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�
Introduction


1.1 What is Garibaldi
 Garibaldi is a flexible and intuitive programming language for numerical and probabilistic analysis. The language syntax is similar to those of modern programming languages, e.g., Pascal, C++ and Matlab. Garibaldi supports various data types including user-defined structure data type and build-in class data types for random variables. Garibaldi has a global data container constructed for seamless data exchange among user-defined worksheets and functions. Garibaldi has two special class data types: FncWrapper and Vjar for managing user-defined functions and random variables, respectively. The classes greatly facilitate user access to the core applications.
	The core applications are made of three libraries: MathFuns, which contains mathematical elementary and special functions; Numeric, which contains algorithms of numerical analysis and matrix computation; and Heisenberg, which contains probabilistic applications. All main applications are listed as following.

Library MathFuns:
Elementary math functions
Trigonometric functions
Hyperbolic functions
Exponential and logarithmic functions
Special math functions
Bessel functions
Beta functions
Error functions
Gamma functions
Standard probability functions

Library Numeric:
Newton-Raphson algorithm for root finding
Integration by Simpson’s rule
Integration for multidimension integral
Feasible direction algorithm for constrained optimization
Steepest descent algorithm for unconstrained optimization
Eigensolution for symmetric matrix
Matrix inverse and determinant
Algorithm for solving linear equations

Library Heisenberg: 
19 commonly used probability distributions
Random number generator
Kolmogorov-Smirnov test
Monte Carlo Simulation method
Latin Hypercube Simulation method
iHLRF algorithm for First-Order Reliability Method (FORM)

1.2 Getting Started
Garibaldi is now available for two computer platforms: PC and Macintosh. The program can be downloaded from Web site, for example, http://www.simtel.net. Install the program and try the following example to make sure the installation is proper.
To run Garibaldi, you need to provide script files that contain instructions and with file name extension .gar. The default script file is named as Òinput.garÓ. Use any text editor to write the following script

worksheet FirstWord
{
	writeln(“hello world ...”);
}; 

Save the text into the file “input.garÓ. At system prompt >, type the command:

> gar

and then press return key. The message

hello world ...

will appear on your computer screen.
	The script defines a worksheet called FirstWord. In Garibaldi, worksheet defines a procedure for program to carry out. Curly braces, { and }, are used to express the block in Garibaldi, here, they indicate the start and end of the block of the worksheet FirstWord. Every Garibaldi script must have at least one worksheet, the program runs by executing worksheets.
	In the worksheet FirstWord, there is only one statement which calls for a function named writeln. writeln() is a standard function that prints the arguments to the screen. In this case, the argument is a string “hello world ...”. A string is a sequence of characters surrounded by double quotes.
	By now, you are ready to go.

1.3 Technical Problems
If you have any technical problems, please send me E-mail with the input script file included if there is one. I will always respond. My E-mail address is

zhang4fish@aol.com
�    Controlling Garibaldi 


To run Garibaldi, you need to provide script files which contain Garibaldi commands. Unless specified, Garibaldi always first looks for the default input file
input.gar
to start with. You can instruct Garibaldi to process any other script files by using command

include� XE "include" �

	For example, write a script file named “hello.gar” as

void sayhello()
{
	writeln(“hello world …”);
};

And write the second file named “welcome.gar” as

void saywelcome()
{
	writeln(“welcome to use Garibaldi.”);
};

Finally in the file “input.gar”, write

include “hell.gar”, “welcome.gar”;

worksheet start
{
	sayhello();
	saywelcome();
};

The command include causes Garibaldi to read the files “hell.gar” and “welcome.gar” where the functions sayhello() and saywelcome() are defined. Execute Garibaldi by typing

> gar

at system prompt, the message appears on the screen

hello world ...
welcome to use Garibaldi.

	The include feature allows you to create different script files for different applications. You load them only if they are needed.
�    Data Types and Variables 


Garibaldi is capable of processing various information data commonly encountered in the analysis. The capability is build upon Garibaldi”s atomic and molecular data types. There are four atomic or basic data types: character, string, integer number and floating-point number. Molecular data types known as structures and classes are constructed by combining character, string and numeric data. In Garibaldi, basic and class data types are build-in data types, only structures can be defined by users.
In the analysis, when information data needs to be stored and retrieved, a variable must be used. Variables are named spaces that hold values of defined data types. A variable is always associated with a valid data type, only values of that data type can be held by the variable. 
	In this chapter, we introduce the basic data types. We describe how to declare and define variables of basic data types. Then, structures and classes are introduced. Finally, the array, a collection of variables of same data type, is introduced. 

3.1 Basic Data Types                                                                
There are four basic data types in Garibaldi: character, string, integer number and floating-point number, they are referred to as

char� XE "char" ��string� XE "string" ��int� XE "int" ��float� XE "float" ���
respectively. 
	A value of type char is a single character enclosed in double quotes, for example “a”, “d” and “3”. There are total 256 characters defined by the ASCII character set. 
	A value of type string is a sequence of characters enclosed in double quotes, for example “abc”, “Dumb Dumber” and “12333”. 
Numeric numbers are classified as integer and floating-point numbers. A integer number is of type int and a floating-point number is of type float. For example, integer numbers -3 and 314 are of type int; floating-point numbers -3.0 and 3.14 are of type float.
Garibaldi supports arithmetic operations, i.e., plus +, minus -, multiplication *, division / and the precedence rule. For example, the statement

writeln(2.5 + 2*(3.5 + 2.5)/4.0);

returns

5.5

Four basic data types are summarized as following:
Type�Description�Examples��char� XE "char" ��character�“a”, “*”, “x”��string� XE "string" ��sequence of characters�“my name is fish”, “3.14159”��int� XE "int" ��integer number	�10, -244, 134��float� XE "float" ��floating-point number�0.144, 3.14159, 1.38e-5��

3.2 Variable� XE "Variable" �� XE "Variable:declaration" � Declaration and Assignment� XE "Assignment" �
A variable is a named space that holds values that can be modified. Each variable is associated with a data type, referred to as variable type, only values of that data type can be held by the variable. The variable type is specified at variable declaration. The general form of a variable declaration is:

type	var;

where type is the data type name, e.g., int, float and char, and var is the variable name. For example, the declaration statements

int length, width;							     
float radius;		
float area;					
char ch;
string script_name; 

declare 6 variables. length and width are integer variables; radius and area are floating-point variables; ch is a character variable; and script_name is a string variable.
	Variable declaration will not assign any values to the variables. Values can be assigned by using assignment operator =. To assign values to the above declared variables, we continue to write

script_name = “Garibaldi”;
writeln(“script name:”, script_name);
length = 10;
width = 5;
area = length*width;
writeln(“rectangle area = ”, area);
radius = 5.2;
area = 3.14159*radius*radius;
writeln(“circle area = ”, area);
ch = “d”;

In each assignment statement, the variable name is on the left-hand-side of = and an expression that returns a value is on the right-hand-side of =. The value of the expression is assigned to the variable by =, which can be lately retrieved or modified. The result from these statements is:

script name:Garibaldi
rectangle area =   50.000
circle area =   84.949

3.3 Structure� XE "Structure" �s
A structure is a collection of variables referenced under one name, providing a convenient means for keeping related data together. A structure� XE "structure:definition" � definition creates a new data type to be used to declare structure variables. The variables that make up a structure are commonly referred to as structure elements. The definition of a structure data type is initiated by the keyword struct. For example, the declaration statement

struct DateType 
{
	int year;
string month;
int day; 
};

defines a structure data type named as DateType. The type has three elements. To declare two variables of the type, for example, we write
DateType YourBirthday, MyBirthday;
Individual structure elements are referenced through the use of the . (dot) operator. For example, to assign values to variable YourBirthday, we write

YourBirthday.year = 1921;
YourBirthday.month = “Dec”;
YourBirthday.day = 30;

As noticed, this defines all elements of variable YourBirthday. 
Garibaldi supports structure data assignment� XE "structure:assignment" �, for example,

MyBirthday = YourBirthday;
writeln(“My birth date:”, MyBirthday.month, “ ”, 
         MyBirthday.day, “,”, MyBirthday.year)

returns

My birth date: Dec 30, 1921

In these statements,  the assignment operator = assigns all values of YourBirthday to the elements in MyBirthday.

3.4 Classe� XE "Class" �s
Like structures, classes are data types. A class is a collection of variables and functions. In Garibaldi, classes are build-in data types  and user cannot create new class data types.
In a class, the variables are referred to as member� XE "member:variable" � variables or data members, the functions are referred to as member� XE "member:function" � functions. To show the definition of any build-in class data type, we use the general form shown below:

class class_type
{
	type1 var1;
	type2 var2;
	...
	typem varm;

	type1 fnc1(. . .);
	type2 fnc2(. . .);
	...
	typen fncn(. . .);
};

where class_type is the class name; the list typei vari shows all m member variables, where typei and vari are the variableÕs type and name, respectively; and the list typei fnci shows the interfaces of all n member functions, where typei and fnci are the functionÕs return value type and name, respectively. For example, Garibaldi has a class named as RNGenerator for generating random numbers from 0 to 1. The class definition is expressed as:

class RNGenerator
{
	float seed;

	int init();
	float random();
	...
};

where seed is data member. init() and random() are member functions. The class has other member functions which will be described in Chapter 8. The following example demonstrates the use of class type RNGenerator.

worksheet chatper3_rns
{
	RNGenerator gen;
	gen.init();
	writeln(“generator seed =“, gen.seed);
	writeln(“generate two rns:”, gen.random(), gen.random());
};

Run the script, we get the following result:

generator seed =24177.000
generate two rns:   0.045   0.562

In the script, the first line declares a variable gen of class RNGenerator. A variable of class type is also called an object. On the second line, the member function init() is called to initialize the object gen, that is to assign a numeric number to the variable seed which will be used to generate subsequent random numbers. On the last line of the script, the member function random() is called twice, and each time the function returns a floating-point number between 0 and 1.

3.5 Array� XE "Array" �s
An array is a collection of variables or elements of the same data type that are referenced by a common name. The variables are indexed and referenced by using operator []. For example:

int k[5];
float m[2,3];
k[1] = 2;
k[5] = 6;
m[1,1] = 11;
m[2,3] = 23;

where k is declared as a one dimension array or vector of 5 integer variables which are referenced by k[1], k[2], …, k[5]. m is declared as a two dimension array or matrix of 6 variables which are referenced by m[1,1], m[1,2], m[1,3], m[2,1], m[2,3] and m[2,3]. An array element can be of any data types. For example, we can declare and define an array of DateType variables as:

DateType important_date[2];
important_date[1].year = 1997;
important_date[1].month = “sept”;
important_date[1].day = 12;
important_date[2] = important_date[1];

	Arrays can also be declared using keyword array, for example:

int array k;
float array m;

which are equivalent to statements

int k[];
float m[];

where two arrays are declared without specifying their sizes.
	An array can be declared without specifying its size, which can be decided later. You can use array space allocation function new to set array size. The function new is used as

new type[m]     or     new type[m, n]

where type is data type name, m and n are integer numbers that specify the array size. For example:

int m, n;
float mat; 
DateType important_date[];

m = 2;
n = 3;
mat = new float[m, n];
important_date = new DateType[2];

where mat is declared as a numeric matrix and important_date is declared as a vector of DateType variables. 
In the analysis, numeric vector� XE "vector" �s, matrices and their associated operations are often needed. Garibaldi supports most of vector and matrix� XE "matrix" � operations. The following example demonstrates some of these capabilities.

worksheet chapter3_matrix_ops
{
	float mat1[], mat2[], mat3[], mat4[], mat5[];
	float x[], y[], z[];

	mat1 = [ 1.1, 2.2, 3.3; 4.5, 5.5, 8.8 ];
	mat2 = mat1;
	writeln("mat2:", mat2);

	mat3 = [  1.0,  2.0; 
	          3.0, 4.0; 
	          5.0, 6.0; 
	          8.0, 8.0 ];
	mat4 = [ 1.0, 2.0, 3.0; 
			 4.0, 5.0, 6.0 ];
	mat5 = mat3*mat4;
	writeln("mat5:", mat5);

	x = - [ 1.1, 2.2, 3.3];
	y = [ -5.0, 6.0, 8.0];
	z = x + 2.0*y;
	writeln("z = ", z);
};

In this script, vectors and matrices are declared but their sizes are not determined at declaration. mat1 is defined as a 2(3 matrix using assignment operator = and operator [] on its right-hand-side. Inside the brackets, the semicolon ; specifies element in a different rows; and the commas , specifies element in different columns. Execute the script, the output is: 

mat2:
[
   1.100   2.200   3.300
   4.500   5.500   8.800
]
mat5:
[
   9.000  12.000  15.000
  19.000  26.000  33.000
  29.000  40.000  51.000
  40.000  56.000  72.000
]
z =
[
 -11.100   9.800  12.700
]
�   Garibaldi Syntax


The syntax of a scripting language is a set of "grammar rules" that specify how the text of a script can be interpreted. To avoid violate these rules you need to understand a few grammar concepts: keywords, identifiers, expressions, statements, operators and comments. Before describe them in details,  we present a script that computes the root for function f(x) = 1 - 2 log(x).

# function: f(x) = 1 - 2 log(x)
float f(float x)
{
	float val;
	val = 1.0 - 2.0*log(x);
	return val;
};

# the derivative of function f(x): f’(x) = -2/x
float df(float x)
{
	return -2.0/x;
};

# Newton algorithm
worksheet chapter4_root
{
	int i;
	float x, dx;

	x = 0.5;  # initial value
	do {
		i = i + 1;
		dx = -f(x)/df(x);
		x = x + dx;
	} until(abs(dx)<0.001);
	
	writeln(“root = ”, x);
	writeln(“the number of iterations = ”, i);
};

Submit the script to Garibaldi, the result is

root =     1.649
the number of iterations =        5

	In this example, the text after # and before a new line is a comment, which will not be executed. The words in bold face are the keywords. The words in italic are the identifiers. The symbols +, -, *, / and < are the operators. 

4.1 Keyword� XE "Keyword" �s
A keyword is the word that has a special meaning to Garibaldi. The keywords are part of reserved words that cannot used for other purposes such as for variable names. All Garibaldi keywords are listed below:

char�string�int�float�void��array�const� XE "const" ��struct�worksheet�FncWrapper��Var�Vars�Vjar�RNGenerator�for��while�do�until�if�else��case�break�return�start�quit��

4.2 Identifier� XE "Identifier" �s
An identifier is a word given to a variable or function for its name. Identifiers can be any words, as long as the word begins with a letter and is not spelled the same as a keyword. In the above example, f, df, RootFnder, x and writeln are identifiers. 

4.3 Expression� XE "Expression" �s
Expressions are combinations of variables, keywords, or symbols that evaluate values of certain types. The value may be a number, string, or any other data type. It might think of as something that could be written on the right-hand-side of an assignment� XE "assignment:operator" � operator =. For example:

- 3.0 / x
i + 1
abs(dx)<0.001

The first expression in the example returns a value that depends on the value of x. The last expression is a relational expression, it returns 1 if dx is less than 0.001 and 0 otherwise. An expression should always return a value which is generally invisible unless you print it. For example, the statements

x = 1.5;
writeln(“expression return the value:”,  -3.0/x);

will print a message

expression return the value: -2.0

In this example, expression -3.0/x returns a floating-point number: -2.0.

4.4 Statement� XE "Statement" �s
A statement is a single "line" ended with a semicolon ;. Garibaldi uses the semicolon as punctuation to indicate the end of a statement. For example:

x = a + b + c + d + e;

is the same as 

x = a + b + c
	+ d + e;


4.5 Operator� XE "Operator" �s
An operator is a symbol that transforms a variable or combines it in some way with another variable or literal.  
	The most often used operator is the assignment� XE "assignment:operator" � operator =, which already appeared in previous examples. In Garibaldi, the assignment operator is defined for all data types including arrays, structures and classes. For example:

struct ID 
{
	int ssn;
	string name;
};
ID x, xcopy;
int a[2], b[];

a[1] = 10;
a[2] = 20;
b = a;
x.ssn = 90345567;
x.name = “Garibaldi”
xcopy = x;

	The arithmetic operators are plus, minus, multiplication and division, denoted by

+	-	*	/

respectively. For example:

b = 15.25;
a = 14.0/7 + 2*b + 3*(2 + 5);

The normal mathematical operator precedence applies here, a will be 48.5.
	The relational operators compare two quantities to determine if the relation indicated by the relational operator is true or false. If true, it gives a value of 1 otherwise 0. There are six relational operators: 

Symbol		Description
==		equality
!=		inequality
>		greater than
>=		greater than or equal to
<		less than
<=		less than or equal to

	There are three logical operators:

Operator�Description��&�and��|�or��!�not��
	These operators provide a way to combine or negate relational expressions. For example:

int a, b, c, d, e;
a = 1;
b = 2;
if(!(b>=2)) e = 1
else e = 0;
if((a>0)&(b>=2)) d = 1
else d = 0;

set e = 0 and d = 1.

4.6 Comment� XE "Comment" �s
In Garibaldi a comment begins with the character # and ends before a new line, any text between will be ignored during execution. Comments may be placed anywhere in a script, as long as they do not appear in the middle of a statement or expression. Each comment must be confined strictly to one line. Comments should be used whenever they are needed to explain the operation of the statements.
�   Functions and Worksheets


Functions and worksheets are the building blocks of Garibaldi and the places where all activity occurs. The typical way of getting something done is to call a function or worksheet to do it. Defining a function or worksheet is the way to specify how an operation is to be done. A function or worksheet cannot be called unless it is defined. The worksheet is quit same as the function except it does not have return value and cannot be called explicitly, Garibaldi will execute it automatically. You need at least one worksheet in a script file for execution.

5.1 Function Definitions
A function� XE "function" �� XE "function:definition" � definition is a function declaration in which the function’s input and output data and contents are defined. The general form for a function definition is:

type function_name(type1 arg1, type2 arg2, . . ., typen argn)
{
	statements;
};

where type is a data type name that specifies the type of return value. function_name is the function name. Enclosed in parentheses is a comma-separated list of formal arguments argi that receive values when the function is called. Each argument consists of variable type typei and name argi. Enclosed by curly braces is the content of the function. For example:

float sum(float x, float y)
{
	float result;
	result = x + y;
	return result;
}; 

The function sum has two input arguments x and y, both are floating-point numbers. The return value is floating-point number. The content of the function consists of three statements. The first statement is a declaration statement where the variable result is declared. The second statement is an assignment statement where result is assigned. The last statement is a return statement that returns the value of variable result. It is typical to have declaration statements and return statement placed at beginning and end of the function, respectively.

5.2 Input Arguments
When a function is called, the store for the value of each actual argument is referenced by the corresponding formal argument� XE "function:argument" � which will receive and save its value from there. The type of each actual argument is checked against the type of corresponding formal argument. If the value of a formal argument is modified inside the function,  the value of corresponding actual argument is also modified. For example:

void swap(float r, float s)
{
	float holder;
	holder = r;
	r = s;
	s = holder;
};

worksheet chapter5_swap
{
	float x, y;
	x = -15.5;
	y = 25.5;
	swap(x, y);
	writeln(“x = “, x, “ y = “, y);
};

Run the script, the result is

x = 25.500  y = -15.500

In worksheet main, the variables x and y are passed to the function swap as actual arguments. On return, their values were switched, because what occurred inside the function swap. 
In many cases, you may want to secure that values of actual arguments would not be modified by whatever happened inside the function. In  this case, you may declare the formal argument� XE "const:argument" � as a constant by using the form

const typei argi

where const is the keyword. When a function is called, store is set aside for const formal argument and initialized by the value of corresponding actual argument. So the actual argument is protected from any activity inside the function. For example:

void invalid_swap(float x, const float y)
{
	float holder;
	holder = y;
	y = x;
	x = holder;
};

worksheet chapter5_invalid_swap
{
	float x, y;
	x = -15.5;
	y = 25.5;
	invalid_swap(x, y);
	writeln(“x = ”, x, “ y = ”, y);
};

Run the script, the result is

x = 25.500 y = 25.500

The value of y is unchanged on return because the second formal argument of function invalid_swap is declared as const.
A function may not have any arguments, even so the parentheses are still required, for example:

float get_pi()
{
	return 3.14159;
};

	A function may have array arguments, for example,

float XdotY(int n, float x[], float y[])
{
	int i;
	float result;

	result = 0.0;
	for(i=1; n; 1) result = result + x[i]*y[i];
	return result;
};

where the inner product of two vectors of size n is returned.

5.3 Return Value� XE "function:return value" �
A value must be returned from a function that is not declared as void. The data type void is used to specify that a function has no return value. For example, the function

void swap(float x, float y)
{
	float holder;
	holder = y;
	y = x;
	x = holder;
};

does not have a return value, the return statement is not needed.
	The return value can be an array, for example:

float array vector_sum(float x[], float y[])
{
	float sum[];
	sum = x + y;
	return sum;
};

The return value can also be a structure, for example:

DateType get_today_date()
{
	DateType today;
today.year = 1997;
today.month = “April”;
today.day = 29;
	return today;
};

where the data type DateType is defined in Section 3.3.

5.4 Scope� XE "Scope" � Rules
In Garibaldi, each function is a discrete block of script. A function’s script is private to that function and cannot be accessed by any statement in any other function except through a call to that function. Variables defined within a function are called local variables because they are not known outside the function. Global variables are variables that can be accessed or modified from any part of a script. Consequently, global variables must have unique names. The rules that dictate which parts of a script can see which variables are called scope rules. Here is an example:

int count;
float sum;

void summation(const float x)
{
	float limit;

	limit = 40.0;
	if(x>limit) writeln(“Warning: x is beyond the limit!”);

	sum = sum + x;
	count = count + 1;
};

worksheet chapter5_scope_rule
{
	float totals, limit;

	count = 0;
	sum = 0.0;
	limit = 500;

	summation(10.5);
	summation(20.5);
	summation(30.0);

	totals = sum;
	if(totals>limit) writln(“Warning: total is beyond the limit!”);

	writeln(“count = ”, count);
	writeln(“totals = ”, totals);
};

The result from execution is

count = 3
total weight = 61.000

The variables count and sum are global variables therefore they can be accessed and modified within function summation and worksheet main. The variables limit in summation and totals and limit in main are local variables, they cannot be access by any script block outside their own scopes. It should be noticed that variables limit in main and summation have no relation at all.

5.5 Export� XE "Export" � Local Data
Global variables are convenient means for exporting local data to the global level. But in any analysis, we need to control the number of global variables which are prone to unwanted modifications and are difficult to keep track of. To avoid this problem, Garibaldi was made with a unique feature for exporting local data.
In Garibaldi, there is a global variable called GlobalData which has structure data type. The elements in the variable are dynamically appended during execution of functions or worksheets by the operator export. Here is an example.

void fnc1()
{
	struct Atype 
{
		int n;
		float x;
	};
	int m;
	Atype a;
	export data1: m, a;

	m = 10;
	a.n = 20;
	a.x = 3.5;

	export data1;
};

void fnc2()
{
	float p;
	int m[2];
	export data2: p, m;

	m[1] = 1;
	m[2] = 2;
	p = 5.5;

	export data2;
};

worksheet chapter5_GlobalData
{
	fnc1();
	fnc2();

	writeln("local data from fnc1:");
	writeln("data1.a:", GlobalData.data1.a.n, GlobalData.data1.a.x);
	writeln("data1.m:", GlobalData.data1.m);

	writeln("local data from fnc2:");
	writeln("data2.m:", GlobalData.data2.m[1], GlobalData.data2.m[2]);
	writeln("data2.p:", GlobalData.data2.p);};

Run the script, the data created in fnc1 and fnc2 will be correctly printed:

local data from fnc1:
data1.a:      20   3.500
data1.m:      10
local data from fnc2:
data2.m:       1       2
data2.p:   5.500

Before functions fnc1() and fnc2() are executed, the structure variable GlobalData has no elements. After execution, data1 and data2 are added to the variable by the operations in fnc1() and fnc2(), respectively. When executing fnc1(), at declaration the operator export appends a structure element named data1 to the global variable GlobalData. The element itself is a structure type with elements m and a as specified. To export values of the specified local variables, the operator export is called again before exit, this time, it updates data1 with current values. The similar activity occurs in fnc2() when it was executed. Now local values contained in data1 and data2 can be used anywhere.
	The global variable GlobalData and the operator export together provide a seamlessly mechanism for data transportation.
 
5.6 Function� XE "Function:wrapper" � Wrapper
In numerical and probabilistic analyses, user-defined functions which are the subjects of the problems are often required. For examples, in constrained optimization, user must provide objective function and constrained functions along with their derivatives. In Monte Carlo simulation, user must provide a function which will be repeatedly evaluated at sampled values. These user-defined functions have a lot in common. Each function has its associates which include the function parameters, the derivatives with respect to variables, the second-order derivatives with respect to variables and the inverse function. Here is an example:

float user_fnc(const float x, const float par[])
{
	float f;
	f = par[1] - par[2]*log(x);
	return f;
};

float user_dfnc(const float x, const float par[])
{
	float df;
	df = - par[2]/x;
	return df;
};

float SimpleNewton(const float x0, const float par[])
{
	int i;
	float x, dx;
	
	x = x0;
	for(i=1; 20; 1)
	{
		dx = - user_fnc(x, par)/user_dfnc(x,par);
		x = x + dx;
		if(dx<0.001) break;
	}
	return x;
};

worksheet chapter5_find_roots
{
	float par[2];
	float root, x0;

	par = [ 1.0, 2.0];
	x0 = 1.5;
	root = SimpleNewton(x0, par);
	writeln("par =", par);
	writeln("root =", root);

	par = [ 2.0, 3.0];
	x0 = 2.5;
	root = SimpleNewton(x0, par);
	writeln();
	writeln("par =", par);
	writeln("root =", root);
};

Run the script, the results are

par =
[
   1.000   2.000
]
root =     1.649
par =
[
   2.000   3.000
]
root =     1.876

The function Newton is an iterative algorithm that finds the root of a user-defined function. The user provides the function user_fnc and the derivative function user_dfnc. Both functions have the same input interface with two arguments: float x and float par[]. As we can see that user_fnc, user_dfnc and par[] are related. It would be much more convenient for function SimpleNewton()  if these three pieces of data could be organized into a single object. That is the motivation for creating class FncWrapper.
FncWrapper is a class that combines the function and its associates including the derivatives, second-order derivatives, inverse function and parameters into a single object. The definition of FncWrapper is expressed as:

class FncWrapper
{
	int size;
	float par[];

	int wrap(int n, float p[], float f, float df, float argf,
 			float Hf);
	void set_par(float p);

	float fnc(const float x);
	float dfnc(const float x);
	float Hfnc(const float x);
	float argfnc(const float f);

	float fnc(const float x[]);
	float array fnc(const float x[]);
	float array Hfnc(const float x[]);
};

FncWrapper����Class manages a family of user-defined functions.��Member Variables��size��a int number. The number of variables.��par��a vector of float numbers. Function parameters.��Member Functions��wrap(n,p,f,df,argf,Hf)����Wraps up the function and its associates.��Arguments����n��an integer, defines the number of variables.��p��a float vector, the parameters of the functions.��f��user-defined function, which is declared as:
float f(const float x, const float par[]) {...};
for n = 1; or
float f(const float x[], const float par[]) {...};
for n > 1.��df��the derivative of the function f, which declared as: 
float df(const float x, const float par[]) {...};
for n = 1; or
float array df(const float x[], const float par[]) {...};
for n > 1.��argf��the inverse of the function f, which is declared as: 
float argf(const float f, const float par[]) {...};
for n = 1.��Hf��the second-order derivative of the function f, declared as: 
float Hf(const float x, const float par[]) {...};
for n = 1; or
float array Hf(const float x[], const float par[]) {...};
for n > 1.��Return��none.��set_par(p)����Reset function parameters.��Arguments��p is a float vector, the parameters of the functions.��Return��none.��fnc(x)����Evaluate the function value at x.��Arguments��x is a float number for size = 1; and a float vector for size > 1.��Return��a float number. The value of the function.��dfnc(x)����Evaluate the derivative of the function at x. If user-defined derivative function is not provided, the finite difference method will be automatically used to calculate the derivative.��Arguments��x is a float number for size = 1; and a float vector for size > 1.��Return��a float number for size = 1; and a float vector for size > 1. The derivative or derivatives of the function.��argfnc(y)����Evaluate the inverse of the function at y.��Arguments��y is a float number for size = 1.��Return��a float number. The inverse value of the user-defined function.��Hfnc(x)����Evaluate the second-order derivative of the function at x. If user-defined function is not provided, the finite difference method will be automatically  used.��Arguments��x is a float number for size = 1; and a float vector for size > 1.��Return��a float number for size = 1; and a float size-by-size matrix for size > 1. The derivative or derivatives of the function.��
To demonstrate the use of FncWrapper, we revisit previous example. The script is written as:

float EvenSimplerNewton(const float x0, FncWrapper user)
{
	int i;
	float x, dx;
	
	x = x0;
	for(i=1; 20; 1)
	{
		dx = - user.fnc(x)/user.dfnc(x);
		x = x + dx;
		if(dx<0.001) break;
	}
	return x;
};

worksheet chapter5_find_roots_again
{
	float par[2];
	float root, x0;
	FncWrapper user;
	
	par = [ 1.0, 2.0];
	user.wrap(1, par, user_fnc, user_dfnc);
	x0 = 1.5;
	root = EvenSimplerNewton(x0, user);
	writeln("par =", par);
	writeln("root =", root);

	par = [ 2.0, 3.0];
	user.set_par(par);
	x0 = 2.5;
	root = EvenSimplerNewton(x0, user);
	writeln("par =", par);
	writeln("root =", root);
};

Run the script, the results are the same as previous example. 
	Comparing two scripts, you notice that the latter one is much easier to understand. Especially for Newton function, the user-defined functions are contained in a single object user, and they are evaluated through the corresponding member functions. The parameter that has little to do with the iterative procedure is hidden for good.

5.7 Worksheet� XE "Worksheet" �
Worksheets are just like functions, but they have no input arguments (no parentheses either) and no return value. In any script file, you can define many worksheets and they will be executed by Garibaldi automatically. Worksheets cannot be called anywhere in a function or a worksheet. To execute a script, you need to have at least one worksheet that is where the execution starts.
�   Control Statement� XE "Statement:control" �s


Garibaldi control statements are basically modeled after those of C++ and Pascal. These statements can be classified into three groups: conditional statements, iteration statements and jump statements. Since several control statements rely upon the outcome of some conditional test, we begin by reviewing the concepts of true and false in Garibaldi.

6.1 Conditional Expression� XE "Expression:conditional" �
Many statements rely upon a conditional expression that determines what course of action is to be taken. A conditional expression evaluates to either a true or false value. A true value is a integer number 1. A false value is a integer number 0. For example, let variables a=5 and b=-2, then the expressions

b<a
(a*b)>0

return 1 and 0, respectively.

6.2 Conditional Statements
Garibaldi supports two types of conditional statements: if and case. 
	The general form of the if statement is
if(expression) statement
else statement;
or
if(expression) {
	statements;
} else {
	statements;
};
where statement is a single statement and statements is a block of statements. The else clause is optional. If expression evaluates to true, the statement or block that forms the target of if is executed; otherwise,  the statement or block that is the target of else will be executed, if it exists. Remember, only the code associated with if or the code associated with else executes, never both.
	For example, the following script prints messages in response to the random number from the random number generator random():

worksheet chapter6_if_stmt
{
	float random_number;
	random_number = random();
	if(random_number>0.5) writeln(“rn is greater than 0.5”)
	else writeln(“rn is less than or equal to 0.5”);
};

	The case� XE "case" � is a multiple-branch conditional statement, which successively tests the value of an expression against a list of integer constants. When a match is found, the statements associated with that constant are executed. The general form of the case� XE "statement:case" � statement is

case(expression)
{
	constant1:
		statements;
	constant2:
		statements;
	constant3, constant4:
		statements;
	......
};

The value of expression is tested, in order, against the values of the constants specified in branches. When a match is found, the statement sequence associated with that branch is executed. For example:

void try_case(int i)
{
	float x[];
	
	x = [ 1.1, 2.2, 3.3 ];

	case(i)
	{
		1:
			writeln(“case 1: x = ”, x[i]);
			break;
		2:
			writeln(“case 2: x = ”, x[i]);
			break;
		3:
			writeln(“case 3: x = ”, x[i]);
			break;
	};
};

worksheet chapter6_case_stmt
{
	try_case(2);
};

Run the script, the result is

case 2: x = 2.2


6.3 Loop Statement� XE "Statement:loop" �s
	The loop statement for� XE "for" � provides great flexibility and power. The general form is 
for(n=expression1, expression2, expression3) statement;
or
for(n=expression1, expression2, expression3)
{
	statements;
};
where n=expression1 is an assignment statement that is used to set the loop control variable n. expression2 is a condition that determines the loop exits when n>expression2. expression3 is the increment number defines how the loop control variable changes each time the loop is repeated. For example, the following script prints the numbers 1 through 10 on the screen.

worksheet chapter6_for_stmt
{
	int x;
	for(x=1; 10; 1) writeln(x);
};

	The following example is a for loop that contains multiple statements:

for(x=1; 10; 1) 
{	
	z = x*x;
	writeln(z);
};

	The second loop statement is the while� XE "while" � loop. The general form is 
while(expression) statement;
or
while(expression)
{
	statements;
};
where expression is relational expression. The loop iterates while the condition is true. When the condition becomes false, program control passes to the line after the loop block. The following example assigns a vector:

worksheet chapter6_while_stmt
{
	int i;
	float x[5];

	i = 0;
	while(i<=5)
	{
		i = i + 1;
		x[i] = 1.1 * i;
	};
	writeln(“x = ”, x);
};

	The third loop statement is the do-until� XE "do-until" � loop. Unlike for and while loops, which test the loop condition at the top of the loop, the do-until loop checks its condition at the bottom of the loop. This means that a do-until loop always executes at least once. The general form of the do-until loop is
do statement until(expression);
or
do {
statements;
} until(expression);
The do-until loop iterates until expression becomes true.
The following do-until loop will write numbers from 1 through 6 to the screen.

worksheet chapter6_until_stmt
{
	int i;
	i = 0;
	do {
		i = i + 1;
		write(i);
	} until(i>5);
	writeln();
};

6.4 Jump Statement� XE "Statement:jump" �s
There are three jump statements in Garibaldi: return , break and quit. 
	The return� XE "return" � statement is used to return from a function. It is a jump statement because it causes execution to return to the point at which the call to the function was made. If return has a value associated with it, that value is the return value of the function. The general form of return statement is
return expression;
where expression is optional.
	The break� XE "break" � statement is used to force immediate termination of a loop, bypassing the normal loop conditional test. When the break statement is encountered inside a loop, the loop is immediately terminated and program control resumes at the next statement following the loop. For example:

worksheet chapter6_break_it
{
	int t;
	for(t=0; 100; 1)
	{
		write(t);
		if(t==5) break;
	};
	writeln();
};

Print the numbers from 0 to 5 on the screen. The loop terminates because break causes immediate exit from the loop, overriding the conditional test t(100 specified by for statement.
	The quit statement is always used at global scope level, that means it should be outside any function or worksheet scopes. The statement cause the program termination. Any statements after the statement

quit;

are ignored.
�   Console and Files I/O� XE "I/O" �


Garibaldi supports two input and output (I/O) approaches: console and file I/O. In console I/O or standard I/O, the input date comes from the keyboard, and the output data is shown on the screen. In file I/O, the input data is read from a user-specified file, and the output data is also written to a user-specified file. Garibaldi makes little distinction between console and file I/O.

7.1 Console� XE "I/O:console" � I/O
Garibaldi has four basic console I/O functions: read(), readln(), write() and writeln(). These functions perform formatted input and output, that is, they can read and write data in various formats that are under your control. The write() and writeln() functions write data to the screen. The read()  and readln() functions, their complements, read data from the keyboard. They all can operate on any of the basic data types, including characters, strings and numbers.
	The general forms for standard output functions are:
	write� XE "write" �(argument list)
and
	writeln� XE "writeln" �(argument list)
where the input argument list may contain any number of arguments of any basic data types. The difference between write() and writeln() is that writeln() will start a new line for the next output, and write() will continue to write data in the same line. For example, the script

write(“a series of numbers:”);
write(1);
write(2);
write(3);
write(“...”);
writeln();

produces the output:

a series of numbers: 1 2 3 ...

and a new line is started for subsequent output. The same display can be obtained by a single call for writeln():

writeln(“a series of numbers:”, 1,  2,  3,  “...”);

	The output format� XE "format" �s can be controlled by using format modifiers. The format modifier goes after the argument, for example:
write(arg1:field_width1:precision1, arg2:field_width2:precision2, ...)
where field_widthi is an integer number acting as a minimum field width specifier. This pads the output with spaces to ensure that it reaches a certain minimum length. The default minimum field with is 8. The following script demonstrates the minimum field width specifier:

worksheet chapter7_write_width_modifier
{
	int n;
	float x;

	n = 1234;
	x = 3.1415;
	writeln(n);
	writeln(n:4);
	writeln(x);
	writeln(x:4);
};

It produces the following output:

    1234
1234
   3.142
3.142

The minimum field width� XE "field width" � modifier is most commonly used to produce tables in which the columns line up. 
	precisioni� XE "precision" � is an integer number and it determines the number of decimal places displayed for floating numbers. The default precision is 3. For example:

worksheet chapter7_write_width_modifiers
{
	float x;
	x = 3.14159;
	writeln("x =", x);
	writeln("x =", x:7:4);
};

produces the output: 

   3.142
 3.1416

	read() and readln() functions are the general-purpose console input functions. The general forms are:
	read� XE "read" �(argument list)
and
	readln� XE "readln" �(argument list)
Similar to their complements, the difference between read() and readln() is that readln() will start a new line before it reads in the first argument and read() will read in the argument following previous input argument. The following example demonstrates readln() function:

worksheet chapter7_read_readline
{
	int n;
	double x;

	writeln(“input number n:”);
	readln(n);
	writeln(“input number x:”);
	readln(x);
	writeln(“ n = ”, n);
	writeln(“ x = ”, x);
};

Run the script, you will be prompted with 
> input number n:
type the number 10 and press return key, you will be prompt with
> input number x:
type the number 14.4 and press return key, the message appears on your screen reads

n =     10
x = 14.400


7.2 File� XE "I/O:file" � I/O
In Garibaldi file I/O is handled by the class File which has member functions the same as console I/O functions for input and output data. The definition of class File is given below.

class File� XE "File" �
{
	string name;
	char type;

	void open(string filnam, char filtyp);
	void close();
	void read(...);
	void readln(...);
	void write(...);
	void writeln(....);
};

File����Class for file I/O.��Member Variables��name��a string, file name.��type��a character. “r” defines the file as read only; “w” defines the file as write only.��Member Functions��open(filnam, filtype)����Open the file for input or output data.��Arguments����filnam��a string, specifies the file name.��filtyp��a character “r” or “w”, specifies the file type.��writeln(...)����Write arguments to the file and start a new line for next output.��Arguments��any number of arguments of basic data types.��write(...)����Write arguments to the file.��Arguments��any number of arguments of basic data types.��readln(...)����Start a new line and then read data from the file.��Arguments��any number of arguments of basic data types.��read(...)����Read data from the file.��Arguments��any number of arguments of basic data types.��close()����Close the file.��Arguments��no arguments.��
The following example demonstrates how to specify files for input and output data.

worksheet chapter7_File
{
	int n;
	float x;
	File rfile, wfile;

	rfile.open("ch07_File.dat", "r");
	rfile.readln(n, x);
	rfile.close();

	wfile.open("ch07_File.out", "w");
	wfile.writeln("n =", n);
	wfile.writeln("x =", x);
	wfile.close();
};

The member function open() defines the file name and type, the arguments “r” and “w” specify files as read and write only, respectively. The member function close() closes the file. The file “ch07_File.dat” is shown below:

124  3.14159

The output file “ch07_File.out” will read

n =   124
x = 3.142

�   Random Variables


Random variables� XE "Random variables" � are defined and studied in theory of probability and are essential for probabilistic modeling and analysis. A random variable with discrete or continuous possible values is referred to as discrete� XE "Random variables:discrete" � or continuous� XE "random variables:continuous" � random variable, respectively. Random variables may be related or unrelated to each other which are referred to as dependen� XE "random variables:dependent" �� XE "random variables:dependent" �t or independen� XE "random variables:independent" �t random variables, respectively. 
	From modeling point of view, random variables are characterized by the data, which are the distribution parameters, and the functions, such as PDF and CDF, that operate on the data. Therefore, the random variable can be naturally represented by the class.
In Garibaldi, continuous and discrete random variables are modeled by the class data types: Var for independent random variables and Vars for dependent random variables. An object of the random variable class contains distribution parameters, PDF, CDF, random number generator and so on. You can define random variables with build-in distribution functions as well as user-defined distributions. Garibaldi also provides a random variable manager class Vjar for handling a set of random variables which might be of different types.

8.1 Independent Random Variables� XE "Independent Random Variables" �
In probability theory, a continuous random variable X is defined by the probability density function� XE "probability density function" � (PDF) f(x) or the cumulative distribution function� XE "cumulative distribution function" � (CDF) F(x). The relationship between f(x) and F(x) is given by
� EMBED Equation.2  ���.			(8.1)
For example, the probability density function for a normal random variable is given by
� EMBED Equation.2  ���,				(8.2)
where the distribution parameters m and s > 0 are  the mean and standard deviation, respectively. The normal random variable with m = 0 and s = 1 is referred to as the standard normal variable.
	A discrete random variable X is defined by the probability mass  function (PMF) f(x) or the cumulative probability function F(x) for x = 0, (1, (2, … . The relationship between the two functions is given by
� EMBED Equation.2  ���.		(8.3)
For example, the Bernoulli random variable has probability mass function 
� EMBED Equation.2  ���,		(8.4)
where 0<p<1 is the distribution parameter. 
	For any continuous distribution function F(x), the inverse distribution F-1(p) exists. If 
� EMBED Equation.2  ���.					(8.5)
x is also called quantile� XE "quantile" �.
There are two random variable transformations� XE "transformations" � are used in Garibaldi. The first one is the transformation between random variable X and the random variable U with uniform distribution on (0, 1). This transformation is used to simulate continuous random variable X by the fact that if 
� EMBED Equation.2  ���										(8.6)
then the random variable X has distribution F(x). Since the random variable U is simulated by using a pseudo random number generator, the random variable X can be simulated using (8.6).
The second one is the transformation between the random variable X and the standard normal variable Y. The transformation is expressed by
� EMBED Equation.2  ���,									(8.7)
where (() is the standard normal distribution function. The Jacobian of the transformation is given by
� EMBED Equation.2  ���,										(8.8)
where (() is the standard normal density function.
	In Garibaldi, independent random variables are represented by objects of class Var. The class’ member variables and member functions provide interfaces and mechanism for functions and transformations discussed above. A number of well-known distributions were implemented in Garibaldi, user can define random variables with these distributions easily. User can also define random variables with any user-defined distribution functions.
	The definition of class Var is expressed as:

class Var� XE "Var" �
{
	string name;
	float par[];
	int parlink[];

	void init(const string type, const float par[]);
void init(const string type, const float par[], 
    const float const a, float b,
          float user_pdf, float user_cdf, float user_quantile);
void set_par(const float par[]);
void set_parlink(const int link[]);
	float pdf(const float x);
	float cdf(const float x);
	float quantile(const float p);
	float mean();
	float stdv();
	float random();
	float y_from_x(float x);
	float x_from_y(float y);
	float dx_dy(float y);
};

Var����Class for independent random variables.��Member Variables��name��string type. The distribution name.��par��a vector of float numbers. The distribution parameters.��parlink��a vector of int numbers, which has the same size as par. parlink[i]>0 indicates the random variable is conditionally dependent on other variables. See Vjar for more details.��Member Functions��init(nam,p)����Initialize member variables and specify a build-in distribution function for the random variable.��Arguments����nam��a string, specifies the distribution name. It must be one of the names as listed at the end of this section, e.g., “Normal” and “Binomial”.��p��a float vector, defines the distribution parameters par.��Return��none.��init(nam,p,a,b,usrpdf,usercdf,userquantile)����Initialize the member variables and specify a user-defined probability density function.��Arguments����nam��a string. It is either “Continuous” or “Discrete”, which defines a continuous or discrete random variable, respectively.��p��a float vector, defines the distribution parameters par.��a,b��numeric numbers, define the lower and upper limits of the values of the random variable values.��usrpdf��a user-defined probability density function. The function is declared as:
float usrpdf(float x, float p[]) { ... };
where x and p[] are the value and distribution parameters of the random variable, respectively.��usrcdf��a user-defined cumulative disctribution function. The function is declared as:
float usrcdf(float x, float p[]) { ... };
where x and p[] are the value and distribution parameters of the random variable, respectively. The argument is optional.��usrquantile��a user-defined quantile function. The function is declared as:
float usrquantile(float x, float p[]) { ... };
where x and p[] are the value and distribution parameters of the random variable, respectively. The argument is optional.��Return��none.��set_par(p)����Reset the distribution parameters.��Arguments��p is a float vector that assigns values to the member variable par.��Return��none.��set_parlink(link)����Specify the dependency of the random variable.��Arguments��link is a int vector, contains dependency code. See Vjar for details.��Return��none.��pdf(x)����Evaluate PDF at x.��Arguments��x is a float number.��Return��a float number.��cdf(x)����Evaluate CDF at x.��Arguments��x is a float number.��Return��a float number.��quantile(p)����Evaluate quantile at p.��Arguments��p is a float number.��Return��a float number.��mean()����Evaluate the mean.��Arguments��none.��Return��a float number.��stdv()����Evaluate the standard deviation.��Arguments��none.��Return��a float number.��random()����Generate a random number from the random variable distribution.��Arguments��none.��Return��a float number.��x_from_y(y)����Transform value y in standard normal space to the random variable space.��Arguments��a float number. A value in standard normal space.��Return��a float number. The value in the random variable space.��y_from_x(x)����Transform value x in the random variable space to standard normal space.��Arguments��a float number. A value in the random variable space.��Return��a float number. The value in standard normal space.��dx_dy(y)����Evaluate the Jacobian of the transformation at value y in standard normal space.��Arguments��a float number. A value in standard normal space.��Return��a float number.��
To demonstrate the use of class Var, we present two examples. The first example shows how to define and use random variables with build-in distribution functions.

worksheet  chapter8_buildin_Var
{
	float x, p;
	float par[];
	Var nrm1;
	Var binomial;
	Var chisqr;

	nrm1.init("Normal"); # standard normal
		
	par = [10.0];
	chisqr.init("ChiSquare",par);

	par = [0.5, 4];
	binomial.init("Binomial", par);

	writeln("name      ", "      mean", "         x", "       pdf",
	        "       cdf", "  quantile");
	x = -4.5;
	p = nrm1.cdf(x);
	writeln(nrm1.name:10, nrm1.mean():10:6, x:10:6, nrm1.pdf(x):10:6, 
			p:10:6, nrm1.quantile(p):10:6); 
	
	x = 3.0;
	p = binomial.cdf(x);
	writeln(binomial.name:10, binomial.mean():10:6, x:10:6, 
		  binomial.pdf(x):10:6,p:10:6,
		  binomial.quantile(p):10:6);

	x = 6.74;
	p = chisqr.cdf(x);
	writeln(chisqr.name:10, chisqr.mean():10:6, x:10:6, 
		  chisqr.pdf(x):10:6, 
		  p:10:6, chisqr.quantile(p):10:6);
};

Run the script, the output is given below.

name            mean         x       pdf       cdf  quantile
Normal      0.000000 -4.500000  0.000016  0.000003 -4.500002
Binomial    2.000000  3.000000  0.250000  0.937500  3.000000
ChiSquare  10.000000  6.740000  0.092407  0.250259  6.740000

	The second example shows how to define and use random variables with user-defined distribution functions.

worksheet chapter8_user_defined_Var
{
	float truncated_normal_pdf(const float x, const float p[])
	{
		float pdf;
		
		if( (x<=p[1]) | (x>=p[2]) ) pdf = 0.0
		else 
		{
			pdf = pnormal(x)/(pnormal(p[2])-pnormal(p[1]));
		};
		return pdf;
	};
	float truncated_normal_cdf(const float x, const float p[])
	{
		float cdf;
		
		if(x<=p[1]) cdf = 0.0
		else 
		{
			if(x>=p[2]) cdf = 1.0
			else cdf = (pnormal(x)-pnormal(p[1]))/
				     (pnormal(p[2])-pnormal(p[1]));
		};
		return cdf;
	};
	float poisson_pdf(const float n, float par[])
	{
		float p;
		float lam;
		lam = par[1];
      	p = pow(lam,n)*exp(-lam)/factorial(n);
      	return p;
	}
	float p, x;
	Var my_normal;
	Var my_poisson;
	float par[];
      
	par = [ 0.5 ];
	my_poisson.init("Discrete", par, 0.0, 100.0, poisson_pdf);
	
	par = [-1.5, 2.0];
	my_normal.init("Continuous", par, par[1], par[2], 
			   truncated_normal_pdf, truncated_normal_cdf);

	writeln("my_normal: pdf=", my_normal.pdf(0.0),
			"  cdf=", my_normal.cdf(0.0), 
			"  quantile=", my_normal.quantile(0.5));
	writeln("my_poisson: pdf=", my_poisson.pdf(3), 
			"  cdf=", my_poisson.cdf(3));
};

The random variable my_poisson is a discrete random variable with the probability density function poisson_pdf (). There is one parameter p[1] = 0.5 and the lower and upper limits are 0.0 and 100.0. The continuous random variable my_normal is a truncated standard normal variable with the probability density function truncated_normal_pdf() and the cumulative distribution function truncated_normal_cdf(). The parameters p[1] = -1.5 and p[2] = 2.0 define the lower and upper limits for its values. Run the script, we obtain the results:

my_normal: pdf=   0.549  cdf=     0.476  quantile=   0.055
my_poisson: pdf=   0.013  cdf=     0.998

	Garibaldi’s probabilistic library contains almost all commonly used distribution functions, their names and properties are listed below.

Bernoulli� XE "Bernoulli" ����The discrete random variable of  Bernoulli distribution.��Description��The probability mass function is given by
� EMBED Equation.2  ���
and f(i) = 0 otherwise, where 0 < p < 1. The mean is p and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [p]��Example��Once up a time, there is basketball player whose free throw percentage is 0.6. His name is Shaq. What is the chance that Shaq will make the basket with one free throw?

float par[];
Var Shaq_free_throw;
par = [0.6];
Shaq_free_throw.init(ÒBernoulliÓ,par);
writeln(ÒThe chance isÓ, Shaq_free_throw.pdf(1));

The answer is:

The chance is: 0.6��
Beta� XE "Beta" ����The random variable of Beta distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���
for 0 < x < 1, where 0 < (1 < 1.0 and 0 < (2 < 1.0. The mean is (1/((1+(1) and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [(1,(2]��Example��With (1 = 1.0 and (2 = 1.0, Beta is equivalent to uniformly distributed random variable on (0,1). For example:

float par[];
Var beta;
par = [ 1.0, 1.0];
beta.init(ÒBetaÓ,par);
writeln(ÒBeta  PDF(0.5) =Ò, beta.pdf(0.5),Ó  CDF(0.5) =Ò, beta.cdf(0.5));

The result is

Beta: PDF(0.5) =  1.000  CDF(0.5) = 0.5��
Binomial� XE "Binomial" ����The random variable of binomial distribution.��Description��The discrete random variable or phenomenon of interest which follows the binomial distribution is the number of successes obtained in a sample of n observations where the probability of an observation being classified as success is a constant p. Thus the binomial distribution has enjoyed numerous applications from games of chance to product quality control. For the binomial model, the sample data are drawn with replacement from a finite population or without replacement from an infinite population.
     The probability mass function is given by
� EMBED Equation.2  ���
for i = 0, 1, 2, …, n, where 0 ( p ( 1 and n > 0. The mean is np and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [p,n]��Example��With no time left in the game, Shaq gets a chance to make three free throws. He has to make at least two baskets to win the game. His free throw percentage is 0.6. What is the chance for him to make at least two baskets?

float par[];
Var Shaq_for_two;
par = [0.6, 3];
Shaq_for_two.init(ÒBinomialÓ,par);
writeln(“the chance to win =”, 
         Shaq_for_two.pdf(2+Shaq_for_two.pdf(3));

The result is

the chance to win = 0.648��
ChiSquare� XE "ChiSquare" ����The random variable of Chi-Square distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���
for x > 0, where n> 0 is the degree of freedom. The mean is n and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [n]��
DiscreteUniform� XE "DiscreteUniform" ����The discrete random variable with  uniform distribution on [a, b].��Description��The probability mass function is given by
� EMBED Equation.2  ���
for i = a, a+1, …, b, where b ( a. The cumulative distribution function is given by
� EMBED Equation.2  ���.
The mean (a+b)/2 is and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [a,b]��
Exponential� XE "Exponential" ����The random variable of exponential distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���
for x ( 0, where ( > 0. The cumulative distribution function is given by
� EMBED Equation.2  ���.
The mean and standard deviation are 1/(.��Parameters��par = [(]��Example��Generate two random samples from an exponentially distributed random variable with parameter (=0.5. 

float par[];
Var expo;
par = [0.5];
expo.init(ÒExponentialÓ,par);
writeln(“random samples: ”,expo.random(), expo.random());

The result is

random samples: 3.715   1.476��
F� XE "F" ����The random variable with F distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���
for x ( 0, where n1 > 0 and n2 > 0. The mean is � EMBED Equation.2  ��� for n2 > 2 and the standard deviation is � EMBED Equation.2  ��� for n2 > 4.��Parameters��par = [n1,n2]��
Gamma� XE "Gamma" ����The random variable with Gamma distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���
for x > 0, where ( > 0 and ( > 0 are the shape and scale parameters, respectively, and ((x) is the Gamma function. The mean (( is and the standard deviation is ((2.��Parameters��par = [(,(]��Example��Calculate PDF and CDF at 0.6 of a gamma random variable with ( = 2.5 and ( = 0.5.

float par[];
Var gamma;
par = [2.5,0.5];
gamma.init(ÒGammaÓ,par);
writeln(“Gamma: PDF(0.5) =”, gamma.pdf(0.5),
              “ CDF(0.5) =”, gamma.cdf(0.5));

The result is

Gamma: PDF(0.5) = 0.596 CDF(0.5) = 0.209��
Geometric� XE "Geometric" ����The discrete random variable of  geometric distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���
for i = 1, 2, …, where 0 ( p ( 1. The mean is 1/p and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [p]��
Hypergeometric� XE "Hypergeometric" ����The discrete random variable of  hypergeometric distribution.��Description��Both the binomial distribution and the hypergeometric distribution are concerned with the same thing-the number of successes in a sample containing n observations. What distinguishes these two discrete probability distributions and the mathematical expressions derived therefrom is the manner in which the data are obtained. For the hypergeometric model, the sample data are drawn without replacement from a finite population. The outcome of one observation is affected by the outcomes of the previous observations.
     The probability mass function is given by
� EMBED Equation.2  ���
for i = 0, 1, 2, …, min(n, k), where N and n are the population and sample size, respectively, k is the number of successes in the population, and i is the number of successes in the sample. The mean is (kn)/N and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [N,n,k]��Example��Given N = 100, n = 20 and k = 6, calculate the mean and standard deviation.

float par[];
Var hypr;
par = [100,20,6];
hypr.init(ÒHypergeometricÓ,par);
writeln(“mean =”,hypr.mean(), “ stdv =”, hypr.stdv());

The result is

mean = 1.200  stdv = 0.955��
LargestValue� XE "LargestValue" ����The random variable of type I largest value distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���,
where ( > 0. The cumulative distribution function is given by
� EMBED Equation.2  ���.
The mean is ( + 0.5772/( and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [(,(]��
Lognormal� XE "Lognormal" ����The random variable of lognormal distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���
for x ( 0, where ( > 0. The mean is � EMBED Equation.2  ��� and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [(,(]��
Normal� XE "Normal" ����The random variable of normal distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���,
where ( > 0. The mean is ( and the standard deviation is (.��Parameters��par = [(,(]��Example��Calculate PDF and CDF at 1.2 for a standard normal variable.

Var nrm;
nrm.init(ÒNormalÓ);
writeln(“PDF(1.2) =”,nrm.pdf(1.2),
        “  CDF(1.2) =”,nrm.cdf(1.2));

The result is

mean = 0.194  stdv = 0.885��
Poisson� XE "Poisson" ����The discrete random variable of  Poisson distribution.��Description��The probability mass function is given by
� EMBED Equation.2  ���
for i = 0, 1, 2, …, where ( > 0. The mean is ( and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [(]��
Rayleigh� XE "Rayleigh" ����The random variable with Rayleigh distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���
for x ( 0, where (> 0. The cumulative distribution function is given by
� EMBED Equation.2  ���.
The mean is � EMBED Equation.2  ��� and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [(]��
SmallestValue� XE "SmallestValue" ����The random variable of type I smallest value distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���,
where ( > 0. The cumulative distribution function is given by
� EMBED Equation.2  ���.
The mean is ( - 0.5772/( and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [(,(]��
t� XE "t" ����The random variable with student t distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���,
where n > 0. The mean is 0 and the standard deviation is � EMBED Equation.2  ��� for n > 2.��Parameters��par = [n]��
Uniform���The random variable with uniform distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���
for a ( x ( b and f(x) = 0 otherwise, where b > a. The cumulative distribution function is given by
� EMBED Equation.2  ���.
The mean is (a+b)/2 and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [a,b]��
Weibull� XE "Weibull" ����The random variable with Weibull distribution.��Description��The probability density function is given by
� EMBED Equation.2  ���
for x ( 0, where ( > 0 and ( > 0. The mean is � EMBED Equation.2  ��� and the standard deviation is � EMBED Equation.2  ���.��Parameters��par = [(,(]��Example��Given ( = 0.5 and ( = 2.0, calculate the quantile at 0.5.

Var wei;
float par[];
par = [0.5,2.0];
wei.init(“Weibull”, par);
writeln(“quantile 0.5 =”,wei.quantile(0.5));

The result is
quantile 0.5 = 1.386��


8.2 Dependent Random Variables� XE "Dependent Random Variables" �
Dependent random variables X1,…, Xn, collectively denoted by a vector X, are defined by their joint probability density function� XE "joint probability density function" � � EMBED Equation.2  ��� or the joint cumulative distribution function� XE "joint cumulative distribution function" � � EMBED Equation.2  ���, their relationship is given by
� EMBED Equation.2  ���.												(8.8)
Any subset of these random variables has a joint density function which can be found by integrating over the remaining variables. For example, the joint probability density function for X1, X2, …, Xm, where m < n, is defined by
� EMBED Equation.2  ���.				(8.9)
	The conditional density function� XE "conditional density function" � of a random variable Xm given X1, X2, …, Xm-1 is defined by
� EMBED Equation.2  ���.					(8.10)
Like independent random variables, several important operations of dependent random variables depend on two random variable transformations: the transformation between X and independent uniformly distributed random variables U1,…, Un, collectively denoted by a vector U, and the transformation between X and independent standard normal variables Y1,…, Yn, denoted by a vector Y.
Given the joint probability density function� EMBED Equation.2  ���, the random variables X can be simulated and transformed to independent standard normal variables by using the Rosenblatt transformation. Let U1,…, Un, collectively denoted by a vector U, be uniformly distributed random variables on (0, 1), the Rosenblatt transformation� XE "Rosenblatt transformation" � is defined by
� EMBED Equation.2  ���							(8.11)
where 
� EMBED Equation.2  ���				(8.12)
To simulate random variables X, we first generate values ui of the random variables U and then use (8.11) to obtain values xi of the random variables X. To transform values xi to the independent standard normal space Y, we first transform xi to ui using (8.11) and then obtain yi using equation yi = (-1(ui). The Jacobian matrix of the transformation � EMBED Equation.2  ��� is a lower triangular matrix.
The Rosenblatt transformation is a general approach for handling jointly distributed random variables. The computation required for numerical evaluation of the multidimensional integrals in (8.9) increases exponentially with the number of variables. In Garibaldi, a numerical integration algorithm based on Simpson’s rule is implemented for the multidimensional integrals. It has been successfully used for some problems where no more than four jointly distributed random variables are encountered.
For conditionally distributed random variables, i.e., the conditional probability density functions � EMBED Equation.2  ��� are explicitly known,  the Rosenblatt transformation can be easily computed because no multidimensional integrals are involved.
	For random variables with multivariate normal distribution� XE "multivariate normal distribution" �, the joint probability density function is written as
� EMBED Equation.2  ���,
											(8.13)
where ( is the mean vector, ( is the covariance matrix and det(() is the determinant of (. The covariance matrix can be expressed in terms of the standard deviations (i and coefficients of correlation (ij as
� EMBED Equation.2  ���,										(8.14)
where (ii = 1 and (ij <1 for i ( j.
The transformation between the random variables X and independent standard normal variables Y can be expressed by
� EMBED Equation.2  ���,										(8.15)
where B is an invertable n(n lower triangular matrix obtained from Cholesky decomposition
� EMBED Equation.2  ���,										(8.16)
where the superscript t denotes the matrix transposition. 
To simulate X, we first obtained values yi of Y and then use (8.15) to obtained values xi of X.
	In Garibaldi, the conditionally distributed random variables are handled by the class Vjar which will be discussed in next section. The dependent random variables with joint probability density function and multivariate normal distribution are handled by the class Vars whose definition is expressed as:

class Vars� XE "Vars" �
{
	string name;
	int size;
	float par[];
	float parlink[];

	void init(const string nam, const int n, 
    const float p[], const float rho[]);
	void init(const string nam, const int n, 
    		    const float p[], const float a[], const float b[], 
    float usrpdf(), float usrcdf());
	void set_par(const float par[]);
	void set_parlink(const int link[]);
	float pdf(const float x[]);
	float cdf(const float x[]);
	float array random();
	float array y_from_x(const float x[]);
	float array x_from_y(const float y[]);
	float array dx_dy(const float y[]);
};

Vars����Class for dependent random variables.��Member Variables��name��string type. The distribution name.��size��the number of random variables in the set.��par��a vector of float numbers. The distribution parameters.��parlink��a vector of int numbers, which has the same size as par. parlink[i]>0 indicates the random variable is conditionally dependent on other variables. See Vjar for details.��Member Functions��init(nam,n,p,rho)����Define the random variables with multivariate normal distribution.��Arguments����nam��a string “Multinormals”, defines the distribution name. ��n��a integer number. The number of variables which defines the member variable.��p��a float vector of size 2n. p[1],…,p[n] are the mean values; p[n+1],…,p[2n] are the standard deviations.��rho��a size-by-size float matrix. It defines the coefficient of correlation matrix.��Return��none.��init(nam,n,p,a,b,usrpdf,usrcdf)����Define random variables  with user-specified joint distribution function.��Arguments����nam��a string “JointVar”, defines the distribution name.��n��a integer number, defines the number of  variables size.��P��a float vector, defines the distribution parameters par.��a,b��2 numeric vectors define the lower and upper limits for the values of the random variables, respectively.��usrpdf��a user-defined function that represents the joint probability density function. The function is declared as:
float usrpdf(float x[], float p[]) { ... };
where x[] and p[] are the values and distribution parameters of the random variables, respectively.��usrcdf��a user-defined function that represents the joint cumulative distribution function. The function is declared as:
float usrcdf(float x[], float p[]) { ... };
where x[] and p[] are the values and distribution parameters of the random variables, respectively. The argument is optional.��Return��none.��set_par(p)����Reset the distribution parameters.��Arguments��p is a float vector that assigns values to the member variable par.��Return��none.��set_parlink(link)����Specify the dependency of the random variables.��Arguments��link is a int vector, contains dependency code. See Vjar for details.��Return��none.��pdf(x)����Evaluate joint probability density at x.��Arguments��x is a float vector.��Return��a float number.��cdf(x)����Evaluate joint cumulative distribution function at x.��Arguments��x is a float vector.��Return��a float number.��random()����Generate a vector of random numbers from the random variables’ distribution.��Arguments��none.��Return��a vector of size floating-point numbers.��x_from_y(y)����Transform values y in standard normal space to the random variable space.��Arguments��a vector of float numbers. Values in standard normal space.��Return��a vector of float numbers. Values in the random variable space.��y_from_x(x)����Transform values x in the random variable space to standard normal space.��Arguments��a vector of float numbers. Values in the random variable space.��Return��a vector of float numbers. Values in standard normal space.��dx_dy(y)����Evaluate the Jacobian matrix of the transformation at values y in standard normal space.��Arguments��a vector of float number. Values in standard normal space.��Return��a float size-by-size matrix.��
To demonstrate the use of class Vars, we present the following example:

worksheet chapter8_Vars
{
	float jpdf(float x[])
	{
		float y;
		y = (x[1] + x[2] + x[1]*x[2]);
		return y*exp(-y);
	};
	float par[], rho[];
	Vars jvs, norms;
	float x[], y[];
	float a[], b[];

	writeln("Jointly distributed random variables:");
	a = [ 0.0, 0.0 ];
	b = [ 15.0, 15.0 ];
	jvs.init("JointVars", 2, , a, b, jpdf);

	x = [ 5.913, 0.13];
	y = jvs.y_from_x(x);
	writeln("x = ", x);
	writeln("y = ", y);
	x = jvs.random();
	writeln("rns = ", x);
	
	writeln();
	writeln("Multivariate normal distributions:");
	par = [ 0.0, 0.0, 0.0, 1.0, 1.0, 1.0 ];
	rho  = [ 1.0, 0.5, 0.25; 
		   0.5, 1.0,  0.5; 
	        0.25, 0.5,  1.0];
	norms.init("Multinormals", 3, par, rho);
	y = [-1.0, 1.5, 0.6];
	x = norms.x_from_y(y);
	writeln("y = ", y);
	writeln("x = ", x);
	writeln("rns = ", norms.random());
};

jvs are the random variables with joint probability function jpdf().   norms are the random variables with multivariate normal distribution. The mean values are zero, the standard deviations are 1.0 and the coefficients of variation are given by the matrix rho[]. Run the script, the results are

Jointly distributed random variables:
x =
[
   5.913   0.130
]
y =
[
   2.741   0.100
]
rns =
[
   0.301   0.048
]

Multivariate normal distributions:
y =
[
  -1.000   1.500   0.600
]
x =
[
   0.187  -0.035  -1.650
]
rns =
[
  -0.375  -1.340   0.091
]

8.3 Random Variable Set� XE "Random Variable Set" �
In analysis, we often deal with many random variables which can be of different types. For example:

worksheet many_rvs
{
	Var nrm[2], beta;
	Vars nrms;
	float par[], rho[];
	float r[6];
	
	nrm[1].init(“NormalÓ);
	par = [1.5, 0.2];
	nrm[2].init(“Normal”, par);

	par = [ 0.4, 0.5];
	beta.init(“Beta”, par);

	rho = [1.0, 0.5, 0.25; 0.5, 1.0, 0.2; 0.5, 0.2, 1.0];
	par = [0.0, 0.0, 0.0, 1.0, 1.0, 1.0];
	nrms.init(“Multinormals”, 3, par, rho);

	r[1] = nrm[1].random();
	r[2] = nrm[2].random();

	r[3] = beta.random();

	tmp = nrm.random();
	r[4] = tmp[1];
	r[5] = tmp[2];
	r[6] = tmp[3];

	writeln(“random numbers:”, r);
};

By the declaration and definition, six random variables are represented by three objects: nrm[], beta and nrms. To generate a set of random numbers from these variables, it takes a few statements as shown. If we need to generate these numbers repeatedly as in Monte Carlo Simulation or sometimes the numbers of random variables or objects are different, modeling becomes very tedious.  That motivates the creation of class Vjar-a set of random variables. The definition of Vjar� XE "Vjar" � is expressed as:

class Vjar� XE "Vjar" �
{
	void fill(...);
	void list(File ofil);
	float array random();
	float array x_from_y(const float y[]);
	float array y_from_x(const float x[]);
	float array dx_dy(const float y[]);
};

Vjar����A class for managing random variables.��Member Functions��fill(arg1,arg2,..., argn)����Define a set of random variables.��Argument��arg1,arg2,..., arg2 can any types of Var, Var array or Vars.��Return��none.��list(ofil)����List all elements in the set.��Arguments����ofil��an object of class File, specifies the output file for listing.��Return��none.��random()����Generate a vector of random numbers from the random variable distributions.��Arguments��none.��Return��a vector of floating-point numbers.��x_from_y(y)����Transform values y in standard normal space to the random variable space.��Arguments��a vector of float numbers. Values in standard normal space.��Return��a vector of float numbers. Values in the random variable space.��y_from_x(x)����Transform values x in the random variable space to standard normal space.��Arguments��a vector of float numbers. Values in the random variable space.��Return��a vector of float numbers. Values in standard normal space.��dx_dy(y)����Evaluate the Jacobian matrix of the transformation at values y in standard normal space.��Arguments��a vector of float number. Values in standard normal space.��Return��a float size-by-size matrix.��
To demonstrate the use, the previous example is revisited with use of Vjar:

worksheet chapter8_Vjar
{
	Var nrm[2], beta;
	Vars nrms;
	float par[], rho[];
	float r[6];
	Vjar vjar;
	
	par = [0.0, 1.0];
	nrm[1].init(“Normal”, par);
	par = [1.5, 0.2];
	nrm[2].init(“Normal”, par);

	par = [ 0.4, 0.5];
	beta.init(“Beta”, par);

	rho = [1.0, 0.5, 0.25; 0.5, 1.0, 0.2; 0.5, 0.2, 1.0];
	par = [0.0, 1.0];
	nrms.init(“Multinormals”, 3, par, rho);

	vjar.fill(nrm, beta, nrms);

	r = vjar.random();
	writeln(“random numbers:”, r);
};

The output is 

random numbers:
[
   0.021   1.717   0.356   0.296   0.566  -0.977
]

	The class Vjar has another functionality: handling conditionally distributed random variables. A random variable X2 is said to be conditionally dependent on the random variable X1, if at least one distribution parameter of X2 is equal to X1. To define the dependency, we only need to specify which distribution parameters are equal to the random variables that already defined. 
All random variables in an object of Vjar are numbered. For example, the random variables nrm, beta and nrms in vjar in the above example are numbered as
name�nrm[1]�nrm[2]�beta�nrms��Number�1�2�3�4-6��Assume nrms be conditionally distributed whose mean values are equal to the first random variable and the standard deviations are equal to the third random variable. To specify the relationship, the member function set_parlink() of Vars (the same member function is available for Var) is used. Modify the above script, we have

worksheet chapter8_conditional_dist
{
	Var nrm[2], beta;
	Vars nrms;
	float par[], rho[];
	float r[6];
	Vjar vjar;
	int link[];
	
	par = [0.0, 1.0];
	nrm[1].init("Normal", par);
	par = [1.5, 0.2];
	nrm[2].init("Normal", par);

	par = [ 0.4, 0.5];
	beta.init("Beta", par);

	rho = [1.0, 0.5, 0.25; 0.5, 1.0, 0.2; 0.5, 0.2, 1.0];
	par = [0.0, 0.0, 0.0, 1.0, 1.0, 1.0];
	nrms.init("Multinormals", 3, par, rho);
	
	link = [1,1,1,3,3,3];
	nrms.set_parlink(link);

	vjar.fill(nrm, beta, nrms);

	r = vjar.random();
	writeln("random numbers:", r);
};

The relationship is specified by two statements

link = [1,1,1,3,3,3];
nrms.set_parlink(link);

Run the script again, the result is

random numbers:
[
   0.164   1.403   0.014   0.138   0.156   0.133
]

If only the mean values are equal to the first random variable and the standard deviations are constant, the link statements become

link = [1,1,1,0,0,0];
nrms.set_parlink(link);

where 0 in the vector link[] indicates the corresponding parameter is a constant.

8.4 Random Number Generator� XE "Random Number Generator" �
The random number generator is an algorithm that starts with an initial number, called seed, and then recursively computes values of the random variable with uniform distribution on (0, 1). The random number generator is used to simulate all other random variables as described in previous sections. 
In Garibaldi, you can use a global random number generator or a locally defined random number generator. The functions for initialization and use of the global random number generator are given below.

set_seed(seed)����Initialize the seed of the global random number generator.��Argument��seed is a float number for initializing the generator. If no argument is provided, an arbitrary number will be used.��Return��a float number of the actual seed is returned.��
random()� XE "random" �����Generate a random number on (0, 1)��Argument��none.��Return��a float number on (0, 1).��
random(n)����Generate n random numbers on (0, 1)��Argument��n is an integer number, specifies the desired number of random numbers.��Return��a vector of n numbers on (0, 1).��
A local random number generator is an object of class RNGenerator� XE "RNGenerator" � whose definition is expressed as:

class RNGenerator
{
	float seed;

	float init();
	float init(const float s);
	float random();
	float array random(const int n);
};

RNGenerator����Class generates random numbers on (0, 1).��Member Variables��seed��a float number. The initial seed for generating subsequent random numbers.��Member Functions��init(), init(s)����Initialize the random number generator with a seed. ��Arguments����s��a float number, initializes the random number generator”s seed. If none argument, an arbitrary number will be assigned to the seed.��Return��a float number, the actual seed for the generator.��random()����Generator a random number on (0, 1).��Arguments��none.��Return��a float number, a number on (0, 1).��random(n)����Generator a vector of n random numbers on (0, 1).��Arguments��n is a integer number.��Return��a vector of n float numbers on (0, 1).��
Here is an example showing how to use the random number generator.

worksheet chapter8_rn
{
	RNGenerator gen;

	gen.init(12.45);
	
	writeln("three rns:", gen.random(), gen.random(), gen.random());

	writeln("another two rns:", gen.random(2));
};

The output is

three rns:   0.978   0.779   0.154
another two rns:
[
   0.534   0.090
]
�   Mathematical Functions


Garibaldi has collected a large number of mathematical functions which are typically classified into two groups: elementary and special mathematical functions. All mathematical functions involve only numeric data, i.e., all input and output data are numeric types. In section 9.1, elementary mathematical functions are listed. In section 9.2, special mathematical functions are listed and described in details.

9.1 Elementary Mathematical Functions
The elementary� XE "mathematical functions:elementary" � mathematical functions include trigonometric, hyperbolic, exponential, logarithmic and some miscellaneous functions. The input arguments for each functions are declared as const float. These functions are listed below.

sin(x)�returns sine of argument x in radian.��cos(x)�returns cosine of argument x.��tan(x)�returns tangent of argument x.��cot(x)�returns cotangent of argument x.��asin(x)�returns inverse sine of argument 0 ( x ( 1.��acos(x)�returns inverse cosine of argument 0 ( x ( 1.��atan(x)�returns inverse tangent of argument x.��acot(x)�returns inverse cotangent of argument x.��sinh(x)�returns hyperbolic sine of argument x.��cosh(x)�returns hyperbolic cosine of argument x.��tanh(x)�returns hyperbolic tangent of argument x.��coth(x)�returns hyperbolic cotangent of argument x.��abs(x)�returns absolution value of argument x.��exp(x)�returns exponential of argument x.��log(x)�returns natural logarithm of argument x > 0.��sqrt(x)�returns square root of argument x > 0.��pow(x,y)�returns value of x to power y.��

9.2 Special Mathematical Functions
The special� XE "mathematical functions:special" � mathematical functions arise from mathematical physics but also used in many other fields such as probability theory. The input arguments for each functions are declared as const float. These functions are listed as below.
aerf� XE "aerf" �(y)����The inverse error function.��Description��For � EMBED Equation.2  ���for -1< y <1, the equation
� EMBED Equation.2  ���
is satisfied.��Example��writeln(“aerf(0.966) =”, aerf(0.966));
The result is
aerf(0.966) = 1.499��
aerfc� XE "aerfc" �(y)����The inverse complementary error function. See erfc().��
besselj0� XE "besselj0" �(x), besselj1� XE "besselj1" �(x), bessely0� XE "bessely0" �(x), bessely1� XE "bessely1" �(x), besselyn� XE "besselyn" �(x,n)����Bessel functions. besselj0(x) and besselj1(x) return J0(x) and J1(x), respectively. bessely0(x) and bessely1(x) return Y0(x) and Y1(x), respectively. besselyn(x,n) returns Yn(x).��Description��For any real  n, the Bessel function Jn(x) can be defined by the series representation:
� EMBED Equation.2  ���,
where (() is the gamma function. The Bessel function Yn(x) is given by
� EMBED Equation.2  ���.
    The Bessel functions satisfy the recurrence relations
� EMBED Equation.2  ���
and
� EMBED Equation.2  ���.��Example��writeln(Òbesselj0(3.4) =”, besselj0(3.4));
The result is
besselj0(3.4) = -0.364��

betafnc� XE "betafnc" �(x,y)����Beta function.��Description��The beta function is defined as:
� EMBED Equation.2  ���,
which is related to the gamma function by
� EMBED Equation.2  ���.��Example��writeln(Òbeta(0.5,1.5) =”, betafnc(0.5,1.5));
The result is
beta(0.5,1.5) = 1.571��
ibeta� XE "ibeta" �(x,a,b)����Incomplete beta function.��Description��The incomplete beta function is defined as:
� EMBED Equation.2  ���,
where B(a,b) is the beta function.��
binomial_coeff� XE "binomial_coeff" �(n,k)����Binomial coefficient.��Description��The binomial coefficient is defined by
� EMBED Equation.2  ���
for 0 ( k ( n.��
erf� XE "erf" �(x), erfc� XE "erfc" �(x)����Error functions. erf(x) and erfc(x) return the values of the error function and the complementary error function for x>0, respectively.��Description��The error function is the integral of the Gaussian distribution function from 0 to x:
� EMBED Equation.2  ���.
The complementary error function is defined as:
� EMBED Equation.2  ���.��Example��writeln(“erf(1.5) =”, erf(1.5));
The results are
erf(1.5) = 0.966��
factorial� XE "factorial" �(n)����Factorial function.��Description��The function computes factorial n! for n ( 0.��Example��writeln(“4! = ”, factorial(4));
the result is
4! = 24��
gammafnc� XE "gammafnc" �(x)����Gamma function.��Description��The gamma function is defined by the integral:
� EMBED Equation.2  ���.
For integer n
� EMBED Equation.2  ���.��Example��writeln(“gamma(5) =”, gammafnc(5));
The result is
gamma(5) = 24��
igammafnc� XE "igammafnc" �(x,a)����Incomplete gamma function.��Description��The incomplete gamma function is defined as:
� EMBED Equation.2  ���.
for a > 0.��
dnormal� XE "dnormal" �(x), pnormal� XE "pnormal" �(x), qnormal� XE "qnormal" �(p)����dnormal is the probability density function, pnormal is the cumulative distribution function and qnormal is the quantile for the standard normal distribution.��
�   Numerical Analysis


Garibaldi implemented many numerical algorithms in terms of Garibaldi functions. These functions can be used for root finding, integration, optimization and matrix analysis. In this chapter, all these functions are described in details and some necessary theoretical backgrounds are provided. 

RootFinder� XE "RootFinder" �(fnc,a,b,tol,max)����The Newton-Raphson algorithm for solving f(x) = 0, where f(x) is the continuous function of a single variable.��Agument����fnc��a wrapper of user-defined function and its derivative.��a,b��the lower and upper limits for the desired root. Constant arguments.��tol��Optional constant argument. The desired precision for the root. The iteration is terminated until the relative error is less than tol. The default value is 0.001.��max��Optional constant argument. The maximum number of iterations. The default value is 20.��Return��returns a root of function fnc between limits a and b.��Description��By the Newton-Raphson algorithm, given initial guess x0, the algorithm recursively computes
� EMBED Equation.2  ���,
for i = 0, 1, 2, ..., until the convergence criterion
� EMBED Equation.2  ���
is satisfied, where tol is the prescribed approximation tolerance. The algorithm has quadratic convergence rate.��Reference��[1] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 1980.
[2] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Wetterling, Numerical Rescipes in C,  Cambridge University Press, Cambridge, 1990.��Example��Find the root for function f(x) = p1 - p2log x:

worksheet chapter10_root
{
	float f(float x, float par[])
	{
		return par[1] - par[2]*log(x);
	};
	float df(float x, float par[])
	{
		return -par[2]/x;
	};
	FncWrapper user;
	float par[2];
	float root;

	par = [ 1.0, 2.0 ];
	user.wrap(1, par, f, df);
	root = RootFinder(user, 1.0, 2.0, 0.001);
	writeln("par = ", par);
	writeln("root = ", root);
	
	writeln();
	par = [ 1.0, 3.0 ];
	user.set_par(par);
	root = RootFinder(user, 1.0, 2.0, 0.001);
	writeln("par = ", par);
	writeln("root = ", root);
	
};

The results are

par =
[
   1.000   2.000
]
root =     1.649

par =
[
   1.000   3.000
]
root =     1.396��
Integrator� XE "Integrator" �(fnc,a,b,tol)����The Simpson integration algorithm for numerical evaluation of the integral 
� EMBED Equation.2  ���, 
where the integrand f(x) is the continuous function of a single variable and b > a.��Argument����fnc��wrapper for user-defined integrand f(x).��a,b��the lower and upper limits of the integral. Constant arguments.��tol��Optional constant argument. The iteration is terminated until the relative error is less than tol. The default value is 0.001.��Return��the numerical result of the integral.��Description��The algorithm uses an adaptive recursive Simpson’s rule. Starting by dividing the integration range into two intervals, then the algorithm recursively doubles the number of intervals without losing the benefit of previous work until desired level of precision is attained:
� EMBED Equation.2  ���,
where Ii is the estimated integral at ith step.��Reference��[1] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 1980.
[2] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Wetterling, Numerical Rescipes in C,  Cambridge University Press, Cambridge, 1990.��Example��see next example.��
Integrator� XE "Integrator" �(fnc,a,b,tol)����A numerical algorithm for evaluating the multidimensional integral 
� EMBED Equation.2  ���, 
where the integrand f(x1,x2,...,xn) is the continuous function of n variables and bi > ai.��Argument����fnc��wrapper for user-defined integrand f(x1,x2,...,xn).��a,b  ��a[i] and b[i] for i = 1, 2, ..., n are the lower and upper limits for the integral. Constant arguments.��tol��Optional constant argument. The iteration is terminated until the relative error is less than tol. The default value is 0.001.��max��Optional constant argument. The maximum number of iterations. The default value is 1,000,000.��Return��returns the result of numerically integrating the function fnc between the limits.��Description��This unique Garibaldi algorithm evaluates the integrals from x1 to xn successively. The adaptive recursive Simpson’s rule for the one-dimensional integral is used as a work hose. The number of evaluations for function f(x1,x2,...,xn) increases as the nth power of the number needed for a one-dimensional integral.��Example��Run the script:

worksheet chapter10_integrator
{
	float f1(const float x, const float par[])
	{
		return par[1] + par[2]*log(x);
	};
	float f2(const float x[], const float par[])
	{
		return par[1] + par[2]*exp(x[1]+x[2]+x[3]);
	};
	FncWrapper usr1, usr2;
	float par[2], a[], b[];
	float y;

	writeln("single integral:");
	par = [ 1.0, 2.0 ];
	usr1.wrap(1, par, f1);
	y = Integrator(usr1, 0.5, 1.5, 0.001);
	writeln("y =", y);

	writeln();
	writeln("multi-integrals:");
	par = [ 2.0, 0.1 ];
	usr2.wrap(3, par, f2);
	a = [0.0, 1.0, 2.0];
	b = [1.0, 2.0, 3.0];
	y = Integrator(usr2, a, b, 0.001);
	writeln("y =", y);
};

The results are:

single integral:
y =        0.910

multi-integrals:
y =       12.190��
Minimize� XE "Minimize" �(fncs,x0,tol,max)����The feasible direction algorithm for constrained optimization which is defined as:
� EMBED Equation.2  ���,
where fi(x) are the functions n variables. f1(x) and fi(x) for i = 2, 3, ..., m are referred to as the objective and constraint functions, respectively.��Argument����fncs��a vector of m FncWrapper type objects that contain user-defined objective function f1(x) and constraint functions fi(x) for i = 2, 3, …, m.��x0��a vector of size n. The starting point for the iterations. Constant argument.��tol��Optional constant argument. The desired level of precision for the solution. The iteration stops until the relative error is less than tol. The default value is 0.001.��max��Optional constant argument. The maximum number of iterations. The default value is 50.��Return��returns a vector of size n, which is the minimizer of the objective function that satisfies all constraint functions.��Description��In a typical constrained optimization algorithm, given an initial guess x0, a sequence xi for i = 0, 1, ... is generated by the formula
� EMBED Equation.2  ���,
where hi and (i are the search direction and the step size, respectively. The algorithm is characterized by the search direction and the line search scheme that determines the step size. The algorithm uses a feasible direction and Armijo line search scheme [1].��Reference��[1] E. Polak, Note on Fundamentals of Optimization for Engineers, University of California, Berkeley, California, 1991.
[2] D. G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, Massachusettes, 1986.��Example��Consider the function f(x1,x2) = 0.5(x12 + x22), the minimizer is given by running the script:

worksheet chapter10_SteepDescent
{
      float f0(const float x[], const float par[])
      {
            return 0.5*(x[1]*x[1] + x[2]*x[2]);
      };
      float array df0(const float x[], const float par[])
      {
            float grad[2];
            grad[1] = x[1];
            grad[2] = x[2];
            return grad;
      };
      float x[2], x0[2];
      FncWrapper user;

      user.wrap(2, , f0, df0);
	
      x0 = [0.5, 0.8];
      x = Minimizer(user, x0, 0.001, 20);
      writeln("x = ", x);
};
The solution is

x =
[
   0.000   0.000
]��
Minimize� XE "Minimize" �(fnc,x0,tol,max)����The steepest descent algorithm for unconstrained optimization: � EMBED Equation.2  ���, where f(x) is the continuous function of n variables.��Argument����fnc��wrapper of  user-defined function f(x).��x0��a vector of n floating-point numbers. The initial guess for the solution. Constant argument.��tol��Optional constant argument. The desired level of precision for the solution. The iteration stops until the relative error is less than tol. The default value is 0.001.��max��Optional constant argument. The maximum number of iterations. The default value is 50.��Return��returns a minimizer of the function.��Description��Similar to the constrained optimization, the algorithm generates a sequence of points that converges to the solution. The algorithm is characterized by the search direction and line search scheme. The algorithm uses the steepest descent direction -(f(x) and the Armijo line search scheme [1].��Reference��[1] D. G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, Massachusettes, 1986.��Example��Consider the problem
� EMBED Equation.2  ���
The minimizer that satisfy the constraints can be obtained by running the following script:

worksheet chapter10_opti
{
      float f0(const float x[], const float par[])
      {
            return 0.5*(x[1]*x[1] + x[2]*x[2]);
      };
      float array df0(const float x[], const float par[])
      {
            float grad[2];
            grad[1] = x[1];
            grad[2] = x[2];
            return grad;
      };
      float f1(const float x[], const float par[]) 
      {
            return exp(-x[1]) - x[2];
      };
      float array df1(const float x[], const float par[])
      {
            float grad[2];
            grad[1] = -exp(-x[1]);
            grad[2] = -1.0;
            return grad;
      };
      float f2(const float x[], const float par[]) 
      {
            return exp(x[1]) - x[2];
      };
      float array df2(const float x[], const float par[])
      {
            float grad[2];
            grad[1] = exp(x[1]);
            grad[2] = -1.0;
            return grad;
      };
      float par[2], x0[2], x[2];
      FncWrapper user[3];
      int max;
      
      par = [ 1.0, 2.0 ];
      user[1].wrap(2, par, f0, df0);
      user[2].wrap(2, par, f1, df1);
      user[3].wrap(2, par, f2, df2);
      
      x0 = [ 0.5, 1.1 ];
      x = Minimizer(user, x0, 0.0001, 30);
      writeln("x =", x);
};

The solution is 

x =
[
  0.000   1.000
]��
eigenvalues� XE "eigenvalues" �(A), eigenvectors� XE "eigenvectors" �(A)����The numerical solution for eigenvalues and eigenvectors of a square matrix A. The problem is defined as:
� EMBED Equation.2  ���,
where ( and x are the eigenvalue and corresponding eigenvector, respectively.��Argument����A��an n(n matrix.��Return��eigenvalues() returns a vector containing the eigenvalues of matrix A.. eigenvectors() returns an n(n matrix whose columns are the eigenvectors of matrix A..��Description��The algorithm first converts a real general matrix to Hessenberg from using orthogonal similarity transformations. Then the QR method is used to find eigenvalues and eigenvectors.��Reference��[1] B. S. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigensystem Routines-EISPACK Guide, Lecture Notes in Computer Science, Volume 6, Springer-Verlag, 1976.��Example��Run the script:

worksheet chapter10_eigensolution
{
	float A[], B[], C[];
	float x[], b[];
	
	A = [ 4.0, -1.0; -1.0, 2.0 ];

	x = eigenvalue(A);
	writeln("x =", x);

	B = eigenvector(A);
	writeln("B =", B);

	B = inverse(A);
	writeln("B =", B);

	b = [ 1.0, 1.0];
	x = LinearEq(A, b);
	writeln("x =", x);
};

The results are:

x =
[
   4.414   1.586
]
B =
[
   0.924   0.383
  -0.383   0.924
]
B =
[
   0.286   0.143
   0.143   0.571
]
x =
[
   0.429   0.714
]��
det� XE "det" �(A)����Matrix determinant.��Synopsis��d = det(A)��Argument����A��an n(n matrix.��Return��returns the determinant of the square matrix A.��Description��The determinant is computed from the triangular factors obtained by Gaussian elimination.��
inverse� XE "inverse" �(A)����Matrix determinant.��Argument����A��an n(n matrix.��Return��returns the inverse of the square matrix A.��Description��The inverse is computed from matrix factorization.��
LinearEq� XE "LinearEq" �(A,b)����The numerical algorithm for solving a system of linear equations:
� EMBED Equation.2  ���,
where x is the solution.��Synpsis��x = LinearEq(A, b);��Argument����A��an n(n numeric matrix.��b��a numeric vector of size n.��Return��returns a vector containing the solution to the equations.��Description��The solution is obtained by using Gaussian elimination with partial pivoting.��Reference��[1] LINPACK UserÕs Guide.��
rows� XE "rows" �(A) , cols� XE "cols" �(A), size(A)����The functions return the numbers of arrayÕs rows and columns, respectively.��Argument����A��an array of any data type.��Return��rows() returns the number of rows of the argument. cols() returns the number of columns of the argument. size() returns the total elements in the array.��Example��The statements
float A[2,3];
writeln(“A is a”, row(A), “ by”, col(A), “ matrix.”);
return
A is a 2 by 3 matrix.��
transpose� XE "transpose" �(A)����Matrix transpose.��Argument����A��a numeric matrix.��Return��returns the transpose of A.��Example��The statements
float A[2,3];
writeln(“A is a”, row(A), “ by”, col(A), “ matrix.”);
return
A is a 2 by 3 matrix.��
norm2� XE "norm2" �(a)����Vector norm. The norm � EMBED Equation.2  ��� is defined as
� EMBED Equation.2  ���.��Argument����a��a numeric vector.��Return��returns the norm of the argument.��
dot� XE "dot" �(a,b)����Inner product of vectors a and b:
� EMBED Equation.2  ���.��Argument����a,b��numeric vectors.��Return��returns the inner product of the arguments.��
�   Probabilistic Analysis


A number of numerical procedures and algorithms for probabilistic analysis were implemented as Garibaldi functions, such as Monte Carlo Simulation, Latin Hypercube Simulation and First-Order Reliability Method. The usage and theoretical background of these functions are given in this chapter.

MonteCarlo� XE "MonteCarlo" �(vars,fnc,cov,max)����Monte Carlo Simulation� XE "Monte Carlo Simulation" � for estimating expected value of the function g(X1,X2,...,Xn) of random variables X1, X2, ..., Xn.��Argument����vars��an object of class Vjar, contains n defined random variables.��fnc��an object of class FncWrapper, contains the user-defined function of n variables.��cov��Optional constant argument. The desired coefficient of variation of the estimate value. The simulation will be terminated whenever the criterion defined by max  or cov is satisfied. The default value is 0.05.��max��Optional constant argument. The maximum number of simulations. The default value is 1,000,000.��Return��The function returns a structure data of type SimulationSol that contains all simulation results. The data type SimulationSol is defined as:

struct SimulationSol
{
     float mean;
     float stdv;
     int simulations;
     float cov;
};

The elements mean and stdv are the estimated mean and standard deviation of the function g(X), respectively. simulations is the actual number of simulations. cov is the estimated coefficient of variation of the estimated mean and used as the precision measurement.��Description��Let X denote a random vector having a given density function f(x1,x2, …,xn) and suppose we are interested in computing the expected value
� EMBED Equation.2  ���
for function g with n random variables. Since the integration is difficult to compute, the Monte Carlo Simulation method is used to estimate the expected value E[g(X)] as
� EMBED Equation.2  ���,
where gi = g(xi) and xi for i = 1, 2, …, N are the random samples of X. The precision of this estimate can be measured by its variance
� EMBED Equation.2  ���,
where (g2 is the variance of g. Since (g2 is not known in advance, it is estimated by the sample variance
� EMBED Equation.2  ���.
Based on this estimate, one decides if the desired level of precision is attained or how many additional simulations are required. In practice, it is often more convenient to used the estimated coefficient of variation of � EMBED Equation.2  ���,
� EMBED Equation.2  ���,
as precision measurement.��Reference��[1] S. M. Ross, Simulation (Statistical Modeling and Decision Science), Academic Press, 1996.��Example��Consider three random variables X1, X2 and X3 having Poisson, Binomial and Weibull distributions, respectively. The Monte Carlo simulation is used to compute the mean value and standard deviation of the function g(x1,x2,x3) = x1 + x2 + x3. The script is given below.

worksheet chapter11_MonteCarlo
{
	int i;
	Var X[3];
	Vjar set;
	float par[];
	float g(float x[])
	{
		return x[1] + x[2] + x[3];
	};
	FncWrapper usr;
	SimulationSol sol;
	
	par = [ 2.0 ];
	X[1].init("Poisson", par);
	
	par = [ 0.5, 3.0];
	X[2].init("Binomial", par);
	
	par = [ 1.5, 2.0];
	X[3].init("Weibull", par);
		
	set.fill(X); # create the random variable set
	
	writeln("Random variable info:");
	writeln("type name","   mean", " stdv");
	for(i=1; 3; 1)
	{
		writeln(X[i].name:10, X[i].mean():6:2, 
                                  X[i].stdv():6:2);
	};
	usr.wrap(1,,g); # wrap up user defined function
	
	sol = MonteCarlo(set, usr, 0.01, 10000);
	
	writeln();
	writeln("Monte Carlo Simulation Results:");
	writeln("mean = ", sol.mean);
	writeln("stdv = ", sol.stdv);
	writeln("simulations = ", sol.simulations);
	writeln("error (cov) = ", sol.cov);
};

Run the script, we obtain the results:

Random variable info:
type name   mean  stdv
Poisson     2.00  1.41
Binomial    1.50  0.87
Weibull     1.81  1.23

Monte Carlo Simulation Results:
mean =     5.306
stdv =     2.077
simulations =     1533
error (cov) =    0.010��
LatinHypercube� XE "LatinHypercube" �(vars,fnc,N)����Latin Hypercube Simulation� XE "Latin Hypercube Simulation" � method for estimating expected value of the function g(X1,X2,...,Xn) of continuous random variables X1, X2, ..., Xn.��Argument����vars��an object of class Vjar, contains n defined random variables.��fnc��an object of class FncWrapper, contains the user-defined function of n variables.��N��the number of simulations. Constant argument.��Return��The function returns a structure data of type SimulationSol that contains all results. The data type SimulationSol is described in function MontCarlo.��Description��The Latin Hypercube Simulation method is different from the Monte Carlo Simulation method in random sampling. Let X denote n independent random variables, the range of each random variable is divided into N intervals of equal probability 1/N  and each interval will be sampled only once. 
     To obtain ith sample value of kth random variable Xk, we proceed as following. First, we randomly select an interval from N - i remaining unsampled intervals. Then a random value xki is sampled from the Xk distribution over the interval.
     One advantage of the Latin Hypercube Simulation is when the output g(X) is dominated by only a few of the components of X. This method ensures that each of those components is represented in a fully stratified manner, no mater which components might turn out to be important.
     In case random variables are dependent, the random variables are transformed to independent standard normal random variables. Values are sampled in the standard normal space as discussed above and then transformed back to the random variable space.��Reference��[1] M. D. Mckay, R. J. Beckman and W. J. Conover, ÒA comparison of three methods for selecting values of input variables in the analysis of output from a computer code,Ó Technometics, 21(2), 239-245, 1979.��
iHLRF� XE "iHLRF" �(vars,fnc,tol,max,x0)����Improved HLRF algorithm for FORM� XE "FORM" � analysis.��Argument����vars��object of class Vjar, contains defined random variables.��fnc��object of class FncWrapper, contains the user-defined function and its derivatives.��tol��the desired precision for the design point or equivalently the reliability index. The default value is 0.01 which is accurate enough for most applications. Constant argument.��max��the maximum number of iterations for finding design point. Constant argument.��x0��the initial value for the iteration. Constant argument.��Return��The function returns a structure data of type FORMsol that contains all results from the FORM analysis. The type FORMsol is defined as:

struct FORMsol
{
     int size;
     int iterations;
     float beta;
     float x[];
     float y[];
};

size is the number of random variables. iterations is the number of iterations for finding the design point. beta is the reliability index. x[] and y[] are the design point in the random variable space and standard normal space, respectively.��Description��In reliability analysis, the uncertainties are represented by a vector of random variables X. The state of a system component is expressed in terms of the limit-state function g(x) such that g(x) > 0 denotes the safe state and g(x) ( 0 denotes the failure state. The essential problem is to calculate the probability of failure
� EMBED Equation.2  ���,
where f(x) is the probability density function. Since for a general case an analytical solution of this integral is extremely difficult to obtain, methods have been developed to obtain an approximate solution that is sufficiently accurate for engineering purposes.
     In the First-Order Reliability Method (FORM), the approximation is carried out in the standard normal variable space Y. The transformation between X and Y is expressed by
� EMBED Equation.2  ���.
In the space of Y, we write the corresponding limit-state function as
� EMBED Equation.2  ���
and 
� EMBED Equation.2  ���,
where � EMBED Equation.2  ��� is the standard normal density function with n denoting the number of random variables.
     Based on special properties of the standard normal space, the FORM approximation is carried out by linearizing the limit-state function G(y) at the Òdesign pointÓ y*, which is the point on G(y) = 0 nearest to the origin and is obtained as the solution to the constrained optimization problem
� EMBED Equation.2  ���.
     Based on the linearized limit-state function, the first-order approximation to the probability of failure is
� EMBED Equation.2  ���,
where 
� EMBED Equation.2  ���,
where <.,.> denotes the inner product of vectors, is the first-order reliability index. The sensitivity of the reliability index to y*, denoted by � EMBED Equation.2  ���, is given by
� EMBED Equation.2  ���,
where sgn(() denotes the sign of the argument.
     An accurate determination of the design point is essential for FORM analysis. Typically, a constrained optimization algorithm is used that requires repeated evaluations of the limit-state function g(x) and its gradient (g(x).
    The algorithm implemented in Garibaldi was proposed by Zhang and Ker Kiureghian (1997), which is a modified version of the original one proposed by Hasofer and Lind (1974). The algorithm is stable and has mathematical proven convergence property [3].��Reference��[1] A. M. Hasofer and N. C. Lind, ÒExact and invariant second-moment code format,Ó J. Eng. Mech. Div., 100(EM1), 111-121, 1974.
[2] R. Rackwitz and B. Fiessler, ÒStructural reliability under combined random load sequences,Ó Computers & Structures, 9, 489-494, 1978.
[3] Y. Zhang and A. Der Kiureghian, Finite Element Reliability Methods for Inelastic Structures, Report No. UCB/SEMM-97/05, Department of Civil & Environmental Engineering, University of California, Berkeley, 1997.��Example��Consider the limit-state function
� EMBED Equation.2  ���,
where x1 and x2 are independent standard normal variables and p1 and p2 are the parameters. First use original HLRF algorithm to calculate the reliability index ( for p1 = 2.0 and p2 = 0.25. Then use the improved HLRF (iHLRF) to compute the reliability index ( at p1 = 2.0, 2.5 and 3.0, respectively, and p2 = 0.25. The script is given below.

# Original HL-RF algorithm for FORM analysis

FORMsol HLRF(Vjar vjar, FncWrapper user, const float tol,
             const int max, float x[])
{
	int i;
	float h[], Jxy[];
	float gx, dgx[];
	float y[], gy, dgy[];
	FORMsol sol;

	for(i=1; max; 1)
	{
		gx = user.fnc(x);
		dgx = user.dfnc(x);
		
		y = vjar.y_from_x(x);
		gy = gx;
		Jxy = vjar.dx_dy(y);
		dgy = transpose(Jxy)*dgx;
		
		h = ((dot(dgy,y) - gy)/dot(dgy,dgy))*dgy - y;
		
		y = y + h;
		x = vjar.x_from_y(y);
		if(norm2(h)<tol) break;
	};
	
	if(i==max) writeln("HLRF Warning: iteration exceeds 
                          the limit.");
	
	sol.iterations = i;
	if(dot(dgy,y)>0.0) sol.beta = -norm2(y)
	else sol.beta = norm2(y);
	sol.x = x;
	sol.y = y;
	return sol;
};

worksheet chapter11_iHLRF
{
	float g(float x[], float par[])
	{
		float y;
		y = x[1] + par[2];
		return par[1] - pow(y,2) + pow(y,3) + 
            	pow(y,4) - x[2];
	};
	float array dg(float x[], float par[])
	{
		float grad[2];
		float y;
		y = x[1] + par[2];
		grad[1] = -2.0*y + 3.0*pow(y,2) + 
            	4.0*pow(y,3);
		grad[2] = -1.0;
		return grad;
	};
	int i;
	float level[3];
	float par[], x0[];
	FncWrapper user;
	Vjar jar;
	Var nrm1, nrm2;
	FORMsol sol;
	File ofil;
	
	ofil.open("ch11.out","w");

	# form random variable set: jar
	nrm1.init("Normal");
	nrm2.init("Normal");
	jar.fill(nrm1,nrm2);

	# wrap up limit-state function
	par = [ 2.5, 0.25 ];
	user.wrap(2,par,g,dg);

	# set reliability levels
	level = [2.5, 3.0, 3.5]; 

	# Try original HLRF algorithm
	x0 = [0.0, 0.0];
	sol = HLRF(jar, user, 0.005, 30, x0);
	
	# Using iHLRF to compute reliability indices
	# at three levels: 2.5, 3.0 and 3.5
	x0 = [0.0, 0.0];
	for(i=1; 3; 1)
	{
		# reset the parameter in the function
		par[1] = level[i];
		user.set_par(par); 

		sol = iHLRF(jar, user, 0.005, 30, x0);

		# output the FORM result
		ofil.writeln();
		ofil.writeln("solution at par[1] =",level[i]);
		ofil.writeln("number of iterations = ", 
				  sol.iterations);
		ofil.writeln("beta =", sol.beta);
		ofil.writeln("design point in X:", sol.x)
	};
	ofil.close();
};

Run the script, you will be prompted with the message:
HLRF Warning: iteration exceeds the limit.
which comes from the function HLRF() because the iterations failed to converge. The output from runing iHLRF() is save to the file Òch11.outÓ which reads as:

solution at par[1] =   2.500
number of iterations =        9
beta =     1.949
design point in X:
[
  -1.280   1.469
]

solution at par[1] =   3.000
number of iterations =       27
beta =     2.347
design point in X:
[
  -1.319   1.941
]

solution at par[1] =   3.500
number of iterations =       11
beta =     2.773
design point in X:
[
  -1.342   2.426
]

It should be noticed that the reliability index ( increases as the parameter p1 increases. It is a common scheme for computing the values of the cumulative distribution function.��
KStest� XE "KStest" �(N,x,fnc,D)����The Kolmogorov-Smirnov� XE "Kolmogorov-Smirnov" � (K-S) test.��Argument����N��number of data values. Constant argument.��x[]��a float vector, contains values to be compared with a distribution. Constant argument.��fnc��object of class FncWrapper, contains the cumulative probability function ranging from 0 to 1.��Return��the significance level of an observed value of D.��D��K-S statistic. Variable argument.��Description��Given a set of data xi for i=1,…,N and a cumulative distribution function fX(x), the K-S statistic D is defined as the maximum value of the absolute difference between the set of data and the cumulative distribution function. The significance level of an observed value of D (as a disproof of the null hypothesis that the distribution and data are the same) is given by probability(D>observed value). Small significance levels show that the cumulative distribution function of the data is significantly different from fX(x).��Reference��[1] D. E. Knuth, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming, Addison-Wesley, Reading, Massachusetts, 1981.
[2] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Wetterling, Numerical Rescipes in C,  Cambridge University Press, Cambridge, 1990.��Example��LetÕs test the random number generator random(), whose theoretical cumulative distribution is F(x) = x on (0,1).

worksheet chapter11_KStest
{
      float F(float x)
      {
            return x;
      };
      int i;
      float x[100];
      float D, significant_level;
      FncWrapper user;

      user.wrap(1,,F);

      for(i=1; 100; 1)
      {
            x[i] = random();
      };
      significant_level = KStest(100,x,user,D);
	
	writeln("KS statitic D = ", D);
	writeln("significant level = ", significant_level);
};

The results are

KS statitic D =    0.070
significant level =    0.710��
�Applications


In this chapter, we present examples that represent various applications. The applications include engineering and financial problems.

12.1 Reliability Analysis with Conditionally Distributed Random Variables
Consider a engineering safety problem with two dependent random variables X1 and X2 having joint probability density function (Madsen et al. 1986)
� EMBED Equation.2  ���.	(12.1)
The limit-state function is given by
� EMBED Equation.2  ���,								(12.2)
and g(x1,x2) ( 0 represents the failure. The function is shown in Fig. 12.1.
�
Figure 12.1 The limit-state function in X and Y spaces
	The probability of failure obtained from numerical integration is Pf  = 0.00294.
	X1 and X2 can be conveniently treated as conditionally distributed random variables. The marginal distribution of X1 is given by
� EMBED Equation.2  ���,						(12.3)
which is exponential distribution with parameter ( = 1.0. The conditional distribution of X2 given X1 is
� EMBED Equation.2  ���.			(12.4)
To compute the probability of failure Pf by FORM, Monte Carlo Simulation and Latin Hypercube Simulation, we write the following script.

void print_FORM_sol(FORMsol sol)
{
      writeln("reliability index: beta =", sol.beta);
      writeln("design point in X: x* =", sol.x);
      writeln("design point in Y: y* =", sol.y);
};

float phi(float x[], float p[])
{
	float pdf;
	pdf = 1.0/(2.0*pi*sqrt(1.0-p[1]*p[1]))*
	exp(-0.5*(x[1]*x[1]+x[2]*x[2]-2.*p[1]*x[1]*x[2])/(1.0-p[1]*p[1]));
	return pdf;
};
 
float Phi(float x1, float x2, float rho)
{
	float p[];
	FncWrapper pdf;
	float a[2], b[2];
	p = [ rho ];
	pdf.wrap(2, p, phi);
	a = [-10.0,-10.0];
	b = [x1,x2 ];
	return Integrator(pdf,a,b,0.0001)
};

worksheet MKL5_2
{
	float g(float x[])
	{
		float fail;
		fail = 18.0 - 3.0*x[1] - 2.0*x[2];
		return fail;
	};
	float array dg(float x[])
	{
		float grad[];
		grad = [-3.0,-2.0]; 
		return grad;
	};
	float indicator_g(float x[])
	{
		float fail;
		fail = 18.0 - 3.0*x[1] - 2.0*x[2];
		if(fail<=0.0) return 1.0
		else return 0.0;
	};
	float PDF_X2(float x, float p[])
	{
		return -exp(-(x+x*p[1]))*(1.0-(1.0+x)*(1.0+p[1]));
	};
	float CDF_X2(float x, float p[])
	{
		return 1.-(1.+x)*exp(-x*(1.0+p[1]));
	};
	float par[];
	float rho;
	Var X1, X2;
	Vjar jar;
	int link[1];
	float x0[];
	FncWrapper g_wrapper, indicator_g_wrapper;
	FORMsol sol[2];
	SimulationSol mcs_sol, lhs_sol;

	par = [ 1.0 ];
	X1.init("Exponential", par);
	X2.init("Continuous", par, 0.0, 15.0, PDF_X2, CDF_X2);
	link[1] = 1;
	X2.set_parlink(link);
	jar.fill(X1,X2);
 
	g_wrapper.wrap(2, ,g,dg);
indicator_g_wrapper.wrap(2, ,g_for_MCS);

	writeln();
	writeln("Design point 1:");
      x0 = [3.0,0.2];
      sol[1] = iHLRF(jar, g_wrapper, 0.01, 20, x0);
	print_FORM_sol(sol[1]);

	writeln();
	writeln("Design point 2:");
      x0 = [0.2, 3.0];
      sol[2] = iHLRF(jar, g_wrapper, 0.01, 20, x0);
	print_FORM_sol(sol[2]);

	writeln("A better approximation:");
	rho = dot(sol[1].y,sol[2].y)/norm2(sol[1].y)/norm2(sol[2].y);
	writeln("Phi =",1.0-Phi(sol[1].beta,sol[2].beta,rho):9:5);
      writeln();

      writeln("Monte Carlo Simulation:");
      mcs_sol = MonteCarlo(jar, indicator_g_wrapper, 0.05, 1000000);
      writeln("max = ", mcs_sol.simulations);
      writeln("mean= ", mcs_sol.mean:10:6);
      writeln("stdv= ", mcs_sol.stdv);
      writeln("cov = ", mcs_sol.cov);

      writeln();
      writeln("Latin Hypercube Simulation:");
      lhs_sol = LatinHypercube(jar, indicator_g_wrapper, 1000000);
      writeln("max = ", lhs_sol.simulations);
      writeln("mean= ", lhs_sol.mean:10:6);
      writeln("stdv= ", lhs_sol.stdv);
      writeln("cov = ", lhs_sol.cov);

};

	The random variables X1 and X2 are modeled by the script

	par = [ 1.0 ];
	X1.init("Exponential", par);
	X2.init("Continuous", par, 0.0, 15.0, PDF_X2, CDF_X2);
	link[1] = 1;
	X2.set_parlink(link);
	jar.fill(X1,X2); 

where X1 is an exponentially distributed random variable; X2 is a continuous random variable with user-defined PDF PDF_X2() and CDF CDF_X2(), and its parameter is equivalent to X1 as specified by the statements

	link[1] = 1;
	X2.set_parlink(link);

X1 and X2 form a random variable set jar. 
For FORM analysis, the limit-state function and its derivatives with respect to the variables are given by g() and dg(), respectively, which are wrapped up by g_wrapper. 
For simulation methods, the indicator function 
� EMBED Equation.2  ���								(12.5)
is used, which is modeled by indicator_g() and wrapped up by indicator_g_wrapper. 
	The FORM analysis is complicated by the fact that there are two design points as shown in Fig. 12.1. Starting at two different initial points x0 = [3.0,0.2] and x0 = [0.2,3.0], we obtain two sets of FORM solutions: sol[1] and sol[2]. Approximation to Pf is obtained by approximating the failure domain as the domain bounded by the tangents at y1* and y2*. The formula is given by
� EMBED Equation.2  ���,									(12.6)
where (() is the cumulative distribution function for a bivariate normal variables with zero mean values, unit variances, and correlation coefficient ( given by
� EMBED Equation.2  ���.										(12.7)
(() is obtained by conducting a numerical integration on the corresponding joint probability density function 
� EMBED Equation.2  ���.					(12.8)
The implementation is given by functions Phi() and phi().
The solutions from Monte Carlo Simulation and Latin Hypercube Simulation are easy to understand.
	The output is given below.

process worksheet <MKL5_2>:

Design point 1:
reliability index: beta =   2.784
design point in X: x* =
[
   5.915   0.128
]

design point in Y: y* =
[
   2.782   0.087
]

Design point 2:
reliability index: beta =   3.501
design point in X: x* =
[
   0.103   8.845
]

design point in Y: y* =
[
  -1.296   3.252
]

A better approximation:
Phi =     0.00292

Monte Carlo Simulation:
max =     139352
mean=     0.002863
stdv=      0.053
cov =      0.050

Latin Hypercube Simulation:
max =      10000
mean=     0.002700
stdv=      0.052
cov =      0.192

exit worksheet <MKL5_2>.

The dependent random variables X1 and X2 can also be modeled as the jointly distributed random variables. The random variables will be declared and defined by using following statements:
	
float JPDF (float x[])
	{
		float tmp;
		tmp = x[1] + x[2] + x[1]*x[2];
		return tmp*exp(-tmp);
	};
	Vars X;
	float a[], b[];
	Vjar jar;
	
	a = [0.0,0.0];
	b = [15.0,15.0];
	X.init("JointVars",2,,a,b,JPDF);
	jar.fill(X);

The rest of the script will be same as shown above. The solution will take much longer.

12.2 Reliability Analysis with Jointly Distributed Random Variables
Consider the joint probability density function
� EMBED Equation.2  ���				(12.9)
for -a<x1<a, -b<x2<b and -c<x3<c; and � EMBED Equation.2  ��� otherwise. The parameters are given by a=1.0, b=2.0, c=3.0 and d=0.49592787.
	Given the limit-state function as
� EMBED Equation.2  ���,						(12.10)
where p1=2.0 and p2=1.0. The following script computes the probability g(0 using three methods.

worksheet ReliabilityAnalysis
{
      float g(float x[], float p[])
      {
            float damagescale, tmp;
            tmp = x[1]*x[1] + x[2]*x[2] + x[3]*x[3];
            damagescale = p[1] - p[2]*tmp;
            return damagescale;
      };
      float array dg(float x[], float p[])
      {
            float grad[3];
            grad[1] = -p[2]*2.0*x[1];
            grad[2] = -p[2]*2.0*x[2];
            grad[3] = -p[2]*2.0*x[3];
            return grad;
      };
      FncWrapper g_wrapper;

      float g_indicator(float x[], float p[])
      {
            float I;
            float tmp;
            tmp = x[1]*x[1] + x[2]*x[2] + x[3]*x[3];
            tmp = p[1] - p[2]*tmp;
            if(tmp<=0.0) I = 1.0
            else I = 0.0;
            return I;
      };
      FncWrapper g_indicator_wrapper;

      float jpdf(float x[], float p[])
      {
            float dens, tmp;
            tmp = pow(x[1]/p[1],2)+pow(x[2]/p[2],2)+pow(x[3]/p[3],2);
            if(tmp==0.0) tmp = 0.0
            else tmp = sqrt(tmp);
            dens = 0.49592787*exp(-4.0*tmp);
            return dens;
      };
	FncWrapper jpdf_wrapper;

      float x[], p[];
      float a[], b[];

      Vars rvs;
      Vjar jar;

      FORMsol form_sol;
      SimulationSol sim_sol;

	# parameters of joint PDF
      p = [ 1.0, 2.0, 3.0];

	# variable limits
      a = [ -p[1], -p[2], -p[3] ];
      b = [  p[1],  p[2],  p[3] ];

	# validate joint PDF
	jpdf_wrapper.wrap(3,p,jpdf);
	writeln("integration =", Integrator(jpdf_wrapper, a, b, 0.001));

	# define jointly distributed random variables: rvs
	rvs.init("JointVars", 3, p, a, b, jpdf);
      jar.fill(rvs);

      p = [2.0, 1.0];  # limit-state function parameters
      g_wrapper.wrap(3, p, g, dg);

	writeln();
      writeln("FORM Analysis:");
      x = [0.5, 0.5, 0.5]; # initial values
      form_sol = iHLRF(jar, g_wrapper, 0.05, 15, x);
	writeln("beta = ", form_sol.beta);
      writeln("design point = ", form_sol.x);

      g_indicator_wrapper.wrap(3, p, g_indicator);

	writeln();
      writeln("Monte Carlo:");
      sim_sol = MonteCarlo(jar, g_indicator_wrapper, 0.05, 1000);
      writeln("mean = ", sim_sol.mean);
      writeln("stdv = ", sim_sol.stdv);
      writeln("cov  = ", sim_sol.cov);
      writeln("max  = ", sim_sol.simulations);

	writeln();
      writeln("Latin Hypercube:");
      sim_sol = LatinHypercube(jar, g_indicator_wrapper, 500);
      writeln("mean = ", sim_sol.mean);
      writeln("stdv = ", sim_sol.stdv);
      writeln("cov  = ", sim_sol.cov);
      writeln("max  = ", sim_sol.simulations);
};

The results are:

integration =   1.000

FORM Analysis:
beta =     1.445
design point = 
[
   0.016   0.401   1.356
]

Monte Carlo:
mean =     0.353
stdv =     0.478
cov  =     0.050
max  =       736

Latin Hypercube:
mean =     0.410
stdv =     0.492
cov  =     0.054
max  =       500

12.3 Investment
An aerospace engineer retired in his early 40s. With only $20,000 in his bank account, he needs to invest wisely so he can start his fishing career. He decided to buy 5 common stocks and got some advice from a stock broker which is summarized below.

Company symbol�Price/shear current�Price increase in 52 weeks (%)�Estimated Price/shear after 52 weeks�Coefficient of variation of estimation��IBM�96�30�124.80�0.40��ROK�60�15�69.00�0.15��COMS�53�60�84.80�0.70��LMT�102�10�112.20�0.08��BA�56�12�62.72�0.09��
He also thinks that the two aerospace stocks LMT and BA are somehow correlated. If one is beyond the mean value then the other will be very likely below the mean value.
To invest money in stocks instead of in bank, he has a chance to earn much more but the risk is great too. He defined the risk as the 52 weeks return is less than 8%. He decided to allocate the money in five stocks shown above in such a way that the risk is less 25%. In summary, he wants to distribute the money in such a way that there is 75% of chance that he will have 8% or more return after 52 weeks. He wrote a script to help him make the distribution.

struct StockInfo 
{
	string company;
	string symbol;
	float share_price;
	float estimated_52wk_share_price;
	float deviation_of_estimation;
	int number_of_shares;
	float current_value;
	float estimated_52wk_value;
};

struct ReturnInfo
{
	float estimated_return;
	float risk;
};

# Given total investment, the function will randomly distribute 
# the money over desired stocks and calculate the number of shears 
# that can be purched at current market price.

void random_distribute_money(StockInfo stock[], const float total_investment)
{
	Var u;
	float par[];
	int i, number_of_stocks;
	float x, money_used, money_available;
	
	number_of_stocks = rows(stock);
	par = [0.0, 1.0];
	u.init("Uniform", par);
	
	money_used = 0.0;
	for(i=1; number_of_stocks; 1)
	{
		money_available = total_investment - money_used;
		if(i!=number_of_stocks)
		{
			par = [ 0.0, money_available];
			u.set_par(par);
			x = u.random();
		} 
		else x = money_available;
		stock[i].number_of_shares = x/stock[i].share_price;

		if(stock[i].number_of_shares>0) 
		{
			x = stock[i].number_of_shares*stock[i].share_price;
			stock[i].current_value = x;
			money_used = money_used + x;
		stock[i].estimated_52wk_value =
stock[i].number_of_shares*
				stock[i].estimated_52wk_share_price;
			
		} else {
		
			stock[i].number_of_shares = 0;
			stock[i].current_value = 0.0;
			stock[i].estimated_52wk_value = 0.0;
		};
	};
};

# Investor decides the total investments, stocks and bottom line.

void investor(StockInfo stock[], float total_investment, float low_bound, float risk)
{
	int number_of_stocks;
	
	total_investment = 20000.0
	low_bound = 1.08*total_investment;
	risk = 0.25;
	number_of_stocks = 5;

	stock = new StockInfo[number_of_stocks];
	stock[1].company= "Intl Bussiness Machine";
	stock[2].company= "Rockwell Intl";
	stock[3].company= "3COM";
	stock[4].company= "Boeing";
	stock[5].company= "Lockheed Martin";

};

# Broker provides stock symbols, current share price, estimated 
# shear price after 52 weeks and the uncertainties associated 
# with the estimations.

void broker(StockInfo stock[])
{
	stock[1].symbol = "IBM";
	stock[1].share_price = 96.0;
	stock[1].estimated_52wk_share_price = 1.30*96.0;
	stock[1].deviation_of_estimation = 0.50;
	
	stock[2].symbol = "ROK";
	stock[2].share_price = 60.00;
	stock[2].estimated_52wk_share_price = 1.15*60.0;
	stock[2].deviation_of_estimation = 0.15;
	
	stock[3].symbol = "COMS";
	stock[3].share_price = 53.00;
	stock[3].estimated_52wk_share_price = 1.70*53.0;
	stock[3].deviation_of_estimation = 1.50;
	
	stock[4].symbol = "BA";
	stock[4].share_price = 102.00;
	stock[4].estimated_52wk_share_price = 1.12*102.0;
	stock[4].deviation_of_estimation = 0.05;
	
	stock[5].symbol = "LMT";
	stock[5].share_price = 56.00;
	stock[5].estimated_52wk_share_price = 1.10*56;
	stock[5].deviation_of_estimation = 0.02;
};

# The function returns 1 if the sum of all x[] values is 
# less than par[1] and 0 otherwise.

float risk_indicator(float x[], float par[])
{
	float ind;
	float sum;
	int i, n;
	n = rows(x);
	sum = 0.0;
	for(i=1; n; 1) sum = sum + x[i];
	if(sum<par[1]) ind = 1.0
	else ind = 0.0;
	return ind;
};

# The funciton mainly calculates the probability of risk.

ReturnInfo risk_profit_analysis(StockInfo stock[], Vjar jar, 
  float low_bound)
{
	int i;
	int n;
	float x[], par[];
	float total;
	FncWrapper wrapper;
	SimulationSol sol;
	ReturnInfo return_info;
	
	n = rows(stock);
	
	total = 0.0;
	for(i=1; n; 1)
	{
		total = total + stock[i].estimated_52wk_value;
	};
	par = [ low_bound ];
	wrapper.wrap(n,par,risk_indicator);
	
	sol = MonteCarlo(jar, wrapper, 0.08, 1000);
	
	return_info.estimated_return = total;
	return_info.risk = sol.mean;
	
	return return_info;
};

# The main script

worksheet investment_decision
{
	int i, k;
	int number_of_trials;
	float total_investment;
	StockInfo stock[];
	StockInfo best_picks[];
	Vjar jar;
	Var v[];
	Vars ba_lmt;
	float p1[2], p2[4], rho[2,2];
	float nu, sigma;
	ReturnInfo return_info, save_return_info;
	int number_of_stocks;
	float low_bound, risk;
	File ofil;
	
	investor(stock, total_investment, low_bound, risk);
	
	broker(stock);
	
	number_of_stocks = rows(stock);
	
	# If all money is invested on any one of the stocks
	writeln("Company"," Estimate return", "    Risk");
	for(i=1; number_of_stocks; 1)
	{
		nu = total_investment*
			stock[i].estimated_52wk_share_price/
stock[i].share_price;
		sigma = nu*stock[i].deviation_of_estimation;
		return_info.estimated_return = nu;
		return_info.risk = pnormal((low_bound-nu)/sigma);
		writeln(stock[i].symbol:9,
				return_info.estimated_return:15,
				return_info.risk);
	};

	# create random variables representing further returns
	# IBM   v[1]   normal
	# ROK   v[2]   normal
	# COMS  v[3]   normal
	# BA and LMT: ba_lmt  multivariate normal distributed
	v = new Var[3];
	for(i=1; 3; 1) v[i].init("Normal");
	p2 = [ 0.0, 0.0, 1.0, 1.0];
	# coefficient of variation
	rho = [  1.0, -0.25; 
	       -0.25,   1.0];
	ba_lmt.init("Multinormals", 2, p2, rho);
	jar.fill(v, ba_lmt);

	number_of_trials = 10000;
	
	save_return_info.estimated_return = 0.0;
	save_return_info.risk = 0.0;
	writeln("ith trial", "  estimated return", "      risk");
	for(k=1; number_of_trials; 1)
	{
		random_distribute_money(stock, total_investment);
		
		# set means and standard devitions for IBM, ROK and COMS
		for(i=1; 3; 1)
		{
			nu = stock[i].estimated_52wk_value;
			sigma = nu*stock[i].deviation_of_estimation;
			if(nu==0.0) p1 = [ 0.0, 1.0]
			else p1 = [ nu, sigma ];
			v[i].set_par(p1);
		};
		# set means and standard devitions for BA and LMT
		for(i=4; 5; 1)
		{
			nu = stock[i].estimated_52wk_value;
			sigma = nu*stock[i].deviation_of_estimation;
			if(nu==0.0)
			{
				p2[1+i-4] = 0.0;
				p2[3+i-4] = 1.0;

			} else {

				p2[1+i-4] = nu;
				p2[3+i-4] = sigma;
			};
		};
		ba_lmt.set_par(p2);

		return_info = risk_profit_analysis(stock, jar, low_bound);

		if(return_info.risk<risk)
		{
			writeln(k:9, return_info.estimated_return:18:2,
  return_info.risk:10:3);
			if(return_info.estimated_return>
save_return_info.estimated_return)
			{
				save_return_info = return_info;
				best_picks = stock;
			};
		};
	};
	ofil.open("stock.out", "w");
	ofil.writeln();
	ofil.writeln("the best expected return = ", 
	save_return_info.estimated_return);
	ofil.writeln("the risk = ", save_return_info.risk);
	ofil.writeln("distribution:");
	for(i=1; number_of_stocks; 1)
	{
		ofil.writeln(stock[i].symbol, 
			stock[i].number_of_shares*
			stock[i].estimated_52wk_share_price:12:2);
	};
	ofil.close();
};

	The optimization scheme used here is a trial and error approach. In this example, the number of trials is 10,000 which is set by the parameter number_of_trials = 10000 in worksheet investment_decision(). In each trial, the total investment is randomly distributed in 5 common stocks carried out by the function random_distributed_money(). The estimated share prices of IBM, ROK and COMS are assumed to be independent normal variables. The estimated share prices of BA and LMT are assumed to be bivariate normal distributed with coefficient of variation -0.25. The risk is computed by the function risk_profit_analysis(), where Monte Carlo Simulation is used for the probability of risk.
The analysis results are:

the best expected return = 24776.380
the risk =    0.244
distribution:
IBM          5241.60
ROK          1794.00
COMS         5946.60
BA           2513.28
LMT          9486.40

	If he allows a higher risk, for example, set 
risk = 0.3
in function investor(), the results are:

the best expected return = 28091.180
the risk =    0.295
distribution:
IBM          6364.80
ROK          6072.00
COMS        10361.50
BA              0.00
LMT          4065.60

The expected return becomes higher. More money was allocated to “COMS” which is a high return stock with higher risk.
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