
DELECis
Project: Project

10 Hughes #A103, Irvine, CA 92618
Author: Nicole Hillbrecht

http://www.delec.com/is/



PReP

Version 2.0

Author:
Nicole Hillbrecht

Version:
1.0, 03/19/99 5:15 PM

Status:
Draft Review Final

Abstract:
better solution for the handling of the servlet, commandline arguments and user login 

@@todo: place a little poem here or so

Table of Contents

3Introduction

PRePServlet
3
Structure
3
Constructor
3
Methods
3
PReP
5
Structure
5
Constructor
5
Methods
6
PRePHandler
7
Structure
7
Constructor
7
Methods
7
PRePMain
9
Structure
9
Constructor
9
Methods
9
PRePTagUSER
10
Structure
10
Constructor
10
Methods
10


Introduction

Due to future subclasses of PReP some things have to change. Therefore a new class PRePHandler will be written, the InputServlet (now called: PRePServlet), PRePMain and PReP will be more or less slightly changed. We will also change the PRePTagUSER.

The new PReP will provide a better multithreading ability and will be easier to extend as super class.

PRePServlet

Structure

First of all the init() method of the PRePServlet will be called from the servletrunner. There a new PRePHandler (providePRePHandler()) will be created as well as the ConnectionPool initialised (default values).

As soon as a request from the servletrunner arrives, the handle() method of the PRePServlet is called. This method handles the request and does everything from setting the PrintWriter to the login and finally output of the PRePFile. It is build out of different methods which all work over the PRePHandler. The PRePHandler is unique – unlike the PRePMain which is given to the PRePServlet at the beginning. It will be deleted after the handle() method finished.

If the servletrunner closes, it calls the destroy() method of the PRePServlet class which itself calls the destroy() method of the PRePHandler class. The ConnectionPool will be destroyed and its connection closed one for one.

Constructor

Default constructor

Methods

· init(ServletConfig servletConfig)

calls the method provideHandler() and the setDatabaseConnection() method

[image: image1.wmf]Servlet

PRePHandler

init()

provideHandler()

setDatabaseConnection()


· handle(HttpServletRequest req, HttpServletResponse res)

calls different methods to handle the servletrunner’s request. It first will get a PRePMain 
object and create a new Instance object which will contain the PRePMain, the
HttpServletRequest and the HttpServletResponse object.


[image: image2.wmf]Servlet

PRePHandler

handle()

getPRePMain()

returns new PRePMain

setPrintWriter(PRePMain, PrintWriter)

putPRePTags(PRePMain)

putField(PRePMain, String name, String value)

repeat

boolean checkUser()

returns if user ok or not

getNewCookies(PRePMain)

returns array of Objects (Cookies)

loginOk(PRePMain) or loginNotOk(PRePMain)

Filehandling, returns nothing

finishHandle(PRePMain)

output(), delete PRePMain

getPRePMain(), makeInstance(PRePMain,

HttpServletRequest, HttpServletResponse)

setPrintWriter(instance)

putPRePTags(instance)

setParams(instance), setCookies(instance),

setContext(instance)

checkUser(instance)

getNewCookies(instance)

loginOk(instance) or

loginNotOk(instance)

finishHandle(instance)


· getPRePMain()

gets a new PRePMain object

· setPrintWriter(Instance instance)

gets the PrintWriter of the HttpServletRequest and calls the setPrintWriter() method of the 
PrePHandler class

· putPRePTags(Instance instance)

calls the putPRePTags() method of the PRePHandler class

· setParams(Instance instance)

calls the putField() method of the PRePHandler class for each incoming PRePTag of the 
HttpServletRequest

· setCookies(Instance instance)

calls the putField() method of the PRePHandler class for each incoming cookie

· setContext(Instance instance)

sets the context of the HttpServletResponse to a specified format (most likely “text/html”)

· checkCookie(Instance instance)

this will call the checkCookie() method of the PRePHandler which returns a boolean

· getNewCookies(Instance instance)

will call the getNewCookies() method of the PRePHandler which returns an array of 
objects (cookies). Then it will provoke the putField() method for each cookie.

· loginOk(Instance instance)

will call the loginOk() method of the PRePHandler class

· loginNotOk(Instance instance)

will call the loginNotOk() method of the PRePHandler class

· finishHandle(Instance instance)

will call the finishHandle() method of the PRePHandler class

· destroy()

is automatically called by the servletrunner and calls the destroy() method of the 
PRePHandler

[image: image3.wmf]Servlet

PRePHandler

destroy()


PReP

Structure

PReP is the commandline version. For more informations please have a closer look at PRePDoc.doc
Constructor


[image: image4.wmf]PReP

PRePHandler

PReP

(Constructor)

PRePHandler(int iSecurity)

returns new PRePHandler

getPRePMain()

returns new PRePMain

setPrintWriter(PRePMain, PrintWriter)

provideHandler()

getPRePMain()

setPrintWriter()

(get PrintWriter from the last argument

which is the output file)


Methods

· printHelp()

prints a help text if no arguments were given

· main()

creates a new instance of PReP

· handleNormalArg(Argument, Arguments)

takes the name and value pair, creates a new PRePTag and calls the putField() method 
of the PRePHandler class


[image: image5.wmf]PReP

PRePHandler

putField(PRePMain, String strName, String strValue)

repeats

putField(PRePMain, PRePTag)

repeats

handleNormalArg(Argument, Arguments)


· handleSpecialArg(Argument, Arguments)

handles the arguments which have no ‘-‘ which means they are a filename. It calls the 
handleFileArg() method and the putFile() method of the PRePHandler

[image: image6.wmf]PReP

PRePHandler

putFile(PRePMain, File file)

repeats

putFile(PRePMain, File file)

repeats

handleFileArg(Argument, Arguments)


handleDBArg(Argument, Arguments)

handles the argument


[image: image7.wmf]PReP

PRePHandler

setDatabaseConnection(String JDBCDriver, String

URL, String UID, String PWD)

as soon as the DB argument appears

handleDBTag(Arguments)

setDatabaseConnection(String JDBCDriver,

String URL, String UID, String PWD)


PRePHandler

Structure

The PRePHandler class is a helper class which allows to deal between the Servlet and the PRePMain class as well as between a commandline version of PReP and the PRePMain – without having any knowledge of JSDK. It configurates the data coming from the servlet or commandline version of PReP.


[image: image8.wmf]PRePHandler

PRePMain

return new PRePMain and Session

putField()

setPrintWriter()

putFile()

getPRePMain()

putField()

setPrintWriter()

putFile()

output()

output()


Constructor

default constructor

Methods

· setDatabaseConnection()

Creates a new ConnectionPool and initialises it with the default values

· setDatabaseConnection(String JDBCDriver, String URL, String UID, String PWD)

Creates a new ConnectionPool and initialises it with the given values.

· getPRePMain()

returns a new PRePMain object

· setPrintWriter(PRePMain, PrintWriter)

calls the setPrintWriter() method of the specified PRePMain object

· putPRePTags(PRePMain)

calls the putField() for each predefined PRePTag, specified in this method

· putField(PRePMain, String strName, String strValue)

calls the putField() method of PRePMain 

· putField(PRePMain, PRePTag)

calls the putField() method of PRePMain

· checkCookie(PRePMain)

calls the checkCookie() method of the PRePTagUSER class and returns a boolean

· getNewCookies(PRePMain)

if there are cookies to set on the HttpServletResponse, call them here (like the UINFO 
cookie, checkUser() in DOCHandler!)
· loginOk(PRePMain)

if checkCookie returned true, this method invokes. It manages the filehandling and 
returns nothing. 
· loginNotOk(PRePMain)

if checkCookie returned false, this method invokes. It manages also the filehandling and 
returns nothing.
· finishHandle(PRePMain)

calls the output() method of PRePMain and deletes the PRePMain after that.
· putFile(File file)

calls the putFile() method of PRePMain
· destroy()

calls the destroy() method of the ConnectionPool which will close every connection
PRePMain

Structure

The PRePMain stays mostly in its old structure.There are some methods which are not used anymore, removed (as for instance the method setDatabaseConnection()) and some other may be slightly changed.

Constructor

default constructor, which creates a Session object

Methods

· setPrintWriter(PrintWriter pWriter)

sets the specified PrintWriter

· getSession()

returns the Session object

· putFile(File file)

gets all tags from this file

· putField(String name, String value)

creates a PRePTag with the name and the value and adds it to the TagList

· putField(PRePTag)

adds the PRePTag to the TagList

· output(PrintWriter pwClient)

compiles the __TEMPLATE__ in the specified PrintWriter

· output()

compiles the __TEMPLATE__ tag

· getValue(String strTagName)

returns the value of the specified tag. If it does not exist, it returns null

PRePTagUSER

Structure

The PRePTagUSER contains all information about one user. It allows access to all fields of the user’s data, stored in the table “docuser”. It also provides a method checkUser() which is called if the ACTION tag is set to “login” and returns a new Cookie with the uid of this user, as well as a checkCookie() and a logout() method.

The checkUser() method checks also if the company is set to –1. If yes, it means, that the user is a guest. If this is the case, do not update the database with a new cookie but return the cookie which is stored in the database (table “docuser”). If there is no user with this name and password, the method will return the cookie of the “us_guest” and will not update the database. 

The checkCookie() method returns a boolean and checks if the UINFO tag exists and the value is valid. (SELECT * FROM docuser WHERE cookie = {cookie} AND uid = {uid}) If the store is null, the cookie is not valid and it returns false. It will return true if the store is not null – what means that the user with this id and cookie exists.

The logout() method is called if the ACTION tag is set to “logout”. It returns a new cookie with a value of 0. 

Constructor

Since this is a subclass of PRePTagDatabase, it has a default constructor where it sets its name.

Methods

· Cookie checkUser()

is called when there is an ACTION tag which value is either “login” or “logout”

if the value is logout, the logout() method is called. Else:


does the user with this password exist? If yes: is the company value = -1?


If yes: 
return new Cookie UINFO (take the cookie of the guest out of the table 



docuser) and do not update the table!


If no:
make a new Cookie with a random number, update the table docuser 



with the new cookie and return the UINFO cookie. 

If the user does not exist, return a new cookie as if the user logged in as 



“us_guest” which means, the table docuser will not be updated and the cookie 


will be taken out of the table.

· boolean checkCookie()

does the UINFO Cookie exist and is valid? If yes: return true, else return false

· Cookie logout()

return new UINFO Cookie with the value 0







� only in the DOCHandler, because the PRePHandler class does not know the PRePTagUSER class. It will return only true.



04/07/99
Page: 7/1
H:\USER\PROJEKT\GLOBAL\CommonGW\sources\com\delec\prep\doc\PReP_V20.doc

_983371099.vsd

_983373295.vsd

_983374667.vsd

_983375491.vsd

_983374043.vsd

_983371738.vsd

_983372136.vsd

_983370538.vsd

