-

-

16-50
PR/8PC
7/12/71

USE OF THE 516 SEGMENT ASSEMBLER'S MACROS
IN APPLICATION PROGRAMS

Definitions, calling sequences, remarks and.
examples of some 516 Segment Assemblgr's MACROS are given
in this document, This document 1is directed to help |
programmers that begin to work with the system,vto write
application programs. Also, a list of existing constants
”(ﬁékeh'from'ﬁhe.Aééembler?s TVDEF table) are given to hélp
the programmér'save core space,

MACRO INSTRUCTIONS CLASSIFICATION

Relocatable Pointers - RELPTR

Increment Polnters - INCRCP '
~Single Character Transfer - GETCHR, PUTCHR
Character Strings - CPRSET,LSTCHR, NEWSTR,

'TEMSTR, TOSTR

Identification Number - IDTOAD, ADTOID, IDTOCP
Teletype - TYPEIN, TYPOUT, TPTEXT, TPCRLF
Miscellaneous - WAIT, DATIME

&

€

. RELOCATABLE POINTER
RELPTR (Relocate Pointer). Store in .RPn the contents of
the A-register, The contents of .RPn will be

adjusted by the system when a core shift occurs,

Calling Sequence

RELPTR .REn

normal return

Remarks
The core space taken by a segment, that 1s not

being used, can be released by the user with the two

"instructions given below.

CRA
RELPTR .RPn

When a core shift occurs, the system will use the released

~space for new segments.

-3 -

- INCREMENT POINTER

INCRCP (Increment Character Pointer) Increment a character

pointer, given as an argument, by the contents of the

A-register,

,5Ca11ing Seguence:
LDA (increment used)
INCRCP Tn

normal return

9

SINGLE CHARACTER TRANSFER

GETCHR (Get character). Get a byte from a segment file

and return it,right adjusted, in the A-register,

Calling Sequence
GETCHR .Tn
- error return (ran out of characters)

normal return

Remarks

The character count stored in .Tn is incremented

‘automatically after execution,

PUTCHR (Put character) -Store the byte in the A-register
in a buffer created by NEWSTR, TEMSTR, etc.

Calling Sequence

PUTCHR .Tn

Normal return -

Remarks

There is no error return because the system creates
a new segment when one is filled up without any action by the
user. Also, the relative character counter is incremented

automatically after execution.

-5 -
CHARACTER STRINGS

CPRSET (Character Pointer Reset) Reset character pointer
to the beginning of string.

Calling Sequences:

1. .CPRSET A, ‘B (where A = segment name and
' B = RA

-+ .+ "normal return

2. CPRSET ».Tn (contains a pointer to .RPn
and the character pointer count)

normal return

Remarks:
A comma has to preceed the RA even if there is not
a segment name. Upon execution of 2, ,Tn will contain a pointer
to .RPn and "O" for a character pointer. Also, .RPn will
have the absolute starting address of the first word of the

first segment of a chain, . = -

LSTCHR (Last character) Define the last character of an
existing string,
Calling Sequence . -

CALL LSTCH
ADDR .In
normal return '
Remarks: |
It truncates an existing character string, deallocates
‘sqcceediﬁg segments of the string, qhanges the forward pointer
of the segment to zero, and sets up a last'character indication

in the final segment,

-6 -

(New string). Creates the first gata segment of a
chain of segments. The high order bit of the
segment header is ON. This means that the segment

will be written on disc when the segment is released.

Calling Seguence

LDA .CPRPn : //;7 point to .RPn -
STA ~ .Tn 10 bits "O"
NEWSTR

ncrmal return

(Tempcrary String) - Same as NEWSTR but the high
order bit of the segment header is OFF and the segment

is designated a temporary data segment., Therefore, the
segments will not be saved on disc,

- Calling Sequence:

LDA .CPRPn
STA .Tn
TEMSTR

ncrmal return

)standard header (see 516-6 cc)

BP 1D ¢————1s 1 1if 1s the 1st segment

FP ID «———1s 0 if is the last segment

¢——max. 166g (# bytes)

(Throw out String) Delete String.

Calling Sequence

LDA .Tn - (see NEWSTR)
TOSTR)

E{N\

-7 -
IDENTIFICATION NUMBER

IDTOAD (Identification Number to Address) - Given the

- ID # of a segment find its'starting address,

Calling Sequence |
LDA (ID - number of segment)
IDTOAD '
normal return
Remarks:

The absolute starting address of the segment will

be returned in the A-register. It is recommended that the

user store this address in an .RPn pointer using the command

RELPTR .RPn. An unallocated ID will drive the thread into the
octal package. | ' |
Example: Store 1n .RPn the starting address of the segment
whose iD number is stored in location PASS,

LDA PASS

IDTOAD

RELPTR .RPn -

PASS @CT -0

g

€:A\

. Calling Sequence

-8 -

ADTOID (Address to Identification number) - Convert a segment
absolute address stored in the_A—register to its
equivalent relative address inside the segment.

The relative address is returned in the B-register
and the ID number of the segment is returned in the

. A-register,

LDA (relocatable pointer, 1i.e., ;RPn)
ADTOTD
normal return
Example: Pointer .RPn contains an arbitrary address inside a
segment. Find its ID number and 1ts relative address.
Store them 1n 5uffer words labeled ID and RA respec-
tively. Assume that the éegment starts at 100008. An

error will drive the thread into the octal package.

RP_ 103008 :) segment
. header
—
e
e et
) Check_Sum
Solution
LDA +RPn
ADTOID
STA iD
1AB
STA RA

ID : OCT O

PR -~ N\ frAn~ Y

-9 -

IDTOCP (ID number to Character Pointer), Store the absolute

starting address of a segment in an .RPn pointer.

~
E:; | Calling Sequence
| LDA ,CPRn RPn | 10 bits of "O"
STA .Tn
N LDA (ID number)
C | IDTOCP .Tn
' ‘ normal return
Remarks: This macro is useful for character'manipulation..
Example: Given the iD number of a segment containing ASCII
characters store the first one of them in the A-register,
LDA .CPRPn ,' .RPn | 10 bits of "O"
STA .Tn | |
LDA IDPASS
IDTOCP .In
GETCHR ~.Tn
™

IDPASS OCT (octal number)

- 10 -

TELETYPE
rf;\ '
r TYPEIN (Type In) Input a string of characters through
the TTY.
Calling Sequence:
F*;\~' ,: LDA (character pointer, to start input buffer,
~) | . i.e., LDA ,Tn)
STA ~ .IOCP (predefined address on base sector)
LDA (termination character)
STA IGTCH (predefined address on base sector)
TYPEIN |
Normal return
TYPOUT (Type Out) Output a string of characters to
the TTY. |
Calliﬁg Sequence: Same as above but use TYPOUT instead of
TYPEIN,
N

(:;‘ Remarks:

Returns updated character pointer or an indication

of output interruption in the A-register (-1).

/‘“‘f‘\

‘)

- 11 -

T PTEXT (Type Text) . Output on the TTY, a text stored in

a program segment,

Calling Sequence:
| TPTEXT (symbclic address of the text to be
printed)

normal return

Remark§: The last character on the text should be a reverse

slash, -\\ .
Example:
TPTEXT LOLA
normal return

LOLA:ASCII (
HOLIDAY.\)

TPCRLF (Type Carriage Return-Line Feed)

Calling Sequence:

TPCRLF

(normal return)

S

™

- 12 -
MISCELLANEOUS MACROS

WAIT Roadblock this thread for n seconds. (Turn

control over to another user for n seconds).

Calling Sequence:
| JST JAIT, *
DEC n. (time in seconds after which control

is returned)

DATIME Type out the date and time on the TTY,

Calling Sequence:

CALL DATIME

(normal return)

- 13 -

' CONSTANTS

‘ TTY. Characters

Meaning Equivalent Number
carriage-ret OCT 15;
blank OCT 40
’ " OCT 54
/ OCT 57
.ASC 260 OCT 60
\ oCT 134
— OCT 137
carr. ret w/parity OCT :215
rub out ~ oCT 377
carr.Aret 0CT 6412

line feed

Szmbol Equivalent ' Number
.M8 DEC -8
My | DEC -4
M3 DEC -3
M2 | DEC -2
Ml " DEC -1
PO - DEC 0
S . DEC 1
5 -R DEC 2
.P3 DEC 3
.Pli DEC .
.P5 ' bEc_ 5
.P6 - ' DEC 6
.P7 DEC 7
.P8 o DEC 8
.F9 DEC 9
.P10 v - DEC 10

The constants which start with .X are the hexadecimal equivalents

of the last 3 or 4 characters of its name. A = 10, B = 11,

C=12, D=13, E =14, F = 15, 1.e, OCT 77777 — binary
T TR s — .XTFFF | |
.X200 - ~ ocT 1000
.X1000 , .CPRPL 0CT 10000
.X2000 , .CPRP2 0CT 20000
.X3000 , .CPRP3 0CT 30000

.X4000 , .CPRP4 OCT 40000

N

e

Symbol - -

.X4001
+X5000
.X5800

. «X6000

.X7000

.X8000

+X9000
.XA000
«XBOOO
«XCO00
- XDOOO
. XEOOO
«XFOOO
.XF800
«XFCOO

» CPRP5

s «CPRP6
s «CPRFT

"XTFFF

...15_

Equivalent Number

OCT
OoCT

oCT -

OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
. 0CT
OCT

40001
50000
54000
60000
70000
1707
100000
110000
120000
130000
140000
150000
160000
170000

174000

176000

