An Introduction to the OS/2
Unicode APIs

By Alex Taylor

Warpstock 2006
Warpstock Europe 2006

Copyright

Alex Taylor gave permission to redistribute this
document under the Creative Common
Attribution-Share Alike 3.0 .

http://creativecommons.org/licenses/by-sa/3.0/

@00

I What You Need

« An OS/2 C compiler and Toolkit.

- Exercises will include directions for compiling with IBM
C Compiler 3.x and GCC 3.3.5.

- GCC 3.3.5 can be provided if necessary.

« At |least a basic knowledge of C programming
(recommended) or REXX.

- REXX support is somewhat limited; the extent of
coverage will depend on class interest.

I What is Unicode?

« Unicode is a character standard designed to
allow all possible characters from all known
writing systems to be represented on computer
systems in an interchangeable form.

- Defines implementation requirements such as
encoding formats, bidirectional algorithms, rendering
of composite characters, etc.

- Assigns every character a unique numeric value
between 0 and 1,114,111. This assignment is known
as the Universal Character Set (UCS).

 The terms “UCS” and “Unicode” are usually used
iInterchangeably.

I Versions of Unicode

 The Unicode standard is maintained by the
Unicode Consortium, and is currently up to
version 5.0 (released July 2006).
- Version 1.0 was released in 1991 and supported

65,536 character codepoints (28,302 of which were
assigned).

- Starting with version 2.0, the codespace was
expanded to 17 planes, each supporting 65,536
codepoints, for a total codespace of 1,114,112
possible characters (but the additional planes were not
actually used until version 3.1).

 The Universal Character Set is also published on
its own by the International Organization for
Standardization as ISO/IEC 10646.

Why Unicode?

 Encoding characters by codepage has many
disadvantages:

Each codepage only supports one or two character
sets (usually basic Latin and up to one other) - difficult
to support multiple languages simultaneously.

Different computer platforms tend to use different
codepages, even to represent the same character sets
(e.g. IBM 850 vs Windows 1252) - complicates data
Interchange.

DBCS codepages tend to use relatively crude variable-
width encoding that makes string parsing difficult.

Too many codepages, not enough standardization!

I Why Unicode (cont.)?

 Why use Unicode in your application?

- Access to a wide range of text-manipulation functions
which are independent of language or encoding.

- Multiple character sets can be supported
simultaneously, even in a single output stream.

- Text can be converted to almost any encoding on
demand.

I UCS Character Values

« Unicode (UCS) character values (or codepoints)
are traditionally written as “U+*", where * is the
character's value in hexadecimal.

* Values U+0000 (0) through U+007F (127)
correspond to the standard ASCII character set.
It Is therefore easy to convert these characters
to and from Unicode.

* Values U+0080 (128) through U+00FF (255)
correspond to the ISO Latin-1 extensions. This
means that the UCS character mapping of
U+0000 through U+00FF corresponds exactly to
1ISO-8859-1 (codepage 819).

I The UCS Codespace

 The Universal Character Set encompasses 17

planes, each containing 65,536 codepoints:
- Plane 0 (U+0000 - U+FFFF): Basic Multilingual Plane
(BMP)

- Plane 1 (U+10000 - U+1FFFF): Supplementary
Multilingual Plane (SMP)

- Plane 2 (U+20000 - U+2FFFF): Supplementary
ldeographic Plane (SIP)

- Plane 14 (U+EOO000 - U+EFFFF): Supplementary
Special-Purpose Plane (SSP)

- Planes 15 & 16 (U+F000O - U+10FFFF): Supplementary
Private Use Area

« The BMP contains most characters in use around
the world today.

I Unicode Character Encoding

* Problem: how can a computer represent each
character, consistently and unambiguously, as
an integer value between 0 and 1,114,1117

« Traditionally, 1 byte = 1 character. But this only
allows 256 values - far too small for the UCS
codespace!

« Simplest solution: increase the number of bytes
per character.
- First implemented in UCS-2 encoding.
- Later expanded to UCS-4 encoding.

I UCS-2 Encoding

« UCS-2 is the original Unicode encoding.
Introduced back in the days when UCS only
defined 65,536 characters (Plane 0).

- Fixed-width encoding: 2 bytes per character
(supporting the value range 0 - 65,535).

- Advantages: simple, makes data processing easy.

- Disadvantages: not backwards-compatible with ASCII;
only supports Plane O.

- Officially considered obsolete, but still used by some
Implementations.

« (The OS/2 Unicode APIs use UCS-2 internally.)

I UCS-4 Encoding

« UCS-4 was introduced to replace UCS-2 when
I Unicode was expanded to 1,114,112 characters.

- Fixed-width encoding: 4 bytes per character,
supporting the entire range of UCS values (and then
some).

- Advantages: simple, makes data processing easy;
supports entire UCS codespace.

- Disadvantages: requires a huge amount of storage;
not backwards-compatible with ASCII, or even with
UCS-2.

- Rarely used.

 Nowadays, UCS-4 is more commonly called
“UTF-32".

I Problems with Fixed-Width
I Encoding

* Once the UCS codespace was expanded to 17
planes, fixed-width character encoding became
iImpractical.

- Four bytes per character is wasteful, especially since
(in practice) most characters fall within Plane 0 (BMP).
(See example.)

- Most Unicode libraries were originally designed to use
two-byte characters (UCS-2); redesigning them for
four-byte characters (UCS-4) can break compatibility.

- Fixed-width multi-byte encodings are not compatible
with ASCII data streams (which are widely used).

- UCS-4 isn't even compatible with UCS-2 data streams!
* A better solution: variable-width encoding.

UTF-16 Encoding

* Intended to seamlessly replace UCS-2.

Uses 2 bytes per character to encode characters
within the BMP (U+0000 - U+FFFF).

Uses 4 bytes per character to encode characters
outside the BMP (U+1FFFF and up). Leading bytes of
4-byte characters always fall within the range U+D800
- U+DFFF, which are reserved within the BMP and so
cannot start legal 2-byte characters.

Any legal UCS-2 character is also a legal UTF-16
character.

Advantages: backwards-compatible with UCS-2;
requires no more than 2 bytes to represent any BMP
character; supports the entire UCS codespace.

Disadvantages: slightly more complex than UCS-2; still
not backwards-compatible with ASCII data streams.

I UTF-8 Encoding

- Uses between 1 and 4 bytes for each character:
« 1 byte for values U+0000 - U+007F (basic ASCII)
« 2 bytes for values U+0080 - U+07FF
* 3 bytes for values U+0800 - U+FFFF
* 4 bytes for values U+10000 and up.

- A 1-byte character always starts with a leading O bit.

- The first byte of a multi-byte character always starts
with a number of leading 1 bits equal to the number of
bytes used (i.e. 110xxxxx, 1110xxxx or 11110xxx).
Following bytes always start with 10. The remaining
bits are used to encode the character value.

- All ASCII text (i.e. characters below U+0080) is also
valid UTF-8 text!

I * Possibly the most ingenious encoding of all.

UTF-8 Encoding (cont.)

- Advantages of UTF-8:
 Backwards-compatible with basic ASCII.
« Supports the entire UCS codespace.

« Requires much less storage than UCS-4, and (on average)
slightly less than UCS-2.

« Every single byte in a data stream is instantly identifiable as a
leading byte, a following byte, or a single-byte character
(which helps prevent data corruption).

- Disadvantages:

« Relatively complex algorithm, resulting in higher processing
overhead.

- UTF-8 is typically used for text output and interchange,
not for internal processing.

Unicode Under OS/2

The OS/2 implementation of Unicode uses UCS-2
for internal processing.

Characters outside the BMP are not supported
(AFAIK).

0OS/2 supports three Unicode encodings: UCS-2,
UTF-8, and UPF-8 (an OS/2-specific proprietary
Implementation used for output under PM).

The OS/2 Unicode API (Universal Language
Support) is available under Warp 4 and up, or
Warp 3 with a recent FixPak. (Some versions of
the Java 1.1.8 runtime package will also install or
update it as needed.)

The Unicode API

 The OS/2 Unicode functions (a.k.a. “Universal
Language Support”) cover four major categories:

Unicode Text Processing: handling Unicode (UCS-2)
text.

Conversion: converting text to and from Unicode, or
from one codepage to another.

Localization: presenting information according to
national or cultural conventions.

Keyboard Input: converting keyboard input to and
from Unicode according to different keyboard layouts.

I Using the Unicode API

« Header files:

- unidef.h: main API definitions (text processing &
localization)

- uconv.h: conversion API definitions
- unikbd.h: keyboard API definitions

* Import libraries (when using the IBM Toolkit):
- libuls.l1ib: text processing & localization functions
- libconv.lib: conversion functions
- unikbd.lib: keyboard functions

I Representing Unicode Text:
I UniChar

« All Unicode text is encoded internally as UCS-2.

I « A Unicode character is represented by the
UniChar data type (a two-byte integer value):

typedef unsigned short UniChar;

« A UniChar is also sometimes referred to as a
“UCS code element”.

Setting UniChar Values

Directly assign the character's UCS value as an
integer.

UniChar uc = 0x0041; // uppercase 'A' = U+0041

Use C wide-character conventions (assuming
wchar _t is an unsigned short):

UniChar uc = L'A';

UniChar *puniStr = (UniChar *) L"Welcome to
Warpstock";

printf("slc\n", uc);

printf("sls\n", puniStr);

Only use this techniqgue when dealing with basic
ASCIl charactercl

I Setting UniChar Values (cont.)

« Use the codepage conversion functions:

- UniStrToUcs() and UniUconvToUcs() will convert a
multibyte string from any known codepage into a
UniChar string.

- UniStrFromUcs() and UniUconvFromUcs() will convert a
UniChar string into a multibyte string in the desired
codepage.

I Working with UniChar Strings

« Take the string:

I Hello world

* Under a normal (ASCll-based) multibyte
codepage, this string is represented by:

48 65 6C 6C 6F 20 77 6F 72 6C 64 00

« As a UniChar string, it becomes:

00 48 00 65 00 6C 00 6C 00 6F 00 20 00 77 00 6F 00 72 00 6C
00 64 00 00

I Working with UniChar Strings
I (cont.)

e Most standard string-handling functions treat a
zero byte as a string termination character, and
therefore will not handle this string correctly.

« As mentioned, C wide-character APIs can
sometimes be used (where available). But:

- In practice, this is only possible with basic ASCII text
(since these APIs cannot convert the Unicode values
Into meaningful characters for the current codepage).

- Also, there is no way to use wide-character
conventions in conjunction with (for instance) PM
controls.

« Consequently, ULS provides its own functions for
handling UniChar text.

I Unicode Input and Output

* In general, UniChar strings must be converted to
another format before output.
- Convert to a Unicode encoding which is designed for

output:

« UPF-8 (codepage 1207) - preferred for use under Presentation
Manager.

« UTF-8 (codepage 1208) - preferred for data interchange (files,
e-malil, etc.).

This does not allow direct display in OS/2 text sessions.

- Convert to another codepage. This allows display of
text in OS/2 window or full-screen sessions by
converting to the current process codepage.

« Conversely, input routines can accept text in the
current codepage, and then convert it to UCS-2
for subsequent processing.

I Unicode String Manipulation

e Most standard library functions cannot be used
with UniChar text (due to embedded zero bytes).
Therefore, ULS includes Unicode-enabled
equivalents of several standard C library
functions:

- The str*() functions of the standard string library.
- The character transformation functions tolower() and
toupper().

* |In addition, several functions are provided for
querying and transforming UniChar characters
and strings in a locale-dependent way.

I Exercise 1:
I Using UniChar Strings

« Exercise:

- Review the sample program. Make sure you
understand what it does.

- Verify that the program compiles and runs
successfully.

* Objectives:
- Verify compiler and toolkit setup.

- Verify program using ULS APl can be compiled and
run.

- A brief introduction to UniChar string manipulation.

Codepage Conversion

The ULS conversion functions allow text to be
converted from any multibyte codepage into the
equivalent strings in UCS-2 (UniChar) format,
and vice versa.

Text can also be converted from one multibyte

codepage to another by going through UCS-2 as
an intermediate step.

_ogical character value (not byte value) is
preserved across codepages, whenever possible.

f a character does not exist in the target

codepage, it is replaced by a designated
"substitution character”.

I UconvObject

« The UconvObject type is used to control

conversions (in either direction) between UCS-2
and one particular codepage.

« Use UniCreateUconvObject() to create a
UconvObject for the specified codepage:

UconvObject ucony;
UniCreateUconvObject((UniChar *) L"IBM-850", &uconv);

e Use UniFreeUconvObject() when the
UconvObject is no longer required:

UniFreeUconvObject(uconv);

I Conversion Specifiers

* The first parameter to UniCreateUconvObject() is
a UniChar string called the conversion specifier:
“<codepage-name>[@]l[<modifers>]"

« The codepage name must be a legal OS/2
codepage identifer, normally in the form “IBM-x"
where x Is the codepage number. Certain
aliases are also defined (in
\LANGUAGE\CODEPAGE\UCSTBL.LST), and some
constants are provided in uconv. h.

« UniMapCpToUcsCp() will generate a legal

codepage name from the specified codepage
number.

I Conversion Modifiers

 The optional modifers define certain attributes of
I the conversion object (separated by commas).

- map: Defines how control bytes should be treated
during conversion. Default: “map=data”

- path: Indicates whether strings are assumed to
contain paths (DBCS only). Default: “path=yes”

- endian: Indicates the UCS-2 byte order (endian) to
use. Default: “endian=system”

- sub: Indicates whether character substitution is
enabled. Default: “sub=from-ucs”

- subchar: Indicates the substitution character to use
In codepage strings. (Default varies by codepage.)

- subuni: Indicates the substitution character to use In
UCS-2 strings. Default: “subuni=\xFFFD"”

I Performing Conversions

* Once you have a UconvObject, you can two
different sets of functions to perform the
I conversion(s).
- UniStrToUcs() and UniStrFromUcs()
- UniUconvToUcs() and UniUconvFromUcs()

« The UniStr*() functions are easier to use;
however, the UniUconv*() functions allow for
slightly more flexible error-checking and
recovery.

 The UniStr+() functions were not available in the
first versions of the Unicode API; they were
added in an early Warp 4 FixPak (and a late
Warp 3 FixPak).

UniStrToUcs / UniStrFromUcs

UniStrToUcs() and UniStrFromUcs() use a fairly
simple syntax.

Conversion Is atomic: it either succeeds or it fails
(reflected in the return code).

Substitution is always performed (regardless of
the conversion modifers used to create the
UconvObject).

Parameters:

- UconvObject

- Output buffer (must be already allocated)
- Input string

- Length of output buffer (in characters)

I UniUconvTolUcs /

I UniUconvFromUcs

« UniUconvToUcs() and UniUconvFromUcs() use a
I fairly complex syntax.

« An error may cause conversion to stop part-way

through, and more information is available to
allow error recovery.

 Parameters:
- UconvObject
- Pointer to input string (must already be allocated)
- Pointer to input string length (in characters)
- Pointer to output buffer (must already be allocated)
- Pointer to output buffer length (in characters)
- Pointer to number of substitutions made

I Output Buffer Length

* The output buffer must be large enough to
I contain all converted characters, plus NULL.

- When converting to UCS-2, the UniChar output buffer
will never be longer (in UniChars) than the length of
the input buffer (in bytes), not including the
terminating NULL.

- When converting from UCS-2, the output string may
be longer than the UniChar input string, if the target
codepage allows 2-, 3-, or 4-byte characters.

* |If you know the target codepage contains only single-byte
characters, the output buffer length may be the same as the
input length (not including the terminating NULL).

» If the character width of the target codepage is undetermined,
you should allocate at least 4 output bytes per input UniChar,
because 0OS/2 MBCS codepages may represent a single
character using up to 4 bytes.

Character Substitution

 If the input string contains characters that do

not exist under the target codepage, the
character is (normally) replaced in the output
string by a generic “substitution character”.

Every codepage has its own default substitution
character (which may be changed through the
UconvObject attributes). It should always be a
displayable glyph under the target codepage.

If substitution is disabled (through the
UconvODbject attributes), an error condition will
be returned whenever an unsupported character
Is encountered. (Applies to the UniUconv*
functions only.)

I Exercise 2:

I Codepage Conversion
» Exercise:
- Review the example program(s).
- Modify the example program to convert the input text

to UTF-8 instead of HTML.

* Objectives:
- Demonstrate the conversion process.

- lllustrate the difference between the UniStr* and
UniUconv* functions.

I Localization

« Localization is based on the concept of a locale:
a set of conventions associated with a particular
language or culture that specifies how
iInformation should be presented.

 These conventions include such things as:

- The names of the country and language normally
associated with the locale.

- The default currency unit.

- The standard number format.

- The standard time and date format.

- The standard units of measurement.

- The default codepage(s) associated with the locale.
- Rules for text classification and transformation.

I How Locales Work

e Locales are used for:

- Determining character types or text transformation
rules when using certain Unicode functions.

- Modifying application behaviour as appropriate for the
current environment.

 There are two types of locale:

- System locales: standard locale constants defined by
OS/2. They cannot be modified or deleted. System
locales exist for every country and language known to
0OS/2, and are used to identify standardized
conventions.

- User locales: customizable locale instances which may
be created, modified, and/or deleted. User locales are
derived from system locales, but represent the user's
own preferences rather than generic standards.

Identifying Locales

A LocaleObject is used as a handle to a specific
locale. A variable of this type is passed to

certain functions in order to identify the locale
being used.

 UniCreatelLocaleObject() is used to initialize a
LocaleObject for the specified locale.

- The locale is usually identified by UCS-2 name
(“en_US”, “de_DE_EURQ”, etc.).

- Specifying an empty string will create a locale based
on the current environment settings (e.g %LANG%).

* A LocaleObject should be freed using

UniFreelLocaleObject() once it is no longer
needed.

I ldentifying Locales (cont.)

 UniQueryLocaleList() can be used to query the

names of all existing locales (system, user, or
both).

 UniMapCtryToLocale() returns the locale name
corresponding to the specified country code.

 UniQuerylLocaleObject() can be used to obtain
the locale name associated with an existing
LocaleObject.

I Getting Locale Information

» Every locale consists of a fixed number of key-
value pairs, known as locale items, which
describe the conventions for that locale.

 Each locale item is referred to by a key constant.
The prefix indicates the data type:
- LOCI s, LOCI j, and LOCI_w indicate string values.
- LOCIL_i and LOCI x indicate integer values.

 To query the value of a specified locale item:
- UniQueryLocaleltem() writes the current value of any
locale item to a string variable.

- UniQueryLocaleValue() writes the current value of an
Integer locale item to an integer variable.

The Locale Conventions
Structure

« The locale conventions structure (struct
UniLconv) contains information about how
numbers and currency values are represented

by a locale.

It is designed to be analogous to the C lconv
structure (returned by the localeconv() library
function).

e This structure may be obtained for a specified
locale using UniQueryLocalelnfo().

I Working With User Locales

» User locales are used to represent locally-
I configured preferences.

 Normally, user locales are created and modified
by the user through the OS/2 Locale applet.
However, it can also be done programmatically.

- UniMakeUserlLocale() creates a new user locale, by
copying an existing locale (system or user).

- UniDeleteUserLocale() deletes a user locale.

- UniSetUserLocaleltem() modifies individual items
within a user locale.

 Changes do not take effect outside the current
process until UniCompleteUserLocale() is called.
This function writes all user locales to disk.

I Exercise 3:
I Getting Locale Information

« EXxercise:

- Review the example program.

- Modify this program to display selected items from
each locale (e.g. the associated country and language
names).

* Objective:
- Demonstrate how to identify and query locales.

I Character Attributes

categories to which a character belongs.

« Attributes include standard POSIX types like
“alpha” and “digit”, but also extended Unicode
types like “ideograph” and “nonspacing”.

 There are also attributes for describing text
layout, and others indicating the specific

Unicode character sets to which a character
belongs.

I A character attribute (or classification) describes

I Attribute Names and Identifiers

» Every attribute has a integer identifier
I (referenced by symbolic constant).

« Most (though not all) attributes also have a
name, which is a human-readable UniChar
string.

« UniQueryAttr() may be used to obtain the
Identifier value associated with an attribute
name.

Attribute Categories

« Character attributes are grouped into several
different categories:

- Character type attributes (names start with a
lowercase letter):
« POSIX types (identifier symbols start with CT)
« Extended types (identifier symbols start with C3)

« Win32 compatibility types (identifier symbols start with C1_; no
names)

- Character set attributes (names start with “ ")
- Layout/BIDI attributes (names start with “#")

Localized Attributes

« An AttrObject is used to represent attributes in
a locale-specific context.

UniCreateAttrObject() creates an AttrObject for the
specified attribute(s) and locale.

UniFreeAttrObject() frees an AttrObject when it is no
longer needed.

UniQueryCharAttr() queries a UCS-2 character's
attributes using an AttrObject.

UniScanForAttr() searches a UniChar string for
characters matching the specified AttrObject.

Standard POSIX attributes may be queried using
various UniQuery* functions (similar to the C “ctype”
functions).

I Locale-Independent Attribute

I Functions
 There are several functions which may be used
query attributes independently of locale.
- UniQueryChar() is used to determine whether a single

UCS-2 character has the specified POSIX or Win32
character-type attributes (CT_* or C1_*)

- UniQueryStringType() returns an array of integer
bitmasks for a UniChar string, where each bitmask
describes the attributes (in the requested category) of
a single character.

- UniQueryCharType() returns all the attributes of a
single UCS-2 character in a UNICTYPE data structure.

I Transforming Text

« ULS provides various functions for transforming
I UniChar strings in locale-specific ways.
- UniTransLower() converts text to lowercase.
- UniTransUpper() converts text to uppercase.

- UniTransformStr() performs advanced string
transformations.

* Note that the input and output strings are not
guaranteed to be the same length. Make sure
you provide a large enough buffer!

I XformObjects

« An XformObject is used to define a
transformation, for use with UniTransformStr().
I It has two attributes:
- The transformation type
- The locale being used

« Use UniCreateTransformObject() to create an
XformObject.

« Use UniFreeTransformObject() to dispose of it
when done.

Transformation Types

 The following transformation types are valid for
all locales:

lower: Convert text to lowercase.
upper: Convert text to uppercase.

compose: Convert character-diacritic combinations
into single glyph forms.

decompose: Convert diacritical forms into separate
characters and diacritics (combining marks).

hiragana: Convert Japanese phonetic characters into
Hiragana.

katakana: Convert Japanese phonetic characters into
Katakana.

kana: Convert Japanese phonetic characters into half-
width Katakana.

I Exercise 4:

I Transforming Text
» Exercise:
- Review the example program.
- Modify this program to remove all accents from the

string (i.e. convert accented characters into non-
accented ASCII characters).

* Objective:
- Demonstrate Unicode text transformations.

I Additional Information

« OS/2 Toolkit documentation is obsolete and/or
iIncomplete. Project to provide updated
documentation:

http://www.cs-club.org/~alex/os2/toolkits/uls/index.html

e General Unicode information is available from
the Unicode Consortium:

http://www.unicode.org/

» Useful information & samples from one of the
0OS/2 Internationalization developers:

http://www.borgendale.com/uls.htm

http://www.cs-club.org/~alex/os2/toolkits/uls/index.html
http://www.unicode.org/
http://www.borgendale.com/uls.htm

Questions?

	Title
	Slide 2
	Requirements
	Unicode
	Unicode Versions
	Why Unicode 1
	Why Unicode 2
	UCS Values
	UCS Codespace
	UCS Encoding
	UCS-2
	UCS-4
	Variable-Width
	UTF-16
	UTF-8 1
	UTF-8 2
	OS/2 Unicode
	Unicode API
	Using ULS
	UniChar
	UniChar Values 1
	UniChar Values 2
	Unicode Strings 1
	UniChar Strings 2
	Unicode I/O
	String Manipulation
	Exercise 1
	Conversion
	UconvObject
	Conversion Specifiers
	Conversion Modifiers
	Converting
	UniStr*
	UniUconv*
	Buffer
	Substitution
	Exercise 2
	Localization
	Using Locales
	LocaleObjects 1
	LocaleObjects 2
	Locale Info
	Locale Conventions
	User Locales
	Exercise 3
	Attributes
	Attribute Names
	Attribute Types
	Query Attributes 1
	Query Attributes 2
	Transformation
	XformObjects
	Xform Types
	Exercise 4
	Appendix
	Questions

