcl 2011 207 Manassas, VA October 24-28 2011

Proceedings of the Tcl 2011 208 Manassas, VA October 24-28 2011

A Novel Method for Representing Hierarchies in a Relational
Database Using Bignums and SQLite

Stephen Huntley
stephen.huntley@alum.mit.edu

Abstract

I introduce a method of using a rapidly-converging infinite series to generate integer
values which, when stored in relational database table rows, act as tags allowing each
row to be interpreted and queried as a node in a hierarchy. To overcome integer
precision limitations, I use Tcl 8.5's Bignum feature and tcllib's math::bigfloat package. I
use SQLite's ability to store arbitrary binary data in its BLOB data type to manage
overflow precision digits. The resulting code provides a fast and efficient way to store
and query tree-structure data of theoretically unlimited size.

1. Introduction

It is natural for beginners as well as for
experienced computer programmers to wish
to organize and store information in the form
of hierarchies, or tree structures. The
filesystem on every modern computer is the
most straightforward and ubiquitous example.
Most users grasp and appreciate the utility of
hierarchical file storage immediately.

Power users are also generally familiar with
the frustration of trying to find particular files
or file types in a directory structure, only to
be faced with long waits as the computer
grinds through a recursive search of the
directory space.

The tree-structure data type is widely used for
a variety of computer data-processing tasks
beyond file storage. LDAP, OLAP, XML, 3D
scene graphs, and network spanning trees are

a few examples of technologies which
organize data into hierarchies. The sizes of
the datasets utilized by means of these
technologies have typically grown
enormously over the past several years, a
trend consistent with datasets of nearly every
type. What has not grown is the efficiency of
algorithms used to query and retrieve
information in these datasets. The approach
still used in the overwhelming majority of
cases is recursive search. Recursive search is
a viable method for querying small to
medium-sized datasets, but the technique does
not scale, and performance of such searches
on very large databases is becoming
unacceptable even on the most advanced
hardware.

This paper introduces a new method for
parametrizing, storing and searching
hierarchical information that eliminates the
need for recursive approaches for the most

Proceedings of the Tcl 2011 209 Manassas, VA October 24-28 2011

common search query types applied to trees.
I also present details of a prototype executed
with the help of advantageous features of Tcl
8.5 and the relational database extension
TclSQLite.

Certain techniques described in this paper are
covered by US patent #7,769,781, granted to
the author.1

2. Hierarchies and Relational
Databases

Although the method herein described is
generally applicable to any linear or tabular
data storage method, this presentation and the
prototype focus on application to the problem
of storing tree-structure data in a relational
database.

The conundrum of storage and querying of
tree-structure data in RDBMS programs has
been a topic of persistent interest for many
years.2 The relational database is, generally
speaking, the most powerful and flexible tool
available to the mainstream programmer for
dealing with large datasets. The presumed
advantages of using a SQL-powered RDB
package in this field have seemed self-evident
for decades, but implementation issues have
bedeviled almost everyone who has tried it for
sizable datasets.

The obvious approach is simply to assign a
unique number to each record in a database
table that represents a node in the hierarchy,
and define a “parent” field in the table schema
to contain the unique number of the node
linked one level up in the hierarchy from the
node represented by the record. Thus finding
a node's “children” is simply a matter of
querying all records whose “parent” field
contains the identifying number of the node of
interest.

The problem comes when one wants to search
all the linked nodes on the levels below a
given node, an entire sub-tree. In that case,
it's necessary first to retrieve all of a node's
children, then all of those children's children,
and so on recursively. A single complete
search of this type might require thousands of
individual read actions on the database, which
is likely to take an unacceptably long time.

To get around this problem, the concept of
“nested sets” was devised in the early
nineteen-nineties. To use this method, each
node is assigned an “entry” integer and and
“exit” integer. The range of these numbers
defines the set of integers lying between
them. Every descendant of a given node is
assigned entry and exit numbers which lie
within the range of the given node's set. With
these parameters defined for each node,
querying all descendants of a node is then a
simple matter of finding all nodes whose
entry and exit numbers lie within the given
node's defined range, which can be done with
a single properly-crafted SQL statement.

This approach proves impractical, however,
unless the tree structure is completely defined
in advance and is expected not to change, or
change very little; because adding a node to
the hierarchy requires recalculating and
rewriting some of the other nodes' entry and
exit numbers. In a worst case most or all of
these parameters may need to be rewritten,
and the performance cost of so many write
actions to a database is likely to be
unacceptable.

One may hit upon the solution of using non-
consecutive integers in entry and exit integer
numbering; e.g., using multiples of five.
There would then be room to add up to three
more children to any given node before
forcing the need for a recalculation and

Proceedings of the Tcl 2011 210 Manassas, VA October 24-28 2011

file:///home/blacksqr/FILTR/us.antipode/projects/tcl/nodes/
file:///home/blacksqr/FILTR/us.antipode/projects/tcl/nodes/

rewrite. But this simply delays the reckoning.

Over the past two decades a number of
proposals have been made to generalize the
nested sets approach with more sophisticated
means of generating entry and exit intervals,
using complex parametrizing equations.
None has proved workable or popular in
practice for a number of reasons; including
insufficient capacity to describe very large
sets of nodes within available precision of
integers storable in database table fields, and
difficulty in expressing the necessary math in
the form of SQL queries.

3. Solution Parameters

Existing solutions impose performance and/or
capacity limitations on the size of hierarchies
that can be stored. The bottlenecks they
impose may have been considered
manageable with the small to moderate-size
datasets typical of the past, but they quickly
become unacceptable when trying to deal
with contemporary data processing challenges
involving very large dataset sizes.

Hardware and supporting software limitations
will always make it impossible to store or
process hierarchies of perfectly unlimited
size, but a near-optimal improved method
would impose minimal additional bottlenecks.
The performance of the method would thus be
close to the performance limitations of the
underlying RDBMS itself.

An improved method would impose minimal
performance penalties on adding nodes to a
tree structure that will inevitably grow and
change in the course of real-world use. It
would also preferably be relatively simple to
implement and to design SQL queries that
put it into action.

The solution proposed here, in addition to
approaching the above goals, has the
additional advantages of not requiring
complex schemas or extra record-keeping
tables, and of employing simple integer
parameters that can be indexed in a
straightforward fashion using well-known
database management practices.

4. An Infinite Series for Generating
Hierarchy Tags

To tag records in a database table as nodes in
a hierarchy, I employ an infinite series
specially crafted to converge very quickly; by
assigning a term of the series in increasing
order to each node descending down the tree,
each branch of the hierarchy defines a unique
partial series subset of the infinite series, and
each node can be assigned a value
representing the sum of terms of itself plus its
ancestors in the partial series it belongs to.

Since the infinite series is designed to
converge very quickly, the sums assigned to
all nodes in a given branch of the tree can be
guaranteed to fall between all the sums of
nodes in adjacent branches. The quick
convergence ensures that the limits of partial
sums of the series can be strictly ordered
according to the size of the first term of the
partial sum; that is, the sum of a partial series
will never overlap any value of another series
whose first term's sum is greater, no matter
how many terms are added to the initially
lesser sum.

The greatest difficulty in designing this
method was finding an infinite series that
converged fast enough to guarantee non-
overlap of values in adjacent partial series. At
the same time the series needed not to
converge so fast that the precision of the sum
parameter was exhausted before a sizable tree

Proceedings of the Tcl 2011 211 Manassas, VA October 24-28 2011

could be defined. In the end I could not find a
suitable simple series with a standard linear-
progressing index value.

Ultimately I had to design a double-indexed
infinite series and use traits of the nodes
themselves as indexes for the element
function. That is, one of the indexes of the
series is the depth level of the node in the
hierarchy, and the other is the node's place in
the count of its “siblings” (nodes with the
same parent).

This approach ensures that available precision
is doled out suitably depending on whether a
child or a sibling is being added to a given
node, always allowing for appropriate room
for growth of the tree overall.

As far as I am aware, incorporating actual
traits of the node as inputs into the interval-
generating function is an innovation unique in
the field.

The equation, expressed in standard form, is
shown in Equation 1:

 ∞ ∞

 ∑ ∑
 m=0 n=1

{m = 0 0
m >= n 0
m < n 1 /2 n−1∗ 3m−2 

Eq. 1

In Equation 1, the index m represents the
node's level, and n represents the node's place
in the sibling count. (More precisely, n is an
“inheritance count,” the first child of a node
gets the node's n value plus one, so the count
always increases as children and additional
descendents are added to the tree.)

Since there is no general method for
calculating the limit of convergence for an

infinite series with transcendental terms in the
element function, the conclusion that
Equation 1 will always converge with
sufficient speed is purely heuristic. Extensive
testing has shown this always to be the case in
practice.

When a node is added to the hierarchy,
Equation 1 is used to calculate a term value
for the node. Neither index value need be
globally unique, so the term value may not be
either. What is unique for the node is the sum
of its term value together with the values of
its ancestor nodes. It is this sum that is stored
in the database record as a numerical tag
uniquely descriptive of the node's place in the
hierarchy.

A column of hierarchy tags so generated in a
database table makes searching a sub-tree
quite simple. An ancestor node's descendents
are identified simply as nodes whose tag
value is greater than the ancestor and less than
the ancestor's nearest older sibling (“older”
meaning having a smaller inheritance index
number). The SQL query to accomplish this
is simply a single-pass search for numeric
values that fall within a defined range. No
special joins, views or caches need be
employed. This is just about the fastest kind
of search a relational database can perform,
and of course the column of tag values can be
indexed for maximum speed.

Adding nodes to an already-established tree is
straightforward as well. One simply needs to
know the level of the parent to receive the
new node as a child, and the inheritance
number of the current youngest child of the
parent. Equation 1 automatically produces a
value which, when added to the parent's node
sum, produces a new node sum that can be
written directly to the database table and is
guaranteed to conform to the existing

Proceedings of the Tcl 2011 212 Manassas, VA October 24-28 2011

hierarchy scheme.

5. Prototype

In order to test the capabilities of this method,
I developed a prototype program using Tcl 8.5
and the TclSQLite extension.3 Tcl and SQLite
were good complimentary choices to form a
platform on which to build the prototype.
SQLite is both easy to use and fast, and can
handle very large datasets. SQLite also has
the ability to store and process integer values
of up to sixty-four bits in length -- that much
available precision makes it possible for
numbers generated by the method to describe
very large sets of nodes. And given that
calculation of numbers of such bit lengths
made extra-precision mathematical
calculations necessary, Tcl 8.5's new feature
supporting native bigints in the core proved
very useful, both directly for integer
calculations and indirectly via its utilization in
the tcllib::bigfloat package.

5.1 Implementation Example

Figure 1 illustrates a small sample hierarchy
showing eight numbered nodes along with
their level and inheritance number parameters
in parentheses (m,n).

1. (0,1)
 2. (1,2)

3. (2,3)
4. (2,4)

5. (3,5)
6. (1,3)

7. (2,4)
8. (2,5)

Fig. 1: Sample hierarchy

The process of preparing this hierarchy for
storage in a SQLite database table starts with
feeding each node's (m,n) parameters into
Equation 1 to produce a term value to
associate with the node. The term values
clearly need not be unique.

t(1)= 0
t(2)= 0.5
t(3)= 0.1407857163281744654
t(4)= 0.0906152944101931834
t(5)= 0.0255328320537928796
t(6)= 0.3752142272464817736
t(7)= 0.0906152944101931834
t(8)= 0.0625

Fig. 2: Term values

Each node's term value is then added to the
term values of its ancestors; e.g., node 5's
value is added to the values of node 4 and
node 2. The result is a unique numerical tag
for each node which is unambiguously
descriptive of its place in the hierarchy. For
example, node 5 is known to be a child of
node 4 because its node sum is greater than
node 4's but less than node 3's. Because
Equation 1 converges so rapidly, one could
create unlimited descendents in this way for
node 5, and those descendents' node sums
would always be less than node 3's sum.

In order to take advantage of fast integer
processing, the floating-point node sums are
converted to integers by taking their fractional
parts (with suitable precision-preserving zero-
padding) and storing those in fields of a
SQLite database table.

Proceedings of the Tcl 2011 213 Manassas, VA October 24-28 2011

file:///home/blacksqr/FILTR/us.antipode/projects/tcl/nodes/

s(1)= 0
s(2)= 0.5
s(3)= 0.64078571632817447
s(4)= 0.59061529441019318
s(5)= 0.616148126463986
s(6)= 0.3752142272464817736
s(7)= 0.465829521656674957
s(8)= 0.43771422724648177

Fig. 3: Node sums

If then for example one wanted to retrieve all
the descendents of node 6, one could use a
simple SQL statement looking something like
(sums truncated for clarity):

SELECT sum WHERE sum>3752
AND sum<5000

Clearly this query would return the sums
associated with nodes 7 and 8, as desired.

6. Handling Node Distribution
Limitations

With sixty-four bits of precision to work with,
this method can easily be applied to
hierarchies of tens of millions of nodes. It
should be able to accommodate just about any
data tree one is likely to come across in
practice.

But the limited precision of integer storage in
SQLite tables does impose some limitations
in how nodes in a tree can be distributed. For
example, no more than thirty-seven levels of
depth can be described using this method
before available precision runs out. In
practice one is unlikely to encounter a tree
with more than thirty-seven levels. But there
may be pathological instances where this is
the case. One would not wish to invest the

time bringing this program into a real-world
application only to find out in the midst of
importing that ones dataset could not be
accommodated. And what of the likely
characteristics of the datasets of the next
generation?

In order to eliminate inherent barriers to use
of the prototype program for arbitrary
hierarchies, I added a feature that makes it
possible to encode and store any conceivable
tree-structure dataset, up to the performance
limitations of the database itself.

6.1 Overflow Precision Storage

SQLite has a BLOB (Binary Large Object)
datatype which allows storage of arbitrary
binary data. In order to accommodate trees of
theoretically any size or node distribution, the
prototype program adds a field to its table
schema of the BLOB type, which is used to
store extra precision digits in the form of
binary data where necessary, without
limitation as to length.

The Tcl code, when calculating the node sum
for a new child, detects whether 64-bit
precision has been exhausted by checking if
the child's node sum is identical to the
parent's. If this is the case, a global precision
parameter is increased and the node sum is
recalculated. The sum is divided into a part
which can be stored using 64 bits, and a part
containing all excess digits. The excess digits
are converted into hexadecimal form as
SQLite prefers them and are written into the
BLOB-format field at the same time the
integer part is stored in the integer sum field
as described above.

Thenceforth, search queries which potentially
require the extra precision to give complete
results are done with a slightly more complex

Proceedings of the Tcl 2011 214 Manassas, VA October 24-28 2011

SQL statement that incorporates comparison
of the BLOB fields alongside integer value
comparison of the sum fields. SQLite does
comparisons of BLOB fields via binary byte-
by-byte comparisons from the beginning of
the field value to the end (analogous to Tcl's
[string compare] command option).
So precision of a calculated sum can be
extended without limit by appending extra
digits to a parent's overflow value stored in its
BLOB field; and if use of overflow precision
grows by multiple increments, binary values
of varying lengths can be meaningfully
compared just as varying length string
comparisons are done.

I anticipate that in practice overflow precision
storage will be rarely needed and employed
chiefly in pathological situations, so impact
on performance is expected to be minimal.

6.2 Separating Branch and Leaf Nodes

In the great majority of tree datasets, there
will be many more leaf nodes (nodes with no
children of their own, which terminate a
branch) than branch nodes (which have one or
more children). For example, in a hierarchy
in which each node is assigned eight children
up to a limit of a million nodes, only 62,500
branch nodes are required.

In practice, there is no reason to expend
available precision and CPU resources
calculating node sum values for leaf nodes.
For querying purposes, leaf nodes can share
the node sums of their parent branch nodes, as
long as there is some established means of
identifying the leaf nodes as such.

In the prototype program, a separate table is
created for storage of leaf nodes solely. This
table defines fields for a unique node ID, the
parent node sum, and the parent overflow

BLOB value in case it's necessary.

When a leaf is added to the tree, the node ID
and parent sum information are written to a
row in the leaf table. If a leaf node
subsequently acquires a child of its own, Tcl
code is first called to calculate a unique node
sum of the leaf's own, and the node with its
new sum is migrated to the branch table. Then
the new child node is added to the leaf table
complete with the reference to the newly-
created branch's node sum value.

By granting unique node sums only to branch
nodes, the capacity of the node sum-
calculating method to describe and store large
hierarchies is greatly increased. Splitting the
total data into two tables also helps keep table
sizes tractable, deterring the onset of any
database-related maximum table-size capacity
issues. It also helps SQLite maintain
efficient caching and indexing states. I
believe these advantages outweigh the
performance penalty of requiring two separate
queries on the database to ensure a complete
search of a given sub-tree.

7. Performance

In truth it has been difficult to test the
maximum capacity of the prototype program.
It handles queries on databases containing in
the tens of millions of nodes with little
difficulty, even though minimal performance
tuning has been done.

By way of comparison, probably the most
widely-used tool for storing and querying
large hierarchies is OpenLDAP, which in its
most common implementations utilizes a
Berkeley DB (BDB) backend for storage.
Discussion in online forums suggests that the
maximum capacity limit for practical
operation of an OpenLDAP server with a

Proceedings of the Tcl 2011 215 Manassas, VA October 24-28 2011

BDB backend (after extensive expert
configuration tuning) is on the order of ten to
fifteen million records.4

The chief performance difficulty is in initially
populating the database from a large tree-
structure dataset given for input. Calculating
node sums and writing them to table rows can
take hours for hierarchies containing millions
of nodes. This of course would be
impracticable in applications requiring close
to real-time loading of data; such as, for
example, reading and examining large XML
files in an XML editor. In such cases the
performance difficulties could be partially
overcome by pre-calculating large template
hierarchies with node sums already included.
A suitable template hierarchy could be
matched with an input dataset and imported
with it, leaving custom calculations only for
instances where the node distribution of the
dataset of interest does not fit within the
template exactly.

8. Future Developments

The prototype program was successful in
demonstrating the basic validity of this novel
method for encoding hierarchies, and in
producing evidence that the limitations of the
method are bounded chiefly by the inherent
limitations of the underlying tools used to
construct the program rather than by newly-
introduced bottlenecks. Tcl and SQLite
proved very useful in developing the
prototype.

But it is to be expected that the next
generation of computing challenges will
present even larger datasets and more
complex computing environments, and I
believe that it is in meeting future challenges
that this new method, and the particular
advantages of Tcl and SQLite, will prove

exceptionally valuable.

8.1 Parallelization

The prototype, despite its early state of
development and minimal performance
tuning, already performs well enough to
handle very large hierarchical datasets which
are typically handled only with difficulty by
existing solutions. As the next generation of
larger datasets arrive, I believe it will be
possible to expand the capacity of the
prototype greatly by introducing the ability to
execute queries in parallel.

A strong advantage of the method described
above is that partitioning a tree by node sum
ranges without foreknowledge of the structure
of the tree is a conceptually straightforward
task. Thus SQL statements could be designed
in advance to search sub-sections of the tree.

SQLite has no built-in client-server or parallel
query-processing features. But it does make
use of shared memory on operating systems
that offer it for loading tables into RAM..
Thus multiple independent processes or
threads that attempt to open a single database
are all accessing a single in-memory set of
tables.

With that feature in mind, SQLite's lack of
multi-processing features can be well-
compensated by Tcl's advanced event looping,
socket networking and threading features.
These features would be well put to use by
expanding the prototype to include the ability
to execute separate sub-queries in
independent processes or threads, and
collecting results via event loop polling.

As growing dataset sizes push the limits of a
computer's ability to host a single database
containing an entire hierarchy, the ability to

Proceedings of the Tcl 2011 216 Manassas, VA October 24-28 2011

file:///home/blacksqr/FILTR/us.antipode/projects/tcl/nodes/

partition trees and index the partitions by
node sum also makes the concept of calving
off sub-trees into separate tables appealing.
These tables could be moved to separate
computers, thus efficiently sharding that
database. Tcl's networking features could be
used to distribute and collate queries and their
results across a cluster.

The rapid development of multi-core
processors and clustering technology in the
commodity computer market suggest almost
unlimited scalability in application of this
method to hierarchical search.

8.2 Disconnected Hierarchies

Related to the ability to partition a tree into
sub-trees is the ability of the method to add
nodes to a parent without global information
about the tree: only the traits of the parent
node itself are required to calculate values for
child node values (namely parent node sum,
level and inheritance number). Thus if a sub-
tree is moved to a separate computer, it can be
updated and grown independently, without
loss of ability to coordinate, or even re-merge,
with the original tree. This ability
distinguishes the method from most
competing approaches for handling large-size
hierarchies.

This feature is potentially useful for scaling
and sharding databases for a single server
application. But it also makes possible the
concept of distributed filesystems or similar
hierarchical information systems. In short,
node sums calculated via this method could
be used as universally valid hierarchical
position identifiers (UHI:// ?).

Whereas in the Internet Protocol the concept
of hierarchy is imposed arbitrarily on an
undifferentiated 32-bit range of numbers,

node sums used for network host
identification would be meaningful within
themselves, and thus potentially make tasks
like routing as well as searching more
efficient (at the cost of maximum node
capacity in a given number space).

The version control system git is a conceptual
example of a tool that organizes project files
into hierarchies, and lets individuals check out
subsections of the main project for
disconnected development, with changes re-
merged to the main project later. If one were
to imagine a future iteration of the git concept
which managed thousands or millions of
entities in a project (rather than the now-
typical few dozen files), assigning node sums
to each entity would be a useful way to ensure
consistent classification and search
capabilities throughout the development
cycle.

Various other tools for sharing information in
discontiguous and dispersed usage patterns
continue to appear and evolve into
widespread use, from the old (e.g. Usenet) to
the new (BitTorrent).

Advances in mobile computing and the spread
of computer networks into the less-developed
parts of the world have spurred interest in ad
hoc and disconnected networking.

These and many other use cases could
conceivably benefit from a globally valid yet
locally editable hierarchy tagging protocol.
The great diversity of environments and
platforms encompassed by these use cases
make the portability, compactness and power
of the combination of Tcl and SQLite highly
attractive for future development of
applications which make use of this method.

Proceedings of the Tcl 2011 217 Manassas, VA October 24-28 2011

References

[1] Huntley, S. “Method for labeling data stored in
sequential data structures with parameters which
describe position in a hierarchy.” US Patent
7,769,781, issued August 3, 2010.

[2] A comprehensive treatment of the state of the art
can be found in: Celko, J. Joe Celko's Trees and
Hierarchies in SQL for Smarties, Morgan-
Kaufmann. San Francisco, CA, USA, 2004.

[3] TclSQLite - http://www.sqlite.org/tclsqlite.html

[4] See for example: http://www.openldap.org/lists/
openldapsoftware/200611/msg00051.html

Proceedings of the Tcl 2011 218 Manassas, VA October 24-28 2011

An efficient text mining application for log file
analysis in an emulation environment using Tcl/Tk

with C
Mishra, Shyam

Mentor Emulation Division,
Mentor Graphics Corp.

Abstract

Text mining refers to the process of deriving high
quality information from text files. Hardware
emulation is the preferred way for verification of
multi-million gates SOC designs. Text mining can
be applied for log file analysis of huge log files that
get generated in an emulation based design
verification flow. Typically an emulation based
verification flow consists of two discrete steps,
namely compile and runtime. During the compile
stage, a HDL design is prepared for emulation. The
compile tools generate log files and other reports.
The emulation based verification flow is used
typically for largest of design databases, and the
mapping to hardware involves multiple complex
compilation steps. This makes it imperative to have
intelligent debug systems with advanced data
mining capabilities. Text mining is applied to
extract useful information from these log files and
reports in order to help the user detect errors and
warnings in compile that might affect the
emulation. Logs and reports generated during
emulation runtime are also similarly analyzed.

Using Tcl/Tk , a GUI is developed to use text
mining methods on very large emulation databases
for log file analysis. Main considerations for
design for such text mining application has been
that interactive user response remains fast, the
parent Emulation control and Debug GUI is able to
interact and work with the text mining widget with
fast response time, in unblocking manner, and with
minimal overhead to the parent Emulation control
and Debug GUI. Besides design ensures search
operations are fast, the application memory image
is low, and the application provides host of ease of
debug utilities like GUI based linkages to user RTL
source, informative help from the messages in log
files. To achieve this intelligent partitioning of

functionalities between C and TCL code is done.
The application makes use of a C/C++ based
shared object for efficient retrieval of information
from the huge log files generated by the emulation
tools. The application GUI makes use of the latest
Tcl/Tk features to provide an easy to use interface
to give the users a rich debugging experience.

1. INTRODUCTION

Hardware emulation is the preferred way for
verification of the next generation multi-million
gates SOC designs. In a typical emulation flow, the
user design is compiled and prepared for
configuration on the emulator hardware.
In the process, the user code which consists of RTL
and transactor level models is compiled by a set of
compilers to generate the model which can be
configured on the emulator.
The compile flow is quite complex .The error,
warning and other messages generated by the
compilers provide important information to the
user, which can help understand the changes or
modifications required in the user code in order to
perform the emulation. During design emulation at
runtime also advanced debug and log file analysis
capabilities are required to understand any
functional mismatches. Often the clues to a bad
design behavior at runtime or a compile failure are
hidden in the log files and the reports generated by
the tools.
The user can manually check the log files and the
reports to locate the cause of such failures.
However, manually browsing through a huge
database, locating all the log files generated by the
different compile and runtime tools and checking
the information present therein can be time
consuming. Besides, the user might be unable to

Proceedings of the Tcl 2011 219 Manassas, VA October 24-28 2011

locate the relevant information.
Therefore text mining methods are applied to allow
the user access the relevant information from the
log files and the reports without losing precious
time.

Text mining refers to the process of deriving high
quality information from text. Text mining usually
involves the process of structuring the input text
(usually parsing, along with the addition of some
derived linguistic features and the removal of
others, and subsequent insertion into a database),
deriving patterns within the structured data, and
finally evaluation and interpretation of the output.
'High quality' in text mining usually refers to some
combination of relevance, novelty, and
interestingness. Typical text mining tasks
include text categorization, text clustering, concept/
entity extraction, production of granular
taxonomies, sentiment analysis, document
summarization, and entity relation modeling (i.e.,
learning relations between named entities).
(Reference :
http://en.wikipedia.org/wiki/Concept_mining)

In the following sections we will discuss how an
efficient text mining tool was developed using Tcl/
Tk 8.5 with C.
The text mining tasks which are computationally
intensive are implemented in C. The Tcl/Tk makes
calls to the C functions as and when required.
Display is managed entirely by Tcl/Tk side.

2. C based library for text mining

A C based database manager is developed to store
the information related to the tools and the
corresponding log file paths.
 C functions are implemented to access interesting
information from the log files.
Those functions efficiently extract the requested
information from the log files and provide it to the
caller code.
The C functions are embedded inside a shared
library which registers Tcl commands on a Tcl
interpreter. The Tcl commands can be called from
any Tcl/Tk based GUI that loads this shared library.
Internally, those Tcl commands are mapped to the
C functions.
Searching through the large database of log files
can be time consuming, so C is preferred over Tcl.
Besides, C can be used to implement an efficient

parser that parses the log files on demand to retrieve
the requested information for the user.

The command interface between the Tcl/Tk GUI
and the C shared library is designed to be backward
compatible. Thus, the GUI can be modified without
requiring a recompile of the shared library and
conversely, the shared library can change the
implementation of its parser and search functions
without necessary build of the GUI, as long as the
interface is maintained intact.
Assuming that the C library is named
“libloganalyze.so”, the Tk gui makes the following
call:

load <path to libloganalyze.so>
The load call passes the Tcl interpreter handle to the
C library. Commands are created on this interpreter
for use by the subsequent GUI queries.

3. GUI display of tools and log files: text
categorization

The GUI is designed to have a tree view for the
tools and log files hierarchy.
For example, a hierarchy looks like this : tool 
log files  messages. Under a tool such as “HDL
compiler” , there could be logs such as
“hdl_compile.log”, “hdl_compile.report”. Further,
the hdl_compile.log node can be expanded to
display the “Errors”, “Warnings”, “Note”, “Status”
and other categories of messages.
The ttk treeview widget is used for this purpose. It
provides the user a convenient way to view the
various messages occurring for the different tools in
a single window.
Whenever the user expands a node of the tree, a
query is generated for the C shared library. The
query is executed in C code and the relevant
information is fetched by the GUI.
GUI side : Treeview->Expand (node)
Calls C function : loganalyze -get_child_nodes –
queryString <queryString>
GUI gets the results of the C call and changes tree
display / log file view as applicable.

For example, if the user expands a tool node, then
the result of the C function call will return the log
file names associated with the tool.
Similarly, for an individual log file node, the C
function will return the message types as the child
nodes and also the text to display as the contents of

Proceedings of the Tcl 2011 220 Manassas, VA October 24-28 2011

http://en.wikipedia.org/wiki/Concept_mining

the given log file in the text view widget.
The text mining operation is carried out in the C
function and the results are displayed in the Tcl/Tk
GUI.
4. Search results display using text clustering

The text display clusters messages of a particular
type based upon the type. For example, the
warnings are displayed clustered together, as are the
other message types.
If the search is based upon some pattern, the pattern
is highlighted in the search results.
For example, if the user searches for “simulation
mismatch”, the clause “simulation mismatch” will
be highlighted in the search results displayed in the
text view.
For example :
Warning [100] : Net top.a has been removed from
the design.
Warning [100] : Net top.b has been removed from
the design.
…………………………………………………………
SimWarning [200] : Net top.c has multiple
drivers, this may cause a simulation mismatch.
SimWarning [200] : Net top.inst.q has multiple
drivers, this may cause a simulation mismatch.
………………………………………………………….

5. Concept / entity extraction

To display file names, line numbers and net names
in the text view, the file names are extracted and
displayed with hyperlink tags. The hyperlink is
programmed to open the corresponding file and line
number in an editor such as vi or emacs, as
specified by the user , upon right mouse button
click.
For example a message could look like this :
Warning [101] : File design.v, line 11, syntax error
near “=”.
In the above message, the file path “design.v” will
be hyperlinked.

Code snippet :
set textWidget $mainWidget.logFileDisplay
 $textWidget tag configure hyperlink -foreground
royalblue -underline true
 $textWidget tag bind hyperlink <Double-Button-
1> { clickALink %x %y %W}
 $textWidget tag bind hyperlink <Return>
{clickALink %x %y %W}

Search for all the file names and tag those as
hyperlink.

proc clickALink {x y w} {
set i [$w index @$x,$y]
 set range [$w tag prevrange hyperlink $i]
 set url [eval $w get $range]
sourceViewFile $url
}

The procedure sourceViewFile opens the specified
url in the editor selected from the user environment.

A separate display canvas is provided for the
design statistics , such as the design size, compile
status of the tools and various performance /
capacity related metrics.
This information is obtained via a call to the C
library at start up.
GUI call : loganalyze –get_design_stats
C function : loganalyzer->GetDesignStats().
Returns the design stats after mining the log and
reports database.
During startup, a list of predefined phrases is also
searched in the database and those are displayed in
a different view as the “Analysis Report”.
The analysis report allows the user to browse to the
relevant phrase in the log files spread across the
emulation database using hyperlinks.

GUI side : loganalyze –queryString <get statistics
for important messages>
C side : loganalyzer->GenerateReport()
Returns the statistics for the important messages in
all the log files and reports.
This call returns the statistics of all the important
messages in which the user might be interested,
right at the start up.

6. GUI architecture for multiple views
The three log file related views : namely the text
view, the design statistics canvas and the analysis
report view are implemented as tabs in a ttk
notebook widget.
The text display changes for each and every text
file, so the text view tab has sub-tabs for each and
every log file that is opened for search.

Using some customization using ttk::style, the sub
tabs are provided with a X icon at the right top
corner to allow the user to close the view for a

Proceedings of the Tcl 2011 221 Manassas, VA October 24-28 2011

particular log file.

Code snippet :[Ref : wiki.tcl.tk]
image create photo closeImage -file $::closex.gif
ttk::style element create ButtonNotebook.close
image closeImage
ttk::style layout ButtonNotebook {
 ButtonNotebook.client -sticky nswe
}
 ttk::style layout ButtonNotebook.Tab {
 ButtonNotebook.tab -sticky nswe -children {
 ButtonNotebook.padding -side top -sticky
nswe -children {
 ButtonNotebook.focus -side top -sticky nswe
-children {
 ButtonNotebook.close -side right -sticky n
 ButtonNotebook.label -side left -sticky {}
 }
 }
 }
 }
It can be reopened later on if required, using the
appropriate node in the tree view.

7. Query generation interface

The log file analyzer GUI provides a versatile query
editor. The user can select the type(s) of message(s)
to display and can specify the scope of the search
in terms of the tools or the log files.
The user is also allowed to input text patterns for
search including regular expressions. Search is
possible with and without case sensitivity. The
query editor is implemented using check buttons
and text entry fields.

Code snippet (query creation)
proc CreateQueryString {} {
 Get all check button status
 Get search entry
 Get regular expression or not
 Get case sensitive or not
 Create a query string for loganalyze command
call.
}
The user can also use the tree widget to specify the
scope of the search.

GUI side : loganalyze –queryString
<queryString>
C function : loganalyzer->Search(queryString)
Returns the search results for the specific query.

The search results are displayed in a categorized
form in the log file text view tab which is
embedded in the ttk notebook widget.

8. Sentiment analysis : comparative analysis of
log files

Often the user likes to compare the number of
warnings generated in the current compile with the
numbers generated in a prior compile of the same
design.
For this purpose, the tool allows the user to save a
given set of log files in a compact form. After re-
compiling the design, the user can load the older
set of log files and do a comparative analysis based
upon the types and contents of the messages
generated in both the older and the newer compile
sessions.
This allows the user to check whether the number
of warnings has increased or reduced, whether the
area requirements have changed and whether or not
a better performance can be expected from the new
compile. It also allows the user to know if new
bugs have crept into the design in compile flow,
possibly leading to erroneous behavior later, during
emulation run.
GUI side : loganalyze –compare <project 1>
<project 2> -queryString <query string>
Returns the results for the comparison to GUI.
Display categorization is managed by the GUI.

9. Online help system

For the log file analyzer to be useful, it must not
only display the relevant messages or search
results , but should also provide some tips to the
user for the various errors or warning messages.
The log file analyzer extracts the message
mnemonic or id and searches the available
documents and web resources for relevant help. The
user can make use of this online help functionality
to understand the cause of an error or a warning or
just the significance of a status message.
GUI side : loganalyze –help <search phrase>
C function: loganalyzer-
>HelpDatabaseQuery(searchPhrase)
Returns the help string for display in the GUI.

10. Design debug using the parent emulation
debug gui

Proceedings of the Tcl 2011 222 Manassas, VA October 24-28 2011

The log file analyzer GUI maintains a socket based
connection with the parent emulation debug GUI.
Through this connection, the extracted name of a
signal or a module can be passed to the GUI, where
it can be browsed in the design path viewer.
Thus the user can understand the reason for a
typical warning message such as “Net is dead
logic” or “Net has multiple drivers” by browsing
the design in the emulation debug gui.
The sequence of actions done by the user would
look like this :

a) Search for “multiple drivers” in compiler
logs.

b) Results are displayed categorized in the text
view.

c) Visit any particular interesting message and
click on the hyperlink for the net name.

d) The net name is displayed in the emulation
gui path viewer.

Similarly, the log file analyzer allows the user to
view the waveforms for an interesting net where
those are available with the emulation debug gui.
GUI side : “Send Parent GUI command : Add net
to path viewer”.
Parent GUI : Receives and parses the command
and calls appropriate command : “add pathviewer
<net name>”.

11. Summarization of area and performance
reports

Area reports are generated at compile time.
Performance reports are generated at runtime.
The log file analyzer can display the modules that
consume the most of the design area. The user can
focus on the relevant modules and remodel the
HDL code to optimize the area requirements.
The number of simulation cycles consumed , the
design frequency, the number of transaction calls
made and the time taken are available in
performance reports.
A summarized display of those allows the user to
optimize the test bench and the design quickly
without having to browse through the reports
manually and undertaking the effort to interpret
them.

12. Cost , limitations and future work

The text mining techniques applied here make use
of the standard messaging format used by the

emulation tools.
In case there are third party tools which generate
huge log files in an unknown format, the log file
analyzer is not able to apply text mining techniques
for those.
The current implementation can be made more
intelligent to accept a user defined messaging
format to analyze any log file database generated by
any product.
If the log files are very large in number, the volume
of information extracted can be quite huge. In such
cases, the user has to do selective searches and not
go for generic pattern searches which could
become time consuming.

13. Conclusion

A text mining tool using Tcl/Tk and C for
emulation databases has been described here.
It makes use of text mining techniques such as text
categorization, entity/concept extraction, text
clustering, document summarization and sentiment
analysis for analysis of log files and reports.
It makes use of the efficiency of C to quickly
analyze and retrieve useful information from the
emulation database. A Tcl/TK 8.5 based GUI
interfaces with the C shared library to provide a rich
and interesting debugging experience to the
emulation users.
The concept can be extended in the future to any
system where the log files are generated in a
predefined messaging format and the debug
functionality can be made configurable for the
relevant system.

REFERENCES:

[1] http://en.wikipedia.org/wiki/Text_mining
[2] wiki.tcl.tk

Proceedings of the Tcl 2011 223 Manassas, VA October 24-28 2011

http://en.wikipedia.org/wiki/Text_mining

Maintainable, Shareable and Easily Creatable & Updateable toolbar, menubar, statusbar -

pillars of any GUI application.

Tarun Goyal

Abstract – This paper presents a novel approach to efficiently manage, update and share the

toolbar, menubar & statusbar widgets that are integral to any TCL/TK based GUI application.

However, considering that any GUI would have different windows performing variety of tasks

and be dependent on the overall tool state, the solution should effectively support context

sensitivity with respect to windows, selected object in its constituent windows and tool status.

Fig: Typical Menubar/Toolbar in a GUI

Summary - It has been observed that in any GUI application the onus of creating/updating the

widgets inside the toolbar, menubar or statusbar lies with the developer responsible for creating a

component [or window/frame] in the GUI with everyone creating their own “versions”, resulting

in code duplication and raising maintainability issues. However, considering that same widget

[e.g. button, menus etc.] might perform similar function in various windows and/or the same real

estate could be utilized to create different widgets for different windows, necessitates a

functional requirement to have centralized toolbar, menubar & statusbar managers [or smart

widget managers] that helps one to easily register widgets and update them dynamically based

on the current window [or the element therein] in focus. Essentially, following are the desired

features of these centralized “managers”.

1. Each manager should be structured in a way so as to provide a centralized mechanism for

creating/updating [e.g. enabling/disabling/setting a value] the widgets.

2. Ability to create a variety of widgets – e.g. a checkbutton or menu in a menubutton, text-

widget or button in a toolbar or progress-bar or a labelframe in a status-bar.

3. Make the same widgets as reusable as possible – e.g. a “cut” button can be used to cut a

text item in one window whereas could be used to cut a schematic element in another.

The following sections captures the pseudo implementation interface [written in incrTcl] of

various managers, the central repositories that will entertain requests received from any

window/component. Please note that only “major” interface functions have been mentioned here

and the managers may contain some other methods from implementation perspective. For the

complete implementation, please refer the supplied TCL source code.

TOOLBAR MANAGER

 itcl::class ToolBarManager {

 #variable list

 set dock_bars(std, tree, browser, schematic, dataview) ## dockbars of tool-bar

 set dock_bar_widgets (copy, cut, paste, find) ## widgets in the dock-bar

 ## widget_prop store the properties of the widget - e.g. label, underlying index etc.

 set widget_prop[std, copy] = { icon_name, default_callback}

 ## default_callback is the method to call on “invoking” this widget

Proceedings of the Tcl 2011 224 Manassas, VA October 24-28 2011

 # Tool Bar associated with a window:

 set windowToolBar(windowName) = {toolBarObject}

 # this will store the global tool-bar object of the main framework

 private variable globalToolBarObject

 # Register_Window:: This function enables a window to register associated docbar and

 # the widget

 private method Register_Window { windowName, docName, widgetName }

 # Unregister_Window:: This function deregisters the given window from relevant dockbar

 # lists

 private method Unregister_Window {windowName }

 # Update_ToolBar :: This proc is the updates the respective toolbar based on the window

 private method Update_ToolBar { windowName }

 ## Update_DocBar :: This function updates the requested dock-bar, with the latest-status

 ## of the widgets residing inside the dock-bar.

 private method Update_DocBar { docBar_Name }

 # Create_DocBar :: Create a dock-bar with a given doc-bar-name..

 private method Create_DocBar { docBarName }

 # Create_Widget :: Create a widget in the specified doc-bar, with the given widget-name

 private method Create_Widget { docBarName buttonName }

 # this will handle the call-backs, smartly finds the current window object and calls it

 # method.

 public method CallBackHandler { widgetName docBarName}

 # this method changes the state of buttons depending upon the current selection inside

 # a window

 public method updateState { windowName docBarName widgetName }

 }

The Toolbar manager is instantiated in the constructor as follows-

set globalToolBarObject [mtiwidgets::dockbar $_vars(debug_win).$toolBarName -relief sunken

-borderwidth 1]

Some of the salient features, among others, of the toolbar manager are as follows-

1. Only those dockbars [dockbar is a subunit of a “toolbar”] that are registered with current

set of visible windows shall be shown and the widgets inside these dockbars are

enabled/disabled as per the window requirements. Further the dockbars are added/deleted

incrementally as windows are shown/hidden in the tool.

Proceedings of the Tcl 2011 225 Manassas, VA October 24-28 2011

Fig: Tool in 2 different states on opening a new window

2. As per our present tool requirements, the currently supported widgets are – buttons, entry,

combobox, checkbutton, radiobutton. The manager can easily be enhanced to support

more widgets.

3. The manager also supports placing the window specific widgets in the undocked state i.e.

in case user undocks [i.e. does a “toplevel .$windowName”] the window from the tool,

only the widgets that are registered with that window comes in the undocked toplevel

window. A separate instantiation happens for the toolbar inside the undocked window.

set windowToolBar($windowName) [mtiwidgets::dockbar "[$frameworkHandle

getPaneManager].$windowName.toolbar" -relief sunken -borderwidth 1]

MENUBAR MANAGER

Similarly, the Menubar manager looks as follows:

 itcl::class MenuBarManager {

 # Following data-structures are maintained by Task-Manager internally storing the dock-button

 # related properties

 private variable globalMenuButtons, menuButtonMenus, menuProps, menuButtonProps

 # List of created menu-buttons are maintained as ::

 # createdMenuButtons {} = { std, }

 private variable createdMenuButtons {}

 # Array which tells us about the status of a menu-button ::

 # menuButtonStatus (std) = { "Enable" }

 private variable menuButtonStatus

 # Global list of registered menu-buttons and menus ::

 # Reg_WindowMenuButton (docName) = { windowName,}

 # Reg_WindowMenu (docName, ButtonName) = { windowName,}

 # Reg_WindMenuCallback(docName, ButtonName) = { CallbackFunction , }

 # this list will store the menus that you want to create dynamically

 # at each update. e.g. display->marking menu (format = [list "menubutton,menu" ..])

New dockbar for the

additional window

Proceedings of the Tcl 2011 226 Manassas, VA October 24-28 2011

 private variable menuIsDynamic

 private variable windowMenuBar ; # windowMenuBar(windowName) = {menuBarObject}

 # Register_Window:This function enables a window to register associated doc-Name and

 # button-Name

 public method Register_Window { windowName menuButtonName menuName

callBackFunc }

 # Unregister_Window:: This function deregisters the given window from the

 # both the lists :: Reg_WindowMenuButton and Reg_WindowMenu.

 public method Unregister_Window {windowName }

 # Update_MenuBar :: This proc is called from a centric place and depending on the

 # “windowName” updates the respective menu-bar. Showing/hiding the menu-bar is also

 # handled here.

 public method Update_MenuBar { windowName Docked {forceTag "no"}}

 # Update_MenuButton :: This function updates the requested menu-button, with the latest-

 # status of the menus residing inside the menu-button.

 private method Update_MenuButton { menuButtonName object windowName

menuBarObjState {forceTag "no"}}

 # Create_MenuButton :: Create a menu-button with a given menuButtonName..

 private method Create_MenuButton { menuButtonName menuBarObj Docked {enterTag 0} }

 # getUndockedMenuBarObj : This proc creates the object for undocked menu-bar with all the

 # contents that goes into the Undocked Window. This proc is called as soon as the window is

 # undocked.

 public method GetUndockedMenuBarObj { windowName }

 # this will handle the call-backs

 public method CallBackHandler { menuName menuButtonName }

 # this method changes the state of menus depending upon the current selection inside a

 # window

 public method UpdateState { state windowName menuButtonName { menuName "" } }

 # this method handles tool-bars when a window is maximized

 public method maximizeWindowMenuBars { windowName }

 # method creates deleted menu-item

 private method Create_DeletedMenuItem { menuButtonName menuName menuObj \

insertIndex Docked windowName {enterTag 0}}

 # function to test for the validity of menu-item in "data" menu-button for "design & debug"

 public method MenuItemValidForData { args }

Proceedings of the Tcl 2011 227 Manassas, VA October 24-28 2011

 # this function sets the widget value to the instructed "value"

 public method setWidgetVal { windowName menuButtonName menuName value }

 # this function returns the value stored in widget

 public method getWidgetVal { windowName menuButtonName menuName }

 # this function sets the key index array

 public method setKeyIndex {menuNameList }

 # this function returns the key Index

 public method getKeyIndex { menuName }

}

The Menubar manager is instantiated in the constructor as follows-

 set globalMenuBarManager [iwidgets::menubar $_vars(debug_win).$menuBarName –font

 $_fonts(helvB:12) -helpvariable helpstr]

Some of the salient features of the menubar manager are:

1. The menus are created/deleted on the fly and are dynamic in nature in that they can be

created at run time. This is accomplished by various functions talking to each other in

parallel - Create_DeletedMenuItem is called from UpdateMenuButton for each registered

menu with the window with Create_DeletedMenuItem checking the validity of the menu

by calling MenuItemValidForData. The “runtime” menus are stored in a special variable

called menuIsDynamic, which is checked every time a menu-item is created.

2. Menubar manager supports widgets such as menubutton, menuitem, “cascade” [no limit],

checkbutton, radiobutton, sepators and can be enhanced to support more widgets easily.

3. As with toolbar manager, menu-bar manager has also been implemented in a way so as to

show the registered menubuttons with the undocked window in the toplevel window.

Each window gets its own menubar manager object as follows-

set windowMenuBar($windowName) [iwidgets::menubar "[$frameworkHandle

getPaneManager].$windowName.menubar" -font $_fonts(helvB:12) -helpvariable

helpstr]

STATUSBAR MANAGER

itcl::class StatusBarManager {

 # Following data-structures are maintained by Task-Manager internally

 private variable statusBarWidgets ; ## all the widgets in the status bar

 private variable widgetProps ; ## widget related properties

 # Global list of registered doc-bars and buttons ::

 # Reg_WindowWidgets = { windowName,}

 # Reg_WindowWidgetCallback(widgetName) = { CallbackFunction , }

Proceedings of the Tcl 2011 228 Manassas, VA October 24-28 2011

 private variable Reg_WindowWidgets

 private variable Reg_WindowWidgetCallback

 # public methods

 # Methods that will be used by the tool windows

 # Register_Window:: This function enables a window to register associated status bar widget

 public method Register_Window { windowName widgetName {callBackFunc ""}}

 # this method return the value stored in the widget variable

 public method getWidgetVal { windowName widgetName }

 # this method sets the widget's variable value to "value", with "progressBarVal" is an

 # optional argument that will be valid in the case of "progressBar" widget.

 public method setWidgetVal { windowName widgetName value {progressBarText ""}}

 # this method changes the state of widgets depending upon

 # the current selection inside a window

 public method UpdateState { windowName widgetName State}

 # Methods that will be used by framework

 # Update_StatusBar :: This proc is called from a centric place and depending on the

 # windowName updates the status-bar

 public method Update_StatusBar { windowName Docked }

 # getUndockedstatusBarObj : This proc will return object of the statusbar, that goes into the

 # Undocked Window.

 #This proc is called as soon as the window is undocked.

 public method GetUndockedStatusBarObj { windowName }

 # private methods

 # Create_StatusBar :: Create a status-bar with a given status-bar-name..

 private method Create_StatusBar { widgetName windowName }

 # this will handle the call-backs

 public method CallBackHandler { widgetName }

 # this function initializes the various status-bar related Lists

 private method initializeLists {}

}

The Statusbar manager is instantiated in the constructor as:

 set globalStatusBarObj [frame $_vars(debug_win)._bottomFrame]

As can be seen, statusbar is a frame widget and we are packing the widgets it.

Proceedings of the Tcl 2011 229 Manassas, VA October 24-28 2011

Statusbar manager is similar to the above managers [mostly toolbar manager] and works in a

similar fashion. Some salient features are:

1. Statusbar manager supports widgets such as – “progressbar”, entry, label. We have

created our own progress bar and have instantiated it inside the status bar. The function

“setWidgetVal” handles the update process of the progress bar accepting %ages and/or

text as an argument. Including progress bar has helped in creating significant value for

our customers especially for operations that take time to complete.

2. As with other managers, statusbar manager created a separate instantiation for all the

undocked windows and places the registered widgets inside that window. Each window

has its own “status bar manager frame” in which the widgets are packed.

USAGE

A single object of each of the managers is instantiated inside the constructor of the respective

class . This object could then be accessed and used by various windows to manage their dockbar,

menubar & statusbar items, as captured in some ways below.

1. Register a variable: registering any widget with the toolbar [or statusbar] manager is easy. The

client needs to call the following:

$toolBarManObject Register_Window $windowName $dockBarName $widgetName

“CALLBACK FUNCTION”

Above has the syntax as – {Window/Component Name registered with widget, DockBar

within the toolbar, Widget Name, method that will be called on “invoking” the widget}

In the toolbar manager, the following would be done for initializing it.

widgetProps($dockBarName,$widgetName) { “Print ….” , “print.gif”, “Print”, “button” }

Above has the following syntax – {Widget ToolTip, Icon, Widget text,Type of Widget (e.g.

button, entry etc)}

As for menubars, the cascading menuitems within a menu-button would be supported as follows:

$toolBarManObject Register_Window $windowName $menuButtonName \

“$firstlevelMenubuton,$secondlevelMenubutton, $menuItem” “CALLBACK FUNCTION”

 ## there is no limit to upper the number of levels of cascading

For a normal menu-item that is not cascaded should be captured while specifying the widget

properties.

set widgetProps($menuButtonName,$widgetName) {“Test-Setup….”, “0”, “normal”,

“MenuItemValidfor Data Test_Setup”}

Above has the following syntax – { Widget Text, Underlying Alphabet Index, State[normal,

cascade], Function to be called for widget validity [optional]}

In order to support dynamic creation widgets the widgetProps has special item that checks

whether the widget needs to be created under the present set of conditions.

2. APIs provided to return/set the current value in the widget [GetWidgetVal/SetWidgetVal] ::

The onus is on managers to set the value/return the current value residing inside a widget. That

Proceedings of the Tcl 2011 230 Manassas, VA October 24-28 2011

will save the various windows the burden of managing the variables themselves. Here you just

need to pass the "dock-bar-name" [or menubutton-name for menubar manager], "window-name"

and "widget-name" to get the value.

 set Val [$toolBarManObject getWidgetVal $windowName $dockBarName $buttonName]

 set Val [$toolBarManObject setWidgetVal $windowName $dockBarName $buttonName

Value]

It is important to mention here that the managers first find the state of the window and set or get

the value of the widget associated with that window appropriately. So the “text” widget, for

example, that is registered to the particular docked window(s) [or global text widget] can take

values independently of the “text” widget that is registered to another window but in undocked

state [or local text widget]. However, when this undocked window is docked, the local “text”

widget is destroyed and the undocked window starts using the global text widget. We can see a

good example here as to how sharing helps in managing the widgets better and in better

utilization of precious GUI real estate.

3. Initializing the value: The widget can be initialized to some set values based on the

window/context while invoking an application. An example could be a checkbutton that is

“registered” to 2 different windows. One component wants the state of this "checkbutton" as "1"

whereas the other as "0". So, we read in this initial value in "ToolBarManager" and set the state

of the widget accordingly. It shall be handled in ToolBarManager as

 set internVar ::$windowName::$widgetVal

4. Dynamically updating the “managers” on the fly: The “managers” provide methods that can

be called on the fly to update the state of various widgets that are present inside the toolbar,

menubar or statusbar, including creation of new widgets dynamically. Such an operation would

enable/disable certain widgets and/or create new widgets such as menu items for certain

menubuttons are created if it is valid under the present situations. These optimal-ties help in the

maximum utilization of the real estate, avoiding clutter, and share-ability among the various

component of the GUI.

It is important to mention here that the managers have been written modularly in that they could

be adopted easily by any GUI application, with minor modifications. Further, such “managers”

can be added into the existing set of TK widgets, in case of need.

Bibliography

TCL/TK wiki, http://wiki.tcl.tk

Proceedings of the Tcl 2011 231 Manassas, VA October 24-28 2011

http://wiki.tcl.tk/

Proceedings of the Tcl 2011 232 Manassas, VA October 24-28 2011

Tcl 2011

Manassas, VA

October 24-28, 2011

Multitasking Techniques

Proceedings of the Tcl 2011 233 Manassas, VA October 24-28 2011

Proceedings of the Tcl 2011 234 Manassas, VA October 24-28 2011

Efficient Communication Strategy of Enterprise TCL/TK
Application with Multi Process System:-A Study

Kumar Gaurav, Tushar Gupta, Madhur Bhatia

Mentor Graphics Corporation

Abstract 1. Introduction

The GUI tool of Veloce emulation system is
a TCL/TK based application. The Veloce
software has a complex multiple process
distributed architecture. The Inter-Process-
Communication (IPC) within the software
components involves frequent and bulky
data transfers between the processes.
VeloceGUI on one hand needs to update its
state very frequently based on responses
from some of the software components and
emulation runtime system, and on the other
hand needs huge on demand data transfer
from other set of servers.

The paper elaborates how to use different
communication methods to get maximum
performance with minimum memory
utilization. The paper also discusses how the
TCL/TK based GUI interacts with larger
client-server ecosystem, communicating
with each other, using a sophisticated
message passing system

Glossary

GUI – Graphical User Interface

IPC – Inter Process Communication

RDS – RTL Data Server

WDS – Wave Data Server

There are two types of communication
mechanism used by VeloceGUI: –

i) TCL Sockets
ii) Message passing library built over

C-Sockets

Socket Communication consists of two
steps:

i) Exchanging of data
ii) Processing of data

Exchanging and processing of data between
client and server through socket
communication, involves lot of challenges
such as optimization of time, speed, memory
and maintaining backward compatibility.
Processing of data requires, parsing of data
to find the actual command, that client has
passed to the server for processing. Parsing
of data may take significant amount of time
if the frequency of communication is high;
however this can be optimized to get fast
response from the server

VeloceGUI communicates with RTL-Data
Server (RDS) and Wave Data Server (WDS)
processes through raw socket interface using
the TCL library functions, as these involve
bulk data transfers, of rtl design connectivity
information and waveform data. This
interface is optimized for data transfer
efficiency, as the volume of data is huge.
The frequency of communication is
generally on demand and numbers of

Proceedings of the Tcl 2011 235 Manassas, VA October 24-28 2011

commands are lesser between GUI
application and RDS/WDS. Thus the time
overhead of command parsing is minimal
and therefore bulk data is transferred in most
efficient way. At the same time most of the
intensive databases loading and data
processing tasks are out-sourced to the
servers, reducing the overall memory foot-
print and response time for VeloceGUI
application.

For interactive emulation control and
communication, VeloceGUI uses C/C++
API interface (also called VeloceAPI),
which is a shared library system. The
VeloceAPI system interacts with other
components of Veloce runtime system,
using a message passing system (called
messaging systems) built over C-sockets.
This communication interface is mainly
designed for fast interactive response, as the
number of command and communication
frequency is larger between GUI and Veloce
runtime system. The design eliminates time
spent in parsing the command level data
through interface definition mechanism. The
messaging system also takes care of
maintaining backward compatibility within
different servers/clients. The Messaging
System sockets are registered in the TCL
Event Loop to enable continuous polling on
the messaging system sockets without
blocking the GUI.

In this paper, we will discuss the various
aspects of communication of GUI with
RDS/WDS using TCL raw sockets and
Veloce runtime system using message
passing system built over C-sockets. We
will also discuss the issues that were
resolved during the development.

2. Communication between GUI
and RDS/WDS over raw sockets

RDS and WDS are rtl-data-server and wave-
data-server. These servers are meant for
storing large databases corresponding to
RTL design hierarchy and their waveform
data.

Our emulation GUI shows the RTL design
hierarchy and waveform data in
hierarchy/signal browser and wave browser
respectively. For the population of
hierarchy/signal tree and waveform data,
Veloce GUI communicates with RDS and
WDS through raw sockets. GUI initiates the
socket connection between itself and
RDS/WDS process when the need arises i.e.
when the first query arises for the
RDS/WDS. Until then there is no
connection between these processes. After
the connection is set, GUI creates different
commands and send them to RDS/WDS.
These commands are used to populate the
RTL design tree structure for
hierarchy/signal browser and waveform data
for wave browser. As the command reaches
the RDS/WDS, it parses the command,
process and fetches the corresponding data
and provides the data to GUI. GUI remains
in blocking state till the processing is
completed by RDS/WDS. As the data
reaches the GUI end, GUI populates its
corresponding database and displays the
results in hierarchy/signal browser if
provided data is from RDS, or in wave
browser if provided data is from WDS.

1.a Communication of GUI with RDS/WDS
using Sockets

Proceedings of the Tcl 2011 236 Manassas, VA October 24-28 2011

The code snippet shown below illustrates,
how the connection establishes between
GUI and RDS/WDS

Adding signal to wave window.
$wave_data_obj add_to_wave $hierarchy

This proc will first check that the connection is
established between wave data server and GUI or not. If
not then it will connect both the servers and then will send
the command.

itcl::body
wave_data_server::add_to_wave {args} {
if {$d_wave_server_id} {
 if {[catch {eval $this wave_server \
 $args} msg]} {

return “error $msg”
 }
 } else {
 if {[catch {wave_server_connect} \
 mesg]} {
 return $mesg
 }
 set d_wave_server_id $mesg
 if {[catch {eval $this \
 wave_server $args} msg]} {

 return “error $msg”
 }
 }
}

In the code above when the first query arises
for the wave server i.e. add signal to wave,
then before sending the command to the
corresponding servers, GUI checks for the
server id, if it exists then GUI sends the
command otherwise it establishes the
connection between itself and the server and
then executes the command.

The communication between GUI and
RDS/WDS is a blocking communication, it
means that GUI will have to wait till
RDS/WDS processes and provides the data.
When a user submits a request, he has to
wait for that request to complete. As RDS
and WDS are dedicated database servers
serving the GUI only, so providing the data
to GUI does not take much time. When user
submits the tasks, GUI creates its
corresponding command and sends to these

servers. These servers fetch the data and
send the results back to GUI without taking
much time.

These are the list of tasks, which need
communication over raw sockets with
RDS/WDS

� Expanding any hierarchy in design
hierarchy tree.

� Searching all the signals of a
module.

� View designs in schematic and
netlist graphical view.

� View waveform of signals in wave
window.

When user gives any such task to GUI, then
user does not want to wait for the
notification from the GUI- about finishing of
the tasks, but user wants to see the results
immediately and will not mind if he is
blocked from submitting new requests for
the small time interval during which the
request will be served.

The frequency of communication and
number of commands are lesser between
GUI application and RDS/WDS. These
servers are created only to entertain the user
tasks, for which user want to see the result
immediately. The syntax of these commands
is also simple, thus the time overhead of
command parsing is minimal, therefore bulk
data is transferred in a most efficient way.
RDS/WDS read big intensive databases so
their loading time and data processing time
remain outside GUI bring up time, reducing

Proceedings of the Tcl 2011 237 Manassas, VA October 24-28 2011

the overall memory foot-print and response
time of VeloceGUI application.

3. Communication between GUI
and Veloce Runtime System using
Message Passing System

Veloce Runtime System interacts with
VeloceGUI using C/C++ API interface (also
called VeloceAPI), which is a shared library
system. VeloceAPI system interacts with
other components of Veloce runtime system,
using a message passing system built over
C-sockets.

Emulation GUI, apart from displaying
design hierarchy and waveform, also does
many critical tasks, which are generally
required from the GUI of Emulation
product. These tasks involve

� Compiling the RTL design

� Keeping the GUI state updated

� Running the Emulation

� Downloading the Emulation
database

� Downloading the Memory in the
design

� Downloading and Updating the
Trigger into hardware

� Getting and Setting the value of the
register

� Adding break points in the design

For executing these tasks GUI
communicates with Veloce runtime system
through VeloceAPI, which is dynamically

linked shared object library. GUI access
Veloce runtime system through a message
passing system (Messaging System) built
over C sockets. The communication APIs
are generated using a sophisticated compiler
and socket management is done internally
inside the messaging system library. The
messaging system library provides the
mechanisms to register the messaging
system sockets to the event loop of GUI
developed in TCL/TK. As these sockets get
registered in TK event loop, then all the
functions in Veloce runtime system can be
accessed through VeloceAPI interface by
the GUI and through the Messaging System
interface by the VeloceAPI. All the calls to
access the VeloceAPI functions are
asynchronous calls. The VeloceAPI
manages the launching/terminating of
Veloce runtime system. The VeloceAPI uses
a predefined protocol with the GUI to
unblock while it is waiting for the data from
the Veloce runtime system. Thus the GUI
does not wait till the processing of the task
is done by Veloce runtime system. GUI can
be used for other purpose, till the time
callback comes from Veloce runtime
system. GUI remains in non blocking state.

2.a Communication of GUI with Veloce
Runtime System using Messaging System

Proceedings of the Tcl 2011 238 Manassas, VA October 24-28 2011

The code snippet shown below illustrates,
how GUI communicates with Veloce
runtime system using VeloceAPI message
passing system

// VeloceAPI Interface Code

int RTS_evalcmd (ClientData cld,
Tcl_Interp *intrp, int argc, char**

argv) {

 ……………………
 ……………………
 sts = RTS_eval (argv[1]);
 RTS_WaitForCallbak(wait);
 If(wait == true){
 Tcl_SetVar(intrp,hastowait,”1”,
 “TCL_GLOBAL_ONLY”);
 } else {
 Tcl_SetVar(intrp,hastowait,”0”,
 “TCL_GLOBAL_ONLY”);
 }
 ……………………
 ……………………
 Return sts;
}

TCL CODE

incr task_queue 1
set retval [RTS_evalcmd $cmd]
if{$retval !=0}{
 return –code error $retval
 incr task_queue -1
}
if {$retval == 0 && $hastowait == 1}
 wait_for_callback
 release_prompt
} else {
 incr task_queue -1
}

In the code above, the GUI process invoked
the commands of VeloceAPI with the task
that needs to be processed in Veloce runtime
system. VeloceAPI interface just sends the
task to Veloce runtime system. The Veloce
runtime function accepts the task and sends
the acknowledgement for the acceptance. A
callback function is registered which is
being called when the processing of task is

being done by the Veloce runtime system.
If the processing of the task requires time
then TCL global variable “hastowait” is set
by the VeloceAPI interface. After the status
is being returned back to GUI then GUI just
checks the return status and value of
“hastowait” variable. If it is set then GUI
called the proc wait_for_callback and
releases the prompt. Now polling is started
at the GUI sockets. The wait_for_callback
proc does vwait on the variable which is
being reset in the callback function. The
prompt is released and can be used for other
tasks.

The list of tasks which is allocated to the
Veloce runtime servers are of the category
for which user can wait for their completion.
These tasks are run in the background
without hindering user interaction with the
GUI. User can use the GUI for other
purpose like exploring the rtl hierarchy and
looking at the waveforms, while these tasks
are being processed in the background. The
processing of these tasks should not block
the GUI.

The processing of these tasks is in
background but it does not mean that user
can wait for long to see the results. User
wants a quick response and notification from
these servers. The number of commands and
communication frequency are larger
between GUI and Veloce runtime system
thus for optimizing the time, our design
eliminates the time spent in parsing the
command level data through interface
definition mechanism. This communication
interface is mainly designed for fast
interactive response.

4. Issues taken care during
development

Proceedings of the Tcl 2011 239 Manassas, VA October 24-28 2011

During the development of the GUI, we
encountered number of issues. Two of the
major issues were

i) Maintaining backward compatibility

ii) Optimizing the time and memory for
blocking servers.

Maintaining backward compatibility is the
major issue which needs to be handled
carefully. Any change in the interface part of
the GUI results in breaking the
compatibility. There should always be
synchronization between the servers and the
GUI process. But if the forward and the
backward compatibility are to be maintained
between the servers and the GUI process,
then instead of synchronizing the GUI and
the servers, you also need to support the
parsing of the older commands by the new
server and parsing of the older data from the
new GUI process. This is the important
point that needs to be taken care of.

Communication between GUI and
RDS/WDS server is blocking. The GUI will
be in hung state till the RDS and WDS
servers are processing the data. The busy
state of the GUI increases the impatience in
user. So it is the important task of the
developer to optimize the processing and
fetching time of the data. RDS and WDS are
database servers. These servers just parse
the command, fetch the corresponding data
and send it back to GUI. As frequency of
commands are lesser thus the time spend in
the parsing is minimal. Developer should
concentrate on minimizing the fetching time
of the data. The fetching time can be
minimized, if the data is stored in a proper
container, which decreases the complexities

during the search. Decreasing the
complexities by using the proper container,
increase the response time of the servers.

5. Conclusion

Performance of the GUI can be increased by
selecting the right communication methods
between the processes. If the communication
between two processes is less and the syntax
of commands are simple then GUI can
communicate with the server using raw
sockets. If the frequency of communication
is large then communication between the
processes can be done using message
passing system.

 Interface compatibility between the
processes also needs to be taken care of
during the development. Thus any change in
the server side of the interface should be
reflected in the client side as well and vice
versa.

Proceedings of the Tcl 2011 240 Manassas, VA October 24-28 2011

A Versatile Beowulf Task Distribution

Application

Clif Flynt
Noumena Corporation
www.noucorp.com

clif@noucorp.com

1 Abstract

Running faster has been the holy grail of computing since the days of the abacus.
The first thing a programmer hears after ”does it work” is ”can you make it run
faster?”

In the early days of computing, the best way to make a program run faster
was to find a better algorithm or optimize the commands. After some 50 years
of study, most of the better algorithms have been discovered and put into well
optimized libraries.

The next way to make an application run faster is to split it into smaller
applications and run them on multiple processors. Modern CPU chips do this
to some extent and modern Graphics Processing Units do it to a greater extent.

Problems that can be optimized for parallel computing range from fine-
grained applications in which the behavior of one thread is influenced by the
computations of other threads to coarse-grained application sets that are totally
separated from each other.

Fine-grained applications in which one thread influences another require
tools like PVM (Parallel Virtual Machines) or CPS (Concurrent Processing
System), specialized hardware with high-speed interprocess communication (of-
ten shared memory) and generally involve instrumenting the code or writing a
special application to perform the processing.

In medium and coarse grained applications the behavior of one processing
thread does not influence the behavior of other threads. These problems are
much more approachable with simple hardware and relatively trivial care in the
architecture of the processing applications.

Examples of medium-grain parallel tasks might be performing image pro-
cessing in a set of strips and then reassembling the strips into a complete image,
or generating a mandelbrot set as a collection of areas that are then assembled
into a mandelbrot image. These individual tasks may run at different speeds
depending on the resource used and the complexity of the task. When all of the
data is available, a final result can be created.

Proceedings of the Tcl 2011 241 Manassas, VA October 24-28 2011

Examples of coarse grained parallel tasks include running multiple simula-
tions with different sets of data, calculating a fitness of solutions for a genetic
algorithm, or performing the same analysis on multiple datasets. These appli-
cations are completely independent of each other, although the results sets may
be combined for later analysis. This level of parallelization is the basis for the
”Seti@home” and ”folding@home” projects. The application requires a small
amount of data and a large amount of independent data processing.

Beowulf clusters, sets of computer nodes with slow (ethernet-speed) interpro-
cess communications are suitable for applications with medium or coarse-grain
parallelization which require large ratio of processing time to inter-system com-
munication.

The concept of a Beowolf cluster covers a large range of autonomous pro-
cessing units from dedicated, diskless-compute nodes to standalone workstations
that aren’t being fully utilized. The techniques for distributing the tasks can
range from direct memory access to scp/ssh interactions.

It is relatively simple to distribute a set of tasks across multiple computing
resources. For a small number of nodes and tasks, the tasks can be distributed
and hand-started. For a single application and a well controlled set of nodes, a
simple shell or Tcl script can be used to start applications as necessary.

Creating a special-purpose control application for each application that needs
to be distributed is costly in terms of human time and reduces the set of ap-
plications that can profit by being distributed. There is a need for a generic
application that can be extended to handle multiple types of tasks and multiple
styles of clusters.

The mythical Beowolf met Wulfgar when he first came to Heorot. Wulfgar
escorted Beowulf to the king and thus provided him with his first task. Wulfgar
was the person who connected a resource (Beowulf) with a task (Grendel).

This wulfgar is a Tcl/Tk application and framework for creating and dis-
tributing tasks across a set of resources (compute nodes). It can be used from a
command line or a GUI. It can be extended for new types of projects by defining
a new class and can be extended to control different Beowolf architectures by
adding external applications to interact with nodes in different style of cluster.

While it would have been great fun to continue the naming motif and have
wulfgar distribute quests across a network of castles, the references to ancient
Geats and monsters ends with the application name.

2 Overview

The wulfgar application distributes a set of jobs among a set of computing
nodes. The jobs will be run one-at-a-time on the nodes and the results will be
collected into a defined location. One job is distinguished from other jobs by
it’s command line arguments. The arguments may be simple values (like -x 1
-y 3) or the name of a configuration file.

The jobs are grouped in a project. The project defines the executable to be
used and how individual jobs are created from that project. The current version

Proceedings of the Tcl 2011 242 Manassas, VA October 24-28 2011

of wulfgar can create jobs using a single numeric loop, two nested loops, or from
a set of configuration files. New project types can be created by adding a new
classes with a custom constructor that creates jobs for this style of project.

The computing nodes are grouped into a nodeSet. A nodeset is a collec-
tion of remote nodes which share a common access method (ssh, rsh, shell,
shared memory, etc.) New types of nodeSets can be created by writing new
access scripts.

The wulfgar application is written using TclOO and a Model-View-Controller
design paradigm. The base classes control defining and distributing jobs and
nodes and collecting the results. The GUI uses inheritance, mixins, the info
command and the trace variable command to examine and attach itself to
the controller elements of the application. This allows wulfgar to be run either
from a command line or script or by interacting with a user via a GUI.

When running in a GUI mode, a running task resembles the image below.
This shows a set of 16 tasks assigned to 3 nodes on an internal network. The
jobs are distinguished by the -x, -y and -out command line values. The -vw,
-vh, -wd and -ht arguments are the same for each job.

The top line shows the progress on the project - the collection of tasks. There
are jobs in 3 states, success, running, and available. The three colors shown in
the completion bar show the relative number of tasks in each state.

Each of the lines below shows the status of that task, either that it is com-
plete, the percentage of completion, or that it is available and unassigned to a
compute node.

Tasks that have been assigned show the node that they are running on and
when they started. A completed task also displays the end time.

Proceedings of the Tcl 2011 243 Manassas, VA October 24-28 2011

3 Internals

Wulfgar views the world as collections of static and ephemeral elements. The
static elements are instantiated as classes which are reflected into a database
(using tdbc::Sqlite) The ephemeral entities are implemented as memory res-
ident classes which are created when needed and are discarded when wulfgar
terminates.

The static elements are collections of jobs and resources. A job’s non-volatile
state includes the executable to invoke and the arguments to be used with the
executable. A job has a volatile characteristic of whether it has been run and
the final status of the run. A resource (referred to as a node) has a non-
volatile state that includes the IP address, access port and a volatile attributes

Proceedings of the Tcl 2011 244 Manassas, VA October 24-28 2011

of online/offline status.
The ephemeral entities are the set of jobs and resources currently in use.

These are grouped as a job and a resource when the job starts being executed.
A job is a single run of an executable program and a set of data. Jobs

are collected into a project, which is a collection of jobs that use a common
executable on the processing resource.

Compute resources are referred to as nodes, and are grouped into nodeSets
A nodeSet is a collection of nodes that share a common access manner such as
ssh, rsh, etc.

The project, job, nodeSet and node are relatively static entities. They
have a state (available, running, completed) that is modified but otherwise they
exist from the time they are created until a real-world project is complete and
the database is retired.

The project, job nodeSet and node classes are shown below with their
data and methods.

::job

id

projectID

status

cmdArgs

startSecs

endSecs

loadByID

saveState

config

loadByTest

::nodeSet

id

port

name

IPbase

IPmin

IPmax

preRun

run

postRun

nodes

dbCmd

getNodesWithStatus

scan

loadFromDb

config

runDataset

getAvailableNode

::node

id

ipaddr

online

allowed

startSecs

endSecs

descr

jobStatus

loadByID

saveState

abort

config

loadByTest

toggleState

::projectBase

id

name

createSecs

priority

projectClass

createDict

remoteCmd

remoteArgs

notes

loadByID

saveState

config

loadByTest

 *1

 *1

Each of the classes has an id variable. This is used to reflect the data to the
database but is not otherwise used by the runtime system.

Each class has a config method. The config method modifies the contents
of a variable and updates the modified data in the database.

The relationship between a job and a node that it is running on is ephemeral.
These items are created as required and destroyed after they have been used.

The ephemeral classes in wulfgar are the line and the piece. The line
is named for a manufacturing line. It contains a nodeSet and a project. The
piece (for piecework) is a class with a single job and a node to run the job on.

A line has an active project and an associated nodeset. When a line is

Proceedings of the Tcl 2011 245 Manassas, VA October 24-28 2011

running, it creates pieces by selecting an available job and node and creating a
piece object that contains the job and node. Once a piece has been started, it
interacts with the node using the pre-run, run and post-run external applications
defined by the nodeSet.

A line object contains the name of a project object and a nodeSet object
and a list of the piece objects that it has created from the jobs and nodes in
the project and nodeSet.

The next image shows the relationships between line, project, nodeset, piece,
job and node.

Proceedings of the Tcl 2011 246 Manassas, VA October 24-28 2011

::job

id

projectID

nodeID

status

cmdArgs

startSecs

endSecs

loadByID

saveState

config

loadByTest

::nodeSet

id

port

name

IPbase

IPmin

IPmax

preRun

run

postRun

nodes

dbCmd

getNodesWithStatus

scan

loadFromDb

config

runDataset

getAvailableNode

::node

id

ipaddr

online

allowed

startSecs

endSecs

descr

jobStatus

loadByID

saveState

abort

config

loadByTest

toggleState

::projectBase

id

name

createSecs

priority

projectClass

createDict

remoteCmd

remoteArgs

notes

loadByID

saveState

config

loadByTest

::line

jobList

nodeSet

project

dbCmd

pieceList

getAvailableJob

startAllAvailable

updateNodesWithStatus

cleanPieceList

getJobWithNode

startLine

checkLine

getAvailableNode

::piece

pieceState

status

readData

start

config

1

1

1

1

1

1

 *

1

1

1

The project, job, nodeset and node objects are all reflected into an SQL
database, allowing processing to be stopped and restarted as necessary at the
cost of losing the work done by tasks that are currently running on remote
nodes.

Proceedings of the Tcl 2011 247 Manassas, VA October 24-28 2011

4 Creating tasks and jobs

When a project is created the constructor also creates a set of jobs. Different
types of projects use different methods of creating tasks. As examples, tasks
to model the behavior of an engine running different grades of fuel could be
created by iterating through a single loop of octane ratings. A set of tasks to
fill areas of a Mandelbrot set could be created with nested loops iterating over
an X/Y area to define rectangles to be computed. A set of tasks to model the
behavior of a complex system could be generated by iterating through a set of
configuration files generated by external applications.

Support for multiple styles of creating tasks is implemented within wulfgar
by deriving classes with type-specific constructors to create the associated jobs
from a standard base class (projectBase). New mechanisms for creating jobs
can be added by creating new project classes

The inheritance relationship between the parent class (projectBase) and
the derived classes countingProject, twoAxisProject and filesProject is
shown below.

::projectBase

id

name

createSecs

priority

projectClass

createDict

remoteCmd

remoteArgs

notes

loadByID

saveState

config

loadByTest

::countingProject

projectState

::twoAxisProject

projectState

::filesProject

projectState

The important attributes of a project are:

Proceedings of the Tcl 2011 248 Manassas, VA October 24-28 2011

name Used to identify this project to a human.
priority Used to schedule this project when multiple projects are

active.
createDict A set of key/values that are used to create jobs for this

project.
remoteCmd The command to run on a remote system.
remoteArgs A set of patterns to use to create the command arguments

for the remote task. The remoteArgs string may include
tcl variables or commands which will be substituted using
the subst command when the job object is created.

A project to generate rectangular areas of a mandelbrot set resembles this:
name mandelbrot
priority 1
createDict startX -2 startY -2 endX 2 endY 2 incrX 1 incrY 1
remoteCmd fractal.tcl
remoteArgs -x $x -y $y -w 25 -h 25 -vh 1 -vw 1 -out mdl $x $y

The createDict is used to initialize the nested loops. The loops variables are
x and y, which are used (with Tcl’s subst command) to populate the arguments
to the jobs.

A job’s attributes include
projectID References a project’s ID in the databae.
status Describes the job’s status: available, success, fail, abort.
cmdArgs The command line arguments for this job.

An individual job within the mandelbrot project would resemble this:
status available
cmdArgs -x 0 -y 1 -wd 500 -ht 500 -vw 1 -vh 1 -out

/tmp/mdl 0 1

5 Distributing Jobs

A classic beowolf cluster of stand-alone processors distributes jobs using ssh/scp
or rsh/rcp across a network. Setting up a compute cluster using workstations
is fairly cheap (by supercomputing standards) and easy. However, racks of
cabinets use a lot of space and running and maintaining dozens of disk-drive
based systems can chew up a lot of human time.

An economical compute cluster can be created with a set of diskless moth-
erboards attached via an on-board network adapter to a server. The diskless
nodes can be booted using the PXE environment and data transfers can be
done using a NFS shared partition, the traditional ssh or the computationally
cheaper shell (port 514) protocol.

A functional compute cluster can be created from castoff motherboards
thumb-tacked to a cubicle wall, or as assembled into a box as crudely as shown
below:

Proceedings of the Tcl 2011 249 Manassas, VA October 24-28 2011

The wulfgar application can be extended to different connection architec-
tures with external applications that are exec’d by wulfgar to transfer the
client application to the target system, execute it and collect results.

These applications will receive a set of values defined for the nodeset (IP
address, port, userID, password, etc) and per-job values which they must parse
for more details.

The Expect extension is a very useful tool for this sort of machine control
and is used in the external applications provided with wulfgar.

The example below is a sample of a post scp.tcl application which copies a
result file from the remote system to the local results folder. It receives the user
and password from the values in the nodeSet’s postRun attribute, and other
values (-out) from the values assigned to the job’s cmdArgs attribute.

#!/ opt/ActiveTcl -8.6/ bin/tclsh8 .6
lappend auto_path .
package require expectTools

exp_internal 0

Proceedings of the Tcl 2011 250 Manassas, VA October 24-28 2011

log_user 0

if {[llength $argv] < 4} {
puts {post_scp.tcl -local localFolder -user loginID -pwd pwd }
puts {From Run: post_scp.tcl -path remoteFile \

-ip [$n config -ipaddr]}
exit

}
puts "[llength $argv] .. $argv .."
array set av $argv

if {![info exists av(-path)]} {
set av(-path) $av(-out)

}

if {![info exists av(-local)]} {
set av(-local) .

}

spawn scp $av(-user)@$av(-ip):/$av(-path) $av(-local)
dialog assword $av(-pwd)
dialog 100% ""

The remote application on the compute node can be a single executable, or
a script that invokes several cooperating applications.

6 Adding a GUI

Since wulfgar is an expandable, adaptable application, the GUI code needs to
self-constructing and as independent of the thinking parts of the application as
possible.

This is accomplished in wulfgar with some naming conventions and by using
TclOO inheritance and mixins, Tcl’s introspection (particularly info class)
and trace facilities.

One convention is that the config command behaves like the Tk widgetName

configure command in that it returns a list of keys and values when it is
invoked with no arguments. This allows a procedure to easily retrieve a list of
the attributes in an object’s state array that can be assigned values.

This convention allows the GUIs that create an object to query the class for
values to be used in defining the object.

The info class command provides access to the class state of an applica-
tion. This can be used to determine how many classes are derived from another
class and dynamically construct a GUI that reflects the available functionality.

The next code snippet demonstrates using the info class subclass com-
mand to find the classes for the specific project types and create a separate

Proceedings of the Tcl 2011 251 Manassas, VA October 24-28 2011

tab in the tab notebook for each class. The configure command is used to
populate the fields with the class specific attributes and their initial values.

set nb [ttk:: notebook $fr.nb]

foreach nm [info class subclass :: projectBase] {
set nm [string trim $nm :]

$nb add [frame $nb.f_$nm] -text $nm
set f2 $nb.f_$nm

set f3 [labelframe $f2.fs \
-text "[string range $nm 0 end -7] Specific "]

grid $f3 -sticky news

foreach {k v} [$tmp config -createDict] {
label $f3.l_$k -text $k
entry $f3.e_$k -textvariable ::GUI($nm ,cD,$k)
set ::GUI($nm ,cD ,$k) $v
grid $f3.l_$k $f3.e_$k

}
}

When combined with the rest of the project GUI code an GUI like the image
below is created.

Another convention is that the external nodeState applications are named
using a pattern (so that glob can identify them) and must return a list of
arguments when invoked with no arguments. This allows the GUI for creating
a nodeset to automatically expand when new nodesets are created.

A common design pattern is for a class with GUI methods to be inherited
from a compute model class. This pattern is used to define the lineGui and

Proceedings of the Tcl 2011 252 Manassas, VA October 24-28 2011

nodeSetGui classes.
While a line is running, the line object creates new piece objects as it needs

them. It’s not convenient for a lineGui object to create the pieceGui objects,
since it’s not involved in the piece creation.

The line and piece classes interact with each other, and those interactions
need to be displayed in a GUI without touching the code that controls the
interactions.

The line class maintains a list of pieces that have been created.
The lineGui class inherits from the line class and places a trace on the

lineState(pieceList) variable. This allows the lineStateGui to be updated
whenever the line object adds or removes a piece.

As a remote task runs it should report a fraction complete message at inter-
vals. This message is received by the piece object that is controlling the task
and saved in the pieceState(complete) attribute.

Like the lineGui, the pieceGui class uses a trace on the pieceState(complete)
variable to update the completion bar.

7 Conclusion

Controlling disparate tasks on remote systems is a solvable, but non-trivial
problem. The difficulties in a generic solution are the different methods of
communicating with remote nodes and automating the creation of tasks.

The wulfgar solution is to provide a common framework for controlling
nodes and tasks, with relatively small bits of glue in the form of customized
classes and external applications to allow for per-application and/or per-site
customization.

Tcl’s ability to exec remote tasks coupled with expect’s ability to interact
with remote systems enables a user to tweak the control applications to match
their system.

The TclOO support for both inheritance and mixins and the ability to load
new code at runtime and introspect to find what classes can be created provides
a powerful environment for customizing task creation and linking tasks with
resources.

The trace and mixin facilities are a powerful tool to create a framework in
which the GUI and calculation code can interact with each other without being
intermingled.

Proceedings of the Tcl 2011 253 Manassas, VA October 24-28 2011

Proceedings of the Tcl 2011 254 Manassas, VA October 24-28 2011

Proceedings of the Tcl 2011 255 Manassas, VA October 24-28 2011

Proceedings of the Tcl 2011 256 Manassas, VA October 24-28 2011

	natcl.pdf
	NaTcl : Native Client Tcl Port

	itcl_in_javascript_paper.pdf
	Abstract
	Contact information
	1The Idea
	2How it started
	3Design Goals for Implementation of Itcl in Javascript
	4Performance issues
	5Tcl Javascript Objects
	5.1 [TclCallframe js Object]
	Parameters:

	5.2 [TclCommand js Object]
	Parameters:

	5.3 [TclDict js Object]
	Parameters:

	5.4 [TclEvalStatement js Object]
	Parameters:

	5.5 [TclInterpAlias js Object]
	Parameters:

	5.6 [TclInterp js Object]
	Parameters:

	5.7 [TclNamespace js Object]
	Parameters:

	5.8 [TclNode js Object]
	Parameters:

	5.9 [TclObject js Object]
	Parameters:

	5.10 [TclPackage js Obejct]
	Parameters:

	5.11 [TclParser js Object]
	Parameters:

	5.12 [TclParseStatement js Object]
	Parameters:

	5.13 [TclResolve js Object]
	Parameters:

	5.14 [TclStatement js Obejct]
	Parameters:

	5.15 [TclTest js Object]
	Parameters:

	5.16 [TclTestResult js Object]
	Parameters:

	5.17 [TclTrace js Object]
	Parameters:

	5.18 [TclVariable js Object]
	Parameters:

	5.19 [TclWord js Object]
	Parameters:

	5.20 [TclWordPart js Object]
	Parameters:

	6Itcl Javascript Objects for Tcl
	6.1 [ItclClasses js Object]
	Parameters:

	6.2 [ItclClass js Object]
	Parameters:

	6.3 [ItclCommand js Object]
	Parameters:

	6.4 [ItclFunction js Object]
	Parameters:

	6.5 [ItclFunctionParam js Object]
	Parameters:

	6.6 [ItclObject js Object]
	Parameters:

	6.7 [ItclOption js Object]
	Parameters:

	6.8 [ItclVariable js Object]
	Parameters:

	6.9 TclItclDict
	Parameters:

	6.10 TclItclHelper
	Parameters:

	7Status

	tk_in_javascript_paper.pdf
	Abstract
	Contact information
	1How it started
	2The initially implemented Tk widgets
	2.1 [TkWidget js Object]
	Parameters:

	2.2 [TkButton js Object]
	Parameters:

	2.3 [TkEntry js Object]
	Parameters:

	2.4 [TkFrame js Obejct]
	Parameters:

	2.2 [TkLabel js Object]
	Parameters:

	2.3 [TkToplevel js Object]
	Parameters:

	3Implemented Widgets
	4Tk Options
	4.1 [TkStandardOptions js Object]
	Parameters:

	4.2 [TkOptionTemplate js Object]
	Parameters:

	4.3 [TkOption js Object]
	Parameters:

	5Javascript Objects for Tcl usage
	5.1 [JsDomNode js Object]
	Parameters:

	5.2 [JsOption js Object]
	Parameters:

	5.3 [JsOptionTemplate js Object]
	Parameters:

	5.4 [JsStandardOptions js Object]
	Parameters:

	6Tk Javascript Objects
	6.1 [TkEventSequence js Object]
	Parameters:

	6.2 [TkGrid js Object]
	Parameters:

	6.3 [TkObject js Object]
	Parameters:

	6.4 [TkPack js Object]
	Parameters:

	7BWidget Tk Widgets
	7.1 [TkTree js Object]
	Parameters:

	7.2 [TkLabelEntry js Object]
	Parameters:

	7.3 [TkScrollableFrame js Object]
	Parameters:

	8TkTable Widget
	8.1 [TkTable js Object]
	Parameters:

	9Advanced Tk Widgets
	9.1 TkPanedWindow
	Parameters:

	10YUI revisited
	11Status

	nscltcl.pdf
	I. INTRODUCTION
	II. The NSCL and our research
	A. Why do radioactive beam experiments.
	B. Stopped and Reaccelerated Beams

	III. Facility for Rare Isotope Beams
	IV. Tcl at the NSCL
	A. History of the First Adoption
	B. Coupled Cyclotron Facility and adoption of Tcl/Tk.

	V. How Tcl and Tk are used at the NSCL.
	A. Tcl/Tk as an embedded command language.
	B. Application specific languages and configuration
	C. Enabling components and their applications
	1) Vme package
	2) Epics Tcl package
	3) SpecTcl

	D. Pure Tcl uses

	VI. Conclusions and a look forward
	VII. References

	fluid-dynamics.pdf
	I. INTRODUCTION
	II. Tracing fluid flow with radioactive sources
	III. Hardware Problem and Solution
	IV. Software
	A. Software requirements
	B. NSCL DAQ CC-USB base software
	C. Modifications to the base software.

	V. Conclusions
	VI. References

	paper.pdf
	Overview
	Past
	Present
	W3C Widgets Compliant Content Packaging for XoWiki/OpenACS
	Debugging tools for NRE
	Tcl Plugin for Netbeans
	Extending and Evolving CRIMP
	stasher: Tcl_Obj intRep as cache also at script level
	Create a binding to the Hwloc library
	Micro-benchmarking extension

	Future
	REFERENCES -9pt

