
Python Programmer’s Manual

Advanced Software Engineering Limited
www.advsofteng.com

Copyright © 2001

ASE doc code: cdpy150003

http://www.advsofteng.com/

 2222

License Agreement
You should carefully read the following terms and conditions before using the ChartDirector software.
Your use of the ChartDirector software indicates your acceptance of this license agreement. Do not use
the ChartDirector software if you do not agree with this license agreement.

Disclaimer of Warranty
The ChartDirector software and the accompanying files are distributed and licensed “as is”. Advanced
Software Engineering Limited disclaims all warranties, either express or implied, including, but not
limited to implied warranties of merchantability and fitness for a particular purpose. Should the
ChartDirector software prove defective, the licensee assumes the risk of paying the entire cost of all
necessary servicing, repair, or correction and any incidental or consequential damages. In no event will
Advanced Software Engineering Limited be liable for any damages whatsoever (including without
limitation damages for loss of business profits, business interruption, loss of business information and
the like) arising out of the use or the inability to use the ChartDirector software even if Advanced
Software Engineering Limited has been advised of the possibility of such damages.

Copyright
The ChartDirector software is protected by copyright laws and international copyright treaties, as well
as other intellectual property laws and treaties. The ChartDirector software is licensed, not sold. Title to
the ChartDirector software shall at all times remain with Advanced Software Engineering Limited.

Public Version
The public version of the ChartDirector software will produce acknowledgement messages in chart
images generated by it.

Subjected to the conditions in this license agreement:

��You may use the unmodified public version of the ChartDirector software without charge.

��You may redistribute the unmodified public version of the ChartDirector software, provided
you do not charge for it.

��You may embed the unmodified public version of the ChartDirector software (or part of it), in a
product and distribute the product, provided you do not charge for the product.

If you do not want the acknowledgement messages appearing in the charts, or you want to embed the
ChartDirector software (or part of it) in a product that is not free, you must purchase a commercial
license to use the ChartDirector software from Advanced Software Engineering Limited. Please refer to
Advanced Software Engineering Limited’s web site at www.advsofteng.com for details.

Credits
The ChartDirector software is developed using code from the Independent JPEG Group and the
FreeType team. Any software that is derived from the ChartDirector software must include the
following text in its documentation. This applies to both the public version of the ChartDirector
software and to the commercial version of the ChartDirector software.

http://www.advsofteng.com/

 3333

This software is based in part on the work of the Independent JPEG Group

This software is based in part of the work of the FreeType Team

Ordering Information
Please refer to Advanced Software Engineering Limited’s web site at www.advsofteng.com.

Support Contact
Please refer to Advanced Software Engineering Limited’s web site at www.advsofteng.com.

http://www.advsofteng.com/
http://www.advsofteng.com/

 4444

Table Of Contents
Introduction .. 11

Welcome to ChartDirector .. 11
Programming Languages ... 12
Supported Platforms... 12

Installation .. 13
Copying to the Hard Disk.. 13
Sample Projects ... 13
The Programming Environment.. 13
Installing the ChartDirector License.. 14

Getting Started ... 15
The First Project ... 15
Chart Object Model Overview... 17

Pie Chart ... 19
Simple Pie Chart... 19
3D Pie Chart with Title.. 20
Pie Chart with Legend .. 21
Coloring Scheme and Wallpaper.. 22
Text Style and Text Colors ... 25
Label Positioning, Formatting and Join Line... 27
Varying 3D Depth and Angles .. 29
3D Shadow Mode... 30
Start Angle and Layout Direction.. 31

XY Chart.. 33
Simple Bar Chart .. 33
3D Bar Chart with Titles.. 34
Multi-Bar Chart and Stacked Bar Chart .. 36
Depth Bar Chart ... 38
Bar Label .. 40
Bar Gap .. 41
Simple Line Chart ... 43
3D Line Chart ... 44
Multi-Line Chart .. 45
Simple Area Chart ...Error! Bookmark not defined.

 5555

3D Area Chart .. 48
Line Area Chart .. 50
Stacked Area Chart .. 51
Depth Area Chart.. 53
High-Low-Open-Close Chart .. 55
Combination Chart.. 58
Grids and Grid Background .. 59
Marks and Zones.. 61
Wallpaper and Coloring Scheme.. 63
Text Style and Colors ... 65
Legend Positioning... 67
Log Scale Axis.. 70
Y-Axis Scaling .. 71
Tick Density.. 74
Dual Y-Axis... 75
Dual X-Axis... 78

ChartDirector API Reference... 81

Data Types .. 81
Color Specification.. 81
Font Specification... 82

Font File.. 82
Font Index ... 83
Font Size, Font Height and Font Width .. 83
Font Color... 83
Font Angle... 83
Vertical Layout.. 83

Alignment Specification .. 84
No Value Specification ... 84

Draw Objects .. 85
TextStyle .. 85

setFontStyle... 85
setFontSize .. 86
setFontAngle ... 86
setFontColor ... 87
setBackground... 87
setMargin .. 87
setMargin2 .. 88

Box ... 88
setPos .. 88

 6666

setSize.. 89
setBackground... 89

TextBox .. 89
setText ... 90
setAlignment.. 91

Line... 91
setPos .. 91
setColor... 92
setWidth... 92

BaseChart ... 92
setSize.. 93
setBorder.. 93
setWallpaper .. 94
setBgImage .. 94
addTitle... 95
addTitle2... 96
addLegend ... 96
getDrawArea .. 97
addDrawObj ... 97
addText .. 98
addLine... 99
setColor .. 99
setColors .. 99
setColors2 .. 100
getColor.. 100
layout.. 101
makeChart.. 101
makeChart2.. 102

LegendBox.. 102
addKey ... 103

PieChart... 103
PieChart ... 105
setPieSize .. 105
set3D.. 105
setStartAngle.. 106
setLabelFormat .. 106
setLabelStyle.. 108
setLabelPos.. 108

 7777

setData ... 109
sector.. 109

Sector .. 110
setExplode.. 110
setLabelFormat .. 110
setLabelStyle.. 111
setLabelPos.. 111

XYChart ... 112
XYChart.. 114
yAxis... 114
yAxis2... 114
syncYAxis... 115
setYAxisOnRight .. 115
xAxis... 116
xAxis2... 116
setPlotArea... 117
addBarLayer... 117
addBarLayer2... 118
addLineLayer.. 119
addLineLayer2.. 120
addAreaLayer... 120
addAreaLayer2... 121
addHLOCLayer .. 122
addHLOCLayer2... 123

PlotArea... 123
setBackground ... 123
setBackground2 ... 124
setGridColor ... 125

BaseAxis ... 125
setLabelStyle.. 125
setLabelGap ... 126
setTitle.. 126
setTitlePos.. 127
setColors .. 128
setTickLength ... 128
setTickLength2 ... 129

 8888

XAxis ... 129
setLabels .. 130
setIndent... 130

YAxis ... 131
addMark ... 132
addZone ... 133
setLinearScale.. 133
setLogScale.. 134
setLogScale2.. 134
setAutoScale .. 135
setTickDensity .. 136
setTopMargin ... 136
setLabelFormat .. 137

Mark... 138
setValue ... 138
setMarkColor .. 138
setLineWidth... 139

Layer.. 139
set3D.. 140
setLineWidth... 140
setDataCombineMethod... 141
addDataSet .. 141
getXCoor .. 142
getYCoor .. 142
setDataLabelFormat ... 143
setDataLabelStyle .. 144
setAggregateLabelFormat .. 145
setAggregateLabelStyle ... 145

BarLayer.. 146
setBarGap .. 147

LineLayer .. 147

AreaLayer.. 148

HLOCLayer.. 149

DataSet .. 149

 9999

setDataName ... 150
setDataColor .. 150
setUseYAxis2 ... 151
setLineWidth... 151
setDataLabelFormat ... 152
setDataLabelStyle .. 152

DrawArea... 153
DrawArea ... 155
setSize.. 155
getWidth ... 156
getHeight .. 156
setBgColor.. 156
pixel .. 157
getPixel... 157
line.. 157
hline.. 158
vline .. 158
arc .. 159
rect ... 159
polygon... 160
surface.. 161
sector.. 162
cylinder ... 162
circle ... 163
fill .. 164
fill2 .. 164
text.. 165
text2.. 166
text3.. 167
text4.. 167
merge ... 168
tile... 169
load... 169
loadGIF... 170
loadPNG... 170
loadJPG.. 170
loadWMP.. 171
out .. 171

 10101010

outGIF .. 171
outGIF2 .. 172
outPNG... 172
outPNG2... 172
outJPG ... 173
outJPG2 ... 173
outWMP.. 174
outWMP2.. 174
setPaletteMode .. 174
setDitherMethod ... 175
setTransparentColor... 176
setAntiAliasText.. 176
setInterlace... 177
setColorTable ... 177
getARGBColor.. 178

TTFText ... 178
getWidth ... 178
getHeight .. 179
getLineHeight ... 179
getLineDistance.. 179
draw.. 179

ChartDirector API Index... 181

 11111111

Welcome to ChartDirector
ChartDirector is a powerful software graphics library for creating professionally looking charts in PNG,
JPEG, WBMP or alternative GIF1 format.

If you are reading this document using the Adobe Acrobat Reader on a Windows based computer, to
see the graphics charts clearly, the best magnification to use is 133.3% to avoid disortion due to alias.

��ChartDirector employs a powerful and
elegant object model. The charts are
modeled as objects hierarchies, containing
title objects, legend objects, axis objects,
data set objects, etc. You may control the
properties of those objects, providing you
tremendous flexibility to design the charts
you like.

Width : 180 pixels
Height : 180 pixels
Size : 1414 bytes

�� ChartDirector models charts as layers. You
may combine layers of various chart types
on the same chart. ChartDirector supports
alpha transparency coloring. You may draw
some layers using semi-transparent colors to
allow underlying layers to be seen.

Width : 300 pixels
Height : 200 pixels
Size : 2217 bytes

1Alternative GIF is not GIF. It does not use the GIF compression algorithm to avoid patent and legal problems. In practice, almost
all browers and image programs can read alternative GIF, so it is an acceptable replacement for GIF. Alternative GIF produces
images with larger file sizes than GIF. Because of the problems with GIF, the recommended image format to use is PNG. In most
cases, PNG produces smaller images than GIF and alternative GIF, and it supports true color images (GIF only supports 256
colors). Like GIF, PNG is supported by almost all browsers and image programs.

 12121212

��Ability to generate very small charts for
thumbnails. 32 x 32 pixels, 166 bytes

64 x 64 pixels, 314 bytes

��Very small file size, suitable for Internet
applications. As shown in the demo charts
in this chapter, a small thumbnail chart can
be less than 200 bytes, while a complex
multi-layer chart of 300 x 200 pixels
consumes is just 2217 bytes. You can put
a lot charts in your web page without
worrying about download time.

Width: 200 pixels
Height: 100 pixels
Size : 877 bytes

Despite the flexibility, the ChartDirector is very easy to use. Even relatively complex charts require just
a few lines of code.

Programming Languages
The ChartDirector API is written using C++, so it is extremely fast. Language bindings are used to bind
ChartDirector to other languages. The language bindings available include:

��C++

��Perl

��Python

��PHP

��COM / ASP / Visual Basic / VBScript / JScript

Supported Platforms
As of the writing of this document, ChartDirector is available on Windows 98/NT/ME/2000. Please
visit Advanced Software Engineering’s web site at www.advsofteng.com for updated information.

http://www.advsofteng.com/

 13131313

Copying to the Hard Disk
ChartDirector is designed so that it can be installed “cleanly” without “polluting” your computer. It
does not modify your registry settings, and it does not install files into your system32 directory.

To install ChartDirector:

��Create an empty subdirectory where the ChartDirector will be installed in.

��Unzip the ChartDirector distribution zip file to the subdirectory.

Sample Projects
The ChartDirector Python version comes with a number of sample Python programs under the
“pydemo” directory. You may run these programs to verify that ChartDirector is correctly installed.

The Programming Environment
When you develop a program using ChartDirector Python version, certain files must be in the proper
locations so that the Python interpreter can locate them.

The ChartDirector Python library consists of the following files:

File Function Location

pychartdir.py The main ChartDirector Python module.
Programs using ChartDirector should
either:

import pychartdir

or
from * import pychartdir

Must be located under the Python
module search path. Please refer to
Python’s documentation on how
does Python search for modules.

pychartdir15.dll
pychartdir16.dll
pychartdir20.dll
pychartdir21.dll

The Python language bindings DLL for
Python versions 1.5.x, 1.6.x, 2.0.x and
2.1.x. The pychartdir.py will detect which
version of Python is running and
automatically import the appropriate DLL.

Must be located under the Python
module search path. Please refer to
Python’s documentation on how
does Python search for modules.

 14141414

chartdir.dll The ChartDirector implementation DLL.
This DLL is used by the pychartdirXX.dll.

Must be located under the Win32
DLL search path. This path includes
the Python program execution
directory, and the directories in the
PATH environmental variable.
Please refer to Microsoft’s
documentation for more details.

Installing the ChartDirector License
If you have purchased a license to use ChartDirector, you should have a license code delivered to your
via email and postal mail.

To install the license code, simply create a one line ASCII file using Notepad or other text editor, and
put the license code in that line. The whole file should contain only the license code. Name that file
“chartdir.lic” and put the file in the same directory where you put the “chartdir.dll”.

After installation, the “chartdir.dll” should be in the “lib” subdirectory under the directory where you
unzip ChartDirector. However, you may copy “chartdir.dll” to a different place (e.g. the system32
directory or your Python program directory). In that case, you need to copy the “chartdir.lic” to the
same place as well.

 15151515

The First Project
To get a feeling of the ChartDirector, and to verify the
ChartDirector development environment is set up
properly, we will begin by building a very simple chart.

In this first project, we will draw a simple bar chart as
shown on the right.

(Note that the public version of ChartDirector will
include a small acknowledgement message at the bottom
of chart. The message will disappear in the licensed
version of ChartDirector.)

(The following program is available as “pythondemo\simplebar.py”.)

from pychartdir import *

def main() :

#The data for the bar chart
data = [85, 156, 179.5, 211, 123]

#The labels for the bar chart
labels = ["Mon", "Tue", "Wed", "Thu", "Fri"]

#First, create a XYChart of size 250 pixels x 250 pixels
c = XYChart(250, 250)

#Set the plotarea rectangle to start at (30, 20) and of
#200 pixels in width and 200 in height
c.setPlotArea(30, 20, 200, 200)

#Add a bar chart layer using the supplied data
c.addBarLayer(data)

#Set the x axis labels using the supplied labels
c.xAxis().setLabels(labels)

 16161616

#output the chart as a PNG file
c.makeChart("simplebar.png")

if __name__ == '__main__':
main()

The code is explained below :

�� from chartdir import *

This line imports the ChartDirector module so that you can use it.

�� c = XYChart(250, 250)

The first step in creating any chart in ChartDirector is to create the appropriate chart object. In this
example, we create an XYChart object that represents a chart 250 pixels wide and 250 pixels high.
The XYChart object is used in ChartDirector for any chart that has an x axis and y axis, including
the bar chart that we are drawing.

�� c.setPlotArea(30, 30, 200, 200)

The second step in creating a bar chart is to specify where exactly should we draw the bar chart.
This is by specifying the rectangle that contains the bar chart. The rectangle is specified by using the
(x, y) coordinates of the top-left corner, together with its width and height.

For this simple bar chart, we will use the majority of the chart area to draw the bar chart. We will
leave some margin to allow for the text labels on the axis. In the above code, the top-left corner is
set at (30, 30), and both the width and height is set at 200 pixels. Since the entire chart is 250 x 250
in size, there will be 20 to 30 pixels margin for the text labels.

Note that all ChartDirector charts use a coordinate system that is customary on computer screen.
The x axis is the horizontal axis from left to right, while the y axis is the vertical axis from top to
bottom. The origin (0, 0) is at the top-left corner.

For more complex charts which may contain titles, legend box and other things, we can use this
method (and other methods) to design the exact layout of the entire chart.

�� c.addBarLayer(data)

The above line adds a bar chart layer to the XYChart. In ChartDirector, any chart type that has an x
axis and a y axis is represented as a layer in the XYChart. An XYChart can contain a lot of layers.
You may create “combination charts” easily (e.g. a chart containing both a line chart overlapped
with a bar chart) by combining different layers on the same chart.

In the above line of code, the argument is an array of numbers representing the data points.

�� c.xAxis().setLabels(labels)

 17171717

The above line of code sets the labels on the x axis. The xAxis method retrieves the x axis object
inside the XYChart object. The setLabels method binds the text labels to the x axis object. The
argument to the setLabels method is an array of text string.

�� c.makeChart(filename)

Up to step 4, the chart is completed. We need to output it somehow. In our simple project, we just
output the chart as a PNG formatted file.

Note that the ChartDirector support other file formats (e.g. JPEG) and output methods. For instance,
in some web applications, instead of saving the PNG formatted image in a file, we may output it
direct to the browser as an HTTP stream using the makeChart2 method.

Chart Object Model Overview
The ChartDirector employs a powerful and elegant object model. An overview of the top most level is
shown in the diagram below.

The ChartDirector classifies charts into two main classes – PieChart and XYChart.

The PieChart class, as it name implies, represents pie charts.

The XYChart class represents all chart types that have an x axis and a y axis. The actual chart types
supported by the XYChart are implemented as layers. The BarLayer, LineLayer, AreaLayer and
HLOCLayer represent bar charts, line charts, area charts and high-low-open-close charts respectively.
An XYChart can contain many layers, so combination charts (e.g. combining line chart and bar chart)
can be created easily.

The PieChart and XYChart are derived from the superclass BaseChart. The BaseChart represents
features common to all ChartDirector charts, such as background wallpaper, chart title, legend box, etc.

 18181818

Similarly, the BarLayer, LineLayer, AreaLayer and HLOCLayer are derived from the superclass Layer.
The Layer represents features common to all layers.

Details of the PieChart, XYChart and various Layers will be discussed in subsequent chapters.

 19191919

In this chapter we will discuss how to create pie charts using the ChartDirector API through a number
of examples. Details of the ChartDirector API can be found in the chapter ChartDirector API
Reference.

Simple Pie Chart
In this example, a very simple pie chart is
created demonstrating the basic steps in
creating pie charts.

��Create a pie chart object using the
PieChart method.

��Specify the center and radius of the
pie using the setPieSize method.

��Specify the data used to draw the
pie using the setData method.

��Generate the chart using the
makeChart method.

(The following program is available as “pythondemo\simplepie.py”.)

from pychartdir import *

def main() :

#The data for the pie chart
data = [25, 18, 15, 12, 8, 30, 35]

#The labels for the pie chart
labels = ["Labor", "Licenses", "Taxes", "Legal",

"Insurance", "Facilities", "Production"]

#First, create a PieChart of size 360 pixels x 300 pixels
c = PieChart(360, 300)

#Set the center of the pie at (180, 140) and the radius to 100 pixels

 20202020

c.setPieSize(180, 140, 100)

#Set the pie data and the pie labels
c.setData(data, labels)

#output the chart as a PNG file
c.makeChart("simplepie.png")

if __name__ == '__main__':
main()

3D Pie Chart with Title
This example extends the previous simple
pie example by introducing three more
features of the ChartDirector:

��Add a title to the chart using the
addTitle method

��Draw the pie in 3D using the
set3D method

��Explode a sector using the
setExplode method

 (The following program is available as “pythondemo\threedpie.py”.)

from pychartdir import *

def main() :

#The data for the pie chart
data = [25, 18, 15, 12, 8, 30, 35]

#The labels for the pie chart
labels = ["Labor", "Licenses", "Taxes", "Legal",

"Insurance", "Facilities", "Production"]

#First, create a PieChart of size 360 pixels x 300 pixels
c = PieChart(360, 300)

#Set the center of the pie at (180, 140) and the radius to 100 pixels
c.setPieSize(180, 140, 100)

 21212121

#Add a title to the pie chart
c.addTitle("Project Cost Breakdown")

#Draw the pie in 3D
c.set3D()

#Set the pie data and the pie labels
c.setData(data, labels)

#Explode the 1st sector
c.sector(0).setExplode()

#output the chart as a PNG file
c.makeChart("threedpie.png")

if __name__ == '__main__':
main()

Pie Chart with Legend
This example extends the
previous 3D chart example
to demonstrates two more
ChartDirector features:

��Add a legend box using
the addLegend method

��Change the label format
of the sectors using the
setLabelFormat method
(Note that the sector
labels in this example
are different from the
previous example.)

(The following program is available as “pythondemo\legendpie.py”.)

from pychartdir import *

def main() :

#The data for the pie chart
data = [25, 18, 15, 12, 8, 30, 35]

#The labels for the pie chart
labels = ["Labor", "Licenses", "Taxes", "Legal",

 22222222

"Insurance", "Facilities", "Production"]

#First, create a PieChart of size 450 pixels x 300 pixels
c = PieChart(450, 300)

#Set the center of the pie at (150, 150) and the radius to 100 pixels
c.setPieSize(150, 150, 100)

#Add a title to the pie chart
c.addTitle("Project Cost Breakdown")

#Draw the pie in 3D
c.set3D()

#add a legend box where the top left corner is at (330, 80)
c.addLegend(330, 80)

#modify the label format for the sectors to $nnnK (pp.pp%)
c.setLabelFormat("$&value&K\n(&percent&%)")

#Set the pie data and the pie labels
c.setData(data, labels)

#Explode the 1st sector
c.sector(0).setExplode()

#output the chart as a PNG file
c.makeChart("legendpie.png")

if __name__ == '__main__':
main()

Coloring Scheme and Wallpaper

 23232323

This example demonstrates how to modifying the coloring scheme using the setColor, setColors and
setColors2 methods, and apply a background image to the chart using the setWallpaper method.

 (The following program is available as “pythondemo\colorpie.py”.)

from pychartdir import *

#
colorpie
========
function to draw a pie
#
parameters:
- colorScheme: 0 = custom coloring
1 = dark background coloring
2 = wallpaper as background
3 = wallpaper with semi-transparent pie
#
- title: the title shown on the chart
- filename: the file to save the chart
#
def colorpie(colorScheme, title, filename) :

#The data for the pie chart
data = [25, 18, 15, 12, 8, 30, 35]

#The labels for the pie chart
labels = ["Labor", "Licenses", "Taxes", "Legal",

"Insurance", "Facilities", "Production"]

#Colors of the sectors if custom coloring is used
colors = [0xb8bc9c, 0xecf0b9, 0x999966, 0x333366, 0xc3c3e6,

0x594330, 0xa0bdc4]

#First, create a PieChart of size 280 pixels x 240 pixels
c = PieChart(280, 240)

#Set the center of the pie at (140, 120) and the radius to 80 pixels

 24242424

c.setPieSize(140, 120, 80)

#Add a title to the pie chart
c.addTitle(title)

#Draw the pie in 3D
c.set3D()

#Set the coloring schema
if colorScheme == 0 :

#custom coloring, set the LineColor to light gray
c.setColor(LineColor, 0xc0c0c0)
#use the custom color array for the data colors (sector colors)
c.setColors2(DataColor, colors)

elif colorScheme == 1 :
#dark background scheme, use the standard white on black palette
c.setColors(whiteOnBlackPalette)

elif colorScheme == 2 :
#wallpaper as background
c.setWallpaper("bg.png")

else :
#wallpaper as background, the sectors are drawn in
#semi-transparent colors to allow the background to be seen
c.setWallpaper("bg.png")
c.setColors(transparentPalette)

#Set the pie data and the pie labels
c.setData(data, labels)

#Explode the 1st sector
c.sector(0).setExplode()

#output the chart as a PNG file
c.makeChart(filename)

def main() :

colorpie(0, "Custom Colors", "customcolorpie.png")
colorpie(1, "Dark Background Colors", "darkbgpie.png")
colorpie(2, "Wallpaper As Background", "wallpaperpie.png")
colorpie(3, "Transparent Colors", "transparentpie.png")

if __name__ == '__main__':
main()

 25252525

Text Style and Text Colors

This example demonstrates how to control the text styles and text colors. Note that in the chart above,
the title, the sector labels, and the legends all have different fonts and colors. One of the sector labels
even has a box to highlight itself.

��The title text and font is specified using the addTitle method.

��The legend box font is specified using the addLegend method. The legend box background and
border colors are specified using the setBackground method of the LegendBox object. (The
LegendBox object is returned by the addLegend method.)

��The default sector label font is specified using the PieChart object’s setLabelStyle method.

��The sector label font of individual sector is specified using the Sector object’s setLabelStyle
method.

��The highlighting box enclosing the sector label is specified using the setBackground method of
the TextBox object returned by the setLabelStyle method.

(The following program is available as “pythondemo\fontpie.py”.)

from pychartdir import *

def main() :

#The data for the pie chart
data = [25, 18, 15, 12, 8, 30, 35]

#The labels for the pie chart
labels = ["Labor", "Licenses", "Taxes", "Legal",

"Insurance", "Facilities", "Production"]

 26262626

#First, create a PieChart of size 480 pixels x 300 pixels
c = PieChart(480, 300)

#Set the center of the pie at (150, 150) and the radius to 100 pixels
c.setPieSize(150, 150, 100)

#Add a title to the pie chart, using the font Monotype Corsiva
#("mtcorsva") at size of 20 points. text color is deep blue (0x000080)
c.addTitle("Project Cost Breakdown", "mtcorsva.ttf", 20, 0x000080)

#Draw the pie in 3D
c.set3D()

#add a legend box using the font Times New Romans Bold ("timesbd.ttf")
#at size of 12 points. Set the background color of the legend box to
#light gray (0xd0d0d0), and its border to blue (0x0000ff).
c.addLegend(340, 80, 1, "timesbd.ttf", 12).setBackground(

0xd0d0d0, 0x0000ff)

#set the default font for all sector labels to Impact ("impact.ttf")
#at size of 8 points. Font color is set to dark green (0x008000).
c.setLabelStyle("impact.ttf", 8, 0x008000)

#Set the pie data and the pie labels
c.setData(data, labels)

#Explode the 3rd sector
c.sector(2).setExplode(40)

#Use Impact/12 points/Red color as font for the 3rd sector
c.sector(2).setLabelStyle("impact.ttf", 12, 0xff0000)

#Use default font (Arial)/8 points/deep blue for the 5th sector label font
c.sector(4).setLabelStyle("", 8, 0x000080)

#Use Times New Romans/8 points/deep red for the 6th sector label font
c.sector(5).setLabelStyle("times.ttf", 8, 0x800000)

#Use Impact/8 points/deep green as the 7th sector label font. In addition,
#add a background box to the label filled with yellow color (0xffff00) with
#a black (0x000000) border.
c.sector(6).setLabelStyle("impact.ttf", 8, 0x008000).setBackground(

0xffff00, 0x000000)

#output the chart as a PNG file
c.makeChart("fontpie.png")

if __name__ == '__main__':
main()

 27272727

Label Positioning, Formatting and Join Line

This example demonstrates how to control the positions of the sector labels, and to include join lines to
connect the labels to the sector perimeter using the setLabelPos method. It also demonstrates how to
specify the format of the label using the setLabelFormat method.

(The following program is available as “pythondemo\labelpie.py”.)

from pychartdir import *

######################################
Draw a pie chart where the label is on top of the pie
######################################
def innerlabelpie() :

#The data for the pie chart
data = [25, 18, 15, 12, 30, 35]

#The labels for the pie chart
labels = ["Labor", "Licenses", "Taxes", "Legal",

"Facilities", "Production"]

#First, create a PieChart of size 300 pixels x 300 pixels
c = PieChart(300, 300)

#Set the center of the pie at (150, 150) and the radius to 120 pixels
c.setPieSize(150, 150, 120)

#Set the label position to -40 pixels from the perimeter of the pie.
#A negative number means the label is inside the pie.
c.setLabelPos(-40)

#Modify the label format to contain three lines showing the sector name,
#sector value, and the sector percentage. The sector value 99 is shown
#as US$99K.

 28282828

c.setLabelFormat("&label&\nUS$&value&K\n(&percent&%)")

#Set the pie data and the pie labels
c.setData(data, labels)

#Explode the 1st sector
c.sector(0).setExplode()

#output the chart as a PNG file
c.makeChart("innerlabelpie.png")

######################################
Draw a pie chart where the label is outside the pie
######################################
def outerlabelpie() :

#The data for the pie chart
data = [25, 18, 15, 12, 30, 35]

#The labels for the pie chart
labels = ["Labor", "Licenses", "Taxes", "Legal",

"Facilities", "Production"]

#First, create a PieChart of size 300 pixels x 300 pixels
c = PieChart(300, 300)

#Set the center of the pie at (150, 150) and the radius to 80 pixels
c.setPieSize(150, 150, 80)

#Set the label position to be 25 pixels from the pie. A positive value
#indicates the label is outside the pie. Furthermore, include a join line
#to link the sector label with the pie.
c.setLabelPos(25, LineColor)

#Modify the label format to contain three lines showing the sector name,
#sector value, and the sector percentage. The sector value 99 is shown
#as US$99K.
c.setLabelFormat("&label&\nUS$&value&K\n(&percent&%)")

#Set the pie data and the pie labels
c.setData(data, labels)

#Explode the 1st sector
c.sector(0).setExplode()

#output the chart as a PNG file
c.makeChart("outerlabelpie.png")

def main() :

innerlabelpie()
outerlabelpie()

if __name__ == '__main__':

 29292929

main()

Varying 3D Depth and Angles
This example illustrates how to change the depth and tilt angle of a 3D pie from 0 to 90 degrees using
the set3D method. It also demonstrates how to disable the sector labels using the setLabelStyle method.

(The following program is available as “pythondemo\3danglepie.py”.)

from pychartdir import *

def threedanglepie(angle, filename) :

#The data for the pie chart
data = [25, 18, 15, 12, 8, 30, 35]

#First, create a PieChart of size 100 pixels x 110 pixels
c = PieChart(100, 110)

##Set the center of the pie at (50, 55) and the radius to 38 pixels
c.setPieSize(50, 55, 38)

##Set the depth and tilt angle of the 3D pie (-1 means auto depth)
c.set3D(-1, angle)

##/Add a title showing the tilt angle
c.addTitle("Tilt = %d deg" % angle, "arial.ttf", 8)

##Set the pie data and the pie labels
c.setData(data)

##Disable the sector labels by setting the color to transparent
c.setLabelStyle("", 8, Transparent)

##output the chart
c.makeChart(filename)

def main() :

threedanglepie(0, "tilt0pie.png")
threedanglepie(15, "tilt15pie.png")
threedanglepie(30, "tilt30pie.png")
threedanglepie(45, "tilt45pie.png")

 30303030

threedanglepie(60, "tilt60pie.png")
threedanglepie(75, "tilt75pie.png")

if __name__ == '__main__':
main()

3D Shadow Mode
The standard way to draw a pie chart in 3D is to view the chart from an inclined angle. Using this
method, the surface of a 3D pie will become an ellipse.

The ChartDirector supports an alternative way to draw a pie chart in 3D, that is, to draw the 3D portion
like a shadow. Using this method, the 3D pie will remain perfectly circular. See below for illustration.

Comparing the two 3D styles, the pie in the shadow 3D mode is bigger, remains perfectly circular and
is not “distorted”. Some people think it presents information more accurately. However, some people
think the standard 3D mode that draws the pie as an ellipse is more “natural” looking.

Which 3D mode is better is a matter of personal preference. The ChartDirector supports both so the
developer can choose which mode suits his needs. The set3D method can be use to select which mode
to use.

(The following program is available as “pythondemo\shadowpie.py”.)

from pychartdir import *

def shadowpie(angle, filename) :

#The data for the pie chart
data = [25, 18, 15, 12, 8, 30, 35]

#First, create a PieChart of size 100 pixels x 110 pixels
c = PieChart(100, 110)

#Set the center of the pie at (50, 55) and the radius to 36 pixels
c.setPieSize(50, 55, 36)

#Set the depth, tilt angle and 3D mode of the 3D pie
#(-1 means auto depth, "true" means the 3D effect is in shadow mode)
c.set3D(-1, angle, 1)

#Add a title showing the tilt angle

 31313131

c.addTitle("Shadow @ %d deg" % angle, "arial.ttf", 8)

#Set the pie data and the pie labels
c.setData(data)

#Disable the sector labels by setting the color to transparent
c.setLabelStyle("", 8, Transparent)

#output the chart
c.makeChart(filename)

def main() :

shadowpie(45, "shadow45pie.png")
shadowpie(135, "shadow135pie.png")
shadowpie(225, "shadow225pie.png")
shadowpie(315, "shadow315pie.png")

if __name__ == '__main__':
main()

Start Angle and Layout Direction
By default, the pie chart will layout the sectors starting from the positive y-axis and the layout direction
will be clockwise.

Both the start angle and the layout direction can be changed using the setStartAngle method.

(The following program is available as “pythondemo\anglepie.py”.)

from pychartdir import *

def anglepie(angle, clockwise, filename) :

 32323232

#The data for the pie chart
data = [25, 18, 15, 12, 8, 30, 35]

#The labels for the pie chart
labels = ["Labor", "Licenses", "Taxes", "Legal",

"Insurance", "Facilities", "Production"]

#First, create a PieChart of size 280 pixels x 240 pixels
c = PieChart(280, 240);

#Set the center of the pie at (140, 130) and the radius to 80 pixels
c.setPieSize(140, 130, 80)

#add a title to the pie to show the start angle and direction
c.addTitle("Start Angle = %d degrees\nDirection = %s" %

(angle, (clockwise and "Clockwise") or "AntiClockwise"))

#Set the pie start angle and direction
c.setStartAngle(angle, clockwise)

#Draw the pie in 3D
c.set3D()

#Set the pie data and the pie labels
c.setData(data, labels)

#Explode the 1st sector
c.sector(0).setExplode()

#output the chart
c.makeChart(filename)

def main() :

anglepie(0, 1, "angle0pie.png");
anglepie(90, 0, "angle_90pie.png");

if __name__ == '__main__':
main()

 33333333

In ChartDirector, XYChart refers to any chart that has an x axis and a y axis axes. These include bar
charts, line charts, area charts and high-low-open-close charts.

ChartDirector employs a layering architecture for XY charts. Each chart type (bar, line, area, high-low-
open-close) is represented as a layer on the “plot area”. You may include multiple layers on the same
plot area to create combination charts.

We will discuss how to create various XY charts using the ChartDirector API through a number of
examples. Details of the ChartDirector API can be found in the chapter ChartDirector API Reference.

Simple Bar Chart
The simple bar chart has already been discussed in the
chapter on Getting Started. For completeness of this
chapter, we will repeat the project here.

This project demonstrates the following basic steps in
creating a bar chart:

��Create a XYChart object using the XYChart
method.

��Specify the plot area of the chart using the
setPlotArea method. The plotarea is the
rectangle bounded by the x axis and the y axis.
You should leave some margin on the sides for
axis labels and titles, etc.. (The exception is if
you are creating thumbnails that do not have axis
labels.)

��Specify the label on the x axis using the setLabels method of the x axis object.

��Add a bar chart layer and specify the data for the bar using the addBarLayer method.

��Generate the chart using the makeChart method.

(The following program is available as “pythondemo\simplebar.py”.)

from pychartdir import *

 34343434

def main() :

#The data for the bar chart
data = [85, 156, 179.5, 211, 123]

#The labels for the bar chart
labels = ["Mon", "Tue", "Wed", "Thu", "Fri"]

#First, create a XYChart of size 250 pixels x 250 pixels
c = XYChart(250, 250)

#Set the plotarea rectangle to start at (30, 20) and of
#200 pixels in width and 200 in height
c.setPlotArea(30, 20, 200, 200)

#Add a bar chart layer using the supplied data
c.addBarLayer(data)

#Set the x axis labels using the supplied labels
c.xAxis().setLabels(labels)

#output the chart as a PNG file
c.makeChart("simplebar.png")

if __name__ == '__main__':
main()

}

3D Bar Chart with Titles
This example extends the previous simple bar
example by introducing the following features of
ChartDirector:

��Draw the bars in 3D using the set3D
method

��Add a title to the chart using the addTitle
method

��Add a title to the x axis using the setTitle
method of the x axis object

��Add a title to the y axis using the setTitle
method of the y axis object

 35353535

(The following program is available as “pythondemo\threedbar.py”.)

from pychartdir import *

def main() :

#The data for the bar chart
data = [85, 156, 179.5, 211, 123]

#The labels for the bar chart
labels = ["Mon", "Tue", "Wed", "Thu", "Fri"]

#First, create a XYChart of size 300 pixels x 300 pixels
c = XYChart(300, 300)

#Set the plotarea rectangle to start at (50, 40) and of
#200 pixels in width and 200 in height
c.setPlotArea(50, 40, 200, 200)

#Add a title to the chart
c.addTitle("Weekly Server Load")

#Add a title to the y axis
c.yAxis().setTitle("MBytes")

#Add a title to the x axis
c.xAxis().setTitle("Work Week 25")

#Add a bar chart layer using the supplied data
c.addBarLayer(data).set3D()

#Set the x axis labels using the supplied labels
c.xAxis().setLabels(labels)

#output the chart as a PNG file
c.makeChart("threedbar.png")

if __name__ == '__main__':
main()

 36363636

Multi-Bar Chart and Stacked Bar Chart

This example introduces the concept of multiple data sets on the same layer. You may include multiple
data set each layer of the XY Chart. The methods to represent the multiple data sets are different for
each chart types. For bar charts, you may represent the data sets by drawing the bars side by side or by
stacking the bars up.

This example also demonstrate the following features of ChartDirector:

 37373737

��Add a bar layer using the addBarLayer method, then add multiple data sets to the bar layer
using the addDataSet method

��Add a legend to the chart using the addLegend method

��Add a title to the y axis using the addTitle method, and draw the title upright using the
setFontAngle method (the default for y axis is to draw the title sideways – see previous
examples). Note that the y axis title can contain multiple lines. This is by including the line
break character “\n” in the title.

 (The following program is available as “pythondemo\multibar.py”.)

from pychartdir import *

def multibar(dataCombineMethod, filename) :

#The data for the bar chart
data0 = [100, 125, 245.78, 147, 67]
data1 = [85, 156, 179.5, 211, 123]
data2 = [97, 87, 56, 267, 157]

#The labels for the bar chart
labels = ["Mon", "Tue", "Wed", "Thu", "Fri"]

#First, create a XYChart of size 250 pixels x 250 pixels
c = XYChart(500, 320)

#Set the plotarea rectangle to start at (100, 40) and of
#280 pixels in width and 240 in height
c.setPlotArea(100, 40, 280, 240)

#Add a legend box at (400, 100)
c.addLegend(400, 100)

#Add a title to the chart
c.addTitle("Weekday Network Load")

#Add a multiline title to the y axis. draw the title upright by setting the
#font angle 0 (the default is to draw the title sideways for y axis)
c.yAxis().setTitle("Average\nThroughput\n(MBytes\nPer Hour)"

).setFontAngle(0)

#Set the labels on the x axis
c.xAxis().setLabels(labels)

#Add a bar layer and set the layer 3D depth to 8 pixels
layer = c.addBarLayer2(dataCombineMethod, 8)

#Add the three data sets to the bar layer
layer.addDataSet(data0, -1, "Server #1")
layer.addDataSet(data1, -1, "Server #2")
layer.addDataSet(data2, -1, "Server #3")

#output the chart

 38383838

c.makeChart(filename)

def main() :

multibar(Layer.Stack, "stackbar.png")
multibar(Layer.Side, "sidebar.png")

if __name__ == '__main__':
main()

Depth Bar Chart

This example illustrates how you could display multiple data sets by using layers. ChartDirector allows
any arbitrary XY chart types for each layer. In this particular example, all layers are of bar chart type.

Note also the transparency feature of ChartDirector. The bars are drawn in semi-transparent colors so
that you can see through the bars.

(The following program is available as “pythondemo\depthbar.py”.)

from pychartdir import *

def main() :

#The data for the bar chart
data0 = [100, 125, 245.78, 147, 67]
data1 = [85, 156, 179.5, 211, 123]
data2 = [97, 87, 56, 267, 157]

 39393939

#The labels for the bar chart
labels = ["Mon", "Tue", "Wed", "Thu", "Fri"]

#First, create a XYChart of size 500 pixels x 320 pixels
c = XYChart(500, 320)

#Set the plotarea rectangle to start at (100, 40) and of
#280 pixels in width and 240 in height
c.setPlotArea(100, 40, 280, 240)

#Add a legend box at (400, 100)
c.addLegend(400, 100)

#Add a title to the chart
c.addTitle("Weekday Network Load")

#Add a multiline title to the y axis. draw the title upright by setting the
#font angle 0 (the default is to draw the title sideways for y axis)
c.yAxis().setTitle("Average\nThroughput\n(MBytes\nPer Hour)"

).setFontAngle(0)

#Set the labels on the x axis
c.xAxis().setLabels(labels)

#Add three bar layers, each represent one data set
c.addBarLayer(data0, 0x808080ff, "Server #1", 5)
c.addBarLayer(data1, 0x80ff0000, "Server #2", 5)
c.addBarLayer(data2, 0x8000ff00, "Server #3", 5)

#output the chart as a PNG file
c.makeChart("depthbar.png")

if __name__ == '__main__':
main()

 40404040

Bar Label

This example illustrates how you could add labels to the whole bar using the setAggregateLabelStyle
method, as well as add labels to bar segments using the setDataLabelStyle method.

In addition to enabling and disabling the bar labels, you can control the style of the labels, their
orientation (upright or sideways), their positions and data formats (e.g. number of decimal points) using
the above ChartDirector API and two additional methods setAggregateLabelFormat and
setDataLabelFormat. Please refer to the ChartDirector API reference for details.

(The following program is available as “pythondemo\labelbar.py”.)

from pychartdir import *

def main() :

#The data for the bar chart
data0 = [100, 125, 245.78, 147, 67]
data1 = [85, 156, 179.5, 211, 123]
data2 = [97, 87, 56, 267, 157]

#The labels for the bar chart
labels = ["Mon", "Tue", "Wed", "Thu", "Fri"]

#First, create a XYChart of size 500 pixels x 320 pixels
c = XYChart(500, 320)

#Set the plotarea rectangle to start at (100, 40) and of
#280 pixels in width and 240 in height
c.setPlotArea(100, 40, 280, 240)

#Add a legend box at (400, 100)

 41414141

c.addLegend(400, 100)

#Add a title to the chart
c.addTitle("Weekday Network Load")

#Add a multiline title to the y axis. draw the title upright by setting the
#font angle 0 (the default is to draw the title sideways for y axis)
c.yAxis().setTitle("Average\nThroughput\n(MBytes\nPer Hour)"

).setFontAngle(0)

#Set the labels on the x axis
c.xAxis().setLabels(labels)

#Add a bar layer and set the layer 3D depth to 8 pixels
layer = c.addBarLayer2(Layer.Stack, 8)

#Add the three data sets to the bar layer
layer.addDataSet(data0, -1, "Server #1")
layer.addDataSet(data1, -1, "Server #2")
layer.addDataSet(data2, -1, "Server #3")

#Enable bar label for the whole bar
layer.setAggregateLabelStyle()

#Enable bar label for each segment of the stacked bar
layer.setDataLabelStyle()

#output the chart
c.makeChart("labelbar.png")

if __name__ == '__main__':
main()

Bar Gap

This example illustrates the effects of manipulating the bar gap using the setBarGap method.

(The following program is available as “pythondemo\gapbar.py”.)

from pychartdir import *

 42424242

def gapbar(bargap, filename) :

#The data for the bar chart
data = [100, 125, 245.78, 147, 67]

#The labels for the bar chart
labels = ["Mon", "Tue", "Wed", "Thu", "Fri"]

#First, create a XYChart of size 150 pixels x 150 pixels
c = XYChart(150, 150)

#Set the plotarea at (25, 20) and dimension 120(w) x 100(h)
c.setPlotArea(25, 20, 120, 100)

#add a title to display to bar gap using 8 point arial font
c.addTitle(" Bar Gap = %0.2f" % bargap, "arial.ttf", 8)

#Set the x axis labels using the supplied labels
c.xAxis().setLabels(labels)

#Add a bar chart layer using the supplied data and set the bar gap
c.addBarLayer(data).setBarGap(bargap)

#output the chart
c.makeChart(filename)

def main() :

gapbar(0, "gapbar00.png")
gapbar(0.25, "gapbar25.png")
gapbar(0.5, "gapbar50.png")
gapbar(0.75, "gapbar75.png")

if __name__ == '__main__':
main()

 43434343

Simple Line Chart
This project demonstrates the basic steps in
creating a line chart. Note that the source code
for this project is almost the same as that of
the Simple Bar Chart example. The only
difference is that instead of using the
addBarLayer method to create a bar chart
layer, the addLineLayer method is used
instead to create a line chart layer.

Note that the line stops in the middle before
reaching the right boundary of the plot area.
The ChartDirector supports using a special
constant “NoValue” to denote that a point has
no value. The chart on the right is drawn with
the last few data points specified as
“NoValue”. You can also use “NoValue” in
the middle of a line to make a broken line.

Although this example is based on line chart, the “NoValue” special constant is also applicable to other
XY charts.

The followings are the basic steps in creating a line chart:

��Create an XYChart object using the XYChart method.

��Specify the plot area of the chart using the setPlotArea method. The plotarea is the rectangle
bounded by the x axis and the y axis. You should leave some margin on the sides for axis labels
and titles, etc.. (The exception is if you are creating thumbnails that do not have axis labels.)

��Specify the label on the x axis using the setLabels method of the x axis object.

��Add a line chart layer and specify the data to draw the line using the addLineLayer method.

��Generate the chart using the makeChart method.

 (The following program is available as “pythondemo\simpleline.py”.)

from pychartdir import *

def main() :

#The data for the line chart
data = [25, 18, 9, 4, 5, 8, 14, 20, 40, 92, 75, 88, 75,

58, 90, 95, 83, 75, 70, 66, 46, NoValue, NoValue, NoValue, NoValue]

#The labels for the line chart
labels = ["0", "", "", "3", "", "", "6", "", "", "9", "", "",

 44444444

"12", "", "", "15", "", "", "18", "", "", "21", "", "", "24"]

#First, create a XYChart of size 250 pixels x 250 pixels
c = XYChart(250, 250)

#Set the plotarea at (30, 20) and of 200 pixel (w) x 200 pixels (h)
c.setPlotArea(30, 20, 200, 200)

#Add a line chart layer using the supplied data
c.addLineLayer(data)

#Set the x axis labels using the supplied labels
c.xAxis().setLabels(labels)

#output the chart as a PNG file
c.makeChart("simpleline.png")

if __name__ == '__main__':
main()

3D Line Chart
This example extends the previous simple line
chart example by introducing the following
features of ChartDirector:

��Draw the line in 3D using the set3D
method

��Add a title to the chart using the addTitle
method

��Add a title to the x axis using the setTitle
method of the x axis object

��Add a title to the y axis using the setTitle
method of the y axis object

(The following program is available as “pythondemo\threedline.py”.)

from pychartdir import *

def main() :

#The data for the line chart
data = [25, 18, 9, 4, 5, 8, 14, 20, 40, 92, 75, 88, 75,

58, 90, 95, 83, 75, 70, 66, 46, 38, 28, 15, 22]

 45454545

#The labels for the line chart
labels = ["0", "", "", "3", "", "", "6", "", "", "9", "", "",

"12", "", "", "15", "", "", "18", "", "", "21", "", "", "24"]

#First, create a XYChart of size 300 pixels x 300 pixels
c = XYChart(300, 300)

#Set the plotarea rectangle to start at (50, 40) and of
#200 pixels in width and 200 in height
c.setPlotArea(50, 40, 200, 200)

#Add a title to the chart
c.addTitle("Daily Server Utilization")

#Add a title to the y axis
c.yAxis().setTitle("CPU %")

#Add a title to the x axis
c.xAxis().setTitle("June 12, 2001")

#Add a line chart layer using the supplied data
c.addLineLayer(data).set3D()

#Set the x axis labels using the supplied labels
c.xAxis().setLabels(labels)

#output the chart as a PNG file
c.makeChart("threedline.png")

if __name__ == '__main__':
main()

Multi-Line Chart

 46464646

This example demonstrates how you could plot multiple data sets on the same line chart layer. It also
demonstrates how you can set the line width in the line chart. Note that the lines in the above chart are
much thicker than those in previous examples.

��Add a line layer using the addLineLayer method, then add multiple data sets to the line layer
using the addDataSet method

��Set the line width using the setLineWidth method

��Add a legend to the chart using the addLegend method

��Add a title to the y axis using the addTitle method, and draw the title upright using the
setFontAngle method (the default for y axis is to draw the title sideways – see previous
examples). Note that the y axis title can contain multiple lines. This is by including the line
break character “\n” in the title.

 (The following program is available as “pythondemo\multiline.py”.)

from pychartdir import *

def main() :

#The data for the line chart
data0 = [25, 18, 9, 4, 5, 8, 14, 20, 40, 92, 75, 88, 75,

58, 90, 95, 83, 75, 70, 66, 46, 38, 28, 15, 22]
data1 = [36, 28, 25, 33, 38, 42, 44, 36, 50, 68, 60, 50, 55,

67, 58, 52, 57, 46, 33, 38, 25, 33, 42, 37, 30]
data2 = [88, 70, 43, 55, 35, 28, 17, 25, 30, 33, 36, 45, 28,

45, 60, 47, 25, 30, 41, 49, 67, 82, 88, 95, 98]

#The labels for the line chart
labels = ["0", "", "", "3", "", "", "6", "", "", "9", "", "",

"12", "", "", "15", "", "", "18", "", "", "21", "", "", "24"]

#First, create a XYChart of size 500 pixels x 300 pixels
c = XYChart(500, 300)

#Set the plotarea rectangle to start at (100, 30) and of
#300 pixels in width and 240 in height
c.setPlotArea(100, 30, 300, 240)

#Add a legend box at (410, 100)
c.addLegend(410, 100)

#Add a title to the chart
c.addTitle("Daily Server Load")

#Add a multiline title to the y axis. draw the title upright by setting the
#font angle 0 (the default is to draw the title sideways for y axis)
c.yAxis().setTitle("Average\nUtilization\n(CPU %)").setFontAngle(0)

#Set the labels on the x axis
c.xAxis().setLabels(labels)

 47474747

#Add a line layer
layer = c.addLineLayer()

#Set the line width to 3 pixels
layer.setLineWidth(3)

#Add the three data sets to the line layer
layer.addDataSet(data0, -1, "Server #1")
layer.addDataSet(data1, -1, "Server #2")
layer.addDataSet(data2, -1, "Server #3")

#output the chart as a PNG file
c.makeChart("multiline.png")

if __name__ == '__main__':
main()

Simple Area Chart
This project demonstrates the basic steps in creating an
area chart. Note that the source code for this project is
almost the same as that of the Simple Line Chart
example. The only difference is that instead of using the
addLineLayer method to create a line chart layer, the
addAreaLayer method is used to create an area chart
layer.

The followings are the basic steps in creating an area
chart:

��Create an XYChart object using the XYChart
method.

��Specify the plot area of the chart using the setPlotArea method. The plotarea is the rectangle
bounded by the x axis and the y axis. You should leave some margin on the sides for axis labels
and titles, etc.. (The exception is if you are creating thumbnails that do not have axis labels.)

��Specify the label on the x axis using the setLabels method of the x axis object.

��Add an area chart layer and specify the data to draw the area using the addAreaLayer method.

��Generate the chart using the makeChart method.

(The following program is available as “pythondemo\simplearea.py”.)

from pychartdir import *

 48484848

def main() :

#The data for the area chart
data = [25, 18, 9, 4, 5, 8, 14, 20, 40, 92, 75, 88, 75,

58, 90, 95, 83, 75, 70, 66, 46, 38, 28, 15, 22]

#The labels for the area chart
labels = ["0", "", "", "3", "", "", "6", "", "", "9", "", "",

"12", "", "", "15", "", "", "18", "", "", "21", "", "", "24"]

#First, create a XYChart of size 250 pixels x 250 pixels
c = XYChart(250, 250)

#Set the plotarea at (30, 20) and of 200 pixel (w) x 200 pixels (h)
c.setPlotArea(30, 20, 200, 200)

#Add an area chart layer using the supplied data
c.addAreaLayer(data)

#Set the x axis labels using the supplied labels
c.xAxis().setLabels(labels)

#output the chart as a PNG file
c.makeChart("simplearea.png")

if __name__ == '__main__':
main()

3D Area Chart
This example extends the previous simple area
chart example by introducing the following
features of ChartDirector:

��Draw the area in 3D using the set3D
method

��Add a title to the chart using the addTitle
method

��Add a title to the x axis using the setTitle
method of the x axis object

��Add a title to the y axis using the setTitle
method of the y axis object

(The following program is available as “pythondemo\threedarea.py”.)

 49494949

from pychartdir import *

def main() :

#The data for the area chart
data = [25, 18, 9, 4, 5, 8, 14, 20, 40, 92, 75, 88, 75,

58, 90, 95, 83, 75, 70, 66, 46, 38, 28, 15, 22]

#The labels for the area chart
labels = ["0", "", "", "3", "", "", "6", "", "", "9", "", "",

"12", "", "", "15", "", "", "18", "", "", "21", "", "", "24"]

#First, create a XYChart of size 300 pixels x 300 pixels
c = XYChart(300, 300)

#Set the plotarea rectangle to start at (50, 40) and of
#200 pixels in width and 200 in height
c.setPlotArea(50, 40, 200, 200)

#Add a title to the chart
c.addTitle("Daily Server Utilization")

#Add a title to the y axis
c.yAxis().setTitle("CPU %")

#Add a title to the x axis
c.xAxis().setTitle("June 12, 2001")

#Add an area chart layer using the supplied data
c.addAreaLayer(data).set3D()

#Set the x axis labels using the supplied labels
c.xAxis().setLabels(labels)

#output the chart as a PNG file
c.makeChart("threedarea.png")

if __name__ == '__main__':
main()

 50505050

Line Area Chart
This example illustrates how to create a special
style of area chart in which the boundary line of
the area chart is highlighted.

To create this style of area chart:

��Use the setDataColor method of the
DataSet object to specify the area and line
colors. This overrides the default line
color, which is the LineColor in the color
palette for an area chart (see previous
Simple Area Chart example).

��Use the setLineWidth method of the layer
object to increase the line width to
highlight it.

(The following prorgam is available as “pythondemo\linearea.py”.)

from pychartdir import *

def main() :

#The data for the area chart
data = [25, 18, 9, 4, 5, 8, 14, 20, 40, 92, 75, 88, 75,

58, 90, 95, 83, 75, 70, 66, 46, 38, 28, 15, 22]

#The labels for the area chart
labels = ["0", "", "", "3", "", "", "6", "", "", "9", "", "",

"12", "", "", "15", "", "", "18", "", "", "21", "", "", "24"]

#First, create a XYChart of size 300 pixels x 280 pixels
c = XYChart(300, 280)

#Set the plotarea at (50, 25) and of 200 pixel (w) x 200 pixels (h)
c.setPlotArea(50, 25, 200, 200)

#Add a title to the chart
c.addTitle("Daily Server Load")

#Add a title to the y axis
c.yAxis().setTitle("MBytes")

#Add a title to the x axis
c.xAxis().setTitle("June 12, 2001")

#Set the x axis labels using the supplied labels
c.xAxis().setLabels(labels)

#Add an area layer to the chart

 51515151

layer = c.addAreaLayer()

#Add a data set to the area layer, and set the data color to
#light blue (0xa8a8ff) and the line color to blue (0x0000ff)
layer.addDataSet(data).setDataColor(0xa8a8ff, 0x0000ff)

#Set the line width to 3 pixels to highlight the line
layer.setLineWidth(3)

#output the chart as a PNG file
c.makeChart("linearea.png")

if __name__ == '__main__':
main()

Stacked Area Chart

This example illustrates how you could include multiple data sets in the same area chart. In this case,
the areas will simply stack on top of one another.

This example also demonstrate the following features of the ChartDirector:

��Add an area layer using the addAreaLayer method, and the add multiple data sets to the area
layer using the addDataSet method

��Add a legend to the chart using the addLegend method

��Add a title to the y axis using the addTitle method, and draw the title upright using the
setFontAngle method (the default for y axis is to draw the title sideways – see previous

 52525252

examples). Note that the y axis title can contain multiple lines. This is by including the line
break character “\n” in the title.

 (The following program is available as “pythondemo\stackarea.py”.)

from pychartdir import *

def main() :

#The data for the area chart
data0 = [25, 18, 9, 4, 5, 8, 14, 20, 40, 92, 75, 88, 75,

58, 90, 95, 83, 75, 70, 66, 46, 38, 28, 15, 22]
data1 = [36, 28, 25, 33, 38, 42, 44, 36, 50, 68, 60, 50, 55,

67, 58, 52, 57, 46, 33, 38, 25, 33, 42, 37, 30]
data2 = [88, 70, 43, 55, 35, 28, 17, 25, 30, 33, 36, 45, 28,

45, 60, 47, 25, 30, 41, 49, 67, 82, 88, 95, 98]

#The labels for the area chart
labels = ["0", "", "", "3", "", "", "6", "", "", "9", "", "",

"12", "", "", "15", "", "", "18", "", "", "21", "", "", "24"]

#First, create a XYChart of size 500 pixels x 300 pixels
c = XYChart(500, 300)

#Set the plotarea rectangle to start at (90, 30) and of
#300 pixels in width and 240 in height
c.setPlotArea(90, 30, 300, 240)

#Add a legend box at (410, 100)
c.addLegend(410, 100)

#Add a title to the chart
c.addTitle("Daily System Load")

#Add a multiline title to the y axis. draw the title upright by setting the
#font angle 0 (the default is to draw the title sideways for y axis)
c.yAxis().setTitle("Database\nQueries\nper sec)").setFontAngle(0)

#Set the labels on the x axis
c.xAxis().setLabels(labels)

#Add an area layer
layer = c.addAreaLayer()

#Draw the area layer in 3D
layer.set3D()

#Add the three data sets to the area layer
layer.addDataSet(data0, -1, "Server #1")
layer.addDataSet(data1, -1, "Server #2")
layer.addDataSet(data2, -1, "Server #3")

#output the chart as a PNG file
c.makeChart("stackarea.png")

 53535353

if __name__ == '__main__':
main()

Depth Area Chart

This example illustrates how you could display multiple data sets by using layers. ChartDirector allows
any arbitrary XY chart types for each layer. In this particular example, all layers are of area chart type.

Note also the transparency feature of ChartDirector. The areas are drawn in semi-transparent colors so
that you can see through the areas.

(The following program is available as “pythondemo\deptharea.py”.)

from pychartdir import *

def main() :

#The data for the area chart
data0 = [25, 18, 9, 4, 5, 8, 14, 20, 40, 92, 75, 88, 75,

58, 90, 95, 83, 75, 70, 66, 46, 38, 28, 15, 22]
data1 = [36, 28, 25, 33, 38, 42, 44, 36, 50, 68, 60, 50, 55,

67, 58, 52, 57, 46, 33, 38, 25, 33, 42, 37, 30]
data2 = [88, 70, 43, 55, 35, 28, 17, 25, 30, 33, 36, 45, 28,

45, 60, 47, 25, 30, 41, 49, 67, 82, 88, 95, 98]

#The labels for the area chart
labels = ["0", "", "", "3", "", "", "6", "", "", "9", "", "",

"12", "", "", "15", "", "", "18", "", "", "21", "", "", "24"]

#First, create a XYChart of size 500 pixels x 320 pixels

 54545454

c = XYChart(500, 320)

#Set the plotarea rectangle to start at (100, 40) and of
#280 pixels in width and 240 in height
c.setPlotArea(100, 40, 280, 240)

#Add a legend box at (400, 100)
c.addLegend(400, 100)

#Add a title to the chart
c.addTitle("Daily Network Load")

#Add a multiline title to the y axis. draw the title upright by setting the
#font angle 0 (the default is to draw the title sideways for y axis)
c.yAxis().setTitle("Average\nThroughput\n(MBytes\nPer Hour)"

).setFontAngle(0)

#Set the labels on the x axis
c.xAxis().setLabels(labels)

#Add three area layers, each represent one data set
c.addAreaLayer(data0, 0x808080ff, "Server #1", 5)
c.addAreaLayer(data1, 0x80ff0000, "Server #2", 5)
c.addAreaLayer(data2, 0x8000ff00, "Server #3", 5)

#output the chart as a PNG file
c.makeChart("deptharea.png")

if __name__ == '__main__':
main()

 55555555

High-Low-Open-Close Chart

This example illustrates the high-low-open-close chart, as well as a number of advanced features of
ChartDirector. These include:

��Add a HLOC layer to the chart using the addHLOCLayer method.

��Add custom text to the chart using the addText method. Note the green “(c) Global XYZ ABC
Company” text inside the plot area, and also the “High 2281” and “Low 1921” texts that
annotate the chart.

��Dynamically compute the x and y coordinates of the custom texts using the getXCoor and
getYCoor method. The x and y coordinates of the “High 2281” and “Low 1921” texts are
dynamically computed in this chart.

��Reserve spaces on the top and bottom of the chart for putting custom texts using the
setAutoScale method

��Use the special constant NoValue to denote that some points have no value. Note that in the
above chart, Saturday and Sunday data points have no value.

��Draw the y axis on the right using the setYAxisOnRight method.

��Draw the x axis labels at 45 degrees using the setFontAngle method.

(The following program is available as “pythondemo\hloc.py”.)

from pychartdir import *

 56565656

def main() :

#
#Sample data for the HLOC chart. Represents the high, low, open and close
#values for 31 days
#
high = [

2043, 2039, 2076, 2064, 2048, NoValue, NoValue, 2058, 2070, 2033, 2027,
2029, NoValue, NoValue, 2071, 2085, 2034, 2031, 2056, NoValue, NoValue,
2128, 2180, 2183, 2192, 2213, NoValue, NoValue, 2230, 2281, 2272

]
low = [

1931, 1921, 1985, 2028, 1986, NoValue, NoValue, 1994, 1999, 1958, 1943,
1944, NoValue, NoValue, 1962, 2011, 1975, 1962, 1928, NoValue, NoValue,
2059, 2112, 2103, 2151, 2127, NoValue, NoValue, 2123, 2152, 2212

]
open = [

2000, 1957, 1993, 2037, 2018, NoValue, NoValue, 2021, 2045, 2009, 1959,
1985, NoValue, NoValue, 2008, 2048, 2006, 2010, 1971, NoValue, NoValue,
2080, 2116, 2137, 2170, 2172, NoValue, NoValue, 2171, 2191, 2240

]
close = [

1950, 1991, 2026, 2029, 2004, NoValue, NoValue, 2053, 2011, 1962, 1987,
2019, NoValue, NoValue, 2040, 2016, 1996, 1985, 2006, NoValue, NoValue,
2113, 2142, 2167, 2158, 2201, NoValue, NoValue, 2188, 2231, 2242

]

#
#The labels for the HLOC chart
#
labels = [

"Mon 1", "Tue 2", "Wed 3", "Thu 4", "Fri 5", "Sat 6", "Sun 7",
"Mon 8", "Tue 9", "Wed 10", "Thu 11", "Fri 12", "Sat 13", "Sun 14",
"Mon 15", "Tue 16", "Wed 17", "Thu 18", "Fri 19", "Sat 20", "Sun 21",
"Mon 22", "Tue 23", "Wed 24", "Thu 25", "Fri 26", "Sat 27", "Sun 28",
"Mon 29", "Tue 30", "Wed 31"

]

#First, create a XYChart of size 600 pixels x 350 pixels
c = XYChart(600, 350)

#Set the plotarea at (50, 25) and of sizes 500(w) x 250(h). Make both the
#horizontal and vertical grids visible by setting their colors
c.setPlotArea(50, 25, 500, 250).setGridColor(0xc0c0c0, 0xc0c0c0)

#Add a title to the chart
c.addTitle("Universal Stock Index on Jan 2001")

#Add a custom text at (51, 21) (the upper left corner of the plotarea).
#Use 12 point Arial bold (arialbd.ttf) as the font, and pale green as
#the color (0x40c040).
c.addText(51, 21, "(c) Global XYZ ABC Company", "arialbd.ttf", 12, 0x40c040)

#Add a title to the x axis
c.xAxis().setTitle("Jan 2001")

 57575757

#Set the x axis labels. Display the labels at 45% rotation.
c.xAxis().setLabels(labels).setFontAngle(45)

#Add a title to the y axis
c.yAxis().setTitle("Universal Stock Index")

#Display the y axis on the right hand side of the plotarea
c.setYAxisOnRight(1)

#Leave a 10% margin on top and bottom when performing auto-scaling. The
#margin ensures there are spaces on the top and bottom of the plot area
#for custom text.
c.yAxis().setAutoScale(0.1, 0.1)

#Add an HLOC layer using the supplied data. Set the color to blue (0x0000ff)
layer = c.addHLOCLayer(high, low, open, close, 0x0000ff)

#Set the line width to 2 for a thicker line
layer.setLineWidth(2)

#Layout the chart without drawing it. This computes the scaling factors
#of the x and y axes, so we can use them to locate the custom text below.
c.layout()

#Add a custom text to annotate the highest point. For our sample data, the
#highest point is 2281 at the 30th data point (index = 29). Note we use
#the getXCoor and getYCoor to get the (x, y) coor of the text
c.addText(layer.getXCoor(29), layer.getYCoor(2281),

"High 2281\nTue 30 Jan, 2001", "", 7.5, 0, BottomRight)

#Similarly, add a custom text to annotate the lowest point, which is the
#1921 at the 2nd sample.
c.addText(layer.getXCoor(1), layer.getYCoor(1921),

"Low 1921\nTue 2 Jan, 2001", "", 7.5, 0, TopLeft)

#output the chart as a PNG file
c.makeChart("hloc.png")

if __name__ == '__main__':
main()

 58585858

Combination Chart

This example illustrates that you can combine various XYChart layers together to create combination
charts of your choice. This example employs a line layer at the front, a bar layer at the middle and an
area layer at the back. Note that each layer can be either flat or 3D and can have different depths. Also
note that in this example we use a semi-transparent color for the middle bar layer so that the area layer
at the back can be seen.

 (The following program is available as “pythondemo\combo.py”.)

from pychartdir import *

def main() :

#The data for the combo chart
data0 = [25, 18, 9, 4, 5, 8, 14, 20, 40, 92, 75, 88, 75,

58, 90, 95, 83, 75, 70, 66, 46, 38, 28, 15, 22]
data1 = [36, 28, 25, 33, 38, 42, 44, 36, 50, 68, 60, 50, 55,

67, 58, 52, 57, 46, 33, 38, 25, 33, 42, 37, 30]
data2 = [88, 70, 43, 55, 35, 28, 17, 25, 30, 33, 36, 45, 28,

45, 60, 47, 25, 30, 41, 49, 67, 82, 88, 95, 98]

#The labels for the combo chart
labels = ["0", "", "", "3", "", "", "6", "", "", "9", "", "",

"12", "", "", "15", "", "", "18", "", "", "21", "", "", "24"]

#First, create a XYChart of size 500 pixels x 320 pixels
c = XYChart(500, 320)

#Set the plotarea rectangle to start at (100, 40) and of
#280 pixels in width and 240 in height
c.setPlotArea(100, 40, 280, 240)

 59595959

#Add a legend box at (400, 100)
c.addLegend(400, 100)

#Add a title to the chart
c.addTitle("Daily Network Load")

#Add a multiline title to the y axis. draw the title upright by setting the
#font angle 0 (the default is to draw the title sideways for y axis)
c.yAxis().setTitle("Average\nThroughput\n(MBytes\nPer Hour)"

).setFontAngle(0)

#Set the labels on the x axis
c.xAxis().setLabels(labels)

#Add a flat line layer for the 1st data set, with a line width of 3 pixels
c.addLineLayer(data0, 0x4040ff, "Server #1").setLineWidth(3)

#Add a 3D bar layer for the 2st data set, with a depth of 5 pixels. Use a
#semi-transparent color so that layers at the back can be seen
c.addBarLayer(data1, 0x80ff0000, "Server #2", 5)

#Add a flat area layer for the 3rd data set
c.addAreaLayer(data2, 0x80ff80, "Server #3")

#output the chart as a PNG file
c.makeChart("combo.png")

if __name__ == '__main__':
main()

Grids and Grid Background

The above charts illustrate different grid background styles.

 60606060

The first chart illustrates alternative grid background colors, that is, two background colors (in the above
example the colors are “white” and “light gray”) can be used alternatively to create horizontal bands
that align with the grids.

The second chart illustrates using a background image for the plot area background. It also illustrates
that the grid lines can be turned off by setting their colors to Transparent.

Although this example uses bar charts for illustration, the features introduced apply to all XY chart
types.

(The following program is available as “pythondemo\gridbg.py”.)

from pychartdir import *

def gridBar(filename, bgimage = "") :

#The data for the chart
data = [85, 156, 179.5, 211, 123]
labels = ["Mon", "Tue", "Wed", "Thu", "Fri"]

#First, create a XYChart of size 250 pixels x 250 pixels
c = XYChart(250, 250)

#Set the plotarea at (100, 40) and of size 200(w) x 200(h)
p = c.setPlotArea(25, 15, 200, 200)

if bgimage != "" :
#use the given background image as the plot area background
p.setBackground2(bgimage)
#turn off the grid by setting it to Transparent
p.setGridColor(Transparent)

else :
#no background image, use white and gray as two alternate
#plotarea background colors
p.setBackground(0xffffff, 0xe0e0e0)
#enable horizontal and vertical grid by setting their colors
p.setGridColor(0xc0c0c0, 0xc0c0c0)

#Set the labels on the x axis
c.xAxis().setLabels(labels)

#Add a 3D bar layer with the given data
c.addBarLayer(data).set3D()

#output the chart
c.makeChart(filename)

def main() :

gridBar("gridband.png")
gridBar("gridbg.png", "bg.png")

 61616161

if __name__ == '__main__':
main()

Marks and Zones
This example illustrates the marks and zones
features of the ChartDirector.

A “mark” is a line drawn on the front of the
chart. The purple ”Target” line on the illustration
chart on the left is a mark line. It is added to the
chart using the addMark method.

A “zone” is a horizontal area on the back of the
plot area. On the illustrate chart on the left, the
red, yellow and green areas are zones. They are
added to the chart using the addZone method.

This example also illustrates how you could
position the legends on the top of the chart using
the addLegend method. In addition, it illustrates
how you could add custom legends using the
addKey method of the LegendBox object. Note
that the legends on this example are not
representing the colors of the data. Rather they
represent the colors of the zones.

Although this example uses bar charts for illustration, the features introduced apply to all XY chart
types.

(The following program is available as “pythondemo\markzone.py”.)

from pychartdir import *

def main() :

#The data for the chart
data = [85, 156, 179.5, 211, 123]
labels = ["Mon", "Tue", "Wed", "Thu", "Fri"]

#First, create a XYChart of size 320 pixels x 320 pixels
c = XYChart(320, 320)

#Set the plotarea at (60, 60) and size 200(w) x 200(h). Turn off the
#grid lines by setting their colors to Transparent.
c.setPlotArea(60, 60, 200, 200).setGridColor(Transparent)

#Add a title to the chart

 62626262

c.addTitle("Weekday Network Load")

#Add a title to the y axis
c.yAxis().setTitle("MBytes")

#Add green (0x80ff80), yellow (0xffff80) and red (0xff8080) zones to
#the y axis to represent the ranges 0 - 100, 100 - 200, and > 200.
c.yAxis().addZone(0, 100, 0x80ff80)
c.yAxis().addZone(100, 200, 0xffff80)
c.yAxis().addZone(200, 9999999, 0xff8080)

#Add a purple (0x800080) mark at y = 155 using a line width of 2.
c.yAxis().addMark(155, 0x800080, "Target").setLineWidth(2)

#Add a legend box at the top of the chart at (55, 30). Use horizontal
#layout, and set the font to 8 points Arial bold (arialbd.ttf).
legend = c.addLegend(55, 30, 0, "arialbd.ttf", 8)

#Disable the legend box boundary by setting the colors to Transparent
legend.setBackground(Transparent, Transparent)

#Add 3 custom entries to the legend box to represent the 3 zones
legend.addKey("Critical", 0x80ff80)
legend.addKey("Warning", 0xffff80)
legend.addKey("Normal", 0xff8080)

#Add a title to the x axis
c.xAxis().setTitle("Work Week 25")

#Set the labels on the x axis
c.xAxis().setLabels(labels)

#Add a 3D bar layer with the given data
c.addBarLayer(data, 0x4040ff).set3D()

#output the chart as a PNG file
c.makeChart("markzone.png")

if __name__ == '__main__':
main()

 63636363

Wallpaper and Coloring Scheme
This example illustrates how to use a wallpaper as
a background, and how to use an alternative
coloring scheme, such as dark background
coloring scheme.

The first chart on the right illustrates the effect of
applying a wallpaper to the chart using the
setWallpaper method. A wallpaper can be any
GIF, PNG, JPG or WBMP file. The ChartDirector
will tile the image to fit the chart.

The next chart on the right illustrates a dark
background chart. This is done by using the
setColors method to set the color palette to the
default “whiteOnBlackPalette”. Note that the
palette does not only change the background color.
It also changes the text color and the line color to
white, so that the entire chart looks good and clear.

Note that although this example uses bar chart for
illustration, the features introduced applies to all
other XY chart types.

(The following program is available as “pythondemo\background.py”.)

from pychartdir import *

def background(img, filename) :

#data for chart
data = [85, 156, 179.5, 211, 123];
labels = ["Mon", "Tue", "Wed", "Thu", "Fri"];

 64646464

#create a chart object of 300(w) x 300(h)
c = XYChart(300, 300)

if img :
#has wallpaper image, use it as background
c.setWallpaper(img)

else :
#no wallpaper image, use a dark background palette
c.setColors(whiteOnBlackPalette)

#set the plot area to start at (50, 50) and of size 200(w) x 200(h)
c.setPlotArea(50, 50, 200, 200)

#Set the labels on the x axis using the supplied labels
c.xAxis().setLabels(labels)

#Add a 3D bar layer using the supplied data
c.addBarLayer(data, 0x00ff00).set3D()

#output the chart
c.makeChart(filename)

def main() :

background("tile.gif", "imgbg.png")
background("", "darkbg.png")

if __name__ == '__main__':
main()

 65656565

Text Style and Colors

This example illustrates you could control the fonts, colors, rotation angles, add a background box, etc.,
around most of the text objects in ChartDirector. Note the chart title, y-axis title, y-axis labels, x-axis
labels, legend keys, and the data labels on the bars. They all use different fonts and colors. The y-axis
title and the legend are surrounding by a box with a customize background color and border color, and
the y-axis labels are appended with “Mbytes” as the unit. The x-axis labels are rotated 45 degrees.

These effects are achieved by using the following ChartDirector API:

��The title font and color are specified using the addTitle method.

��The legend box font is specified using the addLegend method. The legend box background and
border colors are specified using the setBackground method of the LegendBox object. (The
LegendBox object is returned by the addLegend method.)

��The y-axis title font and text color are specified using the setTitle method of the YAxis object.
The background box of the title and its colors are specified using the setBackground method of
the TextBox object returned when using the setTitle method.

��The y-axis label font and color are specified using the setLabelStyle method of the YAxis
object. The y-axis label format is specified using the setLabelFormat method of the YAxis
object.

��The x-axis label font and color are specified using the setLabelStyle method of the XAxis
object. The x-axis label rotation angle is specified using the setFontAngle method of the
TextBox object returned when using the setLabelStyle method.

 66666666

��The default font of the bar label within each bar segment is specified using the
setDataLabelStyle of the Layer object.

��The default font of the aggregate bar label (that is, the label on top of the stacked bar) is
specified using the setAggregateLabelStyle of the Layer object.

��The font of one of the bar segment labels (the ones inside the blue segment) is specified using
the setDataLabelStyle method of the DataSet object associated with that segment. This setting
overrides the default bar segment label font.

(The following program is available as “pythondemo\fontxy.py”.)

from pychartdir import *

def main() :

#data for the chart
data0 = [100, 125, 245.78, 147, 67]
data1 = [85, 156, 179.5, 211, 123]
data2 = [97, 87, 56, 267, 157]
labels = ["Mon Jun 4", "Tue Jun 5", "Wed Jun 6", "Thu Jun 7",

"Fri Jun 8"]

#First, create a XYChart of size 540 pixels x 350 pixels
c = XYChart(540, 350)

#Set the plot area to start at (120, 40) and of size 280(w) x 240(h)
c.setPlotArea(120, 40, 280, 240)

#Add a title to the chart using 20 point Monotype Corsiva (mtcorsva.ttf)
#font and using a deep blue color (0x000080)
c.addTitle("Weekly Server Load", "mtcorsva.ttf", 20, 0x000080)

#Add a legend box at (420, 100) using 12 point Times New Roman Bold
#(timesbd.ttf) font. Sets the background of the legend box to light grey
#color (0xd0d0d0) and the border to blue color (0x0000ff)
c.addLegend(420, 100, 1, "timesbd.ttf", 12).setBackground(0xd0d0d0,

0x0000ff)

#Add a title to the y-axis using 12 point Arial Bold (arialbd.ttf)
#font and using a deep blue color (0x000080). Sets the background box
#of the title to yellow (0xffff00) and the border to black (0x0)
c.yAxis().setTitle("Throughput (per hour)", "arialbd.ttf", 12, 0x000080

).setBackground(0xffff00, 0)

#Use 10 point Impact (impact.ttf) font as the y-axis label font and
#deep blue (0x000080) as the font color
c.yAxis().setLabelStyle("impact.ttf", 10, 0x000080)

#Set the axis label format to append "MBytes" to the numeric y value
c.yAxis().setLabelFormat("&value& MBytes")

#Use 10 point Impact (impact.ttf) font as the x-axis label font and
#deep green (0x008000) as the font color. Sets the label angle to 45 deg.

 67676767

c.xAxis().setLabelStyle("impact.ttf", 10, 0x008000).setFontAngle(45)

#Set the x axis labels using the supplied labels
c.xAxis().setLabels(labels)

#Add a stack bar layer
layer = c.addBarLayer2(Layer.Stack, 5)

#Use Arial Italic (ariali.ttf) as the default data label font in the bar
layer.setDataLabelStyle("ariali.ttf")

#Use 10 point Times Bold Italic (timesbi.ttf) as the aggregate label font
layer.setAggregateLabelStyle("timesbi.ttf", 10)

#Add the three data sets using the supplied data. For the last data set,
#set the data label font to Arial Bold (arialbd.ttf) with yellow color
#to override the default data label font.
layer.addDataSet(data0, -1, "Server #1")
layer.addDataSet(data1, -1, "Server #2")
layer.addDataSet(data2, -1, "Server #3"

).setDataLabelStyle("arialbd.ttf").setFontColor(0xffff00)

#output the chart as a PNG file
c.makeChart("fontxy.png")

if __name__ == '__main__':
main()

Legend Positioning
With the ChartDirector API, you can position you
legend box in any arbitrary location in your chart.

In previous examples, the legend box is usually
located on the right of the chart and the legend
keys are layout vertically. This example illustrates
three common alternative legend locations with
horizontal legend keys layout.

The first chart on the right illustrates how to
position the legend keys on the top of the chart
using the addLegend method.

 68686868

The second chart on the right also positions the
legend keys on the top of the chart using the
addLegend method, but the legend keys are
located inside the plot area. The setTopMargin
method of the YAxis object is used to ensure there
is room for the legend keys inside the plot area.
Note that on the second chart, there are some extra
spaces at the top of the y axis.

In additional to the setTopMargin method, the
setAutoScale method can also be used to leave
some spaces on the top and bottom of the y axis
(and hence the plot area). Please refer to the
following sections on Y-Axis Scaling for details.

The third chart on the right illustrates how you can
position the legend box on the bottom of the chart
using the addLegend method.

Note also in this example, the first and last bars in the bar chart are only drawn in half. In previous
examples, all charts are drawn in full. It is because in this example, the x-axis is layout using “non-
indented” mode.

In “non-indented” x-axis, the first data point is at the start of of the x-axis, and the last data point is at
the end of the x-axis. Non-indented x-axis is the default for all XY chart types except the bar chart.

For bar charts, the “indented” x-axis is the default. In this layout method, the first data point is shifted
right, while the last data point is shifted left. This is so that all bars can be drawn in full. If a chart
contains both bar chart layers and other XY chart layers, the default is to use indented x-axis. This can
be changed by using the setIndent method of the XAxis object, as demonstrated in this example.

(The following prorgam is available as “pythondemo\legendpos.py”.)

 69696969

from pychartdir import *

def legendpos(legendPos, filename) :

#The data for the chart
data0 = [100, 125, 245.78, 147, 67]
data1 = [85, 156, 179.5, 211, 123]
data2 = [97, 187, 156, 237, 157]
labels = ["Mon", "Tue", "Wed", "Thu", "Fri"]

#Create a XYChart object of size 300 x 300
c = XYChart(300, 300)

#Set the plot area at (50, 40) and of size 240 x 200
c.setPlotArea(50, 40, 240, 200)

if legendPos == 0 :
#add legends on the top of the chart (60, 10) using horizontal layout.
#set the font to 8 points, and hide the legend box boundary (Transparent)
c.addLegend(60, 10, 0, "", 8).setBackground(Transparent, Transparent)

elif legendPos == 1 :
#add legends on the top of the plot area (60, 28) using horizontal layout
#set the font to 8 points, and hide the legend box boundary (Transparent)
c.addLegend(60, 28, 0, "", 8).setBackground(Transparent, Transparent)
#reserve 20 pixels at the top of the plot area to ensure the legend keys
#will not overlap with the charts
c.yAxis().setTopMargin(20)

else :
#add legends on the bottom of the chart (60, 260) using horizontal layout
#set the font to 8 points, and hide the legend box boundary (Transparent)
c.addLegend(60, 260, 0, "", 8).setBackground(Transparent, Transparent)

#Add a title to the y-axis
c.yAxis().setTitle("Throughput (MBytes Per Hour)")

#Set the labels on the x axis
c.xAxis().setLabels(labels)

#Use non-indented x-axis layout
c.xAxis().setIndent(0)

#Add 3 differnet layers using the given data sets
c.addLineLayer(data0, 0x4040ff, "Server 1").setLineWidth(3)
c.addBarLayer(data1, 0xff8080, "Server 2").set3D()
c.addAreaLayer(data2, 0x80ff80, "Server 3").set3D()

#output the chart
c.makeChart(filename)

def main() :

legendpos(0, "legendpos0.png")
legendpos(1, "legendpos1.png")
legendpos(2, "legendpos2.png")

 70707070

if __name__ == '__main__':
main()

Log Scale Axis
This example illustrates the log scale axis feature of the
ChartDirector. On the right are two charts. One of them is drawn
using the default y-axis, which is linearly scaled. The other is drawn
using a log scale y-axis by calling the setLogScale method of the
YAxis object.

Note that although this example uses bar chart for illustration, the
features introduced applies to all other XY chart types.

(The following program is available as “pythondemo\logaxis.py”.)

from pychartdir import *

def logaxis(logaxis, filename) :

#data for the chart
data = [100, 125, 260, 147, 67]
labels = ["Mon", "Tue", "Wed", "Thur", "Fri"]

#create a XYChart object of size 200 x 180
c = XYChart(200, 180)

#set the plot area to start at (30, 10) and of size 140 x 130
c.setPlotArea(30, 10, 140, 130)

#use log scale axis if required
if logaxis :

c.yAxis().setLogScale()

#Set the labels on the x axis

 71717171

c.xAxis().setLabels(labels)

#Add a bar layer using the supplied data
c.addBarLayer(data)

#output the chart as a PNG file
c.makeChart(filename)

def main() :

logaxis(0, "linearaxis.png")
logaxis(1, "logaxis.png")

if __name__ == '__main__':
main()

Y-Axis Scaling

This example illustrates how you could control the scaling of the
y-axis.

By default, the y-axis is auto-scaled. The ChartDirector will
automatically determine the most suitable scaling for the y-axis
by taking into consideration the maximum and minimum values
of the data. It will attempt to ensure all the axis ticks are whole
numbers, and to include the zero point if the scale looks
reasonable.

The first chart in this example employs standing auto-scaling.

In many cases, it is desirable to leave some spaces at the top
and/or bottom of the plot area. For example, you may want to
add some custom text or legend box at those locations, or you
may simply think it looks better this way. In these cases, the
setAutoScale method can be used to inform the auto-scaling
algorithm that some spaces should reserved on the top and/or
bottom. The auto-scaling algorithm will then guarantee it reserve
at least the required spaces. Note that it may reserve more space
than specified in order to make the scaling looks nice (e.g. it may
do so to ensure all the axis ticks are whole numbers).

The second chart illustrates what the chart looks like when 20%
of the spaces on the top are reserved by using setAutoScale(0.2).

 72727272

The third chart illustrates what the chart looks like when 20% of
the spaces on the top and 20% of the space on the bottom are
reserved by using setAutoScale(0.2, 0.2).

An alternative way to reserve space on the top of the plot area is
to use the setTopMargin method. With this method, a segment on
the top of the y-axis is excluded from scaling. There are no ticks
and no scaling there. The chart on the right illustrates this feature.
Note that the top of the y-axis has no scaling there.

Although auto-scaling is convenient, in many cases manual
scaling may be more preferable. For example, in many
percentage charts, you many want the percentage scale to be
from 0 – 100 irrespective of the actual data range.

The setLinearScale and setLogScale method in the ChartDirector
API can be used to specify manual scaling. The chart on the right
illustrates an axis manually scaled to range from –5 to 10, with a
tick every 5 units.

Note that although this example uses bar chart for illustration, the features introduced applies to all other
XY chart types.

(The following prorgam is available as “pythondemo\axisscale.py”.)

from pychartdir import *

def axisscale(axisstyle, filename) :

data = [5.5, 3.5, -3.7, 1.7, -1.4, 3.3]
labels = ["Jan", "Feb", "Mar", "Apr", "May", "Jun"]

c = XYChart(200, 180)
c.setPlotArea(30, 20, 140, 130)

if axisstyle == 0 :

 73737373

c.addTitle("No Axis Extension", "arial.ttf", 8)
elif axisstyle == 1 :

c.addTitle("Top Extension = 0.2", "arial.ttf", 8)
c.yAxis().setAutoScale(0.2)

elif axisstyle == 2 :
c.addTitle("Top/Bottom Extensions = 0.2/0.2", "arial.ttf", 8)
c.yAxis().setAutoScale(0.2, 0.2)

elif axisstyle == 3 :
c.addTitle("Axis Top Margin = 15", "arial.ttf", 8)
c.yAxis().setTopMargin(15)

else :
c.addTitle("Manual Scale -5 to 10", "arial.ttf", 8)
c.yAxis().setLinearScale(-5, 10, 5)

c.xAxis().setLabels(labels)
c.addBarLayer(data)
c.makeChart(filename);

def main() :

axisscale(0, "noextaxis.png")
axisscale(1, "topextaxis.png")
axisscale(2, "bothextaxis.png")
axisscale(3, "marginaxis.png")
axisscale(4, "manualaxis.png")

if __name__ == '__main__':
main()

 74747474

Tick Density
This example illustrates how to control the axis tick density
during auto-scaling.

In manual scaling, you can directly control the axis tick
density using the setLinearScale or setLogScale2 method.

In auto-scaling, you can indirectly control the tick density
by using the setTickDensity method to specify a preferred
tick spacing.

The auto-scaling algorithm will attempt to use a tick
spacing that matches the requested tick spacing. The
resulting tick spacing may be larger than the requested one
because the auto-scaling algorithm also needs to ensure that
the ticks are while numbers, and the axis contains an
integral number of ticks, etc..

The first chart in this example illustrates the default tick
density settings. The second chart requested a higher
density ticks by setting the tick spacing to 10 pixels. Note
that the actual tick spacing is slightly larger than 10 pixels.

Also note that the scaling of the axis has changed as a result
of the tick density. In the first char the scale is from 0 – 300,
while in the second chart the scale is from 0 – 280. The
ChartDirector may need to change the scale to meet the tick
spacing requirements and other constraints that it may have.

Note that although this example uses bar chart for
illustration, the features introduced applies to all other XY
chart types.

(The following program is available as “pythondemo\ticks.py”.)

from pychartdir import *

def ticks(denseticks, filename) :

#data for the chart
data = [100, 125, 265, 147, 67, 105]

#create a XYChart object of size 250 x 250
c = XYChart(250, 250)

#set the plot area at (25, 25) and of size 200 x 200

 75757575

c.setPlotArea(25, 25, 200, 200)

if denseticks :
#high tick density, uses 10 pixels as tick spacing
c.addTitle("Tick Density = 10 pixels")
c.yAxis().setTickDensity(10)

else :
#normal tick density, just use the default setting
c.addTitle("Default Tick Density")

#add a bar layer to the chart using the given data
c.addBarLayer(data, 0x00ff00)

#output the chart
c.makeChart(filename)

def main() :

ticks(0, "normalticks.png")
ticks(1, "denseticks.png")

if __name__ == '__main__':
main()

Dual Y-Axis
This example show demonstrates the dual y-axis feature of the ChartDirector. There are two types of
dual y-axis that the ChartDirector supports – synchronous y-axes and independent y-axes.

In synchronous y-axes, the two y-axes are related
by a linear relationship of the form:

y2 = m * y1 + c.

For example, if one axis represents length in
meters, and the other axis represents length in feet,
then they are synchronous y-axes.

The example on the right demonstrates how to set
synchronous y-axes using the syncYAxis method.

 76767676

In independent y-axes, the two y-axes are
independent. Usually this is used when you have
two data sets with different units.

For example, if you have two data sets, one being
the network throughput in mega bytes, and the
other being the packet drop rate in %, they can be
represented as two independent y-axes.

The example on the right demonstrates
independent y-axes.

By default, all data sets used the primary (left) y-axis. The setUserYAxis2 can be used to bind a data set
to the secondary y-axis (right).

Note that the y-axes in this example are of different colors. This is achieved by using the setColors
method of the YAxis object to control the colors of the axis itself, the ticks, the labels and the axis title.

If you want to show only one y-axis on the right (that is, no left axis), there are two methods:

��you can bind all data sets to the secondary y-axis

��you can use default binding (that is, all data sets bind to the primary y-axis), and then use the
setYAxisOnRight to draw the primary y-axis on the right side (and therefore the secondary axis,
if used, will be drawn on the left side).

(The following program is available as “pythondemo\dualyaxis.py”.)

from pychartdir import *

######################################/
#
This function demonstrates a chart with two synchronous y-axis.
#
######################################/
def syncaxis() :

#data for the chart
data = [100, 125, 265, 147, 67, 105]
labels = ["Jan", "Feb", "Mar", "Apr", "May", "Jun"]

#create a XYChart object of size 300(w) x 180(h)
c = XYChart(300, 180)

#set the plot area at (50, 20) and of size 200(w) x 130(h)
c.setPlotArea(50, 20, 200, 130)

#add a title to the chart using 8 point Arial font (arial.ttf)
c.addTitle("Independent Y-Axis Demo", "arial.ttf", 8)

#Set the x axis labels using the supplied labels

 77777777

c.xAxis().setLabels(labels)

#add a title to the primary (left) y-axis
c.yAxis().setTitle("Length (meter)")

#add a title to the secondary (right) y-axis
c.yAxis2().setTitle("Length (foot)")

#set the two axis so that y2 = 3.28 x y1 (1 meter = 3.28 feet)
c.syncYAxis(3.28)

#add a bar layer to represent the data
c.addBarLayer(data)

#output the chart as a PNG file
c.makeChart("syncyaxis.png")

######################################/
#
This function demonstrates a chart with two independent y-axis.
#
######################################/
def dualaxis() :

#data for the chart
data0 = [0.05, 0.06, 0.48, 0.1, 0.01, 0.05]
data1 = [100, 125, 265, 147, 67, 105]
labels = ["Jan", "Feb", "Mar", "Apr", "May", "Jun"]

#create a XYChart object of size 300(w) x 180(h)
c = XYChart(300, 180)

#set the plot area at (50, 20) and of size 200(w) x 130(h)
c.setPlotArea(50, 20, 200, 130)

#add a title to the chart using 8 point Arial font (arial.ttf)
c.addTitle("Independent Y-Axis Demo", "arial.ttf", 8)

#Set the x axis labels using the supplied labels
c.xAxis().setLabels(labels)

#add a title to the primary (left) y-axis
c.yAxis().setTitle("Throughtput (MBytes)")

#set the axis, label and title colors for the primary y axis to red
#to represent the first data set
c.yAxis().setColors(0xC00000, 0xC00000, 0xC00000)

#add a title to the secondary (right) y-axis
c.yAxis2().setTitle("Packet Drop Rate (%)")

#set the axis, label and title colors for the primary y axis to green
#to represent the second data set
c.yAxis2().setColors(0x00C000, 0x00C000, 0x00C000)

#add a line layer to represent the first data set using red color and

 78787878

#set the line width to 3 pixels
c.addLineLayer(data0, 0xC00000).setLineWidth(3)

#add a bar layer to represent the second data set using green color and
#bind the data set to the secondary (right) y-axis
c.addBarLayer().addDataSet(data1, 0x00C000).setUseYAxis2()

#output the chart as a PNG file
c.makeChart("dualyaxis.png")

def main() :

syncaxis()
dualaxis()

if __name__ == '__main__':
main()

Dual X-Axis
This example illustrates the following features of
the ChartDirector:

��Accessing both the top and bottom x-
axes by using the xAxis method and the
xAxis2 method.

��Accessing both the primary and
secondary y-axes by using the yAxis
method and yAxis2 method.

��Use the setTickLength(2) method to
control the major and minor tick length,
and their direction (internal to the chart,
or external to the chart).

��Use the “-” for an x-axis label to
represent a minor tick.

(The following program is available as “pythondemo\dualxaxis.py”.)

from pychartdir import *

def main() :

#The data for the chart
data = [25, 18, 9, 4, 5, 8, 14, 20, 40, 92, 75, 88, 75,

58, 90, 95, 83, 75, 70, 66, 46, 38, 28, 15, 22]

 79797979

#The labels for the bottom x axis. Note the "-" means a minor tick.
label0 = ["0\nJun 4", "-", "-", "3", "-", "-", "6",

"-", "-", "9", "-", "-", "12", "-", "-", "15", "-", "-", "18",
"-", "-", "21", "-", "-", "0\nJun 5"]

#The labels for the top x axis. Note that "-" means a minor tick.
label1 = ["Jun 3\n12", "-", "-", "15", "-", "-", "18",

"-", "-", "21", "-", "-", "Jun 4\n0", "-", "-", "3", "-", "-", "6",
"-", "-", "9", "-", "-", "12"]

#First, create a XYChart of size 300 pixels x 320 pixels
c = XYChart(320, 320)

#Set the plotarea at (60, 50) and of 200 pixel (w) x 200 pixels (h)
c.setPlotArea(60, 50, 200, 200)

#Add a title to the primary (left) y-axis
c.yAxis().setTitle("Server Load (%)")

#Set the tick length to -4 pixels (-ve means ticks inside the plot area)
c.yAxis().setTickLength(-4)

#Add a title to the secondary (right) y-axis
c.yAxis2().setTitle("Transactions per hour")

#Set the tick length to -4 pixels (-ve means ticks inside the plot area)
c.yAxis2().setTickLength(-4)

#Set y2 = 300 x y1 (that means 1% load = 300 transactions per hour)
c.syncYAxis(300)

#Add a title to the bottom x-axis
c.xAxis().setTitle("Hong Kong Time")

#Set the x axis labels using the supplied labels
c.xAxis().setLabels(label0)

#Set the major tick length to -4 pixels and minor tick length to -2 pixels
#(-ve means ticks inside the plot area)
c.xAxis().setTickLength(-4, -2)

#Add a title to the top x-axis
c.xAxis2().setTitle("New York Time")

#Set the x axis labels using the supplied labels
c.xAxis2().setLabels(label1)

#Set the major tick length to -4 pixels and minor tick length to -2 pixels
#(-ve means ticks inside the plot area)
c.xAxis2().setTickLength(-4, -2)

c.xAxis2().setColors(0, 0)

#Add an line layer to the chart
c.addLineLayer(data, 0x0000ff)

 80808080

#output the chart as a PNG file
c.makeChart("dualxaxis.png")

if __name__ == '__main__':
main()

 81818181

Data Types
Color Specification
Color is specified as a 4-bytes number (that is, 32 bit number) in ARGB format.

The ARGB refers to Alpha transparency, Red, Green and Blue components of the color. Each
component occupies 8 bits ranging from 0 – 255, representing the intensity of the color. The blue
component occupies the least significant 8 bits, the green component occupies the next 8 bits, and the
red components occupies the further next 8 bits, and the Alpha transparency occupies the most
significant 8 bits.

For example, the pure red color is 0x00ff0000, the pure green color is 0x0000ff00, and the pure blue
color is 0x000000ff. The 0x00ffffff is the white color, while the 0x00000000 is the black color.

The most significantly 8 bits are used for Alpha transparency. An Alpha transparency of 0 means the
color is not transparent at all (fully opaque), and 255 means the color is totally transparent. For example,
0x80ff0000 is a partially transparent red color, while 0x00ff0000 is a fully opaque red color.

If a color is totally transparent, anything drawn will be invisible no matter what the RGB components
are. That means all totally transparent colors are the same. Therefore in ChartDirector, only one legal
total transparent color is used – 0xff000000. All other colors of the form 0xffnnnnnn are reserved for
“palette colors” and other special usage, and should not be interpreted as the normal ARGB colors.

Colors of the format 0xffffnnnn are “palette colors”, where the least significant 16 bits (nnnn) are the
index to the palette. A palette is simply a table of colors. For a palette color, the actual color is obtained
by looking up the palette color table using the index. For example, the color 0xffff0001 is the second
color in the palette color table (first color is index 0).

All charts are created with a default palette color table. You may modify the color tables using the
setColor, setColors, or setColors2 methods of the BaseChart object.

The first three palette colors have special significance. They are the background color, default line
color, and default text color of the chart.

The 9th color (index = 8) onwards are used as the default colors for drawing the data sets. The 9th color
is the default color for the 1st data set, the 10th color is for the 2nd data set, etc.

 82828282

The advantages of using palette colors are that you can change the color schemes of the chart in one
place. The ChartDirector comes with several pre-built palette color table for drawing charts on a white
background, charts on a black background, and charts with “transparent” look and feel.

The ChartDirector API pre-defines several constants for to facilitate using the color tables.

Name Value Description
Transparent 0xff000000 The transparent color. Drawing an object with a transparent

color means nothing will be drawn. Therefore what you see is
the background color. If what you want is to make a chart
with a transparent background, then you should use:
c.getDrawArea().setTransparentColor(0xffffff)

to set the background color as transparent (the above code
assumes the background color is white 0xffffff).

Palette 0xffff0000 The starting point of the color palette table. The first palette
color is “Palette + 0”, and the nth palette color is “Palette + n
– 1”.

BackgroundColor 0xffff0000 The background color. ChartDirector always use the first
palette color (Palette + 0) as the background color.

LineColor 0xffff0001 The default line color. ChartDirector uses the second palette
color (Palette + 1) as the default line color.

TextColor 0xffff0002 The default text color. ChartDirector uses the third palette
color (Palette + 1) as the default text color.

DataColor 0xffff0008 The starting point of the default data color. Data colors are
colors used to plot the data sets (e.g. the colors of the bars in
bar charts). ChartDirector uses the ninth palette color (Palette
+ 8) as the starting point of the default data color. The first
default data color is (DataColor + 0), and the nth default data
color is (DataColor + n – 1).

The example code Coloring Scheme and Wallpaper illustrates the various ChartDirector palettes and
how to modify the palette color table.

Font Specification
Font File
In the ChartDirector API, a font is specified by specifying the file name that contains the font. The
ChartDirector does not come with any font files. However, the operating system probably already
contains a lot of font files.

The ChartDirector will try to locate the font file using the font file name or path name. If it cannot find
the font file, in Windows platform, the ChartDirector will try to locate the font file in the
“\windows\Fonts” subdirectory (where “\windows” is the directory where the operating system is
installed). For example, the “Arial” font is in the file “arial.ttf” under that subdirectory, and the “Arial

 83838383

Bold” font is in the file “arialbd.ttf”. To see what fonts are installed, simply use the File Explorer to
view that subdirectory.

If you want the ChartDirector to search other subdirectories for the font file, you may define an
environment variable called “FONTPATH” and list the subdirectories you want ChartDirector to
search. The subdirectories should be separated using the semi-color ‘;’ as the delimiter.

Besides the font files in the operating system, there are a lot of web sites that contains font files that you
may download.

Font Index
In practice, most font files contain only one font. However, in theory, a font file may contain more than
one font. In this case, the font index can be used to specify which font to use.

By default, the font index is 0, which means the first font in the font file will be used.

Font Size, Font Height and Font Width
The font size decides how big a font will appear in the image. The font size is expressed in a font unit
called points. This is the same unit used in common word processors.

By default, when you specify a font size, both the font height and font width will be scaled by the same
factor. The ChartDirector API also supports using different point size for font height and font width to
create special effects. For example, the setFontSize method of the TextStyle object allows you to
specify different font height and font width.

Font Color
This is the color to draw the font. (See Color Specification on how to specified colors.)

Font Angle
This is the angle by which the font should be rotated anti-clockwise. By default, the angle is 0 degree,
which means to draw the characters upright and layout the characters horizontally. An angle of 90
degrees would mean the characters are drawn sideways.

Vertical Layout
This is a boolean flag to indicate whether the font should be layout horizontally or vertically.

In horizontal layout, each additional character will be drawn on the right of the previous character. After
all characters are drawn, the whole text will be rotated according to the font angle.

In vertical layout, each additional character will be drawn on the bottom of the previous character. After
all characters are drawn, the whole text will be rotated according to the font angle.

Vertical layout is most often used for Oriental languages such as Chinese, Japanese and Korean
languages.

 84848484

Alignment Specification
In a number of ChartDirector objects, you may specify the alignment of the object’s content relative to
its boundary. For example, for a TextBox object, you may specify the text’s alignment relative to the
box boundary by using the setAlignment method. The following diagram illustrates the location where
the text will appear for different alignment options.

The ChartDirector API pre-defines several constants for the alignment options.

Name Value Description
BottomLeft 1 The leftmost point on the bottom line.
BottomCenter 2 The center point on the bottom line.
BottomRight 3 The rightmost point on the bottom line.
Left 4 The leftmost point on the middle horizontal line.
Center 5 The center point on the middle horizontal line.
Right 6 The rightmost point on the middle horizontal line.
TopLeft 7 The leftmost point on the top line.
TopCenter 8 The center point on the top line.
TopRight 9 The rightmost point on the top line.
Bottom 2 The center point on the bottom line. Same as BottomCenter.
Top 8 The center point on the top line. Same as TopCenter.

No Value Specification
In many ChartDirector charts, you need to supply data to plot the charts. The data are typically supplied
as an array of double precision floating point numbers that represents the value of the data points.

ChartDirector supports a special constant called “NoValue”. You may use this constant to specify that a
data point contains no data.

For example, if you want to draw a trending line for certain statistics from 0:00 to 23:59, but your data
set only contains data up to 12:00, then you can set the remaining data to be NoValue.

 85858585

Another example is that if you have a trending line that represents the closing stock prices for each day
of a month, there may be no data point on Saturdays and Sundays when the stock market is closed. In
this case, you may specify the data point on those days to be NoValue.

If a data point is NoValue, nothing will be drawn on the chart to represent the data point. In the first
example above, the line will only be drawn from 0:00 to 12:00. In the second example, the line will be
broken in segments, where each segment represents one week.

Although the above example is based on line charts, the NoValue special constant is also applicable to
other XY chart types.

Draw Objects
TextStyle
The TextStyle object encapsulates the appearance of text. You may use the methods of the TextStyle
object to define how the text should appear. You may also add a bounding box to contain the text. The
size of the bounding box will be automatically adjusted to fit the text.

Method Description

setFontStyle Set the font of the text.

setFontSize Set the font size of the text.

setFontAngle Set the rotation angle of the text.

setFontColor Set the color of the text.

setBackground Set the background and border colors of the bounding box of the text.

setMargin Set the left, right, top and bottom margins of the bounding box of the text.

setMargin2 Short cut to set all four bounding box margins to the same value.

setFontStyle
Prototype
def setFontStyle(self, font, fontIndex = 0) :

Description
Set the font of the text by specifying the file that contains the font. See Font Specification for details on
various font attributes.

Arguments

Argument Default Value Description

font (Mandatory) The path name or file name of the font file that contains the
font.

fontIndex 0 The font index of the font to use for font files that contains
more than one font. An index of 0 means the first font.

 86868686

Return Value
None

setFontSize
Prototype
def setFontSize(self, fontHeight, fontWidth = 0) :

Description
Set the font height and width. In most cases, only the fontHeight needs to be specified. The default
value of the fontWidth is 0, which means the font width will be set to the same as the font height. See
Font Specification for details on various font attributes.

Arguments

Argument Default Value Description

fontHeight (Mandatory) The font height in a font unit called points.

fontWidth 0 The font width in a font unit called points. If the font width
is zero, it means the font width is the same as the font
height.

Return Value
None

setFontAngle
Prototype
def setFontAngle(self, angle, vertical = 0) :

Description
Set the rotation of the text and the layout direction. By default, the rotation is 0 degrees and the layout
direction is horizontal. See Font Specification for details on various font attributes.

Arguments

Argument Default Value Description

angle (Mandatory) The font rotation angle. Rotation is measured in counter-
clockwise director in degrees.

vertical 0 Determine whether the font is layout horizontally (from left
to right) or vertically (from top to down). Vertical layout is
common for oriental languages such as Chinese, Japanese
and Korean. A “true” value (that is, any non-zero value)
means vertical layout, while a “false” value means
horizontal layout.

Return Value
None

 87878787

setFontColor
Prototype
def setFontColor(self, color) :

Description
Set the color of the text. By default, the color is the default TextColor as defined by the palette color
table. See Color Specification for how colors are represented in ChartDirector.

Arguments

Argument Default Value Description

color (Mandatory) The font color.

Return Value
None

setBackground
Prototype
def setBackground(self, color, edgeColor = Transparent) :

Description
Set the background color and edge color of the bounding box. By default, both colors are transparent,
which means the bounding box is invisible. See Color Specification for how colors are represented in
ChartDirector.

Arguments

Argument Default Value Description

color (Mandatory) The background color of the bounding box.

edgeColor Transparent The border color of the bounding box.

Return Value
None

setMargin
Prototype
def setMargin(self, m) :

Description
Sets all margins (left, right, top, and bottom) of the bounding box to the same value in pixels.

Arguments

Argument Default Value Description

m (Mandatory) The left, right, top and bottom margins in pixels.

 88888888

Return Value
None

setMargin2
Prototype
def setMargin2(self, leftMargin, rightMargin, topMargin, bottomMargin) :

Description
Set the margins of the bounding box in pixels. The margins are the distances between the borders of the
boundary box to the text.

By default, the left and right margins are approximately half the font size, and the top and bottom
margins are approximately ¼ of the font size.

Arguments

Argument Default Value Description

leftMargin (Mandatory) The left margin in pixels.

rightMargin (Mandatory) The right margin in pixels.

topMargin (Mandatory) The top margin in pixels.

bottomMargin (Mandatory) The bottom margin in pixels.

Return Value
None

Box
The class Box, as it name implies, represents a box. It is used as the base class for more complex
objects, such as the TextBox and the LegendBox.

Method Description

setPos Set the coordinates of the top left corner of the box.

setSize Set the width and height of the box.

setBackground Set the background color and edge color of the box.

setPos
Prototype
def setPos(self, x, y) :

Description
Set the coordinates of the top left corner of the box.

Arguments

Argument Default Value Description

 89898989

Argument Default Value Description

x (Mandatory) The x coordinate of the left of the box.

y (Mandatory) The y coordinate of the top of the box.

Return Value
None

setSize
Prototype
def setSize(self, w, h) :

Description
Set the width and height of the box.

Arguments

Argument Default Value Description

w (Mandatory) The width of the box in pixels.

h (Mandatory) The height of the box in pixels.

Return Value
None

setBackground
Prototype
def setBackground(self, color, edgeColor = Transparent) :

Description
Set the background color and edge color of the box. By default, both colors are transparent, which
means the box is invisible. See Color Specification for how colors are represented in ChartDirector.

Arguments

Argument Default Value Description

color (Mandatory) The background color of the box.

edgeColor Transparent The border color of the box.

Return Value
None

TextBox
Inherit from TextStyle and Box.

 90909090

The class TextBox, as its name implies, represents a text box. The TextBox class inherits from the
TextStyle class and the Box class.

If the width of the text box is set to 0, the width will automatically be adjusted to fit the text.
Similarly, if the height is set to 0, the height will automatically be adjusted to fit the text. So if both
the width and height are 0, the TextBox object will behave like a TextStyle object.

Method Description

setText Sets the text to be shown in the text box.

setAlignment Sets the alignment of the text relative to the container box

Methods inherited from TextStyle

setFontStyle Set the font of the text.

setFontSize Set the font size of the text.

setFontAngle Set the rotation angle of the text.

setFontColor Set the color of the text.

setMargin Set the left, right, top and bottom margins of the bounding box of the text.

setMargin2 Short cut to set all four bounding box margins to the same value.

Methods inherited from Box

setPos Set the coordinates of the top left corner of the box.

setSize Set the width and height of the box.

setBackground Set the background color and edge color of the box.

setText
Prototype
def setText(self, text) :

Description
Sets the text to be shown in the text box. The text may contain multiple lines separated using the new
line character “\n”.

Arguments

Argument Default Value Description

text (Mandatory) The text to be displayed in the text box.

Return Value
None

 91919191

setAlignment
Prototype
def setAlignment(self, a) :

Description
Sets the alignment of the text relative to the container box.

Arguments

Argument Default Value Description

a (Mandatory) The alignment specification. See Alignment Specification
for possible alignment types.

Return Value
None

Line
A Line, as its name implies, represents a straight line.

Method Description

setPos Set the end points (x1, y1) and (x2, y2) of the line.

setColor Set the color of the line.

setWidth Set the width of the line in pixels.

setPos
Prototype
def setPos(self, x1, y1, x2, y2) :

Description
Set the end points (x1, y1) and (x2, y2) of the line.

Arguments

Argument Default Value Description

x1 (Mandatory) The x coordinate of the first end-point of the line.

y1 (Mandatory) The y coordinate of the first end-point of the line.

x2 (Mandatory) The x coordinate of the second end-point of the line.

y2 (Mandatory) The y coordinate of the second end-point of the line.

Return Value
None

 92929292

setColor
Prototype
def setColor(self, c) :

Description
Set the color of the line. By default, the color is the default LineColor as defined by the palette color
table. See Color Specification for details of the palette color table.

Arguments

Argument Default Value Description

c (Mandatory) The color of the line.

Return Value
None

setWidth
Prototype
def setWidth(self, w) :

Description
Set the width of the line in pixels. By default, the width is 1 pixel.

Arguments

Argument Default Value Description

w (Mandatory) The width (thickness) of the line in pixels.

Return Value
None

BaseChart
BaseChart is an abstract class containing methods that are common to all chart types.

Method Description

setSize Set the size of the chart to the specified width and height in pixels.

setBorder Set the border color of the chart.

setWallpaper Specify an image as the background wallpaper of the chart.

setBgImage Specify an image as the background image of the chart.

addTitle Add a title to the chart on the TopCenter position of the chart

addTitle2 Add a title to the chart at the top, bottom, left or right position of the chart.

addLegend Add a legend box to the chart.

 93939393

getDrawArea Returns the DrawArea object that the chart is drawn with to allow drawing
custom text, line or shapes.

addDrawObj Add a custom-developed DrawObj to the chart.

addText Add a text box to the chart.

addLine Add a line to the chart.

setColor Change the color of the specified position in the palette color table.

setColors Change the colors of the color table starting with the specified position in the
palette color table.

setColors2 Change the colors of the color table starting from the first color.

getColor Get the color of the specified position in the palette color table.

layout Perform auto-scaling of the axis and compute the position of the various
objects of the chart, without actually drawing the chart. This allows
additional custom text or shapes to be added to the chart based on the
positions of other objects.

makeChart Generate the chart and save it into a file.

makeChart2 Generate the chart in memory.

setSize
Prototype
def setSize(self, width, height) :

Description
Set the size of the chart to the specified width and height in pixels.

Arguments

Argument Default Value Description

width (Mandatory) The width of the chart in pixels.

height (Mandatory) The height of the chart in pixels.

Return Value
None

setBorder
Prototype
def setBorder(self, color) :

Description
Set the border color of the chart. By default, the border color is Transparent, which means the border is
invible.

 94949494

Arguments

Argument Default Value Description

color (Mandatory) The border color of the chart.

Return Value
None

setWallpaper
Prototype
def setWallpaper(self, img) :

Description
Use the image loaded the specified file as the background wallpaper of the chart. The method will auto-
detect the image file format using the file name extension, which must either be png, jpg, jpeg, gif,
wbmp or wmp (case insensitive). If the image is smaller than the chart, the method will draw the image
repetitively to fill up the whole chart.

Arguments

Argument Default Value Description

img (Mandatory) The image file that is used as the background wallpaper of
the chart.

Return Value
None

setBgImage
Prototype
def setBgImage(self, img, align = Center) :

Description
Use the image loaded the specified file as the background image of the chart. The method will auto-
detect the image file format using the file name extension, which must either be png, jpg, jpeg, gif,
wbmp or wmp (case insensitive). The alignment of the image is controlled by the optional “align”
argument. The default value of the “align” argument is Center. All Alignment values are supported.

Unlike the setWallpaper method, this method will not repetitively draw the image. Instead, it will only
draw it once at the position determined by the “align” argument.

Arguments

Argument Default Value Description

img (Mandatory) The image file that is used as the background image of the
chart.

 95959595

Argument Default Value Description

align Center The alignment of the background image relative to the chart.
See Alignment Specification for possible alignment types.

Return Value
None

addTitle
Prototype
def addTitle(self, text, font = "", fontSize = 12, fontColor = TextColor, bgColor = Transparent,
edgeColor = Transparent) :

Description
Add a title to the chart on the TopCenter position of the chart. For other positions, use the alternative
form of addTitle2 method.

The “text” argument contains the title text. Titles with multiple lines are supported by separating the
lines with the new line character (‘\n’).

By default, the title will be drawn using the Arial bold font at font size of 12 points using the default
TextColor. These can be changed by using the optional “font”, “fontSize” and “fontColor” arguments.
(See Font Specification)

The title is contained within a box, of which the width is the same as the width of the chart, and the
height is variable depending on the font size and the number of lines the title has. By default, the box
has a transparent background color and a transparent edge color, so it is invisible. These can be change
by using the optional “bgColor” and “edgeColor” arguments. (See Color Specification)

Arguments

Argument Default Value Description

text (Mandatory) The text for the title.

font 0 The font to be used for the title text.

fontSize 12 The font size in points for the title text.

fontColor TextColor The color of the title text.

bgColor Transparent The background color of the title box.

edgeColor Transparent The border color of the title box.

Return Value
This method returns a TextBox object representing the title to allow fine-tuning of the title appearance.

 96969696

addTitle2
Prototype
def addTitle2(self, alignment, text, font = "", fontSize = 12, fontColor = TextColor, bgColor =
Transparent, edgeColor = Transparent) :

Description
Add a title to the chart. This method is the similar as the addTitle method, except that the first argument
“alignment” can be used to control where the title is drawn. You can add more than one title to the
chart.

If the “alignment” is set to “Left “ or “Right”, the title is rotated 90 degrees (that is, drawn vertically).

This method returns a TextBox object representing the title to allow fine-tuning of the title appearance.

For the explanations of the arguments, please refer to the addTitle method.

Arguments

Argument Default Value Description

alignment (Mandatory) The position of the title relative to the chart. The supported
alignments are Top, Bottom, Left and Right. See Alignment
Specification for the meaning of the various alignment
types.

Text (Mandatory) The text for the title.

Font 0 The font to be used for the title text.

fontSize 12 The font size in points for the title text.

fontColor TextColor The color of the title text.

bgColor Transparent The background color of the title box.

edgeColor Transparent The border color of the title box.

Return Value
This method returns a TextBox object representing the title to allow fine-tuning of the title appearance.

addLegend
Prototype
def addLegend(self, x, y, vertical = 1, font = "", fontSize = 10) :

Description
Add a legend box to the chart. The (x, y) arguments specify the top left corner of the legend box. The
optional “vertical” argument is a boolean flag to indicate whether the keys in the legend box will be
layout vertically or horizontally. The optional “font” and “fontSize” arguments specify the font and font
size. The default font is Arial with font size of 10 points.

 97979797

By default, if you specify the vertical layout, the legend box will have a boundary drawn using the
default LineColor, while there will be no such boundary for horizontal layout.

This method returns a LegendBox object, which you may use to fine-tune the appearance of the legend
box.

Arguments

Argument Default Value Description

x (Mandatory) The x coordinate of the left of the legend box.

y (Mandatory) The y coordinate of the top of the legend box.

vertical 1 Determines whether the keys inside the legend box are
layout vertically or horizontally. A “true” (that is, non-zero)
value means the keys are layout vertically. A “false” value
means the keys are layout horizontally.

font "" The font file for the legend font. See Font Specification for
how fonts are specified in ChartDirector.

fontSize 10 The font size of the legend font.

Return Value
This method returns the LegendBox object, which you may use to fine-tune the appearance of the
legend box.

getDrawArea
Prototype
def getDrawArea(self) :

Description
Returns the DrawArea object. The DrawArea object provides basic graphics operations such as drawing
text, lines, circles, polygons, etc. It is the tool used by ChartDirector to draw all the charts.

This object is made accessible so that you may use this tool to add custom drawings to the chart or even
to develop your own custom chart type.

Arguments
None.

Return Value
This method returns a DrawArea object that can be used to add custom text and shapes to the chart.

addDrawObj
Prototype
def addDrawObj(self, obj) :

 98989898

Description
Add a custom-developed DrawObj to the chart.

Arguments

Argument Default Value Description

obj (Mandatory) The DrawObj to be added to the chart.

Return Value
This method returns the same DrawObj that is passed in as the argument.

addText
Prototype
def addText(self, x, y, text, font = "", fontSize = 8, fontColor = TextColor, alignment = TopLeft, angle
= 0, vertical = 0) :

Description
Add a text box to the chart. Return a TextBox object that represents the text box added. By default, only
the text is visible, the box is transparent and therefore invisible. You may use the methods of the
returned TextBox object to change the appearance of the text box.

Arguments

Argument Default Value Description

x (Mandatory) The x coordinate of the top left corner of the text box.

y (Mandatory) The y coordinate of the top left corner of the text box.

text (Mandatory) The text to shown in the text box.

font "" The font used to draw the text. An empty string means using
the default font (Arial). See Font Specification for how fonts
are specified in ChartDirector.

fontSize 8 The font size used to draw the text.

fontColor TextColor The color used to draw the text.

alignment TopLeft The alignment of the text within the text box.

angle 0 The rotation angle of the text within the text box.

vertical 0 A flag to indicate whether the text should be layout
vertically or horizontally (default).

Return Value
This method returns the TextBox object represented the text box added. You may use the methods of
this object to fine-tune the appearance of the text box.

 99999999

addLine
Prototype
def addLine(self, x1, y1, x2, y2, color = LineColor, lineWidth = 1) :

Description
Add a line to the chart. Return a Line object that represents the line added. You may use the methods of
the returned Line object to change the appearance of the line.

Arguments

Argument Default Value Description

x1 (Mandatory) The x coordinate of the first endpoint of the line.

y1 (Mandatory) The y coordinate of the first endpoint of the line.

x2 (Mandatory) The x coordinate of the second endpoint of the line.

y2 (Mandatory) The y coordinate of the second endpoint of the line.

color LineColor The color of the line.

lineWidth 1 The width of the line.

Return Value
This method returns the Line object represented the line added. You may use the methods of this object
to fine-tune the appearance of the line.

setColor
Prototype
def setColor(self, paletteEntry, color) :

Description
Change the color of the specified position in the palette color table. See the section on Color
Specification on the details of the palette color table.

Arguments

Argument Default Value Description

paletteEntry (Mandatory) The index to the palette color table.

color (Mandatory) The color to change to.

Return Value
None

setColors
Prototype
def setColors(self, paletteEntry, colors) :

 100100100100

Description
Change the colors of the color table starting with the specified position in the palette color table. See the
section on Color Specification on the details of the palette color table.

Arguments

Argument Default Value Description

paletteEntry (Mandatory) The index to the color table.

colors (Mandatory) A list of colors to change to.

Return Value
None

setColors2
Prototype
def setColors2(self, colors) :

Description
Change the colors of the color table starting from the first color. This method is typically used to change
the entire color table. The ChartDirector comes with several predefined color tables that you may use.
(See the section on Color Specification on the details of the color table.)

Arguments

Argument Default Value Description

colors (Mandatory) A list of colors to change to.

Return Value
None

getColor
Prototype
def getColor(self, paletteEntry) :

Description
Get the color of the specified position in the palette color table. (See the section on Color Specification
on the details of the color table.)

Arguments

Argument Default Value Description

paletteEntry (Mandatory) The index to the color table.

Return Value
Return the color of the specified position in the color table.

 101101101101

layout
Prototype
def layout(self) :

Description
Perform auto-scaling of the axis and compute the position of the various objects of the chart.

This method is typically used when custom objects needs to be added to the chart, and the position of
the custom objects depends on the scale of the axis. In this case, the layout method needs to be called
first to determine the scale of the axis.

An example is to draw a custom label on the maximum value point of a data line. The application
knows the maximum value (since the data set is supplied by the caller), but it does not know the
coordinate of the maximum value. To calculate the coordinate correctly, it needs to call the layout
method to auto-scale the axis first, and then call the getXCoor and getYCoor methods of the Layer
object to get the coordinates.

After drawing the custom objects, the application can call makeChart to generate the chart.

If you just want to generate the chart, you do not need to call the layout method. You can call the
makeChart method directly. The makeChart method will automatically call the layout method if it is not
already called.

Arguments
None

Return Value
None

makeChart
Prototype
def makeChart(self, filename) :

Description
Generate the chart and save it into a file. The formats supported are PNG, JPG, JPEG, alternative GIF
and WBMP. The actual format used depends on the extension of the filename, which should be png,
jpg, jpeg, gif, wbmp or wmp (case insensitive). If the extension if none of the above, the PNG format
will be used.

If you want to generate the chart in memory (e.g. for directly output to the network), use the
makeChart2 method instead.

Arguments

Argument Default Value Description

filename (Mandatory) The name of the file to save the image.

 102102102102

Return Value
Return 1 (true) if no error, otherwise returns 0 (false).

makeChart2
Prototype
def makeChart2(self, format) :

Description
Generate the chart in memory. The formats supported are PNG, JPG, JPEG, alternative GIF and
WBMP.

If you want to generate the chart to a file, use the makeChart method instead.

Arguments

Argument Default Value Description

format (Mandatory) The format of the image. It must be one of the followings:
• BaseChart.PNG
• BaseChart.GIF
• BaseChart.JPG
• BaseChart.WMP

Return Value
Returns a string that contains the binary image of the chart in the requested format.

LegendBox
The class LegendBox represents a legend box. It is a subclass of TextBox, which in turn is a subclass of
TextStyle and Box.

To create a legend box and add it to a chart, use the addLegend method of the BaseChart class. It will
return a LegendBox object representing the legend box being created. You may the use the LegendBox
object to fine-tune the appearance of the legend box.

ChartDirector will automatically add every named data set in the chart to the legend box. You may add
additional entry to the legend box by using the addKey method of the LegendBox object.

Method Description

addKey Add an additional entry to the legend box.

Methods inherited from TextBox

setText Sets the text to be shown in the text box.

setAlignment Sets the alignment of the text relative to the container box

Methods inherited from TextStyle

 103103103103

setFontStyle Set the font of the text.

setFontSize Set the font size of the text.

setFontAngle Set the rotation angle of the text.

setFontColor Set the color of the text.

setMargin Set the left, right, top and bottom margins of the bounding box of the text.

setMargin2 Short cut to set all four bounding box margins to the same value.

Methods inherited from Box

setPos Set the coordinates of the top left corner of the box.

setSize Set the width and height of the box.

setBackground Set the background color and edge color of the box.

addKey
Prototype
def addKey(self, text, color) :

Description
Add an additional entry to the legend box.

Arguments

Argument Default Value Description

text (Mandatory) The text of the legend box entry.

color (Mandatory) The color of the legend box entry.

Return Value
None

PieChart
The PieChart class, as its name implies, represents pie charts. It is a subclass of BaseChart.

You can use the methods in this class to create a blank pie chart, add data to it, design its appearance
and layout, and finally draws the pie chart.

Method Description

PieChart Create a PieChart object.

setPieSize Set the position and size of the pie within the pie chart.

set3D Add 3D effects to the pie.

 104104104104

setStartAngle Set the angle of the first sector in the pie, and the direction (clockwise or
anticlockwise) to layout subsequent sectors.

setLabelFormat Sets the format of the all sector labels.

setLabelStyle Sets the style used to draw all sector labels.

setLabelPos Set the location of the sector labels, and specify whether join lines are used to
connect the sector labels to the sector perimeter,

setData Sets the data used to draw the pie chart.

sector Retrieve the Sector object representing the specified sector in the pie chart.

Methods inherited from BaseChart

setSize Set the size of the chart to the specified width and height in pixels.

setBorder Set the border color of the chart.

setWallpaper Specify an image as the background wallpaper of the chart.

setBgImage Specify an image as the background image of the chart.

addTitle Add a title to the chart on the TopCenter position of the chart

addTitle2 Add a title to the chart at the top, bottom, left or right position of the chart.

addLegend Add a legend box to the chart.

getDrawArea Returns the DrawArea object that the chart is drawn with to allow drawing
custom text, line or shapes.

addDrawObj Add a custom-developed DrawObj to the chart.

addText Add a text box to the chart.

addLine Add a line to the chart.

setColor Change the color of the specified position in the palette color table.

setColors Change the colors of the color table starting with the specified position in the
palette color table.

setColors2 Change the colors of the color table starting from the first color.

getColor Get the color of the specified position in the palette color table.

layout Perform auto-scaling of the axis and compute the position of the various
objects of the chart, without actually drawing the chart. This allows
additional custom text or shapes to be added to the chart based on the
positions of other objects.

makeChart Generate the chart and save it into a file.

makeChart2 Generate the chart in memory.

 105105105105

PieChart
Prototype
def __init__(self, width, height, bgColor = BackgroundColor, edgeColor = Transparent) :

Description
Create a PieChart object.

Arguments

Argument Default Value Description

width (Mandatory) The width of the chart in pixels.

height (Mandatory) The height of the chart in pixels.

bgColor BackgroundColor The background color of the chart.

edgeColor Transparent The border color of the chart.

Return Value
Return the PieChart object created.

setPieSize
Prototype
def setPieSize(self, x, y, r) :

Description
Set the position and size of the pie within the pie chart.

Arguments

Argument Default Value Description

x (Mandatory) The x coordinate of the pie center.

y (Mandatory) The y coordinate of the pie center.

r (Mandatory) The radius of the pie.

Return Value
None

set3D
Prototype
def set3D(self, depth = -1, angle = -1, shadowMode = 0) :

Description
Add 3D effects to the pie. By default, if this method is not called, a 2D pie will be drawn.

 106106106106

Arguments

Argument Default Value Description

depth -1 The 3D depth of the pie in pixels. A value of –1 means the
depth is automatically determined. (The current version
uses the height of the chart divided by 20 as the depth.)

angle -1 The view angle in degrees. Must be 0 – 90 for standard
3D mode, and 0 – 360 in shadow 3D mode. A value of –1
means the angle is automatically determined. (The current
version uses 45 degrees if the depth is non-zero. If the
depth is zero, it uses 0 degree.)

shadowMode 0 Flag to indicate whether the pie is in standard 3D mode or
shadow 3D mode. A true (non-zero) value means shadow
3D mode, while a false value means standard 3D mode.

Return Value
None

setStartAngle
Prototype
def setStartAngle(self, startAngle, clockWise = 1) :

Description
Set the angle of the first sector in the pie, and the direction (clockwise or anticlockwise) to layout
subsequent sectors. By default, the startAngle is 0 degree (the 12 o’clock position), and subsequent
sectors are drawn clockwise.

Arguments

Argument Default Value Description

startAngle (Mandatory) The angle to start drawing the first sector. The angle is
measured starting from the 12 o’clock position in the
clockwise direction. For example, 3 o’clock is 90 degrees,
6 o’clock is 180 degrees and 9 o’clock is 270 degrees.

clockWise 1 A flag to control the layout direction of the sectors. A true
(non-zero) value indicates clockwise, while a false value
indicates counter-clockwise.

Return Value
None

setLabelFormat
Prototype
def setLabelFormat(self, formatString) :

 107107107107

Description
Sets the format of the all sector labels. If you just want to set the label format for one particular sector
only, use the setLabelFormat method of the Sector object.

By default, the sector labels will contain two lines. The first line is the sector name, while the second
line is the percentage of the sector. You may change the format of the sector labels by supplying a
format string.

For example, suppose you want the sector labels to contain three lines, which display the sector name,
the value of the sector, and the percentage of the sector. The format string to do that this would be
“&label&\n&value&\n&percent&%”. The explanation is as follows:

��&label& is a place holder for the sector name

��&value& is a place holder for the value

��&percent& is the place holder for the percentage

The new line character ‘\n’ separates the &label&, &value& and &percent&, so they are displayed on
three lines. Also, after &percent& there is a ‘%’ character, so the percentage value will contain a ‘%’
ending character.

As a second example, suppose you want to:

��display label on one line, and the value and percentage together on the other line

��separate the value and percentage with a space, and enclose the percentage in parenthesis

��add a ‘$’ in front of the value, and add a ‘K’ after the value (that is, instead of displaying 123,
you want to display $123K)

The format string to do the above would be “&label&\n$&value&K (&percent&%)”.

For the &value& and &percent&, you can specify the precision, decimal point character and thousand
separator character.

For example, if you want the value to have a precision of two decimal points, using ‘.’ (dot) as the
decimal point, and using ‘,’ (comma) as the thousand separator, you may use the format “&value|2.,&”.
The value 123456.789 will be displayed as “123,456.79”.

In the “&value|2.,&”, the ‘|’ character means that there is further formatting options. The first
formatting option is the number of decimal points, the following character is the decimal point
character, and then the following character is the thousand separator.

By default, if you leave out the thousand separator character, there will be no thousand separator, so
“123456” will be displayed as exactly “123456” and not “123,456”. If you leave out the decimal point
character, it will be ‘.’ (dot).

 108108108108

Arguments

Argument Default Value Description

formatString (Mandatory) The format string. See above for description.

Return Value
None

setLabelStyle
Prototype
def setLabelStyle(self, font = "", fontSize = 8, fontColor = TextColor) :

Description
Sets the style used to draw all sector labels. If you just want to set the style for one particular sector
only, use the setLabelStyle method of the Sector object.

For details about how to specify font style, please refer to the section on Font Specification.

Arguments

Argument Default Value Description

font "" The font used to draw the sector labels. An empty string
means using the default font (Arial).

fontSize 8 The font size used to draw the sector labels.

fontColor TextColor The color used to draw the sector labels.

Return Value
A TextBox object that represents the prototype of the sector labels. You may use the methods of the
TextBox object to fine tune the appearance of the sector labels.

setLabelPos
Prototype
def setLabelPos(self, pos, joinLineColor = Transparent) :

Description
Set the location of the sector labels, and specify whether join lines are used to connect the sector labels
to the sector perimeter. This method affects all sectors. If you just want to set the sector label position or
join line color for one sector, use the setLabelPos method of the Sector object.

Arguments

Argument Default Value Description

 109109109109

pos (Mandatory) The distance between the sector perimeter and the sector
label in number of pixels. If this parameter is negative,
that means the sector label will be drawn in the interior of
the sector (that is, on the sector surface).

joinLineColor Transparent The color of the line that join the sector perimeter with the
sector label. The default value is Transparent, which
means the line is not drawn. Note that join lines do not
apply if the sector labels are inside the sectors.

Return Value
None

setData
Prototype
def setData(self, data, labels = []) :

Description
Sets the data used to draw the pie chart.

Arguments

Argument Default Value Description

data (Mandatory) A list of numbers representing the data points.

labels [] A list of text strings that represents the labels of the
sectors. An empty list means that the sectors will have no
label. Otherwise, the length of labels should be the same
as the length of data.

Return Value
None

sector
Prototype
def sector(self, sectorNo) :

Description
Retrieve the Sector object representing a single sector in the pie chart. You may use the methods of this
object to fine tune the sector appearance.

Arguments

Argument Default Value Description

 110110110110

sectorNo (Mandatory) The number of the sector that you want to retrieve. The
sector number is the index of the data point in the setData
method when the sectors are created. Notes that the first
sector is 0, the second sector is 1, and so on.

Return Value
The required Sector object.

Sector
The Sector object represents a single sector in a pie chart. The Sector object is obtained by using the
sector method of the PieChart object. You may use the Sector object to fine-tune the appearance of the
sector.

Method Description

setExplode Explode the sector.

setLabelFormat Sets the format of the sector label.

setLabelStyle Sets the style used to draw the sector label.

setLabelPos Set the location of the sector label, and specify whether a join line is used to
connect the sector label to the sector perimeter.

setExplode
Prototype
def setExplode(self, distance = -1) :

Description
Explode the sector.

Arguments

Argument Default Value Description

distance -1 The distance between the exploded sector and the center
of the pie in number of pixels. A large value means that
the exploded sector will be moved farther away from the
pie. A value of –1 means the distance is automatically
determined.

Return Value
None

setLabelFormat
Prototype
def setLabelFormat(self, formatString) :

 111111111111

Description
Sets the format of the sector label. If you want to set the sector label format for all sectors, use the
setLabelFormat method of the PieChart object.

Arguments

Argument Default Value Description

formatString (Mandatory) The format string. See the setLabelFormat method of the
PieChart object for details.

Return Value
None

setLabelStyle
Prototype
def setLabelStyle(self, font = "", fontSize = 8, fontColor = TextColor) :

Description
Sets the style used to draw the sector label. If you just want to set the style for all sector labels, use the
setLabelStyle method of the PieChart object.

For details about how to specify font style, please refer to the section on Font Specification.

Arguments

Argument Default Value Description

font "" The font used to draw the sector label. An empty string
means using the default font (Arial).

fontSize 8 The font size used to draw the sector label.

fontColor TextColor The color used to draw the sector label.

Return Value
A TextBox object that represents the prototype of the sector label. You may use the methods of the
TextBox object to fine tune the appearance of the sector label.

setLabelPos
Prototype
def setLabelPos(self, pos, joinLineColor = Transparent) :

Description
Set the location of the sector label, and specify whether a join line is used to connect the sector label to
the sector perimeter. If you want to set the sector label position or join line color for all sectors, use the
setLabelPos method of the PieChart object.

 112112112112

Arguments

Argument Default Value Description

pos (Mandatory) The distance between the sector perimeter and the sector
label in number of pixels. If this parameter is negative,
that means the sector label will be drawn in the interior of
the sector (that is, on the sector surface).

joinLineColor Transparent The color of the line that joins the sector perimeter with
the sector label. The default value is Transparent, which
means the line is not drawn. Note that join line does not
apply if the sector label is inside the sector.

Return Value
None

XYChart
The XYChart class represents an XYChart object. In ChartDirector, all chart types that have an X and
Y axis are implemented as layers contained in an XYChart object. The currently supported layers
include bar chart layer, area chart layer, line chart layer and high-low-open-close chart layer. You may
include multiple layers in an XYChart to create “combo” charts.

The XYChart class is a subclass of BaseChart.

Method Description

XYChart Creates an XYChart object.

yAxis Retrieve the YAxis object representing primary y-axis object of the
XYChart.

yAxis2 Retrieve the YAxis object representing secondary y-axis object of the
XYChart.

syncYAxis Specify that the secondary y-axis be derived from the primary y-axis through
a formula y2 = y1 * slope + intercept.

setYAxisOnRight Specifies whether the position of the primary y-axis is on the right or on the
left of the chart. (The secondary y-axis will be on the opposite position).

xAxis Retrieve the XAxis object representing primary x-axis object of the
XYChart.

xAxis2 Retrieve the XAxis object representing secondary x-axis object of the
XYChart.

setPlotArea Sets the position, size, background colors, edge color and grid colors of the
plot area.

addBarLayer Add a bar chart layer to the XYChart, and specify the data set to use for
drawing the bars.

 113113113113

addBarLayer2 Add an empty bar chart layer to the XYChart.

addLineLayer Add a line chart layer to the XYChart, and specify the data set to use for
drawing the line.

addLineLayer2 Add an empty line chart layer to the XYChart.

addAreaLayer Add an area chart layer to the XYChart, and specify the data set to use for
drawing the area.

addAreaLayer2 Add an empty area chart layer to the XYChart.

addHLOCLayer Add a high-low-open-close (HLOC) chart layer to the XYChart, and specify
the data sets to use for drawing the layer.

addHLOCLayer2 Add an empty high-low-open-close (HLOC) chart layer to the XYChart.

Methods inherited from BaseChart

setSize Set the size of the chart to the specified width and height in pixels.

setBorder Set the border color of the chart.

setWallpaper Specify an image as the background wallpaper of the chart.

setBgImage Specify an image as the background image of the chart.

addTitle Add a title to the chart on the TopCenter position of the chart

addTitle2 Add a title to the chart at the top, bottom, left or right position of the chart.

addLegend Add a legend box to the chart.

getDrawArea Returns the DrawArea object that the chart is drawn with to allow drawing
custom text, line or shapes.

addDrawObj Add a custom-developed DrawObj to the chart.

addText Add a text box to the chart.

addLine Add a line to the chart.

setColor Change the color of the specified position in the palette color table.

setColors Change the colors of the color table starting with the specified position in the
palette color table.

setColors2 Change the colors of the color table starting from the first color.

getColor Get the color of the specified position in the palette color table.

layout Perform auto-scaling of the axis and compute the position of the various
objects of the chart, without actually drawing the chart. This allows
additional custom text or shapes to be added to the chart based on the
positions of other objects.

makeChart Generate the chart and save it into a file.

makeChart2 Generate the chart in memory.

 114114114114

XYChart
Prototype
def __init__(self, width, height, bgColor = BackgroundColor, edgeColor = Transparent) :

Description
Creates an XYChart object.

Arguments

Argument Default Value Description

width (Mandatory) The width of the chart in pixels.

height (Mandatory) The height of the chart in pixels.

bgColor BackgroundColor The background color of the chart. The default value is
the BackgroundColor entry of the color palette.

edgeColor Transparent The edge color of the chart. The default value is
Transparent, which means the chart will have no edge.

Return Value
Returns the XYChart object created.

yAxis
Prototype
def yAxis(self) :

Description
Retrieve the YAxis object representing primary y-axis object of the XYChart. By default, the primary
y-axis is the y-axis on the left side of the chart, while the secondary y-axis is the y-axis on the right side
of the chart. You may interchange the positions of the two y-axes using the setYAxisOnRight method.

Arguments
None

Return Value
Returns a YAxis object representing the primary y-axis of the XYChart.

yAxis2
Prototype
def yAxis2(self) :

Description
Retrieve the YAxis object representing secondary y-axis object of the XYChart. By default, the primary
y-axis is the y-axis on the left side of the chart, while the secondary y-axis is the y-axis on the right side
of the chart. You may interchange the positions of the two y-axes using the setYAxisOnRight method.

 115115115115

Arguments
None

Return Value
Returns a YAxis object representing the secondary y-axis of the XYChart.

syncYAxis
Prototype
def syncYAxis(self, slope = 1, intercept = 0) :

Description
Specify that the secondary y-axis be derived from the primary y-axis through a formula:

y2 = y1 * slope + intercept

This method is usually used if the two y-axes represent the same measurement but are using different
units. For example, if the primary y-axis represents temperature in Celsius, and the secondary y-axis
represents temperature in Fahrenheit, then:

 y2 = y1 * 1.8 + 32

In this case, you can sync up the axes by using:

 syncYAxis(1.8, 32);

If you call the syncYAxis without any parameters, the default is to use 1 as the slope and 0 as the
intercept. This essentially means the two y-axes are of the same scale.

Arguments

Argument Default Value Description

slope 1 The slope parameter of the formula linking the
secondary y-axis to the primary y-axis.

intercept 0 The intercept parameter of the formula linking the
secondary y-axis to the primary y-axis.

Return Value
None.

setYAxisOnRight
Prototype
def setYAxisOnRight(self, b) :

Description
Specifies the position of the primary y-axis and the secondary y-axis.

 116116116116

By default, the primary y-axis is the y-axis on the left side of the chart, while the secondary y-axis is the
y-axis on the right side of the chart. If the setYAxisOnRight method is called passing “true” as the
argument, the position of the y-axes will be interchanged, that is, the primary y-axis will be on the right,
while the secondary y-axis will be on the left. Calling setYAxisOnRight with a “false” argument will
set the primary y-axis on the left and secondary y-axis on the right.

Arguments

Argument Default Value Description

b (Mandatory) If this argument is “true” (non-zero), the primary y-axis
will be on the right, and the secondary y-axis will be on
the left. If this argument is “false”, the primary y-axis will
be on the left, and the secondary y-axis will be on the
right.

Return Value
None.

xAxis
Prototype
def xAxis(self) :

Description
Retrieve the XAxis object representing primary x-axis object of the XYChart. The primary x-axis is the
x-axis on the bottom of the chart, while the secondary x-axis is the x-axis on the top of the chart.

Arguments
None

Return Value
Returns an XAxis object representing the primary x-axis of the XYChart.

xAxis2
Prototype
def xAxis2(self) :

Description
Retrieve the XAxis object representing secondary x-axis object of the XYChart. The primary x-axis is
the x-axis on the bottom of the chart, while the secondary x-axis is the x-axis on the top of the chart.

Arguments
None

Return Value
Returns an XAxis object representing the secondary x-axis of the XYChart.

 117117117117

setPlotArea
Prototype
def setPlotArea(self, x, y, width, height, bgColor = Transparent, altBgColor = -1, edgeColor =
LineColor, hGridColor = 0xc0c0c0, vGridColor = Transparent) :

Description
Sets the position, size, background colors, edge color and grid colors of the plot area.

Arguments

Argument Default Value Description

x (Mandatory) The x coordinate of the top left corner of the plot area.

y (Mandatory) The y coordinate of the top left corner of the plot area.

width (Mandatory) The width of the plot area in pixels.

height (Mandatory) The height of the plot area in pixels.

bgColor Transparent The background color of the plot area.

altBgColor -1 The second background color of the plot area. The default
value (-1) means there is no second background color. If
there is a second background color, the two background
colors will use alternatively as horizontal bands on the
background grid.

edgeColor LineColor The color used to draw the border of the plot area. The
default value is the LineColor entry of the color palette.

hGridColor 0xc0c0c0 The horizontal grid color. The default value is light gray
(0xc0c0c0).

vGridColor Transparent The vertical grid color. By default, it is Transparent,
meaning that the vertical grid is invisible.

Return Value
A PlotArea object representing the plot area.

addBarLayer
Prototype
def addBarLayer(self, data, color = -1, name = "", depth = 0) :

Description
Add a bar chart layer to the XYChart, and specify the data set to use for drawing the bars. This method
is typically used if you have only one data set in the bar layer. If you have multiple data sets (e.g. in a
stacked bar chart), use the addBarLayer2 method instead.

Arguments

Argument Default Value Description

 118118118118

data (Mandatory) A list of numbers representing the data set. Note that
ChartDirector supports the special constant NoValue as
values in the array to specify that certain data points have
no value.

color -1 The color to draw the bars. The default value of -1 means
that the color is automatically selected from the color
palette.

name "" The name of the data set. The name will be used in the
legend box, if one is available. The default value ""
(empty string) means that there is no name.

depth 0 The depth of the bar layer. The default of zero means that
the bar layer is flat. A non-zero depth means that the bar
layer is in 3D.

Return Value
A BarLayer object representing the bar layer created.

addBarLayer2
Prototype
def addBarLayer2(self, dataCombineMethod = Layer.Side, depth = 0) :

Description
Add a bar chart layer to the XYChart. This method returns a BarLayer object representing the bar layer.
You may use then add one or more data sets to the bar layer using the methods of the BarLayer object.

If you only have one data set in the bar layer, you may also use the addBarLayer method to add a bar
layer to the chart.

Arguments

Argument Default Value Description

 119119119119

dataCombineMethod Layer.Side The method to combine the data sets together in a
single bar layer. The followings are the supported
methods:
Layer.Side: The data sets are combined by plotting
the bars side by side.
Layer.Stack: The data sets are combined by stacking
up the bar.
Layer.Overlay: The data sets are represented by
stacked bars similar to Layer.Stack. However, in
Layer.Overlay, one data set is assumed to include the
other data set.
For example, if the data sets are “average loading”
and “peak loading”, we cannot simply stack the peak
loading on top of the average loading. Instead, we
should stack the “peak loading – average loading” on
top of the “average loading”. The Layer.Overlay will
automatically do this.
In general, if there are multiple data sets, the
Layer.Overlay will sort the data sets by their values,
and assume the large data include the smaller data.

depth 0 The depth of the bar layer. The default of zero means
that the bar layer is flat. A non-zero depth means that
the bar layer is in 3D.

Return Value
A BarLayer object representing the bar layer created.

addLineLayer
Prototype
def addLineLayer(self, data, color = -1, name = "", depth = 0) :

Description
Add a line chart layer to the XYChart, and specify the data set to use for drawing the line. This method
is typically used if you have only one data set in the line layer. If you have multiple data sets, use the
addLineLayer2 method instead.

Arguments

Argument Default Value Description

data (Mandatory) A list of numbers representing the data set. Note that
ChartDirector supports the special constant NoValue as
values in the array to specify that certain data points have
no value.

 120120120120

color -1 The color to draw the line. The default value of -1 means
that the color is automatically selected from the color
palette.

name "" The name of the data set. The name will be used in the
legend box, if one is available. The default value of ""
(empty string) means that there is no name.

depth 0 The depth of the line layer. The default of zero means
that the line layer is flat. A non-zero depth means that the
line layer is in 3D.

Return Value
A LineLayer object representing the line layer created.

addLineLayer2
Prototype
def addLineLayer2(self, dataCombineMethod = Layer.Overlay, depth = 0) :

Description
Add a line chart layer to the XYChart. This method returns a LineLayer object representing the line
layer. You may use then add one or more data sets to the line layer using the methods of the LineLayer
object.

If you only have one data set in the line layer, you may also use the addLineLayer method to add a line
layer to the chart.

Arguments

Argument Default Value Description

dataCombineMethod Layer.Overlay In this version of the ChartDirector, the only
supported method is Layer.Overaly. That means the
lines are plot on the chart without any further
manipulations.

depth 0 The depth of the line layer. The default of zero
means that the line layer is flat. A non-zero depth
means that the line layer is in 3D.

Return Value
A LineLayer object representing the line layer created.

addAreaLayer
Prototype
def addAreaLayer(self, data, color = -1, name = "", depth = 0) :

 121121121121

Description
Add an area chart layer to the XYChart, and specify the data set to use for drawing the area. This
method is typically used if you have only one data set in the area layer. If you have multiple data sets
(e.g. in a stacked area chart), use the AddAreaLayer2 method instead.

Arguments

Argument Default Value Description

data (Mandatory) A list of numbers representing the data set. Note that
ChartDirector supports the special constant NoValue as
values in the array to specify that certain data points have
no value.

color -1 The color to draw the area. The default value of -1 means
that the color is automatically selected from the color
palette.

name "" The name of the data set. The name will be used in the
legend box, if one is available. The default value ""
(empty string) means that there is no name.

depth 0 The depth of the area layer. The default of zero means
that the area layer is flat. A non-zero depth means that
the area layer is in 3D.

Return Value
An AreaLayer object representing the area layer created.

addAreaLayer2
Prototype
def addAreaLayer2(self, dataCombineMethod = Layer.Stack, depth = 0) :

Description
Add an area chart layer to the XYChart. This method returns an AreaLayer object representing the area
layer. You may use then add one or more data sets to the area layer using the methods of the AreaLayer
object.

If you only have one data set in the area layer, you may also use the addAreaLayer method to add an
area layer to the chart.

Arguments

Argument Default Value Description

dataCombineMethod Layer.Stack In this version of the ChartDirector, the only
supported method is Layer.Stack. That means the
areas are plot on the chart by stacking on top of one
another.

 122122122122

depth 0 The depth of the area layer. The default of zero
means that the area layer is flat. A non-zero depth
means that the area layer is in 3D.

Return Value
An AreaLayer object representing the area layer created.

addHLOCLayer
Prototype
def addHLOCLayer(self, highData, lowData, openData = [], closeData = [], color = -1) :

Description
Add a high-low-open-close (HLOC) chart layer to the XYChart, and specify the data sets to use for
drawing the layer.

HLOC charts are commonly used in stock price charts to representing the highest price, lowest price,
opening price and the closing price. This chart, of course, can be used for many other purposes as well.

In the ChartDirector HLOC chart, the high and low data sets are mandatory, while the open and close
data sets are optional.

Arguments

Argument Default Value Description

highData (Mandatory) A list of numbers representing the highest value data set.
Note that ChartDirector supports the special constant
NoValue as values in the array to specify that certain data
points have no value.

lowData (Mandatory) A list of numbers representing the lowest value data set.
Note that ChartDirector supports the special constant
NoValue as values in the array to specify that certain data
points have no value.

openData [] A list of numbers representing the opening value data set.
A value of [] (empty list) means there is no opening
value data set available. Note that ChartDirector supports
the special constant NoValue as values in the array to
specify that certain data points have no value.

closeData [] A list of numbers representing the closing value data set.
A value of [] (empty list) means there is no closing value
data set available. Note that ChartDirector supports the
special constant NoValue as values in the array to specify
that certain data points have no value.

 123123123123

color -1 The color to draw the line. The default value of -1 means
that the color is automatically selected from the color
palette.

Return Value
A HLOCLayer object representing the HLOC layer created.

addHLOCLayer2
Prototype
def addHLOCLayer2(self) :

Description
Add a high-low-open-close (HLOC) chart layer to the XYChart. This method returns a HLOCLayer
object representing the HLOC layer. You may use then add data sets to the HLOC using the methods of
the HLOCLayer object.

HLOC charts are commonly used in stock price charts to representing the highest price, lowest price,
opening price and the closing price. This chart, of course, can be used for many other purposes as well.

In the ChartDirector HLOC chart, the high and low data sets are mandatory, while the open and close
data sets are optional. Therefore you need to add at least two data sets to the HLOC layer for the high
and low data sets. The third data set, if added, will be the open data set. The fourth data set, if added,
will be the close data set. If you just have high, low and close data sets but do not have the open data
set, you must still add an empty open data set (that is, a data set with no data points) to the HLOC layer.

Arguments
None.

Return Value
A HLOCLayer object representing the HLOC layer created.

PlotArea
The PlotArea object represents the plot area within an XYChart. The PlotArea object is obtained by
using the setPlotArea method of the XYChart.

Method Description

setBackground Sets the background colors and the border color of the plot area.

setBackground2 Specify an image as the background image of the plot area.

setGridColor Sets the horizontal and vertical grid colors of the plot area.

setBackground
Prototype
def setBackground(self, color, altBgColor = -1, edgeColor = LineColor) :

 124124124124

Description
Sets the background colors and the border color of the plot area. The plot area can have one or two
background colors. If it has two background colors, they are drawn alternatively as horizontal bands on
the background grid.

Note that you may also specify the background and edge colors when you define the plot area using the
setPlotArea method of the XYChart object.

Arguments

Argument Default Value Description

color (Mandatory) The background color.

altBgColor -1 The second background color. The default value (-1)
means there is no second background color. If there is a
second background color, the two background colors will
use alternatively as horizontal bands on the background
grid.

edgeColor LineColor The color used to draw the border of the plot area. The
default value is the LineColor entry of the color palette.

Return Value
None

setBackground2
Prototype
def setBackground(self, img, align = Center) :

Description
Use the image loaded the specified file as the background image of the plot area. The method will auto-
detect the image file format using the file name extension, which must either be png, jpg, jpeg, gif,
wbmp or wmp (case insensitive). The alignment of the image is controlled by the optional “align”
argument. The default value of the “align” argument is Center. All alignment values are supported.

Arguments

Argument Default Value Description

img (Mandatory) The image file that is used as the background image of the
plot area.

align Center The alignment of the background image relative to the plot
area. See Alignment Specification for possible alignment
types.

Return Value
None

 125125125125

setGridColor
Prototype
def setGridColor(self, hGridColor, vGridColor = Transparent) :

Description
Sets the horizontal and vertical grid colors of the plot area. To disable the grids, simply set their colors
to Transparent.

Note that you may also specify the grid colors when you define the plot area using the setPlotArea
method of the XYChart object.

Arguments

Argument Default Value Description

hGridColor (Mandatory) The horizontal grid color.

vGridColor Transparent The vertical grid color. By default, it is Transparent,
meaning that the vertical grid is invisible.

Return Value
None

BaseAxis
The BaseAxis is the base class of the XAxis and YAxis in ChartDirector. It represents methods that
area common to both axis classes.

Method Description

setLabelStyle Sets the font style used to for the axis labels.

setLabelGap Sets the distance between the axis labels and the ticks on the axis.

setTitle Add a title to the axis.

setTitlePos Set the title position relative to the axis.

setColors Sets the axis color, axis label color, axis title color and axis tick color.

setTickLength Sets the axis ticks length in pixels.

setTickLength2 Sets the major and minor axis ticks lengths in pixels.

setLabelStyle
Prototype
def setLabelStyle(self, font = "", fontSize = 8, fontColor = TextColor, fontAngle = 0) :

Description
Sets the font style used to for the axis labels. For details about how to specify font style, please refer to
the section on Font Specification.

 126126126126

Arguments

Argument Default Value Description

font "" The font used to draw the labels. An empty string ""
means using the default font (Arial).

fontSize 8 The font size used to draw the labels.

fontColor TextColor The color used to draw the labels.

fontAngle 0 Set the rotation of the font.

Return Value
A TextBox object that represents the prototype of the axis labels. You may use the methods of the
TextBox object to fine-tune the appearance of the axis labels.

setLabelGap
Prototype
def setLabelGap(self, d) :

Description
Sets the distance between the axis labels and the ticks on the axis.

Arguments

Argument Default Value Description

d (Mandatory) The distance between the axis label and the tick in pixels.

Return Value
None

setTitle
Prototype
def setTitle(self, text, font = "arialbd.ttf", fontSize = 8, fontColor = TextColor) :

Description
Add a title to the axis. For details about how to specify font style, please refer to the section on Font
Specification.

Arguments

Argument Default Value Description

text (Mandatory) The title text.

font “arialbd.ttf” The font used to draw the title. Default is Arial Bold
(arialbd.ttf).

fontSize 8 The size of the font. Default is 8 points font.

 127127127127

fontColor TextColor The color of the font. Default is the TextColor from the
color palette.

Return Value
A TextBox object that represents the axis title. You may use the methods of the TextBox object to fine-
tune the appearance of the axis title.

setTitlePos
Prototype
def setTitlePos(self, alignment, titleGap = 6) :

Description
Set the title position relative to the axis.

By default, the axis title will be drawn at the middle of the axis outside the plot area. You may change
the location of the title. For example, instead of drawing the x-axis title at the middle of the axis, you
may want draw at the end of the axis.

The current version of ChartDirector supports the following alignment positions when drawing axis
titles.

Axis Default Position Supported Position

Bottom x-axis BottomCenter TopLeft, TopRight, TopCenter, Left, Right, BottomLeft ,
BottomRight, BottomCenter :

Top x-axis TopCenter TopLeft, TopRight, TopCenter, Left, Right, BottomLeft ,
BottomRight, BottomCenter

Left y-axis Left Left, TopLeft

Right y-axis Right Right, TopRight
Besides deciding where the put the title, this method also specifies the distance between the axis title
and the “whole axis”, where the “whole axis” in this case includes the labels and ticks.

Arguments

Argument Default Value Description

alignment (Mandatory) The position of the title relative to the axis. Please refer to
the table above for the valid values.

titleGap 6 The distance between the axis title and the “whole axis” in
pixels.

Return Value
None

 128128128128

setColors
Prototype
def setColors(self, axisColor, labelColor = TextColor, titleColor = -1, tickColor = -1) :

Description
Sets the axis color, axis label color, axis title color and axis tick color.

By default, the axis and axis ticks are drawn using the LineColor in the color palette, while the axis
label and axis title are drawn using the TextColor in the color palette. You may use this method to
change the colors.

Arguments

Argument Default Value Description

axisColor (Mandatory) The color of the axis itself.

labelColor TextColor The color of the axis labels.

titleColor -1 The color of the axis title. The default value of –1 means
the axis title color is the same as the axis label color.

tickColor -1 The color of the axis ticks. The default value of –1 means
the axis ticks color is the same as the axis color.

Return Value
None

setTickLength
Prototype
def setTickLength(self, majorTickLen) :

Description
Sets the axis ticks length in pixels. A positive value means the ticks are drawn outside the plot area. A
negative value means the ticks are drawn inside the plot area.

Arguments

Argument Default Value Description

majorTickLen (Mandatory) The length of the major ticks in pixels. The length of the
minor ticks will be set to half the length of the major ticks.
Note that in the current version of ChartDirector, only the
x-axis supports minor ticks.

Return Value
None

 129129129129

setTickLength2
Prototype
def setTickLength2(self, majorTickLen, minorTickLen) :

Description
Sets the major and minor axis ticks lengths in pixels. A positive value means the ticks are drawn outside
the plot area. A negative value means the ticks are drawn inside the plot area.

Arguments

Argument Default Value Description

majorTickLen (Mandatory) The length of the major ticks in pixels.

minorTickLen (Mandatory) The length of the minor ticks in pixels. Note that in the
current version of the ChartDirector, only the x-axis
supports minor ticks.

Return Value
None

XAxis
The XAxis class represents the x-axes in an XYChart. Each XYChart has two x-axes, one on the
bottom of the plot area, and one on the top of the plot area. The bottom x-axis is the primary x-axis and
can be obtained by using the xAxis method of the XYChart object. The top x-axis is the secondary x-
axis and can be obtained by using the xAxis2 method of the XYChart object.

The XAxis class is a subclass of the BaseAxis class.

Method Description

setLabels Sets the labels to be used on the x-axis.

setIndent Specify where the x-axis should be “indented” or not.

Methods inherited from BaseAxis

setLabelStyle Sets the font style used to for the axis labels.

setLabelGap Sets the distance between the axis labels and the ticks on the axis.

setTitle Add a title to the axis.

setTitlePos Set the title position relative to the axis.

setColors Sets the axis color, axis label color, axis title color and axis tick color.

setTickLength Sets the axis ticks length in pixels.

setTickLength2 Sets the major and minor axis ticks lengths in pixels.

 130130130130

setLabels
Prototype
def setLabels(self, text) :

Description
Sets the labels to be used on the x-axis.

If you do not call this method, there will be no labels and no axis ticks on the x-axis.

This method accepts an array of strings containing the labels. The text also specifies what kind of axis
tick to use for a label.

By default, all labels will be drawn with major axis ticks. If you want to draw a label with a minor axis
tick, use the ‘-’ character as the first character of the label. If you want to draw the label without a tick at
all, use the ‘~’ character as the first character of the label. The ‘-’ and ‘~’ characters are special
characters and will not appear on the actual label. It just tells ChartDirector that the label should be
associated with a minor tick or no tick at all.

If you have a tick that really begins with ‘-’ or ‘~’ and does not want the ChartDirector to interpret it as
special characters, add the ‘\’ character as the first character of the label.

If you just want to draw a major tick without any labels, use a space character " " as the label. If you just
want to draw a minor tick without any labels, use the "-" string. If you just want to leave a label position
empty without a tick or a label, use an empty string "".

Arguments

Argument Default Value Description

text (Mandatory) A list of strings containing the text of the labels. By
default, all label positions will have a major tick. If the
first character of the labels are ‘-’ or ‘~, the labels will be
associated with a minor tick or no tick at all.

Return Value
A TextBox object that represents the prototype of the axis labels. You may use the methods of the
TextBox object to fine-tune the appearance of the axis labels.

setIndent
Prototype
def setIndent(self, indent) :

Description
Specify where the x-axis should be “indented” or not.

Normally, the x-axis is automatically scaled so that x coordinate of first data point is at the beginning of
the x-axis (that is, at the bottom left corner of the plot area), while the x coordinate last data point is at
the end of the axis (that is, at the bottom right corner of the plot area).

 131131131131

However, for bar charts, if the x-axis is scaled as above, for the first bar and the last bar, half of them
will be outside the plot area.

Therefore if any of the ChartDirector layers is a bar chart layer, the x-axis scaling will be set to
“indented”. In the “indented” mode, the first data point will be shifted to the left, and the last data point
will be shifted to the right, so that the first and last bars are completely within the plot area.

The setIndent method allows you to override the default x-axis scaling mode.

Arguments

Argument Default Value Description

indent (Mandatory) A “true” (non-zero) value sets the x-axis to indented
mode. A “false” value set the x-axis to non-indented
mode. By default, the x-axis will be in indented mode if
one of the layers is a bar chart layer. Otherwise the x-axis
will be in non-indented mode.

Return Value
None

YAxis
The YAxis class represents the y-axes in an XYChart. Each XYChart has two y-axes – the primary y-
axis and the secondary y-axis. The primary y-axis can be obtained by using the yAxis method of the
XYChart object, while the secondary y-axis can be obtained by using the yAxis2 method of the
XYChart object.

Normally, the primary y-axis is drawn on the left side of the plot area, while the secondary y-axis is
drawn on the right side of the plot area. You may reverse the location of the axes by using the
setYAxisOnRight method of the XYChart object.

The YAxis class is a subclass of the BaseAxis class.

Method Description

addMark Add a mark line to the chart.

addZone Add a zone to the chart.

setLinearScale Set the axis to use linear scaling and manually determine the scale.

setLogScale Specify the type of auto-scaling (log or linear) for the y-axis.

setLogScale2 Set the axis to use log scaling and manually determine the scale.

setAutoScale Reserve some space at the top and/or bottom of the plot area by using a
larger axis scaling than is necessary.

setTickDensity Sets the density of the axis ticks.

 132132132132

setTopMargin Reserve a range at the top of the plot area that is not scaled at all.

setLabelFormat Sets the number format for the axis labels.

Methods inherited from BaseAxis

setLabelStyle Sets the font style used to for the axis labels.

setLabelGap Sets the distance between the axis labels and the ticks on the axis.

setTitle Add a title to the axis.

setTitlePos Set the title position relative to the axis.

setColors Sets the axis color, axis label color, axis title color and axis tick color.

setTickLength Sets the axis ticks length in pixels.

setTickLength2 Sets the major and minor axis ticks lengths in pixels.

addMark
Prototype
def addMark(self, value, lineColor, text = "", font = "", fontSize = 8) :

Description
Add a mark line to the chart.

A mark line is a horizontal line drawn on the front of the plot area. This line is usually used to indicate
some special values, such as a “target value”, “threshold value”, etc. The mark line will include a tick
and label on the y-axis to describe the mark.

Arguments

Argument Default Value Description

value (Mandatory) The y value of the mark line.

lineColor (Mandatory) The color of the mark line. By default, the text label and
the corresponding tick on the y-axis will be drawn using
the same color as the mark line. You can modify the
colors by using the setMarkColors method of the returned
Mark object.

text "" The text label for the mark line. The default value of ""
(empty string) means there is no text label.

font "" The font used to draw the text label. The default value of
"" (empty string) means using the default font (Arial).

fontSize 8 The font size used to draw the text label. Default is 8
points.

 133133133133

Return Value
A Mark object representing the mark line added. You may use this object to fine tune the appearance of
the mark, such as its line width and colors.

addZone
Prototype
def addZone(self, startValue, endValue, color) :

Description
Add a zone to the chart.

A zone is a range of y values. For example, “10 to 20” is a zone. Typically a zone is used to classify the
data values. For example, you may classify 0 – 60 as the normal zone, 60 – 90 as the warning zone, and
90 – 100 as the critical zone.

A zone is drawn on the back of the plot area as a horizontal strip using a user specified color. For
example, you may draw the normal zone in green color, the warning zone in yellow color and the
critical zone in red color.

Arguments

Argument Default Value Description

startValue (Mandatory) The start y value (the lower bound) of the zone.

endValue (Mandatory) The end y value (the upper bound) of the zone.

color (Mandatory) The color of the zone.

Return Value
None.

setLinearScale
Prototype
def setLinearScale(self, lowerLimit, upperLimit, tickInc = 0) :

Description
Set the axis to use linear scaling and manually determine the scale.

If you do not call this method and any other axis scaling method, the ChartDirector will use a linear y-
axis with auto-scaling.

Arguments

Argument Default Value Description

lowerLimit (Mandatory) The lower bound of the y-axis.

upperLimit (Mandatory) The upper bound of the y-axis.

 134134134134

tickInc 0 The spacing between the y-axis ticks, representing as the
difference in y values between two adjacent ticks. A value
of 0 means the tick spacing will be automatically
determined. In this case, the ChartDirector may adjust the
lower bound or upper bound of the axis to in order to find
a reasonable tick spacing (e.g. the tick spacing has to be a
neat number, no too close or too sparse, and the axis range
must be a integer multiple of the tick spacing, and other
constraints, etc). If you do not want to lower bound and
upper bound to be adjusted, specify the tick spacing
explicitly.

Return Value
None.

setLogScale
Prototype
def setLogScale(self, logScale = 1) :

Description
Specify the type of auto-scaling (log or linear) for the y-axis.

If you do not call this method and any other axis scaling method, the ChartDirector will use a linear y-
axis with auto-scaling.

Arguments

Argument Default Value Description

logScale 1 The default value of “true” (non-zero) means the axis will
use log scaling. A “false” value means linear scaling.

Return Value
None.

setLogScale2
Prototype
def setLogScale2(self, lowerLimit, upperLimit, tickInc = 0) :

Description
Set the axis to use log scaling and manually determine the scale.

If you do not call this method and any other axis scaling method, the ChartDirector will use a linear y-
axis with auto-scaling.

Arguments

Argument Default Value Description

 135135135135

lowerLimit (Mandatory) The lower bound of the y-axis.

upperLimit (Mandatory) The upper bound of the y-axis.

tickInc 0 The spacing between the y-axis ticks, representing as the
ratio in y values between two adjacent ticks. A value of 0
means the tick spacing will be automatically determined.
In this case, the ChartDirector may adjust the lower bound
or upper bound of the axis to in order to find a reasonable
tick spacing (e.g. the tick ratio has to be a neat number, no
too close or too sparse, and the axis range must be a
integer multiple of the tick spacing, and other constraints,
etc). If you do not want to lower bound and upper bound
to be adjusted, specify the tick spacing explicitly.

Return Value
None.

setAutoScale
Prototype
def setAutoScale(self, topExtension = 0, bottomExtension = 0) :

Description
Reserve some space at the top and/or bottom of the plot area by using a larger axis scaling than is
necessary. For example, if the data is in the range 0 – 100, and we use an axis scaling of 0 – 150, the top
portion of the plot area will remain empty because no data are in that range.

By default, the ChartDirector will auto-scale the y-axis so that it approximately matches the range of the
data. The setAutoScale method allows you to specify a portion on the top and on the bottom of the axis
where no data value falls.

This method is usually used when you want to reserve some space at the top and/or bottom of the plot
area for something, such as a legend box, or some custom text.

Note that there is an alternative way to reserve space at the top of the plot area – the setTopMargin
method.

Arguments

Argument Default Value Description

topExtension 0 The top portion of the y-axis that no data should fall into.
The top portion must be between 0 – 1. For example, a
value of 0.2 means no data value will fall within the top
20% of the y-axis .

 136136136136

bottomExtension 0 The bottom portion of the y-axis that no data should fall
into. The bottom portion must be between 0 – 1. For
example, a value of 0.2 means no data value will fall
within the bottom 20% of the y-axis .

Return Value
None.

setTickDensity
Prototype
def setTickDensity(self, tickDensity) :

Description
Sets the density of the axis ticks.

Arguments

Argument Default Value Description

tickDensity (Mandatory) Specify the desired distance between two ticks in pixels.
The ChartDirector will auto-scale the axis to try to meet
the tick density requirement, but it may not meet it
exactly. It is because the ChartDirector has other
constraints to consider, such as the ticks and axis range
should be neat numbers, and the axis must contain an
integral number of ticks, etc. The ChartDirector therefore
may use a tick distance that is larger than specified, but
never smaller.

Return Value
None.

setTopMargin
Prototype
def setTopMargin(self, topMargin) :

Description
Reserve a range at the top of the plot area that is not scaled at all. No data will fall within that range. The
y-axis at that range will contain no tick, label and grid line.

This method is usually used when you want to reserve some space at the top of the plot area for
something, such as a legend box, or some custom text.

Note that there is an alternative way to reserve space at the top and/or bottom of the plot area – the
setAutoScale method.

 137137137137

Arguments

Argument Default Value Description

topMargin (Mandatory) The height of the top of the plot area that is reserved
space in pixels.

Return Value
None.

setLabelFormat
Prototype
def setLabelFormat(self, formatString) :

Description
Sets the number format for the axis labels.

By default, the axis label will be automatically formatted. The ChartDirector will display a value as an
integer if it looks like an integer. If the value is not an integer, it will display it using the least possible
decimal points.

You may modify the number format by specifying the number of decimal points, add thousand
separators, or add additional text before or after the data value.

For example, if you want to display the value 100 as “USD 100K”, you could use the following format
string “USD &value&K”. The ChartDirector will replace the “&value& will the actual data value when
drawing the data label.

The ChartDirector supports multi-line data labels. Simply use the new line character ‘\n’ for multiple
lines.

As an other example, suppose you want the value to have a precision of two decimal points, using ‘.’
(dot) as the decimal point, and using ‘,’ (comma) as the thousand separator. In this case the value
123456.789 will be displayed as “123,456.79”. The format string to use is “&value|2.,&”.

In the “&value|2.,&” format string, the ‘|’ character means that there are formatting options for the
value. The first character after ‘|’ is the number of decimal points, the following character is the decimal
point character, and next character is the thousand separator.

If you leave out the thousand separator character, there will be no thousand separator, so “123456” will
be displayed as exactly “123456” and not “123,456”. If you leave out the decimal point character, it will
be ‘.’ (dot).

Arguments

Argument Default Value Description

formatString (Mandatory) The format string. See above for description.

 138138138138

Return Value
None

Mark
The Mark class represents mark lines. A mark line is a horizontal line drawn on the front of the plot
area. This line is usually used to indicate some special values, such as a “target value”, “threshold
value”, etc.

A mark line is created using the addMark method of a YAxis object. The mark line will include a tick
and label on the y-axis to describe the mark.

Method Description

setValue Set the y value of the mark line.

setMarkColor Set the line, text and tick colors of the mark line.

setLineWidth Set the line width of the mark line.

setValue
Prototype
def setValue(self, value) :

Description
Set the y value of the mark line.

Arguments

Argument Default Value Description

value (Mandatory) The y value of the mark.

Return Value
None

setMarkColor
Prototype
def setMarkColor(self, lineColor, textColor = -1, tickColor = -1) :

Description
Set the line, text and tick colors of the mark line.

Arguments

Argument Default Value Description

lineColor (Mandatory) The color of the mark line.

 139139139139

textColor -1 The color of the text label that will be shown on the y-
axis. The default value of –1 means the text label color is
the same as the line color.

tickColor -1 The color of the tick that will be shown on the y-axis. The
default value of –1 means the tick color is the same as the
line color.

Return Value
None

setLineWidth
Prototype
def setLineWidth(self, w) :

Description
Set the line width of the mark line.

Arguments

Argument Default Value Description

w (Mandatory) The mark line width in pixels.

Return Value
None

Layer
The Layer class is a base class for all XYChart layer classes. Currently these include the BarLayer,
LineLayer, AreaLayer and HLOCLayer.

Method Description

set3D Set the 3D depth of the layer, and the 3D gap between the current layer
and the next layer.

setLineWidth Set the default line width of data lines when drawing data sets on the
layer.

setDataCombineMethod Set the method used to combine multiple data sets in a layer.

addDataSet Add a data set to the chart layer.

getXCoor Get the x coordinate of a point given the x value.

getYCoor Get the y coordinate of a point given the y value.

setDataLabelFormat Sets the data label format of the all data labels for all data sets in the layer.

setDataLabelStyle Sets the style used to draw data labels for all data sets in the layer.

 140140140140

setAggregateLabelFormat Sets the data label format of the aggregate data labels.

setAggregateLabelStyle Enables and sets the style used to draw aggregate data labels in the layer.

set3D
Prototype
def set3D(self, d = -1, zGap = 0) :

Description
Set the 3D depth of the layer, and the 3D gap between the current layer and the next layer.

Arguments

Argument Default Value Description

d -1 The 3D depth of the layer in pixels. The default value of -
1 means the depth is automatically calculated. A value of
0 means the layer will be flat.

zGap 0 The 3D gap between the current layer and the next layer
in pixels. The default value of 0 means there is no 3D gap,
that is, the back of the current layer will be in touch width
the front of the next layer.

Return Value
None.

setLineWidth
Prototype
def setLineWidth(self, w) :

Description
Set the default line width of data lines when drawing data sets on the layer. This only applies to layers
that employ lines to represent data. In the current version of ChartDirector, these include line layers,
HLOC layers and area layers. (For an area layer, the line is boundary line of the area.)

If you want a certain data set to have a different line width from other data sets on the same layer, you
may use the setLineWidth method of the DataSet object to override the default line width.

Arguments

Argument Default Value Description

w (Mandatory) The width of the line in pixels.

Return Value
None.

 141141141141

setDataCombineMethod
Prototype
def setDataCombineMethod(self, m) :

Description
Set the method used to combine multiple data sets in a layer. Usually this method is used only when a
layer contains more than one data set.

Not all layers support all data combine methods. The following table describes what are the supported
data combine methods for each layer type.

Data Combine Method Description Applies to

Layer.Stack The multiple data sets are stacked up on top of one
another. For example, on a bar chart, the data will be
represented as stacked bars.

BarLayer,
AreaLayer

Layer.Overlay The multiple data sets are plotted independently,
overlapping each others. For example, on a line chart,
the multiple data sets will be represented by multiple
lines.

BarLayer
LineLayer

Layer.Side The multiple data sets are plotted side-by-side.
Currently, this method only applies to bar charts.

BarLayer

Arguments

Argument Default Value Description

m (Mandatory) The data combine method, which must be Layer.Side,
Layer.Stack or Layer.Overlay.

Return Value
None.

addDataSet
Prototype
def addDataSet(self, d, color = -1, name = "") :

Description
Add a data set to the chart layer. A layer can contain multiple data sets.

Arguments

Argument Default Value Description

 142142142142

d (Mandatory) A list of numbers representing the values in the data set.
Note that ChartDirector supports the special constant
NoValue as values in the array to specify that certain data
points have no value.

color -1 The color used to draw the data set. A value of –1 means
the color is automatic.

name "" The name of the data set. If a legend box is available in
the XYChart, a key will be automatically added to the
legend box to describe the data set. A value of "" (empty
string) means the data set is unnamed.

Return Value
This method returns the DataSet object representing the data set added. You may use the methods of the
DataSet object to fine-tune how the data set is drawn on the chart.

getXCoor
Prototype
def getXCoor(self, v) :

Description
Get the x coordinate of a point given the x value. The x coordinate for the first data point is given by
getXCoor(0), and the second data point is givenby getXCoor(1). In general, the nth data point has an x
coordinate of getXCoor(n – 1).

This method is usually used when you want to add custom text or lines to certain location of the chart.
One common example is to add a text label to the highest data point of the data set.

Note that this method must be called after you have called the layout method of the XYChart object to
layout the chart first. It is because the ChartDirector needs to compute the axis auto-scaling and other
things first before it can compute the coordinates.

Arguments

Argument Default Value Description

v (Mandatory) The x value. The nth data point has an x value of n – 1.

Return Value
The x coordinate of the x value.

getYCoor
Prototype
def getYCoor(self, v, yAxis = 1) :

 143143143143

Description
Get the y coordinate of a point given the y value. Since there are two y-axes supported by the XYChart
and they can be of different scale, you may need to specify which y-axis to use when computing the y
coordinate. The default is to use the primary y-axis.

This method is usually used when you want to add custom text or lines to certain location of the chart.
One common example is to add a text label to the highest data point of the data set.

Note that this method must be called after you have called the layout method of the XYChart object to
layout the chart first. It is because the ChartDirector needs to compute the axis auto-scaling and other
things first before it can compute the coordinates.

Arguments

Argument Default Value Description

v (Mandatory) The y value.

yAxis 1 Determine whether the y coordinate is computed using the
scale on the primary y-axis or the secondary y-axis. The
default value of “true” (non-zero) means that the primary
y-axis will be used. A “false” value means the secondary
y-axis will be used.

Return Value
The y coordinate of the y value.

setDataLabelFormat
Prototype
def setDataLabelFormat(self, formatString) :

Description
Sets the data label format of the all data labels for all data sets in the layer. If you just want to set the
label format for one particular data set only, use the setDataLabelFormat method of the DataSet object.

Data labels are labels that appear besides the data points in the chart. In the current version of the
ChartDirector, only bar chart layers support data labels (the data labels, if enabled, are drawn on top of
the bars). For layers that does not support data labels, the data label settings are ignored.

Note that data labels in a layer are disabled by default. You need to call the setDataLabelStyle method
to enable them.

By default, the data label will be automatically formatted. The ChartDirector will display data value as
an integer if it looks like an integer. If the data value is not an integer, it will display it using the least
possible decimal points.

You may modify the data label format by specifying the number of decimal points, add thousand
separators, or add additional text before or after the data value.

 144144144144

For example, if you want to display the data value 10.5 as “USD 10.5 K”, you could use the following
format string “USD &value& K”. The ChartDirector will replace the “&value& will the actual data
value when drawing the data label.

The ChartDirector supports multi-line data labels. Simply use the new line character ‘\n’ for multiple
lines.

For example, suppose you want the value to have a precision of two decimal points, using ‘.’ (dot) as
the decimal point, and using ‘,’ (comma) as the thousand separator. In this case the value 123456.789
will be displayed as “123,456.79”. The format string to use is “&value|2.,&”.

In the “&value|2.,&” format string, the ‘|’ character means that there are formatting options for the
value. The first character after ‘|’ is the number of decimal points, the following character is the decimal
point character, and next character is the thousand separator.

If you leave out the thousand separator character, there will be no thousand separator, so “123456” will
be displayed as exactly “123456” and not “123,456”. If you leave out the decimal point character, it will
be ‘.’ (dot).

Arguments

Argument Default Value Description

formatString (Mandatory) The format string. See above for description.

Return Value
None

setDataLabelStyle
Prototype
def setDataLabelStyle(self, font = "", fontSize = 8, fontColor = TextColor, fontAngle = 0) :

Description
Sets the style used to draw data labels for all data sets in the layer. If you just want to set the style for
one particular data set only, use the setDataLabelStyle method of the DataSet object.

Data labels are labels that appear besides the data points in the chart. In the current version of the
ChartDirector, only bar chart layers support data labels. The exact locations of the data labels depend on
the type of bar chart. For stacked bar chart or overlay bar chart, the data labels are drawn just under the
top edge of the bar segments. For multi-bar chart, the data labels are drawn on top of the bar.

For bar chart layer that only have one data set and created using the addBarLayer method, it will be
considered as a special case of a multi-bar chart that only has one data set. Therefore the data labels will
be drawn on the top of the bar. If you want to draw the data label under the top edge of the bar, you
need to use the addBarLayer2 method to specify that the bar is of Layer.Stack type, and then add the
data using the addDataSet method.

 145145145145

Note that data labels in a layer are disabled by default. You need to call the setDataLabelStyle method
to enable them.

For details about how to specify font style, please refer to the section on Font Specification.

Arguments

Argument Default Value Description

font "" The font used to draw the labels. A "" (empty string)
means using the default font (Arial).

fontSize 8 The font size used to draw the labels.

fontColor TextColor The color used to draw the labels.

fontAngle 0 Set the rotation of the font.

Return Value
A TextBox object that represents the prototype of the data labels. You may use the methods of the
TextBox object to fine-tune the appearance of the data labels.

setAggregateLabelFormat
Prototype
def setAggregateLabelFormat(self, formatString) :

Description
Sets the data label format of the aggregate data labels.

Arguments

Argument Default Value Description

formatString (Mandatory) The format string. The syntax is the same as that of the
setDataLabelFormat method. Please refer to
setDataLabelFormat for details.

Return Value
None

setAggregateLabelStyle
Prototype
def setAggregateLabelStyle(self, font = "", fontHeight = 8, fontColor = TextColor, fontAngle = 0) :

Description
Enables and sets the style used to draw aggregate data labels in the layer.

Aggregate data labels only apply to stack and overlay chart types. In these chart types, the aggregate
data labels represent the “stacked” data.

 146146146146

In the current version of the ChartDirector, only bar chart layers support data labels. The aggregate data
labels are drawn on top of the bar.

Note that aggregate data labels in a layer are disabled by default. You need to call the
setAggregateLabelStyle method to enable them.

For details about how to specify font style, please refer to the section on Font Specification.

Arguments

Argument Default Value Description

font "" The font used to draw the labels. A "" (empty string)
means using the default font (Arial).

fontSize 8 The font size used to draw the labels.

fontColor TextColor The color used to draw the labels.

fontAngle 0 Set the rotation of the font.

Return Value
A TextBox object that represents the prototype of the aggregate data labels. You may use the methods
of the TextBox object to fine-tune the appearance of the aggregate data labels.

BarLayer
The BarLayer class, as its name implies, represents bar chart layers. The BarLayer is a subclass of the
Layer class. The BarLayer is created by using the addBarLayer or addBarLayer2 methods of the
XYChart object.

Method Description

setBarGap Sets the gap between the bars in a bar chart layer.

Methods inherited from Layer

set3D Set the 3D depth of the layer, and the 3D gap between the current layer
and the next layer.

setLineWidth Set the default line width of data lines when drawing data sets on the
layer.

setDataCombineMethod Set the method used to combine multiple data sets in a layer.

addDataSet Add a data set to the chart layer.

getXCoor Get the x coordinate of a point given the x value.

getYCoor Get the y coordinate of a point given the y value.

setDataLabelFormat Sets the data label format of the all data labels for all data sets in the
layer.

setDataLabelStyle Sets the style used to draw data labels for all data sets in the layer.

 147147147147

setAggregateLabelFormat Sets the data label format of the aggregate data labels.

setAggregateLabelStyle Enables and sets the style used to draw aggregate data labels in the layer.

setBarGap
Prototype
def setBarGap(self, barGap, subBarGap = 0.2) :

Description
Sets the gap between the bars in a bar chart layer.

Arguments

Argument Default Value Description

barGap (Mandatory) The gap between the bars as the portion of the space
between the midpoints of the bars. The barGap must be in
the range 0 – 1. A value of 0 means the bars are tightly
packed together with no gap in between.
Note that for multi-bar charts, the barGap means the
distance between the bar groups, not the distance between
individual bars.

subBarGap 0.2 This argument only applies to multi-bar charts. This is the
gap between bars within a bar group, represented as the
portion of the space between the midpoints of the bars.
The subBarGap must be in the range 0 – 1. A value of 0
means the bars within a bar group are tightly packed
together with no gap in between.

Return Value
None

LineLayer
The LineLayer class, as its name implies, represents line chart layers. The LineLayer is a subclass of the
Layer class. The LineLayer is created by using the addLineLayer and addLineLayer2 methods of the
XYChart object.

The LineLayer has no additional method other than implementing methods inherited from the Layer
class.

Method Description

Methods inherited from Layer

set3D Set the 3D depth of the layer, and the 3D gap between the current layer
and the next layer.

 148148148148

setLineWidth Set the default line width of data lines when drawing data sets on the
layer.

setDataCombineMethod Set the method used to combine multiple data sets in a layer.

addDataSet Add a data set to the chart layer.

getXCoor Get the x coordinate of a point given the x value.

getYCoor Get the y coordinate of a point given the y value.

setDataLabelFormat Sets the data label format of the all data labels for all data sets in the
layer.

setDataLabelStyle Sets the style used to draw data labels for all data sets in the layer.

setAggregateLabelFormat Sets the data label format of the aggregate data labels.

setAggregateLabelStyle Enables and sets the style used to draw aggregate data labels in the layer.

AreaLayer
The AreaLayer class, as its name implies, represents area chart layers. The AreaLayer is a subclass of
the Layer class. The AreaLayer is created by using the addAreaLayer and addAreaLayer2 methods of
the XYChart object.

The AreaLayer has no additional method other than implementing methods inherited from the Layer
class.

Method Description

Methods inherited from Layer

set3D Set the 3D depth of the layer, and the 3D gap between the current layer
and the next layer.

setLineWidth Set the default line width of data lines when drawing data sets on the
layer.

setDataCombineMethod Set the method used to combine multiple data sets in a layer.

addDataSet Add a data set to the chart layer.

getXCoor Get the x coordinate of a point given the x value.

getYCoor Get the y coordinate of a point given the y value.

setDataLabelFormat Sets the data label format of the all data labels for all data sets in the
layer.

setDataLabelStyle Sets the style used to draw data labels for all data sets in the layer.

setAggregateLabelFormat Sets the data label format of the aggregate data labels.

setAggregateLabelStyle Enables and sets the style used to draw aggregate data labels in the layer.

 149149149149

HLOCLayer
The HLOCLayer class represents high-low-open-close chart layers. The HLOCLayer is a subclass of
the Layer class. The HLOCLayer is created by using the addHLOCLayer and addHLOCLayer2
methods of the XYChart object.

The HLOCLayer has no additional method other than implementing methods inherited from the Layer
class.

Method Description

Methods inherited from Layer

set3D Set the 3D depth of the layer, and the 3D gap between the current layer
and the next layer.

setLineWidth Set the default line width of data lines when drawing data sets on the
layer.

setDataCombineMethod Set the method used to combine multiple data sets in a layer.

addDataSet Add a data set to the chart layer.

getXCoor Get the x coordinate of a point given the x value.

getYCoor Get the y coordinate of a point given the y value.

setDataLabelFormat Sets the data label format of the all data labels for all data sets in the
layer.

setDataLabelStyle Sets the style used to draw data labels for all data sets in the layer.

setAggregateLabelFormat Sets the data label format of the aggregate data labels.

setAggregateLabelStyle Enables and sets the style used to draw aggregate data labels in the layer.

DataSet
The DataSet class represents data sets. It is created by using the addDataSet method of the Layer class.

Method Description

setDataName Sets the name of the data set.

setDataColor Sets the colors used to draw the data set.

setUseYAxis2 Determine whether the primary y-axis or secondary y-axis to use when
drawing the data set on the chart.

setLineWidth Sets the width of data lines when drawing the data set on the layer.

setDataLabelFormat Sets the data label format of the data labels of the data set.

 150150150150

setDataLabelStyle Sets the style used to draw data labels for the data set.

setDataName
Prototype
def setDataName(self, name) :

Description
Sets the name of the data set. The name will be used in the legend box, if one is available for the chart.
If the name is not set, there will be no legend entry for the data set, even if a legend box is available on
the chart.

Arguments

Argument Default Value Description

name (Mandatory) The name of the data set. The name will be used in the
legend box, if one is available.

Return Value
None.

setDataColor
Prototype
def setDataColor(self, dataColor, edgeColor = LineColor, shadowColor = -1, shadowEdgeColor = -1) :

Description
Sets the colors used to draw the data set.

Arguments

Argument Default Value Description

dataColor (Mandatory) The main color used to draw the data set. For a bar
layer, this would be the color of the bar. For a line layer,
this would be the color of the line. For an area layer, this
would be the color of the area. For a HLOC layer, this
would be the color of the HLOC line.

edgeColor LineColor The color used to draw the edges for the data set, if the
layer type has edges. For a bar layer, the edges mean the
edges of the bar. For an area layer, the edges mean the
edges of the area. Line layers and HLOC layers do not
have edges for the data points, so this parameter is not
applicable.
The default value of LineColor means that the edges are
drawn using the default line color from the color palette.

 151151151151

shadowColor -1 The color to use to draw shadows in 3D. This parameter
is only applicable for 3D layers. The default value of -1
means the shadow color will be a “darker” version of
the data color. The ChartDirector computes the “darker”
color by reducing the RGB components of the data
color in half.

shadowEdgeColor -1 The color to use to draw edges of the shadows in 3D.
This parameter is only applicable for 3D layers. The
default value of -1 means the shadow color will be a
“darker” version of the edge color. The ChartDirector
computes the “darker” color by reducing the RGB
components of the edge color in half.

Return Value
None.

setUseYAxis2
Prototype
def setUseYAxis2(self, b = 1) :

Description
Determine whether the primary y-axis or secondary y-axis to use when drawing the data set on the
chart. If this method is never called, the primary y-axis will be used.

Arguments

Argument Default Value Description

b 1 A “true” (non-zero) value means the secondary y-axis will
be used. A “false” value means the primary y-axis will be
used.

Return Value
None.

setLineWidth
Prototype
def setLineWidth(self, w) :

Description
Sets the width of data lines when drawing the data set on the layer. This only applies to layers that
employ lines to represent data. In the current version of ChartDirector, these include line layers, HLOC
layers and area layers. (For an area layer, the line is boundary line of the area.)

If this method is not called, the line width will be the default line width for the layer that contains the
data set. The default line width of a layer is set using the setLineWidth method of the layer object.

 152152152152

Arguments

Argument Default Value Description

w (Mandatory) The width of the line in pixels.

Return Value
None.

setDataLabelFormat
Prototype
def setDataLabelFormat(self, formatString) :

Description
Sets the data label format of the data labels of the data set. If you just want to set the label format for all
data sets in a particular chart layer, use the setDataLabelFormat method of the Layer object.

Data labels are labels that appear besides the data points in the chart. In the current version of the
ChartDirector, only bar chart layers support data labels (the data labels, if enabled, are drawn on top of
the bars). For layers that does not support data labels, the data label settings are ignored.

Note that data labels in a layer are disabled by default. You need to call the setDataLabelStyle method
to enable them.

The syntax of the format string is the same as that for the setDataLabelFormat method of the Layer
object. Please refer to the section on the setDataLabelFormat method of the Layer object for details.

Arguments

Argument Default Value Description

formatString (Mandatory) The format string. See above for description.

Return Value
None

setDataLabelStyle
Prototype
def setDataLabelStyle(self, font = "", fontHeight = 8, fontColor = TextColor, fontAngle = 0) :

Description
Sets the style used to draw data labels for the data set. If you just want to set the style for all data sets
within a particular chart layer, use the setDataLabelStyle method of the Layer object.

Data labels are labels that appear besides the data points in the chart. In the current version of the
ChartDirector, only bar chart layers support data labels. The exact locations of the data labels depend on
the type of bar chart. For stacked bar chart or overlay bar chart, the data labels are drawn just under the
top edge of the bar segments. For multi-bar chart, the data labels are drawn on top of the bar.

 153153153153

For bar chart layer that only have one data set and created using the addBarLayer method, it will be
considered as a special case of a multi-bar chart that only has one data set. Therefore the data labels will
be drawn on the top of the bar. If you want to draw the data label under the top edge of the bar, you
need to use the addBarLayer2 method to specify that the bar is of Layer.Stack type, and then add the
data using the addDataSet method.

Note that data labels in a layer are disabled by default. You need to call the setDataLabelStyle method
to enable them.

For details about how to specify font style, please refer to the section on Font Specification.

Arguments

Argument Default Value Description

font "" The font used to draw the labels. A "" (empty string)
means using the default font (Arial).

fontSize 8 The font size used to draw the labels.

fontColor TextColor The color used to draw the labels.

fontAngle 0 Set the rotation of the font.

Return Value
A TextBox object that represents the prototype of the data labels. You may use the methods of the
TextBox object to fine-tune the appearance of the data labels.

DrawArea
The DrawArea class is the graphics toolkit that ChartDirector employs to draw the charts. Each
BaseChart class contains a DrawArea object. This DrawArea object is accessible via the getDrawArea
method, so that you could draw custom lines, shapes or texts things on the charts.

You could also use the DrawArea class in standalone mode to create images.

Method Description

DrawArea Create a DrawArea object.

setSize Set the size and background color of the image.

getWidth Get the width of the image.

getHeight Get the height of the image.

setBgColor Set the background color of the image.

pixel Apply the specified color to a pixel.

getPixel Get the color of a pixel.

line Draw a straight line.

 154154154154

hline Draw a horizontal line.

vline Draw a vertical line.

arc Draw an arc.

rect Draw a rectangle.

polygon Draw a polygon.

surface Draw a 3D surface.

sector Draw a sector.

cylinder Draw a cylinder surface.

circle Draw a circle or an ellipse.

fill Fill an area using the specified color, where the area is bounded by a
given border color.

fill2 Fill an area using the specified color, where the area is defined as a
continuous region having the same color.

text Draw text on the image. This method is exactly the same as the text2
method except that it is simplied to contain less arguments.

text2 Draw text on the image.

text3 Create a TTFText object that represents the text to be drawn. This
method is exactly the same as the text4 method except that it is simplied
to contain less arguments.

text4 Create a TTFText object that represents the text to be drawn.

merge Apply another DrawArea image on top of the current DrawArea image.

tile Apply another DrawArea image on top of the current DrawArea image
as a wallpaper.

load Load the specified image into the current DrawArea. This method will
determine the image type by using the extension of the filename.

loadGIF Load the specified GIF image into the current DrawArea.

loadPNG Load the specified PNG image into the current DrawArea.

loadJPG Load the specified JPEG image into the current DrawArea.

loadWMP Load the specified WAP bitmap image into the current DrawArea.

out Write the current DrawArea image to an image file. This method will
determine the image type by using the extension of the filename.

outGIF Write the current DrawArea image to an alternative GIF image file.

outGIF2 Write the current DrawArea image as an alternative GIF image in
memory.

 155155155155

outPNG Write the current DrawArea image to a PNG image file.

outPNG2 Write the current DrawArea image as a PNG image in memory.

outJPG Write the current DrawArea image to a JPEG image file.

outJPG2 Write the current DrawArea image as a JPG image in memory.

outWMP Write the current DrawArea image to a WAP bitmap image file.

outWMP2 Write the current DrawArea image as a WAP bitmap image in memory.

setPaletteMode Set the palette mode when writing the image to a PNG file.

setDitherMethod Set the dithering method if dithering is required.

setTransparentColor Set the transparent color for the image when writing the image to an
image file.

setAntiAliasText Set whether anti-alias methods are when drawing text.

setInterlace Set the interlace mode when writing the image to an image file.

setColorTable Change the colors of the palette color table.

getARGBColor Change the given color to ARGB format if the given color is a palette
table color.

DrawArea
Prototype
def __init__(self) :

Description
Create a DrawArea object. This method is only needed if you use DrawArea in standalone mode. If you
use DrawArea in ChartDirector charts, the DrawArea object is automatically created by the BaseChart,
and is accessible via the getDrawArea method.

Arguments
None.

Return Value
The DrawArea object created.

setSize
Prototype
def setSize(self, width, height, bgColor = 0xffffff) :

Description
Set the size and background color of the image.

 156156156156

Arguments

Argument Default Value Description

width (Mandatory) The width of the image in pixels.

height (Mandatory) The height of the image in pixels.

bgColor 0xffffff The background color of the image.

Return Value
None.

getWidth
Prototype
def getWidth(self) :

Description
Get the width of the image.

Arguments
None.

Return Value
The width of the image in pixels.

getHeight
Prototype
def getHeight(self) :

Description
Get the height of the image.

Arguments
None.

Return Value
The height of the image in pixels.

setBgColor
Prototype
def setBgColor(self, c) :

Description
Set the background color of the image.

Arguments

Argument Default Value Description

 157157157157

c (Mandatory) The background color of the image.

Return Value
None.

pixel
Prototype
def pixel(self, x, y, c) :

Description
Apply the specified color to a pixel.

Arguments

Argument Default Value Description

x (Mandatory) The x coordinate of the pixel.

y (Mandatory) The y coordinate of the pixel.

c (Mandatory) The color to apply to the pixel.

Return Value
None.

getPixel
Prototype
def getPixel(self, x, y) :

Description
Get the color of a pixel.

Arguments

Argument Default Value Description

x (Mandatory) The x coordinate of the pixel.

y (Mandatory) The y coordinate of the pixel.

Return Value
The color of the pixel.

line
Prototype
def line(self, x1, y1, x2, y2, c, lineWidth = 1) :

Description
Draw a straight line.

 158158158158

Arguments

Argument Default Value Description

x1 (Mandatory) The x coordinate of the first end-point of the line.

y1 (Mandatory) The y coordinate of the first end-point of the line.

x2 (Mandatory) The x coordinate of the second end-point of the line.

y2 (Mandatory) The y coordinate of the second end-point of the line.

c (Mandatory) The color of the line.

lineWidth 1 The line width (thickness) of the line.

Return Value
None.

hline
Prototype
def hline(self, x1, x2, y, c) :

Description
Draw a horizontal line. Although the line method can also be used to draw horizontal line, the hline
method is more efficient.

Arguments

Argument Default Value Description

x1 (Mandatory) The x coordinate of the first end-point of the line.

x2 (Mandatory) The x coordinate of the second end-point of the line.

y (Mandatory) The y coordinate of the line.

c (Mandatory) The color of the line.

Return Value
None.

vline
Prototype
def vline(self, y1, y2, x, c) :

Description
Draw a vertical line. Although the line method can also be used to draw vertical line, the vline method
is more efficient.

Arguments

Argument Default Value Description

 159159159159

y1 (Mandatory) The y coordinate of the first end-point of the line.

y2 (Mandatory) The y coordinate of the second end-point of the line.

x (Mandatory) The x coordinate of the line.

c (Mandatory) The color of the line.

Return Value
None.

arc
Prototype
def arc(self, cx, cy, rx, ry, a1, a2, c) :

Description
Draw an arc. This method supports independent vertical radius and horizontal radius, so both circular
and elliptical arcs can be drawn.

Arguments

Argument Default Value Description

cx (Mandatory) The x coordinate of the center of the circle or ellipse that
contains the arc.

cy (Mandatory) The y coordinate of the center of the circle or ellipse that
contains the arc.

rx (Mandatory) The horizontal radius of the circle or ellipse that contains
the arc.

ry (Mandatory) The vertical radius of the circle or ellipse that contains the
arc.

a1 (Mandatory) The start angle of the arc in degrees. The angle is
measured clockwise, with the y-axis as the 0 degree.

a2 (Mandatory) The end angle of the arc in degrees. The angle is
measured clockwise, with the y-axis as the 0 degree.

c (Mandatory) The color of the arc.

Return Value
None.

rect
Prototype
def rect(self, x1, y1, x2, y2, edgeColor, fillColor) :

 160160160160

Description
Draw a rectangle.

Arguments

Argument Default Value Description

x1 (Mandatory) The x coordinate of one of the corner of the rectangle.

y1 (Mandatory) The y coordinate of one of the corner of the rectangle.

x2 (Mandatory) The x coordinate of the corner of the rectangle that is
opposite to the corner as specified in (x1, y1).

y2 (Mandatory) The y coordinate of the corner of the rectangle that is
opposite to the corner as specified in (x1, y1).

edgeColor (Mandatory) The border color of the rectangle. If you do not want to
draw a border for the rectangle, set the edgeColor the
same as the fillColor.

fillColor (Mandatory) The color used to fill the rectangle. If you do not want to
fill the rectangle, set the fillColor to Transparent.

Return Value
None.

polygon
Prototype
def polygon(self, points, edgeColor, fillColor) :

Description
Draw a polygon.

Arguments

Argument Default Value Description

points (Mandatory) A list of coordinates representing the vertices of a
polygon. A single coordinate is a tuple (or list) containing
two number for the x and y coordinates.

edgeColor (Mandatory) The border color of the polygon. If you do not want to
draw a border for the polygon, set the edgeColor the same
as the fillColor.

fillColor (Mandatory) The color used to fill the polygon. If you do not want to
fill the polygon, set the fillColor to Transparent.

Return Value
None.

 161161161161

surface
Prototype
def surface(self, x1, y1, x2, y2, depthX, depthY, edgeColor, fillColor) :

Description
Draw a 3D surface. A 3D surface can be imagined as a surface that is vertical to the drawing surface.
The intersection between the two surfaces is a straight line. If the angle between the two surfaces is 90
degrees, the 3D surface will look like the straight line when projected onto the 3D surface. If the angle
is something else, the 3D surface will look like a parallelogram when projected into a 2D image.

Since this method essentially draws a parallologram to represent 3D surfaces on the image, it can also
be used to draw parallelograms.

Arguments

Argument Default Value Description

x1 (Mandatory) The x coordinate of the first end-point of the intersection
line between the 3D surface and the drawing surface. (The
line can be considered as one of the edge of the
parallolgram.)

y1 (Mandatory) The y coordinate of the first end-point of the intersection
line between the 3D surface and the drawing surface. (The
line can be considered as one of the edge of the
parallolgram.)

x2 (Mandatory) The x coordinate of the first end-point of the intersection
line between the 3D surface and the drawing surface. (The
line can be considered as one of the edge of the
parallolgram.)

y2 (Mandatory) The y coordinate of the first end-point of the intersection
line between the 3D surface and the drawing surface. (The
line can be considered as one of the edge of the
parallolgram.)

depthX (Mandatory) The x component of the depth of the 3D surface when
projected into the drawing surface. (This can be
considered as the x-displacement of the opposite parallege
edge relative to the edge (x1, y1) to (x2, y2).)

depthY (Mandatory) The y component of the depth of the 3D surface when
projected into the drawing surface. (This can be
considered as the y-displacement of the opposite parallege
edge relative to the edge (x1, y1) to (x2, y2).)

edgeColor (Mandatory) The border color of the 3D surface. If you do not want to
draw a border for the 3D surface, set the edgeColor the
same as the fillColor.

 162162162162

fillColor (Mandatory) The color used to fill the 3D surface. If you do not want to
fill the 3D surface, set the fillColor to Transparent.

Return Value
None.

sector
Prototype
def sector(self, cx, cy, rx, ry, a1, a2, edgeColor, fillColor) :

Description
Draw a sector. This method supports independent vertical radius and horizontal radius, so both circular
and elliptical sectors can be drawn.

Arguments

Argument Default Value Description

cx (Mandatory) The x coordinate of the center of the circle or ellipse that
contains the sector.

cy (Mandatory) The y coordinate of the center of the circle or ellipse that
contains the sector.

rx (Mandatory) The horizontal radius of the circle or ellipse that contains
the sector.

ry (Mandatory) The vertical radius of the circle or ellipse that contains the
sector.

a1 (Mandatory) The start angle of the sector in degrees. The angle is
measured clockwise, with the y-axis as the 0 degree.

a2 (Mandatory) The end angle of the sector in degrees. The angle is
measured clockwise, with the y-axis as the 0 degree.

edgeColor (Mandatory) The border color of the sector. If you do not want to draw
a border for the sector, set the edgeColor the same as the
fillColor.

fillColor (Mandatory) The color used to fill the sector. If you do not want to fill
the sector, set the fillColor to Transparent.

Return Value
None.

cylinder
Prototype
def cylinder(self, cx, cy, rx, ry, a1, a2, depthX, depthY, edgeColor, fillColor) :

 163163163163

Description
Draw a cylinder surface. A cylinder surface can be considered as the area spanned by moving an arc in
3D space.

Arguments

Argument Default Value Description

cx (Mandatory) The x coordinate of the center of the circle or ellipse that
contains the arc that spans the cylinder surface.

cy (Mandatory) The y coordinate of the center of the circle or ellipse that
contains the arc that spans the cylinder surface.

rx (Mandatory) The horizontal radius of the circle or ellipse that contains
the arc that spans the cylinder surface.

ry (Mandatory) The vertical radius of the circle or ellipse that contains the
arc that spans the cylinder surface.

a1 (Mandatory) The start angle of the arc that spans the cylinder surface in
degrees. The angle is measured clockwise, with the y-axis
as the 0 degree.

a2 (Mandatory) The end angle of the arc that spans the cylinder surface in
degrees. The angle is measured clockwise, with the y-axis
as the 0 degree.

depthX (Mandatory) The x-displacement of a vector that represents the motion
of the arc to span the cylinder.

depthY (Mandatory) The y-displacement of a vector that represents the motion
of the arc to span the cylinder.

edgeColor (Mandatory) The border color of the cylinder surface. If you do not
want to draw a border for the cylinder surface, set the
edgeColor the same as the fillColor.

fillColor (Mandatory) The color used to fill the cylinder surface. If you do not
want to fill the cylinder surface, set the fillColor to
Transparent.

Return Value
None.

circle
Prototype
def circle(self, cx, cy, rx, ry, edgeColor, fillColor) :

Description
Draw a circle or an ellipse.

 164164164164

Arguments

Argument Default Value Description

cx (Mandatory) The x coordinate of the center of the circle or ellipse.

cy (Mandatory) The y coordinate of the center of the circle or ellipse.

rx (Mandatory) The horizontal radius of the circle or ellipse.

ry (Mandatory) The vertical radius of the circle or ellipse.

edgeColor (Mandatory) The border color of the circle or ellipse. If you do not
want to draw a border for the circle or ellipse, set the
edgeColor the same as the fillColor.

fillColor (Mandatory) The color used to fill the circle or ellipse. If you do not
want to fill the circle or ellipse, set the fillColor to
Transparent.

Return Value
None

fill
Prototype
def fill(self, x, y, color, borderColor) :

Description
Fill an area using the specified color, where the area is bounded by a given border color.

Arguments

Argument Default Value Description

x (Mandatory) The x coordinate one of the pixels inside the area to be
filled.

y (Mandatory) The y coordinate one of the pixels inside the area to be
filled.

color (Mandatory) The color used to fill the area.

borderColor (Mandatory) The color of the border that bounds the area.

Return Value
None

fill2
Prototype
def fill2(self, x, y, color) :

 165165165165

Description
Fill an area using the specified color, where the area is defined as a continuous region having the same
color.

Arguments

Argument Default Value Description

x (Mandatory) The x coordinate one of the pixels inside the area to be
filled.

y (Mandatory) The y coordinate one of the pixels inside the area to be
filled.

color (Mandatory) The color used to fill the area.

Return Value
None

text
Prototype
def text(self, str, font, fontSize, x, y, color, alignment) :

Description
Draw text on the image. This method is exactly the same as the text2 method except that it is simplied
to contain less arguments.

Arguments

Argument Default Value Description

str (Mandatory) A string representing the text to be drawn.

font (Mandatory) The font used to draw the text. See Font Specification on
how fonts are specified. If a font file contains multiple
fonts, the first font is used.

fontSize (Mandatory) The size of the font in points.

x (Mandatory) The x coordinate of the reference point of the text. The
location of the reference point in the text is determined by
the alignment argument (see below). By default, the
reference point is the top-left corner of the text.

y (Mandatory) The y coordinate of the reference point of the text. The
location of the reference point in the text is determined by
the alignment argument (see below). By default, the
reference point is the top-left corner of the text.

color (Mandatory) The color of the text.

alignment TopLeft The location of the reference point of the text. See
Alignment Specification for possible alignment positions.

 166166166166

Return Value
None

text2
Prototype
def text2(self, str, font, fontIndex, fontHeight, fontWidth, angle, vertical, x, y, color, alignment =
TopLeft) :

Description
Draw text on the image.

Arguments

Argument Default Value Description

str (Mandatory) A string representing the text to be drawn.

font (Mandatory) The font used to draw the text. See Font Specification on
how fonts are specified.

fontIndex (Mandatory) The font index of the font file in case the font file contains
more than one font. See Font Specification on how fonts
are specified.

fontHeight (Mandatory) The height of the font in points.

fontWidth (Mandatory) The width of the font in points.

angle (Mandatory) The rotation angle of the text.

vertical (Mandatory) A “true” (non-zero) value indicates the text should be
layout vertically, while a “false” value indicates the text
should be layout horizontally. Vertical layout is mostly
used in Oriental languages such as Chinese, Japanese and
Korean.

x (Mandatory) The x coordinate of the reference point of the text. The
location of the reference point in the text is determined by
the alignment argument (see below). By default, the
reference point is the top-left corner of the text.

y (Mandatory) The y coordinate of the reference point of the text. The
location of the reference point in the text is determined by
the alignment argument (see below). By default, the
reference point is the top-left corner of the text.

color (Mandatory) The color of the text.

alignment TopLeft The location of the reference point of the text. See
Alignment Specification for possible alignment positions.

 167167167167

Return Value
None

text3
Prototype
def text3(self, str, font, fontSize) :

Description
Create a TTFText object that represents the text to be drawn. You may later call the draw method of the
TTFText object to draw the text.

This method is exactly the same as the text4 method except that it is simplied to contain less arguments.

This method is usually used when you need to know the size of the text in order to decide where the
draw the text. In this case, you can use this method to obtain a TTFText object, and use the methods of
this object to determine the text sizes first before drawing the text.

Arguments

Argument Default Value Description

str (Mandatory) A string representing the text to be drawn.

font (Mandatory) The font used to draw the text. See Font Specification on
how fonts are specified. If a font file contains multiple
fonts, the first font is used.

fontSize (Mandatory) The size of the font in points.

Return Value
The TTFText object created.

text4
Prototype
def text4(self, text, font, fontIndex, fontHeight, fontWidth, angle, vertical) :

Description
Create a TTFText object that represents the text to be drawn. You may later call the draw method of the
TTFText object to draw the text.

This method is usually used when you need to know the size of the text in order to decide where the
draw the text. In this case, you can use this method to obtain a TTFText object, and use the methods of
this object to determine the text sizes first before drawing the text.

Arguments

Argument Default Value Description

text (Mandatory) A string representing the text to be drawn.

 168168168168

font (Mandatory) The font used to draw the text. See Font Specification on
how fonts are specified.

fontIndex (Mandatory) The font index of the font file in case the font file contains
more than one font. See Font Specification on how fonts
are specified.

fontHeight (Mandatory) The height of the font in points.

fontWidth (Mandatory) The width of the font in points.

angle (Mandatory) The rotation angle of the text.

vertical (Mandatory) A “true” (non-zero) value indicates the text should be
layout vertically, while a “false” value indicates the text
should be layout horizontally. Vertical layout is mostly
used in Oriental languages such as Chinese, Japanese and
Korean.

Return Value
The TTFText object created.

merge
Prototype
def merge(self, d, x, y, align, transparency) :

Description
Apply another DrawArea image on top of the current DrawArea image.

Arguments

Argument Default Value Description

d (Mandatory) A DrawArea object representing another DrawArea
image.

x (Mandatory) The x coordinate of a reference point within the current
DrawArea image. The exactly location of the other
DrawArea image relatively to the reference point will
depend on the align argument (see below).

y (Mandatory) The y coordinate of a reference point within the current
DrawArea image. The exactly location of the other
DrawArea image relatively to the reference point will
depend on the align argument (see below).

align (Mandatory) The alignment of the other DrawArea image relative to
the reference point. See Alignment Specification for
possible alignment positions.

 169169169169

transparency (Mandatory) Specify the transparency level of the other DrawArea
image. A value of 0 means non-transparent, while a value
of 255 means totally transparent.

Return Value
None.

tile
Prototype
def tile(self, d, transparency) :

Description
Apply another DrawArea image on top of the current DrawArea image as a wallpaper. If the current
DrawArea image is larger than the wallpaper image, the wallpaper image will be repeated applied on
top of the current DrawArea image until the whole image is covered.

Arguments

Argument Default Value Description

d (Mandatory) A DrawArea object representing another DrawArea
image.

transparency (Mandatory) Specify the transparency level of the other DrawArea
image. A value of 0 means non-transparent, while a value
of 255 means totally transparent.

Return Value
None

load
Prototype
def load(self, filename) :

Description
Load the specified image into the current DrawArea. The existing DrawArea image will be overwritten
by the loaded image, including the size and background colors. This method will determine the image
type by using the extension of the filename. The extensions png, jpg/jpeg, gif and wbmp/wmp (case
insensitive) represent PNG, JPEG, GIF and WAP bitmap respectively.

Arguments

Argument Default Value Description

filename (Mandatory) The filename of the image to be loaded.

Return Value
A 1 (true) value indicates the load operation is successful, otherwise a 0 (false) value is returned.

 171717170000

loadGIF
Prototype
def loadGIF(self, filename) :

Description
Load the specified GIF image into the current DrawArea. The existing DrawArea image will be
overwritten by the loaded image, including the size and background colors.

Arguments

Argument Default Value Description

filename (Mandatory) The filename of the image to be loaded.

Return Value
A 1 (true) value indicates the load operation is successful, otherwise a 0 (false) value is returned.

loadPNG
Prototype
def loadPNG(self, filename) :

Description
Load the specified PNG image into the current DrawArea. The existing DrawArea image will be
overwritten by the loaded image, including the size and background colors.

Arguments

Argument Default Value Description

filename (Mandatory) The filename of the image to be loaded.

Return Value
A 1 (true) value indicates the load operation is successful, otherwise a 0 (false) value is returned.

loadJPG
Prototype
def loadJPG(self, filename) :

Description
Load the specified JPEG image into the current DrawArea. The existing DrawArea image will be
overwritten by the loaded image, including the size and background colors.

Arguments

Argument Default Value Description

filename (Mandatory) The filename of the image to be loaded.

 171171171171

Return Value
A 1 (true) value indicates the load operation is successful, otherwise a 0 (false) value is returned.

loadWMP
Prototype
def loadWMP(self, filename) :

Description
Load the specified WAP bitmap image into the current DrawArea. The existing DrawArea image will
be overwritten by the loaded image, including the size and background colors.

Arguments

Argument Default Value Description

filename (Mandatory) The filename of the image to be loaded.

Return Value
A 1 (true) value indicates the load operation is successful, otherwise a 0 (false) value is returned.

out
Prototype
def out(self, filename) :

Description
Write the current DrawArea image to an image file. This method will determine the image type by
using the extension of the filename. The extensions png, jpg/jpeg, gif and wbmp/wmp (case insensitive)
represent PNG, JPEG, GIF and WAP bitmap respectively.

Arguments

Argument Default Value Description

filename (Mandatory) The filename of the output image file.

Return Value
A 1 (true) value indicates the load operation is successful, otherwise a 0 (false) value is returned.

outGIF
Prototype
def outGIF(self, filename) :

Description
Write the current DrawArea image to an alternative GIF image file. If you want to have the alternative
GIF image in memory instead of writing to a file, use the outGIF2 method instead.

Arguments

Argument Default Value Description

 172172172172

filename (Mandatory) The filename of the output image file.

Return Value
A 1 (true) value indicates the load operation is successful, otherwise a 0 (false) value is returned.

outGIF2
Prototype
def outGIF2(self) :

Description
Write the current DrawArea image as an alternative GIF image to memory. This method is usually used
for web applications where the output image is directly transferred to the network. If you want to output
the image to a file, use the outGIF method instead.

Arguments
None

Return Value
A string containing the binary image of the chart in alternative GIF format.

outPNG
Prototype
def outPNG(self, filename) :

Description
Write the current DrawArea image to a PNG image file. If you want to have the PNG image in memory
instead of writing to a file, use the outPNG2 method instead.

Arguments

Argument Default Value Description

filename (Mandatory) The filename of the output image file.

Return Value
A 1 (true) value indicates the load operation is successful, otherwise a 0 (false) value is returned.

outPNG2
Prototype
def outPNG2(self) :

Description
Write the current DrawArea image as a PNG image to memory. This method is usually used for web
applications where the output image is directly transferred to the network. If you want to output the
image to a file, use the outPNG method instead.

 173173173173

Arguments
None.

Return Value
A string containing the binary image of the chart in PNG format.

outJPG
Prototype
def outJPG(self, filename, quality = 80) :

Description
Write the current DrawArea image to a JPEG image file. If you want to have the JPEG image in
memory instead of writing to a file, use the outJPG2 method instead.

Arguments

Argument Default Value Description

filename (Mandatory) The filename of the output image file.

quality 80 The quality of the image. The JPEG algorithm allows you
to sacrifice image quality for compression ratio. A quality
value of 95 gives a very good quality image but has low
compression ratio (large image size). A low quality value
(e.g. 30) gives a poorer quality image but high
compression ratio.

Return Value
A 1 (true) value indicates the load operation is successful, otherwise a 0 (false) value is returned.

outJPG2
Prototype
def outJPG2(self, quality = 80) :

Description
Write the current DrawArea image as a JPG image to memory. This method is usually used for web
applications where the output image is directly transferred to the network. If you want to output the
image to a file, use the outJPG method instead.

Arguments

Argument Default Value Description

quality 80 The quality of the image. The JPEG algorithm allows you
to sacrifice image quality for compression ratio. A quality
value of 95 gives a very good quality image but has low
compression ratio (large image size). A low quality value
(e.g. 30) gives a poorer quality image but high
compression ratio.

 174174174174

Return Value
A string containing the binary image of the chart in JPEG format.

outWMP
Prototype
def outWMP(self, filename) :

Description
Write the current DrawArea image to a WAP bitmap image file. If you want to have the WAP bitmap
image in memory instead of writing to a file, use the outWMP2 method instead.

Arguments

Argument Default Value Description

filename (Mandatory) The filename of the output image file.

Return Value
A 1 (true) value indicates the load operation is successful, otherwise a 0 (false) value is returned.

outWMP2
Prototype
def outWMP2(self) :

Description
Write the current DrawArea image as a WAP bitmap image to memory. This method is usually used for
web applications where the output image is directly transferred to the network. If you want to output the
image to a file, use the outWMP method instead.

Arguments
None.

Return Value
A string containing the binary image of the chart in WBMP format.

setPaletteMode
Prototype
def setPaletteMode(self, p) :

Description
Set the palette mode when writing the image to a PNG file.

The PNG format supports both palette based images and true color images. Palette based images can
only support 256 colors, but can be smaller in size.

The current supported palette modes are as follows:

 175175175175

Palette Mode Description

DrawArea.TryPalette Use palette mode if the image contains less than 256 colors. Use true
color mode if the image contains more than 256 colors. This is the
default setting.

DrawArea.ForcePalette Use palette mode even if the image contains more than 256 colors. In
this case, dithering operation will be applied to reduce the image to
256 colors.

DrawArea.NoPalette Use true color mode regardless of the actual number of colors in the
image.

Arguments

Argument Default Value Description

p (Mandatory) The palette mode for PNG images. See above for
description.

Return Value
None.

setDitherMethod
Prototype
def setDitherMethod(self, m) :

Description
Set the dithering method if dithering is required.

Dithering is an operating to reduce the colors of an image. It is required if an image has more colors
than can be supported by the image format. For example, a GIF image can only have 256 colors. If the
actual image contains more than 256 colors, dithering is used to reduce the image to less than 256
colors.

In ChartDirector, if dithering is needed, the image will be reduced to the standard 216 colors web-safe
color palette.

The ChartDirector supports several common dithering algorithms as follows: (The explanation of the
dithering algorithms is outside the scope of this documentation. Please refer to Computer Graphics text
book for explanations.)

Dithering Mode Description

DrawArea.Quantize For any pixel, adjust it to the nearest color in the standard 216 colors
web-safe color palette.

DrawArea.OrderedDither Use ordered dithering algorithm with a 4 x 4 matrix.

 176176176176

DrawArea.ErrorDiffusion Use the Floyd and Steinberg error diffusion algorithm. This is the
default setting.

Arguments

Argument Default Value Description

m (Mandatory) The dithering alogorithm to use, in case it is necessary to
do dithering. See above for description.

Return Value
None.

setTransparentColor
Prototype
def setTransparentColor(self, c) :

Description
Set the transparent color for the image when writing the image to an image file. This only applies of the
image file format supports transparent color (such as GIF and PNG).

Arguments

Argument Default Value Description

c (Mandatory) The color that is designated as the transparent color.

Return Value
None

setAntiAliasText
Prototype
def setAntiAliasText(self, a) :

Description
Set whether anti-alias methods are when drawing text. Currently, three anti-alias modes are supported in
ChartDirector as follows:

Dithering Mode Description

TTFText.NoAntiAlias Do not use anti-alias method to draw text.

TTFText.AntiAlias Always use anti-alias method to draw text.

TTFText.AutoAntiAlias Automatically determine if the font is suitable for using anti-alias.
Currently, the algorithm will apply anti-alias “large” and/or “bold”
fonts. It is because anti-aliasing small fonts could cause the font to
become less readable. This is the default setting.

 177177177177

Arguments

Argument Default Value Description

a (Mandatory) The text anti-alias mode. See above for description.

Return Value
None

setInterlace
Prototype
def setInterlace(self, i) :

Description
Set the interlace mode when writing the image to an image file. This only applies to image file format
that supports interlacing (GIF and PNG).

Arguments

Argument Default Value Description

i (Mandatory) A “true” (non-zero) value means the image is interlaced.
A “false” value means the image is non-interlaced. Note
that sometimes an interlaced image is less compressible,
and therefore may have a large image size. The default is
non-interlace.

Return Value
None

setColorTable
Prototype
def setColorTable(self, colors, offset) :

Description
Change the colors of the palette color table starting with the specified offset position in the palette color
table. See Color Specification for how palette color tables are used in ChartDirector.

Note that this color table is different from the palette table that is saved with a palette image. All palette
images in ChartDirector area always saved using the web-safe 216 colors palette table.

Arguments

Argument Default Value Description

colors (Mandatory) A list of colors to replace the colors in the palette color
table.

offset (Mandatory) The offset position that marks start position within the
palette color table where the colors will be replaced.

 178178178178

Return Value
None

getARGBColor
Prototype
def getARGBColor(self, c) :

Description
Change the given color to ARGB format if the given color is a palette table color. If the given color is
already in ARGB format, the same value is returned.

Arguments

Argument Default Value Description

c (Mandatory) The color to be changed to ARGB format.

Return Value
The ARGB color converted from the given color.

TTFText
The TTFText object represents text strings. It is created by text3 or text4 method of the DrawArea
object.

Method Description

getWidth Get the width of the bounding box of the text.

getHeight Get the height of the bounding box of the text.

getLineHeight Get the height of the bounding box of one line of text in pixels.

getLineDistance Get the line distance of the text in pixels.

draw Draw the text.

getWidth
Prototype
def getWidth(self) :

Description
Get the width of the bounding box of the text.

Arguments
None.

 179179179179

Return Value
The width of the bounding box of the text in pixels.

getHeight
Prototype
def getHeight(self) :

Description
Get the height of the bounding box of the text.

Arguments
None.

Return Value
The height of the bounding box of the text in pixels.

getLineHeight
Prototype
def getLineHeight(self) :

Description
Get the height of the bounding box of one line of text in pixels. The line height may be different from
the height of the text, because a text may contain multiple lines (by embedding the newline character
‘\n’ in the text).

Arguments
None.

Return Value
The line height of the bounding box of one line of text in pixels.

getLineDistance
Prototype
def getLineDistance(self) :

Description
Get the line distance of the text in pixels. The line distance is the distance between two lines in pixels.

Arguments
None.

Return Value
The line distance of the text in pixels.

draw
Prototype
def draw(self, x, y, color, alignment) :

 180180180180

Description
Draw the text.

Arguments

Argument Default Value Description

x (Mandatory) The x coordinate of the reference point of the text. The
location of the reference point in the text is determined by
the alignment argument (see below). By default, the
reference point is the top-left corner of the text.

y (Mandatory) The y coordinate of the reference point of the text. The
location of the reference point in the text is determined by
the alignment argument (see below). By default, the
reference point is the top-left corner of the text.

color (Mandatory) The color of the text.

alignment TopLeft The location of the reference point of the text. See
Alignment Specification for possible alignment positions.

Return Value
None.

 181181181181

A

addAreaLayer · 120, 121
addBarLayer · 117, 118
addDataSet · 141
addDrawObj · 97
addHLOCLayer · 122, 123
addKey · 103
addLegend · 96
addLine · 99
addLineLayer · 119, 120
addMark · 132
addText · 98
addTitle · 95, 96
addZone · 133
Alignment Specification · 84
arc · 159
AreaLayer · 148

B

BackgroundColor · 82
BarLayer · 146
BaseAxis · 125
BaseChart · 92

GIF · 102
JPG · 102
PNG · 102
WMP · 102

Bottom · 84
BottomCenter · 84
BottomLeft · 84
BottomRight · 84
Box · 88

C

Center · 84
circle · 163
Color Specification · 81

create · 105, 114, 155
cylinder · 162

D

DataColor · 82
DataSet · 149
draw · 179
DrawArea · 153

ErrorDiffusion · 176
ForcePalette · 175
NoPalette · 175
OrderedDither · 175
Quantize · 175
TryPalette · 175

F

fill · 164
Font · 82
Font Angle · 83
Font Color · 83
Font File · 82
Font Height · 83
Font Index · 83
Font Size · 83
Font Specification · 82
Font Width · 83
FONTPATH · 83

G

getARGBColor · 178
getColor · 100
getDrawArea · 97
getHeight · 156, 179
getLineDistance · 179
getLineHeight · 179
getPixel · 157
getWidth · 156, 178
getXCoor · 142

 182182182182

getYCoor · 142

H

hline · 158
HLOCLayer · 149

L

Layer · 139
Overlay · 141
Side · 141
Stack · 141

layout · 101
Left · 84
LegendBox · 102
line · 157
Line · 91
LineColor · 82
LineLayer · 147
load · 169
loadGIF · 170
loadJPG · 170
loadPNG · 170
loadWMP · 171

M

makeChart · 101, 102
Mark · 138
merge · 168

N

No Value Specification · 84

O

out · 171
outGIF · 171, 172
outJPG · 173
outPNG · 172
outWMP · 174

P

Palette · 82
PieChart · 103
pixel · 157
PlotArea · 123
polygon · 160

R

rect · 159
Right · 84

S

sector · 109, 162
Sector · 110
set3D · 105, 140
setAggregateLabelFormat · 145
setAggregateLabelStyle · 145
setAlignment · 91
setAntiAliasText · 176
setAutoScale · 135
setBackground · 87, 89, 123, 124
setBarGap · 147
setBgColor · 156
setBgImage · 94
setBorder · 93
setColor · 92, 99
setColors · 99, 100, 128
setColorTable · 177
setData · 109
setDataColor · 150
setDataCombineMethod · 141
setDataLabelFormat · 143, 152
setDataLabelStyle · 144, 152
setDataName · 150
setDitherMethod · 175
setExplode · 110
setFontAngle · 86
setFontColor · 87
setFontSize · 86
setFontStyle · 85
setGridColor · 125
setIndent · 130
setInterlace · 177

 183183183183

setLabelFormat · 106, 110, 137
setLabelGap · 126
setLabelPos · 108, 111
setLabels · 130
setLabelStyle · 108, 111, 125
setLinearScale · 133
setLineWidth · 139, 140, 151
setLogScale · 134
setMargin · 88
setMarkColor · 138
setPaletteMode · 174
setPieSize · 105
setPlotArea · 117
setPos · 88, 91
setSize · 89, 93, 155
setStartAngle · 106
setText · 90
setTickDensity · 136
setTickLength · 128, 129
setTitle · 126
setTitlePos · 127
setTopMargin · 136
setTransparentColor · 176
setUseYAxis2 · 151
setValue · 138
setWallpaper · 94
setWidth · 92
setYAxisOnRight · 115
surface · 161
syncYAxis · 115

T

text · 165, 166, 167

TextBox · 89
TextColor · 82
TextStyle · 85
tile · 169
Top · 84
TopCenter · 84
TopLeft · 84
TopRight · 84
Transparent · 82
TTFText · 178

AntiAlias · 176
AutoAntiAlias · 176
NoAntiAlias · 176

V

Vertical Layout · 83
vline · 158

X

xAxis · 116
XAxis · 129
xAxis2 · 116
XYChart · 112

Y

yAxis · 114
YAxis · 131
yAxis2 · 114

	Introduction
	Welcome to ChartDirector
	Programming Languages
	Supported Platforms

	Installation
	Copying to the Hard Disk
	Sample Projects
	The Programming Environment
	Installing the ChartDirector License

	Getting Started
	The First Project
	Chart Object Model Overview

	Pie Chart
	Simple Pie Chart
	3D Pie Chart with Title
	Pie Chart with Legend
	Coloring Scheme and Wallpaper
	Text Style and Text Colors
	Label Positioning, Formatting and Join Line
	Varying 3D Depth and Angles
	3D Shadow Mode
	Start Angle and Layout Direction

	XY Chart
	Simple Bar Chart
	3D Bar Chart with Titles
	Multi-Bar Chart and Stacked Bar Chart
	Depth Bar Chart
	Bar Label
	Bar Gap
	Simple Line Chart
	3D Line Chart
	Multi-Line Chart
	Simple Area Chart
	3D Area Chart
	Line Area Chart
	Stacked Area Chart
	Depth Area Chart
	High-Low-Open-Close Chart
	Combination Chart
	Grids and Grid Background
	Marks and Zones
	Wallpaper and Coloring Scheme
	Text Style and Colors
	Legend Positioning
	Log Scale Axis
	Y-Axis Scaling
	Tick Density
	Dual Y-Axis
	Dual X-Axis

	ChartDirector API Reference
	Data Types
	Color Specification
	Font Specification
	Font File
	Font Index
	Font Size, Font Height and Font Width
	Font Color
	Font Angle
	Vertical Layout

	Alignment Specification
	No Value Specification

	Draw Objects
	TextStyle
	setFontStyle
	setFontSize
	setFontAngle
	setFontColor
	setBackground
	setMargin
	setMargin2

	Box
	setPos
	setSize
	setBackground

	TextBox
	setText
	setAlignment

	Line
	setPos
	setColor
	setWidth

	BaseChart
	setSize
	setBorder
	setWallpaper
	setBgImage
	addTitle
	addTitle2
	addLegend
	getDrawArea
	addDrawObj
	addText
	addLine
	setColor
	setColors
	setColors2
	getColor
	layout
	makeChart
	makeChart2

	LegendBox
	addKey

	PieChart
	PieChart
	setPieSize
	set3D
	setStartAngle
	setLabelFormat
	setLabelStyle
	setLabelPos
	setData
	sector

	Sector
	setExplode
	setLabelFormat
	setLabelStyle
	setLabelPos

	XYChart
	XYChart
	yAxis
	yAxis2
	syncYAxis
	setYAxisOnRight
	xAxis
	xAxis2
	setPlotArea
	addBarLayer
	addBarLayer2
	addLineLayer
	addLineLayer2
	addAreaLayer
	addAreaLayer2
	addHLOCLayer
	addHLOCLayer2

	PlotArea
	setBackground
	setBackground2
	setGridColor

	BaseAxis
	setLabelStyle
	setLabelGap
	setTitle
	setTitlePos
	setColors
	setTickLength
	setTickLength2

	XAxis
	setLabels
	setIndent

	YAxis
	addMark
	addZone
	setLinearScale
	setLogScale
	setLogScale2
	setAutoScale
	setTickDensity
	setTopMargin
	setLabelFormat

	Mark
	setValue
	setMarkColor
	setLineWidth

	Layer
	set3D
	setLineWidth
	setDataCombineMethod
	addDataSet
	getXCoor
	getYCoor
	setDataLabelFormat
	setDataLabelStyle
	setAggregateLabelFormat
	setAggregateLabelStyle

	BarLayer
	setBarGap

	LineLayer
	AreaLayer
	HLOCLayer
	DataSet
	setDataName
	setDataColor
	setUseYAxis2
	setLineWidth
	setDataLabelFormat
	setDataLabelStyle

	DrawArea
	DrawArea
	setSize
	getWidth
	getHeight
	setBgColor
	pixel
	getPixel
	line
	hline
	vline
	arc
	rect
	polygon
	surface
	sector
	cylinder
	circle
	fill
	fill2
	text
	text2
	text3
	text4
	merge
	tile
	load
	loadGIF
	loadPNG
	loadJPG
	loadWMP
	out
	outGIF
	outGIF2
	outPNG
	outPNG2
	outJPG
	outJPG2
	outWMP
	outWMP2
	setPaletteMode
	setDitherMethod
	setTransparentColor
	setAntiAliasText
	setInterlace
	setColorTable
	getARGBColor

	TTFText
	getWidth
	getHeight
	getLineHeight
	getLineDistance
	draw

	ChartDirector API Index

