
An Introduction to the OS/2
Unicode APIs

By Alex Taylor

Warpstock 2006
Warpstock Europe 2006

Copyright

Alex Taylor gave permission to redistribute this
document under the Creative Common
Attribution-Share Alike 3.0 .

http://creativecommons.org/licenses/by-sa/3.0/

What You Need
● An OS/2 C compiler and Toolkit.

– Exercises will include directions for compiling with IBM
C Compiler 3.x and GCC 3.3.5.

– GCC 3.3.5 can be provided if necessary.
● At least a basic knowledge of C programming

(recommended) or REXX.
– REXX support is somewhat limited; the extent of

coverage will depend on class interest.

What is Unicode?
● Unicode is a character standard designed to

allow all possible characters from all known
writing systems to be represented on computer
systems in an interchangeable form.
– Defines implementation requirements such as

encoding formats, bidirectional algorithms, rendering
of composite characters, etc.

– Assigns every character a unique numeric value
between 0 and 1,114,111. This assignment is known
as the Universal Character Set (UCS).

● The terms “UCS” and “Unicode” are usually used
interchangeably.

Versions of Unicode
● The Unicode standard is maintained by the

Unicode Consortium, and is currently up to
version 5.0 (released July 2006).
– Version 1.0 was released in 1991 and supported

65,536 character codepoints (28,302 of which were
assigned).

– Starting with version 2.0, the codespace was
expanded to 17 planes, each supporting 65,536
codepoints, for a total codespace of 1,114,112
possible characters (but the additional planes were not
actually used until version 3.1).

● The Universal Character Set is also published on
its own by the International Organization for
Standardization as ISO/IEC 10646.

Why Unicode?
● Encoding characters by codepage has many

disadvantages:
– Each codepage only supports one or two character

sets (usually basic Latin and up to one other) – difficult
to support multiple languages simultaneously.

– Different computer platforms tend to use different
codepages, even to represent the same character sets
(e.g. IBM 850 vs Windows 1252) – complicates data
interchange.

– DBCS codepages tend to use relatively crude variable-
width encoding that makes string parsing difficult.

– Too many codepages, not enough standardization!

Why Unicode (cont.)?
● Why use Unicode in your application?

– Access to a wide range of text-manipulation functions
which are independent of language or encoding.

– Multiple character sets can be supported
simultaneously, even in a single output stream.

– Text can be converted to almost any encoding on
demand.

UCS Character Values
● Unicode (UCS) character values (or codepoints)

are traditionally written as “U+*”, where * is the
character's value in hexadecimal.

● Values U+0000 (0) through U+007F (127)
correspond to the standard ASCII character set.
It is therefore easy to convert these characters
to and from Unicode.

● Values U+0080 (128) through U+00FF (255)
correspond to the ISO Latin-1 extensions. This
means that the UCS character mapping of
U+0000 through U+00FF corresponds exactly to
ISO-8859-1 (codepage 819).

The UCS Codespace
● The Universal Character Set encompasses 17

planes, each containing 65,536 codepoints:
– Plane 0 (U+0000 - U+FFFF): Basic Multilingual Plane

(BMP)
– Plane 1 (U+10000 - U+1FFFF): Supplementary

Multilingual Plane (SMP)
– Plane 2 (U+20000 - U+2FFFF): Supplementary

Ideographic Plane (SIP)
– Plane 14 (U+E0000 – U+EFFFF): Supplementary

Special-Purpose Plane (SSP)
– Planes 15 & 16 (U+F0000 - U+10FFFF): Supplementary

Private Use Area
● The BMP contains most characters in use around

the world today.

Unicode Character Encoding
● Problem: how can a computer represent each

character, consistently and unambiguously, as
an integer value between 0 and 1,114,111?

● Traditionally, 1 byte = 1 character. But this only
allows 256 values – far too small for the UCS
codespace!

● Simplest solution: increase the number of bytes
per character.
– First implemented in UCS-2 encoding.
– Later expanded to UCS-4 encoding.

UCS-2 Encoding
● UCS-2 is the original Unicode encoding.

Introduced back in the days when UCS only
defined 65,536 characters (Plane 0).
– Fixed-width encoding: 2 bytes per character

(supporting the value range 0 - 65,535).
– Advantages: simple, makes data processing easy.
– Disadvantages: not backwards-compatible with ASCII;

only supports Plane 0.
– Officially considered obsolete, but still used by some

implementations.
● (The OS/2 Unicode APIs use UCS-2 internally.)

UCS-4 Encoding
● UCS-4 was introduced to replace UCS-2 when

Unicode was expanded to 1,114,112 characters.
– Fixed-width encoding: 4 bytes per character,

supporting the entire range of UCS values (and then
some).

– Advantages: simple, makes data processing easy;
supports entire UCS codespace.

– Disadvantages: requires a huge amount of storage;
not backwards-compatible with ASCII, or even with
UCS-2.

– Rarely used.
● Nowadays, UCS-4 is more commonly called

“UTF-32”.

Problems with Fixed-Width
Encoding

● Once the UCS codespace was expanded to 17
planes, fixed-width character encoding became
impractical.
– Four bytes per character is wasteful, especially since

(in practice) most characters fall within Plane 0 (BMP).
(See example.)

– Most Unicode libraries were originally designed to use
two-byte characters (UCS-2); redesigning them for
four-byte characters (UCS-4) can break compatibility.

– Fixed-width multi-byte encodings are not compatible
with ASCII data streams (which are widely used).

– UCS-4 isn't even compatible with UCS-2 data streams!
● A better solution: variable-width encoding.

UTF-16 Encoding
● Intended to seamlessly replace UCS-2.

– Uses 2 bytes per character to encode characters
within the BMP (U+0000 - U+FFFF).

– Uses 4 bytes per character to encode characters
outside the BMP (U+1FFFF and up). Leading bytes of
4-byte characters always fall within the range U+D800
- U+DFFF, which are reserved within the BMP and so
cannot start legal 2-byte characters.

– Any legal UCS-2 character is also a legal UTF-16
character.

– Advantages: backwards-compatible with UCS-2;
requires no more than 2 bytes to represent any BMP
character; supports the entire UCS codespace.

– Disadvantages: slightly more complex than UCS-2; still
not backwards-compatible with ASCII data streams.

UTF-8 Encoding
● Possibly the most ingenious encoding of all.

– Uses between 1 and 4 bytes for each character:
● 1 byte for values U+0000 - U+007F (basic ASCII)
● 2 bytes for values U+0080 - U+07FF
● 3 bytes for values U+0800 - U+FFFF
● 4 bytes for values U+10000 and up.

– A 1-byte character always starts with a leading 0 bit.
– The first byte of a multi-byte character always starts

with a number of leading 1 bits equal to the number of
bytes used (i.e. 110xxxxx, 1110xxxx or 11110xxx).
Following bytes always start with 10. The remaining
bits are used to encode the character value.

– All ASCII text (i.e. characters below U+0080) is also
valid UTF-8 text!

UTF-8 Encoding (cont.)
– Advantages of UTF-8:

● Backwards-compatible with basic ASCII.
● Supports the entire UCS codespace.
● Requires much less storage than UCS-4, and (on average)

slightly less than UCS-2.
● Every single byte in a data stream is instantly identifiable as a

leading byte, a following byte, or a single-byte character
(which helps prevent data corruption).

– Disadvantages:
● Relatively complex algorithm, resulting in higher processing

overhead.
– UTF-8 is typically used for text output and interchange,

not for internal processing.

Unicode Under OS/2
● The OS/2 implementation of Unicode uses UCS-2

for internal processing.
● Characters outside the BMP are not supported

(AFAIK).
● OS/2 supports three Unicode encodings: UCS-2,

UTF-8, and UPF-8 (an OS/2-specific proprietary
implementation used for output under PM).

● The OS/2 Unicode API (Universal Language
Support) is available under Warp 4 and up, or
Warp 3 with a recent FixPak. (Some versions of
the Java 1.1.8 runtime package will also install or
update it as needed.)

The Unicode API
● The OS/2 Unicode functions (a.k.a. “Universal

Language Support”) cover four major categories:
– Unicode Text Processing: handling Unicode (UCS-2)

text.
– Conversion: converting text to and from Unicode, or

from one codepage to another.
– Localization: presenting information according to

national or cultural conventions.
– Keyboard Input: converting keyboard input to and

from Unicode according to different keyboard layouts.

Using the Unicode API
● Header files:

– unidef.h: main API definitions (text processing &
localization)

– uconv.h: conversion API definitions
– unikbd.h: keyboard API definitions

● Import libraries (when using the IBM Toolkit):
– libuls.lib: text processing & localization functions
– libconv.lib: conversion functions
– unikbd.lib: keyboard functions

Representing Unicode Text:
UniChar

● All Unicode text is encoded internally as UCS-2.
● A Unicode character is represented by the

UniChar data type (a two-byte integer value):
typedef unsigned short UniChar;

● A UniChar is also sometimes referred to as a
“UCS code element”.

Setting UniChar Values
● Directly assign the character's UCS value as an

integer.
UniChar uc = 0x0041; // uppercase 'A' = U+0041

● Use C wide-character conventions (assuming
wchar_t is an unsigned short):

UniChar uc = L'A';
UniChar *puniStr = (UniChar *) L"Welcome to
Warpstock";

printf("%lc\n", uc);
printf("%ls\n", puniStr);

 Only use this technique when dealing with basic
ASCII characters!

Setting UniChar Values (cont.)
● Use the codepage conversion functions:

– UniStrToUcs() and UniUconvToUcs() will convert a
multibyte string from any known codepage into a
UniChar string.

– UniStrFromUcs() and UniUconvFromUcs() will convert a
UniChar string into a multibyte string in the desired
codepage.

Working with UniChar Strings
● Take the string:

Hello world

● Under a normal (ASCII-based) multibyte
codepage, this string is represented by:

48 65 6C 6C 6F 20 77 6F 72 6C 64 00

● As a UniChar string, it becomes:
00 48 00 65 00 6C 00 6C 00 6F 00 20 00 77 00 6F 00 72 00 6C
00 64 00 00

Working with UniChar Strings
(cont.)

● Most standard string-handling functions treat a
zero byte as a string termination character, and
therefore will not handle this string correctly.

● As mentioned, C wide-character APIs can
sometimes be used (where available). But:
– In practice, this is only possible with basic ASCII text

(since these APIs cannot convert the Unicode values
into meaningful characters for the current codepage).

– Also, there is no way to use wide-character
conventions in conjunction with (for instance) PM
controls.

● Consequently, ULS provides its own functions for
handling UniChar text.

Unicode Input and Output
● In general, UniChar strings must be converted to

another format before output.
– Convert to a Unicode encoding which is designed for

output:
● UPF-8 (codepage 1207) - preferred for use under Presentation

Manager.
● UTF-8 (codepage 1208) - preferred for data interchange (files,

e-mail, etc.).
 This does not allow direct display in OS/2 text sessions.
– Convert to another codepage. This allows display of

text in OS/2 window or full-screen sessions by
converting to the current process codepage.

● Conversely, input routines can accept text in the
current codepage, and then convert it to UCS-2
for subsequent processing.

Unicode String Manipulation
● Most standard library functions cannot be used

with UniChar text (due to embedded zero bytes).
Therefore, ULS includes Unicode-enabled
equivalents of several standard C library
functions:
– The str*() functions of the standard string library.
– The character transformation functions tolower() and

toupper().
● In addition, several functions are provided for

querying and transforming UniChar characters
and strings in a locale-dependent way.

Exercise 1:
Using UniChar Strings

● Exercise:
– Review the sample program. Make sure you

understand what it does.
– Verify that the program compiles and runs

successfully.
● Objectives:

– Verify compiler and toolkit setup.
– Verify program using ULS API can be compiled and

run.
– A brief introduction to UniChar string manipulation.

Codepage Conversion
● The ULS conversion functions allow text to be

converted from any multibyte codepage into the
equivalent strings in UCS-2 (UniChar) format,
and vice versa.

● Text can also be converted from one multibyte
codepage to another by going through UCS-2 as
an intermediate step.

● Logical character value (not byte value) is
preserved across codepages, whenever possible.

● If a character does not exist in the target
codepage, it is replaced by a designated
"substitution character".

UconvObject
● The UconvObject type is used to control

conversions (in either direction) between UCS-2
and one particular codepage.

● Use UniCreateUconvObject() to create a
UconvObject for the specified codepage:

UconvObject uconv;
UniCreateUconvObject((UniChar *) L"IBM-850", &uconv);

● Use UniFreeUconvObject() when the
UconvObject is no longer required:

UniFreeUconvObject(uconv);

Conversion Specifiers
● The first parameter to UniCreateUconvObject() is

a UniChar string called the conversion specifier:
“<codepage-name>[@][<modifers>]”

● The codepage name must be a legal OS/2
codepage identifer, normally in the form “IBM-x”
where x is the codepage number. Certain
aliases are also defined (in
\LANGUAGE\CODEPAGE\UCSTBL.LST), and some
constants are provided in uconv.h.

● UniMapCpToUcsCp() will generate a legal
codepage name from the specified codepage
number.

Conversion Modifiers
● The optional modifers define certain attributes of

the conversion object (separated by commas).
– map: Defines how control bytes should be treated

during conversion. Default: “map=data”
– path: Indicates whether strings are assumed to

contain paths (DBCS only). Default: “path=yes”
– endian: Indicates the UCS-2 byte order (endian) to

use. Default: “endian=system”
– sub: Indicates whether character substitution is

enabled. Default: “sub=from-ucs”
– subchar: Indicates the substitution character to use

in codepage strings. (Default varies by codepage.)
– subuni: Indicates the substitution character to use in

UCS-2 strings. Default: “subuni=\xFFFD”

Performing Conversions
● Once you have a UconvObject, you can two

different sets of functions to perform the
conversion(s).
– UniStrToUcs() and UniStrFromUcs()
– UniUconvToUcs() and UniUconvFromUcs()

● The UniStr*() functions are easier to use;
however, the UniUconv*() functions allow for
slightly more flexible error-checking and
recovery.

● The UniStr*() functions were not available in the
first versions of the Unicode API; they were
added in an early Warp 4 FixPak (and a late
Warp 3 FixPak).

UniStrToUcs / UniStrFromUcs
● UniStrToUcs() and UniStrFromUcs() use a fairly

simple syntax.
● Conversion is atomic: it either succeeds or it fails

(reflected in the return code).
● Substitution is always performed (regardless of

the conversion modifers used to create the
UconvObject).

● Parameters:
– UconvObject
– Output buffer (must be already allocated)
– Input string
– Length of output buffer (in characters)

UniUconvToUcs /
UniUconvFromUcs

● UniUconvToUcs() and UniUconvFromUcs() use a
fairly complex syntax.

● An error may cause conversion to stop part-way
through, and more information is available to
allow error recovery.

● Parameters:
– UconvObject
– Pointer to input string (must already be allocated)
– Pointer to input string length (in characters)
– Pointer to output buffer (must already be allocated)
– Pointer to output buffer length (in characters)
– Pointer to number of substitutions made

Output Buffer Length
● The output buffer must be large enough to

contain all converted characters, plus NULL.
– When converting to UCS-2, the UniChar output buffer

will never be longer (in UniChars) than the length of
the input buffer (in bytes), not including the
terminating NULL.

– When converting from UCS-2, the output string may
be longer than the UniChar input string, if the target
codepage allows 2-, 3-, or 4-byte characters.

● If you know the target codepage contains only single-byte
characters, the output buffer length may be the same as the
input length (not including the terminating NULL).

● If the character width of the target codepage is undetermined,
you should allocate at least 4 output bytes per input UniChar,
because OS/2 MBCS codepages may represent a single
character using up to 4 bytes.

Character Substitution
● If the input string contains characters that do

not exist under the target codepage, the
character is (normally) replaced in the output
string by a generic “substitution character”.

● Every codepage has its own default substitution
character (which may be changed through the
UconvObject attributes). It should always be a
displayable glyph under the target codepage.

● If substitution is disabled (through the
UconvObject attributes), an error condition will
be returned whenever an unsupported character
is encountered. (Applies to the UniUconv*
functions only.)

Exercise 2:
Codepage Conversion

● Exercise:
– Review the example program(s).
– Modify the example program to convert the input text

to UTF-8 instead of HTML.
● Objectives:

– Demonstrate the conversion process.
– Illustrate the difference between the UniStr* and

UniUconv* functions.

Localization
● Localization is based on the concept of a locale:

a set of conventions associated with a particular
language or culture that specifies how
information should be presented.

● These conventions include such things as:
– The names of the country and language normally

associated with the locale.
– The default currency unit.
– The standard number format.
– The standard time and date format.
– The standard units of measurement.
– The default codepage(s) associated with the locale.
– Rules for text classification and transformation.

How Locales Work

● Locales are used for:
– Determining character types or text transformation

rules when using certain Unicode functions.
– Modifying application behaviour as appropriate for the

current environment.
● There are two types of locale:

– System locales: standard locale constants defined by
OS/2. They cannot be modified or deleted. System
locales exist for every country and language known to
OS/2, and are used to identify standardized
conventions.

– User locales: customizable locale instances which may
be created, modified, and/or deleted. User locales are
derived from system locales, but represent the user's
own preferences rather than generic standards.

Identifying Locales
● A LocaleObject is used as a handle to a specific

locale. A variable of this type is passed to
certain functions in order to identify the locale
being used.

● UniCreateLocaleObject() is used to initialize a
LocaleObject for the specified locale.
– The locale is usually identified by UCS-2 name

(“en_US”, “de_DE_EURO”, etc.).
– Specifying an empty string will create a locale based

on the current environment settings (e.g %LANG%).
● A LocaleObject should be freed using

UniFreeLocaleObject() once it is no longer
needed.

Identifying Locales (cont.)
● UniQueryLocaleList() can be used to query the

names of all existing locales (system, user, or
both).

● UniMapCtryToLocale() returns the locale name
corresponding to the specified country code.

● UniQueryLocaleObject() can be used to obtain
the locale name associated with an existing
LocaleObject.

Getting Locale Information
● Every locale consists of a fixed number of key-

value pairs, known as locale items, which
describe the conventions for that locale.

● Each locale item is referred to by a key constant.
The prefix indicates the data type:
– LOCI_s, LOCI_j, and LOCI_w indicate string values.
– LOCI_i and LOCI_x indicate integer values.

● To query the value of a specified locale item:
– UniQueryLocaleItem() writes the current value of any

locale item to a string variable.
– UniQueryLocaleValue() writes the current value of an

integer locale item to an integer variable.

The Locale Conventions
Structure

● The locale conventions structure (struct
UniLconv) contains information about how
numbers and currency values are represented
by a locale.

● It is designed to be analogous to the C lconv
structure (returned by the localeconv() library
function).

● This structure may be obtained for a specified
locale using UniQueryLocaleInfo().

Working With User Locales
● User locales are used to represent locally-

configured preferences.
● Normally, user locales are created and modified

by the user through the OS/2 Locale applet.
However, it can also be done programmatically.
– UniMakeUserLocale() creates a new user locale, by

copying an existing locale (system or user).
– UniDeleteUserLocale() deletes a user locale.
– UniSetUserLocaleItem() modifies individual items

within a user locale.
● Changes do not take effect outside the current

process until UniCompleteUserLocale() is called.
This function writes all user locales to disk.

Exercise 3:
Getting Locale Information

● Exercise:
– Review the example program.
– Modify this program to display selected items from

each locale (e.g. the associated country and language
names).

● Objective:
– Demonstrate how to identify and query locales.

Character Attributes
● A character attribute (or classification) describes

categories to which a character belongs.
● Attributes include standard POSIX types like

“alpha” and “digit”, but also extended Unicode
types like “ideograph” and “nonspacing”.

● There are also attributes for describing text
layout, and others indicating the specific
Unicode character sets to which a character
belongs.

Attribute Names and Identifiers
● Every attribute has a integer identifier

(referenced by symbolic constant).
● Most (though not all) attributes also have a

name, which is a human-readable UniChar
string.

● UniQueryAttr() may be used to obtain the
identifier value associated with an attribute
name.

Attribute Categories
● Character attributes are grouped into several

different categories:
– Character type attributes (names start with a

lowercase letter):
● POSIX types (identifier symbols start with CT_)
● Extended types (identifier symbols start with C3_)
● Win32 compatibility types (identifier symbols start with C1_; no

names)
– Character set attributes (names start with “_”)
– Layout/BIDI attributes (names start with “#”)

Localized Attributes
● An AttrObject is used to represent attributes in

a locale-specific context.
– UniCreateAttrObject() creates an AttrObject for the

specified attribute(s) and locale.
– UniFreeAttrObject() frees an AttrObject when it is no

longer needed.
– UniQueryCharAttr() queries a UCS-2 character's

attributes using an AttrObject.
– UniScanForAttr() searches a UniChar string for

characters matching the specified AttrObject.
– Standard POSIX attributes may be queried using

various UniQuery* functions (similar to the C “ctype”
functions).

Locale-Independent Attribute
Functions

● There are several functions which may be used
query attributes independently of locale.
– UniQueryChar() is used to determine whether a single

UCS-2 character has the specified POSIX or Win32
character-type attributes (CT_* or C1_*)

– UniQueryStringType() returns an array of integer
bitmasks for a UniChar string, where each bitmask
describes the attributes (in the requested category) of
a single character.

– UniQueryCharType() returns all the attributes of a
single UCS-2 character in a UNICTYPE data structure.

Transforming Text
● ULS provides various functions for transforming

UniChar strings in locale-specific ways.
– UniTransLower() converts text to lowercase.
– UniTransUpper() converts text to uppercase.
– UniTransformStr() performs advanced string

transformations.
● Note that the input and output strings are not

guaranteed to be the same length. Make sure
you provide a large enough buffer!

XformObjects
● An XformObject is used to define a

transformation, for use with UniTransformStr().
It has two attributes:
– The transformation type
– The locale being used

● Use UniCreateTransformObject() to create an
XformObject.

● Use UniFreeTransformObject() to dispose of it
when done.

Transformation Types
● The following transformation types are valid for

all locales:
– lower: Convert text to lowercase.
– upper: Convert text to uppercase.
– compose: Convert character-diacritic combinations

into single glyph forms.
– decompose: Convert diacritical forms into separate

characters and diacritics (combining marks).
– hiragana: Convert Japanese phonetic characters into

Hiragana.
– katakana: Convert Japanese phonetic characters into

Katakana.
– kana: Convert Japanese phonetic characters into half-

width Katakana.

Exercise 4:
Transforming Text

● Exercise:
– Review the example program.
– Modify this program to remove all accents from the

string (i.e. convert accented characters into non-
accented ASCII characters).

● Objective:
– Demonstrate Unicode text transformations.

Additional Information
● OS/2 Toolkit documentation is obsolete and/or

incomplete. Project to provide updated
documentation:
http://www.cs-club.org/~alex/os2/toolkits/uls/index.html

● General Unicode information is available from
the Unicode Consortium:
http://www.unicode.org/

● Useful information & samples from one of the
OS/2 Internationalization developers:
http://www.borgendale.com/uls.htm

http://www.cs-club.org/~alex/os2/toolkits/uls/index.html
http://www.unicode.org/
http://www.borgendale.com/uls.htm

Questions?

	Title
	Slide 2
	Requirements
	Unicode
	Unicode Versions
	Why Unicode 1
	Why Unicode 2
	UCS Values
	UCS Codespace
	UCS Encoding
	UCS-2
	UCS-4
	Variable-Width
	UTF-16
	UTF-8 1
	UTF-8 2
	OS/2 Unicode
	Unicode API
	Using ULS
	UniChar
	UniChar Values 1
	UniChar Values 2
	Unicode Strings 1
	UniChar Strings 2
	Unicode I/O
	String Manipulation
	Exercise 1
	Conversion
	UconvObject
	Conversion Specifiers
	Conversion Modifiers
	Converting
	UniStr*
	UniUconv*
	Buffer
	Substitution
	Exercise 2
	Localization
	Using Locales
	LocaleObjects 1
	LocaleObjects 2
	Locale Info
	Locale Conventions
	User Locales
	Exercise 3
	Attributes
	Attribute Names
	Attribute Types
	Query Attributes 1
	Query Attributes 2
	Transformation
	XformObjects
	Xform Types
	Exercise 4
	Appendix
	Questions

