RView user guide

Installation : attention if Microsoft DataServer (marche pas avec ?…

Introduction

RView (for Remote View) is a graphical interface in Java which graphically displays remote variables which change in real-time. It has been originally developed to remotely display and interact with the status of industrial processes. Connected to industrial supervisory and data acquisition packages (SCADA), it gives the operators the possibility to have a dynamic view of their process. As you will notice, it is in fact a full software environment which includes a window manager, a language interpreter, some network drivers and a set of software components. It also proposes an API (application programming interface) as a set of interfaces to help developers who would like to extend the program. If, for example, a user-made graphical component (Java Bean,…) follows the Rview specification, it will automatically be able to interact with all the other components.

At the core of the system resides a data container which we will call the real-time database. This database stores the value of the variables together with a set of related data such as the minimum possible value for this variable, etc. These variables are usually reflecting the status of some other variables located in some remote computers. The interaction between the real-time database and the remote computer is made via a "DataServer" which is usually a network driver. This network driver may use the http protocol to communicate with the remote machine but it can very well use a faster protocol.

Some graphical components represent the variable and allow the user to change their value. These components are managed by a windowing environment that allows to click and paste on elements, save configurations, etc.

A first approach

To do a first test, we will use the http driver which comes with the package. This DataServer goes through the standard Web server on which you have installed the package, to read and eventually write the variables (variables are here also named Tags).

From your Web browser, access test_http.html (the Java VM must be enabled of course). If you look inside the html source, you will see the following parameters (If you have installed correctly the package, the settings in test_http.html should work) :

<PARAM name=PROCESS_NAME value="TestHTTP">

<PARAM name=COMMUNICATION_TYPE value="http">

<PARAM name=HOST value="Values.txt">

<PARAM name=TAGS_IN_URL value="false">

<PARAM name=FREQUENCY value="6">

Because, from the same program, you can access different data sources, each data source has to be named. The first parameter names our data source TestHTTP. The second parameter defines the protocol used by the DataServer to access the remote data source (in our case the Web server). The content of the third parameter depends on the protocol. Here, it names the URL (relative to the HTML file) which holds the values. It can be a normal file, but in many cases it will be some kind of CGI program. The next parameter, TAGS_IN_URL, is only relevant for the http protocol. If it is set to TRUE, then the names of the tags to be read are appended to the URL in the following way: http://MYURL?tags=name1,name2,... Because in our example we access a text file, this parameter is set to false. The parameter FREQUENCY gives the time in seconds between two accesses to the URL (here Values.txt). If you look in the file Values.txt, you will see the expected format for the file. For example, the line level1=2.1 means that the variable named level1 has been set to 2.1 .

When the applet starts, it will open a new window, the database viewer. It is empty for the time being.

We will now define a variable by hand. Enter the name level1 in the input field of the database viewer and press the New button. The variable level1 will appear in the list without any value. If you double click on it, you will see the name of the variable appearing in the input field of the menu bar of the applet main window. This is because, in RView, whenever you point an object, an event is sent to all the software objects which have subscribed to this kind of event.

Click now on the limits button and enter the following limits for this variable:

Min
0.0

Max
10.0

Low limit 0.0

High limit 10.0

Press the OK button and go to the main window. From there, we will read and write this variable. If the name level1 is not written in the input field of the menu bar, write it and then press the insert button. A dialog box will open. For the first test, just keep the defaults and press the insert component button. Then, from the list of declared components, choose HSlider and enter the following values:

X = 0

Y = 110

Width = 100

Height = 40

Press the insert component button once more and close the dialog box. By moving the cursor of the horizontal slider, you can now change the value of level1.

Click now on the new button of the main window. The New View dialog box appears, presenting some predefined components (the ones for which it makes sense to open a new window). Click on the chart to select chart view and on the OK button. A new window with the frame of the chart appears. Click on one of the representation of level1 (for example on the horizontal slider previously created). The name level1 should then appear in the input field of the chart window (you can also just enter manually the name). Click on the insert button of the chart window. Now you can see the trend curve of level1.

Go back to the database window and change the high limit of level1 to 8 (via the limits button). If you move the slider so that the value of level1 goes over 8, you should hear a beep and you should see in the Java console an alarm message. This is how the default alarm handler works (it is quite easy to develop your own alarm handler as it is described in the developer guide).

Now, we will fetch the value of level1 from the network. Click once again on the limits button. In the bottom of the dialog box, there is a text field named "Process Name" (remember the parameters of the applet ?). Enter TestHTTP in this field and press OK. Go to the main window and press the Enable DataServer button. The value of level1 should be set accordingly to what is written in the file Values.txt. You can now change the value of level1 in Values.txt on the Web server and see how it is refreshed in RView (if you want to reload the file more quickly, change the FREQUENCY parameter of the HTML file but remember that this DataServer is as efficient as your Web server and your connection to it and not more).

Our last step is to save the example window you have just created. In the main window, click on the Save button, enter a name for your configuration and press enter. This can only work if you made the programs Rv_save and Rv_add callable from the Web server (see "Installing the package"). You should now have a new file on your Web server in the …/RView/SYNOPTICS/Desc directory. The name of the file is composed of the data and time of creation. You should also have a new line added to the file ConfigList which contains all the configurations (you can have several lists of configurations, the name of the list being passed to the applet as a parameter).

Example 1: looking at the weather

In the main window of the applet, click on the open button. The content of the configuration list is listed in a dialog box for you to choose. Choose the configuration named "weather". It is a script written in dgsl (see developer guide). This script needs two variables; level1 and level2. If they are not already defined, the dgsl interpreter (which is embedded in the SynopticView graphical component) will automatically create them in the real-time database. You can affect some value to level1 and level2 either from the Web server or directly from the applet (For example you could create two TextFields in a CompoundView connected to level1 and level2. The main window is set to CompoundView by default when you open the applet).

The first interesting line in the script is:

image 54 $(;140-(10*$level1);) frog1.gif

This line draws the image frog1.gif on the ladder. The Y position of the frog depends of level1 which is expected to vary from 0 to 10.

The second line is:

symbol 4 230 40 $level2 sun.gif suncl.gif clouds.gif rain.gif

This line draws on a fix position one of the listed images. The choice of the image depends on level2. If level1 is set to 0, then the image sun.gif is displayed. . If level1 is set to 1, then the image suncl.gif is displayed and so on. If you want your kid to play with the frog, you can use the configuration created in the previous chapter and move the frog position with the slider.

Example 2: an input device with a single line of code

For this example, open the configuration named "grid". It is also a dgsl script which contains, aside of the component configuration part, only one line of effective dgsl code:

image $level1@level1 $level2@(;level2;0<>300) pointer.gif

As you can see, this line draws the image pointer.gif on a position which depends on level1 and level2 as defined by $level1 and $level2 (if these variables are not set to a value, you won't be able to see the arrow). But you can also see that the X and Y parameters are connected, on the output, to the same variables (@level1 and @(;level2;0<>300)). By doing so, you can move the arrow around in the grid. When you release the arrow, level1 and level2 are set to the new X and Y position of the arrow. You'll see that you can not move the arrow to the bottom of the grid. This is because the Y position has a lower limit of 0 and a higher limit of 300.

Example 3: a chess game

Using the principle described in the second example, we made a chess game. Open the "chess" configuration which is a dgsl script. If you open it on two different machines, you will be able to play on a virtual chess board, the Web server being used to transfer the positions from one machine to the other (don’t forget to press the Enable DataServer button). This will only work if you have installed the Rv_set cgi program on the server (see "Installing the package").

Example 4: a process control mimic diagram

First, we will define some variables in the real-time database. To do so, open the configuration names DBDefHTTP. This configuration contains a set of lines beginning with #TagDef . Those lines define variables in the following way:

#TagDef Name; value; minimum; maximum; lowerLimit; higherLimit; limitsSetFlag; validityFlag; processName; remoteStateFlag; increment; unit

limitsSetFlag is true if the variable has some limits (minimum, …)

validityFlag is true if the value is considered a valid value

remoteStateFlag is true if the variable's value is to be fetched from the network.

You should now see a set of variables defined in the database viewer.

Open now the configuration named "Tanks" in a new window. By playing a bit with the variables, you should be able to animate the mimic diagram (apart of the Boolean variables, all variables are expected to vary from 0 to 10). This configuration is a dgsl script. Lets focus on two lines:

component SynopticView 15 15 115 130 SYNOPTICS/LIB/RDialB.txt|TagName=level1

component TextField 25 150 95 25 level1

These two lines insert two other components in the SynopticView component (the dgsl interpreter). The first one is itself a dgsl script while the second one is a TextField.

[image: image1.png]

If you have opened the configuration in a new window, you should see a new button on the right part of the menu bar. If you click on this button, you will see a Windows Explorer like view of the components.

Now, lets have a look to the following line.

map 18 301 111 369 SYNOPTICS/DESC/C_panel.txt

This line defines a link to the configuration which URL is SYNOPTICS/DESC/C_panel.txt. By double clicking in the rectangle (18,301)-(111,369), which is where you see the PLC crate, you will load the new configuration in a new window.

Example 5: a library of components

We will show here an easy way of creating a library of reusable components. Restart first from scratch. Define, in the database viewer, a variable named level1with a low limit of 0 and a high limit of 10. Define another one named level2 with similar limits. Open now, in a new window, the configuration named Library. In the new window, click on the tree view button. As you can see here, or by looking inside the configuration file on the server, this is just a CompoundView component (a CompoundView is just a canvas for placing other components). In this view, different components are inserted, each of them connected to the tag level1. You can try adding a new component to the configuration by adding a line in the configuration file.

· Go now to the main window which should be empty. We will first define a background for the window. Double click anywhere inside the view. The property dialog box will open. In the Background field, enter the URL of the image you want to use as a background (lets try SYNOPTICS/BACK/TestBack.gif). Close the dialog box by clicking on the Quit button. The background image should be displayed in the window.

· In the Library window, double click in the tree view on the component type you want to use (lets try to click on the first SynopticView which corresponds to the dgsl script defining the first round dial). You should see the word SynopticView in the input field of all the menu bars. Go back to the main window and press the component insert button. The already known dialog box will open but with all the fields already filled. In the configuration field, replace level1 by level2, so that in the new view the dial will be connected to the variable level2. Enter appropriate values for the location and size of the component (for example: x = 50, y=50, width=115 and height=130). Click on insert component and close the dialog box. The dial is there, connected to level2.

· Now do the same with the Hslider (Horizontal slider) component. Go in the library view, double click on the slider then go back to the new view and insert the component (x=50,y=180,width=115,Height=30). Do not forget to change the configuration so that the slider is connected to level2.

· Now, we will move the previously inserted dial. In the new view, double click anywhere but outside one of the component. The properties dialog box pops up. Click on the needle of the dial you want to move (the needle will only be shown if there is a value for level2). The coordinates of the dial should appear in the properties dialog box. Change the position and click on apply. The dial has been moved.

· You can now save the configuration for later use.

Creating a new component in Java

We saw previously that any combination of components, configurations or dgsl scripts can be used as an RView component. But at the bottom of all that, we found some Java components. With the package is delivered a set of useful components such as the dgsl interpreter (SynopticView), the CompoundView, the ChartView and so on. Though, it is quite easy to create a new Java component which will suit your needs and which will interact with RView. To do so, your component must implement the TagsView interface or extend one of the base classes given to you in the package (CanvasSTagsView.java, CanvasMTagsView.java, PanelSTagsView or PanelMTagsView). The code and the documentation of these classes are available in the package. We also present two simple examples of components with their Java code. Lets look to the MyTestView component. The code is very simple, this component displaying only the value of the variable as a string.

It is very simple to use this new class in RView. After compiling it, the only thing to do is to put MyTestView.class on your Web server in the RView folder (as it is done for you in the package). From the applet, you can now insert this component in a CompoundView for example. To do so, enter a Tagname in the input field of the menu bar (for example level1) and click on the insert button of the menu bar. MyTestView is not in the pull down list of possible component types but you can nevertheless load it by entering its name (MyTestView) in the field labeled "Type of the component".

Look into the developer guide to have a detailed description of the TagsView interface.

Creating a new DataServer

We are using mainly a specific DataServer which is connected to a commercial product named MD2S from Indium. The MD2Sdriver is available in the package. But we propose also here two other drivers, one which use http and one which is based on the TCP/IP sockets. The http driver has the enormous advantage to require only a Web server to function but of course is not efficient at all. If you want to use the socket driver, you will have to program the server part of it.

To create a new DataServer is also quite simple. Your class must implement the DataServer interface. The code for the socket based DataServer is given with the package (we have used it personally to fetch data from a Labview program). As for a TagsView component, the only thing to do is to insert the class file into the RView folder of your Web server. The DataServer will have to be referenced further on by its class name.

Look into the developer guide to have a detailed description of the DataServer interface.

� EMBED Word.Picture.8 ���

[image: image2.png]

_985092127.doc
[image: image1.png]

