

4-1

4-36
Visual Basic and Databases

Database Connection with ADO Technology
4-35

Visual Basic and Databases

4. Database Connection with ADO Technology
Review and Preview
· In the last chapter, we discussed the differences between the legacy Visual Basic data control, the DAO control, and the new control shipped with Visual Basic 6, the ADO control. And, we looked at how to use the DAO control to connect to a database and view desired recordsets.

· In this chapter, we cover much of the same material from the previous chapter, however, here we use ADO technology, examining both the data control and data environment. This chapter is self-contained, meaning it assumes you have not necessarily read the chapter on the DAO control. (For those who have read the previous chapter, you will notice lots of repetition). In addition to using the ADO data control for database access, we present a powerful new technology associated with the ADO data control, the data environment. Be aware you can only complete this particular chapter if you are using Visual Basic 6 - ADO technology is not available with Visual Basic 5.

ADO Data Control

· The ADO (ActiveX Data Object) data control is the primary interface between a Visual Basic application and a database. It can be used without writing any code at all! Or, it can be a central part of a complex database management system. The ADO data control does not appear in the standard Visual Basic toolbox - it must be added. Select Project from the main menu, then click Components. The Components window will appear. Select Microsoft ADO Data Control, then click OK. The control will be added to your toolbox. Its icon appears as:

[image: image1.png]
· The data control (or tool) can access databases created by other programs besides Visual Basic (or Microsoft Access). Some other formats supported include dBase, FoxPro, and Paradox.

· The data control can perform the following tasks:

1. Connect to a database.

2. Open a specified database table.

3. Create a virtual table based on a database query.

4. Pass database fields to other Visual Basic tools, for display or editing. Such tools are bound to the database, or data bound controls.

5. Add new records, delete records, or update records.

6. Trap any errors that may occur while accessing data.

7. Close the database.

· As a rule, you need one data control for every database table, or virtual table, you need access to. One row of the table is accessible to each data control at any one time. This is referred to as the current record.

ADO Data Control Properties

· The ADO data control is connected to a database simply be setting a few properties. Important properties of this data control are:

Align
Determines where data control is displayed.

Caption
Phrase displayed on the data control.

CommandType
Establishes source of Recordset (table or query).

ConnectionString
Contains the information used to establish a connection to a database.

EditMode
Read-only at run-time. Indicates current state of editing for the current record.

LockType
Indicates the type of locks placed on records during editing (default setting makes databases read-only).

Recordset
A set of records defined by a data control’s ConnectionString and RecordSource properties. Run-time only.

RecordSource
Determines the table (or virtual table) the data control is attached to.

Visible
Establishes whether the data control appears on the form at run-time.
· When an ADO data control is placed on a form, it appears with the assigned caption and four arrow buttons:

[image: image2.png]

The arrows are used to navigate through the table records (rows). As indicated, the buttons can be used to move to the beginning of the table, the end of the table, or from record to record. In most applications, the data control never appears on the form – its Visible property is almost always False. In this case, moving from record to record is handled programmatically, a topic discussed later in this chapter.

ConnectionString Property

· After placing a data control on a form, you set the ConnectionString property. The ADO data control can connect to a variety of database types. There are three ways to connect to a database: using a data link, using an ODBC data source, or using a connection string. For now, we will look only at connection to a Microsoft Access database using a connection string.

· Visual Basic can build the connection string for us. This process is best illustrated by example. We will use the books database (BIBLIO.MDB) discussed in Chapter 2. This database is shipped with Visual Basic and is usually installed in the Visual Basic main directory. Using Windows Explorer, find this file. Make a copy of the database and place it in a working directory (you decide on a name – we use c:\vbdb\working) where you will build your applications. We do this to insure there is always a valid copy of BIBLIO.MDB on your computer. You will see that the power of the ADO control also opens up the possibility of doing damage to a database (we, of course, will try to minimize this possibility). So, we are just living by the adage, “Better safe, than sorry.”

· Now, the steps to create our example connection string are:

1. Start a new Visual Basic project and place an ADO Data Control on the form.

2. Go to the Properties Window, click on the Connection String. Click on the ellipsis that appears. The Property Pages window appears.

3. Choose Use Connection String and click the Build button. The Data Link Properties window appears.

4. Choose the Provider tab and select Microsoft Jet 3.51 OLE DB Provider (an Access database).

5. Click the Next button to go to the Connection tab.

6. Click the ellipsis and use the Select Access Database dialog box to choose the BIBLIO.MDB file in your working directory. Click Open.

7. Click Test Connection. Then, click OK (assuming it passed). Click OK in the Property Pages window. The connection string is built and assigned to the ConnectionString property of the data control.

Recordset Object

· The Recordset object is an important concept. When we set the RecordSource property (either select a table from the database or form a virtual table via a query), the data control (using the Jet engine) retrieves the needed records and places them in the Recordset object for our use. We will see that this object has its own properties and methods for our use.

· In this chapter, the Recordset will be one of the native tables in the database. Continuing with the BIBLIO.MDB example, let’s connect to the Titles table:

1. Go to the Properties window for the data control. Select 2-adCmdTable for the CommandType property for the data control (this tells the data control we will be using a native table). Now, click the RecordSource property. Click on the ellipsis that appears. The Property Pages window appears.

2. Click the drop-down button under Tables or Stored Procedure Name. Choose Titles.
3. Click OK in the Property Pages window. The RecordSource property of the data control is set, establishing the Recordset as the Titles table of the books database.

· In summary, the relationship between the data control, its two primary properties (Connection String and RecordSource), and the Recordset object is:

[image: image3.png]
Data Bound Controls

· The ADO data control allows us to easily connect to a database and form a Recordset. Yet, that control alone does not provide us with any way to view the information in the database. To view the information, we use data bound controls that are special controls with properties established by database fields. A data bound control is needed for each field (column) in the Recordset (database table) you need to view. Most of the standard Visual Basic tools can be used as data bound controls.

· Standard data bound data controls are:

Label
Can be used to provide display-only access to a specified text data field. Caption property is data bound.

Text Box
Can be used to provide read/write access to a specified text data field. Probably, the most widely used data bound tool. Text property is data bound.

Check Box
Used to provide read/write access to a Boolean field. Value property is data bound.

Picture Box
Used to display a graphical image from a bitmap, icon, gif, jpeg, or metafile file. Provides read/write access to a image/binary data field. Picture property is data bound.

Image Box
Used to display a graphical image from a bitmap, icon, gif, jpeg, or metafile file (uses fewer resources than a picture box). Provides read/write access to a image/binary data field. Picture property is data bound.

· There are also three ‘custom’ data bound controls, data bound versions of the standard list box (DataList), the standard combo box (DataCombo), and the standard grid control (DataGrid). We will look at these later.

Data Bound Control Properties

· To establish the connection of the data bound control to a database, we use a few properties:

DataChanged
Indicates whether a value displayed in a bound control has changed.

DataField
Specifies the name of a field in the table pointed to by the respective data control.

DataSource
Specifies which data control the control is bound to (indirectly specifying the database table).

· If the data in any data bound control is changed and the user moves to another record in the database, the database will automatically be updated with the new data (assuming it is not ReadOnly). Be aware of this - it is an extremely powerful feature of the data control, but also a potential source of problems.

· To make using bound controls easy, follow these steps (in order listed) in placing the controls on a form:

1. Draw the bound control on the same form as the data control to which it will be bound.

2. Set the DataSource property. Click on the drop-down arrow to list the data controls on your form. Choose one.

3. Set the DataField property. Click on the drop-down arrow to list the fields associated with the selected data control records. Make your choice.

4. Set all other properties, as needed.

Again, by following these steps in order, we avoid potential data access errors.

· The relationships between a data bound control (DataSource and DataField properties) and the ADO data control (Recordset property) are:

[image: image4.png]
Example 4-1

Accessing the Books Database

If you haven’t made a working copy of the database file (BIBLIO.MDB) as explained earlier, please do so now. Note you may be able to skip a few steps in this example, if you’ve already set the ConnectionString and RecordSource properties to point to the Titles table.

1. After copying BIBLIO.MDB to your working directory, start a new application. We’ll develop a form where we can look through the Titles table in the books database. Place an ADO data control, four label boxes, and four text boxes on the form.

2. Set the following properties for each control. For the data control and the four text boxes, make sure you set the properties in the order given.

Form1:

Name
frmTitles

BorderStyle
1-Fixed Single

Caption
Titles Database

Adodc1:

Name
datTitles

Caption
Titles

CommandType
2-adCmdTable

ConnectionString
Use the Build option to point to the BIBLIO.MDB database

RecordSource
Titles (select from list, don’t type)

Label1:

Caption
Title

Label2:

Caption
Year Published

Label3:

Caption
ISBN

Label4:

Caption
Publisher ID

Text1:

Name
txtTitle

DataSource
datTitles (select, don’t type)

DataField
Title (select, don’t type)

Locked
True

MultiLine
True

Text
[Blank]

Text2:

Name
txtYearPublished

DataSource
datTitles (select, don’t type)

DataField
Year Published (select, don’t type)

Locked
True

MultiLine
True

Text
[Blank]

Text3:

Name
txtISBN

DataSource
datTitles (select, don’t type)

DataField
ISBN (select, don’t type)

Locked
True

MultiLine
True

Text
[Blank]

Text4:

Name
txtPubID

DataSource
datTitles (select, don’t type)

DataField
PubID (select, don’t type)

Locked
True

MultiLine
True

Text
[Blank]

When done, the form will look something like this:

[image: image5.png]
3. Save the application. Run the application. Cycle through the various titles using the data control. Did you notice something? You didn’t have to write one line of Visual Basic code! This indicates the power behind the data control and data bound controls.

There’s one last thing. If you load this example from the code accompanying the course, you will need to reset the data control’s ConnectionString property, pointing to the directory in which you have stored the Northwind Traders database on your computer. In fact, you will have to do this anytime you use the examples provided with the course.

ADO Data Control Events

· Like other controls, the ADO data control has events that are triggered at various times during database access. In these events, we write BASIC code to perform specific needed tasks. In this chapter, we will not be using these event procedures, but we will define them to make our definition of the data control complete.

· Important ADO data control events:

WillMove
Triggers before record pointer is moved from one row to another.

MoveComplete
Event triggered after record pointer has been moved from one row to another.

EndofRecordset
Triggers when the record pointer is moved past the last record in the recordset.

WillChangeRecordset
Triggers before a change is made to the recordset. Used to trap unwanted changes.

RecordsetChangeComplete
Triggers after a change is made to recordset.

WillChangeRecord
Triggers before updates for the current row are sent to the data source.

RecordChangeComplete
Triggers after updates for the current row are sent to the data source.

WillChangeField
Triggers before the current field in the recordset is updated.

FieldChangeComplete
Triggers after the current field in the recordset has been updated.

· These events will be discussed further when we begin development of database management techniques in a later chapter.

ADO Data Control Method

· To complete our definition of the ADO data control, we present a single method:

Refresh
Requeries the database based on contents of the RecordSource property.

· Like events, this ADO data control method will be discussed further when we begin development of database management techniques in a later chapter.

ADO Data Control Recordset Properties

· The Recordset object of the data control has its own set of properties. These properties can only be accessed at run-time. To refer to a Recordset property, use a ‘double-dot’ notation. For example, if you have a data control named datExample, to refer to a property named PropertyName, the notation is:

datExample.Recordset.PropertyName

· Important data control Recordset properties are:

AbsolutePosition
Long integer that either gets or sets the position of the current record.

BOF
Returns True when the current record is positioned before any data.

Bookmark
Sets or returns a bookmark to the current record. Used as a place marker in database management tasks.

EditMode
Indicates the state of editing for the current record.

EOF
Returns True when the current record is positioned past any data.

RecordCount
The total number of records in the Recordset.

· We will look at the BOF and EOF properties in the section on Recordset Navigation. Other properties will be examined later in this course.

ADO Data Control Recordset Methods

· The data control Recordset also has its own set of methods that perform functions on the Recordset. These methods are invoked using the double-dot notation introduced for the Recordset properties. So, for a data control (datExample) and method (MethodName), you invoke the method via:

datExample.Recordset.MethodName

· Important Recordset methods are:

AddNew
Adds a new record to the Recordset. All fields are set to null and this record becomes the current record.

CancelUpdate
Used to cancel any pending updates (either while editing or using the AddNew method)

Close
Closes a Recordset.

Delete
The current record is deleted from the Recordset.

Move
Moves the current record pointer a specified number of records forward or backward.

MoveFirst
Moves the current record pointer to the first record in the Recordset.

MoveLast
Moves the current record pointer to the last record in the Recordset.

MoveNext
Moves the current record pointer to the next record in the Recordset.

MovePrevious
Moves the current record pointer to the previous record in the Recordset.

Requery
Updates the data in a Recordset object by re-executing the query on which the object is based.

Update
Saves the current contents of all data bound controls.

· We will look at the four ‘Move’ methods in the next section on Recordset Navigation. Other properties will be reviewed later in this course.

ADO Data Control Recordset Navigation

· We have seen that, on the form, the ADO data control has four arrows that allow the user to move to the first, next, previous, and last records in the Recordset. Unfortunately, this control does not have a familiar look to a user and it may not be clear just exactly what functions the arrows perform. For this reason, we usually set the data control’s Visible property to False and provide a programmatic approach to moving from record to record, or Recordset navigation.

· Four Recordset methods replicate the capabilities of the arrow buttons on the data control: MoveFirst, MoveNext, MovePrevious, and MoveLast. For each function we need, a command button is added to the form, with a Click event procedure attached to the corresponding Recordset method.

· When programmatically navigating through the records, you need to be aware of the position of the current record. For example, if you are at the first record and try a MovePrevious method, you will move past the beginning of the file. You can use the BOF property to see you are at the beginning of file and disallow such a move. You need a similar check at the end of a file to disallow an invalid MoveNext method.

Quick Example 1 - Recordset Navigation
1. Load the project built in Example 4-1. Set the ADO data control’s Visible property to False. Add two command buttons with the following properties:

Command1:

Name
cmdPrevious

Caption
&Previous

Command2:

Name
cmdNext

Caption
&Next

The form should look like this (notice the data control is still there under the command buttons- it will only disappear at run-time).

[image: image6.png]
2. Place this code in the cmdPrevious_Click event:

Private Sub cmdPrevious_Click()

datTitles.Recordset.MovePrevious

If datTitles.Recordset.BOF Then

 datTitles.Recordset.MoveFirst

End If

End Sub

3. Place this code in the cmdNext_Click event:

Private Sub cmdNext_Click()

datTitles.Recordset.MoveNext

If datTitles.Recordset.EOF Then

 datTitles.Recordset.MoveLast

End If

End Sub

4. Save and run the application. Make sure the newly added buttons work as they should. Try adding buttons to move to the first and last records. Can you write the code?

DAO or ADO – What’s the Difference?

· We asked this same question in Chapter 3 before we looked at both data controls. Now that we’ve seen how the two controls are used for database connection, it’s fair to ask the question again.

· Use of the two controls is nearly identical – you can see that in the fact that the two sets of notes are nearly identical. The primary difference between the two data controls is in the properties used to connect to a database. The DAO control connects to the database using the DatabaseName property while the ADO control uses the ConnectionString.

· To construct a Recordset, the DAO control uses the RecordSource property. The ADO control requires setting two properties: RecordSource and CommandType.

· The ADO data control offers more event procedures than the DAO control to allow more complete control over database management.

· So, the question still may be – which control should you use? You should understand the use of both data controls because you will see them both as you progress as a Visual Basic programmer. For simple projects, the DAO control is adequate. For more detailed projects and for all new projects, we would recommend the ADO data control. It is new technology and will receive the bulk of Microsoft’s support with future releases of Visual Basic. And, as seen in the next section, it has some hidden powers we have yet to see!

ADO Data Environment

· One big advantage of the new ADO data control is that you don’t even need it to work with databases! Yes, that’s right. A new technology has emerged – the ADO Data Environment. The Data Environment acts like multiple data controls you can access from anywhere in your application. You can connect to multiple databases and form multiple views of the data in those databases. Data bound controls can bind to any data view in the Data Environment.

· The Data Environment is a shareable and reusable connection file that can be used in any Visual Basic project. It is added to your project just like a form (it has a single property of interest – Name). The Data Environment provides a greatly simplified programming environment used to connect to data sources. It provides ‘drag-and-drop’ functionality for building interfaces and developing database reports (discussed in a later class).

· The Data Environment has two primary objects: the Connection object (specifies the database similar to the ConnectionString property of the ADO data control) and the Command object (specifies the Recordset like the RecordSource property of the ADO control).

· To see the versatility of the Data Environment, here is a diagram of one with five different recordsets being generated from two different databases:

[image: image7.png]
Connection Object

· The primary feature of the Data Environment is the Connection object. It specifies the information needed to connect to a particular database.

· The Connection object has several properties:

Attributes
Needed connection string properties passed to the Connection object.

CommandTimeout
Time in seconds the server will wait for a command to return a reply.

ConnectionSource
String that describes the path to the data source connection.

ConnectionTimeout
Time in seconds the server will wait for a connection to open on the destination server.

Don’t worry if some of these properties don’t make sense right now.

Command Object

· The Data Environment Connection object specifies a database. The Command object specifies a database table (either a native table or a virtual table formed using a database query).

· The Command object is very flexible and can be used for very advanced database applications. For now, we will use it to form a Recordset for our use. Some Command object properties are:

CommandText
Specifies table to display or gives valid database query statement.

CommandType
Specifies whether object is connected to database native table or virtual table formed using a query.

ConnectionName
Name of associated Connection object.

LockType
Controls how data in table may or may not be changed. Set to Read Only by default. Must be changed if you need to edit data.

· Like most things with Visual Basic, the Data Environment and associated Connection and Command objects are best illustrated via example.

Quick Example 2 - Use of ADO Data Environment

In this example, we will form a Connection object to the books database (BIBLIO.MDB) database and a Command object for the Titles table. This is the same table used in the example with the ADO data control. This should illustrate the differences between using the Data Environment and the ADO data control.

1. Start a new project. Add a Data Environment to your project. To do this, either right-click the Project Explorer window and choose Add, then Data Environment. Or, choose Add Data Environment under the Project menu item. There’s a chance that Add Data Environment may not be one of the menu choices. If this is the case, the problem is easy to solve. Select Components under the Project menu item. In the window that appears, choose the Designers tab and check the boxes next to Data Environment and Data Report, then click OK. The Data Environment will now be available.

Once selected, a Data Environment will appear in the Project Explorer window. The Data Environment window should also appear. If it doesn’t, double-click the Data Environment listing in the Project Explorer window. It should look like this:

[image: image8.png]
2. Go to the Properties window and assign a Name of denBooks to DataEnvironment1. Assign a Name of conBooks to Connection1.

3. We’ll now establish the Connection object:

· Right-click on conBooks and select Properties. A Data Link Properties window (identical to that used to set the ConnectionString with the data control) will appear.

· Choose the Provider tab and select Microsoft Jet 3.51 OLE DB Provider (an Access database).

· Click the Next button to go to the Connection tab. Click the ellipsis and use the Select Access Database dialog box to choose the BIBLIO.MDB file in your working directory. Click Open. Click Test Connection. Then, click OK (assuming it passed).

· Click OK in the Data Link Properties window.

4. And now, we will establish the Command object:

· In the Data Environment window, right-click on conBooks. A pop-up menu will appear. Select Add Command. A Command object is added to the environment.

· Right-click Command1 and select Properties. A Properties window will appear. Make sure the General tab is active.

· Give the Command object a name of comTitles. Make sure the Connection is conBooks (the Connection object you just created).

· In the Source of Data, choose Database Object, then select Table. Finally, under Object Name, choose the Titles table from the drop-down list.

5. The Command object is complete. Right-click Titles and choose the Expand All option. All fields in the Titles table will be listed and the Data Environment window should look like this:

[image: image9.png]
The Data Environment is now configured to allow access to the Titles table in the books database (BIBLIO.MDB) database. This configuration may have required more steps than simply using the ADO data control, but the steps are worth it. You’ll see that now where we attach some data bound controls to view the Titles table.

Data Bound Controls with the Data Environment

· To establish the connection of a data bound control to a database using the Data Environment, we use three properties:

DataField
Specifies the name of a field in the table established by the Command object.

DataMember
Specifies the Command object establishing the database table.

DataSource
Specifies which Data Environment the control is bound to.

Note there is one more property needed when compared to using the ADO data control - DataMember is not used with the data control.

· The relationships between a data bound control (DataSource, DataMember and DataField properties) and the Data Environment are:

[image: image10.png]
· To use bound controls with the Data Environment, we could follow these steps (in order listed) in placing the controls on a form:

1. Draw the bound control on the a form.

2. Set the DataSource property. Click on the drop-down arrow to list the Data Environments in your project. Choose one.

3. Set the DataMember property. Click on the drop-down arrow to list the Command objects in the selected Data Environment. Choose one.

4. Set the DataField property. Click on the drop-down arrow to list the fields associated with the selected DataMember. Make your choice.

5. Set all other properties, as needed.

· The steps above are just one way to connect data bound controls to the Data Environment. But, now let’s look at one of the powerful features of the Data Environment - ‘drag and drop’ data bound controls.

Example 4-2
Drag and Drop Controls

In this example, we will build the same interface used with the ADO data control in Example 4-1 using the drag and drop capabilities of the Data Environment.

1. Return to the previous example (Quick Example 2) where we set up the Data Environment for the Titles table of the books database. Set up the Visual Basic environment so the Data Environment window and the Project window with an empty Form appears on the screen. Your screen should look something like this:

[image: image11.png]
2. Set the following properties for the form:

Name
frmDataEnvironment

BorderStyle
1 - Fixed Single

Caption
Data Environment Example

3. Left-click on the Title field in the Data Environment window and drag it to the Form. When the field is over the Form an icon will appear. This icon holds a label identifying the field and a text box for displaying the field. Release the mouse button when the icon is in the desired position. At this point, my form looks like this:

[image: image12.png]
4. Go to the Properties window and look at the Name, DataField, DataMember, and DataSource properties for the text box on the form:

Name
txtTitle

DataField
Title

DataMember
comTitles

DataSource
denBooks

It’s magic! By dragging the Title field onto the form, the data bound control properties are automatically established by the Data Environment. This makes building an interface much easier. At this point, of course, you can change any properties regarding size and appearance.

5. Complete the interface by dragging the Year Published, ISBN, and PubID fields onto the form. Move and resize any controls, as needed.

6. Save and run the application. Your screen should look something like this:

[image: image13.png]
Note we have a problem. We can only view the first record in the database. The Data Environment provides no means for navigating between records. But, recall, we have looked at how to programmatically navigate between records when discussing the ADO data control. Those same methods can be used here.

Recordsets in the Data Environment

· As configured, the Data Environment returns a Recordset that has properties and methods identical to those of the ADO data control. A Recordset is returned for each Command object in the environment. Since there are many possible recordsets in one Data Environment, each is assigned a unique name by the environment, based on the Command object name. Make sure you give each Command object in a Data Environment a unique name.

· For a Command object named comExample, the Recordset is assigned the name rscomExample (note the addition of the two letter prefix, rs). To read or set the property of this Recordset in a Data Environment named denExample, we use the double-dot notation of:

denExample.rscomExample.PropertyName

· Likewise to reference a method (such as one of the Move methods) for this Recordset, we use the notation:

denExample.rscomExample.MethodName

Quick Example 3 - Record Navigation with the Data Environment

1. Continue with Example 4-2 and add two command buttons with the following properties:

Command1:

Name
cmdPrevious

Caption
&Previous

Command2:

Name
cmdNext

Caption
&Next

2. The form should look like this:

[image: image14.png]

3. Place this code in the cmdPrevious_Click event:

Private Sub cmdPrevious_Click()

denBooks.rscomTitles.MovePrevious

If denBooks.rscomTitles.BOF Then

 denBooks.rscomTitles.MoveFirst

End If

End Sub

4. Place this code in the cmdNext_Click event:

Private Sub cmdNext_Click()

denBooks.rscomTitles.MoveNext

If denBooks.rscomTitles.EOF Then

 denBooks.rscomTitles.MoveLast

End If

End Sub

5. Save and run the application. Make sure the newly added buttons work as they should. Do you see how much easier it was to construct the form with the data bound controls, as compared to setting all the properties back in Example 4-1?

DAO to ADO – ADO to DAO

· What if you have a database application using the DAO data control that you would like to update to the ADO data control or ADO data environment? Or, what if you need to adapt a Visual Basic 6 application using ADO to Visual Basic 5 and DAO? In this section, we offer a few tips for the conversions.

· Replacing one data control with another is simple if you pay attention to just a couple of details. To switch from the DAO control to the ADO control, follow these steps:

· Make note of the DAO control Name, DatabaseName, and RecordSource properties.

· Delete the DAO data control.

· Add the ADO data control to the form.

· Assign the new control the same Name property, insure the ConnectionString is attached to the database specified by the DAO DatabaseName and use the same RecordSource property.

By following these steps, all data bound controls should still be properly connected. If not, it is a simple matter of re-establishing the DataSource and DataField properties for each control.

· Switching from the ADO control to the DAO control follows similar steps:

· Make note of the ADO control Name, ConnectionString, and RecordSource properties.

· Delete the ADO data control.

· Add the DAO data control to the form.

· Assign the new control the same Name property, set DatabaseName to the database referenced in the ADO ConnectionString property, and use the same RecordSource property.

By following these steps, all data bound controls should still be properly connected. If not, it is a simple matter of re-establishing the DataSource and DataField properties for each control.

· Updating from the DAO data control to the ADO data environment requires as a minimum:

· Make note of the DAO control DatabaseName and RecordSource properties.

· Delete the DAO data control.

· Add an ADO data environment to the project.

· Configure the Connection object so it is attached to the database given by DAO DatabaseName.

· Configure a Command object such that it’s Source of Data is the same as the DAO RecordSource property.

· Modify data bound control properties – DataSource is bound to data environment, DataMember is bound to Command object, DataField is bound to appropriate field (should be the same value used by DAO control).

· Moving from the ADO data environment to the DAO data control requires as a minimum:

· Make note of the database the ADO Connection object is connected to and the Source of Data for the Command object.

· Delete the ADO data environment.

· Add a DAO data control to the form.

· Set the DatabaseName property such that it is connected to the same database and set the RecordSource property to the same value used by the ADO Command object.

· Modify data bound control properties – DataSource is bound to the DAO data control, DataMember is not used (blank it out), DataField is bound to appropriate field (should be the same value used by ADO data environment).

· All of the above conversions only address design mode setup. If you have written any BASIC code that uses data control methods and properties or recordset methods and properties, you will have to make sure necessary modifications are made to insure your code works with the new data access technology.

Summary

· In this chapter, we used the ADO data control to connect to and view a database using data bound controls. The procedure was seen to be nearly identical to that of the DAO data control studied in the previous chapter.

· A new technology, the Data Environment, was also studied. The Data Environment is a shareable and reusable connection file that can be used in any Visual Basic project. It is added to your project just like a form. The Data Environment provides a greatly simplified programming environment used to connect to data sources. It provides ‘drag-and-drop’ functionality for building interfaces.

· The ADO data control is still useful for quick prototyping of database applications and we will occasionally use it for this purpose. But, for any serious application, we will forego the ADO data control in favor of the ADO Data Environment.

· At this point in the course, we have learned a lot, but still can only view a native table in a database. In the next chapter, we learn the language that allows us to form any virtual view of data we wish. That language is SQL (structured query language), the heart of any database management system.

Exercise 4-1
Northwind Traders Database

A second sample database is included with Visual Basic 5 and Visual Basic 6. It is a database (NWIND.MDB) used by a fictional company (Northwind Traders) to handle its commerce. It has eight tables. In this exercise, we repeat the tasks of Example 4-1, using one table (Customers) in this database. This and the next exercise give you further practice in using the ADO data control and data bound controls and allows you to study the structure of another database.

1. Copy NWIND.MDB to your working directory and start a new application. We’ll develop a form where we can look through the Customers table in the Northwind Traders database. Place an ADO data control, four label boxes, and four text boxes on the form.

2. Set the following properties for each control. For the data control and the four text boxes, make sure you set the properties in the order given.

Form1:

Name
frmCustomers

BorderStyle
1-Fixed Single

Caption
Customers Database

Adodc1:

Name
datCustomers

Caption
Customers

CommandType
2-adCmdTable

ConnectionString
Use the Build option to point to the NWIND.MDB database

RecordSource
Customers (select from list, don’t type)

Label1:

Caption
Customer ID

Label2:

Caption
Company Name

Label3:

Caption
Contact Name

Label4:

Caption
Contact Title

Text1:

Name
txtCustomerID

DataSource
datCustomers (select, don’t type)

DataField
CustomerID (select, don’t type)

Locked
True

MultiLine
True

Text
[Blank]

Text2:

Name
txtCompanyName

DataSource
datCustomers (select, don’t type)

DataField
CompanyName (select, don’t type)

Locked
True

MultiLine
True

Text
[Blank]

Text3:

Name
txtContactName

DataSource
datCustomers (select, don’t type)

DataField
ContactName (select, don’t type)

Locked
True

MultiLine
True

Text
[Blank]

Text4:

Name
txtContactID

DataSource
datCustomers (select, don’t type)

DataField
ContactTitle (select, don’t type)

Locked
True

MultiLine
True

Text
[Blank]

When done, the form will look something like this:

[image: image15.png]
3. Save the application. Run the application. Cycle through the various customers using the data control.

Exercise 4-2
Data Environment with Northwind Traders Database

For more practice in connecting to databases, we repeat Example 4-3 and Quick Example 4, using the Northwind Traders database. In this exercise, we will first form a Connection object to the Northwind Traders (NWIND.MDB) database and a Command object for the Customers table.

1. Start a new project. Add a Data Environment to your project. Go to the Properties window and assign a Name of denNorthwind to DataEnvironment1. Assign a Name of conNorthwind to Connection1. We’ll now establish the Connection object:

· Right-click on conNorthwind and select Properties. A Data Link Properties window (identical to that used to set the ConnectionString with the data control) will appear.

· Choose the Provider tab and select Microsoft Jet 3.51 OLE DB Provider (an Access database).

· Click the Next button to go to the Connection tab. Click the ellipsis and use the Select Access Database dialog box to choose the NWIND.MDB file in your working directory. Click Open. Click Test Connection. Then, click OK (assuming it passed).

· Click OK in the Data Link Properties window.

2. And now, we will establish the Command object: In the Data Environment window, right-click on comNorthwind. A pop-up menu will appear. Select Add Command. A Command object is added to the environment.

· Right-click Command1 and select Properties. A Properties window will appear. Make sure the General tab is active.

· Give the Command object a name of Customers. Make sure the Connection is conNorthwind (the Connection object you just created).

· In the Source of Data, choose Database Object, then select Table. Finally, under Object Name, choose the Customers table from the drop-down list.

The Command object is complete. Right-click Customers and choose the Expand All option. All fields in the Customers table will be listed and the Data Environment window should look like this:

[image: image16.png]
3. Set the following properties for the form:

Name
frmDataEnvironment

BorderStyle
1 - Fixed Single

Caption
Data Environment Example

4. Drag and drip the following fields from the Data Environment window to the Form: CustomerID, CompanyName, ContactName, and ContactTitle. Add two command buttons with properties:

Command1:

Name
cmdPrevious

Caption
&Previous

Command2:

Name
cmdNext

Caption
&Next

The form should look like this:

[image: image17.png]
5. Place this code in the cmdPrevious_Click event:

Private Sub cmdPrevious_Click()

denNorthwind.rscomCustomers.MovePrevious

If denNorthwind.rscomCustomers.BOF Then

 denNorthwind.rscomCustomers.MoveFirst

End If

End Sub

6. Place this code in the cmdNext_Click event:

Private Sub cmdNext_Click()

denNorthwind.rscomCustomers.MoveNext

If denNorthwind.rscomCustomers.EOF Then

 denNorthwind.rscomCustomers.MoveLast

End If

End Sub

7. Save and run the application.

This page intentionally not left blank.

Move to last record (row)

Move to first record (row)

Move to previous record (row)

Move to next record (row)

© KIDware (206) 721-2556
© KIDware (206) 721-2556
© KIDware (206) 721-2556

_1001902149

_1001902468

_1001902671

_1001902805

_1001902840

_1001902734

_1001902505

_1001902239

_1001902311

_1001902204

_1001901741

_1001901941

_1001902042

_1001901878

_997073768

_1001901706

_997073767

