RG Software Corporation Hybrid Neural Network Runtime

support@rgsoftware.com
(Ordering information can be found in ORDER.TXT)

Our neural network DLL reads and writes to a Microsoft Access database using Jet 3.5.

(other types of data accessing can be made available at a nominal fee)

Your Access table should contain at least 2 (up to 500) fields (or "inputs") and one field (last in ordinal position) for the expected output.

The DLL will append a field in your table named "Actual". This field will contain the actual output from the neural network and you can compare this value with your expect output.

[image: image1.png]
The neural network will learn by mistake when there is a value entered in the output field ("ExpectedSales" in the example above), by taking it's best guess and then correcting the synaptic weights accordingly. Each pass though your database is called an "Epoch". Simple data sets can take as few as 1,000 epochs in as little as a few seconds, while others may require 100's of thousands of epochs which could take several hours to complete.

To force the network to make a prediction, leave out the expected value for the last record (ExpectedSales was left out of the last record in the example above).

[image: image2.png]
[image: image3.bmp] Properties

HiddenLayerCount (1 to 2000) - specifies how many hidden neurons to add in the network.

MSAccessDBName - The location of the Microsoft Access Database

MSAccessTableName - The name of the Microsoft Access Table which contains the data that you want to predict and correlate.

Epochs - number of times to loop though the table. Note: if this value is set too high, the network will automatically stop learning when RMS error falls below 0.0001.

[image: image4.bmp] Methods

ShowStatus - Displays the Neural Network Status graph.

RunNetwork - Start the network learning process.

InputRelevance - Returns an array containing the correlation of your data inputs.

[image: image5.png]
You can display the default graph by simply invoking

the method "ShowStatus".

Sample Visual Basic 6.0 Source Code:

'Before running this code, make sure you've added

'"RG Software - Neural Network Runtime" to your list of references.

Private Sub Form_Load()

 Show 'Show the form

 Dim MyNet As New Network '(or use CreateObject("RGSNEURO.Network"))

 Dim MyArray() As Double 'Array to get data from the DLL

 Dim intLoop As Integer

 MyNet.HiddenLayerCount = 20 'How many hidden neurons (can be up to 2000)

 MyNet.MSAccessDBName = "Test.mdb" 'The MDB location

 MyNet.MSAccessTableName = "tblTable" 'The table name

 MyNet.Cycles = 250000 '(can be up to 1,000,000)

 MyNet.ShowStatus 'Show the fancy dialog box (optional)

 MyNet.RunNetwork 'Start the network

 Print "Higher values mean that the data is very relevant,"

 Print "lower values (and 0) mean that the data is irrelevant"

 Print "and may be filtered or omitted..."

 'Show the relevance of each input

 'This will discriminate the inputs and pass the values back in an array

 'NOTICE! It's faster and more accurate to use BINARY values as your expected outputs,

 'at least when "filtering" your inputs.

MyArray = MyNet.InputRelevance 'Get the data relevance

For intLoop = 0 To UBound(MyArray)

 Print "Field " & intLoop + 1 & ": " & MyArray(intLoop) 'Print it

Next intLoop

End Sub

