SerialRedirector ©opyright 1998-1999, Technical Innovations

Abstract

SerialRedirector is a Windows program which accepts network connections and exchanges data between them and serial ports on the host PC. It offers the ability to set baud rates and line discipline for ports, implements user id/password based security, and provides (optional) basic encryption for data as it passes over the network. It is written in Visual C++ V5, using multithreaded MFC and is released under the GNU General Public License. Runs on 95/NT4 and should work OK on 98/2000.

SerialRedirector Features

· Listens for TCP/IP connections from any other system on a network and provides a network interface to one or more serial ports on the host PC.

· Runs on Windows 95 and NT4. Although untested, it should run on Windows 98 and 2000. When its finished, the Open Source release for Linux will be available as well.

· Implements several layers of security to safeguard the devices it communicates with and the data exchanged with them.

· The connection protocol used to connect to SerialRedirector is simple, facilitating its use by anyone.

· Minimizes to a task bar icon, which when doubleclicked, shows a dialog containing statistics relating to services in use, users logged in and throughput/queue length.

· Configured using simple text files rather than labyrinthine registry entries, easing remote administration.

Licensing

· SerialRedirector is released with source code under the GNU General License, version 2.

Support

· We provide full support of SerialRedirector for our Observatory products customers. Although we provide no guarantees for other users, we will try to help as we can. All updates/bug fixes to SerialRedirector will be released under Open Source.

Key Concepts:

Services

· A Service is an arbitrary name given to the serial port to which a device is attached that is going to be offered to the network via SerialRedirector. For example, if a modem were connected to COM2, you might refer to the “modem” service on COM2.

· Only serial ports explicitly offered as services via entries in the configuration file are opened by SerialRedirector.

· Several services can be concurrently offered for a single port (to implement different baud rates/line discipline, etc..), but only one of them can be online at any time. There is no inherent limit on the number of services offered.

· Each service specifies its serial port, baud rate and line discipline, connect options and optional encrypt key.

· The number of concurrently connected services is limited only by the available resources of the host computer.

Users

· SerialRedirector employs a list of user Ids and passwords to provide access to services. Each user ID and password have an associated list of services to which they can connect.

· A given user ID and password may be concurrently connected to any number of services.

· Only one user can connect to a given service at any time.

Encryption

· Service Key – A (hopefully) random alphanumeric, case-sensitive sequence of at least 8 characters, associated with a service, and used as a basis for encrypting the data passing to and from it over the network. This sequence is assigned by the user, and is known to both the client and SerialRedirector- but is never transmitted by either.

· Keyphrase – A sequence of random characters of random length between 16 and 64 bytes. It is generated by SerialRedirector and sent to the client program during the login process.

· Effective Key – The resulting key formed by interleaving characters from the Service Key and Keyphrase. With the Keyphrase used first, the Effective Key is formed by alternately appending a character from the Keyphrase and Service Key until all characters from each are used at least once. If either key’s length is reached before the other, the algorithm must rollover its index to continue reading characters from the beginning of the key. The rollover can happen as many times as required for either key. Due to the random nature of the length of the Keyphrase, this causes the Effective Key to be different in length and value each time a client connects to a service.

Configuring

There are two configuration files for SerialRedirector; config.conf and users.conf . Both are located in the same directory as the SerialRedirector executable. Neither file is encrypted. System security should be enforced to prevent unauthorized access to these files, as only the system administrator should see or update them.

Config.conf contains all the parameters needed for SerialRedirector to offer services, and is read only once when SerialRedirector is started.

Users.conf contains the list of the user Ids which are allowed to connect to services. Associated with each user id is their password and list of allowed services. This file is read whenever a user attempts to log in, so updates are effective immediately. Telnet would be a good way to remotely administer SerialRedirector if 95/NT offered it- however ftp offers a clumsy but workable alternative. If you use Windows networking to administer software, you deserve your fate… ;)

There are detailed comments in both files which document their respective contents.

Using SerialRedirector

If encryption is not supplied for a service, Telnet can connect to it. The login procedure is much the same as a Telnet login to most other types of TCP/IP servers. Once Telnet connects, the user could type the following- needing only a carriage return between lines. Linefeeds are ignored.

service <servicename>

-- note this line MUST preceed the other 2

user <username>

pass <password>

The obvious substitutions should be made with the appropriate values. The server will not echo back keystrokes and will respond with Success or Failure only after all three entries are submitted. The login can fail because the service is already in use, the user ID/password are incorrect, or the requested service doesn’t exist or isn’t allowed for the user. The only specific failure code results from the service already in use case- the others are identified by a generic code. SerialRedirector allows 10 seconds for each line to be completed or the connection is dropped. Once sucessfully logged in, everything you type is transmitted thru the serial port, everything received by the port is sent back to your Telnet session. The baud rate and other parameters applied to the port are given by the service entry in the configuration file. The <servicename> supplied above selects the service to which the user is attempting to login. The user’s ID/password entry must allow access to the service before the login can succeed. There is no logout procedure, simply breaking the connection is sufficient. Once connected, there are no inactivity timeouts or connect time quotas.

If encryption is supplied, Telnet won’t work (because it can’t encrypt/decrypt the datastream), but the login procedure remains similar. Once the ‘service’ line is submitted, the client and server begin using the service’s keys as supplied to them by the user. Next, the SerialRedirector generates a random Keyphrase. This is encrypted and transmitted to the client and both use the new key to modify the original Service Key, forming the Effective Key which is used in all subsequent communications. If the client and SerialRedirector end up with matching Effective Keys, the login can proceed successfully with the user and password lines. If the Effective Keys don’t match, the login cannot complete (because SerialRedirector will be receiving garbage). SerialRedirector drops all failed login attempts immediately after transmitting the login failure message. Please see the example client code for details on implementing encryption.

The encryption model is simplistic and should not be expected to resist competent crack attempts, however it should prove effective against general network surveillance by programs/people attempting to extract user Ids, passwords or other possibly sensitive information. It should also resist packet playback attempts to a significant degree. Finally, it adds an additional measure of security because login attempts cannot succeed until the matching Effective Key is used by the client software.

The design accepts the possibility that an attacker knows the algorithm, but not the Service Key, which is known only to the Serial Redirect server and client software and is never transmitted by either. The robustness of the algorithm depends on the obscurity of the final Effective Key. Long, random, non-repeating Service Keys are preferred. During the Effective Key calculation phase, the server generates the random Keyphrase and transmits it to the client. The Keyphrase data is encrypted in transit by the original Service Key, so it is never plainly visible and therefore is nominally secure. The random Keyphrase is neither stored nor re-used, so it cannot be used in pattern attacks against Service Keys in other sessions.

Current Issues

At this time, SerialRedirector’s throughput leaves something to be desired. I designed it to be able to buffer large quantities of data in either direction- allowing very different transmission rates on the serial and network sides. Half-duplex communication reveals some shortcomngs in this approach, as the algorithms pause to allow blocks of data to be filled in both directions before passing them on to their destination. I have not exhaustively tested the programs performance over a variety of applications, so it is possible the buffering logic is a greater liability than it is a virtue.

Further, there are no provisions for logging, monitoring or dropping incoming connections- these would be useful enhancements.

I’m not terribly happy with the encryption model- I took a very simplistic view of the topic and I think a more robust algorithm might be useful. However, due to the US Gov’ts position regarding strong encryption, it is possible that use of one could have unfortunate consequences. My algorithm encrypts each character sent over the network by XORing it with 2 consecutive bytes from the Effective Key. The index into the Effective Key is incremented by one after the 2 XORs, so each character of the Effective Key is used twice for two adjacent data characters. The double XOR prevents ASCII 0 characters in the datastream from directly revealing the Effective Key (although long enough sequences of identical bytes will tend to reveal patterns in it), and using each Effective Key char twice in consecutive data chars increases the obfuscation of the data (at least I think so- but I’m obviously no cryptologist).

I am also dubious about the login timing constraints (10 seconds to complete each line or SerialRedirector drops the connection). It is intended limit the effectiveness of DOS attacks and is also a consequence of my implementation of the thread in charge of listening for connections. I ‘m not highly skilled in designing network servers (but Windows doesn’t make it a whole lot easier either), so it’s likely the implementation could be much improved.

Interfacing to SerialRedirector

A sample application is included with the distribution, written in VB 5, which supports both encrypted and unencrypted connections. It is cobbled together from various other programs, but it works well enough. Its principal advantage is it shows how to form the Effective Key from the Service Key and Keyphrase- in addition to the requisite datastream encryption/decryption functions. Refer to the tcpConnect function in TCPIP.BAS- and please pardon the particularly hideous coding I find to be required for anything but the most trivial use of the Windows Socket ActiveX control.

Beyond the timing constraints imposed on the login process, using SerialRedirector is a simple exercise in TCP/IP sockets programming- there is a large body of documentation on that topic, so I won’t go into it here.

Regards,

Greg Menke

4/7/99

domepage@erols.com
www.homedome.com
