LEAP
An extendable relational algebra processor
by
Richard Leyton

Brief User Guide
Version 0.9.1

Contact at:
richard_leyton@mail.amsinc.com�or�e0190404@brookes.ac.uk�
See also:�http://www.brookes.ac.uk/~e0190404/leap.html

Please direct all comments/bugs/suggestions/questions to me. They are very much appreciated and welcomed.

© Richard Leyton, 1995
�
This document, and all associated software programs, files, and documents, are copyright © 1995, Richard Leyton.
There is no warranty for the program, to the extent permitted by applicable law. Except when otherwise stated in writing the copyright holders and/or other parties provide the program "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the quality and performance of the program is with you. Should the program prove defective, you assume the cost of all necessary servicing, repair or correction.
In no event unless required by applicable law or agreed to in writing will the author be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or inability to use the program (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of the program to operate with any other programs), even if such holder or other party has been advised of the possibility of such damages.
�Table of Contents
� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc334263025 � PAGEREF _Toc334263025 �5��
2. Background	� GOTOBUTTON _Toc334263026 � PAGEREF _Toc334263026 �6��
3. Starting LEAP	� GOTOBUTTON _Toc334263027 � PAGEREF _Toc334263027 �7��
4. Using LEAP	� GOTOBUTTON _Toc334263028 � PAGEREF _Toc334263028 �9��
4.1 Introduction	� GOTOBUTTON _Toc334263029 � PAGEREF _Toc334263029 �9��
4.2 A simple example	� GOTOBUTTON _Toc334263030 � PAGEREF _Toc334263030 �9��
4.3 Making it all easier	� GOTOBUTTON _Toc334263031 � PAGEREF _Toc334263031 �11��
5. The LEAP language	� GOTOBUTTON _Toc334263032 � PAGEREF _Toc334263032 �13��
5.1 Examples	� GOTOBUTTON _Toc334263033 � PAGEREF _Toc334263033 �13��
5.1.1 Stand-alone expressions	� GOTOBUTTON _Toc334263034 � PAGEREF _Toc334263034 �13��
5.1.2 Combined expressions	� GOTOBUTTON _Toc334263035 � PAGEREF _Toc334263035 �17��
5.2 Further LEAP functionality	� GOTOBUTTON _Toc334263036 � PAGEREF _Toc334263036 �19��
5.2.1 Creation of relations	� GOTOBUTTON _Toc334263037 � PAGEREF _Toc334263037 �19��
5.2.2 Addition of tuples	� GOTOBUTTON _Toc334263038 � PAGEREF _Toc334263038 �20��
5.2.3 Deletion of relations	� GOTOBUTTON _Toc334263039 � PAGEREF _Toc334263039 �20��
5.2.4 Display options	� GOTOBUTTON _Toc334263040 � PAGEREF _Toc334263040 �20��
5.2.5 Recording sessions	� GOTOBUTTON _Toc334263041 � PAGEREF _Toc334263041 �20��
5.2.6 Debug output	� GOTOBUTTON _Toc334263042 � PAGEREF _Toc334263042 �21��
6. Architecture	� GOTOBUTTON _Toc334263043 � PAGEREF _Toc334263043 �22��
6.1 Introduction	� GOTOBUTTON _Toc334263044 � PAGEREF _Toc334263044 �22��
6.2 Physical Data representation	� GOTOBUTTON _Toc334263045 � PAGEREF _Toc334263045 �22��
7. Backus-Naur-Form Language Definition	� GOTOBUTTON _Toc334263046 � PAGEREF _Toc334263046 �24��
8. Help	� GOTOBUTTON _Toc334263047 � PAGEREF _Toc334263047 �25��
8.1 Summary	� GOTOBUTTON _Toc334263048 � PAGEREF _Toc334263048 �25��
8.2 Help Topics	� GOTOBUTTON _Toc334263049 � PAGEREF _Toc334263049 �26��
9. Related books	� GOTOBUTTON _Toc334263050 � PAGEREF _Toc334263050 �27��
10. Contacting the author	� GOTOBUTTON _Toc334263051 � PAGEREF _Toc334263051 �28��
��Acknowledgements
The implementation of LEAP would simply not have been possible without the words of wisdom from my supervisor, Dr Stefan Stanczyk. Over a year ago in 1994 I found myself in his office with the idea of implementing an RDBMS. Stefan brought me down to earth and suggested realistic targets.
The students in the 1995 run of the Databases module here at Oxford Brookes University were most sympathetic with LEAP, and a number of valued comments were forthcoming. I’m very much appreciative, and hope my hour long talk was not too boring. The same applies to a number of people ‘out there’ on the Internet, who’ve provided plenty of feedback and suggestions following LEAP’s release.
Closer to home, a number of friends have been both supportive and of great assistance throughout the project, and the last few years of University. In no particular order: David Rowe - group courseworks would not have been the same without you these last few years, and numerous suggestions, proof reads and bug spotting, and also for all those things you’ve managed to get hold of in your surfing. Steve Coppin, ever critical, lateral and patient. Nick Magee, Mr CNE himself, a model of determination! Hanneke, Corina and Paula for your Dutch friendship and communications. Nick Jackson, a trusty and reliable friend, as are Rob England and Catherine Dubois from “Div Road” . Many others deserve a mention, but you know who you are. My thanks.
Finally, my family - in particular my parents. You’ve always managed to be there when needed, and behind me when I’ve stumbled or lost faith. This whole work I dedicated to you in my final write up, and do so again.
Introduction
This document is intended to form a simple introduction to LEAP - The services it offers, how it can be used, and what it is all about. The document does not go into great detail with regards to the architecture of the system, nor what the relational algebra is.
For readers unfamiliar with the relational algebra, the books listed at the end of the document provide excellent coverage. STA90 was used as the basis for the majority of the examples given in section � REF _Ref325617559 \n �5.1� (page � PAGEREF _Ref325617561 �13�)
Background
LEAP was constructed as part of a final year dissertation at Oxford Brookes University, to build upon the concepts introduced in the Databases and Database Systems courses.
The original idea was to implement a full subset of the relational algebra, to fill in the gaps that were missing in the practical element of these courses. The system as presented is relationally complete by the definitions of COD79, and DAT90.
LEAP does not strive to offer the services that commercial or large scale academic projects do (e.g. Oracle, Ingres etc.) As such, the user can expect only what is specified: A framework for enhancement, and a relation algebra processor, and all the necessary structures.
Users of LEAP will not necessarily be interested in the enhancement framework - This applies to the source code structure of LEAP. Of more interest will be the relational algebra and the relational structures. Section � REF _Ref325617598 \n �6� (page � PAGEREF _Ref325617599 �22�) enters into more detail with regard to the architecture underlying LEAP.
LEAP was successfully used in the 1995 run of the Databases course at Oxford Brookes, such that it will be used again in later runs of the course. This document was originally used as the basis of the handout given to students.
Starting LEAP
LEAP is relatively straightforward to start up. The user simply needs access to a machine capable of supporting MS-DOS applications.
If the version of LEAP was downloaded from one of the internet ftp sites, then the program is likely to be in compressed form. The program must first be uncompressed, which will require a copy of PKUnzip. Assuming this program is available, and either in the current working directory, or present in one of the directories specified in the PATH environment variable, the user should type:
pkunzip -d leap
The archive file, leap.zip is then uncompressed. The -d parameter recreates the necessary directory structure. If this parameter is missed off, the program will not operate correctly, if at all.
Having successfully uncompressed the program, LEAP may then be started. This simply involves executing the main binary, with the necessary parameters specified.
LEAP offers a number of options, some of which may also be set from within the program. These are:
Parameter�Operation�Default��DIR�Specifies the directory in which the LEAP files are stored.�c:\leap��DEBUG�Specifies whether additional debug information should be written to the report file.�n��TIMING�Specifies whether operation timing information should be produced.�n��INFIX�Specifies whether LEAP 0.9 should process infix expressions, as opposed to prefix. Version 1 of LEAP will default to infix expressions.�n��USTIME�Specifies whether timing should be displayed using US (mm/dd/yyyy) or European (dd/mm/yyyy) time formatting. By default, Europe formatting is used. �n��COPY�Specifies whether the screen output should be duplicated in the temporary directory.�y��COLOUR�Specifies whether colour should be used. (COLOR can also be used)�Y��
Parameters can be expressed in any order, for example:
leap dir=d:\apps\leap infix=y timing=y
If a parameter is not specified, the default is taken.
The path specified with the directory parameter must be absolute, rather than relative. The complete path, if it is not displayed in the command line prompt, can be retrieved by typing CD at the prompt.
LEAP should now execute. Possible problems that might occur at this stage are:
LEAP cannot find the necessary files, check:
The directory specified is correct and absolute (The directory specified should contain the five directories: data; errors; help; docs and reports.)
The directory structure was created when LEAP was extracted.
All files exist (Look in the file files.txt for a list of all files. Of particular importance is LEAPPATH\errors\errors.txt and LEAPPATH\help\helppg.txt
The environment variable TEMP is set incorrectly (i.e. to an invalid path). Either remove it, or set it correctly.
Using LEAP
Introduction
LEAP is, in a nutshell, an interpreter for the relational algebra. The relational algebra consists of eight operators: Project, union, intersect, difference, product, join, select/restrict, and divide.
Essentially, you may sit at a computer using LEAP, and with a little modification, enter published algebra expressions (provided the appropriate relations exist!) LEAP will calculate the result, and you may then display it.
A simple example
The best, and most appropriate examples may be taken from STA90. The LEAP language was initially based upon the ‘language’ given within these pages. Over time the implemented notation has had to change slightly to incorporate a few significant features, but the flavour is certainly there. Previous versions of this document have given examples in the prefix form, this version gives them in the infix form, which requires that infix=y is specified at the command line, or after starting LEAP.
Take example 4.1 (page 68). The project operation is demonstrated on the relation author. Enter the command:
r1=project (book) (author)

LEAP will report:
R1 Created.

The result can be displayed with the print command:
print r1

Resulting in:
Relation: R1
AUTHOR

JOYCE
GREENE
ORWELL
LEM
GOLDING
KING
HEMINGWAY

Several things should be noted. Of most importance is the difference between the notation in the book, and what is necessary in order for LEAP to work. Follow these simple rules, and you’ll not go wrong:
Every relation, or algebraic expression, must be enclosed in brackets of its own.
Lists of attributes must be separated by commas.
The Backus-Naur-Form definition of the implemented language is attached in section � REF _Ref327287878 \n �7�. It’s not important that you understand it, but it may help/be of interest now or later.
If you continue to be stuck, take a look at the example source files that are included in the source file directory: LEAPDIR\data\src - See how they differ from the published examples.
Note that you don’t have to enter a relation name for the result. If you simply enter
project (book) (author)
Then LEAP will create a random relation name - and it really is very random.
It is possible to nest expressions, but there are problems with this. Firstly, it can become very confusing. You loose the result of expressions contained within other expressions, and debugging is very tedious. Whilst coming to grips with the language, break the expression down into chewable portions. Take the second expression on page 68 (STA90), and see which is clearer:
Nested
>@ ex41b

>>>infix y
Infix operators is on.

>>>r2=(project (subject) (class)) difference (project (index) (class))

>>>print r2
Relation: R2
CLASS

C4
C5
C6

Chewable
>r2a=project(subject)(class)
R2A Created.

>r2b=project(index)(class)
R2B Created.

>r2all=difference(r2a)(r2b)
R2ALL Created.

>print r2all
Relation: R2ALL
CLASS

C4
C5
C6

The ‘chewable’ version? They both achieve the same result, but one is certainly clearer than the other. Neither is more efficient than the other, because relations are created within ‘nested’ expressions as well.
Its possible once you’ve written the chewable version, to create a cryptic nested version simply by replacing the relation names in the final expression with the expressions specified earlier.
If you like nesting expressions, you can display them in one go by using the display command. It does exactly the same thing as the print command, but can be used in nested expressions.
Making it all easier
LEAP does make attempts to ensure the system is easy to use. It is possible to write a command outside of LEAP, and execute it. This involves source files. Typing the command:
sources
will list all of the source files that are present in LEAPDIR\data\src - All source files must have the extension .src
The following example (q4_3_3.src) shows how it can be constructed:
This example is taken from STA90, page 80 - Query 4.3.3
It uses infix expressions.
infix y
P3=SELECT (STOCK) ((BRANCH='L1') AND (DATE_OUT='INSTOCK'))
P4=PROJECT (P3) (SELL_PRICE,COST_PRICE)
@

The “at” sign (@) returns the program to standard input from the keyboard, try to get into the habit of adding it to programs.
The @ symbol is used to redirect the input. Without a parameter it returns to the keyboard. With a parameter, it opens that file and executes from it. To execute the above example, enter the following (assuming q4_3_3.src exists):
@ q4_3_3
Note that the .src extension does not need to be entered within LEAP, as all source files are assumed to have this extension.
Comments can be added to a program simply by placing a hash sign (#) at the beginning of the line. Comments are ignored by the program, but can greatly help explain what is occurring within a program. Note that comments cannot be mixed with expressions. In addition, a user report may be added to the report file with:
report Demonstration of the report command
The report file is a useful record of a number of LEAP sessions, and your own reports can help your own understanding of what is happening.
Just as it is possible to list all of the source files, it is also possible to list all of the relations by typing
list
A list of relations, followed by an indicator of the relations temporary status is available. Source files can be printed on the screen using the l command:
l q4_3_3
results in
>l q4_3_3
Listing C:\LEAP\DATA\SRC\Q4_3_3.SRC

This example is taken from STA90, page 80 - Query 4.3.3
It uses infix expressions.
infix y
P3=SELECT (STOCK) ((BRANCH='L1') AND (DATE_OUT='INSTOCK'))
P4=PROJECT (P3) (SELL_PRICE,COST_PRICE)
�The LEAP language
Examples
Here are some example expressions. All of these may be found on the standard distribution available to you. The majority of these are taken from either STA90 and DAT90.
Try entering some of these directly to get a feel for how it works, and how the relational algebra fits together.
Stand-alone expressions
Displaying relations

>print book
Relation: BOOK
REFERENCE AUTHOR TITLE

R003 JOYCE ULYSSES
R004 JOYCE ULYSSES
R023 GREENE SHORT STORIES
R025 ORWELL ANIMAL FARM
R033 LEM ROBOTS TALES
R034 LEM RETURN FROM THE STARS
R036 GOLDING LORD OF THE FLIES
R028 KING STRENGTH TO LOVE
R143 HEMINGWAY DEATH IN THE AFTERNOON
R149 HEMINGWAY TO HAVE AND HAVE NOT

>print subject
Relation: SUBJECT
CLASS CLASS_NAME
--
C1 FICTION
C2 SCIENCE-FICTION
C3 NON-FICTION
C4 SCIENTIFIC
C5 POETRY
C6 DRAMA

>print index
Relation: INDEX
AUTHOR TITLE CLASS SHELF
--
JOYCE ULYSSES C1 12
GREENE SHORT STORIES C1 14
ORWELL ANIMAL FARM C1 12
LEM ROBOTS TALES C2 23
LEM RETURN FROM THE STARS C2 23
GOLDING GOLDING C1 12
KING STRENGTH TO LOVE C3 24
HEMINGWAY DEATH IN THE AFTERNOON C3 22
HEMINGWAY TO HAVE AND HAVE NOT C1 12

>print auction
Relation: AUCTION
REFERENCE DATE_BOUGHT PURCHASE_PRICE DATE_SOLD SELL_PRICE

R005 17-03-84 25 23-09-86 12.25
R020 02-12-43 4 17-10-88 145.50
R022 09-11-79 7.50 21-11-88 3.25
R048 15-05-68 3.50 16-03-89 8.50
R049 15-05-68 3.50 16-03-89 8.50
R073 21-02-76 18.50 25-03-89 9.25

>print ex_auth
Relation: EX_AUTH
ANAME ADDRESS SPECIALISM

SMITH OXFORD FRENCH
JONES BIRMINGHAM LAW
STANCZYK OXFORD DATABASES
PALMER USA PROGRAMMING
KORTH USA DATABASES

>print ex_book
Relation: EX_BOOK
TITLE ANAME PNAME

THEORY AND PRACTICE STANCZYK PITMAN
SQL STANCZYK PITMAN
PROGRAMMING IN B PASCAL PALMER SYBEX
DATABASE SYSTEM CONCEPTS KORTH MCGRAW
FRENCH PROGRAMMING SMITH MIT PRESS
A GUIDE TO DB2 JONES MIT PRESS

>print ex_publi
Relation: EX_PUBLI
PNAME LOCATION
--
MIT PRESS MA.
PITMAN LONDON
MCGRAW NEW YORK
SYBEX USA

>print a
Relation: A
S SNAME STATUS CITY
--
S1 SMITH 20 LONDON
S4 CLARK 20 LONDON

>print b
Relation: B
S SNAME STATUS CITY
--
S1 SMITH 20 LONDON
S2 JONES 10 PARIS
Project
Script file: ex41a
>>>r1=project(book)(author)
R1 Created.

>>>print r1
Relation: R1
AUTHOR

JOYCE
GREENE
ORWELL
LEM
GOLDING
KING
HEMINGWAY
Union
Script file: datu1
>UN=(a) union (b)
UN Created.

>print un
Relation: UN
S SNAME STATUS CITY
--
S1 SMITH 20 LONDON
S4 CLARK 20 LONDON
S2 JONES 10 PARIS

Intersection
Script file: dati1
>>>dati=(A) intersect (B)
DATI Created.

>>>print dati
Relation: DATI
S SNAME STATUS CITY
--
S1 SMITH 20 LONDON

Difference/Minus
Script files: datd1/datd2
>>>datd1=(A) difference (B)
DATD1 Created.

>>>print datd1
Relation: DATD1
S SNAME STATUS CITY
--
S4 CLARK 20 LONDON

>>>@

>@ datd2

>>>datd2=(B) MINUS (A)
DATD2 Created.

>>>print datd2
Relation: DATD2
S SNAME STATUS CITY
--
S2 JONES 10 PARIS

Product
Source file: prodex
>>>prd=(a) product (b)
PRD Created.

>>>print prd
Relation: PRD
S SNAME STATUS CITY S SNAME STATUS CITY
--
S1 SMITH 20 LONDON S1 SMITH 20 LONDON
S1 SMITH 20 LONDON S2 JONES 10 PARIS
S4 CLARK 20 LONDON S1 SMITH 20 LONDON
S4 CLARK 20 LONDON S2 JONES 10 PARIS

Select/Restrict
Source file: ex42
>>>r3=select(auction) (sell_price>purchase_price)
R3 Created.

>>>print r3
Relation: R3
REFERENCE DATE_BOUGHT PURCHASE_PRICE DATE_SOLD SELL_PRICE

R048 15-05-68 3.50 16-03-89 8.50
R049 15-05-68 3.50 16-03-89 8.50
R073 21-02-76 18.50 25-03-89 9.25

Source file: ex43
>r4=select (index) ((author=`hemingway') and (class=`c3'))
R4 Created.

>print r4
Relation: R4
AUTHOR TITLE CLASS SHELF
--
HEMINGWAY DEATH IN THE AFTERNOON C3 22

Join
Source file: joinex
>rj=join (subject) (index) (subject.class=author.class)
RJ Created.

>print rj
Relation: RJ
CLASS CLASS_NAME AUTHOR TITLE CLASS SHELF
--
C1 FICTION JOYCE ULYSSES C1 12
C1 FICTION GREENE SHORT STORIES C1 14
C1 FICTION ORWELL ANIMAL FARM C1 12
C1 FICTION GOLDING GOLDING C1 12
C1 FICTION HEMINGWAY TO HAVE AND HAVE NOT C1 12
C2 SCIENCE-FICTION LEM ROBOTS TALES C2 23
C2 SCIENCE-FICTION LEM RETURN FROM THE STARS C2 23
C3 NON-FICTION KING STRENGTH TO LOVE C3 24
C3 NON-FICTION HEMINGWAY DEATH IN THE AFTERNOON C3 22

Combined expressions
Project/Join
Source file: ex41b
>>>r2=(project (subject) (class)) difference (project (index) (class))
R2 Created.

>>>print r2
Relation: R2
CLASS

C4
C5
C6
Select/Join/Project
Source file: ex45
>>>s1=select (subject) (class_name='non-fiction')
S1 Returned.

>>>s2=join (s1) (index) (s1.class=index.class)
S2 Returned.

>>>s3=project (s2) (author,title,shelf)
S3 Returned.

>>>print s3
Relation: S3
AUTHOR TITLE SHELF

KING STRENGTH TO LOVE 24
HEMINGWAY DEATH IN THE AFTERNOON 22
Select/Project
Source file: q433
>>>p3=select (stock) ((branch='L1') and (date_out='INSTOCK'))
P3 Returned.

>>>p4=project (p3) (sell_price,cost_price)
P4 Returned.

>>>print p4
Relation: P4
SELL_PRICE COST_PRICE
--
15.50 9.25
Restrict/Project/Join
Source file: q4_3_4
>>>R1=RESTRICT (STOCK) (DATE_IN=DATE_OUT)
R1 Returned.

>>>R2=PROJECT (R1) (BRANCH,STOCK)
R2 Returned.

>>>R3=JOIN (R2) (DELIVERY) ((R2.BRANCH=DELIVERY.BRANCH) AND (R2.STOCK=DELIVERY.STOCK))
R3 Returned.

>>>R4=PROJECT (R3) (PRODUCER,PRODUCT_CODE)
R4 Returned.

>>>R5=JOIN (R4) (GOODS) ((R4.PRODUCER=GOODS.PRODUCER) AND (R4.PRODUCT_CODE=GOODS.PRODUCT_CODE))
R5 Returned.

>>>print r5
Relation: R5
PRODUCER PRODUCT_CODE PRODUCER PRODUCT_CODE DESCRIPTION

60S CLOTHS WOODSTOCK 60S CLOTHS WOODSTOCK JEANS
60S CLOTHS FINESSE 60S CLOTHS FINESSE DRESS
MODERNA 199K MODERNA 199K JACKET

>>>rmvtmp
>>>@

Select/Join/Project
Source file: q4_3_5
>>>Q1=SELECT (GOODS) (DESCRIPTION='DRESS')
Q1 Returned.

>>>Q2=JOIN (Q1) (DELIVERY) ((Q1.PRODUCER=DELIVERY.PRODUCER) AND (Q1.PRODUCT_CODE=DELIVERY.PRODUCT_CODE))
Q2 Returned.

>>>Q3=PROJECT (Q2) (BRANCH,STOCK)
Q3 Returned.

>>>Q4=JOIN (Q3) (STOCK) ((Q3.BRANCH=STOCK.BRANCH) AND (Q3.STOCK=STOCK.STOCK))
Q4 Returned.

>>>Q5=SELECT (Q4) (DATE_OUT='INSTOCK')
Q5 Returned.

>>>Q6=PROJECT (Q5) (BRANCH,SIZE,COLOUR,SELL_PRICE)
Q6 Returned.

>>>Rmvtmp

>>>print q6
Relation: Q6
BRANCH SIZE COLOUR SELL_PRICE
--
L2 M NAVY 13.50
P2 S BROWN 16.95

>>>@

Nested Project/Select
Source file: ex4_1_a
>>>PROJECT (SELECT (EX_BOOK) (PNAME='PITMAN')) (TITLE)
YXGLSU Returned.

>>>@

>print yxglsu
Relation: YXGLSU
TITLE

THEORY AND PRACTICE
SQL
Nested Project/Join/Project/Select
Source file: ex4_1_b
>>>project(join (project(select (ex_book) (pname='mit press'))(aname)) (ex_auth) (aname=ex_auth.aname)) (specialism)
AHGDUF Returned.

>>>@

>print ahgdu
Error: #12: Attempted to display non-existant Relation.

>print ahgduf
Relation: AHGDUF
SPECIALISM

FRENCH
LAW

Further LEAP functionality
Creation of relations
Of course, it is necessary that the user be able to create their own relations. LEAP enables this in a straightforward manner. The create operation is used:
create rel_name att1,att2,...,attn
Which will create a relation rel_name with the list of attributes, whose names are specified. It should be stressed that LEAP only at this stage supports the string data type.
Addition of tuples
Creating the relation is the first step in providing your own relations. The second step is the addition of data within the relation structure. LEAP enables this with the add operation:
add rel_name
This will bring up an interactive prompt, requesting information for each particular tuple. At this stage LEAP does not support the addition of tuples entirely at the command line, such as in SQL.
Deletion of relations
Of course, it may sometimes be necessary to remove a relation in its entirety. There is an explicit command delete which removes the structure from those available, and if the structure is a temporary relation, removes the data from the disk. If the structure is not temporary, the structure will be available the next time around.
To permanently remove a relation from the disk, use the change command to change a relations temporary status (change flips the status, so temporary relations become ‘permanent’, and ‘permanent’ relations become temporary), before executing the delete command.
All temporary relations are automatically removed from the disk by the act of shutting down the system, and also when the rmvtmp command is executed - which removes temporary relations that have been created through the execution of a large nested expression. Note that rmvtmp will not remove all temporary relations, only those created when evaluating an expression. Resultant relations, which are also temporary, are not removed.
Display options
LEAP runs in the MS-DOS text based environment, with 80 columns, and 25 lines - It is often the case that a relation scrolls past the top of the screen. To resolve this, LEAP can switch to the 43/50 line EGA/VGA text mode. The high command does this.
The normal command returns the system to the standard 25 line mode.
Note that the high command is included in the default startup script, and should be removed if this causes problems on your system.
Recording sessions
LEAP produces all output to the standard output, which allows output to be redirected. However, if an interactive session is to be recorded, problems are bound to occur - when do you enter a command? The screen is being redirected to a file!
LEAP addresses this issue directly, by creating a file in the temporary directory (as defined by the DOS environment variable TEMP). All output is placed in the leap.txt file. This has the additional benefit that the entire output is not affected by the end of the screen, so relations can be viewed clearly.
Note that the file is erased at the start of each session. The file is written to throughout the duration of a LEAP session, viewing or editing the file during a session may cause damage to the file or file system integrity.
If this feature is not required, set the COPY parameter (see section � REF _Ref327288287 \n �3�) to N.
Debug output
In addition to a copy of the user output, a large amount of information is placed in a debug file in the LEAP directory structure. In the LEAPDIR\reports directory the report.txt file contains system messages. On its own it is not of particular interest, but with the debug parameter set, there is much valuable information showing how expressions are evaluated.
Each entry in the file is written with the date and time of the report, which will add to the understanding of the information. All information is added to the end of the file.
This file, like the screen output file, is written to during a LEAP session, viewing or editing the file during such a session may cause damage to the file or file system integrity.
The file is never erased by the system, so it will grow until it runs out of disk space. This is clearly not a desirable state of affairs, therefore the flush command is provided which restarts the file. You may wish to add this to the start-up script file (startup.src).
�Architecture
Introduction
LEAP deliberately has a simple architecture. Having perhaps constructed computer systems you will be familiar with the idea of data and procedure abstraction. LEAP is an embodiment of abstraction. At the lowest level are routines which deal directly with physical data representation. These routines are then used by the routines which provide the conceptual data models of relations, tuples and attributes.
The next level provides the relational algebra, using the routines from the next level. There is literally one function per operation implementation (Join has two implementations, and there are plenty of others possible). The user interface interprets the users requests, and calls the appropriate operations.
� EMBED ShapewareVISIO20 ���
Figure � SEQ Figure * ARABIC �1� The LEAP Architecture
Physical Data representation
All data that is contained with relations is contained in a number of files which are easily accessible and modifiable. The data is stored in ASCII format, to enable you to make changes. The reason for this is that LEAP does not (yet) provide an easy means to update or change data once entered.
Take a look at a simple relation file. There are two types of file: Data files and Attribute definition files - Body and Header files respectively (DAT90).
The header file contains a set of lines, which are paired. The first line of two contains the attribute name, the second the data type, or domain. The next line is the next attribute. At the moment, only the STRING data type is supported. Perhaps some time in the future, other types such as NUMBER, and DATE will be.
The body file contains a number of lines, each containing the data for each tuple within a relation. Tuples datum’s are stored individually, with padded spaces between each item. Each datum takes up 26 characters, no more, no less.
If you are thinking of playing around with the data contained in these files, backup the data first!
There are two other files that work with the index structures: .Dnn and .inn files - These are binary files that should not be tampered with in any way. Each set of files (sharing the same number) relates to an index structure. It is read in at the start up of the system.
Backus-Naur-Form Language Definition
This is the BNF definition of the language that is implemented in LEAP. To some extent it should be self explanatory, however:
Square Brackets imply an optional inclusion.
An asterix implies that the bracketed block may be repeated
A curly bracket implies one of the options
A bar implies an option must be chosen.
For the really interested, see WIR76.
<command> ::= [<relation name> =] <relational-exp>
<relation-exp> ::= <unary-term>|<binary-term>|relation-name
<unary-term> ::= project (<relational-exp>) (<attribute-list>) |
		 select (<relational-exp>)(<qualification>)
<attribute-list> ::= <attribute-name> [,<attribute-name>]*
<qualification> ::= <attribute-comp> [{and|or} (<attribute-comp>)]*
<binary-term> ::= (<relational-exp>) <operator> (<relational-exp>) |
	join (<relational-exp>) (<relational-exp>) (<qualification>)
<operator> ::= union | difference | intersect | product
<attribute-comp>::= <attribute-name> <comparator> {attrib-name|value}
<comparator> ::= { < | > | <= | >= | = | <> }
Help
Summary
LEAP has context sensitive help. Type:
help <page>
to display a specific summary page (1 - 4), or:
help <topic>
for help on a specific topic. To list the available topics, type:
help index
or for a more brief list:
help summary
If you’re completely at a loss, type:
help help
Here are the first four pages of the help document, and the index, for your reference.
==
Help Pages
==
EXIT - Halt program
LIST - Display the relations loaded.
INDEXES - Display the indexes loaded.
SOURCES - Display the sources files available.
PRINT r - Display the contents of relation r.
DELETE r - Delete the relation r from the disk.
@ sourcefile - Use sourcefile as command file.
RMVTMP - Dispose of temporary relations.
Algebraic Operators

UNION - Type HELP UNION for syntax and usage.
INTERSECT - Type HELP INTERSECT for syntax and usage.
DIFFERENCE - Type HELP DIFFERENCE for syntax and usage.
PRODUCT - Type HELP PRODUCT for syntax and usage.
PROJECT - Type HELP PROJECT for syntax and usage.
JOIN - Type HELP JOIN for syntax and usage.
SELECT - Type HELP SELECT for syntax and usage.
ASSIGNMENT - Type HELP ASSIGNMENT.
DISPLAY - Type HELP DISPLAY for syntax and usage.
Miscellaneous Operations

CREATE r f1,f2..fn - Create a relation r, with fields f1, f2..fn
SPECIDX r p1 p2
 - Specify an index to be created on relation r
 with attributes p1 and p2
IDXPRINT r p1 p2
 - Print the index for relation r, with attributes
 p1 and p2
IDXSTORE - Store the indexes to disk.
CHANGE r - Change the temporary status of relation r.
DESCRIBE r - Display the fields associated with relation r.
MEM - Display the amount of free memory.

NORMAL - Return the screen mode to 'normal' 80x25 Colour mode.
HIGH - Set the screen mode to high resolution, 43/50 lines.

STATUS - Report the status information of LEAP.
DEBUG - Change the debug setting of LEAP.
INFIX - Change the evaluation methodology.
TIMING - Change the timer setting.

HELP n - Display help page number n (leave blank for all)
 Where n is either 1,2, or 3.
INFO - Display warranty and conditions of use.
===
This program, and all associated files/documentation are
copyright (c) 1994,1995 Richard Leyton.

HELP
Help is context sensitive. To bring up help on a particular item type

HELP <item>

For example, to bring up help on the SELECT operator, type:

HELP SELECT

Help also contains cross-references to other help topics, and you can bring
up help on these by typing HELP <topic> - Watch out for spelling mistakes
though!

There is an INDEX of help topics, which you can bring up with HELP INDEX
Help Topics
�HELP
ATTRIBUTE
PROJECT
ALGEBRA
ASSIGNMENT
RELATION
RESTRICT
SELECT
CONDITION
JOIN
UNION
UNION COMPATIBILITY
DOMAIN
DISPLAY
INTERSECT
MINUS
DIFFERENCE
PRODUCT
LIST
SOURCES
L
@
PRINT
DELETE
TEMPORARY
PERMANENT
CHANGE
DESCRIBE
MEM
NORMAL
HIGH
STATUS
NESTING
INFIX
PREFIX
EXPRESSION
INFO
QUIT
DEBUG
TIMING
COMMAND LINE
SUMMARY
ABOUT
BOOKS
CONTACTS
�Related books
These books are referenced throughout the text and within the specified example source programs. Each has specific merits. STA90 is used as the basis for this guide as its relational algebra section is good. DAT90 is wider and geared to the field of database systems, as is DES90. WIR76 is not related to the field of relational databases at all, but explains the BNF, and gives some idea with regards to the implementation of parsers.
dat90	Date, C.J.; “An Introduction to Database Systems - Volume 1”, 5th Edition, Addison-Wesley, 1990, ISBN 0-201-51381-1.
DES90	Desai, B.C.; “An Introduction to Database Systems”, West Publishing, 1990, ISBN 0-314-66771-7
sta90	Stanczyk, S. “Theory and Practice of Relational Databases”. Pitman 1990, ISBN 0-273-03049-3.
WIR76	Wirth, N; “Algorithms + Data structures = Programs”, Prentice-Hall, 1976. ISBN 0-13-022418-9
Contacting the author
I can easily be contacted. I have two e-mail addresses I check regularly.
At work, e-mail me at:
richard_leyton@mail.amsinc.com
I can also be contacted via an external college account:
e0190404@brookes.ac.uk
I check my work e-mail far more frequently than my college account.
You may wish to put your comments down in writing, in which case please write to me as follows.
My permanent home address in the UK is: No.3.Pelting Drove, Priddy, Wells, Somerset, BA5 3BA, United Kingdom. All mail sent here will reach me wherever my work takes me.
- � PAGE �23� -�

