
 - i

SOMobjects Developer Toolkit GU00–0000–00

Programmer’s Reference, Volume IV: SOM Collection Classes

SOMobjects Version 3.0

ii Programmer’s References for SOM Collection Classes

Note: Before using this information and the product it supports, be sure to read the
general information under “Notices” on page iii.

First Edition (March 1996)
This edition of Programmer’s Reference, Volume IV: SOM Collection Classes applies to SOMobjects Developer Toolkit for
SOM Version 3.0 and to all subsequent releases of the product until otherwise indicated in new releases or technical
newsletters.

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: IBM CORPORATION PROVIDES THIS MANUAL “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions; therefore, this statement may not apply to you.

IBM Corporation does not warrant that the contents of this publication or the accompanying source code examples,
whether individually or as one or more groups, will meet your requirements nor that the publication or the accompanying
source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes are incorporated in new editions of the publication. IBM Corporation might make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

This publication might contain references to, or information about, IBM products (machines and programs), programming,
or services that are not announced in your country. Such references or information must not be construed to mean that
IBM Corporation intends to announce such IBM products, programming, or services in your country. Any reference to an
IBM licensed program in this publication is not intended to state or imply that you can use only the IBM licensed program.
You can use any functionally equivalent program instead.

To initiate changes to this publication, post the CompuServe™ IBMSOM forum or send email to sombug@austin.ibm.com.
Otherwise, address comments to IBM Corporation, Internal Zip 1002, 11400 Burnet Road, Austin, Texas 78758-3493. IBM
Corporation may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

Requests for copies of this publication and for technical information about IBM products should be made to your IBM
Authorized Dealer or your IBM Marketing representative.

© Copyright IBM Corporation 1995. All rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication, or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

 Notices- iii

Notices
IBM Corporation may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate AIX, OS/2, or Windows programming techniques. You may copy and distribute these sample programs in any
form without payment to IBM Corporation, for the purposes of developing, using, marketing, or distributing application
programs conforming to the AIX, OS/2, or Windows application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must include a
copyright notice as follows: “© (your company name) (current year), All Rights Reserved.” However, the following
copyright notice protects this documentation under the Copyright Laws of the United States and other countries which
prohibit such actions as, but not limited to, copying, distributing, modifying, and making derivative works.

References in this publication to IBM products, program, or services do not imply that IBM Corporation intends to make
these available in all countries in which it operates.

Any reference to IBM licensed programs, products, or services is not intended to state or imply that only IBM licensed
programs, products, or services can be used. Any functionally-equivalent product, program or service that does not
infringe upon any of the IBM Corporation intellectual property rights may be used instead of the IBM Corporation
product, program, or service. Evaluation and verification of operation in conjunction with other products, except those
expressly designated by IBM Corporation, are the user’s responsibility.

IBM Corporation may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries in writing to
the:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, New York 10594, USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of
information between independently created programs and other programs (including this one) and (ii) the mutual use of
the information which has been exchanged, should contact:

IBM Corporation
Department 931S
11400 Burnet Road
Austin, Texas 78758 USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a
fee.

Asia-Pacific users can inquire, in writing, to the:

IBM Director of Intellectual Property and Licensing
IBM World Trade Asia Corporation,
2-31 Roppongi 3-chome,
Minato-ku, Tokyo 106, Japan

This publication contains examples of data and reports used in daily business operations. To illustrate them as
completely as possible, the examples include the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

iv Programmer’s References for SOM Collection Classes

Trademarks and Acknowledgements

AIX is a trademark of International Business Machines Corporation.
CompuServe is a trademark of CompuServe, Inc.
FrameViewer is a trademark of Frame Technology.
IBM is a registered trademark of International Business Machines Corporation.
OS/2 is a trademark of International Business Machines Corporation.
SOM is a trademark of International Business Machines Corporation.
SOMobject is a trademark of International Business Machines Corporation.
Windows is a trademark of Microsoft Corporation.

v

Table of Contents

Notices . iii

Trademarks and Acknowledgements . iv
somf_MCollectible Class . 1

somfClone Method . 2
somfClonePointer Method. 3
somfHash Method . 4
somfIsEqual Method . 5
somfIsNotEqual Method . 6
somfIsSame Method . 7

somf_MLinkable Class . 8
somfGetNext Method . 9
somfGetPrevious Method . 10
somfMLinkableInit Method . 11
somfSetNext Method. 12
somfSetPrevious Method . 13

somf_MOrderableCollectible Class . 14
somfCompare Method. 15
somfIsGreaterThan Method . 17
somfIsGreaterThanOrEqualTo Method. 18
somfIsLessThan Method. 19
somfIsLessThanOrEqualTo Method . 20

somf_TAssoc Class . 21
somfGetKey Method . 22
somfGetValue Method . 23
somfSetKey Method . 24
somfSetValue Method. 25
somfTAssocInitM Method . 26
somfTAssocInitMM Method. 27

somf_TCollectibleLong Class . 28
somfGetValue Method . 29
somfHash Method . 30
somfIsEqual Method . 31
somfSetValue Method. 32
somfTCollectibleLongInit Method . 33

somf_TCollection Class . 34
somfAdd Method . 35
somfAddAll Method . 36
somfCount Method . 37
somfCreateIterator Method . 38
somfDeleteAll Method . 39
somfIsEqual Method . 40
somfMember Method . 41
somfRemove Method . 42
somfRemoveAll Method . 43
somfSetTestFunction Method . 44
somfTCollectionInit Method. 45
somfTestFunction Method. 46

somf_TDeque Class . 47
somfAdd Method . 49
somfAddAfter Method . 50

vi Programmer’s Reference for SOM Collection Classes

somfAddBefore Method. 51
somfAddFirst Method . 52
somfAddLast Method. 53
somfAfter Method . 54
somfAssign Method . 55
somfBefore Method . 56
somfCount Method . 57
somfCreateIterator Method . 58
somfCreateNewLink Method . 59
somfCreateSequenceIterator Method . 60
somfDeleteAll Method . 61
somfFirst Method. 62
somfInsert Method. 63
somfLast Method . 64
somfMember Method. 65
somfPop Method . 66
somfPush Method . 67
somfRemove Method . 68
somfRemoveAll Method . 69
somfRemoveFirst Method . 70
somfRemoveLast Method . 71
somfRemoveQ Method . 72
somfTDequeInitD Method . 73
somfTDequeInitF Method . 74

somf_TDequeIterator Class . 75
somfFirst Method. 76
somfLast Method . 77
somfNext Method . 78
somfPrevious Method . 80
somfRemove Method . 81
somfTDequeIteratorInit Method. 82

somf_TDequeLinkable Class . 83
somfGetValue Method. 84
somfSetValue Method . 85
somfTDequeLinkableInitDD Method . 86
somfTDequeLinkableInitDDM Method. 87

somf_TDictionary Class . 89
somfAdd Method . 91
somfAddKeyValuePairMM Method . 92
somfAddKeyValuePairMMB Method . 94
somfAssign Method . 96
somfCopyImplementation Method. 97
somfCount Method . 98
somfCreateIterator Method . 99
somfCreateNewImplementationF Method . 100
somfCreateNewImplementationFL Method . 102
somfCreateNewImplementationFLL Method . 104
somfCreateNewImplementationFLLL Method . 106
somfDeleteAll Method . 108
somfDeleteAllKeys Method . 109
somfDeleteAllValues Method . 110
somfDeleteKey Method . 111
somfGetHashFunction Method . 113
somfKeyAtM Method . 114

vii

somfKeyAtMF Method. 115
somfMember Method . 117
somfRemove Method . 118
somfRemoveAll Method . 119
somfSetHashFunction Method . 120
somfTDictionaryInitD Method . 121
somfTDictionaryInitF Method . 122
somfTDictionaryInitFL Method . 123
somfTDictionaryInitFLL Method . 125
somfTDictionaryInitL Method. 127
somfTDictionaryInitLL Method. 128
somfTDictionaryInitLLF Method . 129
somfValueAt Method. 131

somf_TDictionaryIterator Class . 132
somfFirst Method. 133
somfNext Method . 135
somfRemove Method . 137
somfTDictionaryIteratorInit Method . 138

somf_THashTable Class . 139
somfAddMM Method . 141
somfAddMMB Method. 142
somfAssign Method. 144
somfCount Method . 145
somfDelete Method . 146
somfDeleteAll Method . 147
somfDeleteAllKeys Method . 148
somfDeleteAllValues Method . 149
somfGetGrowthRate Method. 150
somfGetHashFunction Method . 151
somfGetRehashThreshold Method . 152
somfGrow Method. 153
somfMember Method . 154
somfRemove Method . 155
somfRemoveAll Method . 156
somfRetrieve Method . 157
somfSetGrowthRate Method. 158
somfSetHashFunction Method . 159
somfSetRehashThreshold Method . 160
somfTHashTableInitFL Method. 161
somfTHashTableInitFLL Method. 162
somfTHashTableInitFLLL Method. 164
somfTHashTableInitH Method. 166

somf_THashTableIterator Class . 167
somfFirst Method. 168
somfNext Method . 170
somfRemove Method . 172
somfTHashTableIteratorInit Method . 173

somf_TIterator Class . 174
somfFirst Method. 175
somfNext Method . 176
somfRemove Method . 177

somf_TPrimitiveLinkedList Class . 178
somfAddAfter Method . 179
somfAddBefore Method . 180

viii Programmer’s Reference for SOM Collection Classes

somfAddFirst Method . 181
somfAddLast Method. 182
somfAfter Method . 183
somfBefore Method . 184
somfCount Method . 185
somfFirst Method. 186
somfLast Method . 187
somfRemove Method . 188
somfRemoveAll Method . 189
somfRemoveFirst Method . 190
somfRemoveLast Method . 191

somf_TPrimitiveLinkedListIterator Class . 192
somfFirst Method. 193
somfLast Method . 194
somfNext Method . 195
somfPrevious Method . 196
somfTPrimitiveLinkedListIteratorInit Method . 197

somf_TPriorityQueue Class . 199
somfAdd Method . 201
somfAssign Method . 202
somfCount Method . 203
somfCreateIterator Method . 204
somfDeleteAll Method . 205
somfGetEqualityComparisonFunction Method . 206
somfInsert Method. 207
somfMember Method. 208
somfPeek Method . 209
somfPop Method . 210
somfRemove Method . 211
somfRemoveAll Method . 212
somfReplace Method. 213
somfSetEqualityComparisonFunction Method . 214
somfTPriorityQueueInitF Method. 215
somfTPriorityQueueInitP Method . 216

somf_TPriorityQueueIterator Class . 217
somfFirst Method. 218
somfNext Method . 219
somfRemove Method . 220
somfTPriorityQueueIteratorInit Method . 221

somf_TSequence Class . 223
somfAdd Method . 224
somfAfter Method . 225
somfBefore Method . 226
somfCount Method . 227
somfCreateIterator Method . 228
somfDeleteAll Method . 229
somfFirst Method. 230
somfLast Method . 231
somfOccurrencesOf Method . 232
somfRemove Method . 233
somfRemoveAll Method . 234
somfTSequenceInit Method. 235

somf_TSequenceIterator Class . 236
somfFirst Method. 237

ix

somfLast Method. 238
somfNext Method . 239
somfPrevious Method . 240
somfRemove Method . 241

somf_TSet Class . 243
somfAdd Method . 245
somfAssign Method. 246
somfCount Method . 247
somfCreateIterator Method . 248
somfDeleteAll Method . 249
somfDifferenceS Method. 250
somfDifferenceSS Method . 251
somfGetHashFunction Method . 252
somfIntersectionS Method. 253
somfIntersectionSS Method . 254
somfMember Method . 255
somfRehash Method . 256
somfRemove Method . 257
somfRemoveAll Method . 258
somfSetHashFunction Method . 259
somfTSetInitF Method. 260
somfTSetInitFL Method. 261
somfTSetInitL Method . 262
somfTSetInitLF Method. 263
somfTSetInitS Method. 264
somfUnionS Method . 265
somfUnionSS Method . 266
somfXorS Method . 267
somfXorSS Method . 268

somf_TSetIterator Class . 269
somfFirst Method. 270
somfNext Method . 271
somfRemove Method . 273
somfTSetIteratorInit Method . 274

somf_TSortedSequence Class . 275
somfAdd Method . 277
somfAfter Method . 278
somfAssign Method. 279
somfBefore Method. 280
somfCount Method . 281
somfCreateIterator Method . 282
somfCreateSequenceIterator Method . 283
somfCreateSortedSequenceNode Method . 284
somfDeleteAll Method . 285
somfFirst Method. 286
somfGetSequencingFunction Method. 287
somfLast Method. 288
somfMember Method . 289
somfOccurrencesOf Method . 290
somfRemove Method . 291
somfRemoveAll Method . 292
somfSetSequencingFunction Method . 293
somfTSortedSequenceInitF Method . 294
somfTSortedSequenceInitS Method . 295

x Programmer’s Reference for SOM Collection Classes

somf_TSortedSequenceIterator Class . 296
somfFirst Method. 297
somfLast Method . 299
somfNext Method . 300
somfPrevious Method . 302
somfRemove Method . 303
somfStartHere Method . 304
somfTSortedSequenceIteratorInit Method. 305

somf_TSortedSequenceNode Class . 307
somfGetKey Method . 308
somfGetLeftChild Method . 309
somfGetParent Method . 310
somfGetRed Method . 311
somfGetRightChild Method . 312
somfSetKey Method . 313
somfSetLeftChild Method . 314
somfSetParent Method . 315
somfSetRed Method . 316
somfSetRedOn Method . 317
somfSetRightChild Method . 318
somfTSortedSequenceNodeInitT Method . 319
somfTSortedSequenceNodeInitTM Method . 320
somfTSortedSequenceNodeInitTMT Method . 321

Index . 323

somf_MCollectible Class 1

somf_MCollectible Class

somf_MCollectible Class
The somf_MCollectible class represents the generic class from which most other
collection classes are derived. It can be critical for subclasses to define some or all of the
methods presented below.

When you link, include the following library reference to get access to this class: somtk

The reason new classes inherit from somf_MCollectible is that instances of the inheriting
class can be inserted into a main collection classes. All classes that inherit from
somf_MCollectible must override either somfIsEqual Method or somfIsSame Method,
depending on the method the new class plans to use for comparison. The somfHash
Method will probably need to be overridden. This class is not thread-safe.

File Stem
mcollect

Base
SOMObject Class

Metaclass
SOMClass Class

Ancestor Classes
SOMObject Class

New Methods
somfClone Method
somfClonePointer Method
somfHash Method
somfIsEqual Method
somfIsSame Method
somfIsNotEqual Method

Typedefs
The following typedefs are defined in the somf_MCollectible class:

somf_MCollectibleCompareFn
A method pointer to a somfIsEqual or somfIsSame method.

somf_MCollectibleHashFn
A method pointer to a somfHash method.

Defines
The following defines originate in this class:

SOMF_NIL
A representation of nil used by the collection classes.

SOMF_CALL_COMPARE_FN
A define to help call the method pointed to by somf_MCollectibleCompareFn.

SOMF_CALL_HASH_FN
A define to help call the method pointed to by somf_MCollectibleHashFn.

2 Programmer’s Reference for SOM Collection Classes

somfClone Method

somfClone Method
Provides a general polymorphic duplication operation.

IDL Syntax
somf_MCollectible somfClone ();

Description
The somfClone method provides a general polymorphic duplication operation.

Parameters
receiver

A pointer to an object of class somf_MCollectible.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to a new object of the same class as the receiver. The
receiving object must be an object of the somf_MCollectible class or of a class that
inherits from somf_MCollectible. The somfClone method determines the true class of the
receiver and creates a new instance of that class, and then returns a pointer to that
instance.

Example
somf_MCollectible clone;
somf_TSortedSequence ss;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();

clone = _somfClone(ss,ev);
somPrintf(”\n Clone returned Class %s\n”,
 _somGetClassName(clone));

_somFree (ss);
_somFree (clone);

Original Class
somf_MCollectible Class

Related Information
somfClonePointer Method

somf_MCollectible Class 3

somfClonePointer Method

somfClonePointer Method
Returns a pointer to a Clone.

IDL Syntax
somf_MCollectible somfClonePointer (in somf_MCollectible clonee);

Description
The somfClonePointer method returns a pointer to a Clone.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_MCollectible.

ev
A pointer to the Environment structure for the calling method.

clonee
A pointer to the somf_MCollectible to be cloned.

Return Value
There are two possible valid return values for this method:

• somf_MCollectible, a pointer to a new instance of the calling class, which inherits from
the somf_MCollectible class.

• SOMF_NIL, the clonee is nil, so a clone could not be created.

Example
somf_MCollectible clone;
somf_TSortedSequence ss;
Environment *ev;

ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();

clone = _somfClonePointer(ss,ev,ss);
somPrintf(”\n Clone returned Class %s\n”,
 _somGetClassName(clone));

_somFree (ss);
_somFree (clone);

Original Class
somf_MCollectible Class

Related Information
somfClone Method

4 Programmer’s Reference for SOM Collection Classes

somfHash Method

somfHash Method
\Returns a value suitable for use as a hashing probe for the receiving object.

IDL Syntax
long somfHash ();

Description
The somfHash method returns a value suitable for use as a hashing probe for the
receiving object.

This method should be overridden if a class inherits from somf_MCollectible. The default
function will simply return the address of the object. The default function is almost certainly
not adequate if you are overriding somfIsEqual Method, because you need to make sure
that all objects that are equal to each other return the same hash value.

Parameters
receiver

A pointer to an object of class somf_MCollectible.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the hash value for the receiving object.

Example
<Your class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();
obj = <Your class which inherits from somf_MCollectible>New();

somPrintf(” The Hashing probe for obj is %d\n”, _somfHash(obj,ev));

_somFree (obj);

Original Class
somf_MCollectible Class

somf_MCollectible Class 5

somfIsEqual Method

somfIsEqual Method
\Returns TRUE if a given obj is isomorphic to the receiving object.

IDL Syntax
boolean somfIsEqual (in somf_MCollectible obj);

Description
The somfIsEqual method returns TRUE if another specified obj is isomorphic to the
receiving object. Most utility classes allow you to specify what methods to use when
comparing objects for insertion, deletion. The choice is to use either the somfIsEqual
method, or the somfIsSame Method.

This method must be overridden if a class inherits from somf_MCollectible. If it is not
overridden, and this method is used, an error message is written and processing will end.

Parameters
receiver

A pointer to an object of class somf_MCollectible.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object that the receiving object will be compared
against.

Return Value
This method returns a boolean value:

• TRUE, obj is equal to the receiving object.
• FALSE, obj is not equal to the receiving object.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. The following
example shows how to use this method once it is overridden.

<Your class which inherits from somf_MCollectible> obj;
<Your class which inherits from somf_MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

obj = <Your class which inherits from somf_MCollectible>New();
obj2 = <Your class which inherits from somf_MCollectible>New();

if (_somfIsEqual(obj, ev, obj2))
 somPrintf(” obj is equal to obj2\n”);

_somFree (obj);
_somFree (obj2);

Original Class
somf_MCollectible Class

Related Information
somfIsNotEqual Method

6 Programmer’s Reference for SOM Collection Classes

somfIsNotEqual Method

somfIsNotEqual Method
Returns TRUE if a specified obj is not isomorphic to the receiving object.

IDL Syntax
boolean somfIsNotEqual (in somf_MCollectible obj);

Description
The somfIsNotEqual method returns TRUE if the specified object obj is not isomorphic to
the receiving object. This method uses the somfIsEqual. If a class inherits from
somf_MCollectible, somfIsEqual must be overridden for this method to work.

Parameters
receiver

A pointer to an object of class somf_MCollectible.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object that the receiving object will be compared
against.

Return Value
This method returns a boolean value:

• TRUE, obj is not equal to the receiving object.
• FALSE, obj is equal to the receiving object.

Example
<Your class which inherits from somf_MCollectible> obj;
<Your class which inherits from somf_MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

obj = <Your class which inherits from somf_MCollectible>New();
obj2 = <Your class which inherits from somf_MCollectible>New();

if (_somfIsNotEqual(obj, ev, obj2))
 somPrintf(” obj is NOT equal to obj2\n”);

_somFree (obj);
_somFree (obj2);

Original Class
somf_MCollectible Class

Related Information
somfIsEqual Method

somf_MCollectible Class 7

somfIsSame Method

somfIsSame Method
Performs a pointer comparison between the receiving object and another specified object,
obj.

IDL Syntax
boolean somfIsSame (in somf_MCollectible obj);

Description
The somfIsSame method performs a pointer comparison between the receiving object and
another specified obj.

Parameters
receiver

A pointer to an object of class somf_MCollectible.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object that the receiving object will be compared
against.

Return Value
This method returns a boolean value:

• TRUE, obj is the same as the receiving object.
• FALSE, obj is not the same as the receiving object.

Example
<Your class which inherits from somf_MCollectible> obj;
<Your class which inherits from somf_MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

obj = <Your class which inherits from somf_MCollectible>New();
obj2 = <Your class which inherits from somf_MCollectible>New();

if (_somfIsSame(obj, ev, obj2))
 somPrintf(” obj is the same as obj2\n”);

_somFree (obj);
_somFree (obj2);

Original Class
somf_MCollectible Class

8 Programmer’s Reference for SOM Collection Classes

somf_MLinkable Class

somf_MLinkable Class
This class defines the general characteristics of objects that contain links. For example,
somf_TPrimitiveLinkedListIterator Class uses somf_MLinkable.

When you link, include the following library reference to get access to this class: somtk

Other classes would inherit from somf_MLinkable if the user plans to link one class
to another class, either in a somf_TPrimitiveLinkedList or through another class.

This class is not thread-safe.

File Stem
mlink

Base
SOMObject Class

Metaclass
SOMClass Class

Ancestor Classes
SOMObject Class

New Methods
somfGetNext Method
somfGetPrevious Method
somfMLinkableInit Method
somfSetNext Method
somfSetPrevious Method

Overriding Methods
somDefaultInit Method

somf_MLinkable Class 9

somfGetNext Method

somfGetNext Method
Gets a pointer to the next somf_MLinkable object.

IDL Syntax
somf_MLinkable somfGetNext ();

Description
The somfGetNext method gets a pointer to the next object of class somf_MLinkable.

Parameters
receiver

A pointer to an object of class somf_MLinkable.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the pointer to the next somf_MLinkable object.

Example
somf_MLinkable ml;
somf_MLinkable ml2;
Environment *ev;

ev = somGetGlobalEnvironment();

ml = somf_MLinkableNew();

/* Determine ml’s next pointer */
ml2 = _somfGetNext(ml, ev);

_somFree (ml);

Original Class
somf_MLinkable Class

Related Information
somfSetNext Method
somfSetPrevious Method

10 Programmer’s Reference for SOM Collection Classes

somfGetPrevious Method

somfGetPrevious Method
Gets a pointer to the previous somf_MLinkable object.

IDL Syntax
somf_MLinkable somfGetPrevious ();

Description
The somfGetPrevious method returns a pointer to the previous object of class
somf_MLinkable.

Parameters
receiver

A pointer to an object of class somf_MLinkable.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the pointer the previous somf_MLinkable object.

Example
somf_MLinkable ml;
somf_MLinkable ml2;
Environment *ev;

ev = somGetGlobalEnvironment();

ml = somf_MLinkableNew();

/* Determine ml’s previous pointer */
ml2 = _somfGetPrevious(ml, ev);

_somFree (ml);

Original Class
somf_MLinkable Class

Related Information
somfGetNext Method
somfSetPrevious Method

somf_MLinkable Class 11

somfMLinkableInit Method

somfMLinkableInit Method
Initializes a new somf_MLinkable object, given pointers to its next and previous objects.

IDL Syntax
somf_MLinkable somfMLinkableInit (

in somf_MLinkable n,
in somf_MLinkable p);

Description
The somfMLinkableInit method initializes a new object of class somf_MLinkable, given
pointers to the new object’s next and previous somf_MLinkable objects.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_MLinkable.

ev
A pointer to the Environment structure for the calling method.

n
A pointer to the next somf_MLinkable object.

p
A pointer to the previous somf_MLinkable object.

Return Value
This method returns a pointer to an initialized somf_MLinkable object.

Example
somf_MLinkable ml;
Environment *ev;

ev = somGetGlobalEnvironment();

ml = somf_MLinkableNew();
_somfMLinkableInit(ml, ev, SOMF_NIL, SOMF_NIL);

_somFree (ml);

Original Class
somf_MLinkable Class

12 Programmer’s Reference for SOM Collection Classes

somfSetNext Method

somfSetNext Method
Sets a link pointer to the next somf_MLinkable object, given a pointer to the object
that should come after the receiving object.

IDL Syntax
void somfSetNext (in somf_MLinkable aLink);

Description
The somfSetNext method sets a link pointer to the next object of class somf_MLinkable,
given a pointer to the object that should follow the receiving object.

Parameters
receiver

A pointer to an object of class somf_MLinkable.

ev
A pointer to the Environment structure for the calling method.

aLink
A pointer to the somf_MLinkable object which should be next after the receiving object.

Example
somf_MLinkable ml;
somf_MLinkable ml2;
Environment *ev;

ev = somGetGlobalEnvironment();

ml = somf_MLinkableNew();
ml2 = somf_MLinkableNew();

/* Set ml’s next and previous pointers */

/* Set ml2 to point to ml as the next link */
_somfSetNext(ml2, ev, ml);

_somFree (ml);
_somFree (ml2);

Original Class
somf_MLinkable Class

Related Information
somfGetNext Method
somfSetPrevious Method

somf_MLinkable Class 13

somfSetPrevious Method

somfSetPrevious Method
Sets a link pointer to the previous somf_MLinkable object, given a pointer to the object
that should come before the receiving object.

IDL Syntax
void somfSetPrevious (in somf_MLinkable aLink);

Description
The somfSetPrevious method sets a link pointer to the previous object of class
somf_MLinkable, given a pointer to the object that should precede the receiving object.

Parameters
receiver

A pointer to an object of class somf_MLinkable.

ev
A pointer to the Environment structure for the calling method.

aLink
A pointer to the somf_MLinkable object, which should be previous to the receiving
object.

Example
somf_MLinkable ml;
somf_MLinkable ml2;
Environment *ev;

ev = somGetGlobalEnvironment();

ml = somf_MLinkableNew();
ml2 = somf_MLinkableNew();

/* Set ml’s next and previous pointers */

/* Set ml2 to point to ml as the previous link */
_somfSetPrevious(ml2, ev, ml);

_somFree (ml);
_somFree (ml2);

Original Class
somf_MLinkable Class

Related Information
somfGetPrevious Method
somfSetNext Methodt

14 Programmer’s Reference for SOM Collection Classes

somf_MOrderableCollectible Class

somf_MOrderableCollectible Class
Characteristics of the somf_MOrderableCollectible class should be mixed into objects
that might need to be ordered. Objects passed to an instance of somf_TPriorityQueue
Class or somf_TSortedSequence Class must have somf_MOrderableCollectible mixed
into them.

When you link, include the following library reference to get access to this class: somtk

A class will inherit from somf_MOrderableCollectible if it represents an element in an
ordered collection. All classes that inherit from somf_MOrderableCollectible must
override the somfIsEqual method that is inherited from somf_MCollectible Class, and
somfIsLessThan and somfIsGreaterThan methods. This class is not thread-safe.

File Stem
morder

Base
somf_MCollectible Class

Metaclass
SOMClass Class

Ancestor Classes
somf_MCollectible Class
SOMObject Class

New Methods
somfIsGreaterThan Method
somfIsLessThan Method
somfCompare Method
somfIsGreaterThanOrEqualTo Method
somfIsGreaterThanOrEqualTo Method

Typedefs
The following typedefs are defined in the somf_MOrderableCollectible class:

• somf_MOrderableCompareFn, a method pointer to a somfIsLessThan or
somfIsGreaterThan method.

• somf_MBetterOrderableCompareFn, a method pointer to a somfCompare method.

Enums
The following enum is defined in this class:

• EComparisonResult, an enum with the values: kLessThan, kEqual, kGreaterThan

Defines
The following defines originate in this class:

SOMF_CALL_ORDERABLE_COMPARE_FN
A define to help call the method pointed to by somf_MOrderableCompareFn.

SOMF_CALL_BETTER_ORDERABLE_COMPARE_FN
A define to help call the method pointed to by somf_MBetterOrderableCompareFn.

somf_MOrderableCollectible Class 15

somfCompare Method

somfCompare Method
Compares a specified obj to the receiving object, and returns a value indicating obj’s
comparative size.

IDL Syntax
EComparisonResult somfCompare (in somf_MOrderableCollectible obj);

Description
The somfCompare method compares the specified obj to the receiving object. The return
value indicates whether obj is greater than, less than, or equal to the receiving object.

The somfIsEqual method inherited from somf_MCollectible Class, as well as methods
somfIsLessThan and somfIsGreaterThan of the somf_MOrderableCollectible class,
must be overridden before this method will work.

Parameters
receiver

A pointer to an object of class somf_MOrderableCollectible.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the object to which the receiving object will be compared.

Return Value
There are three possible valid return values for this method:

• kLessThan, obj is less than the receiving object.
• kEqual, obj is equal to the receiving object.
• kGreaterThan, obj is greater than the receiving object.

Example
<Your Class which inherits from somf_MOrderableCollectible> a1;
<Your Class which inherits from somf_MOrderableCollectible> a2;
Environment *ev;
ev = somGetGlobalEnvironment();
a1 = <Your Class which inherits from

somf_MOrderableCollectible>New();
a2 = <Your Class which inherits from

somf_MOrderableCollectible>New();
/* Set a1 and a2 as you wish */
/* Compare a1 and a2 */
if (_somfCompare(a2,ev,a1) == somf_MOrderableCollectible_kLessThan)

somPrintf(” a1 is less than a2\n”);
else

somPrintf(” a1 is NOT less than a2\n”);
if (_somfCompare(a1,ev,a2) ==
somf_MOrderableCollectible_kGreaterThan)

somPrintf(” a2 is greater than a1\n”);
else

somPrintf(” a2 is NOT greater than a1”);
if (_somfCompare(a2,ev,a2) == somf_MOrderableCollectible_kEqual)

somPrintf(” a2 is equal a2\n”);
else

somPrintf(” a2 is NOT equal to a2”);
_somFree (a1);
_somFree (a2);

16 Programmer’s Reference for SOM Collection Classes

somfCompare Method

Original Class
somf_MOrderableCollectible Class

Related Information
somfIsEqual Method
somfIsGreaterThan Method
somfIsLessThan Method

somf_MOrderableCollectible Class 17

somfIsGreaterThan Method

somfIsGreaterThan Method
Compares two objects and returns TRUE if a given obj is “greater than” the receiving object.

IDL Syntax
boolean somfIsGreaterThan (in somf_MOrderableCollectible obj);

Description
The somfIsGreaterThan method returns TRUE if the specified object is “greater than” the
receiving object. This method must be overridden if a class inherits from
somf_MOrderableCollectible. If not, an error message is written and processing will end.

Parameters
receiver

A pointer to an object of class somf_MOrderableCollectible.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the object to which the receiving object will be compared.

Return Value
This method returns the boolean values TRUE or FALSE, depending on if obj “Is Greater
Than” the receiving object.

Example
You cannot use this method directly from this class; it must be overridden. The following
example shows how you would use this method once it is overridden.

<Your Class which inherits from somf_MOrderableCollectible> a1;
<Your Class which inherits from somf_MOrderableCollectible> a2;
Environment *ev;

ev = somGetGlobalEnvironment();
a1 = <Your Class which inherits from
 somf_MOrderableCollectible>New();
a2 = <Your Class which inherits from
 somf_MOrderableCollectible>New();

/* Set a1 and a2 as you wish */
/* Compare a1 and a2 */
if (_somfIsGreaterThan(a2,ev,a1))
 somPrintf(” a1 is greater than a2\n”);
else
 somPrintf(” a1 is NOT greater than a2\n”);

_somFree (a1);
_somFree (a2);

Original Class
somf_MOrderableCollectible Class

Related Information
somfIsEqual Method
somfIsGreaterThanOrEqualTo Method
somfIsLessThan Method

18 Programmer’s Reference for SOM Collection Classes

somfIsGreaterThanOrEqualTo Method

somfIsGreaterThanOrEqualTo Method
Compares two objects and returns TRUE if a specified obj is “greater than” or “equal to” the
receiving object.

IDL Syntax
boolean somfIsGreaterThanOrEqualTo (in somf_MOrderableCollectible obj);

Description
The somfIsGreaterThanOrEqualTo method returns TRUE if a specified object obj is
“greater than” or “equal to” the receiving object.

Parameters
receiver

A pointer to an object of class somf_MOrderableCollectible.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the object to which the receiving object will be compared.

Return Value
This method returns the Boolean values TRUE or FALSE, depending on whether obj “Is
Greater Than” or “Is Equal To” the receiving object.

Example
<Your Class which inherits from somf_MOrderableCollectible> a1;
<Your Class which inherits from somf_MOrderableCollectible> a2;
Environment *ev;

ev = somGetGlobalEnvironment();

a1 = <Your Class which inherits from
 somf_MOrderableCollectible>New();
a2 = <Your Class which inherits from
 somf_MOrderableCollectible>New();

/* Set a1 and a2 as you wish */

/* Compare a1 and a2 */
if (_somfIsGreaterThanOrEqualTo(a2,ev,a1))
 somPrintf(” a1 is greater than or equal to a2\n”);

else
 somPrintf(” a1 is NOT greater than or equal to a2\n”);

_somFree (a1);
_somFree (a2);

Original Class
somf_MOrderableCollectible Class

Related Information
somfIsEqual Method
somfIsGreaterThan Method
somfIsLessThan Method

somf_MOrderableCollectible Class 19

somfIsLessThan Method

somfIsLessThan Method
Compares two objects and returns TRUE if a given obj is “less than” the receiving object.

IDL Syntax
boolean somfIsLessThan (in somf_MOrderableCollectible obj);

Description
The somfIsLessThan method returns TRUE if the specified object is less than the
receiving object. This method must be overridden if a class inherits from
somf_MOrderableCollectible. If not, an error message is written and processing will end.

Parameters
receiver

A pointer to an object of class somf_MOrderableCollectible.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the object to which the receiving object will be compared.

Return Value
This method returns the boolean values TRUE or FALSE, depending on whether obj “Is
Less Than” the receiving object.

Example
You cannot use this method directly from this class; it must be overridden. The following
example shows how you would use this method once it is overridden.

<Your Class which inherits from somf_MOrderableCollectible> a1;
<Your Class which inherits from somf_MOrderableCollectible> a2;
Environment *ev;

ev = somGetGlobalEnvironment();

a1 = <Your Class which inherits from
 somf_MOrderableCollectible>New();
a2 = <Your Class which inherits from
 somf_MOrderableCollectible>New();

/* Set a1 and a2 as you wish */

/* Compare a1 and a2 */
if (_somfIsLessThan(a2,ev,a1))
 somPrintf(” a1 is less than a2\n”);
else
 somPrintf(” a1 is NOT less than a2\n”);

_somFree (a1);
_somFree (a2);

Original Class
somf_MOrderableCollectible Class

Related Information
somfIsEqual Method
somfIsGreaterThan Method
somfIsLessThanOrEqualTo Method

20 Programmer’s Reference for SOM Collection Classes

somfIsLessThanOrEqualTo Method

somfIsLessThanOrEqualTo Method
Compares two objects and returns TRUE if a given obj is “less than” or “equal to” the
receiving object.

IDL Syntax
boolean somfIsLessThanOrEqualTo (in somf_MOrderableCollectible obj);

Description
The somfIsLessThanOrEqualTo method returns TRUE if a specified object obj is “less
than” or “equal to” the receiving object.

Parameters
receiver

A pointer to an object of class somf_MOrderableCollectible.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the object to which the receiving object will be compared.

Return Value
This method returns the boolean values TRUE or FALSE, depending on whether the
specified obj “Is Less Than” or “Is Equal To” the receiving object.

Example
<Your Class which inherits from somf_MOrderableCollectible> a1;
<Your Class which inherits from somf_MOrderableCollectible> a2;
Environment *ev;

ev = somGetGlobalEnvironment();

a1 = <Your Class which inherits from
 somf_MOrderableCollectible>New();
a2 = <Your Class which inherits from
 somf_MOrderableCollectible>New();

/* Set a1 and a2 as you wish */

/* Compare a1 and a2 */
if (_somfIsLessThanOrEqualTo(a2,ev,a1))
 somPrintf(” a1 is less than or equal to a2\n”);

else
 somPrintf(” a1 is NOT less than or equal to a2\n”);

_somFree (a1);
_somFree (a2);

Original Class
somf_MOrderableCollectible Class

Related Information
somfIsLessThan Method
somfIsGreaterThan Method
somfIsEqual Method

somf_TAssoc Class 21

somf_TAssoc Class

somf_TAssoc Class
An object of class somf_TAssoc is used to hold a (key, value) pair of objects. Typically,
these structures are owned by some other higher-level object; specifically, the
somf_THashTable Class and somf_TDictionary Class use pairs that are actually objects
of the somf_TAssoc class.

Objects of the somf_TAssoc class are usually not returned to the user. However, users
implementing their own classes to hold pairs of objects might wish to use somf_TAssoc in
their implementations.

When you link, include the following library reference to get access to this class: somtk

This class is not thread-safe. Even if you put semaphores around your calls to this class’s
methods, different tasks should not be setting the key and value. That situation is too prone
to conflicts in setting the key or value correctly, with the result that the instance is in an
unacceptable state for both tasks.

File Stem
tassoc

Base
somf_MCollectible Class

Metaclass
SOMClass Class

Ancestor Classes
somf_MCollectible Class
SOMObject Class

New Methods
somfGetKey Method
somfGetValue Method
somfSetKey Method
somfSetValue Method
somfTAssocInitM Method
somfTAssocInitMM Method

Overriding Methods
somDefaultInit Method
somDestruct Method

22 Programmer’s Reference for SOM Collection Classes

somfGetKey Method

somfGetKey Method
Gets the key of an associated pair.

IDL Syntax
somf_MCollectible somfGetKey ();

Description
The somfGetKey method obtains the key of the associated pair represented by the
receiving object.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TAssoc.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the key of the associated pair.

Example
Environment *ev;
somf_TAssoc obj;
somf_MCollectible key;

ev = somGetGlobalEnvironment();

obj = somf_TAssocNew();

/* Add the key and value to obj */

/* Determine the key of obj */
key = _somfGetKey(obj,ev);

_somFree (obj);

Original Class
somf_TAssoc Class

Related Information
somfSetKey Method
somfSetValue Method
somfGetValue Method

somf_TAssoc Class 23

somfGetValue Method

somfGetValue Method
Gets the value to an associated (key, value) pair.

IDL Syntax
somf_MCollectible somfGetValue ();

Description
The somfGetValue method gets the value to the associated pair represented by the
receiving object.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TAssoc.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the value of the associated pair.

Example
Environment *ev;
somf_TAssoc obj;
somf_MCollectible value;

ev = somGetGlobalEnvironment();

obj = somf_TAssocNew();

/* Add the value and value to obj */

/* Determine the value of obj */
value = _somfGetValue(obj,ev);

_somFree (obj);

Original Class
somf_TAssoc Class

Related Information
somfSetValue Method
somfSetKey Method
somfGetKey Method

24 Programmer’s Reference for SOM Collection Classes

somfSetKey Method

somfSetKey Method
Sets the key of an associated pair.

IDL Syntax
void somfSetKey (in somf_MCollectible k);

Description
The somfSetKey method sets the key of an associated pair represented by the receiving
object.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TAssoc.

ev
A pointer to the Environment structure for the calling method.

k
A pointer to an object of class somf_MCollectible Class which will be the key of the
associated pair.

Example
Environment *ev;
somf_TAssoc obj;
somf_MCollectible key;

ev = somGetGlobalEnvironment();

obj = somf_TAssocNew();
key = somf_MCollectibleNew();

/* Add the key to obj */
_somfSetKey(obj,ev,key);

_somFree (obj);
_somFree (key);

Original Class
somf_TAssoc Class

Related Information
somfGetKey Method
somfSetValue Method
somfGetValue Method

somf_TAssoc Class 25

somfSetValue Method

somfSetValue Method
Sets the value to an associated (key, value) pair.

IDL Syntax
void somfSetValue (in somf_MCollectible v);

Description
The somfSetValue method sets the value to the associated pair represented by the
receiving object.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TAssoc.

ev
A pointer to the Environment structure for the calling method.

v
A pointer to an object of class somf_MCollectible Class which will be the value of the
associated pair.

Example
Environment *ev;
somf_TAssoc obj;
somf_MCollectible value;

ev = somGetGlobalEnvironment();

obj = somf_TAssocNew();
value = somf_MCollectibleNew();

/* Add the value to obj */
_somfSetValue(obj,ev,value);

_somFree (obj);
_somFree (value);

Original Class
somf_TAssoc Class

Related Information
somfGetValue Method
somfGetKey Method
somfSetKey Method

26 Programmer’s Reference for SOM Collection Classes

somfTAssocInitM Method

somfTAssocInitM Method
Initializes a somf_TAssoc object to a given key (k). The value (v) is set to SOMF_NIL.

IDL Syntax
somf_TAssoc somfTAssocInitM (in somf_MCollectible k);

Description
The somfTAssocInitM method initializes an object of class somf_TAssoc to a given key
(k). The value (v) is set to SOMF_NIL. An object of class somf_TAssoc is a pair.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TAssoc.

ev
A pointer to the Environment structure for the calling method.

k
A pointer to an object of class somf_MCollectible Class that will be the key of the
associated pair.

Return Value
This method returns a pointer to an initialized somf_TAssoc object.

Example
Environment *ev;
somf_TAssoc obj;

ev = somGetGlobalEnvironment();

obj = somf_TAssocNew();
_somfTAssocInitM(obj, ev, SOMF_NIL);

_somFree (obj);

Original Class
somf_TAssoc Class

Related Information
somfTAssocInitMM Method

somf_TAssoc Class 27

somfTAssocInitMM Method

somfTAssocInitMM Method
Initializes a somf_TAssoc object to a given key (k) and value (v).

IDL Syntax
somf_TAssoc somfTAssocInitMM (

in somf_MCollectible k,
in somf_MCollectible v);

Description
The somfTAssocInitMM method initializes an object of class somf_TAssoc to a given key
(k) and value (v). An object of class somf_TAssoc is a pair.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TAssoc.

ev
A pointer to the Environment structure for the calling method.

k
A pointer to an object of class somf_MCollectible Class that will be the key of the
associated pair.

v
A pointer to an object of class somf_MCollectible that will be the value of the
associated pair.

Return Value
This method returns a pointer to an initialized somf_TAssoc object.

Example
Environment *ev;
somf_TAssoc obj;

ev = somGetGlobalEnvironment();

obj = somf_TAssocNew();
_somfTAssocInitMM(obj, ev, SOMF_NIL, SOMF_NIL);

_somFree (obj);

Original Class
somf_TAssoc Class

Related Information
somfTAssocInitM Method

28 Programmer’s Reference for SOM Collection Classes

somf_TCollectibleLong Class

somf_TCollectibleLong Class
This class provides the user with a generic somf_MCollectible containing a long value.

When you link, include the following library reference to get access to this class: somtk

This class is not thread-safe. Even if you put semaphores around your calls to this class’s
methods, you do not want different tasks setting the value. That situation is too prone to
conflicts in setting the value correctly, with the result that the state of the instance is
unacceptable for all but one task.

This class is reentrant.

File Stem
tclong

Base
somf_MCollectible Class

Metaclass
SOMClass Class

Ancestor Classes
somf_MCollectible Class
SOMObject Class

New Methods
somfGetValue Method
somfSetValue Method
somfTCollectibleLongInit Method

Overriding Methods
somDefaultInit Method
somfIsEqual Method
somfHash Method

somf_TCollectibleLong Class 29

somfGetValue Method

somfGetValue Method
Gets the value of the long in the receiving object.

IDL Syntax
long somfGetValue ();

Description
The somfGetValue method gets the value of the long in the receiving object.

Parameters
receiver

A pointer to an object of class somf_TCollectibleLong.

ev
A pointer to the Environment structure for the calling method.

Return Value
Returns the value of the long.

Example
somf_TCollectibleLong l;
Environment *ev;

ev = somGetGlobalEnvironment();
l = somf_TCollectibleLongNew();
somPrintf(”\n Value of l= %d\n”, _somfGetValue(l,ev));

_somFree (l);

Original Class
somf_TCollectibleLong Class

Related Information
somfSetValue Method
somfIsEqual Method

30 Programmer’s Reference for SOM Collection Classes

somfHash Method

somfHash Method
Returns a value suitable for use as a hashing probe for the receiving object. Actually, it
returns the value of the long.

IDL Syntax
long somfHash ();

Description
The somfHash method returns a long value suitable for use as a hashing probe for the
receiving object.

Parameters
receiver

A pointer to an object of class somf_TCollectibleLong.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the hash value for the receiving object.

Example
somf_TCollectibleLong l;
Environment *ev;

ev = somGetGlobalEnvironment();
l = somf_TCollectibleLongNew();
somPrintf(”\n Hash Value of l= %d\n”, _somfHash(l,ev));

_somFree (l);

Original Class
somf_MCollectible Class (overridden here)

Related Information
somfGetValue Method
somfSetValue Method
somfTCollectibleLongInit Method
somfIsEqual Method

somf_TCollectibleLong Class 31

somfIsEqual Method

somfIsEqual Method
Compares two objects and returns TRUE if a given obj is isomorphic to the receiving object.

IDL Syntax
boolean somfIsEqual (in somf_MCollectible obj);

Description
The somfIsEqual method returns TRUE if a specified object obj is isomorphic to the
receiving object.

All of the utility classes allow you to specify what methods to use when comparing objects
for insertion, deletion and so forth.

Parameters
receiver

A pointer to an object of class somf_TCollectibleLong.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible Class object that the receiving object will be
compared against.

Return Value
• TRUE, obj is equal to the receiving object.
• FALSE, obj is not equal to the receiving object.

Example
somf_TCollectibleLong l;
somf_TCollectibleLong ll;
Environment *ev;

ev = somGetGlobalEnvironment();
l = somf_TCollectibleLongNew();
ll = somf_TCollectibleLongNew();
_somfTCollectibleLongInit(ll,ev,220);

/* if (*l == *ll) */
if (_somfIsEqual(l,ev,ll))
 somPrintf(”\n Why is l == ll?\n”);
else
 somPrintf(”\n l != ll\n”);

_somFree (l);
_somFree (ll);

Original Class
somf_MCollectible Class (overridden here)

Related Information
somfGetValue Method
somfSetValue Method
somfTCollectibleLongInit Method

32 Programmer’s Reference for SOM Collection Classes

somfSetValue Method

somfSetValue Method
Sets the value of a long in a somf_TCollectibleLong object.

IDL Syntax
void somfSetValue (in long v);

Description
The somfSetValue method sets the long value in an object of class
somf_TCollectibleLong.

Parameters
receiver

A pointer to an object of class somf_TCollectibleLong.

ev
A pointer to the Environment structure for the calling method.

v
The value of the long.

Example
somf_TCollectibleLong l;
Environment *ev;

ev = somGetGlobalEnvironment();
l = somf_TCollectibleLongNew();

_somfSetValue(l,ev,220);
somPrintf(”\n Value of l= %d\n”, _somfGetValue(l,ev));

_somFree (l);

Original Class
somf_TCollectibleLong Class

Related Information
somfGetValue Method
somfIsEqual Method
somfTCollectibleLongInit Method

somf_TCollectibleLong Class 33

somfTCollectibleLongInit Method

somfTCollectibleLongInit Method
Initializes a new object of class somf_TCollectibleLong.

IDL Syntax
somf_TCollectibleLong somfTCollectibleLongInit (in long v);

Description
The somfTCollectibleLongInit method initializes a new somf_TCollectibleLong object.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TCollectibleLong.

ev
A pointer to the Environment structure for the calling method.

v
A pointer to the initial value of the somf_TCollectibleLong.

Return Value
This method returns a pointer to an initialized object of class somf_TCollectibleLong.

Example
somf_TCollectibleLong l;
Environment *ev;

ev = somGetGlobalEnvironment();
l = somf_TCollectibleLongNew();
_somfTCollectibleLongInit(l,ev,44);

_somFree (l);

Original Class
somf_TCollectibleLong Class

Related Information
somfSetValue Method
somfGetValue Method
somfIsEqual Method
somfHash Method

34 Programmer’s Reference for SOM Collection Classes

somf_TCollection Class

somf_TCollection Class
This class represents a group of objects. It is implemented as an abstract class from which
almost all main collection classes inherit methods.

When you link, include the following library reference to get access to this class: somtk

When creating an unordered collection, your classes should inherit from
somf_TCollection. When creating an ordered collection, your classes should inherit from
somf_TSequence Class. The somf_TCollection class provides the pure virtual functions
that constitute the framework for the methods that should be available in an unordered
collection.

Note: he somf_TCollection class uses the somfIsEqual method as the default
comparison function. (That is, if key1=”Bart” and key2=”Bart”, then key1 and
key2 are equal.) If you do not want to use the somfIsEqual Method to equate
entries, use the initialization methods to change to the somfIsSame Method.

File Stem
tcollect

Base
somf_MCollectible Class

Metaclass
SOMClass Class

Ancestor Classes
somf_MCollectible Class
SOMObject Class

New Methods
somfAdd Method
somfAddAll Method
somfRemove Method
somfRemoveAll Method
somfDeleteAll Method
somfCount Method
somfMember Method
somfCreateIterator Method
somfTestFunction Method
somfSetTestFunction Method
somfTCollectionInit Method

Overriding Methods
somfIsEqual Method

somf_TCollection Class 35

somfAdd Method

somfAdd Method
Adds a specified obj to a collection.

IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);

Description
The somfAdd method adds a specified object obj to the collection represented by the
receiving object.

Every class that inherits from this class must override this method for that class to work
correctly.

Parameters
receiver

A pointer to an object of class somf_TCollection.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to an object of class somf_MCollectible that will be added to the receiving
object.

Return Value
• somf_MCollectible, a pointer to the somf_MCollectible Class object that had to be

removed in order to add obj. (Recall that some of the main collection classes will only
accept one occurrence of an object where the somfIsEqual Method or somfIsSame
Method would be TRUE.)

• SOMF_NIL, no somf_MCollectible had to be removed in order to add obj.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method looks when it is invoked, see somf_TDeque Class, somf_TDictionary Class,
or any of the other classes that inherit from somf_TCollection.

Original Class
somf_TCollection Class

Related Information
somfAddAll Method

36 Programmer’s Reference for SOM Collection Classes

somfAddAll Method

somfAddAll Method
Adds all of the objects from a given collection into the receiving object.

IDL Syntax
void somfAddAll (in somf_TCollection col);

Description
The somfAddAll method adds all of the objects from a specified collection to the receiving
object. Essentially, this is equivalent to passing in an iterator for the collection and then
adding each element of the collection to the receiving object.

Parameters
receiver

A pointer to an object of class somf_TCollection.

ev
A pointer to the Environment structure for the calling method.

col
A pointer to an object of class somf_TCollection. All of the objects in the collection
pointed to by col will be added to the receiving object.

Example
somf_TSet s1;
somf_TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();

/* Add All of the objects in s2 to s1 */
_somfAddAll(s1, ev, s2);

_somFree (s1);
_somFree (s2);

Original Class
somf_TCollection Class

Related Information
somfAdd Method

somf_TCollection Class 37

somfCount Method

somfCount Method
Gets the number of objects in a collection.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the collection represented by
the receiving object, and returns that number.

Every class that inherits from the somf_TCollection class must override this method for
that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method must be fully qualified (example:
somf_TDictionary_somfCount). This is the only way the linker can tell them apart. This is
not a problem in C++. In C++ you can reference this method as:

d->somfCount(ev);

Parameters
receiver

A pointer to an object of class somf_TCollection.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a long indicating the number of objects in the receiving object.

Example
You cannot use this method directly from the somf_TCollection class; it must be
overridden. If you invoke this method directly, an error message is written and processing
will end. For examples of how this method looks when it is invoked, see somf_TDeque
Class or somf_TDictionary Class or any of the other classes that inherit from
somf_TCollection.

Original Class
somf_TCollection Class

38 Programmer’s Reference for SOM Collection Classes

somfCreateIterator Method

somfCreateIterator Method
Returns a new iterator that is suitable for iterating over the objects in this collection.

IDL Syntax
somf_TIterator somfCreateIterator ();

Description
The somfCreateIterator method returns a new iterator that is suitable for iterating over the
objects in the collection represented by the receiving object.

Every class that inherits from the somf_TCollection class must override this method for
that class to work correctly.

Parameters
receiver

A pointer to an object of class somf_TCollection.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example
You cannot use this method directly from the somf_TCollection class; it must be
overridden. If you invoke this method directly, an error message is written and processing
will end. For examples of how this method looks when it is invoked, see somf_TDeque
Class or somf_TDictionary Class or any of the other classes that inherit from
somf_TCollection.

Original Class
somf_TCollection Class

somf_TCollection Class 39

somfDeleteAll Method

somfDeleteAll Method
Removes all of the objects from the receiving object and deallocates the storage that these
objects might have owned. (That is, the destructor function is called for each object in the
collection.)

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the objects from the receiving object and
deallocates the storage that these objects might have owned (the destructor function is
called for each object in the collection).

Be careful with somfDeleteAll. Since a collection only contains pointers to objects (rather
than the objects themselves), somfDeleteAll can cause a problem if a pointer to an object
appears more than once. For example, if multiple pointers to A exists, or if a single pointer
to A is in the collection multiple times, the behavior of the code is undefined, because it will
try to delete A multiple times. If you think there is a chance that an object could appear in
the collection more than once, you should consider using somfRemoveAll Method to
remove the objects from the collection and deleting them some other way.

Every class that inherits from the somf_TCollection class must override this method for
that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDictionary_somfDeleteAll). This is the only way the linker can tell them apart.
This is not a problem in C++. In C++ you can reference this method as:

d->somfDeleteAll(ev);

Parameters
receiver

A pointer to an object of class somf_TCollection.

ev
A pointer to the Environment structure for the calling method.

Example
You cannot use this method directly from the somf_TCollection class; it must be
overridden. If you invoke this method directly, an error message is written and processing
will end. For examples of how this method looks when it is invoked, see somf_TDeque
Class or somf_TDictionary Class or any of the other classes that inherit from
somf_TCollection.

Original Class
somf_TCollection Class

40 Programmer’s Reference for SOM Collection Classes

somfIsEqual Method

somfIsEqual Method
Compares two objects and returns TRUE if a specified obj is isomorphic to the receiving
object.

IDL Syntax
boolean somfIsEqual (in somf_MCollectible obj);

Description
The somfIsEqual method returns TRUE if a given object obj is isomorphic to the receiving
object.

All of the utility classes allow you to specify what methods to use when comparing objects
for insertion, deletion, and so forth.

Parameters
receiver

A pointer to an object of class somf_TCollection.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible Class object that the receiving object will be
compared against.

Return Value
• TRUE, obj is equal to the receiving object.
• FALSE, obj is not equal to the receiving object.

Original Class
somf_MCollectible Class (overridden here)

somf_TCollection Class 41

somfMember Method

somfMember Method
Gets an obj in the collection.

IDL Syntax
somf_MCollectible somfMember (in somf_MCollectible obj);

Description
The somfMember method determines whether a specified obj is a member of the
collection that is the receiving object, and returns a pointer to the object (if found).

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDictionary_somfMember). This is the only way the linker can tell them apart. This
is not a problem in C++. In C++ you can reference this method as:

d->somfMember(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TCollection.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the object of class somf_MCollectible Class that may or may not be a
member of the collection.

Return Value
• somf_MCollectible, a pointer to the object the method determined as the member.
• SOMF_NIL, indicates the object was not found.

Example
somf_TDeque dq;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
obj = <your Class which inherits from somf_MCollectible>New();

/* See if obj is in dq */
if (_somfMember(dq, ev, obj) != SOMF_NIL)
 somPrintf(”\n obj is a Member\n”);
else
 somPrintf(”\n ERROR: obj should be a Member\n”);

_somFree (dq);
_somFree (obj);

Original Class
somf_TCollection Class

42 Programmer’s Reference for SOM Collection Classes

somfRemove Method

somfRemove Method
Removes an object from a collection.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible obj);

Description
The somfRemove method removes a specified object obj from the collection represented
by the receiving object.

Every class that inherits from the somf_TCollection class must override this method for
that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents. You will probably have to fully qualify the method name. This is the only way the
linker can tell them apart. This is not a problem in C++. In C++ you can reference this
method as:

d->somfRemove(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TCollection.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the object of class somf_MCollectible Class to be removed from the
collection.

Return Value
• somf_MCollectible, a pointer to the object that was removed.
• SOMF_NIL, indicates the specified object was not found.

Example
You cannot use this method directly from the somf_TCollection class; it must be
overridden. If you invoke this method directly, an error message is written and processing
will end. For examples of how this method looks when it is invoked, see somf_TDeque
Class or somf_TDictionary Class or any of the other classes that inherit from
somf_TCollection.

Original Class
somf_TCollection Class

Related Information
somfRemoveAll Method

somf_TCollection Class 43

somfRemoveAll Method

somfRemoveAll Method
Removes all of the objects from a collection.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all existing objects from the collection represented
by the receiving object.

Every class that inherits from the somf_TCollection class must override this method for
that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDictionary_somfRemoveAll). This is the only way the linker can tell them apart.
This is not a problem in C++. In C++ you can reference this method as:

d->somfRemoveAll(ev);

Parameters
receiver

A pointer to an object of class somf_TCollection.

ev
A pointer to the Environment structure for the calling method.

Example
You cannot use this method directly from the somf_TCollection class; it must be
overridden. If you invoke this method directly, an error message is written and processing
will end. For examples of how this method looks when it is invoked, see somf_TDeque
Class or somf_TDictionary Class or any of the other classes that inherit from
somf_TCollection.

Original Class
somf_TCollection Class

Related Information
somfRemove Method

44 Programmer’s Reference for SOM Collection Classes

somfSetTestFunction Method

somfSetTestFunction Method
Sets the test method for a collection.

IDL Syntax
void somfSetTestFunction (in somf_MCollectibleCompareFn testfn);

Description
The somfSetTestFunction method sets the test method to be used by the collection that is
the receiving object.

Parameters
receiver

A pointer to an object of class somf_TCollection.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual Method or a somfIsSame Method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual

because SOM needs a pointer to the original declaration of the method, which resides
in somf_MCollectible Class. The somf_TCollection object will use this pointer to
access the somfIsSame or somfIsEqual method that was declared and defined in the
object being inserted into, or removed from, the somf_TCollection object.

Original Class
somf_TCollection Class

Related Information
somfTestFunction Method

somf_TCollection Class 45

somfTCollectionInit Method

somfTCollectionInit Method
Initializes a new object of class somf_TCollection.

IDL Syntax
somf_TCollection somfTCollectionInit (in somf_MCollectibleCompareFn testfn);

Description
The somfTCollectionInit method initializes a new object of class somf_TCollection.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TCollection.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual Method or a somfIsSame Method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual

because SOM needs a pointer to the original declaration of the method, which resides
in somf_MCollectible Class. The somf_TCollection object will use this pointer to
access the somfIsSame or somfIsEqual method that was declared and defined in the
object being inserted into, or removed from, the somf_TCollection object.

Return Value
This method returns a pointer to an initialized object of class somf_TCollection.

Original Class
somf_TCollection Class

46 Programmer’s Reference for SOM Collection Classes

somfTestFunction Method

somfTestFunction Method
Determines the method that a collection uses for comparison testing.

IDL Syntax
somf_MCollectibleCompareFn somfTestFunction ();

Description
The somfTestFunction method determines which method is used for comparison testing
by the collection that is the receiving object. Comparison testing is performed on objects
already contained in the collection and/or on objects being tested for eligibility.

Parameters
receiver

A pointer to an object of class somf_TCollection.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the method that a somf_TCollection collection uses to
compare two (existing or potential) objects of the collection. This test is usually either
somfIsSame Method or somfIsEqual Method.

Original Class
somf_TCollection Class

Related Information
somfSetTestFunction Method

somf_TDeque Class 47

somf_TDeque Class

somf_TDeque Class
A somf_TDeque class is a child of somf_TSequence Class. It is ordered based on the
order in which objects are added to, or removed from, the collection. The somf_TDeque
class can also be used as a queue or a stack.

Each of these data structures are implemented in the somf_TDeque class, with different
methods processing the logically different structures. However, the somf_TDeque class is
more than all three data structures combined, because objects can be inserted and
removed from any point in the somf_TDeque. In addition, the somf_TDeque is probably
the most flexible of the data structures, because an object can appear in it more than once,
and the only ordering in the data structure is determined by how elements are inserted into
it.

When you link, include the following library reference to get access to this class: somtk

Objects of the somf_MCollectible Class that are inserted into a somf_TDeque collection
could override the somfIsSame method.

Note: The somf_TDeque class uses the somfIsSame method as the default comparison
function. That is, if key1=“Bart” and key2=“Bart”, key1 and key2 are not the
same. Only key1 is the same as key1. If you do not want to use the somfIsSame
method to equate entries, use one of the initialization methods to change to the
somfIsEqual method. Just be aware that if the comparison methods are changed,
the objects inserted into the somf_TDeque must have somfIsEqual and somfHash
overridden.

Although the methods in this class are reentrant, the class is not thread-safe on
multi-thread applications. If a pointer to an instance of this class is to be passed around to
multiple threads, it is up to the code in those threads to guarantee thread-safe usage of the
class.

File Stem
tdeq

Base
somf_TSequence Class

Metaclass
SOMClass Class

Ancestor Classes
somf_TSequence Class
somf_TCollection Class
somf_MCollectible Class
SOMObject Class

New Methods
somfAddAfter Method
somfAddBefore Method
somfAddLast Method
somfAddFirst Method
somfRemoveLast Method
somfRemoveFirst Method

48 Programmer’s Reference for SOM Collection Classes

somf_TDeque Class

somfCreateSequenceIterator Method
somfRemoveQ Method
somfInsert Method
somfPop Method
somfPush Method
somfCreateNewLink Method
somfAssign Method
somfTDequeInitF Method
somfTDequeInitD Method

Overriding Methods
somDefaultInit Method
somDestruct Method
somfAdd Method
somfRemove Method
somfDeleteAll Method
somfRemoveAll Method
somfCount Method
somfAfter Method
somfBefore Method
somfLast Method
somfFirst Method
somfMember Method
somfCreateIterator Method

somf_TDeque Class 49

somfAdd Method

somfAdd Method
Adds an object to a deque collection.

IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);

Description
The somfAdd method adds a designated object obj to the deque collection represented by
the receiving object.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to a somf_MCollectible object that will be added to the receiving object.

Return Value
This method returns a pointer to the somf_MCollectible object that was added.

Example
somf_TDeque dq;
<your Class which inherits from somf_MCollectible> obj
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
obj = <your Class which inherits from somf_MCollectible>New();

_somfAdd(dq, ev, obj);

_somFree (dq);
_somFree (obj);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfAddAfter Method
somfAddBefore Method
somfAddFirst Method
somfAddLast Method

50 Programmer’s Reference for SOM Collection Classes

somfAddAfter Method

somfAddAfter Method
Adds a new object to a deque collection after a specified existing object.

IDL Syntax
void somfAddAfter (

in somf_MCollectible existingobj,
in somf_MCollectible tobeadded);

Description
The somfAddAfter method adds the designated new object, tobeadded, to the deque
collection after the specified existing object, existobj.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

existingobj
A pointer to the existing somf_MCollectible object after which the new object will be
added.

tobeadded
A pointer to the new somf_MCollectible object to be added to the deque.

Example
somf_TDeque dq;
<your Class which inherits from somf_MCollectible> obj1;
<your Class which inherits from somf_MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
obj1 = <your Class which inherits from somf_MCollectible>New();
obj2 = <your Class which inherits from somf_MCollectible>New();

_somfAddFirst(dq, ev, obj1);
_somfAddAfter(dq, ev, obj1, obj2);

_somFree (dq);
_somFree (obj1);
_somFree (obj2);

Original Class
somf_TDeque Class

Related Information
somfAdd Method
somfAddBefore Method
somfAddFirst Method
somfAddLast Method

somf_TDeque Class 51

somfAddBefore Method

somfAddBefore Method
Adds a new object to a deque collection before a specified existing object.

IDL Syntax
void somfAddBefore (

in somf_MCollectible existobj,
in somf_MCollectible tobeadded);

Description
The somfAddBefore method adds the designated new object, tobeadded, to the deque
collection before the specified existing object, existobj.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

existobj
A pointer to the existing somf_MCollectible object before which the new object will be
added.

tobeadded
A pointer to the new somf_MCollectible object to be added to the deque.

Example
somf_TDeque dq;
<your Class which inherits from somf_MCollectible> obj1;
<your Class which inherits from somf_MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
obj1 = <your Class which inherits from somf_MCollectible>New();
obj2 = <your Class which inherits from somf_MCollectible>New();

_somfAddFirst(dq, ev, obj1);
_somfAddBefore(dq, ev, obj1, obj2);

_somFree (dq);
_somFree (obj1);
_somFree (obj2);

Original Class
somf_TDeque Class

Related Information
somfAdd Method
somfAddAfter Method
somfAddFirst Method
somfAddLast Method

52 Programmer’s Reference for SOM Collection Classes

somfAddFirst Method

somfAddFirst Method
Adds a new object as the first object in a deque collection.

IDL Syntax
void somfAddFirst (in somf_MCollectible obj);

Description
The somfAddFirst method adds the designated new object obj as the first object in the
deque collection represented by the receiving object.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the object of class somf_MCollectible to be added to the deque.

Example
somf_TDeque dq;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
obj = <your Class which inherits from somf_MCollectible>New();

_somfAddFirst(dq, ev, obj);

_somFree (dq);
_somFree (obj);

Original Class
somf_TDeque Class

Related Information
somfAdd Method
somfAddAfter Method
somfAddBefore Method
somfAddLast Method

somf_TDeque Class 53

somfAddLast Method

somfAddLast Method
Adds a new object as the last object in a deque collection.

IDL Syntax
void somfAddLast (in somf_MCollectible obj);

Description
The somfAddLast method adds the new object obj as the last object in the deque
collection.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the object of class somf_MCollectible to be added to the deque.

Example
somf_TDeque dq;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
obj = <your Class which inherits from somf_MCollectible>New();

_somfAddLast(dq, ev, obj);

_somFree (dq);
_somFree (obj);

Original Class
somf_TDeque Class

Related Information
somfAdd Method
somfAddAfter Method
somfAddBefore Method
somfAddFirst Method

54 Programmer’s Reference for SOM Collection Classes

somfAfter Method

somfAfter Method
Gets the object found after a specified object in a deque collection.

IDL Syntax
somf_MCollectible somfAfter (in somf_MCollectible obj);

Description
The somfAfter method returns the object found after object obj in the deque collection
represented by the receiving object.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to thesomf_MCollectible that is in front of the returned obj.

Return Value
• somf_MCollectible, a pointer to the object of class somf_MCollectible that comes

after obj.
• SOMF_NIL, obj is the last object in the collection or could not be found.

Example
somf_TDeque dq;
somf_MCollectible obj;
Environment *ev;
<Your Class which inherits from somf_MCollectible> a1;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
a1 = <Your Class which inherits from somf_MCollectible>New();

/* Add some objects to dq */

/* set obj to point to the object after a1 */
obj = _somfAfter(dq, ev, a1);

_somFree (dq);
_somFree (a1);

Original Class
somf_TSequence Class (overridden here)

Related Information
somfBefore Method
somfFirst Method
somfLast Method

somf_TDeque Class 55

somfAssign Method

somfAssign Method
Assigns a deque collection as being equal to a given source deque.

IDL Syntax
void somfAssign (in somf_TDeque s);

Description
The somfAssign method assigns the deque receiving object to be equal to the source
deque object. That is, the method sets or resets the instance variables of the receiver to the
values of the source. This operation is logically equivalent to using the equal (=) operator.

C cannot handle methods from different classes having the same name when they
inherit the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDeque_somfAssign). This is the only way the linker can tell them apart. This is not
a problem in C++. In C++ you can reference this method as:

d->somfAssign(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

s
A pointer to the somf_TDeque object to which the receiving object will be set equal.

Example
somf_TDeque dq1;
somf_TDeque dq2;
Environment *ev;

ev = somGetGlobalEnvironment();

dq1 = somf_TDequeNew();
dq2 = somf_TDequeNew();

/* Add som objects to dq1 */

/* Assign dq2 = dq1 */
somf_TDeque_somfAssign(dq2, ev, dq1);

_somFree (dq1);
_somFree (dq2);

Original Class
somf_TDeque Class

56 Programmer’s Reference for SOM Collection Classes

somfBefore Method

somfBefore Method
Gets the object found before a specified object in a deque collection.

IDL Syntax
somf_MCollectible somfBefore (in somf_MCollectible obj);

Description
The somfBefore method returns the object found immediately before the designated object
obj in a deque collection represented by the receiving object.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible that is behind the returned obj.

Return Value
• somf_MCollectible, a pointer to the somf_MCollectible object that precedes obj.
• SOMF_NIL, the obj is the first object in the receiving object or could not be found.

Example
somf_TDeque dq;
somf_MCollectible obj;
Environment *ev;
<Your Class which inherits from somf_MCollectible> a1;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
a1 = <Your Class which inherits from somf_MCollectible>New();

/* Add some objects to dq */

/* set obj to point to the object before a1 */
obj = _somfBefore(dq, ev, a1);

_somFree (dq);
_somFree (a1);

Original Class
somf_TSequence Class (overridden here)

Related Information
somfAfter Method
somfFirst Method
somfLast Method

somf_TDeque Class 57

somfCount Method

somfCount Method
Gets the number of objects in a deque collection.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the deque collection
represented by the receiving object, and returns that number.

C cannot handle methods from different classes having the same name when they
inherit the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDeque_somfCount). This is the only way the linker can tell them apart. This is not
a problem in C++. In C++ you can reference this method as:

d->somfCount(ev);

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in the receiving object.

Example
somf_TDeque dq;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();

somPrintf(“\n Count of dq= %d\n”, _somfCount(dq,ev));

_somFree (dq);

Original Class
somf_TCollection Class (overridden here)

58 Programmer’s Reference for SOM Collection Classes

somfCreateIterator Method

somfCreateIterator Method
Returns a new iterator that is suitable for iterating over the objects in this deque collection.

IDL Syntax
somf_TIterator somfCreateIterator ();

Description
The somfCreateIterator method returns a new iterator that is suitable for iterating over the
objects in the deque collection represented by the receiving object.

Note: This is one of three ways to initialize a somf_TDequeIterator Class to point to an
instance of a somf_TDeque. One other way is to use the somf_TDequeIterator
initializer method, and the final way is to use somfCreateSequenceIterator Method.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example
somf_TDeque dq;
Environment *ev;
somf_TDequeIterator itr;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
itr = (somf_TDequeIterator*) _somfCreateIterator(dq,ev);

_somFree (dq);
_somFree (itr);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfCreateSequenceIterator Method

somf_TDeque Class 59

somfCreateNewLink Method

somfCreateNewLink Method
Creates a new link in a somf_TDeque collection, given two objects as the previous and
next somf_TDequeLinkable Class links, and the value of the new link.

IDL Syntax
somf_TDequeLinkable somfCreateNewLink (

in somf_TDequeLinkable p,
in somf_TDequeLinkable n,
in somf_MCollectible v);

Description
The somfCreateNewLink method creates a new link in a somf_TDeque collection, given
the previous and next somf_TDequeLinkable objects, as well as the value of the new link.

When inheriting from this class, this method can be overridden if you want to customize
how a somf_TDeque object creates a new link in your derived class.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

p
A pointer to the somf_TDequeLinkable object before this one.

n
A pointer to the somf_TDequeLinkable object after this one.

v
A pointer to the somf_MCollectible object that represents the value of the new
somf_TDequeLinkable.

Return Value
This method returns a pointer to the new somf_TDequeLinkable object.

Original Class
somf_TDeque Class

60 Programmer’s Reference for SOM Collection Classes

somfCreateSequenceIterator Method

somfCreateSequenceIterator Method
Returns a new iterator that is suitable for iterating over the objects in the given deque
collection.

IDL Syntax
somf_TSequenceIterator somfCreateSequenceIterator ();

Description
The somfCreateSequenceIterator method returns a new iterator that is suitable for
iterating over the objects in the deque collection represented by the receiving object.

Note: This is one of three ways to initialize a somf_TDequeIterator Class to point to an
instance of a somf_TDeque. One other way is to use somf_TDequeIterator’s
initializer method, and the final way is to use the somf_TDeque’s
somfCreateIterator Method.

This method is identical to somfCreateIterator; you could use either one. The only
difference is that the type of the return value for this method is a somf_TSequenceIterator
Class, and the return type for the return value of somfCreateIterator is a somf_TIterator
Class. However, both methods return an instance of a somf_TDequeIterator that has
been typed correctly.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example
somf_TDeque dq;
Environment *ev;
somf_TDequeIterator itr;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
itr = (somf_TDequeIterator*) _somfCreateSequenceIterator(dq,ev);

_somFree (dq);
_somFree (itr);

Original Class
somf_TDeque Class

Related Information
somfCreateIterator Method

somf_TDeque Class 61

somfDeleteAll Method

somfDeleteAll Method
Removes all of the objects from a deque collection and deallocates the storage that these
objects might have owned. That is, the destructor function is called for each object in the
collection.

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the objects from the deque collection
represented by the receiving object. Also, it deallocates the storage that these objects
might have owned; that is, the destructor function is called for each object in the collection.

Be careful with somfDeleteAll. Since a collection only contains pointers to objects, rather
than the objects themselves, somfDeleteAll can cause a problem if a pointer to an object
appears more than once. For example, if multiple pointers to A exists, or if a single pointer
to A is in the collection multiple times, the behavior of the code is undefined, because it will
try to delete A multiple times. If you think there is a chance that an object could appear in
the collection more than once, you should consider using somfRemoveAll Method to
remove the objects from the collection and deleting them some other way.

C cannot handle methods from different classes having the same name when they
inherit the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDeque_somfDeleteAll). This is the only way the linker can tell them apart. This is
not a problem in C++. In C++ you can reference this method as:

d->somfDeleteAll(ev);

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TDeque dq;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();

/* Add some objects to dq */

/* Remove all objects in dq AND DELETE ALL INSTANCES */
_somfDeleteAll(dq,ev);

_somFree (dq);

Original Class
somf_TCollection Class (overridden here)

62 Programmer’s Reference for SOM Collection Classes

somfFirst Method

somfFirst Method
Gets the first object in a deque collection.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method determines the first object in the deque collection represented by
the receiving object, and returns a pointer to the object (if found).

C cannot handle methods from different classes having the same name when they
inherit the name from different parents. somfFirst is a method name declared in
multiple parents (example: somf_TSequence, somf_TIterator and so forth.). You will
probably have to fully qualify the method name (example: somf_TDeque_somfFirst). This
is the only way the linker can tell them apart. This is not a problem in C++. In C++ you can
reference this method as:

seq->somfFirst(ev);

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the first somf_MCollectible object in the collection.
• SOMF_NIL, nothing is in the collection.

Example
somf_TDeque dq;
Environment *ev;
somf_MCollectible first;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();

/* Add some objects to dq */

first = somf_TDeque_somfFirst(dq,ev);
/* do something with the first object in the somf_TDeque */

_somFree (dq);

Original Class
somf_TSequence Class (overridden here)

Related Information
somfAddAfter Method
somfBefore Method
somfLast Method

somf_TDeque Class 63

somfInsert Method

somfInsert Method
Adds an object to the end of the deque/queue.

IDL Syntax
void somfInsert (in somf_MCollectible obj);

Description
The somfInsert method appends the object obj to the end of the deque/queue represented
by the receiving object.

This method can be used with somfRemoveQ Method to simulate a queue.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object to be added to the deque.

Example
somf_TDeque dq;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
obj = <your Class which inherits from somf_MCollectible>New();

_somfInsert(dq, ev, obj);

_somFree (dq);
_somFree (obj);

Original Class
somf_TDeque Class

Related Information
somfRemoveQ Method

64 Programmer’s Reference for SOM Collection Classes

somfLast Method

somfLast Method
Gets the last object in a given deque collection.

IDL Syntax
somf_MCollectible somfLast();

Description
The somfLast method gets the last object in the deque collection represented by the
receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TSequence is used with a child
of somf_TSequenceIterator or with somf_TPrimitiveLinkedListIterator, then the name
of the method must be fully qualified (for example: somf_TDeque_somfLast). This is the
only way the linker can tell them apart. This is not a problem in C++. In C++ you can
reference this method as:

seq->somfLast(ev);

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the last somf_MCollectible object in the collection.
• SOMF_NIL, nothing is in the collection.

Example
somf_TDeque dq;
Environment *ev;
somf_MCollectible last;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();

/* Add some objects to dq */

last = somf_TDeque_somfLast(dq,ev);
/* do something with the last object in the somf_TDeque */

_somFree (dq);

Original Class
somf_TSequence Class (overridden here)

Related Information
somfAfter Method
somfBefore Method
somfFirst Method

somf_TDeque Class 65

somfMember Method

somfMember Method
Gets an object in a deque collection.

IDL Syntax
somf_MCollectible somfMember (in somf_MCollectible obj);

Description
The somfMember method determines whether object obj is in the deque collection
represented by the receiving object, and returns a pointer to the object (if found).

C cannot handle methods from different classes having the same name when they
inherit the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDeque_somfMember). This is the only way the linker can tell them apart. This is
not a problem in C++. In C++ you can reference this method as:

d->somfMember(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object that may or may not be a member of the
deque collection.

Return Value
• somf_MCollectible, a pointer to the object the method determined as the member.
• SOMF_NIL, obj was not found.

Example
somf_TDeque dq;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
obj = <your Class which inherits from somf_MCollectible>New();

/* See if obj is in dq */
if (_somfMember(dq, ev, obj) != SOMF_NIL)
 somPrintf(“\n obj is a Member\n”);
else
 somPrintf(“\n ERROR: obj should be a Member\n”);

_somFree (dq);
_somFree (obj);

Original Class
somf_TCollection Class (overridden here)

66 Programmer’s Reference for SOM Collection Classes

somfPop Method

somfPop Method
Removes the object on top of a deque/stack.

IDL Syntax
somf_MCollectible somfPop ();

Description
The somfPop method removes the object on top of the deque/stack represented by the
receiving object.

Note: This call can be used to simulate a stack.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the somf_MCollectible object removed from the deque or
stack. Or. SOMF_NIL is returned if the collection is empty.

Example
somf_TDeque dq;
somf_MCollectible obj;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();

/* Use _somfPush to push objects onto the stack */

/* Pop an object from the stack */
obj = _somfPop(dq,ev);

_somFree (dq);

Original Class
somf_TDeque Class

Related Information
somfPush Method

somf_TDeque Class 67

somfPush Method

somfPush Method
Adds an object to the top of a deque/stack.

IDL Syntax
void somfPush (in somf_MCollectible obj);

Description
The somfPush method adds the specified object obj to the top of the deque or stack
represented by the receiving object.

Note: This call can be used to simulate a stack.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object to be added to the deque.

Example
somf_TDeque dq;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
obj = <your Class which inherits from somf_MCollectible>New();

_somfPush(dq, ev, obj);

_somFree (dq);
_somFree (obj);

Original Class
somf_TDeque Class

Related Information
somfPop Method

68 Programmer’s Reference for SOM Collection Classes

somfRemove Method

somfRemove Method
Removes an object from a deque collection.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible obj);

Description
The somfRemove method removes the object obj from the deque collection represented
by the receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents (example: somf_TCollection, somf_THashTable, somf_TIterator). You will
probably have to fully qualify the method name. This is the only way the linker can tell them
apart. This is not a problem in C++. In C++ you can reference this method as:

d->somfRemove(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object to be removed from the deque collection.

Return Value
• somf_MCollectible, a pointer to the object that was removed.
• SOMF_NIL, the object was not found.

Example
somf_TDeque dq;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
obj = <your Class which inherits from somf_MCollectible>New();

/* Add some values to dq */

somf_TDeque_somfRemove(dq, ev, obj);

_somFree (dq);
_somFree (obj);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfRemoveAll Method
somfRemoveFirst Method
somfRemoveLast Method

somf_TDeque Class 69

somfRemoveAll Method

somfRemoveAll Method
Removes all of the objects from a deque collection.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the objects from the deque collection
represented by the receiving object.

C cannot handle methods from different classes having the same name when they
inherit the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method must be fully qualified. This is the only
way the linker can tell them apart. This is not a problem in C++. In C++ you can reference
this method as:

d->somfRemoveAll(ev);

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TDeque dq;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();

/* Add some objects to dq */

/* Remove all of the objects in dq */
_somfRemoveAll(dq,ev);

_somFree (dq);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfRemove Method
somfRemoveFirst Method
somfRemoveLast Method

70 Programmer’s Reference for SOM Collection Classes

somfRemoveFirst Method

somfRemoveFirst Method
Removes the first object in a deque collection.

IDL Syntax
somf_MCollectible somfRemoveFirst ();

Description
The somfRemoveFirst method determines the first object in the deque collection
represented by the receiving object, and removes it.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the somf_MCollectible object that was removed.
• SOMF_NIL, the collection is empty.

Example
somf_TDeque dq;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();

/* Add some objects to dq */

if (_somfRemoveFirst(dq,ev) == SOMF_NIL)
 somPrintf(
 “ ERROR: The first object should have been removed.\n”);

_somFree (dq);

Original Class
somf_TDeque Class

Related Information
somfRemove Method
somfRemoveAll Method
somfRemoveLast Method

somf_TDeque Class 71

somfRemoveLast Method

somfRemoveLast Method
Removes the last object in a deque collection.

IDL Syntax
somf_MCollectible somfRemoveLast ();

Description
The somfRemoveLast method determines the last object in the deque collection
represented by the receiving object, and removes it.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the somf_MCollectible object that was removed.
• SOMF_NIL, the collection is empty.

Example
somf_TDeque dq;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();

/* Add some objects to dq */

if (_somfRemoveLast(dq,ev) == SOMF_NIL)
 somPrintf(
 “ ERROR: The last object should have been removed.\n”);

_somFree (dq);

Original Class
somf_TDeque Class

Related Information
somfRemove Method
somfRemoveAll Method
somfRemoveFirst Method

72 Programmer’s Reference for SOM Collection Classes

somfRemoveQ Method

somfRemoveQ Method
Removes the first object from a deque/queue.

IDL Syntax
somf_MCollectible somfRemoveQ ();

Description
The somfRemoveQ method removes the first object from the deque/queue represented by
the receiving object.

Note: This method can be used with somfInsert to simulate a queue.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the object that was removed.
• SOMF_NIL, the object was not found.

Example
somf_TDeque dq;
somf_MCollectible obj;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();

/* Use _somfInsert to insert objects into the queue */

/* Remove an object from the queue */
obj = _somfRemoveQ(dq,ev);

_somFree (dq);

Original Class
somf_TDeque Class

Related Information
somfInsert Method

somf_TDeque Class 73

somfTDequeInitD Method

somfTDequeInitD Method
Initializes a new deque, setting it equal to a given somf_TDeque source object.

IDL Syntax
somf_TDeque somfTDequeInitD (in somf_TDeque s);

Description
The somfTDequeInitD method initializes the new deque represented by the receiving
object. The method also sets the new deque equal to a specified somf_TDeque
source object. This implies that the instance data of the new deque will be set equal to
those of the source deque.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

s
A pointer to the source deque to which the receiving object will be set equal.

Return Value
This method returns a pointer to an initialized somf_TDeque object.

Example
somf_TDeque dq1;
somf_TDeque dq2;
Environment *ev;

ev = somGetGlobalEnvironment();

dq1 = somf_TDequeNew();
dq2 = somf_TDequeNew();
_somfTDequeInitD(dq2, ev, dq1);

_somFree (dq1);
_somFree (dq2);

Original Class
somf_TDeque Class

Related Information
somfTDequeInitF Method

74 Programmer’s Reference for SOM Collection Classes

somfTDequeInitF Method

somfTDequeInitF Method
Initializes a new deque collection, specifying the comparison method that it will use.

IDL Syntax
somf_TDeque somfTDequeInitF (in somf_MCollectibleCompareFn testfn);

Description
The somfTDequeInitF method initializes a new deque represented by the receiving object.
The method also establishes the comparison method that the new deque will use to
compare current/potential objects for the collection, as determined by the testfn argument.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TDeque.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual.

This specification is necessary because SOM needs a pointer to the original
declaration of the method, residing in somf_MCollectible Class. The somf_TDeque
object will use this pointer to access the somfIsSame Method or somfIsEqual
Method that was declared and defined in the object being inserted into, or removed
from, the somf_TDeque object.

Return Value
This method returns a pointer to an initialized somf_TDeque.

Example
somf_TDeque dq1;
Environment *ev;

ev = somGetGlobalEnvironment();

dq1 = somf_TDequeNew();
_somfTDequeInitF(dq1, ev,
 somf_MCollectibleClassData.somfIsSame);

_somFree (dq1);

Original Class
somf_TDeque Class

Related Information
somfTDequeInitD Method

somf_TDequeIterator Class 75

somf_TDequeIterator Class

somf_TDequeIterator Class
An iterator for the somf_TDeque Class that will iterate over all of the objects in a deque.

When you link, include the following library reference to get access to this class: somtk

Although the methods in this class are reentrant, the class is not thread-safe on
multi-thread applications. If a pointer to an instance of this class is to be passed around to
multiple threads, the code in those threads must guarantee thread-safe usage of the class.

File Stem
tdeqitr

Base
somf_TSequenceIterator Class

Metaclass
SOMClass

Ancestor Classes
somf_TSequenceIterator Class
somf_TIterator Class
SOMObject Class

New Methods
somfTDequeIteratorInit Method

Overriding Methods
somfFirst Method
somfNext Method
somfLast Method
somfPrevious Method
somfRemove Method

76 Programmer’s Reference for SOM Collection Classes

somfFirst Method

somfFirst Method
Resets the iterator and returns the first object from a deque collection.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the iterator and returns the first object in the deque collection
that corresponds to the deque iterator represented by the receiving object. This resets the
iterator to the beginning of the collection even if other operations on the collection cause
the iterator to be invalidated. In the second case, this revalidates the iterator.

C cannot handle methods from different classes having the same name when they
inherit the name from different parents. somfFirst is a method name declared in multiple
parents, and you will probably have to fully qualify it. This is the only way the linker can tell
them apart. This is not a problem in C++. In C++ you can reference this method as:

itr->somfFirst(ev);

Parameters
receiver

A pointer to an object of class somf_TDequeIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• A pointer to the first somf_MCollectible object in the collection.
• SOMF_NIL is returned if the collection is empty.

Example
somf_TDeque dq;
Environment *ev;
somf_TDequeIterator itr;
somf_MCollectible itrobj;

ev = somGetGlobalEnvironment();
dq = somf_TDequeNew();
itr = somf_TDequeIteratorNew();
_somfTDequeIteratorInit(itr, ev, dq);

/* Add some object to dq */
/* Iterate through the TDeque */
itrobj = somf_TDequeIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 /* Do something with itrobj */
 itrobj = _somfNext(itr,ev);
}
_somFree (dq);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

Related Information
somfNext Method

somf_TDequeIterator Class 77

somfLast Method

somfLast Method
Gets the last object in the deque collection.

IDL Syntax
somf_MCollectible somfLast ();

Description
The somfLast method determines the last object in the deque collection that corresponds
to the iterator represented by the receiving object, and returns a pointer to the last object (if
found).

C cannot handle methods from different classes having the same name when they
inherit the name from different parents. somfLast is a method name declared in
multiple parents (for example: somf_TSequenceIterator, somf_TSequence). You will
probably have to fully qualify the name of the method. This is the only way the linker can tell
them apart. This is not a problem in C++. In C++ you can reference this method as:

itr->somfLast(ev);

Parameters
receiver

A pointer to an object of class somf_TDequeIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the last somf_MCollectible object in the deque collection.

Example
somf_TDeque dq;
somf_TDequeIterator itr;
somf_MCollectible itrobj;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
itr = somf_TDequeIteratorNew();
_somfTDequeIteratorInit(itr, ev, dq);

/* Add some objects to dq */

/* set obj to point to the last object in dq */
itrobj = somf_TDequeIterator_somfLast(itr,ev);

_somFree (dq);
_somFree (itr);

Original Class
somf_TSequenceIterator Class (overridden here)

Related Information
somfPrevious Method

78 Programmer’s Reference for SOM Collection Classes

somfNext Method

somfNext Method
Gets the next object in a deque collection.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next object in the deque collection that corresponds
to the deque iterator represented by the receiving object. The method also returns a pointer
to the next object, if found. Objects are retrieved in an order that reflects the “ordered-ness”
of the collection, or the lack of ordering on the collection objects.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TIterator is used with
somf_TPrimitiveLinkedListIterator, then the name of the method must be fully qualified.
This is the only way the linker can tell them apart. This is not a problem in C++. In C++ you
can reference this method as:

itr->somfNext(ev);

If the somf_TDeque Class collection has changed (other than through the use of the
somfRemove Method of this iterator) since the last time the somfFirst Method or
somfLast Method was called, the iterator becomes invalid and will fail when asked to find
the next object. If the collection’s somfAdd Method were called after starting to iterate
through the collection, the iterator would not allow iteration to continue. The iterator must be
reset, and the easiest way to do that is to call the iterator’s somfFirst method and start
over.

Parameters
receiver

A pointer to an object of class somf_TDequeIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the next somf_MCollectible Class object in the

collection.
• SOMF_NIL, the end of the collection has been reached.

Example
somf_TDeque dq;
Environment *ev;
somf_TDequeIterator itr;
somf_MCollectible itrobj;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
itr = somf_TDequeIteratorNew();
_somfTDequeIteratorInit(itr, ev, dq);

/* Add some object to dq */

/* Iterate through the TDeque */
itrobj = somf_TDequeIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{

somf_TDequeIterator Class 79

somfNext Method

 /* Do something with itrobj */
 itrobj = _somfNext(itr,ev);
}

_somFree (dq);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

Related Information
somfFirst Method

80 Programmer’s Reference for SOM Collection Classes

somfPrevious Method

somfPrevious Method
Gets the previous object in a deque collection.

IDL Syntax
somf_MCollectible somfPrevious ();

Description
The somfPrevious method determines the previous object in the deque collection that
corresponds to the deque iterator represented by the receiving object. The method returns
a pointer to the previous object, if found.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. If any child of somf_TSequenceIterator is used with
somf_TPrimitiveLinkedListIterator, then the name of the method must be fully qualified
so the linker can tell them apart. This is not a problem in C++, for you can reference the
method as:

itr->somfPrevious(ev);

If the somf_TDeque Class collection changes while using this iterator, it becomes invalid
and will fail to find the previous object. If the collection’s somfAdd Method is called after
starting to iterate through the collection, it will not allow iteration to continue. The iterator
must be reset, and the easiest way is to call the iterator’s somfLast Method.

Parameters
receiver

A pointer to an object of class somf_TDequeIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the previous somf_MCollectible Class object in the

collection.
• SOMF_NIL, the beginning of the collection has been reached.

Example
somf_TDeque dq;
somf_TDequeIterator itr;
somf_MCollectible itrobj;
Environment *ev;
ev = somGetGlobalEnvironment();
dq = somf_TDequeNew();
itr = somf_TDequeIteratorNew();
_somfTDequeIteratorInit(itr, ev, dq);
/* Add some objects to dq */
/* set itrobj to point to the next to last object in dq */
somf_TDequeIterator_somfLast(itr,ev);
itrobj = _somfPrevious(itr,ev);
_somFree (dq);
_somFree (itr);

Original Class
somf_TSequenceIterator Class (overridden here)

Related Information
somfLast Method

somf_TDequeIterator Class 81

somfRemove Method

somfRemove Method
Removes the current object from a deque collection.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current objectfrom the deque collection that
corresponds to the deque iterator represented by the receiving object. somfRemove is the
only way to remove an object from a collection during iteration. If multiple iterators are in
process, all the other iterators are invalidated.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents. You will probably have to fully qualify the method name so the linker can tell them
apart. This is not a problem in C++. In C++ you can reference this method as:

itr->somfRemove(ev);

If the somf_TDeque Class collection has changed since the last time the somfFirst
Method or somfLast Method was called, the iterator becomes invalid and will fail if asked
to remove an object. If the collection’s somfAdd Method were called after starting to iterate
through the collection, it would not allow iteration to continue. The iterator must be reset,
and the easiest way is to call the iterator’s somfFirst or somfLast method and restart.

Parameters
receiver

A pointer to an object of class somf_TDequeIterator.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TDeque dq;
Environment *ev;
somf_TDequeIterator itr;
somf_MCollectible itrobj;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
itr = somf_TDequeIteratorNew();
_somfTDequeIteratorInit(itr, ev, dq);

/* Add some objects to dq */
/* Use the Iterator’s Remove to remove the first object */
itrobj = somf_TDequeIterator_somfFirst(itr,ev);
somf_TDequeIterator_somfRemove(itr,ev);

_somFree (dq);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

82 Programmer’s Reference for SOM Collection Classes

somfTDequeIteratorInit Method

somfTDequeIteratorInit Method
Initializes a somf_TDequeIterator iterator for a deque collection.

IDL Syntax
somf_TDequeIterator somfTDequeIteratorInit (in somf_TDeque h);

Description
The somfTDequeIteratorInit method initializes an iterator of class somf_TDequeIterator,
given the somf_TDeque Class collection over which iteration is needed.

This is one of three ways to initialize a somf_TDequeIterator to point to an instance of a
somf_TDeque collection. One other way is to use the somfCreateIterator Method of the
somf_TDeque class, and the final way is to use the somf_TDeque class’s
somfCreateSequenceIterator Method.

Note: You cannot override this method

Parameters
receiver

A pointer to an object of class somf_TDequeIterator.

ev
A pointer to the Environment structure for the calling method.

h
A pointer to the deque object that the receiving object will iterate over.

Return Value
This method returns a pointer to an initialized somf_TDequeIterator object.

Example
somf_TDeque dq;
Environment *ev;
somf_TDequeIterator itr;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
itr = somf_TDequeIteratorNew();
_somfTDequeIteratorInit(itr, ev, dq);

_somFree (dq);
_somFree (itr);

Original Class
somf_TDequeIterator

somf_TDequeLinkable Class 83

somf_TDequeLinkable Class

somf_TDequeLinkable Class
The somf_TDequeLinkable class is a subclass of somf_MLinkable Class. It provides a
generic somf_MLinkable class to contain somf_MCollectible Class. An object of class
somf_TDequeLinkable is used (transparently) by the somf_TDeque Class for each node
of a deque collection. The somf_TDequeLinkable object provides the linkability (the left
and right links) to its two adjacent nodes in the collection.

The somf_TDequeLinkable class and methods will probably be of interest to programmers
only in two situations:

• if you are creating a new class that needs linkable nodes between objects of the class
• if you are creating a new class that inherits from somf_TDeque, and it would be

appropriate to override some methods of the somf_TDequeLinkable class to define
additional functionality for those methods.

When you link, include the following library reference to get access to this class: somtk

This class is not thread-safe. Even if you put semaphores around your calls to this class’s
methods, different tasks should not be setting the value. That situation is too prone to
having multiple tasks setting conflicting values, leaving the state of the instance in an
unacceptable state for all but one task.

This class is reentrant.

File Stem
tdeqlink

Base
somf_MLinkable Class

Metaclass
SOMClass

Ancestor Classes
somf_MLinkable Class
SOMObject

New Methods
somfGetValue Method
somfSetValue Method
somfTDequeLinkableInitDDM Method
somfTDequeLinkableInitDD Method

Overriding Methods
somDefaultInit Method

84 Programmer’s Reference for SOM Collection Classes

somfGetValue Method

somfGetValue Method
Gets the value from a somf_TDequeLinkable node.

IDL Syntax
somf_MCollectible somfGetValue ();

Description
The somfGetValue method gets the value of the somf_TDequeLinkable object (node)
represented by the receiving object. The method returns a pointer to a somf_MCollectible
Class object containing the value.

Parameters
receiver

A pointer to an object of class somf_TDequeLinkable.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to a somf_MCollectible object containing the value obtained
from the somf_TDequeLinkable object.

Example
somf_TDequeLinkable dl;
<Your Class which inherits from somf_MCollectible> obj;
<Your Class which inherits from somf_MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

obj = <Your Class which inherits from somf_MCollectible>New();
dl = somf_TDequeLinkableNew();

_somfSetValue(dl, ev, obj);
 obj2 = (<Your Class which inherits from somf_MCollectible>*)
 _somfGetValue(dl,ev);

_somFree (dl);
_somFree (obj);

Original Class
somf_TDequeLinkable

Related Information
somfSetValue Method

somf_TDequeLinkable Class 85

somfSetValue Method

somfSetValue Method
Sets the v alue of a given somf_TDequeLinkable node.

IDL Syntax
void somfSetValue (in somf_MCollectible v);

Description
The somfSetValue method sets the value of the somf_TDequeLinkable object (node)
represented by the receiving object.

Parameters
receiver

A pointer to an object of class somf_TDequeLinkable.

ev
A pointer to the Environment structure for the calling method.

v
A pointer to the new value of the somf_TDequeLinkable object.

Example
somf_TDequeLinkable dl;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

obj = <your Class which inherits from somf_MCollectible>New();
dl = somf_TDequeLinkableNew();

_somfSetValue(dl, ev, obj);

_somFree (dl);
_somFree (obj);

Original Class
somf_TDequeLinkable

Related Information
somfGetValue Method

86 Programmer’s Reference for SOM Collection Classes

somfTDequeLinkableInitDD Method

somfTDequeLinkableInitDD Method
Initializes a new somf_TDequeLinkable node, by specifying the adjacent nodes to which it
will link. This method does not set a value for the node.

IDL Syntax
somf_TDequeLinkable somfTDequeLinkableInitDD (

in somf_TDequeLinkable previous,
in somf_TDequeLinkable next);

Description
The somfTDequeLinkableInitDD method initializes a new object (node) of class
somf_TDequeLinkable. The method specifies the previous and next nodes to which the
new node will link. However, it does not set a value for the node.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TDequeLinkable.

ev
A pointer to the Environment structure for the calling method.

previous
A pointer to the somf_TDequeLinkable before this one.

next
A pointer to the somf_TDequeLinkable after this one.

Return Value
This method returns a pointer to the initialized somf_TDequeLinkable object that
represents a node in a deque collection.

Example
somf_TDequeLinkable dl1;
Environment *ev;

ev = somGetGlobalEnvironment();

dl1 = somf_TDequeLinkableNew();
_somfTDequeLinkableInitDD(dl1, ev, SOMF_NIL, SOMF_NIL);

_somFree (dl1);

Original Class
somf_TDequeLinkable

Related Information
somfTDequeLinkableInitDDM Method

somf_TDequeLinkable Class 87

somfTDequeLinkableInitDDM Method

somfTDequeLinkableInitDDM Method
nitializes a new somf_TDequeLinkable node. This includes specifying the adjacent nodes
and setting the value of the node.

IDL Syntax
somf_TDequeLinkable somfTDequeLinkableInitDDM(

in somf_TDequeLinkable previous,
in somf_TDequeLinkable next,
in somf_MCollectible value);

Description
The somfTDequeLinkableInitDDM method initializes a new object (node) of class
somf_TDequeLinkable. The method specifies the previous and next nodes to which the
new node will link, and it also passes a value for the new node.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TDequeLinkable.

ev
A pointer to the Environment structure for the calling method.

previous
A pointer to the somf_TDequeLinkable before this one.

value
A pointer to the value of this somf_TDequeLinkable object that represents a node in a
deque collection.

Return Value
This method returns a pointer to the initialized somf_TDequeLinkable object (node).

Example
somf_TDequeLinkable dl2;
Environment *ev;

ev = somGetGlobalEnvironment();

dl2 = somf_TDequeLinkableNew();
_somfTDequeLinkableInitDDM(dl2, ev, SOMF_NIL, SOMF_NIL,SOMF_NIL);

_somFree (dl2);

Original Class
somf_TDequeLinkable

Related Information
somfTDequeLinkableInitDD Method

88 Programmer’s Reference for SOM Collection Classes

somfTDequeLinkableInitDDM Method

somf_TDictionary Class 89

somf_TDictionary Class

somf_TDictionary Class
This class represents a collection of (key, value) pairs. Because dictionaries are sometimes
used to represent a bijective mapping, functions for retrieving a key given its corresponding
value are provided, along with the usual access functions. However, this process will
probably be slow.

As for the somf_THashTable Class, each entry in a somf_TDictionary is actually an
object of the somf_TAssoc Class that holds a pair. In most cases, this use of a
somf_TAssoc object is transparent to the user. However, you need to be aware of this
somf_TAssoc usage, because some somf_TDictionary methods address the data as
separate key and value parts of a pair, whereas other methods accept or return a single
somf_TAssoc object representing the pair.

The somf_TDictionary class is very similar to somf_THashTable. The primary difference
is that somf_TDictionary inherits from somf_TCollection Class, whereas
somf_THashTable does not. The other distinction is that the somf_TDictionary class
uses the somfIsEqual Method as its default comparison function, whereas
somf_THashTable uses somfIsSame Method. The somf_TDictionary class’s use of
somfIsEqual means that equal keys can only appear in the dictionary once.

Objects inserted into a somf_TDictionary collection must inherit from class
somf_MCollectible Class. In addition, they must override the somfHash Method and the
somfIsEqual method. These methods are used internally by collections of the
somf_TDictionary class.

Because somf_TDictionary takes somf_MCollectible objects as members, any class that
inherits from somf_MCollectible can be a member of the dictionary. This means that you
can have a dictionary containing objects of any main collection class.

Note: The somf_TDictionary class uses the somfIsEqual method as the default
comparison function. (That is, if key1=”Bart” and key2=”Bart”, then key1 and
key2 are equal.) If you do not want to use the somfIsEqual method to equate entries,
use the initialization methods to change to the somfIsSame method.

Note: The somf_TDictionary class does not allow two entries have equal keys. Two
separate, distinct entries can hash to the same hash value, but the original keys must
not be equal.

When you link, include the following library reference to get access to this class: somtk

Although methods in this class are reentrant, the class is not thread-safe on multi-thread
applications. If a pointer to an instance of this class will be passed to multiple threads, the
code in those threads must guarantee thread-safe usage of the class.

File Stem
tdict

Base
somf_TCollection Class

Metaclass
SOMClass

90 Programmer’s Reference for SOM Collection Classes

somf_TDictionary Class

Ancestor Classes
somf_TCollection Class
somf_MCollectible Class
SOMObject Class

New Methods
somfAddKeyValuePairMM Method
somfAddKeyValuePairMMB Method
somfAssign Method
somfCopyImplementation Method
somfCreateNewImplementationF Method
somfCreateNewImplementationFL Method
somfCreateNewImplementationFLL Method
somfCreateNewImplementationFLLL Method
somfDeleteAllKeys Method
somfDeleteAllValues Method
somfDeleteKey Method
somfGetHashFunction Method
somfKeyAtM Method
somfKeyAtMF Method
somfSetHashFunction Method
somfTDictionaryInitD Method
somfTDictionaryInitF Method
somfTDictionaryInitFL Method
somfTDictionaryInitFLL Method
somfTDictionaryInitL Method
somfTDictionaryInitLL Method
somfTDictionaryInitLLF Method
somfValueAt Method

Overriding Methods
somDefaultInit Method
somDestruct Method
somfAdd Method
somfCount Method
somfCreateIterator Method
somfDeleteAll Method
somfMember Method
somfRemove Method
somfRemoveAll Method

somf_TDictionary Class 91

somfAdd Method

somfAdd Method
Adds a specified obj to the dictionary.

IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);

Description
The somfAdd method adds a specified object obj to the dictionary represented by the
receiving object. The added obj contains a pair. Do not be misled by this method’s
interface, which is inherited from the somf_TCollection Class. The only objects you can
add with somfAdd are pairs of the somf_TAssoc Class. You cannot use this interface to
add a generic somf_MCollectible Class object.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to an object that inherits from somf_MCollectible that will be added to the
receiving object.

Return Value
somf_MCollectible, a pointer to the somf_MCollectible object that was added, provided a
duplicate object does not exist. Otherwise, it returns a pointer to the value of the duplicate
object, if obj could not be added because a duplicate is already in the collection.

Example
somf_TDictionary d;
<Your Class which inherits from somf_MCollectible> obj;
<Your Class which inherits from somf_MCollectible> obj2;
somf_TAssoc tassoc;
Environment *ev;

ev = somGetGlobalEnvironment();
obj = <Your Class which inherits from somf_MCollectible>New();
obj2 = <Your Class which inherits from somf_MCollectible>New();
d = somf_TDictionaryNew();
tassoc = somf_TAssocNew();

_somfSetKey(tassoc, ev, obj);
_somfSetValue(tassoc, ev, obj2);
_somfAdd(d, ev, tassoc);

_somFree (d);
_somFree (obj);
_somFree (obj2);
_somFree (tassoc);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfAddKeyValuePairMM Method
somfAddKeyValuePairMMB Method

92 Programmer’s Reference for SOM Collection Classes

somfAddKeyValuePairMM Method

somfAddKeyValuePairMM Method
Adds a pair to the receiving dictionary object, and returns a removed object, if removal was
necessary.

IDL Syntax
somf_MCollectible somfAddKeyValuePairMM (

in somf_MCollectible key,
in somf_MCollectible val);

Description
The somfAddKeyValuePairMM method adds the specified pair to the dictionary, even if
there is an existing pair that conflicts. The method also returns the value of the conflicting
object (if any) that existed in the dictionary before this call.

Using the specified key and val arguments, this method transparently creates an object of
the somf_TAssoc Class, before adding the new pair to the dictionary.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

key
A pointer to a somf_MCollectible object that will be the key of the associated pair.

val
A pointer to a somf_MCollectible object that will be the value of the associated pair.

Return Value
• somf_MCollectible, a pointer to the somf_MCollectible value that had to be removed

in order for a new pair to be added.
• SOMF_NIL, no somf_MCollectible value had to be removed in order to add the pair.

Example
somf_TDictionary d;
<Your Class which inherits from somf_MCollectible> obj;
<Your Class which inherits from somf_MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

obj = <Your Class which inherits from somf_MCollectible>New();
obj2 = <Your Class which inherits from somf_MCollectible>New();
d = somf_TDictionaryNew();

if (_somfAddKeyValuePairMM(d, ev, obj, obj2) != SOMF_NIL)
 somPrintf(”\n problem adding obj,obj2 to d\n”);

_somFree (d);
_somFree (obj);
_somFree (obj2);

somf_TDictionary Class 93

somfAddKeyValuePairMM Method

Original Class
somf_TDictionary

Related Information
somfAdd Method
somfAddKeyValuePairMMB Method

94 Programmer’s Reference for SOM Collection Classes

somfAddKeyValuePairMMB Method

somfAddKeyValuePairMMB Method
Adds a (key, value) pair to a dictionary, unless the boolean argument prohibits replacement
of a conflicting pair.

IDL Syntax
somf_MCollectible somfAddKeyValuePairMMB (

in somf_MCollectible key,
in somf_MCollectible val,
in boolean replace);

Description
The somfAddKeyValuePairMMB method adds the stipulated pair to the dictionary
represented by the receiving object, unless the boolean argument replace prohibits this
replacement.

If replace=TRUE, the pair is added to the dictionary regardless of whether a conflicting pair
exists. Otherwise, if replace = FALSE, then the pair is added to the dictionary only if there is
not a conflicting pair.

Using the specified key and val arguments, this method transparently creates an object of
the somf_TAssoc Class, before adding the new pair to the dictionary.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

key
A pointer to a somf_MCollectible object that is the key of the associated pair.

val
A pointer to a somf_MCollectible object that is the value of the associated pair.

replace
A boolean that indicates if an existing pair with an identical key should be replaced.

Return Value
• somf_MCollectible, a pointer to the somf_MCollectible value that had to be removed

in order for a new pair to be added.
• SOMF_NIL, no somf_MCollectible value had to be removed in order to add the pair.

Example
somf_TDictionary d;
<Your Class which inherits from somf_MCollectible> obj2;
<Your Class which inherits from somf_MCollectible> obj3;
Environment *ev;

ev = somGetGlobalEnvironment();

obj2 = <Your Class which inherits from somf_MCollectible>New();
obj3 = <Your Class which inherits from somf_MCollectible>New();
d = somf_TDictionaryNew();

if (_somfAddKeyValuePairMMB(d, ev, obj2, obj3, TRUE)
 != SOMF_NIL)
 somPrintf(”\n problem adding obj2,obj3 to d\n”);

somf_TDictionary Class 95

somfAddKeyValuePairMMB Method

_somFree (d);
_somFree (obj2);
_somFree (obj3);

Original Class
somf_TDictionary

Related Information
somfAdd Method
somfAddKeyValuePairMM Method

96 Programmer’s Reference for SOM Collection Classes

somfAssign Method

somfAssign Method
Assigns a dictionary as being “equal” to a given source dictionary.

IDL Syntax
void somfAssign (in somf_TDictionary source);

Description
The somfAssign method assigns the dictionary receiving object to be equal to the source
dictionary object. The method sets/resets the instance variables of the receiver to the
values of the source. This operation is logically equivalent to using the equal (=) operator.

C cannot handle methods from different classes having the same name when they
inherit the name from different parents. Thus, if any child of somf_TDictionary is used with
any other main collection class, then the name of the method must be fully qualified. This is
the only way the linker can tell them apart. This is not a problem in C++. In C++ you could
have referenced this method as:

d->somfAssign(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

source
A pointer to the somf_TDictionary object to which the receiving object will be set equal.

Example
somf_TDictionary d;
somf_TDictionary d2;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
d2 = somf_TDictionaryNew();

/* Add some objects to d */

/* Assign d2 = d */
somf_TDictionary_somfAssign(d2,ev,d);

_somFree (d);
_somFree (d2);

Original Class
somf_TDictionary

somf_TDictionary Class 97

somfCopyImplementation Method

somfCopyImplementation Method
Returns a hash table that is a copy of the hash table in a given dictionary.

IDL Syntax
somf_THashTable somfCopyImplementation ();

Description
The somfCopyImplementation method returns a hash table that is a copy of the hash
table in the dictionary represented by the receiving object. Normally, a client program will
not need to invoke this method.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new somf_THashTable initialized to look like the hash
table of the receiving object.

Original Class
somf_TDictionary

98 Programmer’s Reference for SOM Collection Classes

somfCount Method

somfCount Method
Gets the number of objects in a dictionary.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the dictionary represented by
the receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Since somf_TDictionary uses somf_THashTable, the
name of the method must be fully qualified. This is the only way the linker can tell them
apart. This is not a problem in C++. In C++ you could have referenced this method as:

d->somfCount(ev);

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in the receiving object.

Example
somf_TDictionary d;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
obj = <your Class which inherits from somf_MCollectible>New();

somPrintf(”\n Count of d= %d\n”, somf_TDictionary_somfCount(d,ev));

_somFree (d);
_somFree (obj);

Original Class
somf_TCollection Class (overridden here)

somf_TDictionary Class 99

somfCreateIterator Method

somfCreateIterator Method
Returns a new iterator that is suitable for iterating over the objects in this dictionary.

IDL Syntax
somf_TIterator somfCreateIterator ();

Description
The somfCreateIterator method returns a new iterator that is suitable for iterating over the
objects in the dictionary represented by the receiving object.

This is one of two ways to initialize a somf_TDictionaryIterator Class to point to an
instance of a somf_TDictionary. The other way is to use the somf_TDictionaryIterator’s
initializer method.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example
somf_TDictionary d;
Environment *ev;
somf_TDictionaryIterator itr;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
itr = (somf_TDictionaryIterator*) _somfCreateIterator(d,ev);

_somFree (d);
_somFree (itr);

Original Class
somf_TCollection Class (overridden here)

100 Programmer’s Reference for SOM Collection Classes

somfCreateNewImplementationF Method

somfCreateNewImplementationF Method
Creates a new hash table for a dictionary, given its comparison test method.

IDL Syntax
somf_THashTable somfCreateNewImplementationF (

in somf_MCollectibleCompareFn testfn);

Description
The somfCreateNewImplementationF method creates a new hash table for the dictionary
represented by the receiving object. The method also includes an argument that defines the
comparison test method applied to current/potential dictionary objects.

Normally, a client program does not invoke this method. However, if you create a new class
that inherits from this class, you might consider overriding this method in order to customize
how a somf_TDictionary object creates a new implementation.

When a somfCreateNewImplementation method does not include arguments for the
dictionary’s table size, growth rate or rehash threshold, a default number of pairs is
assumed for the initial size, and the table subsequently grows by a default number of pairs
once the dictionary contains a number of pairs that approaches the current table size.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual

This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible Class. The
somf_TDictionary object will use this pointer to access the somfIsSame Method or
somfIsEqual Method that was declared and defined in the object being inserted into,
or removed from, the somf_TDictionary object.

Return Value
This method returns a pointer to the new hash table.

Example
somf_THashTable ht2;
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();
d = somf_TDictionaryNew();

ht2 = _somfCreateNewImplementationF
 (d, ev, somf_MCollectibleClassData.somfIsEqual);

_somFree (d);
_somFree (ht2);

somf_TDictionary Class 101

somfCreateNewImplementationF Method

Original Class
somf_TDictionary

Related Information
somfCreateNewImplementationFL Method
somfCreateNewImplementationFLL Method
somfCreateNewImplementationFLLL Method

102 Programmer’s Reference for SOM Collection Classes

somfCreateNewImplementationFL Method

somfCreateNewImplementationFL Method
Creates a new hash table for a dictionary, given its comparison test method and its initial
table size.

IDL Syntax
somf_THashTable somfCreateNewImplementationFL (

in somf_MCollectibleCompareFn testfn,
in long tablesize);

Description
The somfCreateNewImplementationFL method creates a new hash table for the
dictionary represented by the receiving object. The method includes arguments that define
the comparison test method applied to current/potential dictionary objects, and the initial
size of the hash table.

Normally, a client program does not invoke this method. However, if you create a new class
that inherits from this class, you might consider overriding this method in order to customize
how a somf_TDictionary object creates a new implementation.

When a somfCreateNewImplementation method does not include arguments for the
dictionary’s growth rate or rehash threshold, the initial table size will grow by a default
number of pairs once the table contains a number of pairs that approaches the specified
size.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual

because SOM needs a pointer to the original declaration of the method, which resides
in somf_MCollectible Class. The somf_TDictionary object will use this pointer to
access the somfIsSame Method or somfIsEqual Method that was declared and
defined in the object being inserted into, or removed from, the somf_TDictionary
object.

tablesize
The initial size of the hash table in the dictionary, expressed as the number of pairs to
expect.

Return Value
This method returns a pointer to the new hash table.

Example
somf_THashTable ht3;
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();
d = somf_TDictionaryNew();

somf_TDictionary Class 103

somfCreateNewImplementationFL Method

ht3 = _somfCreateNewImplementationFL(
 d, ev, somf_MCollectibleClassData.somfIsEqual, 23);

_somFree (d);
_somFree (ht3);

Original Class
somf_TDictionary

Related Information
somfCreateNewImplementationF Method
somfCreateNewImplementationFLL Method
somfCreateNewImplementationFLLL Method

104 Programmer’s Reference for SOM Collection Classes

somfCreateNewImplementationFLL Method

somfCreateNewImplementationFLL Method
Creates a new hash table for a dictionary, given its comparison test method, the initial table
size, and the table’s growth rate.

IDL Syntax
somf_THashTable somfCreateNewImplementationFLL (

in somf_MCollectibleCompareFn testfn,
in long tablesize,
in long rate);

Description
The somfCreateNewImplementationFLL method creates a new hash table for the
dictionary represented by the receiving object. The method includes arguments that define
the comparison test method applied to current/potential dictionary objects, the initial table
size, and the table’s growth rate.

Normally, a client program does not invoke this method. However, if you create a new class
that inherits from this class, you might consider overriding this method in order to customize
how a somf_TDictionary object creates a new implementation.

When a somfCreateNewImplementation... method does not include an argument for the
dictionary’s rehash threshold, the initial table size will increment by the number of pairs
given as the growth rate, once the table contains a number of pairs that approaches the
specified size.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual

because SOM needs a pointer to the original declaration of the method, which resides
in somf_MCollectible Class. The somf_TDictionary object will use this pointer to
access the somfIsSame Method or somfIsEqual Method that was declared and
defined in the object being inserted into, or removed from, the somf_TDictionary
object.

tablesize
The initial size of the hash table in the dictionary, expressed as the number of pairs to
expect.

rate
The growth rate of the hash table in the dictionary, expressed as the number of pairs by
which to increment the allocated size when growth occurs.

Return Value
This method returns a pointer to the new hash table.

somf_TDictionary Class 105

somfCreateNewImplementationFLL Method

Example
somf_THashTable ht4;
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();
d = somf_TDictionaryNew();

ht4 = _somfCreateNewImplementationFLL(
 d, ev, somf_MCollectibleClassData.somfIsEqual, 23, 20);

_somFree (d);
_somFree (ht4);

Original Class
somf_TDictionary

Related Information
somfCreateNewImplementationF Method
somfCreateNewImplementationFL Method
somfCreateNewImplementationFLLL Method

106 Programmer’s Reference for SOM Collection Classes

somfCreateNewImplementationFLLL Method

somfCreateNewImplementationFLLL Method
Creates a new hash table for a dictionary, given its comparison test method, the initial table
size, the table’s growth rate, and the table’s rehash threshold.

IDL Syntax
somf_THashTable somfCreateNewImplementationFLLL (

in somf_MCollectibleCompareFn testfn,
in long tablesize,
in long rate,
in long threshold);

Description
The somfCreateNewImplementationFLLL method creates a new hash table for the
dictionary represented by the receiving object. The hash table is fully specified by
arguments that define the comparison test method applied to current/potential dictionary
objects, the initial table size, the table’s growth rate, and the table’s rehash threshold.

Normally, a client program does not invoke this method. However, if you create a new class
that inherits from this class, you might consider overriding this method in order to customize
how a somf_TDictionary object creates a new implementation.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual

because SOM needs a pointer to the original declaration of the method, which resides
in somf_MCollectible Class. The somf_TDictionary object will use this pointer to
access the somfIsSame Method or somfIsEqual Method that was declared and
defined in the object being inserted into, or removed from, the somf_TDictionary
object.

tablesize
The initial size of the hash table in the dictionary, expressed as the number of pairs to
expect.

rate
The growth rate of the hash table in the dictionary, expressed as the number of pairs by
which to increment the allocated size when growth occurs.

threshold
The rehash threshold of the hash table in the dictionary, expressed as the percentage
of how full the dictionary may become before it grows in allocated size.

Return Value
This method returns a pointer to the new hash table.

somf_TDictionary Class 107

somfCreateNewImplementationFLLL Method

Example
somf_THashTable ht1;
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();
d = somf_TDictionaryNew();

ht1 = _somfCreateNewImplementationFLLL(
 d, ev, somf_MCollectibleClassData.somfIsEqual,
 23, 20, 80);

_somFree (d);
_somFree (ht1);

Original Class
somf_TDictionary

Related Information
somfCreateNewImplementationF Method
somfCreateNewImplementationFL Method
somfCreateNewImplementationFLL Method

108 Programmer’s Reference for SOM Collection Classes

somfDeleteAll Method

somfDeleteAll Method
Removes all of the pairs from a dictionary and deallocates the storage that these objects
might have owned. The destructor function is called for each object in the dictionary.

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the objects from the dictionary collection
represented by the receiving object. Also, it deallocates the storage that these objects
might have owned.

Be careful with somfDeleteAll. Since a collection only contains pointers to objects, rather
than the objects themselves, somfDeleteAll can cause a problem if a pointer to an object
appears more than once. For example, if multiple pointers to A exists, or if a single pointer
to A is in the collection multiple times, the behavior of the code is undefined, because it will
try to delete A multiple times. If you think there is a chance that an object could appear in
the collection more than once, you should consider using somfRemoveAll Method to
remove the objects from the collection and deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Since somf_TDictionary uses somf_THashTable, then
the name of this method must be fully qualified. This is the only way the linker can tell them
apart. This is not a problem in C++. In C++ you could have referenced this method as:

d->somfDeleteAll(ev);

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();
d = somf_TDictionaryNew();

/* Add some objects in the somf_TDictionary */

/* Remove all the objects AND DELETE THEM */
somf_TDictionary_somfDeleteAll(d,ev);

_somFree (d);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfDeleteAllKeys Method
somfDeleteAllValues Method
somfDeleteKey Method

somf_TDictionary Class 109

somfDeleteAllKeys Method

somfDeleteAllKeys Method
Removes all of the pairs from a dictionary. The procedure resets the count to zero and calls
the destructor on every key in the dictionary.

IDL Syntax
void somfDeleteAllKeys ();

Description
The somfDeleteAllKeys method removes all of the pairs from a dictionary. The procedure
resets the count to zero and calls the destructor on every key in the dictionary. However,
the program still owns the objects representing the values of the pairs.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Since somf_TDictionary uses somf_THashTable, then
the name of this method must be fully qualified. This is the only way the linker can tell them
apart. This is not a problem in C++. In C++ you could have referenced this method as:

d->somfDeleteAllKeys(ev);

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();

/* Add some objects in the somf_TDictionary */

/* Remove all the objects AND DELETE ALL THE KEYS */
somf_TDictionary_somfDeleteAllKeys(d,ev);

_somFree (d);

Original Class
somf_TDictionary

Related Information
somfDeleteAll Method
somfDeleteAllValues Method
somfDeleteKey Method

110 Programmer’s Reference for SOM Collection Classes

somfDeleteAllValues Method

somfDeleteAllValues Method
Removes all of the pairs from a dictionary. The procedure resets the count to zero and calls
the destructor on every value in the hash table.

IDL Syntax
void somfDeleteAllValues ();

Description
The somfDeleteAllValues method removes all of the pairs from a dictionary. The
procedure resets the count to zero and calls the destructor on every value in the hash table.
However, the program still owns the objects representing the keys of the pairs.

Because a dictionary only contains pointers to objects, rather than the objects themselves,
somfDeleteAllValues can cause a problem if a pointer to an object appears more than
once. For example, if pointer A exists in the collection multiple times, the behavior of the
code is undefined, because it will try to delete A multiple times. If you think there is a
chance that an object could appear more than once, you should consider using
somfRemoveAll Method to remove the objects from the dictionary and deleting them
some other way.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Since somf_TDictionary uses somf_THashTable, the
name of this method will have to be fully qualified. This is the only way the linker can tell
them apart. This is not a problem in C++. In C++ you could have referenced this method as:

d->somfDeleteAllValues(ev);

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();

/* Add some objects in the somf_TDictionary */

/* Remove all the objects AND DELETE ALL THE VALUES */
somf_TDictionary_somfDeleteAllValues(d,ev);

_somFree (d);

Original Class
somf_TDictionary

Related Information
somfDeleteAll Method
somfDeleteAllKeys Method
somfDeleteKey Method

somf_TDictionary Class 111

somfDeleteKey Method

somfDeleteKey Method
Deletes a specified key from the associated pair, and removes the pair from the dictionary.

IDL Syntax
somf_MCollectible somfDeleteKey (in somf_MCollectible key);

Description
The somfDeleteKey method deletes the specified key from the associated pair. The
method also removes the pair from the dictionary represented by the receiving object. The
method returns a pointer to the value from the pair.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

key
A pointer to a somf_MCollectible object that is the key of the associated pair to be
deleted.

Return Value
• somf_MCollectible, a pointer to the value that was removed because the key was

deleted.
• SOMF_NIL, the key object was not found.

Example
somf_TDictionary d;
<Your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

obj = <Your Class which inherits from somf_MCollectible>New();
d = somf_TDictionaryNew();

/* Remove the key,value pair AND DELETE THE KEY */
if (_somfDeleteKey(d, ev, obj) == SOMF_NIL)
 somPrintf(” Why did DeleteKey say obj wasn’t in d? \n”);

_somFree (d);

Original Class
somf_TDictionary

Related Information
somfDeleteAll Method
somfDeleteAllKeys Method
somfDeleteAllValues Method

112 Programmer’s Reference for SOM Collection Classes

somfDeleteKey Method

113

somfGetHashFunction Method

somfGetHashFunction Method
Returns a pointer to the hash function used by a given dictionary.

IDL Syntax
somf_MCollectibleHashFn somfGetHashFunction ();

Description
The somfGetHashFunction method returns a pointer to the hash function used by the
dictionary that is the method’s receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Since somf_TDictionary uses somf_THashTable, the
name of this method will have to be fully qualified. This is the only way the linker can tell
them apart. This is not a problem in C++. In C++ you could have referenced this method as:

d->somfGetHashFunction(ev);

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the somfHash Method used by this dictionary.

Example
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();

if ((somf_TDictionary_somfGetHashFunction(d,ev)) !=
 somf_MCollectibleClassData.somfHash)
 somPrintf(”\n What Hash Function are we using?\n”);

_somFree (d);

Original Class
somf_TDictionary

Related Information
somfSetHashFunction Method

114 Programmer’s Reference for SOM Collection Classes

somfKeyAtM Method

somfKeyAtM Method
Gets a dictionary’s first key that has a specified val as its associated value.

Note: This method involves a slow search.

IDL Syntax
somf_MCollectible somfKeyAtM (in somf_MCollectible val);

Description
The somfKeyAtM method finds the key of the first (key, value) pair whose value is the
specified argument val, and returns a pointer to the key. This method involves a slow
search of the dictionary.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

val
A pointer to a somf_MCollectible Class that is the value to be searched for.

Return Value
• somf_MCollectible, a pointer to the dictionary’s first key that has val as the value of

the associated (key, value) pair.
• SOMF_NIL, the value was not found in the dictionary.

Example
somf_TDictionary d;
<your Class which inherits from somf_MCollectible> key;
<your Class which inherits from somf_MCollectible> value;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
value = <your Class which inherits from somf_MCollectible>New();

/* Add a lot of objects to d */

key = _somfKeyAtM(d, ev, value);
if (key == SOMF_NIL)
 somPrintf(” value is no longer in d\n”);
else
{
 /* do something with the key */
}

_somFree (d);
_somFree (value);

Original Class
somf_TDictionary

Related Information
somfKeyAtMF Method

115

somfKeyAtMF Method

somfKeyAtMF Method
Gets a dictionary’s first key that has a specified val as its associated value. The method
includes an argument specifying the method to be used for comparing the values.

Note: This method involves a slow search.

IDL Syntax
somf_MCollectible somfKeyAtMF (

in somf_MCollectible val,
in somf_MCollectibleCompareFn testfn);

Description
The somfKeyAtMF method finds the key of the first (key, value) pair whose value is the
specified argument val, and returns a pointer to the key. The method includes an argument
that specifies whether somfIsEqual or somfIsSame should be used to compare the values.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

val
A pointer to a somf_MCollectible Class object that is the value to be searched for.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method.

This argument should always be set to either:

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual.

This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TDictionary object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being inserted into,
or removed from, the somf_TDictionary object.

Return Value
• somf_MCollectible. a pointer to the dictionary’s first key that has val as the value of

the associated (key, value) pair.
• SOMF_NIL, the value was not found in the dictionary.

Example
somf_TDictionary d;
<your Class which inherits from somf_MCollectible> key;
<your Class which inherits from somf_MCollectible> value;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
value = <your Class which inherits from somf_MCollectible>New();

/* Add a lot of objects to d */

key = _somfKeyAtMF(d, ev, value,
 somf_MCollectibleClassData.somfIsEqual)

116 Programmer’s Reference for SOM Collection Classes

somfKeyAtMF Method

if (key == SOMF_NIL)
 somPrintf(” value is no longer in d\n”);
else
{
 /* do something with the key */
}

_somFree (d);
_somFree (value);

Original Class
somf_TDictionary

Related Information
somfKeyAtM Method

117

somfMember Method

somfMember Method
Gets the key of a (key, value) pair in the dictionary, if it is found.

IDL Syntax
somf_MCollectible somfMember (in somf_MCollectible obj);

Description
The somfMember method determines whether the (key, value) pair corresponding to a
specified key is in the dictionary and, if so, returns a pointer to the key object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Since somf_TDictionary uses somf_THashTable, then
the name of the method will have to be fully qualified. This is the only way the linker can tell
them apart. This is not a problem in C++. In C++ you could have referenced this method as:

d->somfMember(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

key
A pointer to the somf_MCollectible Class key of the (key, value) pair that may or may
not be in the dictionary.

Return Value
• somf_MCollectible, a pointer to the key of the (key, value) pair that the method

determined as the member.
• SOMF_NIL, the object was not found.

somf_TDictionary d;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
obj = <your Class which inherits from somf_MCollectible>New();

/* Add some objects to d */

/* See if obj is in d */
if (somf_TDictionary_somfMember(d, ev, obj) == SOMF_NIL)
 somPrintf(”\n obj is NOT in d\n”);
else
 somPrintf(”\n obj IS in d\n”);

_somFree (d);

Original Class
somf_TCollection Class (overridden here)

118 Programmer’s Reference for SOM Collection Classes

somfRemove Method

somfRemove Method
Removes from the dictionary the (key, value) pair associated with a given key.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible key);

Description
The somfRemove method removes from the dictionary the (key, value) pair associated
with the specified key object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Since somf_TDictionary uses somf_THashTable, then
the name of the method will have to be fully qualified. This is the only way the linker can tell
them apart. This is not a problem in C++. In C++ you could have referenced this method as:

d->somfRemove(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

key
A pointer to the somf_MCollectible Class object representing the key to be removed
from the dictionary.

Return Value
• somf_MCollectible, a pointer to the value of the (key, value) pair that was removed.
• SOMF_NIL, the key object was not found

Example
somf_TDictionary d;
<your Class which inherits from somf_MCollectible> key;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
key = <your Class which inherits from somf_MCollectible>New();

/* Add a lot of objects to d */

if (somf_TDictionary_somfRemove(d, ev, key) == SOMF_NIL)
 somPrintf(” Why did Remove say key was not removed?\n”);

_somFree (d);
_somFree (key);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfRemoveAll Method

119

somfRemoveAll Method

somfRemoveAll Method
Removes all of the (key, value) pairs from a dictionary.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the (key, value) pairs from the dictionary that
is the receiving object.

C cannot handle methods from different classes having the same name when the inherit
the name from different parents. Since somf_TDictionary uses somf_THashTable, the
name of the method will have to be fully qualified. This is the only way the linker can tell
them apart. This is not a problem in C++. In C++ you could have referenced this method as:

d->somfRemoveAll(ev);

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();

/* Add a lot of objects to d */

/* remove all the objects from d */
somf_TDictionary_somfRemoveAll(d,ev);

_somFree (d);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfRemove Method

120 Programmer’s Reference for SOM Collection Classes

somfSetHashFunction Method

somfSetHashFunction Method
Sets a dictionary’s hash-function pointer to a given method.

IDL Syntax
void somfSetHashFunction (in somf_MCollectibleHashFn fn);

Description
The somfSetHashFunction method sets the pointer for the dictionary’s hash function to
the specified method fn. By default, this pointer is set to somf_MCollectible’s somfHash
Method, which is usually overridden in the objects that are added to the hash table.
Normally, a client program does not invoke this method.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Since somf_TDictionary uses somf_THashTable, the
name of this method will have to be fully qualified. This is the only way the linker can tell
them apart. This is not a problem in C++. In C++ you could have referenced this method as:

d->somfSetHashFunction(ev);

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

fn
A method pointer specifying a somfHash type method.

This argument should always be set to

somf_MCollectibleClassData.somfHash

This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible Class. The
somf_TDictionary object will use this pointer to access the somfHash Method that
was declared and defined in the object being inserted into, or removed from, the
somf_TDictionary object.

Example
somf_TDictionary d;
Environment *ev;

ev = somGetGlobalEnvironment();
d = somf_TDictionaryNew();

somf_TDictionary_somfSetHashFunction(d, ev,
 somf_MCollectibleClassData.somfHash);
_somFree (d);

Original Class
somf_TDictionary

Related Information
somfGetHashFunction Method

121

somfTDictionaryInitD Method

somfTDictionaryInitD Method
Initializes a new dictionary, setting it equal to another specified dictionary.

IDL Syntax
somf_TDictionary somfTDictionaryInitD (in somf_TDictionary dictionary);

Description
The somfTDictionaryInitD method initializes the new dictionary represented by the
receiving object. The method also sets the new dictionary equal to another specified
dictionary. This implies that the instance data of the new dictionary will be set equal to
those of the source dictionary.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

dictionary
A pointer to the dictionary the receiving object will be equal to.

Return Value
This method returns a pointer to an initialized somf_TDictionary object representing the
new dictionary.

Example
somf_TDictionary d2;
somf_TDictionary d7;
Environment *ev;

ev = somGetGlobalEnvironment();

d2 = somf_TDictionaryNew();
d7 = somf_TDictionaryNew();
_somfTDictionaryInitD(d7, ev, d2);

_somFree (d2);
_somFree (d7);

Original Class
somf_TDictionary

Related Information
somfTDictionaryInitF Method
somfTDictionaryInitFL Method
somfTDictionaryInitFLL Method
somfTDictionaryInitL Method
somfTDictionaryInitLL Method
somfTDictionaryInitLLF Method

122 Programmer’s Reference for SOM Collection Classes

somfTDictionaryInitF Method

somfTDictionaryInitF Method
Initializes a new dictionary, given its comparison test method.

IDL Syntax
somf_TDictionary somfTDictionaryInitF (in somf_MCollectibleCompareFn testfn);

Description
The somfTDictionaryInitF method initializes a new dictionary, given its comparison test
method. When a somfDictionaryInit method does not include arguments for the
dictionary’s table size or growth rate, a default number of (key, value) pairs is assumed for
the initial size, and the table subsequently grows by a default number of pairs once the
dictionary contains a number of pairs approaching the current table size.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual

because SOM needs a pointer to the original declaration of the method, which resides
in somf_MCollectible Class. The somf_TDictionary object will use this pointer to
access the somfIsSame Method or somfIsEqual Method that was declared and
defined in the inserted or removed object.

Return Value
A pointer to an initialized somf_TDictionary object representing the new dictionary.

Example
somf_TDictionary d3;
Environment *ev;

ev = somGetGlobalEnvironment();
d3 = somf_TDictionaryNew();
_somfTDictionaryInitF(d3, ev,
 somf_MCollectibleClassData.somfIsEqual);
_somFree (d3);

Original Class
somf_TDictionary

Related Information

123

somfTDictionaryInitFL Method

somfTDictionaryInitFL Method
Initializes a new dictionary, given its comparison test method and its initial size.

IDL Syntax
somf_TDictionary somfTDictionaryInitFL (

in somf_MCollectibleCompareFn testfn,
in long sizeHint);

Description
The somfTDictionaryInitFL method initializes a new dictionary, given its comparison test
method and its initial size.

When a somfDictionaryInit method does not include an argument for the dictionary’s
growth rate, the initial table size will grow by a default number of pairs once the table
contains a number of pairs that approaches the specified size.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual.

because SOM needs a pointer to the original declaration of the method, which resides
in somf_MCollectible Class. The somf_TDictionary object will use this pointer to
access the somfIsSame Method or somfIsEqual Method that was declared and
defined in the inserted or removed object.

sizeHint
The initial size of the dictionary, expressed as the number of (key, value) pairs to
expect.

Return Value
This method returns a pointer to an initialized somf_TDictionary object representing the
new dictionary.

Example
somf_TDictionary d2;
Environment *ev;

ev = somGetGlobalEnvironment();
d2 = somf_TDictionaryNew();
_somfTDictionaryInitFL(d2, ev,
 somf_MCollectibleClassData.somfIsEqual, 8);
_somFree (d2);

Original Class
somf_TDictionary

124 Programmer’s Reference for SOM Collection Classes

somfTDictionaryInitFL Method

Related Information
somfTDictionaryInitD Method
somfTDictionaryInitF Method
somfTDictionaryInitFLL Method
somfTDictionaryInitL Method
somfTDictionaryInitLL Method
somfTDictionaryInitLLF Method

125

somfTDictionaryInitFLL Method

somfTDictionaryInitFLL Method
Initializes a new dictionary, given its comparison test method, its initial size, and its initial
growth rate.

Note: This method is equivalent to the somfTDictionaryInitLLF Method.

IDL Syntax
somf_TDictionary somfTDictionaryInitFLL (

in somf_MCollectibleCompareFn testfn,
in long sizeHint,
in long growthRate);

Description
The somfTDictionaryInitFLL method initializes a new dictionary, given its comparison test
method, its initial size, and its growth rate.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual.

because SOM needs a pointer to the original declaration of the method, which resides
in somf_MCollectible Class. The somf_TDictionary object will use this pointer to
access the somfIsSame Method or somfIsEqual Method that was declared and
defined in the inserted or removed object.

sizeHint
The initial size of the dictionary, expressed as the number of (key, value) pairs to
expect.

growthRate
The initial growth rate, expressed as the number of (key, value) pairs by which to
increment the allocated size when growth occurs.

Return Value
This method returns a pointer to the initialized somf_TDictionary object representing the
new dictionary.

Example
somf_TDictionary d1;
Environment *ev;

ev = somGetGlobalEnvironment();

d1 = somf_TDictionaryNew();

126 Programmer’s Reference for SOM Collection Classes

somfTDictionaryInitFLL Method

_somfTDictionaryInitFLL(d1, ev,
 somf_MCollectibleClassData.somfIsEqual, 8, 8);

_somFree (d1);

Original Class
somf_TDictionary

Related Information
somfTDictionaryInitD Method
somfTDictionaryInitF Method
somfTDictionaryInitFL Method
somfTDictionaryInitL Method
somfTDictionaryInitLL Method
somfTDictionaryInitLLF Method

127

somfTDictionaryInitL Method

somfTDictionaryInitL Method
Initializes a new dictionary, given its initial size.

IDL Syntax
somf_TDictionary somfTDictionaryInitL (in long sizeHint);

Description
The somfTDictionaryInitL method initializes a new dictionary, given its initial size.

When a somfDictionaryInit... method does not include an argument for the dictionary’s
growth rate, the initial table size will grow by a default number of pairs once the table
contains a number of pairs that approaches the specified size. When a comparison method
is not specified, the default somfIsEqual Method is used unless the
somfSetHashFunction Method has changed it to somfIsSame Method.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

sizeHint
The initial size of the dictionary, expressed as the number of (key, value) pairs to
expect.

Return Value
This method returns a pointer to an initialized somf_TDictionary object representing the
new dictionary.

Example
somf_TDictionary d6;
Environment *ev;

ev = somGetGlobalEnvironment();

d6 = somf_TDictionaryNew();
_somfTDictionaryInitL(d6, ev, 8);

_somFree (d6);

Original Class
somf_TDictionary

Related Information
somfTDictionaryInitD Method
somfTDictionaryInitF Method
somfTDictionaryInitFL Method
somfTDictionaryInitFLL Method
somfTDictionaryInitLL Method
somfTDictionaryInitLLF Method

128 Programmer’s Reference for SOM Collection Classes

somfTDictionaryInitLL Method

somfTDictionaryInitLL Method
Initializes a new dictionary, given its initial size and its initial growth rate.

IDL Syntax
somf_TDictionary somfTDictionaryInitLL (

in long sizeHint,
in long growthRate);

Description
The somfTDictionaryInitLL method initializes a new dictionary, given its initial size and its
initial growth rate. The default somfIsEqual Method is used as the comparison method,
unless the somfSetHashFunction Method has changed it to somfIsSame Method.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

sizeHint
The initial size of the dictionary, expressed as the number of (key, value) pairs to
expect.

growthRate
The initial growth rate, expressed as the number of (key, value) pairs by which to
increment the allocated size when growth occurs.

Return Value
This method returns a pointer to an initialized somf_TDictionary object representing the
new dictionary.

Example
somf_TDictionary d5;
Environment *ev;

ev = somGetGlobalEnvironment();
d5 = somf_TDictionaryNew();
_somfTDictionaryInitLL(d5, ev, 8, 8);

_somFree (d5);

Original Class
somf_TDictionary

Related Information
somfTDictionaryInitD Method
somfTDictionaryInitF Method
somfTDictionaryInitFL Method
somfTDictionaryInitFLL Method
somfTDictionaryInitL Method
somfTDictionaryInitLLF Method

129

somfTDictionaryInitLLF Method

somfTDictionaryInitLLF Method
Initializes a new dictionary, given its initial size, its initial growth rate, and its comparison
test method. Note: This method is equivalent to the somfTDictionaryInitFLL Method.

IDL Syntax
somf_TDictionary somfTDictionaryInitLLF (

in long sizeHint,
in long growthRate,
in somf_MCollectibleCompareFn testfn);

Description
The somfTDictionaryInitLLF method initializes a new dictionary, given its initial size, its
initial growth rate, and its comparison test method.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

sizeHint
The initial size of the dictionary, expressed as the number of (key, value) pairs to
expect.

growthRate
The initial growth rate, expressed as the number of (key, value) pairs by which to
increment the allocated size when growth occurs.

testfn
A method pointer specifying either a somfIsEqual or somfIsSame method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
 somf_MCollectibleClassData.somfIsEqual.

because SOM needs a pointer to the original declaration of the method, which resides
in somf_MCollectible Class. The somf_TDictionary object will use this pointer to
access the somfIsSame Method or somfIsEqual Method that was declared and
defined in the inserted or removed object.

Return Value
This method returns a pointer to an initialized somf_TDictionary object representing the
new dictionary.

Example
somf_TDictionary d4;
Environment *ev;

ev = somGetGlobalEnvironment();

d4 = somf_TDictionaryNew();
_somfTDictionaryInitLLF(d4, ev, 8, 8,
 somf_MCollectibleClassData.somfIsEqual);

_somFree (d4);

130 Programmer’s Reference for SOM Collection Classes

somfTDictionaryInitLLF Method

Original Class
somf_TDictionary

Related Information
somfTDictionaryInitD Method
somfTDictionaryInitF Method
somfTDictionaryInitFL Method
somfTDictionaryInitFLL Method
somfTDictionaryInitL Method
somfTDictionaryInitLL Method

131

somfValueAt Method

somfValueAt Method
Gets the value associated with a given key for a (key, value) pair in a dictionary.

IDL Syntax
somf_MCollectible somfValueAt (in somf_MCollectible key);

Description
The somfValueAt method finds the value associated with the specified key for a
(key, value) pair in a dictionary, and returns a pointer to the value.

Parameters
receiver

A pointer to an object of class somf_TDictionary.

ev
A pointer to the Environment structure for the calling method.

key
A pointer to a somf_MCollectible Class object that is the key to be searched for.

Return Value
• somf_MCollectible, a pointer to the somf_MCollectible object that is the value

associated with the key.
• SOMF_NIL, the key was not found in the dictionary.

Example
somf_TDictionary d;
somf_MCollectible value;
<your Class which inherits from somf_MCollectible> key;
Environment *ev;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
key = <your Class which inherits from somf_MCollectible>New();

/* Add a lot of objects to d */

value = _somfValueAt(d, ev, key);

_somFree (d);
_somFree (key);

Original Class
somf_TDictionary

132 Programmer’s Reference for SOM Collection Classes

somf_TDictionaryIterator Class

somf_TDictionaryIterator Class
The somf_TDictionaryIterator class defines an iterator for the somf_TDictionary Class
that will iterate over all of the objects in a dictionary.

When you link, include the following library reference to get access to this class: somtk

Note: Do not be misled by the interface of methods in this class. Recall that each entry in a
somf_TDictionary is actually an object of the somf_TAssoc Class that holds a (key,
value) pair. Thus, the somfFirst and somfNext methods in the
somf_TDictionaryIterator class actually return somf_TAssoc objects, not simply
objects of the somf_MCollectible Class. You must handle the return values as if they
were somf_TAssoc’s.

Although the methods in this class are reentrant, the class is not thread-safe on multi-
thread applications. If a pointer to an instance of this class will be passed to multiple
threads, the code in those threads must guarantee thread-safe usage of the class.

File Stem
tdictitr

Base
somf_TIterator Class

Metaclass
SOMClass

Ancestor Classes
somf_TIterator Class
SOMObject Class

New Methods
somfTDictionaryIteratorInit Method

Overriding Methods
somDefaultInit Method
somDestruct Method
somfFirst Method
somfNext Method
somfRemove Method

somf_TDictionaryIterator Class 133

somfFirst Method

somfFirst Method
Resets the iterator and returns the first (key, value) pair from a dictionary.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the iterator and returns the first (key, value) pair from the
dictionary of the dictionary iterator represented by the receiving object.

This resets the iterator to the beginning of the dictionary. This is true not only for the first
time you use the iterator; it is also true if other operations on the dictionary cause the
iterator to be invalidated. In the second case, the method also revalidates the iterator.

Do not be misled by this method’s interface, which is inherited from the somf_TIterator
Class. The only objects returned with somfFirst are (key, value) pairs of the
somf_TAssoc Class. You cannot use the return value as a generic somf_MCollectible
Class object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfFirst is a method name declared in multiple parents
(example: somf_TSequence, somf_TIterator). You will probably have to fully qualify the
method name (for example: somf_TDictionaryIterator_somfFirst). This is the only way
the linker can tell them apart. This is not a problem in C++. In C++ you could have
referenced this method as:

itr->somfFirst(ev);

Parameters
receiver

A pointer to an object of class somf_TDictionaryIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• A pointer to the first somf_MCollectible object in the dictionary.
• SOMF_NIL is returned if the collection is empty.

Example
somf_TDictionary d;
Environment *ev;
somf_TDictionaryIterator itr;
somf_TAssoc itrobj;
somf_MCollectible objk;
somf_MCollectible objv;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
itr = somf_TDictionaryIteratorNew();
_somfTDictionaryIteratorInit(itr, ev, d);

/* Add some object to d */

/* Iterate through the TDictionary */
itrobj = somf_TDictionaryIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{

134 Programmer’s Reference for SOM Collection Classes

somfFirst Method

 objk = _somfGetKey(itrobj,ev);
 objv = _somfGetValue(itrobj,ev);

 /* Do something with objk or objv */

 itrobj = _somfNext(itr,ev);
}

_somFree (d);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

Related Information
somfNext Method

somf_TDictionaryIterator Class 135

somfNext Method

somfNext Method
Gets the next (key, value) pair in the dictionary of a given dictionary iterator.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next (key, value) pair in the dictionary of the
specified dictionary iterator. The method also returns a pointer to the next (key, value) pair,
if found. Objects are retrieved in an order that reflects the “ordered-ness” of the dictionary
(or the lack of ordering on the dictionary objects).

Do not be misled by this method’s interface, which is inherited from the somf_TIterator
Class. The only objects returned with somfNext are (key, value) pairs of the
somf_TAssoc Class. You cannot use the return value as a generic somf_MCollectible
Class object.

If the dictionary has changed since the last time somfFirst was called (other than through
the use of the somfRemove Method method of this iterator), this method will fail.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TIterator is used with an object
of the somf_TPrimitiveLinkedListIterator class, then the name of the method must be
fully qualified (example: somf_TDictionaryIterator_somfNext). This is the only way the
linker can tell them apart. This is not a problem in C++. In C++ you could have referenced
this method as:

itr->somfNext(ev);

Parameters
receiver

A pointer to an object of class somf_TDictionaryIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, A pointer to the next somf_MCollectible object in the dictionary.
• SOMF_NIL, the end of the dictionary has been reached.

Example
somf_TDictionary d;
Environment *ev;
somf_TDictionaryIterator itr;
somf_TAssoc itrobj;
somf_MCollectible objk;
somf_MCollectible objv;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
itr = somf_TDictionaryIteratorNew();
_somfTDictionaryIteratorInit(itr, ev, d);

/* Add some object to d */

/* Iterate through the TDictionary */
itrobj = somf_TDictionaryIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)

136 Programmer’s Reference for SOM Collection Classes

somfNext Method

{
 objk = _somfGetKey(itrobj,ev);
 objv = _somfGetValue(obj,ev);

 /* Do something with objk or objv */

 itrobj = _somfNext(itr,ev);
}

_somFree (d);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

Related Information
somfFirst Method

somf_TDictionaryIterator Class 137

somfRemove Method

somfRemove Method
Removes the current (key, value) pair, the one just returned by somfFirst or somfNext,
from the dictionary.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current (key, value) pair from the dictionary that
corresponds to the dictionary iterator represented by the receiving object.

The somfRemove method is the only way to remove a (key, value) object from a dictionary
during iteration. However, if multiple iterators are in process, all the other iterators are
invalidated, just as if some other kind of change had occurred in the dictionary.

If the dictionary has changed since the last time somfFirst was called (other than through
the use of the somfRemove method of this iterator), this method will fail.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents. You will probably have to fully qualify the method name. This is the only way the
linker can tell them apart. This is not a problem in C++. In C++ you could have referenced
this method as:

itr->somfRemove(ev);

Parameters
receiver

A pointer to an object of class somf_TDictionaryIterator.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TDictionary d;
Environment *ev;
somf_TDictionaryIterator itr;
somf_MCollectible itrobj;

ev = somGetGlobalEnvironment();

d = somfdictionaryinit();
itr = somf_TDictionaryIteratorNew();
_somfTDictionaryIteratorInit(itr, ev, d);

/* Add some objects to d */

/* Use the Iterator’s Remove to remove the first object */
itrobj = somf_TDictionaryIterator_somfFirst(itr,ev);
somf_TDictionaryIterator_somfRemove(itr,ev);

_somFree (d);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

138 Programmer’s Reference for SOM Collection Classes

somfTDictionaryIteratorInit Method

somfTDictionaryIteratorInit Method
Initializes a somf_TDictionaryIterator iterator for a specified dictionary.

IDL Syntax
somf_TDictionaryIterator somfTDictionaryIteratorInit (in somf_TDictionary h);

Description
The somfTDictionaryIteratorInit method initializes an iterator of the
somf_TDictionaryIterator class, given the somf_TDictionary Class dictionary over which
iteration is needed.

This is one of two ways to initialize a somf_TDictionaryIterator to point to an instance of a
somf_TDictionary dictionary. The other way is to use the somf_TDictionary class’s
somfCreateIterator Method.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TDictionaryIterator.

ev
A pointer to the Environment structure for the calling method.

h
A pointer to the dictionary object that the receiving object will iterate over.

Return Value
This method returns a pointer to an initialized somf_TDictionaryIterator object.

Example
somf_TDictionary d;
Environment *ev;
somf_TDictionaryIterator itr;

ev = somGetGlobalEnvironment();

d = somf_TDictionaryNew();
itr = somf_TDictionaryIteratorNew();
_somfTDictionaryIteratorInit (itr, ev, d);

_somFree (d);
_somFree (itr);

Original Class
somf_TDictionaryIterator

somf_THashTable Class 139

somf_THashTable Class

somf_THashTable Class
Every hash table contains a set of (key, value) pairs that associate a key with a value. Hash
tables provide fast lookup of a value when given its associated key, even if there are a
large number of entries in the table. Methods are provided for the usual operations and for
controlling when rehashing will occur, and the growth of the table when a rehash occurs.

When you link, include the following library reference to get access to this class: somtk

As for the somf_TDictionary Class, each entry in a somf_THashTable is an object of the
somf_TAssoc Class that holds a pair. In most cases, this use of a somf_TAssoc object is
transparent to the user. However, you need to be aware of this somf_TAssoc usage,
because some somf_THashTable methods address the data as separate key and value
parts of a pair, whereas other methods accept or return a single somf_TAssoc object
representing the pair.

The somf_THashTable class is very similar to somf_TDictionary. The primary difference
is that somf_THashTable inherits directly from the somf_MCollectible Class, whereas
somf_TDictionary is another level down, inheriting from somf_TCollection Class. The
other distinction is that the somf_THashTable class uses the somfIsSame Method as its
default comparison function, whereas somf_TDictionary uses somfIsEqual Method.

Objects inserted into a somf_THashTable collection must inherit from somf_MCollectible.
In addition, they should override the somfHash Method, and the somfIsEqual method.
These methods are used internally by objects of the somf_THashTable class.

Because somf_THashTable takes somf_MCollectible objects as members, any class that
inherits from somf_MCollectible can be a member of the hash table. This means you can
have a hash table containing objects of any main collection class.

Note: The somf_THashTable class uses the somfIsSame method as the default
comparison function. That is, if key1=”Bart” and key2=”Bart”, key1 and key2
are not the same. Only key1 is the same as key1. If you do not want to use the
somfIsSame method to equate entries, use one of the initialization methods to
change to the somfIsEqual method. Just be aware that if the comparison methods
are changed, the objects inserted into the somf_THashTable must have
somfIsEqual and somfHash overridden.

Note: This Hash Table does not allow two pairs to have the same key. Two separate,
distinct pairs can hash to the same hash value, but the instantiation of each original
key must be unique.

Although the methods in this class are reentrant, the class is not thread-safe on multi-
thread applications. If a pointer to an instance of this class will be passed to multiple
threads, the code in those threads must guarantee thread-safe usage of the class.

File Stem
thash

Base
somf_MCollectible Class

Metaclass
SOMClass

140 Programmer’s Reference for SOM Collection Classes

somf_THashTable Class

Ancestor Classes
somf_MCollectible Class
SOMObject

New Methods
somfCount Method
somfRemove Method
somfDelete Method
somfMember Method
somfRemoveAll Method
somfDeleteAll Method
somfDeleteAllKeys Method
somfDeleteAllValues Method
somfAddMMB Method
somfAddMM Method
somfGrow Method
somfRetrieve Method
somfGetRehashThreshold Method
somfSetRehashThreshold Method
somfGetGrowthRate Method
somfSetGrowthRate Method
somfGetHashFunction Method
somfSetHashFunction Method
somfAssign Method
somfTHashTableInitFLLL Method
somfTHashTableInitFLL Method
somfTHashTableInitFL Method
somfTHashTableInitH Method

Overriding Methods
somDefaultInit Method
somDestruct Method

somf_THashTable Class 141

somfAddMM Method

somfAddMM Method
Adds a pair to the hash table. This method will replace a copy if one already exists.

IDL Syntax
somf_MCollectible somfAddMM (

in somf_MCollectible key,
in somf_MCollectible value);

Description
The somfAddMM method adds the specified pair to the hash table. If it contains an existing
pair for key; the method removes the existing value, adds the new value and returns the
existing value of the conflicting pair. Using the arguments, this method transparently
creates an object of the somf_TAssoc Class, before adding the new pair to the hash table.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

key
A pointer to a somf_MCollectible object that will be the key of the associated pair.

value
A pointer to a somf_MCollectible object that will be the value of the associated pair.

Return Value
• somf_MCollectible, a pointer to the somf_MCollectible object that was removed

when value was inserted.
• SOMF_NIL, no object had to be removed to add the new pair.

Example
somf_THashTable ht;
<Your Class which inherits from somf_MCollectible> obj;
<Your Class which inherits from somf_MCollectible> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();
obj = <Your Class which inherits from somf_MCollectible>New();
obj2 = <Your Class which inherits from somf_MCollectible>New();
ht = somf_THashTableNew();

if (_somfAddMM(ht, ev, obj, obj2) != SOMF_NIL)
 somPrintf(”\n problem adding obj,obj2 to ht\n”);
_somFree (ht);
_somFree (obj);
_somFree (obj2);

Original Class
somf_THashTable

Related Information
somfAddMMB Method

142 Programmer’s Reference for SOM Collection Classes

somfAddMMB Method

somfAddMMB Method
Adds a pair to the hash table, unless the boolean argument prohibits replacement of a copy
(a pair with the same key).

IDL Syntax
somf_MCollectible somfAddMMB (

in somf_MCollectible key,
in somf_MCollectible value,
in boolean replace);

Description
The somfAddMMB method adds the stipulated pair to the hash table represented by the
receiving object, unless the boolean argument prohibits replacement of a conflicting pair.

If replace = TRUE, the pair is added to the hash table regardless of whether a copy (a pair
having the same key) already exists. Otherwise, if replace = FALSE, then the pair is added
to the hash table only if a copy does not exist. Using the specified key and value
arguments, this method transparently creates an object of the somf_TAssoc Class, before
adding the new pair to the hash table.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

key
A pointer to a somf_MCollectible object that is the key of the associated pair.

value
A pointer to a somf_MCollectible object that is the value of the associated pair.

replace
A boolean indicating whether an already existing pair with an identical key should be
replaced.

Return Value
• somf_MCollectible, a pointer to thesomf_MCollectible value that had to be removed

in order to add a new pair.
• SOMF_NIL, no somf_MCollectible value had to be removed in order to add the pair.

Example
somf_THashTable ht;
<Your Class which inherits from somf_MCollectible> obj2;
<Your Class which inherits from somf_MCollectible> obj3;
Environment *ev;

ev = somGetGlobalEnvironment();

obj2 = <Your Class which inherits from somf_MCollectible>New();
obj3 = <Your Class which inherits from somf_MCollectible>New();
ht = somf_THashTableNew();

somf_THashTable Class 143

somfAddMMB Method

if (_somfAddMMB(ht, ev, obj2, obj3, FALSE) != SOMF_NIL)
 somPrintf(”\n problem adding obj2,obj3 to ht\n”);

_somFree (ht);
_somFree (obj2);
_somFree (obj3);

Original Class
somf_THashTable

Related Information
somfAddMM Method

144 Programmer’s Reference for SOM Collection Classes

somfAssign Method

somfAssign Method
Assigns a hash table as being equal to a given source hash table.

IDL Syntax
void somfAssign (in somf_THashTable source);

Description
The somfAssign method assigns the hash-table receiving object to be equal to the source
hash table object. The method sets/resets the instance variables of the receiver to the
values of the source. This operation is logically equivalent to using the equal (=) operator.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_THashTable is used with any
other main collection class, then the name of the method must be fully qualified. This is the
only way the linker can tell them apart. This is not a problem in C++. In C++ you could have
referenced this method as:

d->somfAssign(ev, obj);

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

source
A pointer to the somf_THashTable to which the receiving object should be set equal.

Example
somf_THashTable h1;
somf_THashTable h2;
Environment *ev;

ev = somGetGlobalEnvironment();
h1 = somf_THashTableNew();
h2 = somf_THashTableNew();

/* Add a lot of objects to h1 */

/* Assign h2 to the contents of h1 */
somf_THashTable_somfAssign(h2,ev,h1);

_somFree (h1);
_somFree (h2);

Original Class
somf_THashTable

somf_THashTable Class 145

somfCount Method

somfCount Method
Gets the number of objects in the hash table.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the hash table represented
by the receiving object, and returns the count as a long.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with a child
of somf_THashTable, then the name of the method will have to be fully qualified. This is
the only way the linker can tell them apart. This is not a problem in C++. In C++ you could
have referenced this method as:

d->somfCount(ev);

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in the hash table.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

/* Add some objects to ht */

/* Print the number of objects in ht */
somPrintf(”\n Count of ht= %d\n",
 somf_THashTable_somfCount(ht,ev));
_somFree (ht)

Original Class
somf_THashTable

146 Programmer’s Reference for SOM Collection Classes

somfDelete Method

somfDelete Method
Deletes a given key and removes the associated pair from a hash table, returning a pointer
to the value that was removed.

IDL Syntax
somf_MCollectible somfDelete (in somf_MCollectible key);

Description
The somfDelete method deletes the specified key, and removes the corresponding pair
from the hash table. The method returns a pointer to the value from the pair.

A hash table does not contain copies of the objects, but pointers to the objects. Using
somfDelete deletes the original object. If an attempt is made to delete a
somf_MCollectible Class object already deleted, this will cause a segmentation violation.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

key
A pointer to a somf_MCollectible object that is the key of the pair to be deleted.

Return Value
• somf_MCollectible, a pointer to the value that was removed because the key was

deleted.
• SOMF_NIL, the key object was not found.

Example
somf_THashTable ht;
<Your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();
obj = <Your Class which inherits from somf_MCollectible>New();
ht = somf_THashTableNew();

/* Add a lot of objects to ht */

/* Remove all occurrences of obj from ht AND DELETE obj */
if (_somfDelete(ht, ev, obj) == SOMF_NIL)
 somPrintf(” Why did Delete say obj wasn’t in ht? \n”);

_somFree (ht);

Original Class
somf_THashTable

Related Information
somfDeleteAll Method
somfDeleteAllKeys Method
somfDeleteAllValues Method

somf_THashTable Class 147

somfDeleteAll Method

somfDeleteAll Method
Removes all of the pairs from a hash table and deallocates the storage that these pairs
might have owned.

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the pairs from the hash table represented by the
receiving object. It also deallocates the storage that these pairs might have owned (that is,
the destructor function is called for each object in the hash table).

Be careful with somfDeleteAll. Since a collection only contains pointers to objects (rather
than the objects themselves), somfDeleteAll can cause a problem if a pointer to an object
appears more than once. For example, if multiple pointers to A exists, or if a single pointer
to A is in the collection multiple times, the behavior of the code is undefined, because it will
try to delete A multiple times. If you think there is a chance that an object could appear in
the collection more than once, you should consider using somfRemoveAll Method to
remove the objects from the collection and deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with a child
of somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_THashTable_somfDeleteAll). This is the only way the linker can tell them apart.
This is not a problem in C++. In C++ you could have referenced this method as:

d->somfDeleteAll(ev);

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();
ht = somf_THashTableNew();

/* Add a lot of objects to ht */
/* Remove all objects from ht AND DELETE THEM */
somf_THashTable_somfDeleteAll(ht,ev);

_somFree (ht);

Original Class
somf_THashTable

Related Information
somfDelete Method
somfDeleteAllKeys Method
somfDeleteAllValues Method

148 Programmer’s Reference for SOM Collection Classes

somfDeleteAllKeys Method

somfDeleteAllKeys Method
Removes all of the pairs from a hash-table receiving object. However, the program still
owns the values of the pairs.

IDL Syntax
void somfDeleteAllKeys ();

Description
The somfDeleteAllKeys method removes all of the pairs from the hash table, deallocates
the storage that these objects might have owned, and resets the count to zero.The
destructor function is called for each key in the hash table. However, the program still owns
the objects representing the values of the pairs.

Be careful with somfDeleteAllKeys. A hash table does not contain copies of the objects; it
contains pointers to the objects. Using somfDeleteAllKeys deletes the original object. If an
attempt is made to delete a somf_MCollectible Class object that has already been
deleted, this will cause a segmentation violation.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with a child
of somf_THashTable, then the name of the method will have to be fully qualified. This is
the only way the linker can tell them apart. This is not a problem in C++. In C++ you could
have referenced this method as:

d->somfDeleteAllKeys(ev);

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

/* Add a lot of objects to ht */

/* Remove all objects from ht AND DELETE ALL THE KEYS */
somf_THashTable_somfDeleteAllKeys(ht,ev);

_somFree (ht);

Original Class
somf_THashTable

Related Information
somfDeleteAll Method
somfDelete Method
somfDeleteAllValues Method

somf_THashTable Class 149

somfDeleteAllValues Method

somfDeleteAllValues Method
Removes all of the pairs from a hash table. However, the program still owns the keys of the
pairs.

IDL Syntax
void somfDeleteAllValues ();

Description
The somfDeleteAllValues method removes all of the pairs from the hash table
represented by the receiving object. It also deallocates the storage that these objects might
have owned and resets the count to zero The destructor function is called for each value in
the hash table. However, the program still owns the objects representing the keys of the
pairs.

Be careful with somfDeleteAllValues. A hash table does not contain copies of the objects;
it contains pointers to the objects. Using somfDeleteAllValues deletes the original object.
If an attempt is made to delete a somf_MCollectible Class object that has already been
deleted, this will cause a segmentation violation.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with a child
of somf_THashTable, then the name of the method will have to be fully qualified. This is
the only way the linker can tell them apart. This is not a problem in C++. In C++ you could
have referenced this method as:

d->somfDeleteAllValues(ev);

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();
ht = somf_THashTableNew();

/* Add a lot of objects to ht */

/* Remove all objects from ht AND DELETE ALL THE VALUES */
somf_THashTable_somfDeleteAllValues(ht,ev);

_somFree (ht);

Original Class
somf_THashTable

Related Information
somfDeleteAll Method
somfDeleteAllKeys Method
somfDelete Method

150 Programmer’s Reference for SOM Collection Classes

somfGetGrowthRate Method

somfGetGrowthRate Method
Gets the growth rate of a given hash table.

IDL Syntax
long somfGetGrowthRate ();

Description
The somfGetGrowthRate method returns the growth rate of the hash table represented by
the receiving object.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the growth rate for the hash table.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

somPrintf(” Rate should be 20 and is %d \n”,
 _somfGetGrowthRate(ht,ev);

_somFree (ht);

Original Class
somf_THashTable

Related Information
somfSetGrowthRate Method

somf_THashTable Class 151

somfGetHashFunction Method

somfGetHashFunction Method
Gets the hash function used by a given hash table.

IDL Syntax
somf_MCollectibleHashFn somfGetHashFunction ();

Description
The somfGetHashFunction method returns the hash function used by the hash table
represented by the receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if a child of somf_THashTable is used with a child
of somf_TDictionary or somf_TSet, then the name of the method will have to be fully
qualified. This is the only way the linker can tell them apart. This is not a problem in C++. In
C++ you could have referenced this method as:

d->somfGetHashFunction(ev);

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the hash function.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

if ((somf_THashTable_somfGetHashFunction(ht,ev)) !=
 somf_MCollectibleClassData.somfHash)
 somPrintf(”\n What Hash Function are we using?\n”);

_somFree (ht);

Original Class
somf_THashTable

Related Information
somfSetHashFunction Method

152 Programmer’s Reference for SOM Collection Classes

somfGetRehashThreshold Method

somfGetRehashThreshold Method
Gets the rehash threshold of a given hash table.

IDL Syntax
long somfGetRehashThreshold ();

Description
The somfGetRehashThreshold method returns the rehash threshold of the hash table
represented by the receiving object. The rehash threshold is the percentage of how full the
hash table should be before it needs to grow. For example: 80 means 80% of the hash
table should be full before the table needs to grow.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the rehash threshold of the hash table.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

somPrintf(” RehashThreshold should be 80 and is %d \n”,
 _somfGetRehashThreshold(ht,ev));

_somFree (ht);

Original Class
somf_THashTable

Related Information
somfSetRehashThreshold Method

somf_THashTable Class 153

somfGrow Method

somfGrow Method
Grows a given hash table.

IDL Syntax
void somfGrow ();

Description
The somfGrow method increases the size allocation for the hash table represented by the
receiving object. Growth is determined by the growth rate argument (if any) specified in the
initialization method for the hash table, or by the growth rate in the somfSetGrowthRate
Method.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();
ht = somf_THashTableNew();

/* Add a lot of objects to ht */

_somfGrow(ht,ev);

_somFree (ht);

Original Class
somf_THashTable

154 Programmer’s Reference for SOM Collection Classes

somfMember Method

somfMember Method
Gets the key of a pair in a hash table, if it is found.

IDL Syntax
somf_MCollectible somfMember (in somf_MCollectible key);

Description
The somfMember method determines whether the pair corresponding to a specified key is
in the hash table represented by the receiving object and, if so, returns a pointer to the key
object.

C cannot handle methods from different classes having the same name when they
inherit the name from different parents. Thus, if any child of somf_TCollection is used with
a child of somf_THashTable, then the name of the method will have to be fully qualified.
This is the only way the linker can tell them apart. This is not a problem in C++. In C++ you
could have referenced this method as:

d->somfMember(ev, key);

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

key
A pointer to the somf_MCollectible key of the pair that may or may not be a member
of the Hash Table.

Return Value
• somf_MCollectible, a pointer to the key of the pair the method determined as the

member.
• SOMF_NIL, the object was not found.

Example
somf_THashTable ht;
<Your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();
obj = <Your Class which inherits from somf_MCollectible>New();
ht = somf_THashTableNew();

/* Add a lot of objects to ht */

/* See if obj is in ht */
if (somf_THashTable_somfMember(ht, ev,obj) != SOMF_NIL)
 somPrintf(”\n obj IS in ht\n”);
else
 somPrintf(”\n obj is NOT in ht\n”);
_somFree (ht);

Original Class
somf_THashTable

somf_THashTable Class 155

somfRemove Method

somfRemove Method
Removes from the hash table the pair associated with a given key.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible key);

Description
The somfRemove method removes from the hash table the pair associated with the
specified key object, and returns a pointer to the value that was removed.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents. You will probably have to fully qualify the method name. This is the only way the
linker can tell them apart. This is not a problem in C++. In C++ you could have referenced
this method as:

d->somfremoveall(ev, key);

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

key
A pointer to the somf_MCollectible key of the pair to be removed.

Return Value
• somf_MCollectible. a pointer to the value of the pair that was removed.
• SOMF_NIL, the key object was not found.

Example
somf_THashTable ht;
<your Class which inherits from somf_MCollectible> key;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();
key = <your Class which inherits from somf_MCollectible>New();

/* Add a lot of objects to ht */

if (somf_THashTable_somfRemove(ht, ev, key) == SOMF_NIL)
 somPrintf(” Why did Remove say key was not removed?\n”);

_somFree (ht);
_somFree (key);

Original Class
somf_THashTable

Related Information
somfRemoveAll Method

156 Programmer’s Reference for SOM Collection Classes

somfRemoveAll Method

somfRemoveAll Method
Removes all of the (key, value) pairs from a hash table.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the pairs from the hash table that is the
receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with a child
of somf_THashTable, then the name of the method will have to be fully qualified. This is
the only way the linker can tell them apart. This is not a problem in C++. In C++ you could
have referenced this method as:

d->somfRemoveAll(ev);

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();
ht = somf_THashTableNew();

/* Add a lot of objects to ht */

/* Remove all the objects from ht */
somf_THashTable_somfRemoveAll(ht,ev);

_somFree (ht);

Original Class
somf_THashTable

Related Information
somfRemove Method

somf_THashTable Class 157

somfRetrieve Method

somfRetrieve Method
Retrieves the value associated with a given key for a (key, value) pair in a hash table.

IDL Syntax
somf_MCollectible somfRetrieve (in somf_MCollectible key);

Description
The somfRetrieve method finds the value associated with the specified key for a pair in a
hash table, and returns a pointer to the value.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

key
A pointer to the somf_MCollectible key for the associated value to be retrieved.

Return Value
• somf_MCollectible, a pointer to the value associated with the given key.
• SOMF_NIL, the key was not found in the hash table.

Example
somf_THashTable ht;
<Your Class which inherits from somf_MCollectible> key;
<Your Class which inherits from somf_MCollectible> value;
Environment *ev;

ev = somGetGlobalEnvironment();

key = <Your Class which inherits from somf_MCollectible>New();
ht = somf_THashTableNew();

/* Add some objects to ht */

/* Determine the value associated with key */
value = _somfRetrieve(ht, ev, key);

_somFree (ht);
_somFree (key);

Original Class
somf_THashTable

158 Programmer’s Reference for SOM Collection Classes

somfSetGrowthRate Method

somfSetGrowthRate Method
Sets the growth rate of a hash table.

IDL Syntax
void somfSetGrowthRate (in long rate);

Description
The somfSetGrowthRate method sets the growth rate of the hash table represented by
the receiving object.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

rate
The growth rate, expressed as the number of pairs by which to expand the table size
when it grows.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

_somfSetGrowthRate(ht, ev, 20);

_somFree (ht);

Original Class
somf_THashTable

Related Information
somfGetGrowthRate Method

somf_THashTable Class 159

somfSetHashFunction Method

somfSetHashFunction Method
Sets a hash table’s hash function to a given function.

IDL Syntax
void somfSetHashFunction (in somf_MCollectibleHashFn fn);

Description
The somfSetHashFunction method sets the pointer for the hash table’s hash function to
the specified method fn. By default, this pointer is set to somf_MCollectible’s somfHash
method (which is usually overridden in the objects that are added to the hash table).
Normally, a client program does not invoke this method.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if a child of somf_THashTable is used with a child
of somf_TDictionary or somf_TSet, then the name of the method will have to be fully
qualified (example: somf_THashTable_somfSetHashFunction). This is the only way the
linker can tell them apart. This is not a problem in C++. In C++ you could have referenced
this method as:

d->somfSetHashFunction(ev, fn);

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

fn
A method pointer specifying a somfHash type method.

This argument should always be set to

somf_MCollectibleClassData.somfHash

because SOM needs a pointer to the original declaration of the method, which resides
in somf_MCollectible. The somf_THashTable object will use this pointer to access
the somfHash Method that was declared and defined in the inserted or removed
object.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();
ht = somf_THashTableNew();

somf_THashTable_somfSetHashFunction(ht, ev,
 somf_MCollectibleClassData.somfHash);
_somFree (ht);

Original Class
somf_THashTable

Related Information
somfGetHashFunction Method

160 Programmer’s Reference for SOM Collection Classes

somfSetRehashThreshold Method

somfSetRehashThreshold Method
Sets the rehash threshold of a hash table.

IDL Syntax
void somfSetRehashThreshold (in long threshold);

Description
The somfSetRehashThreshold method sets the rehash threshold of the hash table
represented by the receiving object.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

threshold
The rehash threshold, expressed as the percentage of how full the hash table may
become before it grows in size. For example: 80 means 80%.

Example
somf_THashTable ht;
Environment *ev;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();

_somfSetRehashThreshold(ht, ev, 80);

_somFree (ht);

Original Class
somf_THashTable

Related Information
somfGetRehashThreshold Method

somf_THashTable Class 161

somfTHashTableInitFL Method

somfTHashTableInitFL Method
Initializes a new hash table, given its comparison test method and its initial table size.

IDL Syntax
somf_THashTable somfTHashTableInitFL (

in somf_MCollectibleCompareFn testfn,
in long tablesize);

Description
The somfTHashTableInitFL method initializes a new hash table, given its comparison test
method and its initial table size.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method. This
method is used to compare two keys in the hash table.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual.

because SOM needs a pointer to the original declaration of the method, which resides
in somf_MCollectible. The somf_THashTable object will use this pointer to access
the somfIsSame Method or somfIsEqual Method that was declared and defined in
the inserted or removed object.

tablesize
The initial size of the hash table, expressed as the number of pairs that are expected.

Return Value
This method returns a pointer to an initialized somf_THashTable object.

Example
somf_THashTable h3;
Environment *ev;

ev = somGetGlobalEnvironment();
h3 = somf_THashTableNew();
_somfTHashTableInitFL(h3, ev,
 somf_MCollectibleClassData.somfIsEqual, 23);
_somFree (h3);

Original Class
somf_THashTable

Related Information
somfTHashTableInitFLLL Method
somfTHashTableInitFLL Method
somfTHashTableInitH Method

162 Programmer’s Reference for SOM Collection Classes

somfTHashTableInitFLL Method

somfTHashTableInitFLL Method
Initializes a new hash table, given its comparison test method, its initial table size, and its
initial growth rate.

IDL Syntax
somf_THashTable somfTHashTableInitFLL (

in somf_MCollectibleCompareFn testfn,
in long tablesize,
in long rate);

Description
The somfTHashTableInitFLL method initializes a new hash table, given its comparison
test method, its initial table size, and its initial growth rate.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method. This
method is used to compare two keys in the hash table.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual.

because SOM needs a pointer to the original declaration of the method, which resides
in somf_MCollectible. The somf_THashTable object will use this pointer to access
the somfIsSame Method or somfIsEqual Method that was declared and defined in
the object being inserted into, or removed from, the somf_THashTable object.

tablesize
The initial size of the hash table, expressed as the number of pairs that are expected.

rate
The growth rate, expressed as the number of pairs by which to expand the table size
when it grows.

Return Value
This method returns a pointer to an initialized somf_THashTable object.

Example
somf_THashTable h2;
Environment *ev;

ev = somGetGlobalEnvironment();

h2 = somf_THashTableNew();
_somfTHashTableInitFLL(h2, ev,
 somf_MCollectibleClassData.somfIsEqual, 23, 20);

_somFree (h2);

somf_THashTable Class 163

somfTHashTableInitFLL Method

Original Class
somf_THashTable

Related Information
somfTHashTableInitFLLL Method
somfTHashTableInitFL Method
somfTHashTableInitH Method

164 Programmer’s Reference for SOM Collection Classes

somfTHashTableInitFLLL Method

somfTHashTableInitFLLL Method
Initializes a new hash table, given its comparison test method, its initial table size, its initial
growth rate, and its rehash threshold.

IDL Syntax
somf_THashTable somfTHashTableInitFLLL (

in somf_MCollectibleCompareFn testfn,
in long tablesize,
in long rate,
in long threshold);

Description
The somfTHashTableInitFLLL method initializes a new hash table, given its comparison
test method, its initial table size, its initial growth rate, and its rehash threshold.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method. This
method is used to compare two keys in the hash table.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual.

This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_THashTable object will use this pointer to access the somfIsSame Method or
somfIsEqual Method that was declared and defined in the object being inserted into,
or removed from, the somf_THashTable object.

tablesize
The initial size of the hash table, expressed as the number of pairs that are expected.

rate
The growth rate, expressed as the number of pairs by which to expand the table size
when it grows.

threshold
The rehash threshold, expressed as the percentage of how full the hash table may
become before it grows in size.

Return Value
This method returns a pointer to an initialized somf_THashTable object.

Example
somf_THashTable h1;
Environment *ev;

ev = somGetGlobalEnvironment();

h1 = somf_THashTableNew();

somf_THashTable Class 165

somfTHashTableInitFLLL Method

_somfTHashTableInitFLLL(h1, ev,
 somf_MCollectibleClassData.somfIsEqual, 23, 20, 80);

_somFree (h1);

Original Class
somf_THashTable

Related Information
somfTHashTableInitFLL Method
somfTHashTableInitFL Method
somfTHashTableInitH Method

166 Programmer’s Reference for SOM Collection Classes

somfTHashTableInitH Method

somfTHashTableInitH Method
Initializes a new hash table, setting it equal to another specified hash table.

IDL Syntax
somf_THashTable somfTHashTableInitH (in somf_THashTable h);

Description
The somfTHashTableInitH method initializes the new hash table represented by the
receiving object. The method also sets the new hash table equal to another specified hash
table. This implies that the instance data of the new hash table will be set equal to those of
the source hash table.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTable.

ev
A pointer to the Environment structure for the calling method.

h
A pointer to the hash table the receiving object will be equal to.

Return Value
This method returns a pointer to an initialized somf_THashTable object.

Example
somf_THashTable h4;
somf_THashTable h2;
Environment *ev;

ev = somGetGlobalEnvironment();

h2 = somf_THashTableNew();
h4 = somf_THashTableNew();
_somfTHashTableInitH(h4, ev, h2);

_somFree (h2);
_somFree (h4);

Original Class
somf_THashTable

Related Information
somfTHashTableInitFLLL Method
somfTHashTableInitFLL Method
somfTHashTableInitFL Method

somf_THashTableIterator Class 167

somf_THashTableIterator Class

somf_THashTableIterator Class
The somf_THashTableIterator class defines an iterator for the somf_THashTable Class
that will iterate over all of the objects in a hash table.

When you link, include the following library reference to get access to this class: somtk

Do not be misled by the interface of methods in this class. Recall that each entry in a
somf_THashTable is actually an object of the somf_TAssoc Class that holds a (key, value)
pair. Thus, the somfFirst and somfNext methods in the somf_THashTableIterator class
actually return somf_TAssoc objects, not simply objects of the somf_MCollectible Class.
You must handle the return values as if they were somf_TAssoc’s.

Although the methods in this class are reentrant, the class is not thread-safe on multi-
thread applications. If a pointer to an instance of this class is to be passed to multiple
threads, the code in those threads must guarantee thread-safe usage of the class.

File Stem
thashitr

Base
somf_TIterator Class

Metaclass
SOMClass

Ancestor Classes
somf_TIterator Class
SOMObject

New Methods
somfTHashTableIteratorInit

Overriding Methods
somDefaultInit Method
somDestruct Method
somfFirst Method
somfNext Method
somfRemove Method

168 Programmer’s Reference for SOM Collection Classes

somfFirst Method

somfFirst Method
Resets the iterator and returns the first (key, value) pair of a hash table.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the iterator and returns the first (key, value) pair in the hash
table that corresponds to the specified hash-table iterator.

This resets the iterator to the beginning of the hash table. This is true not only for the first
time you use the iterator; it is also true if other operations on the hash table cause the
iterator to be invalidated. In the second case, the method also revalidates the iterator.

Do not be misled by this method’s interface, which is inherited from the somf_TIterator
Class. The only objects returned with somfFirst are (key, value) pairs of the
somf_TAssoc Class. You cannot use the return value as a generic somf_MCollectible
object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfFirst is a method name declared in multiple parents.
You will probably have to fully qualify the method name. This is the only way the linker can
tell them apart. This is not a problem in C++. In C++ you could have referenced this
method as:

itr->somfFirst(ev);

Parameters
receiver

A pointer to an object of class somf_THashTableIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the first somf_MCollectible in the hash table. Or,
SOMF_NIL is returned of the collection is empty.

Example
somf_THashTable ht;
Environment *ev;
somf_THashTableIterator itr;
somf_TAssoc itrobj;
somf_MCollectible objk;
somf_MCollectible objv;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();
itr = somf_THashTableIteratorNew();
_somfTHashTableIteratorInit(itr, ev, ht);

/* Add some object to d */

/* Iterate through the THashTable */
itrobj = somf_THashTableIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 objk = _somfGetKey(itrobj,ev);

somf_THashTableIterator Class 169

somfFirst Method

 objv = _somfGetValue(itrobj,ev);

 /* Do something with objk or objv */

 itrobj = _somfNext(itr,ev);
}

_somFree (ht);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

Related Information
somfNext Method

170 Programmer’s Reference for SOM Collection Classes

somfNext Method

somfNext Method
Gets the next (key, value) pair from the hash table of a given hash-table iterator.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next (key, value) pair in the hash table of the
specified hash table iterator. The method returns a pointer to the next (key, value) pair, if
found. Objects are retrieved in an order that reflects the “ordered-ness” of the hash table.

Do not be misled by this method’s interface, which is inherited from the somf_TIterator
Class. The only objects returned with somfNext are (key, value) pairs of the
somf_TAssoc Class. You cannot use the return value as a generic somf_MCollectible
object.

If the somf_THashTable Class has changed (other than through the use of the
somfRemove method of this iterator) since the last time the somfFirst method was called,
the iterator becomes invalid and will fail if asked to find the next object. If somfAdd were
called after starting to iterate through the hash table, the iterator then would not allow
iteration to continue. The iterator must be reset, and the easiest way to do that is to call the
iterator’s somfFirst method and start over.

C cannot handle methods from different classes having the same name when they
inherit the name from different parents. If any child of somf_TIterator is used with a child of
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully
qualified. This is the only way the linker can tell them apart. This is not a problem in C++. In
C++ you could have referenced this method as:

itr->somfNext(ev);

Parameters
receiver

A pointer to an object of class somf_THashTableIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the next somf_MCollectible object in the collection.
• SOMF_NIL, the end of the collection has been reached.

Example
somf_THashTable ht;
Environment *ev;
somf_THashTableIterator itr;
somf_TAssoc itrobj;
somf_MCollectible objk;
somf_MCollectible objv;

ev = somGetGlobalEnvironment();
ht = somf_THashTableNew();
itr = somf_THashTableIteratorNew();
_somfTHashTableIteratorInit(itr, ev, ht);

/* Add some object to d */

/* Iterate through the THashTable */

somf_THashTableIterator Class 171

somfNext Method

itrobj = somf_THashTableIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 objk = _somfGetKey(itrobj,ev);
 objv = _somfGetValue(itrobj,ev);

 /* Do something with objk or objv */

 itrobj = _somfNext(itr,ev);
}

_somFree (ht);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

Related Information
somfFirst Method

172 Programmer’s Reference for SOM Collection Classes

somfRemove Method

somfRemove Method
Removes the current (key, value) pair (the one just returned by somfFirst or somfNext)
from the hash table.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current (key, value) pair (the object just returned
by somfFirst Method or somfNext Method) from the hash table that corresponds to the
hash table iterator represented by the receiving object.

The somfRemove method is the only way to remove a (key, value) object from a hash
table during iteration. However, if multiple iterators are in process, all the other iterators are
invalidated, just as if some other kind of change had occurred in the hash table. If the hash
table has changed since the last time somfFirst was called (other than through the use of
the somfRemove method of this iterator), this method will fail.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents. You will probably have to fully qualify the method name. This is the only way the
linker can tell them apart. This is not a problem in C++. In C++ you could have referenced
this method as:

itr->somfRemove(ev);

Parameters
receiver

A pointer to an object of class somf_THashTableIterator.

ev
A pointer to the Environment structure for the calling method.

Example
somf_THashTable ht;
Environment *ev;
somf_THashTableIterator itr;
somf_MCollectible itrobj;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();
itr = somf_THashTableIteratorNew();
_somfTHashTableIteratorInit(itr, ev, ht);

/* Add some objects to ht */

/* Use the Iterator’s Remove to remove the first object */
itrobj = somf_THashTableIterator_somfFirst(itr,ev);
somf_THashTableIterator_somfRemove(itr,ev);

_somFree (ht);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

somf_THashTableIterator Class 173

somfTHashTableIteratorInit Method

somfTHashTableIteratorInit Method
Initializes a somf_THashTableIterator iterator, given its corresponding hash table.

IDL Syntax
somf_THashTableIterator somfTHashTableIteratorInit (in somf_THashTable h);

Description
The somfTHashTableIteratorInit method initializes a somf_THashTableIterator iterator,
given the somf_THashTable hash table over which iteration is needed.

This is the only way to initialize a somf_THashTableIterator iterator to point to an instance
of a somf_THashTable object.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_THashTableIterator.

ev
A pointer to the Environment structure for the calling method.

h
A pointer to the hash table the receiving object will iterate over.

Return Value
This method returns a pointer to an initialized somf_THashTableIterator object.

Example
somf_THashTable ht;
Environment *ev;
somf_THashTableIterator itr;

ev = somGetGlobalEnvironment();

ht = somf_THashTableNew();
itr = somf_THashTableIteratorNew();
_somfTHashTableIteratorInit(itr, ev, ht);

_somFree (ht);
_somFree (itr);

Original Class
somf_THashTableIterator

174 Programmer’s Reference for SOM Collection Classes

somf_TIterator Class

somf_TIterator Class
Each of the main collection classes has a corresponding iterator class. An iterator for a
particular collection object (data structure) will iterate over all of the objects contained
therein. The somf_TIterator class is the abstract base class for all iterator classes, defining
the generic methods used for iteration.

When you link, include the following library reference to get access to this class: somtk

If you create classes that inherit from the somf_TIterator class, the new classes must
override the methods somfFirst and somfNext.

When creating an iterator for an unordered collection, your classes should inherit from
somf_TIterator. (When creating an iterator for an ordered collection, your classes should
inherit from somf_TSequenceIterator Class). The somf_TIterator class provides the pure
virtual functions that constitute the framework for the methods that should be available in an
iterator for an unordered collection.

File Stem
titeratr

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods
somfNext Method
somfFirst Method
somfRemove Method

Overriding Methods
None

somf_TIterator Class 175

somfFirst Method

somfFirst Method
Resets the iterator and returns the first object of a collection.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the iterator and returns the first object of the collection that
corresponds to the iterator represented by the receiving object.

This resets the iterator to the beginning of the collection. This is true not only for the first
time you use the iterator; it is also true if other operations on the collection cause the
iterator to be invalidated. In the second case, the method also revalidates the iterator.

Every class that inherits from this class must override this method for the class to work
correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfFirst is a method name declared in multiple parents
(example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully qualify
the method name (example: somf_TDictionaryIterator_somfFirst). This is the only way
the linker can tell them apart.

This is not a problem in C++. In C++ you could have referenced this method as:
itr->somfFirst(ev);

Parameters
receiver

A pointer to an object of class somf_TIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the first somf_MCollectible object in the collection.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method looks when it is invoked, see somf_TSetIterator Class
or somf_TDictionaryIterator Class, or any of the other classes that inherit from
somf_TIterator.

Original Class
somf_TIterator

Related Information
somfNext Method

176 Programmer’s Reference for SOM Collection Classes

somfNext Method

somfNext Method
Gets the next object in a collection.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next object in the collection that corresponds to the
iterator represented by the receiving object and, if found, returns a pointer to the object.
Objects are retrieved in an order that reflects the “ordered-ness” of the collection (or the
lack of ordering on the collection objects).

Every class that inherits from this class must override this method for the class to work
correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TIterator is used with a child of
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully
qualified (example: somf_TDictionaryIterator_somfNext). This is the only way the linker
can tell them apart. This is not a problem in C++. In C++ you could have referenced this
method as:

itr->somfNext(ev);

If the collection has changed since the last time somfFirst Method was called (other than
through the use of the somfRemove Method of this iterator), this method will fail.

Parameters
receiver

A pointer to an object of class somf_TIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the next somf_MCollectible object in the collection.
• SOMF_NIL, the end of the collection has been reached.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method looks when it is invoked, see somf_TSetIterator Class or
somf_TDictionaryIterator Class, or any of the other classes that inherit from
somf_TIterator.

Original Class
somf_TIterator

Related Information
somfFirst Method

somf_TIterator Class 177

somfRemove Method

somfRemove Method
Removes the current object (the one just returned by somfFirst or somfNext) from a
collection.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current object (the one just returned by somfFirst
Method or somfNext Method) from the collection that corresponds to the iterator
represented by the receiving object.

Every class that inherits from this class must override this method for the class to work
correctly.

This method is the only way to remove an object from a collection during iteration.
However, if multiple iterators are in process, all other iterators are invalidated, just as if
some other kind of change had occurred in the collection.

If the collection has changed since the last time somfFirst was called (other than through
the use of the somfRemove method of this iterator), this method will fail.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents (example: somf_TCollection, somf_THashTable, somf_TIterator, etc.) You will
probably have to fully qualify the method name. This is the only way the linker can tell them
apart. This is not a problem in C++. In C++ you could have referenced this method as:

itr->somfRemove(ev);

Parameters
receiver

A pointer to an object of class somf_TIterator.

ev
A pointer to the Environment structure for the calling method.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method looks when it is invoked, see somf_TSetIterator Class or
somf_TDictionaryIterator Class, or any of the other classes that inherit from
somf_TIterator.

Original Class
somf_TIterator

178 Programmer’s Reference for SOM Collection Classes

somf_TPrimitiveLinkedList Class

somf_TPrimitiveLinkedList Class
This class describes a primitive linked list; a sequence of zero or more items, each linked to
the item in front and to the item behind it.

When you link, include the following library reference to get access to this class: somtk

Objects that are inserted into a collection object of the somf_TPrimitiveLinkedList class

Note: The somf_TPrimitiveLinkedList class uses the left and right pointers of the
somf_MLinkable characteristics to link together the objects in a list. This means no
object can appear in the list more than once, since it only has one set of pointers to
indicate its position in the somf_TPrimitiveLinkedList. If you insert an object more
than once, the behavior is undefined, and could result in an infinite loop. If you need
to insert an object more than once, you should consider using a somf_TDeque
collection instead. For the same reasons, an item cannot appear in two different
linked lists, because the same undefined behavior would result.

Although the methods in this class are reentrant, the class is not thread-safe on multi-
thread applications. If a pointer to an instance of this class will be passed to multiple
threads, the code in those threads must guarantee thread-safe usage of the class.

File Stem
tpll

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods
somfCount Method
somfRemove Method
somfRemoveAll Method
somfRemoveFirst Method
somfLast Method
somfAddBefore Method
somfAddAfter Method
somfAddFirst Method
somfAddLast Method
somfAfter Method
somfBefore Method
somfFirst Method
somfLast Method

Overriding Methods
somDefaultInit Method
somDestruct Method

somf_TPrimitiveLinkedList Class 179

somfAddAfter Method

somfAddAfter Method
Adds an object into a list after a given existing object.

IDL Syntax
void somfAddAfter (

in somf_MLinkable existing,
in somf_MLinkable obj);

Description
The somfAddAfter method adds the object obj into the specified list after the designated
existing object.

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedList.

ev
A pointer to the Environment structure for the calling method.

existing
pointer to the somf_MLinkable object that obj will be added in front of.

obj
A pointer to the somf_MLinkable object that will be added.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
<Your Class which inherits from MLinkable> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();
obj2 = <Your Class which inherits from MLinkable>New();

/* Add obj2 to l after obj */
_somfAddFirst(l, ev, obj);
_somfAddAfter(l, ev, obj, obj2);

_somFree (l);
_somFree (obj);
_somFree (obj2);

Original Class
somf_TPrimitiveLinkedList

Related Information
somfAddBefore Method
somfAddFirst Method
somfAddLast Method

180 Programmer’s Reference for SOM Collection Classes

somfAddBefore Method

somfAddBefore Method
Adds an object into a list before a given existing object.

IDL Syntax
void somfAddBefore (

in somf_MLinkable existing,
in somf_MLinkable obj);

Description
The somfAddBefore method adds the object obj into the specified list before the
designated existing object.

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedList.

ev
A pointer to the Environment structure for the calling method.

existing
pointer to the somf_MLinkable object that obj will be added in front of.

obj
A pointer to the somf_MLinkable object that will be added.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
<Your Class which inherits from MLinkable> obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();
obj2 = <Your Class which inherits from MLinkable>New();

/* Add obj2 to l before obj */
_somfAddFirst(l, ev, obj);
_somfAddBefore(l, ev, obj, obj2);

_somFree (l);
_somFree (obj);
_somFree (obj2);

Original Class
somf_TPrimitiveLinkedList

Related Information
somfAddAfter Method
somfAddFirst Method
somfAddLast Method

somf_TPrimitiveLinkedList Class 181

somfAddFirst Method

somfAddFirst Method
Adds an object as the first object in a list.

IDL Syntax
void somfAddFirst (in somf_MLinkable obj);

Description
The somfAddFirst method adds object obj as the first object in the specified list.

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedList.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MLinkable that will be added.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();

/* Add obj to the front of l */
_somfAddFirst(l, ev, obj);

_somFree (l);
_somFree (obj);

Original Class
somf_TPrimitiveLinkedList

Related Information
somfAddAfter Method
somfAddBefore Method
somfAddLast Method

182 Programmer’s Reference for SOM Collection Classes

somfAddLast Method

somfAddLast Method
Adds an object as the last object in a given list.

IDL Syntax
void somfAddLast (in somf_MLinkable obj);

Description
The somfAddLast method adds the object obj as the last object in the specified list.

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedList.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MLinkable that will be added.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();

/* Add obj to the end of l */
_somfAddLast(l, ev, obj);

_somFree (l);
_somFree (obj);

Original Class
somf_TPrimitiveLinkedList

Related Information
somfAddAfter Method
somfAddBefore Method
somfAddFirst Method

somf_TPrimitiveLinkedList Class 183

somfAfter Method

somfAfter Method
Gets the object that comes after a given existing object in a list.

IDL Syntax
somf_MLinkable somfAfter (in somf_MLinkable existingobj);

Description
The somfAfter method returns the object that comes after the object existingobj in the
specified list.

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedList.

ev
A pointer to the Environment structure for the calling method.

existingobj
A pointer to the somf_MLinkable that is in front of the returned obj.

Return Value
• somf_MLinkable, a pointer to the somf_MLinkable object after the existingobj object.
• SOMF_NIL, nothing is after existingobj.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
somf_MLinkable obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();

/* Add a lot of objects to l */

/* Determine the object in l after obj */
obj2 = _somfAfter(l, ev, obj);

_somFree (l);
_somFree (obj);

Original Class
somf_TPrimitiveLinkedList

Related Information
somfBefore Method

184 Programmer’s Reference for SOM Collection Classes

somfBefore Method

somfBefore Method
Returns the object that comes before a given existing object in a list.

IDL Syntax
somf_MLinkable somfBefore (in somf_MLinkable existingobj);

Description
The somfBefore method returns the object that comes before the object existingobj in the
specified list.

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedList.

ev
A pointer to the Environment structure for the calling method.

existingobj
A pointer to the somf_MLinkable object that comes after the returned obj.

Return Value
• somf_MLinkable, a pointer to the somf_MLinkable object before the existingobj

object.
• SOMF_NIL, nothing is before the existingobj.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
somf_MLinkable obj2;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();

/* Add a lot of objects to l */

/* Determine the object in l before obj */
obj2 = _somfBefore(l, ev, obj);

_somFree (l);
_somFree (obj);

Original Class
somf_TPrimitiveLinkedList

Related Information
somfAfter Method

somf_TPrimitiveLinkedList Class 185

somfCount Method

somfCount Method
Gets the number of objects in a given list.

IDL Syntax
unsigned long somfCount ();

Description
The somfCount method determines the number of objects in the specified list, and returns
the number.

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedList.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in the specified list.

Example
somf_TPrimitiveLinkedList l;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();

/* Add some objects to l */

/* Print the number of objects in ht */
somPrintf(”\n Count of l= %d\n”,
 somf_TPrimitiveLinkedList_somfCount(l,ev));

_somFree (l);

Original Class
somf_TPrimitiveLinkedList

186 Programmer’s Reference for SOM Collection Classes

somfFirst Method

somfFirst Method
Gets the first object in a given list.

IDL Syntax
somf_MLinkable somfFirst ();

Description
The somfFirst method returns the first object in the specified list.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfFirst is a method name declared in multiple parents
(for example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully
qualify the method name (for example: somf_TPrimitiveLinkedList_somfFirst). This is
the only way the linker can tell them apart. This is not a problem in C++. In C++ you could
have referenced this method as:

pll->somfFirst(ev);

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedList.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MLinkable, a pointer to the first somf_MLinkable object in the list.
• SOMF_NIL, nothing is in the list.

Example
somf_TPrimitiveLinkedList l;
somf_MLinkable obj;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();

/* Add a lot of objects to l */

/* Determine the first object in l */
obj = somf_TPrimitiveLinkedList_somfFirst(l,ev);

_somFree (l);

Original Class
somf_TPrimitiveLinkedList

Related Information
somfLast Method

somf_TPrimitiveLinkedList Class 187

somfLast Method

somfLast Method
Gets the last object in a given list.

IDL Syntax
somf_MLinkable somfLast ();

Description
The somfLast method returns the last object in the specified list.

C cannot handle methods from different classes having the same name when they
inherit the name from different parents. somfLast is a method name declared in multiple
parents (for example: somf_TSequenceIterator, somf_TSequence). You will probably
have to fully qualify the name of the method. This is the only way the linker can tell them
apart. This is not a problem in C++. In C++ you could have referenced this method as:

pll->somfLast(ev);

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedList.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MLinkable, a pointer to the last somf_MLinkable object in the list.
• SOMF_NIL, nothing is in the list.

Example
somf_TPrimitiveLinkedList l;
somf_MLinkable obj;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();

/* Add a lot of objects to l */

/* Determine the last object in l */
obj = somf_TPrimitiveLinkedList_somfLast(l,ev);

_somFree (l);

Original Class
somf_TPrimitiveLinkedList

Related Information
somfFirst Method

188 Programmer’s Reference for SOM Collection Classes

somfRemove Method

somfRemove Method
Removes a somf_MLinkable object from a given list.

IDL Syntax
void somfRemove (in somf_MLinkable aLink);

Description
The somfRemove method removes the specified somf_MLinkable object from the
designated list.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents. You will probably have to fully qualify the name of the method. This is the only way
the linker can tell them apart. This is not a problem in C++. In C++ you could have
referenced this method as:

pll->somfRemove(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedList.

ev
A pointer to the Environment structure for the calling method.

aLink
A pointer to the somf_MLinkable object to be removed.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();

/* Add a lot of objects to l */

/* Remove obj from l */
somf_TPrimitiveLinkedList_somfRemove(l, ev, obj);

_somFree (l);
_somFree (obj);

Original Class
somf_TPrimitiveLinkedList

Related Information
somfRemoveAll Method
somfRemoveFirst Method
somfRemoveLast Method

somf_TPrimitiveLinkedList Class 189

somfRemoveAll Method

somfRemoveAll Method
Removes all of the objects from a given list.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the objects from the list represented by the
receiving object.

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedList.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TPrimitiveLinkedList l;
<Your Class which inherits from MLinkable> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
obj = <Your Class which inherits from MLinkable>New();

/* Add a lot of objects to l */

/* Remove all of the objects from l */
somf_TPrimitiveLinkedList_somfRemoveAll(l,ev);

_somFree (l);
_somFree (obj);

Original Class
somf_TPrimitiveLinkedList

Related Information
somfRemove Method
somfRemoveFirst Method
somfRemoveLast Method

190 Programmer’s Reference for SOM Collection Classes

somfRemoveFirst Method

somfRemoveFirst Method
Removes the first object from a given list.

IDL Syntax
somf_MLinkable somfRemoveFirst ();

Description
The somfRemoveFirst method removes the first object from the list represented by the
receiving object.

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedList.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MLinkable, a pointer to the somf_MLinkable object removed from the list.
• SOMF_NIL, nothing is in the list.

Example
somf_TPrimitiveLinkedList l;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();

/* Add some objects to l */

/* Remove the first object */
if (_somfRemoveFirst(l,ev) == SOMF_NIL)
 somPrintf(” The list is empty\n”);

_somFree (l);

Original Class
somf_TPrimitiveLinkedList

Related Information
somfRemove Method
somfRemoveAll Method
somfRemoveLast Method

somf_TPrimitiveLinkedList Class 191

somfRemoveLast Method

somfRemoveLast Method
Removes the last object from a given list.

IDL Syntax
somf_MLinkable somfRemoveLast ();

Description
The somfRemoveLast method removes the last object from the list represented by the
receiving object.

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedList.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MLinkable, a pointer to the somf_MLinkable object removed from the list.
• SOMF_NIL, nothing is in the list.

Example
somf_TPrimitiveLinkedList l;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();

/* Add some objects to l */

/* Remove the last object */
if (_somfRemoveLast(l,ev) == SOMF_NIL)
 somPrintf(” The list is empty\n”);

_somFree (l);

Original Class
somf_TPrimitiveLinkedList

Related Information
somfRemove Method
somfRemoveAll Method
somfRemoveFirst Method

192 Programmer’s Reference for SOM Collection Classes

somf_TPrimitiveLinkedListIterator Class

somf_TPrimitiveLinkedListIterator Class
This class defines an iterator for the somf_TPrimitiveLinkedList Class that will iterate
over all of the objects in a primitive linked list.

When you link, include the following library reference to get access to this class: somtk

Although the methods in this class are reentrant, the class is not thread-safe on
multi-thread applications. If a pointer to an instance of this class will be passed to multiple
threads, the code in those threads must guarantee thread-safe usage of the class.

File Stem
tpllitr

Base
SOMObject

Metaclass
SOMClass

Ancestor Classes
SOMObject

New Methods
somfFirst Method
somfNext Method
somfLast Method
somfPrevious Method
somfTPrimitiveLinkedListIteratorInit Method

Overriding Methods
somDestruct Method

somf_TPrimitiveLinkedListIterator Class 193

somfFirst Method

somfFirst Method
Resets the iterator and returns the first element of a given list.

IDL Syntax
somf_MLinkable somfFirst ();

Description
The somfFirst method resets the iterator and returns the first element of the list that
corresponds to the iterator represented by the receiving object. The
somf_TPrimitiveLinkedListIterator class does not inherit from somf_TIterator Class.
This method may look like the somf_TIterator method, but there is no connection.

C cannot handle methods from different classes having the same name when they
inherit the name from different parents. somfFirst is a method name declared in multiple
parents. You will probably have to fully qualify the name of the method. This is the only way
the linker can tell them apart. This is not a problem in C++. In C++ you could have
referenced this method as:

itr->somfFirst(ev);

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedListIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MLinkable, a pointer to the first somf_MLinkable object in the list.
• SOMF_NIL, nothing is in the list.

Example
somf_TPrimitiveLinkedList l;
somf_MLinkable obj;
somf_TPrimitiveLinkedListIterator itr;
Environment *ev;

ev = somGetGlobalEnvironment();
l = somf_TPrimitiveLinkedListNew();
itr = somf_TPrimitiveLinkedListIteratorNew();
_somfTPrimitiveLinkedListIteratorInit(itr, ev, l);

/* Add a lot of objects to l */

/* Iterate through l */
obj = somf_TPrimitiveLinkedListIterator_somfFirst(itr,ev);
while (obj != SOMF_NIL)
{
 /* do something with obj */
 obj = _somfNext(itr,ev);
}
_somFree (l);
_somFree (itr);

Original Class
somf_TPrimitiveLinkedListIterator

Related Information
somfNext Method

194 Programmer’s Reference for SOM Collection Classes

somfLast Method

somfLast Method
Retrieves the last object from a given list.

IDL Syntax
somf_MLinkable somfLast ();

Description
The somfLast method determines the last object in the list that corresponds to the iterator
represented by the receiving object and, if found, returns a pointer to the object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfLast is a method name declared in multiple parents.
You will probably have to fully qualify the name of the method. This is the only way the
linker can tell them apart. This is not a problem in C++. In C++ you could have referenced
this method as:

itr->somfLast(ev);

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedListIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MLinkable, a pointer to the last somf_MLinkable object in the list.
• SOMF_NIL, nothing is in the list.

Example
somf_TPrimitiveLinkedList l;
somf_MLinkable obj;
somf_TPrimitiveLinkedListIterator itr;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
itr = somf_TPrimitiveLinkedListIteratorNew();
_somfTPrimitiveLinkedListIteratorInit(itr, ev, l);

/* Add a lot of objects to l */

/* Find the last object in l */
obj = somf_TPrimitiveLinkedList_somfLast(l,ev);

_somFree (l);
_somFree (itr);

Original Class
somf_TPrimitiveLinkedListIterator

Related Information
somfPrevious Method

somf_TPrimitiveLinkedListIterator Class 195

somfNext Method

somfNext Method
Gets the next object in a list.

IDL Syntax
somf_MLinkable somfNext ();

Description
The somfNext method determines the next object in the list that corresponds to the iterator
represented by the receiving object and, if found, returns a pointer to the object. The
somf_TPrimitiveLinkedListIterator class does not inherit from somf_TIterator Class.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. If any child of somf_TPrimitiveLinkedListIterator is used
with somf_TIterator, then the name of the method will have to be fully qualified. This is the
only way the linker can tell them apart. This is not a problem in C++. In C++ you could have
referenced this method as:

itr->somfNext(ev);

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedListIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MLinkable, a pointer to the next somf_MLinkable object in the list.
• SOMF_NIL, the end of the list has been reached.

Example
somf_TPrimitiveLinkedList l;
somf_MLinkable obj;
somf_TPrimitiveLinkedListIterator itr;
Environment *ev;

ev = somGetGlobalEnvironment();
l = somf_TPrimitiveLinkedListNew();
itr = somf_TPrimitiveLinkedListIteratorNew();
_somfTPrimitiveLinkedListIteratorInit(itr, ev, l);

/* Add a lot of objects to l */

/* Iterate through l */
obj = somf_TPrimitiveLinkedListIterator_somfFirst(itr,ev);
while (obj != SOMF_NIL)
{
 /* do something with obj */
 obj = _somfNext(itr,ev);
}
_somFree (l);
_somFree (itr);

Original Class
somf_TPrimitiveLinkedListIterator

Related Information
somfFirst Method

196 Programmer’s Reference for SOM Collection Classes

somfPrevious Method

somfPrevious Method
Gets the previous object from a given list.

IDL Syntax
somf_MLinkable somfPrevious ();

Description
The somfPrevious method determines the previous object in the list corresponding to the
iterator represented by the receiving object, and returns a pointer to the object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TPrimitiveLinkedListIterator
is used with somf_TSequenceIterator, then the name of the method will have to be fully
qualified (for example: somf_TPrimitiveLinkedListIterator_somfPrevious). This is the
only way the linker can tell them apart. This is not a problem in C++. In C++ you could have
referenced this method as:

itr->somfPrevious(ev);

Parameters
receiver

A pointer to an object of class somf_TPrimitiveLinkedListIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MLinkable, a pointer to the somf_MLinkable object before the receiving object.
• SOMF_NIL, the beginning of the list has been reached.

Example
somf_TPrimitiveLinkedList l;
somf_MLinkable obj;
somf_TPrimitiveLinkedListIterator itr;
Environment *ev;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
itr = somf_TPrimitiveLinkedListIteratorNew();
_somfTPrimitiveLinkedListIteratorInit(itr, ev, l);

/* Add a lot of objects to l */

/* Find the next to the last object in l */
somf_TPrimitiveLinkedList_somfLast(l,ev);
obj = _somfPrevious(next,ev);

_somFree (l);
_somFree (itr);

Original Class
somf_TPrimitiveLinkedListIterator

Related Information
somfLast Method

somf_TPrimitiveLinkedListIterator Class 197

somfTPrimitiveLinkedListIteratorInit Method

somfTPrimitiveLinkedListIteratorInit Method
Initializes a somf_TPrimitiveLinkedListIterator object, establishing it as the iterator for a
given somf_TPrimitiveLinkedList Class linked list.

IDL Syntax
somf_TPrimitiveLinkedListIterator somfTPrimitiveLinkedListIteratorInit (

in somf_TPrimitiveLinkedList list);

Description
The somfTPrimitiveLinkedListIteratorInit method initializes a given iterator object, the
somf_TPrimitiveLinkedListIterator receiving object, that will iterate over the specified
somf_TPrimitiveLinkedList list.

Note: You cannot override this method.

Parameters
receive

A pointer to an object of class somf_TPrimitiveLinkedListIterator.

ev
A pointer to the Environment structure for the calling method.

list
A pointer to the primitive linked list object that the receiving object will iterate over.

Return Value
This method returns a pointer to an initialized somf_TPrimitiveLinkedListIterator
iterator.

Example
somf_TPrimitiveLinkedList l;
Environment *ev;
somf_TPrimitiveLinkedListIterator itr;

ev = somGetGlobalEnvironment();

l = somf_TPrimitiveLinkedListNew();
itr = somf_TPrimitiveLinkedListIteratorNew();
_somfTPrimitiveLinkedListIteratorInit(itr, ev, l);

_somFree (l);
_somFree (itr);

Original Class
somf_TPrimitiveLinkedListIterator

198 Programmer’s Reference for SOM Collection Classes

somfTPrimitiveLinkedListIteratorInit Method

somf_TPriorityQueue Class 199

somf_TPriorityQueue Class

somf_TPriorityQueue Class
The somf_TPriorityQueue class is a subclass of somf_TCollection that keeps the objects
of a collection ordered based on some ordering function. Actually, the objects are partially
ordered in storage, but the somf_TPriorityQueue methods adjust for the partially ordered
state.

Robert Sedgewick in Algorithms in C++ describes a priority queue as follows:

In many applications, records with keys must be processed in order, but not necessarily in
full sorted order and not necessarily all at once. Often a set of records must be collected,
then the largest processed, then perhaps more records collected, then the next largest
processed. An appropriate data structure in such an environment is one that supports the
operations of inserting a new element and deleting the largest element. Such a data
structure, which can be contrasted with queues and stacks is called a priority queue.

When you link, include the following library reference to get access to this class: somtk

Note: The somf_TPriorityQueue class uses the somfIsEqual method as the default
comparison function. (That is, if key1=“Bart” and key2=“Bart”, then key1 and
key2 are equal.) If you do not want to use the somfIsEqual method to equate entries,
use the initialization methods to change to the somIsSame method.

Objects that are inserted into a somf_TPriorityQueue collection should override the
methods somfIsEqual, somfIsLessThan, somfIsGreaterThan and somfHash.

Although the methods in this class are reentrant, the class is not thread-safe on
multi-thread applications. If a pointer to an instance of this class will be passed to multiple
threads, the code in those threads must guarantee thread-safe usage of the class.

File Stem
tpq

Base
somf_TCollection Class

Metaclass
SOMClass

Ancestor Classes
somf_TCollection Class
somf_MCollectible Class
SOMObject

New Methods
somfInsert Method
somfPeek Method
somfPop Method
somfReplace Method
somfSetEqualityComparisonFunction Method
somfGetEqualityComparisonFunction Method
somfAssign Method
somfTPriorityQueueInitF Method
somfTPriorityQueueInitP Method

200 Programmer’s Reference for SOM Collection Classes

somf_TPriorityQueue Class

Overriding Methods
somDefaultInit Method
somDestruct Method
somfAdd Method
somfRemove Method
somfRemoveAll Method
somfDeleteAll Method
somfCount Method
somfMember Method
somfCreateIterator Method

somf_TPriorityQueue Class 201

somfAdd Method

somfAdd Method
Adds a given obj to a priority queue.

IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);

Description
The somfAdd method adds the specified object obj to the priority queue represented by
the receiving object.

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to a somf_MCollectible Class object that will be added to the receiving
object.

Return Value
This method returns a pointer to the somf_MCollectible object added.

Example
somf_TPriorityQueue pq;
<Your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
obj = <Your Class which inherits from
 somf_MOrderableCollectible>New();

/* Add obj to pq */
_somfAdd(pq,ev,obj);

_somFree (pq);
_somFree (obj);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfInsert Method

202 Programmer’s Reference for SOM Collection Classes

somfAssign Method

somfAssign Method
Assigns a priority-queue receiving object as being equal to a given source priority queue.

IDL Syntax
void somfAssign (in somf_TPriorityQueue source);

Description
The somfAssign method assigns the instance of the priority queue used as the receiving
object to be equal to the source priority queue. That is, the method sets/resets the instance
variables of the receiver to the values of the source. This operation is logically equivalent to
using the equal (=) operator.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TPriorityQueue is used with
any other main collection class, then the name of the method will have to be fully qualified
(example: somf_TPriorityQueue_somfAssign). This is the only way the linker can tell
them apart. This is not a problem in C++. In C++ you could have referenced this method as:

d->somfAssign(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

source
A pointer to the somf_TPriorityQueue object the receiving object will be equal to.

Example
somf_TPriorityQueue pq1;
somf_TPriorityQueue pq2;
Environment *ev;

ev = somGetGlobalEnvironment();

pq1 = somf_TPriorityQueueNew();
pq2 = somf_TPriorityQueueNew();

/* Add some objects to pq1 */

/* Assign pq2 = pq1 */
somf_TPriorityQueue_somfAssign(pq2,ev,pq1);

_somFree (pq1);
_somFree (pq2);

Original Class
somf_TPriorityQueue

somf_TPriorityQueue Class 203

somfCount Method

somfCount Method
Gets the number of objects in a given priority queue.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the priority queue
represented by the receiving object, and returns the number.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDictionary_somfCount). This is the only way the linker can tell them apart. This is
not a problem in C++. In C++ you could have referenced this method as:

d->somfCount(ev);

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in the receiving object.

Example
somf_TPriorityQueue pq;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();

/* Add some objects to pq */

/* Count the number of objects in pq */
somPrintf(“\n Count of pq= %d\n”, _somfCount(pq,ev));

_somFree (pq);

Original Class
somf_TCollection Class (overridden here)

204 Programmer’s Reference for SOM Collection Classes

somfCreateIterator Method

somfCreateIterator Method
Returns a new iterator that is suitable for iterating over the objects in a given priority queue.

IDL Syntax
somf_TIterator somfCreateIterator ();

Description
The somfCreateIterator method returns a new iterator that is suitable for iterating over the
objects in the priority queue represented by the receiving object.

Note: This is one of two ways to initialize a somf_TPriorityQueueIterator Class to point
to an instance of the somf_TPriorityQueue class. The other way is to use the
somf_TPriorityQueueIterator’s initializer method.

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example
somf_TPriorityQueue pq;
Environment *ev;
somf_TPriorityQueueIterator itr;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
itr = (somf_TPriorityQueueIterator*)
 _somfCreateIterator(pq,ev);

_somFree (pq);
_somFree (itr);

Original Class
somf_TCollection Class (overridden here)

somf_TPriorityQueue Class 205

somfDeleteAll Method

somfDeleteAll Method
Removes all of the objects from a priority-queue receiving object and deallocates the
storage that these objects might have owned. (That is, the destructor function is called for
each object in the collection.)

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the objects from the priority queue represented
by the receiving object. The method also deallocates the storage that these objects might
have owned (that is, the destructor function is called for each object in the collection).

Be careful with somfDeleteAll. Since a collection only contains pointers to objects (rather
than the objects themselves), somfDeleteAll can cause a problem if a pointer to an object
appears more than once. For example, if multiple pointers to A exists, or if a single pointer
to A is in the collection multiple times, the behavior of the code is undefined, because it will
try to delete A multiple times. If you think there is a chance that an object could appear in
the collection more than once, you should consider using somfRemoveAll Method to
remove the objects from the collection and deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDictionary_somfDeleteAll). This is the only way the linker can tell them apart.
This is not a problem in C++. In C++ you could have referenced this method as:

d->somfDeleteAll(ev);

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TPriorityQueue pq;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();

/* Add objects to pq */

/* Remove all the objects from pq AND DELETE THEM */
_somfDeleteAll(pq,ev);

_somFree (pq);

Original Class
somf_TCollection Class (overridden here)

206 Programmer’s Reference for SOM Collection Classes

somfGetEqualityComparisonFunction Method

somfGetEqualityComparisonFunction Method
Gets the equality comparison function being used by the priority queue. The default equality
compare function is the somf_MCollectible Class class’s somfIsEqual Method.

IDL Syntax
somf_MCollectibleCompareFn somfGetEqualityComparisonFunction ();

Description
The somfGetEqualityComparisonFunction method returns the equality comparison
function being used by the priority queue. By default, the equality compare function is the
somf_MCollectible class’s somfIsEqual method.

Note: :Do not confuse this “equality compare function” with the somfCompare Method
method. This input argument is not used to determine priority.

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the equality compare function being used by this
instance of the priority queue class.

Example
somf_TPriorityQueue pq;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();

/* Add some objects to pq */

if (_somfGetEqualityComparisonFunction(pq,ev) !=
 somf_MCollectibleClassData.somfIsEqual)
{
 somPrintf(“\n What Compare Function are we using?\n”);
}

_somFree (pq);

Original Class
somf_TPriorityQueue

Related Information
somfSetEqualityComparisonFunction Method

somf_TPriorityQueue Class 207

somfInsert Method

somfInsert Method
Inserts an object obj into the priority queue.

IDL Syntax
void somfInsert (in somf_MOrderableCollectible obj);

Description
The somfInsert method inserts the given object obj into the priority queue represented by
the receiving object. This method is just like the somfAdd method, except that it does not
return a pointer to the somf_MCollectible object added.

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to a somf_MOrderableCollectible object that will be added to the receiving
object.

Example
somf_TPriorityQueue pq;
<Your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
obj = <Your Class which inherits from
 somf_MOrderableCollectible>New();

/* Add obj to pq */
_somfInsert(pq,ev,obj);

_somFree (pq);
_somFree (obj);

Original Class
somf_TPriorityQueue

Related Information
somfAdd Method

208 Programmer’s Reference for SOM Collection Classes

somfMember Method

somfMember Method
Gets an object from a given priority queue.

IDL Syntax
somf_MCollectible somfMember (in somf_MCollectible obj);

Description
The somfMember method determines whether a specified object obj is in the priority
queue represented by the receiving object and, if so, returns a pointer to it.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDictionary_somfMember). This is the only way the linker can tell them apart. This
is not a problem in C++. In C++ you could have referenced this method as:

d->somfMember(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible that may or may not be a member of the collection.

Return Value
• somf_MCollectible, a pointer to the object the method determined as the member.
• SOMF_NIL, the object was not found.

Example
somf_TPriorityQueue pq;
<your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
obj = <your Class which inherits from
 somf_MOrderableCollectible>New();

/* Add some objects to pq */

/* See if obj is in pq */
if (somf_TPriorityQueue_somfMember(pq, ev, obj) == SOMF_NIL)
 somPrintf(“\n obj is NOT in d\n”);
else
 somPrintf(“\n obj IS in d\n”);

_somFree (pq);

Original Class
somf_TCollection Class (overridden here)

somf_TPriorityQueue Class 209

somfPeek Method

somfPeek Method
Determines the object with the “highest” priority in the priority queue, but does not remove it.

IDL Syntax
somf_MOrderableCollectible somfPeek ();

Description
The somfPeek method determines the object with the “highest” priority in the priority
queue, but does not remove it from the receiving object.

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MOrderableCollectible, a pointer to the object with the “highest” priority in the

priority queue.
• SOMF_NIL, no object remains in the priority queue.

Example
somf_TPriorityQueue pq;
somf_MOrderableCollectible obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();

/* Add some objects to pq */

/* Look at the highest priority object */
if ((obj = (_somfPeek(pq,ev))) == SOMF_NIL)
 somPrintf(“ Nothing is in pq\n”);

_somFree (pq);
_somFree (obj);

Original Class
somf_TPriorityQueue

Related Information
somfPop Method

210 Programmer’s Reference for SOM Collection Classes

somfPop Method

somfPop Method
Gets the object with the “highest” priority from a given priority queue.

IDL Syntax
somf_MOrderableCollectible somfPop ();

Description
The somfPop method removes the object with the “highest” priority from the specified
priority queue, and returns a pointer to it.

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MOrderableCollectible, a pointer to the highest-priority object that was

removed from the priority queue.
• SOMF_NIL, no object remains in the priority queue.

Example
somf_TPriorityQueue pq;
somf_MOrderableCollectible obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();

/* Add some objects to pq */

/* Get the highest priority object */
if ((obj = (_somfPop(pq,ev))) == SOMF_NIL)
 somPrintf(“ Nothing is in pq\n”);

_somFree (pq);
_somFree (obj);

Original Class
somf_TPriorityQueue

Related Information
somfPeek Method
somfReplace Method

somf_TPriorityQueue Class 211

somfRemove Method

somfRemove Method
Removes an object obj from a given priority queue.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible obj);

Description
The somfRemove method removes the specified object obj from the priority queue
represented by the receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents. You will probably have to fully qualify the name of the method. This is the only way
the linker can tell them apart. This is not a problem in C++. In C++ you could have
referenced this method as:

d->somfRemove(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object to be removed from the priority queue.

Return Value
• somf_MCollectible, a pointer to the object that was actually removed.
• SOMF_NIL, the specified object was not found.

Example
somf_TPriorityQueue pq;
<your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
obj = <your Class that inherits from
 somf_MOrderableCollectible>New();

/* Add objects to pq */

/* Remove obj from pq */
if (somf_TPriorityQueue_somfRemove(pq,ev,obj) == SOMF_NIL)
 somPrintf(“ obj was not in pq\n”);

_somFree (pq);
_somFree (obj);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfRemoveAll Method

212 Programmer’s Reference for SOM Collection Classes

somfRemoveAll Method

somfRemoveAll Method
Removes all of the objects from a given priority queue.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the objects from the priority queue
represented by the receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TPriorityQueue_somfRemoveAll). This is the only way the linker can tell them
apart. This is not a problem in C++. In C++ you could have referenced this method as:

d->somfRemoveAll(ev);

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TPriorityQueue pq;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();

/* Add objects to pq */

/* Remove all the objects from pq */
_somfRemoveAll(pq,ev);

_somFree (pq);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfRemove Method

somf_TPriorityQueue Class 213

somfReplace Method

somfReplace Method
Removes the object with the highest priority from a given priority queue, and then inserts an
object obj into the priority queue.

IDL Syntax
somf_MOrderableCollectible somfReplace (in somf_MOrderableCollectible obj);

Description
The somfReplace method removes the object with the highest priority from the priority
queue represented by the receiving object. It then inserts the given object obj into the
priority queue.

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to a somf_MOrderableCollectible that will be added to the receiving object.

Return Value
• somf_MOrderableCollectible, a pointer to the object with the “highest” priority that

was removed from the priority queue.
• SOMF_NIL, no object remained in the priority queue when the object obj was inserted.

Example
somf_TPriorityQueue pq;
<your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
obj = <your Class which inherits from
 somf_MOrderableCollectible>New();

/* Add objects to pq */

if ((_somfReplace(pq,ev,obj)) == SOMF_NIL)
 somPrintf(“ pq was empty\n”);

_somFree (pq);
_somFree (obj);

Original Class
somf_TPriorityQueue

Related Information
somfPop Method
somfInsert Method

214 Programmer’s Reference for SOM Collection Classes

somfSetEqualityComparisonFunction Method

somfSetEqualityComparisonFunction Method
Sets a method to be called as the equality comparison function when removing
objects from the queue, checking whether a given object is a member, and so on.

IDL Syntax
void somfSetEqualityComparisonFunction (

in somf_MCollectibleCompareFn testfn);

Description
The somfSetEqualityComparisonFunction sets the method that will be called as the
equality comparison function when removing objects from the priority queue, checking
whether a given object is a member, and so forth. The default method is somfIsEqual.
Normally, this default function will not need to be changed.

Note: Do not confuse this “equality comparison function” with the somfCompare Method
in somf_MOrderableCollectible Class. This input parameter is not used to
determine priority.

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual Method or somfIsSame Method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual.

This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible Class. The
somf_TPriorityQueue object will use this pointer to access the somfIsSame or
somfIsEqual method that was declared and defined in the object being inserted into,
or removed from, the somf_TPriorityQueue object.

Example
somf_TPriorityQueue pq;
Environment *ev;

ev = somGetGlobalEnvironment();
pq = somf_TPriorityQueueNew();

/* Add some objects to pq */
_somfSetEqualityComparisonFunction(pq,ev,
 somf_MCollectibleClassData.somfIsEqual);

_somFree (pq);

Original Class
somf_TPriorityQueue

Related Information
somfGetEqualityComparisonFunction Method

somf_TPriorityQueue Class 215

somfTPriorityQueueInitF Method

somfTPriorityQueueInitF Method
Initializes a new priority queue, given a comparison test method.

IDL Syntax
somf_TPriorityQueue somfTPriorityQueueInitF (

in somf_MOrderableCompareFn testfn);

Description
The somfTPriorityQueueInitF method initializes a new priority queue, given a comparison
test method that will be used to determine the priority of objects in the priority queue. This is
the only way to set the comparison function used to determine priority for instances of the
class. If this method is not used, somfIsLessThan is used.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

testfn
The method to be used to determine the priority of the objects in the queue. This
determines whether “higher priority” objects are removed first or last. Using the
somfIsLessThan Method means that smaller objects are removed first and larger
objects are removed last. Using the somfIsGreaterThan Method reverses this.

This should always be set to either

 somf_MOrderableCollectibleClassData.
 somfIsLessThan or
 somf_MOrderableCollectibleClassData.
 somfIsGreaterThan

because SOM needs a pointer to the original declaration of the method, which resides
in somf_MOrderableCollectible Class. The somf_TPriorityQueue object will use this
pointer to access the somfIsLessThan or somfIsGreaterThan method that was
declared and defined in the inserted or removed object.

Return Value
This method returns a pointer to an initialized somf_TPriorityQueue object.

Example
somf_TPriorityQueue pq1;
Environment *ev;

ev = somGetGlobalEnvironment();
pq1 = somf_TPriorityQueueNew();
_somfTPriorityQueueInitF(pq1,ev,
 somf_MOrderableCollectibleClassData.somfIsLessThan);

_somFree (pq1);

Original Class
somf_TPriorityQueue

Related Information
somfTPriorityQueueInitP Method

216 Programmer’s Reference for SOM Collection Classes

somfTPriorityQueueInitP Method

somfTPriorityQueueInitP Method
Initializes a new priority queue, setting it equal to another specified priority queue.

IDL Syntax
somf_TPriorityQueue somfTPriorityQueueInitP (in somf_TPriorityQueue q);

Description
The somfTPriorityQueueInitP method initializes a new priority queue represented by the
receiving object. The method also sets the new priority queue equal to another specified
priority queue. This implies that the instance data of the new priority queue will be set equal
to those of the source priority queue.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TPriorityQueue.

ev
A pointer to the Environment structure for the calling method.

q
A pointer to the existing instance of somf_TPriorityQueue to which the new priority
queue will be set equal.

Return Value
This method returns a pointer to an initialized somf_TPriorityQueue object.

Example
somf_TPriorityQueue pq1;
somf_TPriorityQueue pq2;
Environment *ev;

ev = somGetGlobalEnvironment();

pq1 = somf_TPriorityQueueNew();
pq2 = somf_TPriorityQueueNew();
_somfTPriorityQueueInitP(pq2,ev,pq1);

_somFree (pq1);
_somFree (pq2);

Original Class
somf_TPriorityQueue

Related Information
somfTPriorityQueueInitF Method

somf_TPriorityQueueIterator Class 217

somf_TPriorityQueueIterator Class

somf_TPriorityQueueIterator Class
The somf_TPriorityQueueIterator class defines an iterator for somf_TPriorityQueue
Class that will iterate over all of the objects in a priority queue.

Note: A somf_TPriorityQueueIterator iterator does not return objects in order, because a
somf_TPriorityQueue is only partially ordered in storage.

When you link, include the following library reference to get access to this class: somtk

Although the methods in this class are reentrant, the class is not thread-safe on
multi-thread applications. If a pointer to an instance of this class will be passed to multiple
threads, the code in those threads must guarantee thread-safe usage of the class.

File Stem
tpqitr

Base
somf_TIterator Class

Metaclass
SOMClass

Ancestor Classes
somf_TIterator Class
SOMClass

New Methods
somfTPriorityQueueIteratorInit Method

Overriding Methods
somfNext Method
somfFirst Method
somfRemove Method

218 Programmer’s Reference for SOM Collection Classes

somfFirst Method

somfFirst Method
Resets the iterator and returns the first object in a priority queue.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the somf_TPriorityQueueIterator iterator given as the
receiving object. The method returns the first object of the priority queue that corresponds
to the specified iterator. This method resets the iterator to the beginning even if other
operations on the collection cause the iterator to be invalidated.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfFirst is a method name declared in multiple parents.
You will probably have to fully qualify the method name. This is the only way the linker can
tell them apart. This is not a problem in C++. In C++ you could have referenced this
method as:

itr->somfFirst(ev);

Parameters
receiver

A pointer to an object of class somf_TPriorityQueueIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the first somf_MCollectible object in the priority queue
collection. Or, SOMF_NIL is returned if the collection is empty.

Example
somf_TPriorityQueue pq;
Environment *ev;
somf_TPriorityQueueIterator itr;
somf_MOrderableCollectible itrobj;

ev = somGetGlobalEnvironment();
pq = somf_TPriorityQueueNew();
itr = somf_TPriorityQueueIteratorNew();
_somfTPriorityQueueIteratorInit(itr, ev, pq);

/* Add some object to pq */
/* Iterate through the TPriorityQueue */
itrobj = _somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 /* do something with itrobj */
 itrobj = _somfNext(itr,ev);
}
_somFree (pq);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

Related Information
somfNext Method

somf_TPriorityQueueIterator Class 219

somfNext Method

somfNext Method
Gets the next object in a priority queue.

IDL Syntax
somf_MCollectible somfNext ();

Description
somfNext gets the next object in the priority queue that corresponds to the iterator
representing the receiving object and returns a pointer to it.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. If any child of somf_TIterator is used with a child of
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully
qualified. This is the only way the linker can tell them apart. This is not a problem in C++. In
C++ you could have referenced this method as:

itr->somfNext(ev);

If the priority queue has changed since the last time somfFirst was called (other than
through the somfRemove Method of this iterator), this method will fail.

Parameters
receiver

A pointer to an object of class somf_TPriorityQueueIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the next somf_MCollectible in the queue.
• SOMF_NIL, the end of the collection has been reached.

Example
somf_TPriorityQueue pq;
Environment *ev;
somf_TPriorityQueueIterator itr;
somf_MOrderableCollectible itrobj;

ev = somGetGlobalEnvironment();
pq = somf_TPriorityQueueNew();
itr = somf_TPriorityQueueIteratorNew();
_somfTPriorityQueueIteratorInit(itr, ev, pq);

/* Add some object to pq */
/* Iterate through the TPriorityQueue */
itrobj = _somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 /* do something with itrobj */
 itrobj = _somfNext(itr,ev);
}
_somFree (pq);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

Related Information
somfFirst Method

220 Programmer’s Reference for SOM Collection Classes

somfRemove Method

somfRemove Method
Removes the current object (the one just returned by a somfFirst or somfNext method)
from a priority queue.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current object from the priority queue that
corresponds to the iterator represented by the receiving object.

The somfRemove method is the only way to remove an object from a priority queue during
iteration. However, if multiple iterators are in process, all other iterators are invalidated, just
as if some other kind of change had occurred in the priority queue.

If the collection has changed (other than through the use of the somfRemove method of
this iterator) since the last time somfFirst Method was called, this method will fail.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents. You will probably have to fully qualify the method name. This is the only way the
linker can tell them apart. This is not a problem in C++. In C++ you could have referenced
this method as:

itr->somfRemove(ev);

Parameters
receiver

A pointer to an object of class somf_TPriorityQueueIterator.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TPriorityQueue pq;
Environment *ev;
somf_TPriorityQueueIterator itr;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
itr = somf_TPriorityQueueIteratorNew();
_somfTPriorityQueueIteratorInit(itr, ev, pq);

/* Add some object to pq */

/* Remove the first object in pq */
_somfFirst(itr,ev);
somf_TPriorityQueueIterator_somfRemove(itr,ev);

_somFree (pq);
_somFree (itr);

Original Class
somf_TIterator Class

somf_TPriorityQueueIterator Class 221

somfTPriorityQueueIteratorInit Method

somfTPriorityQueueIteratorInit Method
Initializes a new priority queue iterator, given the priority queue over which it will iterate.

IDL Syntax
somf_TPriorityQueueIterator somfTPriorityQueueIteratorInit (

in somf_TPriorityQueue h);

Description
The somfTPriorityQueueIteratorInit method initializes a new iterator of class
somf_TPriorityQueueIterator, given the somf_TPriorityQueue Class object over which
iteration is needed. This is one of two ways to initialize a somf_TPriorityQueueIterator
iterator to point to an instance of a somf_TPriorityQueue priority queue collection. The
other is to use the somf_TPriorityQueue class’s somfCreateIterator Method.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TPriorityQueueIterator.

ev
A pointer to the Environment structure for the calling method.

h
A pointer to the somf_TPriorityQueue object over which the receiving object will
iterate.

Return Value
This method returns a pointer to an initialized somf_TPriorityQueueIterator object.

Example
somf_TPriorityQueue pq;
Environment *ev;
somf_TPriorityQueueIterator itr;

ev = somGetGlobalEnvironment();

pq = somf_TPriorityQueueNew();
itr = somf_TPriorityQueueIteratorNew();
_somfTPriorityQueueIteratorInit(itr, ev, pq);

_somFree (pq);
_somFree (itr);

Original Class
somf_TPriorityQueueIterator

222 Programmer’s Reference for SOM Collection Classes

somfTPriorityQueueIteratorInit Method

somf_TSequence Class 223

somf_TSequence Class

somf_TSequence Class
The somf_TSequence class is an abstract superclass for collections whose objects are
ordered.

When you link, include the following library reference to get access to this class: somtk

When creating a collection whose objects are ordered, your classes should inherit from
somf_TSequence. When creating an unordered collection, your classes should inherit
from somf_TCollection. The somf_TSequence class’s pure virtual functions provide the
framework for the methods that should be available in an ordered collection.

File Stem
tseq

Base
somf_TCollection Class

Metaclass
SOMClass

Ancestor Classes
somf_TCollection Class
somf_MCollectible Class
SOMObject

New Methods
somfFirst Method
somfAfter Method
somfBefore Method
somfLast Method
somfOccurrencesOf Method
somfTSequenceInit Method

Overriding Methods
somfAdd Method
somfRemove Method
somfRemoveAll Method
somfDeleteAll Method
somfCount Method
somfCreateIterator Method
somDefaultInit Method

224 Programmer’s Reference for SOM Collection Classes

somfAdd Method

somfAdd Method
Adds an object to a given ordered collection.

IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);

Description
The somfAdd method adds a specified object obj to the ordered collection represented by
the receiving object. Every class that inherits from the somf_TSequence class must
override this method for that class to work correctly.

Parameters
receiver

A pointer to an object of class somf_TSequence.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to a somf_MCollectible object that will be added to the receiving object.

Return Value
• somf_MCollectible, a pointer to the somf_MCollectible object that had to be removed

in order to add obj. Recall that some of the main collection classes will only accept one
occurrence of an object where the somfIsEqual Method or somfIsSame Method
would be TRUE.

• SOMF_NIL, no somf_MCollectible object had to be removed in order to add obj.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method looks when it is invoked, see somf_TDeque Class or
somf_TSortedSequence Class.

Original Class
somf_TCollection Class (overridden here)

somf_TSequence Class 225

somfAfter Method

somfAfter Method
Gets the object found after a given object obj in an ordered collection.

IDL Syntax
somf_MCollectible somfAfter (in somf_MCollectible obj);

Description
The somfAfter method returns the object found after object obj in the ordered collection
represented by the receiving object. Every class that inherits from the somf_TSequence
class must override this method for that class to work correctly.

Parameters
receiver

A pointer to an object of class somf_TSequence.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object that is in front of the returned obj.

Return Value
• somf_MCollectible, a pointer to the somf_MCollectible object after obj.
• SOMF_NIL, the obj is the last object in this collection or could not be found.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDeque Class or somf_TSortedSequence Class.

Original Class
somf_TSequence

Related Information
somfBefore Method
somfFirst Method
somfLast Method

226 Programmer’s Reference for SOM Collection Classes

somfBefore Method

somfBefore Method
Gets the object found before a given obj in an ordered collection.

IDL Syntax
somf_MCollectible somfBefore (in somf_MCollectible obj);

Description
The somfBefore method returns the object found immediately before the specified object
obj in the ordered collection represented by the receiving object. Every class that inherits
from the somf_TSequence class must override this method for that class to work correctly.

Parameters
receiver

A pointer to an object of class somf_TSequence.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object that is behind the returned object.

Return Value
• somf_MCollectible, a pointer to the somf_MCollectible object that precedes obj.
• SOMF_NIL, the obj is the first object in this collection or could not be found.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDeque Class or somf_TSortedSequence Class.

Original Class
somf_TSequence

Related Information
somfAfter Method
somfFirst Method
somfLast Method

somf_TSequence Class 227

somfCount Method

somfCount Method
Gets the number of objects in this ordered collection.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the ordered collection
represented by the receiving object, and returns that number. Every class that inherits from
the somf_TSequence class must override this method for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with a child
of somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TSequence_somfCount). This is the only way the linker can tell them apart. This is
not a problem in C++. In C++ you could have referenced this method as:

d->somfCount(ev);

Parameters
receiver

A pointer to an object of class somf_TSequence.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in the ordered collection.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDeque Class or somf_TSortedSequence Class.

Original Class
somf_TCollection Class (overridden here)

228 Programmer’s Reference for SOM Collection Classes

somfCreateIterator Method

somfCreateIterator Method
Returns a new iterator that is suitable for iterating over the objects in an ordered collection.

IDL Syntax
somf_TIterator somfCreateIterator ();

Description
The somfCreateIterator method returns a new iterator that is suitable for iterating over the
objects in the ordered collection represented by the receiving object. Every class that
inherits from the somf_TSequence class must override this method for that class to work
correctly.

Parameters
receiver

A pointer to an object of class somf_TSequence.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDeque Class or somf_TSortedSequence Class.

Original Class
somf_TCollection Class (overridden here)

somf_TSequence Class 229

somfDeleteAll Method

somfDeleteAll Method
Removes all of the objects from an ordered collection and deallocates the storage that
these objects might have owned. (That is, the destructor function is called for each object in
the collection.)

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the objects from the ordered collection
represented by the receiving object. The method also deallocates the storage that
these objects might have owned (that is, the destructor function is called for each object in
the collection). Every class that inherits from the somf_TSequence class must override this
method for that class to work correctly.

Be careful with somfDeleteAll. Since a collection only contains pointers to objects (rather
than the objects themselves), somfDeleteAll can cause a problem if a pointer to an object
appears more than once. For example, if multiple pointers to A exists, or if a single pointer
to A is in the collection multiple times, the behavior of the code is undefined, because it will
try to delete A multiple times. If you think there is a chance that an object could appear in
the collection more than once, you should consider using somfRemoveAll Method to
remove the objects from the collection and deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDictionary_somfDeleteAll). This is the only way the linker can tell them apart.
This is not a problem in C++. In C++ you could have referenced this method as:

d->somfDeleteAll(ev);

Parameters
receiver

A pointer to an object of class somf_TSequence.

ev
A pointer to the Environment structure for the calling method.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDeque Class or somf_TSortedSequence Class.

Original Class
somf_TCollection Class (overridden here)

230 Programmer’s Reference for SOM Collection Classes

somfFirst Method

somfFirst Method
Gets the first object in an ordered collection.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method determines the first object in the ordered collection represented by
the receiving object, and returns a pointer to it. Every class that inherits from the
somf_TSequence class must override this method for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfFirst is a method name declared in multiple parents
(example: somf_TSequence, somf_TIterator). You will probably have to fully qualify the
method name (example: somf_TDeque_somfFirst). This is the only way the linker can tell
them apart. This is not a problem in C++. In C++ you could have referenced this method as:

seq->somfFirst(ev);

Parameters
receiver

A pointer to an object of class somf_TSequence.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the first somf_MCollectible object in the ordered

collection.
• SOMF_NIL, nothing is in the collection.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDeque Class or somf_TSortedSequence Class.

Original Class
somf_TSequence

Related Information
somfLast Method
somfAfter Method
somfBefore Method

somf_TSequence Class 231

somfLast Method

somfLast Method
Gets the last object in an ordered collection.

IDL Syntax
somf_MCollectible somfLast ();

Description
The somfLast method determines the last object in the ordered collection represented by
the receiving object, and returns a pointer to it. Every class that inherits from the
somf_TSequence class must override this method for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfLast is a method name declared in multiple parents
(example: somf_TSequenceIterator, somf_TSequence, etc.). You will probably have to
fully qualify the method name (example: somf_TDeque_somfLast). This is the only way
the linker can tell them apart. This is not a problem in C++. In C++ you could have
referenced this method as:

seq->somfLast(ev);

Parameters
receiver

A pointer to an object of class somf_TSequence.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the last somf_MCollectible object in the ordered

collection.
• SOMF_NIL, nothing is in the collection.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDeque Class or somf_TSortedSequence Class.

Original Class
somf_TSequence

Related Information
somfAfter Method
somfBefore Method
somfFirst Method

232 Programmer’s Reference for SOM Collection Classes

somfOccurrencesOf Method

somfOccurrencesOf Method
Determines the number of times an object obj is contained in an ordered collection.

IDL Syntax
long somfOccurrencesOf (in somf_MCollectible obj);

Description
The somfOccurrencesOf method determines the number of times a specified object obj is
contained in an ordered collection represented by the receiving object, and returns that
number.

Parameters
receiver

A pointer to an object of class somf_TSequence.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object to look for in the collection.

Return Value
This method returns a number indicating how many times obj occurs in the collection.

Example
somf_TDeque dq;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

dq = somf_TDequeNew();
obj = <your Class which inherits from somf_MCollectible>New();

_somfAddFirst(dq, ev, obj);

somPrintf(”\n There are %d OccurrencesOf obj\n”,
 _somfOccurrencesOf(dq, ev, obj));

_somFree (dq);
_somFree (obj);

Original Class
somf_TSequence

somf_TSequence Class 233

somfRemove Method

somfRemove Method
Removes an object from an ordered collection.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible obj);

Description
The somfRemove method removes a specified object obj from the ordered collection
represented by the receiving object. Every class that inherits from the somf_TSequence
Class must override this method for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents (example: somf_TCollection, somf_THashTable, somf_TIterator). You will
probably have to fully qualify the method name (for example:
somf_TDictionary_somfRemove). This is the only way the linker can tell them apart. This
is not a problem in C++. In C++ you could have referenced this method as:

d->somfRemove(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TSequence.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object to be removed from the collection.

Return Value
• somf_MCollectible, a pointer to the object which was removed.
• SOMF_NIL, the object was not found.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDeque Class or somf_TSortedSequence Class.

Original Class
somf_TCollection Class (overridden here)

Related Information
somfRemoveAll Method

234 Programmer’s Reference for SOM Collection Classes

somfRemoveAll Method

somfRemoveAll Method
Removes all of the objects from an ordered collection.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the objects from the ordered collection
represented by the receiving object. Every class that inherits from the somf_TSequence
class must override this method for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDictionary_somfRemoveAll). This is the only way the linker can tell them apart.
This is not a problem in C++. In C++ you could have referenced this method as:

d->somfRemoveAll(ev);

Parameters
receiver

A pointer to an object of class somf_TSequence.

ev
A pointer to the Environment structure for the calling method.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDeque Class or somf_TSortedSequence Class.

Original Class
somf_TCollection Class (overridden here)

Related Information
somfRemove Method

somf_TSequence Class 235

somfTSequenceInit Method

somfTSequenceInit Method
Initializes a new ordered collection of class somf_TSequence, given a comparison method
for the collection to use.

IDL Syntax
somf_TSequence somfTSequenceInit (in somf_MCollectibleCompareFn testfn);

Description
The somfTSequenceInit method initializes the new ordered collection of class
somf_TSequence, as represented by the receiving object. The method also establishes
the comparison method that the new ordered collection will use to compare current
potential objects for the collection, as determined by the testfn argument.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSequence.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual.

This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible. The
somf_TSequence object will use this pointer to access the somfIsSame Method or
somfIsEqual Method that was declared and defined in the object being inserted into,
or removed from, the somf_TSequence object.

Return Value
This method returns a pointer to an initialized somf_TSequence object.

Original Class
somf_TSequence

236 Programmer’s Reference for SOM Collection Classes

somf_TSequenceIterator Class

somf_TSequenceIterator Class
The somf_TSequenceIterator class is an abstract base class that defines an iterator for
the abstract base class somf_TSequence Class. The methods defined in
somf_TSequenceIterator will iterate over all of the objects in a sequence.

When you link, include the following library reference to get access to this class: somtk

When creating an iterator for an ordered collection, your classes should inherit from the
somf_TSequenceIterator class. (When creating an iterator for an unordered collection,
your classes should inherit from somf_TIterator.) The somf_TSequenceIterator class’s
pure virtual functions provide the framework for the methods that should be available in an
iterator for an ordered collection.

File Stem
tseqitr

Base
somf_TIterator Class

Metaclass
SOMClass

Ancestor Classes
somf_TIterator Class
SOMObject

New Methods
somfLast Method
somfPrevious Method

Overriding Methods
somfFirst Method
somfNext Method
somfRemove Method

somf_TSequenceIterator Class 237

somfFirst Method

somfFirst Method
Resets the iterator and gets the first object of an ordered collection.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the iterator and returns the first object of the ordered
collection that corresponds to the iterator used as the receiving object.

The somfFirst method resets the iterator to the beginning of the collection. This is true not
only for the first time the iterator is used; it is also true if other operations on the collection
cause the iterator to be invalidated. In the second case, the method also revalidates the
iterator.

Every class that inherits from the somf_TSequenceIterator class must override this
method for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfFirst is a method name declared in multiple parents
(example: somf_TSequence, somf_TIterator, etc.). You will probably have to fully qualify
the method name (example: somf_TDequeIterator_somfFirst). This is the only way the
linker can tell them apart. This is not a problem in C++. In C++ you could have referenced
this method as:

itr->somfFirst(ev);

Parameters
receiver

A pointer to an object of class somf_TSequenceIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the first somf_MCollectible object in the ordered
collection.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDequeIterator Class or
somf_TSortedSequenceIterator Class.

Original Class
somf_TIterator Class (overridden here)

Related Information
somfNext Method

238 Programmer’s Reference for SOM Collection Classes

somfLast Method

somfLast Method
Gets the last object in an ordered collection.

IDL Syntax
somf_MCollectible somfLast ();

Description
The somfLast method determines the last object in the somf_TSequence Class collection
that corresponds to the somf_TSequenceIterator iterator used as the receiving object, and
returns a pointer to it. Every class that inherits from the somf_TSequenceIterator class
must override this method for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfLast is a method name declared in multiple parents
(for example: somf_TSequenceIterator, somf_TSequence). You will probably have to
fully qualify the name of the method (for example:
somf_TSortedSequenceIterator_somfLast). This is the only way the linker can tell them
apart. This is not a problem in C++. In C++ you could have referenced this method as:

itr->somfLast(ev);

Parameters
receiver

A pointer to an object of class somf_TSequenceIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the last somf_MCollectible in the collection.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDequeIterator Class or
somf_TSortedSequenceIterator Class.

Original Class
somf_TSequenceIterator

Related Information
somfPrevious Method

somf_TSequenceIterator Class 239

somfNext Method

somfNext Method
Gets the next object in an ordered collection.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next object in the ordered collection that
corresponds to the iterator used as the receiving object. The method also returns a pointer
to the next object, if found. Objects are retrieved in an order that reflects the “ordered-ness”
of the collection (or the lack of ordering on the collection elements).

Every class that inherits from the somf_TSequenceIterator class must override this
method for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TIterator is used with a child of
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully
qualified (example: somf_TDictionaryIterator_somfNext). This is the only way the linker
can tell them apart. This is not a problem in C++. In C++ you could have referenced this
method as:

itr->somfNext(ev);

If the collection has changed since the last time somfFirst was called (other than through
the use of the somfRemove Method of this iterator), this method will fail.

Parameters
receiver

A pointer to an object of class somf_TSequenceIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the next somf_MCollectible object in the collection.
• SOMF_NIL, the end of the collection has been reached.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDequeIterator Class or
somf_TSortedSequenceIterator Class.

Original Class
somf_TIterator Class (overridden here)

Related Information
somfFirst Method

240 Programmer’s Reference for SOM Collection Classes

somfPrevious Method

somfPrevious Method
Gets the previous object in an ordered collection.

IDL Syntax
somf_MCollectible somfPrevious ();

Description
The somfPrevious method determines the previous object in the somf_TSequence Class
collection that corresponds to the somf_TSequenceIterator iterator used as the receiving
object, and returns a pointer to the previous object (if found). Every class that inherits from
the somf_TSequenceIterator class must override this method for that class to work
correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TSequenceIterator is used
with somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully
qualified (example: somf_TSortedSequenceIterator_somfPrevious). This is the only way
the linker can tell them apart. This is not a problem in C++. In C++ you could have
referenced this method as:

itr->somfPrevious(ev);

Parameters
receiver

A pointer to an object of class somf_TSequenceIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible, a pointer to the previous somf_MCollectible object in the

collection.
• SOMF_NIL, the beginning of the collection has been reached.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDequeIterator Class or
somf_TSortedSequenceIterator Class.

Original Class
somf_TSequenceIterator

Related Information
somfLast Method

somf_TSequenceIterator Class 241

somfRemove Method

somfRemove Method
Removes the current object from an ordered collection.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current object (the one just returned by somfFirst
Method, somfNext Method, somfLast Method or somfPrevious Method) from the
ordered collection that corresponds to the iterator used as the receiving object.

The somfRemove method is the only way to remove an object from an ordered collection
during iteration. However, if multiple iterators are in process, all other iterators are
invalidated, just as if some other kind of change had occurred in the collection

If the collection has changed (other than through the use of the somfRemove method of
this iterator) since the last time somfFirst or somfLast was called, this method will fail.

Every class that inherits from the somf_TSequenceIterator class must override this
method for that class to work correctly.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents (example: somf_TCollection, somf_THashTable, somf_TIterator). You will
probably have to fully qualify the method name (for example:
somf_TDictionaryIterator_somfRemove). This is the only way the linker can tell them
apart. This is not a problem in C++. In C++ you could have referenced this method as:

itr->somfRemove(ev);

Parameters
receiver

A pointer to an object of class somf_TSequenceIterator.

ev
A pointer to the Environment structure for the calling method.

Example
You cannot use this method directly from this class; it must be overridden. If you invoke this
method directly, an error message is written and processing will end. For examples of how
this method is invoked, see somf_TDequeIterator Class or
somf_TSortedSequenceIterator Class.

Original Class
somf_TIterator Class (overridden here)

242 Programmer’s Reference for SOM Collection Classes

somfRemove Method

somf_TSet Class 243

somf_TSet Class

somf_TSet Class
The somf_TSet class is a subclass of somf_TCollection. It represents an unordered
collection of objects in which objects can appear only once.

When you link, include the following library reference to get access to this class: somtk

Because somf_TSet takes objects of somf_MCollectible as members, any class that
inherits from somf_MCollectible can be an element of the set. This means, for example,
that you can have a set containing somf_TDeque Class objects, or a set of
somf_TDictionary Class objects, or objects of any main collection class.

Objects that are inserted into the somf_TSet collection must inherit from
somf_MCollectible. In addition, they must override the somfHash Method, and the
somfIsEqual Method method. These are used internally by collections of the somf_TSet
class.

The somf_TSet class uses somfIsEqual as the default comparison function. If
key1=“Bart” and key2=“Bart”, then key1 and key2 are equal. If you do not want to
use this method to equate entries, use an initialization methods to change to somfIsSame.

Note: The somf_TSet class only allows objects to be in the collection once. If an object will
be needed in the set more than once, you should consider using a somf_TDeque
instead.

Although the methods in this class are reentrant, the class is not thread-safe on
multi-thread applications. If a pointer to an instance of this class will be passed to multiple
threads, the code in those threads must guarantee thread-safe usage of the class.

File Stem
tset

Base
somf_TCollection Class

Metaclass
SOMClass

Ancestor Classes
somf_TCollection Class
somf_MCollectible Class
SOMObject

New Methods
somfDifferenceS Method
somfDifferenceSS Method
somfIntersectionS Method
somfIntersectionSS Method
somfUnionS Method
somfUnionSS Method
somfXorS Method
somfXorSS Method
somfSetHashFunction Method
somfGetHashFunction Method

244 Programmer’s Reference for SOM Collection Classes

somf_TSet Class

somfRehash Method
somfAssign Method
somfTSetInitFL Method
somfTSetInitF Method
somfTSetInitLF Method
somfTSetInitL Method
somfTSetInitS Method

Overriding Methods
somDefaultInit Method
somDestruct Method
somfAdd Method
somfRemove Method
somfRemoveAll Method
somfDeleteAll Method
somfCount Method
somfMember Method
somfCreateIterator Method

somf_TSet Class 245

somfAdd Method

somfAdd Method
Adds an object to a given set.

IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);

Description
The somfAdd method adds the specified object to the set used as the receiving object.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible Class object that will be added to the set.

Return Value
• somf_MCollectible; a pointer to the somf_MCollectible object that had to be removed

in order to add obj.
• SOMF_NIL; no somf_MCollectible object had to be removed in order to add obj.

Example
somf_TSet s;
<Your class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
obj = <Your class which inherits from somf_MCollectible>New();

/* Add obj to s */
if (_somfAdd(s, ev, obj) != SOMF_NIL)
 somPrintf(“\n problem adding obj to s\n”);

_somFree (s);

Original Class
somf_TCollection Class (overridden here)

246 Programmer’s Reference for SOM Collection Classes

somfAssign Method

somfAssign Method
Assigns a set as being equal to a given source set.

IDL Syntax
void somfAssign (in somf_TSet source);

Description
The somfAssign method assigns the set used as the receiving object to be equal to the
source set. That is, the method sets/resets the instance variables of the receiver to the
values of the source. This operation is logically equivalent to using the equal (=) operator.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TSet is used with any other
main collection class, then the name of the method will have to be fully qualified (example:
somf_TSet_somfAssign). This is the only way the linker can tell them apart. This is not a
problem in C++. In C++ you could have referenced this method as:

d->somfAssign(ev, d2);

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

source
A pointer to the set to which the receiving object will be made equal.

Example
somf_TSet s1;
somf_TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();

/* Add som objects to s1 */

/* Assign s2 = s1 */
somf_TSet_somfAssign(s2, ev, s1);

_somFree (s1);
_somFree (s2);

Original Class
somf_TSet

somf_TSet Class 247

somfCount Method

somfCount Method
Gets the number of objects in a given set.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the set used as the receiving
object, and returns that number.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDictionary_somfCount). This is the only way the linker can tell them apart. This is
not a problem in C++. In C++ you could have referenced this method as:

d->somfCount(ev);

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects contained in the set.

Example
somf_TSet s;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();

somPrintf(“\n Count of s= %d\n”, _somfCount(s,ev));

_somFree (s);

Original Class
somf_TCollection Class (overridden here)

248 Programmer’s Reference for SOM Collection Classes

somfCreateIterator Method

somfCreateIterator Method
Returns a new iterator that is suitable for iterating over the objects in this set.

IDL Syntax
somf_TIterator somfCreateIterator ();

Description
The somfCreateIterator method returns a new iterator that is suitable for iterating over the
objects in this set.

Note: This is one of two ways to initialize a somf_TSetIterator Class iterator to point to an
instance of somf_TSet. The other way is to use the somf_TSetIterator class’s
initializer method.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example
somf_TSet s;
Environment *ev;
somf_TSetIterator itr;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
itr = (somf_TSetIterator*) _somfCreateIterator(s,ev);

_somFree (s);
_somFree (itr);

Original Class
somf_TCollection Class (overridden here)

somf_TSet Class 249

somfDeleteAll Method

somfDeleteAll Method
Removes all of the objects from a set and deallocates the storage that these objects might
have owned. (That is, the destructor function is called for each object in the set.)

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the objects from the set represented by the
receiving object. The method also deallocates the storage that these objects might have
owned. The destructor function is called for each object in the collection.

Since a collection only contains pointers to objects, rather than the objects themselves,
somfDeleteAll can cause a problem if a pointer to an object appears more than once. If
multiple pointers to A exist, or if a single pointer to A is in the collection multiple times, the
behavior of the code is undefined, because it will try to delete A multiple times. If you think
there is a chance that an object could appear in the collection more than once, you should
consider using somfRemoveAll Method to remove the objects from the collection and
deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TSet_somfDeleteAll). This is the only way the linker can tell them apart. This is not
a problem in C++. In C++ you could have referenced this method as:

d->somfDeleteAll(ev);

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TSet s;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();

/* Add some objects to s */

/* Remove all of the objects from s AND DELETE THEM */
_somfDeleteAll(s,ev);

_somFree (s);

Original Class
somf_TCollection Class (overridden here)

250 Programmer’s Reference for SOM Collection Classes

somfDifferenceS Method

somfDifferenceS Method
Determines the elements of a given set that do not appear in another specified set, and
modifies the first set to contain only those different elements.

IDL Syntax
void somfDifferenceS (in somf_TSet set1);

Description
The somfDifferenceS method determines those elements of a given set that are not
contained in another specified set. The set used as the receiving object is destructively
modified to contain only those elements that do not appear in set1.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

set1
A pointer to the set that the receiving object will be compared against.

Example
somf_TSet s1;
somf_TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();

/* Find the differences between s1 and s2, and put in s1 */
_somfDifferenceS(s1, ev, s2);

_somFree (s1);
_somFree (s2);

Original Class
somf_TSet

Related Information
somfDifferenceSS Method

somf_TSet Class 251

somfDifferenceSS Method

somfDifferenceSS Method
Determines the elements of a given set that do not appear in another specified set, and
places those different elements in a third set.

IDL Syntax
void somfDifferenceSS (

in somf_TSet set1,
in somf_TSet resultSet);

Description
The somfDifferenceSS method determines which elements of the receiving-object set are
not contained in set. Those elements that do not appear in set are then placed in set
resultSet. The original receiving-object set remains unchanged.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

set1
A pointer to the set that the receiving object set will be compared against.

resultSet
A pointer to the set containing the results of the operation.

Example
somf_TSet s1;
somf_TSet s2;
somf_TSet s3;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();
s3 = somf_TSetNew();

/* Find the differences between s1 and s2, and put in s3 */
_somfDifferenceSS(s1, ev, s2, s3);

_somFree (s1);
_somFree (s2);
_somFree (s3);

Original Class
somf_TSet

Related Information
somfDifferenceS Method

252 Programmer’s Reference for SOM Collection Classes

somfGetHashFunction Method

somfGetHashFunction Method
Gets a pointer to the hash function used by a set.

IDL Syntax
somf_MCollectibleHashFn somfGetHashFunction ();

Description
The somfGetHashFunction method returns a pointer to the hash function used by the set
represented by the receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. If somf_TSet is used with a child of somf_THashTable or
somf_TDictionary, then the name of the method will have to be fully qualified (example:
somf_TSet_somfGetHashFunction). This is the only way the linker can tell them apart.
This is not a problem in C++. In C++ you could have referenced this method as:

d->somfGetHashFunction(ev);

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the hash function.

Example
somf_TSet s;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();

if ((somf_TSet_somfGetHashFunction(s,ev)) !=
 somf_MCollectibleClassData.somfHash)
 somPrintf(“\n What Hash Function are we using?\n”);

_somFree (s);

Original Class
somf_TSet

Related Information
somfSetHashFunction Method

somf_TSet Class 253

somfIntersectionS Method

somfIntersectionS Method
Gets those elements that are members of both a given set and another set, set1, and
modifies the first set to contain only those common elements.

IDL Syntax
void somfIntersectionS (in somf_TSet set1);

Description
The somfIntersectionS method determines, given the receiving-object set and set1, which
elements are contained in both sets. The set used as the receiving object is then
destructively modified to contain only those common elements.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

set1
A pointer to the set that the receiving object will be compared against.

Example
somf_TSet s1;
somf_TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();

/* Find the intersection between s1 and s2, and put in s1 */
_somfIntersectionS(s1, ev, s2);

_somFree (s1);
_somFree (s2);

Original Class
somf_TSet

Related Information
somfIntersectionSS Method

254 Programmer’s Reference for SOM Collection Classes

somfIntersectionSS Method

somfIntersectionSS Method
Gets those elements that are members of both a given set and another set, set1, and
places those common elements in a third set.

IDL Syntax
void somfIntersectionSS (

in somf_TSet set1,
in somf_TSet resultSet);

Description
The somfIntersectionSS method determines, given the receiving-object set and set1,
which elements are contained in both sets. The common elements are then placed in set
resultSet. The original receiving-object set and set1 remain unchanged.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

set1
A pointer to the set this instance will be compared against.

resultSet
A pointer to the set containing the results of the operation.

Example
somf_TSet s1;
somf_TSet s2;
somf_TSet s3;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();
s3 = somf_TSetNew();

/* Find the intersection between s1 and s2, and put in s3 */
_somfIntersectionSS(s1, ev, s2, s3);

_somFree (s1);
_somFree (s2);
_somFree (s3);

Original Class
somf_TSet

Related Information
somfIntersectionS Method

somf_TSet Class 255

somfMember Method

somfMember Method
Gets an object from a set.

IDL Syntax
somf_MCollectible somfMember (in somf_MCollectible obj);

Description
The somfMember method determines whether the specified object is a member of the set
represented by the receiving object, and returns a pointer to the object (if found).

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TSet_somfMember). This is the only way the linker can tell them apart. This is not a
problem in C++. In C++ you could have referenced this method as:

d->somfMember(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible that may or may not be a member of the Collection.

Return Value
• somf_MCollectible; a pointer to the object the method determined as the member.
• SOMF_NIL; the object was not found.

Example
somf_TSet s;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
obj = <your Class which inherits from somf_MCollectible>New();

_somfAdd(s, ev, obj);

if (_somfMember(s, ev, obj) != SOMF_NIL)
 somPrintf(“\n obj is a Member\n”);
else
 somPrintf(“\n ERROR: obj should be a Member\n”);

_somFree (s);
_somFree (obj);

Original Class
somf_TCollection Class (overridden here)

256 Programmer’s Reference for SOM Collection Classes

somfRehash Method

somfRehash Method
Rehashes a set, cleaning up for any objects that were marked for deletion.

IDL Syntax
void somfRehash ();

Description
The somfRehash method rehashes the set represented by the receiving object, and cleans
up for any objects that were marked for deletion.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TSet s;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();

_somfRehash(s,ev);

_somFree (s);

Original Class
somf_TSet

somf_TSet Class 257

somfRemove Method

somfRemove Method
Removes an object from a given set.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible obj);

Description
The somfRemove method removes a specified object from the set represented by the
receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents (example: somf_TCollection, somf_THashTable, somf_TIterator, etc.). You will
probably have to fully qualify the name of the method. This is the only way the linker can tell
them apart. This is not a problem in C++. In C++ you could have referenced this method as:

d->somfRemove(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object to be removed from the set.

Return Value
• somf_MCollectible; a pointer to the object that was removed.
• SOMF_NIL; the object was not found.

Example
somf_TSet s;
<your Class which inherits from somf_MCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
obj = <your Class which inherits from somf_MCollectible>New();

_somfAdd(s, ev, obj);
if (somf_TSet_somfRemove(s, ev, obj) == SOMF_NIL)
 somPrintf(“\n problem removing obj from s\n”);

_somFree (s);
_somFree (obj);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfRemoveAll Method

258 Programmer’s Reference for SOM Collection Classes

somfRemoveAll Method

somfRemoveAll Method
Removes all of the objects from a given set.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the objects from the set represented by the
receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with a child
of somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TSet_somfRemoveAll). This is the only way the linker can tell them apart. This is
not a problem in C++. In C++ you could have referenced this method as:

d->somfRemoveAll(ev);

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TSet s;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();

/* Remove All of the objects in s */
_somfRemoveAll(s,ev);

_somFree (s);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfRemove Method

somf_TSet Class 259

somfSetHashFunction Method

somfSetHashFunction Method
Sets the hash function of a set.

IDL Syntax
void somfSetHashFunction (in somf_MCollectibleHashFn fn);

Description
The somfSetHashFunction method sets the hash function of the set used as the receiving
object to the specified method fn.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if a child of somf_TDictionary is used with a child
of somf_THashTable or somf_TSet, then the name of the method will have to be fully
qualified (example: somf_TSet_somfSetHashFunction). This is the only way the linker
can tell them apart. This is not a problem in C++. In C++ you could have referenced this
method as:

d->somfSetHashFunction(ev);

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

fn
A function pointer specifying a somfHash Method type function.

This argument should always be set to

 somf_MCollectibleClassData.somfHash

This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible Class. The somf_TSet
object will use this pointer to access the somfHash method that was declared and
defined in the object being inserted into, or removed from, the somf_TSet object.

Example
somf_TSet s;
Environment *ev;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();

somf_TSet_somfSetHashFunction(s, ev,
 somf_MCollectibleClassData.somfHash);

_somFree (s);

Original Class
somf_TSet

Related Information
somfGetHashFunction Method

260 Programmer’s Reference for SOM Collection Classes

somfTSetInitF Method

somfTSetInitF Method
Initializes a new set, given its comparison test method.

IDL Syntax
somf_TSet somfTSetInitF (in somf_MCollectibleCompareFn testfn);

Description
The somfTSetInitF method initializes the set represented by the receiving object, given the
comparison test method that the set will use. The method assumes a default number of
objects as the set size.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual.

This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible Class. The somf_TSet
object will use this pointer to access the somfIsSame Method or somfIsEqual
Method that was declared and defined in the object being inserted into, or removed
from, the somf_TSet object.

Return Value
This method returns a pointer to an initialized somf_TSet object.

Example
somf_TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s2 = somf_TSetNew();
_somfTSetInitF(s2, ev, somf_MCollectibleClassData.somfIsEqual);

_somFree (s2);

Original Class
somf_TSet

Related Information
somfTSetInitFL Method
somfTSetInitLF Method
somfTSetInitL Method
somfTSetInitS Method

somf_TSet Class 261

somfTSetInitFL Method

somfTSetInitFL Method
Initializes a new set, given the comparison test method and the initial set size. This method
is equivalent to the somfTSetInitLF Method.

IDL Syntax
somf_TSet somfTSetInitFL (

in somf_MCollectibleCompareFn testfn,
in long setSizeHint);

Description
The somfTSetInitFL method initializes the set represented by the receiving object, given
the set’s comparison test method and initial set size.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual.

This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible Class. The somf_TSet
object will use this pointer to access the somfIsSame Method or somfIsEqual
Method that was declared and defined in the object being inserted into, or removed
from, the somf_TSet object.

setSizeHint
The initial size of the set, the number of objects the set is expected to contain.

Return Value
This method returns a pointer to an initialized somf_TSet object.

Example
somf_TSet s1;
Environment *ev;
ev = somGetGlobalEnvironment();
s1 = somf_TSetNew();
_somfTSetInitFL(s1, ev, somf_MCollectibleClassData.somfIsEqual, 8);
_somFree (s1);

Original Class
somf_TSet

Related Information
somfTSetInitLF Method
somfTSetInitF Method
somfTSetInitL Method
somfTSetInitS Method

262 Programmer’s Reference for SOM Collection Classes

somfTSetInitL Method

somfTSetInitL Method
Initializes a new set, given the initial set size.

IDL Syntax
somf_TSet somfTSetInitL (in long setSizeHint);

Description
The somfTSetInitL method initializes the set represented by the receiving object, given the
set’s initial set size. The method assumes the somf_TSet class’s default comparison test
function of somfIsEqual.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

setSizeHint
The initial size of the set, the number of objects the set is expected to contain.

Return Value
This method returns a pointer to an initialized somf_TSet.

Example
somf_TSet s4;
Environment *ev;

ev = somGetGlobalEnvironment();

s4 = somf_TSetNew();
_somfTSetInitL(s4, ev, 8);

_somFree (s4);

Original Class
somf_TSet

Related Information
somfTSetInitFL Method
somfTSetInitLF Method
somfTSetInitF Method
somfTSetInitS Method

somf_TSet Class 263

somfTSetInitLF Method

somfTSetInitLF Method
Initializes a new set, given the initial set size and the comparison test method. This method
is equivalent to somfTSetInitFL.

IDL Syntax
somf_TSet somfTSetInitLF (

in long setSizeHint,
in somf_MCollectibleCompareFn testfn);

Description
The somfTSetInitLF method initializes the set represented by the receiving object, given
the set’s initial set size and its comparison test method.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

testfn
A method pointer specifying either a somfIsEqual or a somfIsSame method.

This argument should always be set to either

somf_MCollectibleClassData.somfIsSame or
somf_MCollectibleClassData.somfIsEqual.

This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MCollectible Class. The somf_TSet
object will use this pointer to access the somfIsSame Method or somfIsEqual
Method that was declared and defined in the object being inserted into, or removed
from, the somf_TSet object.

Return Value
This method returns a pointer to an initialized somf_TSet object.

Example
somf_TSet s3;
Environment *ev;

ev = somGetGlobalEnvironment();

s3 = somf_TSetNew();
_somfTSetInitLF(s3, ev, 8,
 somf_MCollectibleClassData.somfIsEqual);

_somFree (s3);

Original Class
somf_TSet

Related Information
somfTSetInitFL Method
somfTSetInitF Method
somfTSetInitL Method
somfTSetInitS Method

264 Programmer’s Reference for SOM Collection Classes

somfTSetInitS Method

somfTSetInitS Method
Initializes a new set, establishing it as equal to another given set.

IDL Syntax
somf_TSet somfTSetInitS (in somf_TSet s);

Description
The somfTSetInitS method initializes the set represented by the receiving object. The
method also establishes the new set as equal to the specified source set. This implies that
the instance data of the new set will be equal to those of the source set.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

s
A pointer to the set to which the receiving object will be equal.

Return Value
This method returns a pointer to an initialized somf_TSet object.

Example
somf_TSet s4;
somf_TSet s5;
Environment *ev;

ev = somGetGlobalEnvironment();

s4 = somf_TSetNew();
s5 = somf_TSetNew();
_somfTSetInitS(s5, ev, s4);

_somFree (s4);
_somFree (s5);

Original Class
somf_TSet

Related Information
somfTSetInitFL Method
somfTSetInitLF Method
somfTSetInitF Method
somfTSetInitL Method

somf_TSet Class 265

somfUnionS Method

somfUnionS Method
Gets those elements that are members of either a given set or another set, set1, and
modifies the first set to contain all elements from both sets.

IDL Syntax
void somfUnionS (in somf_TSet set1);

Description
The somfUnionS method determines the set of elements that are contained in either the
receiving object set or in the set set1. The set used as the receiving object is then
destructively modified to contain all of those elements from both sets.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

set1
A pointer to the set that the receiving object will be compared against.

Example
somf_TSet s1;
somf_TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();

/* Find the union between s1 and s2, and put it in s1 */
_somfUnionS(s1, ev, s2);

_somFree (s1);
_somFree (s2);

Original Class
somf_TSet

Related Information
somfUnionSS Method

266 Programmer’s Reference for SOM Collection Classes

somfUnionSS Method

somfUnionSS Method
Gets those elements that are members of either a given set and another set, set1, and
places all those elements in a third set.

IDL Syntax
void somfUnionSS (

 in somf_TSet set1,
 in somf_TSet resultSet);

Description
The somfUnionSS method determines the set of elements that are contained either in the
receiving-object set or in set1. All of those elements are then placed in set resultSet. The
original receiving-object set and set1 remain unchanged.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

set1
A pointer to the set that the receiving object will be compared against.

resultSet
A pointer to the set containing the results of the operation.

Example
somf_TSet s1;
somf_TSet s2;
somf_TSet s3;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();
s3 = somf_TSetNew();

/* Find the union between s1 and s2, and put it in s3 */
_somfUnionSS(s1, ev, s2, s3);

_somFree (s1);
_somFree (s2);
_somFree (s3);

Original Class
somf_TSet

Related Information
somfUnionS Method

somf_TSet Class 267

somfXorS Method

somfXorS Method
Determines a set wherein each member is an element either of a given set or of another set
set1, but not of both, and modifies the first set to contain the elements of the new set.

IDL Syntax
void somfXorS (in somf_TSet set1);

Description
The somfXorS method determines a set wherein each member is an element either of the
set represented by the receiving object or of another set, set1, but not both. The receiving
object set is then modified to contain all of the elements of the newly determined set.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

set1
A pointer to the set that the receiving object will be compared against.

Example
somf_TSet s1;
somf_TSet s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();

/* Find the exclusive or of s1 and s2, and put it in s1 */
_somfXorS(s1, ev, s2);

_somFree (s1);
_somFree (s2);

Original Class
somf_TSet

Related Information
somfXorSS Method

268 Programmer’s Reference for SOM Collection Classes

somfXorSS Method

somfXorSS Method
Determines a set where each member is an element either of a given set or of another set
set1, but not of both, and places all of those elements in a third set.

IDL Syntax
void somfXorSS (

in somf_TSet set1,
in somf_TSet resultSet);

Description
The somfXorSS method determines a set where each member is an element either of the
set represented by the receiving object or of another set, set1, but not both. All elements of
the newly determined set are then placed in set resultSet. The receiving-object set and set1
remain unchanged.

Parameters
receiver

A pointer to an object of class somf_TSet.

ev
A pointer to the Environment structure for the calling method.

set1
A pointer to the set that the receiving object will be compared against.

resultSet
A pointer to the set containing the results of the operation.

Example
somf_TSet s1;
somf_TSet s2;
somf_TSet s3;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSetNew();
s2 = somf_TSetNew();
s3 = somf_TSetNew();

/* Find the exclusive or of s1 and s2, and put it in s3 */
_somfXorSS(s1, ev, s2, s3);

_somFree (s1);
_somFree (s2);
_somFree (s3);

Original Class
somf_TSet

Related Information
somfXorS Method

somf_TSetIterator Class 269

somf_TSetIterator Class

somf_TSetIterator Class
The somf_TSetIterator class defines an iterator for the somf_TSet Class that will iterate
over all of the objects in a set.

When you link, include the following library reference to get access to this class: somtk

Although the methods in this class are reentrant, the class is not thread-safe on
multi-thread applications. If a pointer to an instance of this class will be passed to multiple
threads, the code in those threads must guarantee thread-safe usage of the class.

File Stem
tsetitr

Base
somf_TIterator Class

Metaclass
SOMClass

Ancestor Classes
somf_TIterator Class
SOMObject

New Methods
somfTSetIteratorInit Method

Overriding Methods
somDestruct Method
somfNext Method
somfFirst Method
somfRemove Method

270 Programmer’s Reference for SOM Collection Classes

somfFirst Method

somfFirst Method
Resets the iterator and returns the first element of a set.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the iterator and returns the first element of the set that
corresponds to the set iterator represented by the receiving object. somfFirst resets the
iterator to the beginning of the set even if other operations on the collection cause the
iterator to be invalidated. In the second case, the method revalidates the iterator.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfFirst is a method name declared in multiple parents.
You will probably have to fully qualify the method name. This is the only way the linker can
tell them apart.This is not a problem in C++. In C++ you can referenced this method as:

itr->somfFirst(ev);

Parameters
receiver

A pointer to an object of class somf_TSetIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• a pointer to the first somf_MCollectible object in the set.
• SOMF_NIL is returned if the collection is empty.

Example
somf_TSet s;
Environment *ev;
somf_TSetIterator itr;
somf_MCollectible itrobj;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
itr = somf_TSetIteratorNew();
_somfTSetIteratorInit(itr, ev, s);

/* Add some object to s */
/* Iterate through the TSet */
itrobj = somf_TSetIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 /* Do something with itrobj */
 itrobj = _somfNext(itr,ev);
}

_somFree (s);
_somFree (itr);

Original Class
somf_TIterator Class

Related Information
somfNext Method

somf_TSetIterator Class 271

somfNext Method

somfNext Method
Gets the next object in a set.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next object in the set that corresponds to the set
iterator represented by the receiving object, and returns a pointer to it. Objects are retrieved
in an order reflecting the “ordered-ness” of the set (or the lack of ordering on the set
elements).

If the somf_TSet Class collection has changed (other than through the use of the
somfRemove Method of this iterator) since the last time the somfFirst Method was
called, the iterator becomes invalid and will fail if asked to find the next object. For example,
if the collection’s somfAdd Method were called after starting to iterate through the
collection, the iterator then would not allow iteration to continue. The iterator must be reset,
and the easiest way to do that is to call the iterator’s somfFirst method and start over.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TIterator is used with a child of
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully
qualified (example: somf_TSetIterator_somfNext). This is the only way the linker can tell
them apart. This is not a problem in C++. In C++ you could have referenced this method as:

itr->somfNext(ev);

Parameters
receiver

A pointer to an object of class somf_TSetIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible; a pointer to the next somf_MCollectible object in the set.
• SOMF_NIL; the end of the set has been reached.

Example
somf_TSet s;
Environment *ev;
somf_TSetIterator itr;
somf_MCollectible itrobj;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
itr = somf_TSetIteratorNew();
_somfTSetIteratorInit(itr, ev, s);

/* Add some object to s */

/* Iterate through the TSet */
itrobj = somf_TSetIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 /* Do something with itrobj */
 itrobj = _somfNext(itr,ev);

272 Programmer’s Reference for SOM Collection Classes

somfNext Method

}

_somFree (s);
_somFree (itr);

Original Class
somf_TIterator Class

Related Information
somfFirst Method

somf_TSetIterator Class 273

somfRemove Method

somfRemove Method
Removes the current object, the one just returned by somfFirst or somfNext, from a set.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current object (the one just returned by somfFirst
Method or somfNext Method) from the set that corresponds to the iterator used as the
receiving object.

This method is the only way to remove an object from a set during iteration. However, if
multiple iterators are in process, all other iterators are invalidated, just as if some other kind
of change had occurred in the collection.

If the collection has changed since the last time somfFirst was called (other than through
the use of the somfRemove method of this iterator), this method will fail.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents (example: somf_TCollection, somf_THashTable, somf_TIterator). You will
probably have to fully qualify the method name. This is the only way the linker can tell them
apart. This is not a problem in C++. In C++ you could have referenced this method as:

itr->somfRemove(ev);

Parameters
receiver

A pointer to an object of class somf_TSetIterator.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TSet s;
Environment *ev;
somf_TSetIterator itr;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
itr = somf_TSetIteratorNew();
_somfTSetIteratorInit(itr, ev, s);

/* Remove the first object in s */

/* Iterate through the TSet */
somf_TSetIterator_somfFirst(itr,ev);
somf_TSetIterator_somfRemove(itr,ev);

_somFree (s);
_somFree (itr);

Original Class
somf_TIterator Class

274 Programmer’s Reference for SOM Collection Classes

somfTSetIteratorInit Method

somfTSetIteratorInit Method
Initializes somf_TSetIterator object, establishing it as the iterator for a given somf_TSet
set.

IDL Syntax
somf_TSetIterator somfTSetIteratorInit (in somf_TSet h);

Description
The somfTSetIteratorInit method initializes a given iterator object (the somf_TSetIterator
receiving object) that will iterate over the specified somf_TSet Class set.

This is one of two ways to initialize a somf_TSetIterator to point to an instance of a
somf_TSet set. The other way is to use the somf_TSet class’s somfCreateIterator
Method.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSetIterator.

ev
A pointer to the Environment structure for the calling method.

h
A pointer to the set that the receiving object will iterate over.

Return Value
This method returns a pointer to an initialized somf_TSetIterator object.

Example
somf_TSet s;
Environment *ev;
somf_TSetIterator itr;

ev = somGetGlobalEnvironment();

s = somf_TSetNew();
itr = somf_TSetIteratorNew();
_somfTSetIteratorInit(itr, ev, s);

_somFree (s);
_somFree (itr);

Original Class
somf_TSetIterator

somf_TSortedSequence Class 275

somf_TSortedSequence Class

somf_TSortedSequence Class
The somf_TSortedSequence class is a child of the somf_TSequence class. Ordering of
objects in a sorted sequence collection is based on how the objects relate to each other,
ranging from largest to smallest. Any object in the somf_TSortedSequence
“IsGreaterThan” or “IsEqualTo” the object behind it, and “IsLessThan” or “IsEqualTo” the
element in front of it.

When you link, include the following library reference to get access to this class: somtk

Note: Do not be misled by the interface of methods in this class, many of which are
overridden from the somf_TSequence or somf_TCollection. All objects placed into
a somf_TSortedSequence collection must be instances of the
somf_MOrderableCollectible. If you attempt to add a somf_MCollectible object to
a sorted sequence, the class method will abend.

All somf_MOrderableCollectible objects inserted into a somf_TSortedSequence
collection should override somfIsEqual, somfIsLessThan, somfIsGreaterThan and
somfHash.

The somf_TSortedSequence class uses somfIsEqual to compare objects in the
collection. You cannot override or change this to the somfIsSame.

Although the methods in this class are reentrant, the class is not thread-safe on
multi-thread applications. If a pointer to an instance of this class will be passed to multiple
threads, the code in those threads must guarantee thread-safe usage of the class.

File Stem
tss

Base
somf_TSequence Class

Metaclass
SOMClass Class

Ancestor Classes
somf_TSequence Class
somf_TCollection Class
somf_MCollectible Class
SOMObject Class

New Methods
somfAssign Method
somfCreateSequenceIterator Method
somfCreateSortedSequenceNode Method
somfGetSequencingFunction Method
somfSetSequencingFunction Method
somfTSortedSequenceInitF Method
somfTSortedSequenceInitS Method

Overriding Methods
somDefaultInit Method
somDestruct Method
somfAdd Method
somfAfter Method
somfBefore Method

276 Programmer’s Reference for SOM Collection Classes

somf_TSortedSequence Class

somfCount Method
somfCreateIterator Method
somfDeleteAll Method
somfFirst Method
somfLast Method
somfMember Method
somfOccurrencesOf Method
somfRemove Method
somfRemoveAll Method

somf_TSortedSequence Class 277

somfAdd Method

somfAdd Method
Adds an obj to a sorted sequence.

IDL Syntax
somf_MCollectible somfAdd (in somf_MCollectible obj);

Description
The somfAdd method adds an object obj to the sorted sequence represented by the
receiving object.

Notice that the somfAdd method does not include an argument specifying where to add
the object, because the sequence will be ordered based on how the elements relate to
each other.

Parameters
receiver

A pointer to an object of class somf_TSortedSequence

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to an somf_MCollectible that will be added to this instance.

Return Value
This method returns a pointer to the somf_MCollectible object added.

Example
somf_TSortedSequence ss;
<Your class inheriting from somf_MOrderableCollectible> obj;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
obj =
 <Your class inheriting from somf_MOrderableCollectible>New();

/* Add obj to ss */
_somfAdd(ss, ev, obj);

_somFree (ss);

Original Class
somf_TCollection Class (overridden here)

278 Programmer’s Reference for SOM Collection Classes

somfAfter Method

somfAfter Method
Gets the object found after a given object in a sorted sequence.

IDL Syntax
somf_MCollectible somfAfter (in somf_MCollectible obj);

Description
The somfAfter method returns the object found after the specified object obj in the sorted
sequence represented by the receiving object.

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object that precedes the returned obj.

Return Value
• somf_MCollectible; A pointer to the somf_MCollectible object after obj.
• SOMF_NIL; The designated obj is the last object in this collection, or not found.

Example
somf_TSortedSequence ss;
<Your class inheriting from somf_MOrderableCollectible> obj;
<Your class inheriting from somf_MOrderableCollectible> objptr;
Environment *ev;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
obj = <Your class that inherits from somf_MOrderableCollectible>New();

/* Determine what object comes after obj */
objptr =
 (<Your class inheriting from somf_MOrderableCollectible>*)
 _somfAfter(ss,ev,obj);

_somFree (ss);

Original Class
somf_TSortedSequence Class (overridden here)

Related Information
somfBefore Method
somfFirst Method
somfLast Method

somf_TSortedSequence Class 279

somfAssign Method

somfAssign Method
Assigns a sorted sequence as equal to a given source sorted sequence.

IDL Syntax
void somfAssign (in somf_TSortedSequence s);

Description
The somfAssign method assigns the sorted sequence represented by the receiving object
as equal to the specified source sorted sequence. That is, the method sets or resets the
instance variables of the receiver to the values of the source. This operation is logically
equivalent to using the equals (=) operator.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TSortedSequence is used with
any other main collection class, then the name of the method will have to be fully qualified
(example: somf_TSortedSequence_somfAssign). This is the only way the linker can tell
them apart. This is not a problem in C++. In C++ you could have referenced this method as

d->somfAssign(ev, d2);

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

s
A pointer to the sorted sequence to which the receiver will be equal.

Example
somf_TSortedSequence s1;
somf_TSortedSequence s2;
Environment *ev;

ev = somGetGlobalEnvironment();

s1 = somf_TSortedSequenceNew();
s2 = somf_TSortedSequenceNew();

/* Add som objects to s1 */

/* Assign s2 = s1 */
somf_TSortedSequence_somfAssign(s2, ev, s1);

_somFree (s1);
_somFree (s2);

Original Class
somf_TSortedSequence Class

280 Programmer’s Reference for SOM Collection Classes

somfBefore Method

somfBefore Method
Returns the object found before a given object in a sorted sequence.

IDL Syntax
somf_MCollectible somfBefore (in somf_MCollectible obj);

Description
The somfBefore method returns the object found before the specified object obj in the
sorted sequence represented by the receiving object.

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object that is behind the returned obj.

Return Value
• somf_MCollectible; A pointer to the somf_MCollectible object that precedes obj.
• SOMF_NIL; the designated obj is the first object in the sequence, or not found.

Example
somf_TSortedSequence ss;
<Your class inheriting from somf_MOrderableCollectible> obj;
<Your class inheriting from somf_MOrderableCollectible> objptr;
Environment *ev;

ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
obj =
 <Your class inheriting from somf_MOrderableCollectible>New();

/* Determine what object comes before obj */
objptr =
 (<Your class inheriting from somf_MOrderableCollectible>*)
 _somfBefore(ss,ev,obj);

_somFree (ss);

Original Class
somf_TSequence Class (overridden here)

Related Information
somfAfter Method
somfFirst Method
somfLast Method

somf_TSortedSequence Class 281

somfCount Method

somfCount Method
Gets the number of objects in a given sorted sequence.

IDL Syntax
long somfCount ();

Description
The somfCount method determines the number of objects in the sorted sequence given as
the receiving object, and returns that number.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with a child
of somf_THashTable, then the name of the method will have to be fully qualified (for
example, somf_TDictionary_somfCount). This is the only way the linker can tell them
apart. This is not a problem in C++. In C++ you could have referenced this method as:

d->somfCount(ev);

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the number of objects in this sorted sequence.

Example
somf_TSortedSequence ss;
Environment *ev;

ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();

somPrintf(“\n Count of ss= %d\n”, _somfCount(ss,ev));

_somFree (ss);

Original Class
somf_TCollection Class (overridden here)

282 Programmer’s Reference for SOM Collection Classes

somfCreateIterator Method

somfCreateIterator Method
Returns a new iterator that is suitable for iterating over the objects in a sorted sequence.

IDL Syntax
somf_TIterator somfCreateIterator ();

Description
The somfCreateIterator method returns a new iterator that is suitable for iterating over the
objects in the sorted sequence given as the receiving object.

Note: This is one of three ways to initialize a somf_TSortedSequenceIterator to point to
an instance of a somf_TSortedSequence. One other way is to use the initializer
method of the somf_TSortedSequenceIterator class. The final way is to use the
somf_TSortedSequence class’s somfCreateSequenceIterator method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new iterator.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
itr = (somf_TSortedSequenceIterator*) _somfCreateIterator(ss,ev);

_somFree (ss);
_somFree (itr);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfCreateSequenceIterator Method

somf_TSortedSequence Class 283

somfCreateSequenceIterator Method

somfCreateSequenceIterator Method
Returns a new iterator that is suitable for iterating over the objects in a sorted sequence.

IDL Syntax
somf_TSequenceIterator somfCreateSequenceIterator ();

Description
The somfCreateSequenceIterator method returns a new iterator that is suitable for
iterating over the objects in the sorted sequence represented by the receiving object.

Note: This is one of three ways to initialize a somf_TSortedSequenceIterator Class to
point to an instance of a somf_TSortedSequence. One other way is to use the
initializer method for the somf_TSortedSequenceIterator class. The final way is to
use the somf_TSortedSequence class’s somfCreateIterator.

This method is virtually identical to the somfCreateIterator method; thus, you could use
either one. The only difference between the methods is the indicated type of their return
value: the current method returns a somf_TSortedSequenceIterator object, whereas the
somfCreateIterator method returns a somf_TIterator object. In reality, however, both
methods return an instance of a somf_TSortedSequenceIterator that has been typed
correctly.

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the new sorted-sequence iterator.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();
itr = (somf_TSortedSequenceIterator*)
 _somfCreateSequenceIterator(ss,ev);

_somFree (ss);
_somFree (itr);

Original Class
somf_TSortedSequence

Related Information
somfCreateIterator Method

284 Programmer’s Reference for SOM Collection Classes

somfCreateSortedSequenceNode Method

somfCreateSortedSequenceNode Method
Creates a new somf_TSortedSequenceNode in a somf_TSortedSequence collection,
given a key to the new node and its left and right children.

IDL Syntax
somf_TSortedSequenceNode somfCreateSortedSequenceNode (

 in somf_TSortedSequenceNode n1,
 in somf_MOrderableCollectible obj,
 in somf_TSortedSequenceNode n2);

Description
The somfCreateSortedSequenceNode method creates a new node of
somf_TSortedSequenceNode Class in the somf_TSortedSequence collection
represented by the receiving object. The method call also specifies a
somf_MOrderableCollectible object to be used as the key to the new node, as well as two
somf_TSortedSequenceNode objects to be used as the left and right children of the new
node.

If you create a new class that inherits from the somf_TSortedSequence class, you might
consider overriding this method in order to customize how an instance of your new class
creates a new node.

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

n1
A pointer to the left child of the new somf_TSortedSequenceNode object.

ob
A pointer to the key of the new somf_TSortedSequenceNode object.

n2
A pointer to the right child of the new somf_TSortedSequenceNode object.

Return Value
This method returns a pointer to the new somf_TSortedSequenceNode created.

Original Class
somf_TSortedSequence Class

somf_TSortedSequence Class 285

somfDeleteAll Method

somfDeleteAll Method
Removes all objects from a sorted sequence and deallocates the storage that these objects
might have owned. The destructor function is called for each object in the collection.

IDL Syntax
void somfDeleteAll ();

Description
The somfDeleteAll method removes all of the objects from the sorted sequence
represented by the receiving object. The method deallocates the storage that these objects
might have owned. The destructor function is called for each object in the collection.

Be careful with somfDeleteAll. Since a collection only contains pointers to objects (rather
than the objects themselves), somfDeleteAll can cause a problem if a pointer to an object
appears more than once. For example, if multiple pointers to "A" exists, or if a single pointer
to "A" is in the collection multiple times, the behavior of the code is undefined, because it
will try to delete "A" multiple times. If you think there is a chance that an object could
appear in the collection more than once, you should consider using somfRemoveAll
Method to remove the objects from the collection and deleting them some other way.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified (example:
somf_TDictionary_somfDeleteAll). This is the only way the linker can tell them apart.
This is not a problem in C++. In C++ you could have referenced this method as:

d->somfDeleteAll(ev);

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TSortedSequence ss;
Environment *ev;
ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
/* Remove all the objects from ss AND DELETE THEM */
somf_TSortedSequence_somfDeleteAll(ss,ev);
_somFree (ss);

Original Class
somf_TCollection Class (overridden here)

286 Programmer’s Reference for SOM Collection Classes

somfFirst Method

somfFirst Method
Gets the first object in a sorted sequence.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method determines the first object in the sorted sequence represented by
the receiving object, and returns a pointer to the object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfFirst is a method name declared in multiple parents
(for example: somf_TSequence, somf_TIterator.). You will probably have to fully qualify
the name of the method (for example: somf_TSortedSequence_somfFirst). This is the
only way the linker can tell them apart. This is not a problem in C++. In C++ you could have
referenced this method as:

seq->somfFirst(ev);

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible; a pointer to the first somf_MCollectible object in the sorted

sequence.
• SOMF_NIL; nothing is in the collection.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_MOrderableCollectible obj;

ev = somGetGlobalEnvironment();

ss = somf_TSortedSequenceNew();

/* Determine the first object in ss */
obj = somf_TSortedSequence_somfFirst(ss,ev);

_somFree (ss);

Original Class
somf_TSequence Class (overridden here)

Related Information
somfAfter Method
somfBefore Method
somfLast Method

somf_TSortedSequence Class 287

somfGetSequencingFunction Method

somfGetSequencingFunction Method
Gets a pointer to the function used to compare objects in a sorted sequence, and
consequently determines the sequence of the collection.

IDL Syntax
somf_MBetterOrderableCompareFn somfGetSequencingFunction ();

Description
The somfGetSequencingFunction method returns a pointer to the function used to
compare objects in the sorted sequence represented by the receiving object. This
consequently reveals the sequence of the collection.

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the compare method used by this
somf_TSortedSequence object.

Example
somf_TSortedSequence ss;
Environment *ev;
ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
if (_somfGetSequencingFunction(ss,ev) !=
 somf_MOrderableCollectibleClassData.somfCompare)
{
 somPrintf(“\n What Compare Function are we using?\n”);
}
_somFree (ss);

Original Class
somf_TSortedSequence

Related Information
somfSetSequencingFunction Method

288 Programmer’s Reference for SOM Collection Classes

somfLast Method

somfLast Method
Gets the last object in a sorted sequence.

IDL Syntax
somf_MCollectible somfLast ();

Description
The somfLast method determines the last object in the sorted sequence represented by
the receiving object, and returns a pointer to it.

C cannot handle methods from different classes having the same name when the inherit
the name from different parents. somfLast is a method name declared in multiple parents
(for example: somf_TSequenceIterator, somf_TSequence). You will probably have to
fully qualify the name of the method (for example, somf_TSortedSequence_somfLast).
This is the only way the linker can tell them apart. This is not a problem in C++. In C++ you
could have referenced this method as:

seq->somfLast(ev);

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible; a pointer to the last somf_MCollectible object in the collection.
• SOMF_NIL; Nothing is in the collection.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_MOrderableCollectible obj;
ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
/* Determine the last object in ss */
obj = somf_TSortedSequence_somfLast(ss,ev);

_somFree (ss);

Original Class
somf_TSequence Class (overridden here)

Related Information
somfAfter Method
somfBefore Method
somfFirst Method

somf_TSortedSequence Class 289

somfMember Method

somfMember Method
Gets an object in a sorted sequence.

IDL Syntax
somf_MCollectible somfMember (in somf_MCollectible obj);

Description
The somfMember method determines whether a specified object is in the sorted sequence
represented by the receiving object. If found, returns a pointer to it.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. If any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified, so the
linker can tell them apart. This is not a problem in C++. In C++ you could have referenced
this method as:

d->somfMember(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object that may be a member.

Return Value
• somf_MCollectible; a pointer to the object the method determined as a member.
• SOMF_NIL; the object was not found.

Example
somf_TSortedSequence ss;
<your Class inheriting from somf_MOrderableCollectible> obj;
Environment *ev;
ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
obj =
 <your Class inheriting from somf_MOrderableCollectible>New();
_somfAdd(ss, ev, obj);
if (_somfMember(ss, ev, obj) != SOMF_NIL)
 somPrintf(“\n obj is a Member\n”);
else
 somPrintf(“\n ERROR: obj should be a Member\n”);
_somFree (ss);
_somFree (obj);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfOccurrencesOf Method

290 Programmer’s Reference for SOM Collection Classes

somfOccurrencesOf Method

somfOccurrencesOf Method
Determines the number of times an object is in a sorted sequence.

IDL Syntax
long somfOccurrencesOf (in somf_MCollectible obj);

Description
The somfOccurrencesOf method determines the number of times an object is in the
sorted sequence represented by the receiving object, and returns that number.

Parameters
receiver

A pointer to an object of class somf_TSortedSequence

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible to look for in the collection.

Return Value
This method returns the number of times obj occurs in the sorted sequence.

Example
somf_TSortedSequence ss;
<your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;
ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
obj = <your Class which inherits from
 somf_MOrderableCollectible>New();
somPrintf(“\n There are %d OccurrencesOf obj\n”,
 _somfOccurrencesOf(ss, ev, obj));
_somFree (ss);
_somFree (obj);

Original Class
somf_TSequence Class (overridden here)

Related Information
somfMember Method

somf_TSortedSequence Class 291

somfRemove Method

somfRemove Method
Removes an object from a sorted sequence.

IDL Syntax
somf_MCollectible somfRemove (in somf_MCollectible obj);

Description
The somfRemove method removes the specified object from the sorted sequence
represented by the receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents. You will probably have to fully qualify the method name. This is the only way the
linker can tell them apart. This is not a problem in C++. In C++ you could have referenced
this method as:

d->somfRemove(ev, obj);

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MCollectible object to be removed from the collection.

Return Value
There are two possible valid return values for this method:

somf_MCollectible
A pointer to the object that was actually removed.

SOMF_NILThe specified object was not found.

Example
somf_TSortedSequence ss;
<your Class which inherits from somf_MOrderableCollectible> obj;
Environment *ev;
ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
obj = <your Class which inherits from
 somf_MOrderableCollectible>New();
/* Remove obj from ss */
somf_TSortedSequence_somfRemove(ss,ev,obj);
_somFree (ss);
_somFree (obj);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfRemoveAll Method

292 Programmer’s Reference for SOM Collection Classes

somfRemoveAll Method

somfRemoveAll Method
Removes all of the objects from a sorted sequence.

IDL Syntax
void somfRemoveAll ();

Description
The somfRemoveAll method removes all of the objects from the sorted sequence
represented by the receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TCollection is used with
somf_THashTable, then the name of the method will have to be fully qualified. This is the
only way the linker can tell them apart. This is not a problem in C++. In C++ you could have
referenced this method as:

d->somfRemoveAll(ev);

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TSortedSequence ss;
Environment *ev;
ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
/* Remove all the objects from ss */
somf_TSortedSequence_somfRemoveAll(ss,ev);
_somFree (ss);

Original Class
somf_TCollection Class (overridden here)

Related Information
somfRemove Method

somf_TSortedSequence Class 293

somfSetSequencingFunction Method

somfSetSequencingFunction Method
Sets a pointer to the method used to compare objects in a sorted sequence, and
consequently determines the sequence of the collection.

IDL Syntax
void somfSetSequencingFunction (in somf_MBetterOrderableCompareFn fn);

Description
The somfSetSequencingFunction method sets a pointer to the method that will be used
to compare objects in the sorted sequence represented by the receiving object. This
consequently determines the sequence of the collection.

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

fn
A pointer to the compare method that will be used by this somf_TSortedSequence
object.

This should always be set to:

somf_MOrderableCollectibleClassData.somfCompare.

This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MOrderableCollectible Class. The
somf_TSortedSequence object will use this pointer to access the somfCompare
Method that was declared and defined in the object being inserted into, or removed
from, the somf_TSortedSequence object.

Example
somf_TSortedSequence ss;
Environment *ev;
ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
_somfSetSequencingFunction(ss, ev,
 somf_MOrderableCollectibleClassData.somfCompare);
_somFree (ss);

Original Class
somf_TSortedSequence Class

Related Information
somfGetSequencingFunction Method

294 Programmer’s Reference for SOM Collection Classes

somfTSortedSequenceInitF Method

somfTSortedSequenceInitF Method
Initializes a new sorted sequence, given the comparison method that it will use.

IDL Syntax
somf_TSortedSequence somfTSortedSequenceInitF(

in somf_MBetterOrderableCompareFn testfn);

Description
The somfTSortedSequenceInitF method initializes the new sorted sequence represented
by the receiving object, given a pointer to the compare method that the new object will use.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

testfn
A pointer to the compare method that will be used by this somf_TSortedSequence
object.

This should always be set to:

somf_MOrderableCollectibleClassData.somfCompare.

This specification is necessary because SOM needs a pointer to the original
declaration of the method, which resides in somf_MOrderableCollectible Class. The
somf_TSortedSequence object will use this pointer to access the somfCompare
Method that was declared and defined in the object being inserted into, or removed
from, the somf_TSortedSequence object.

Return Value
This method returns a pointer to an initialized somf_TSortedSequence object.

Example
somf_TSortedSequence s1;
Environment *ev;
ev = somGetGlobalEnvironment();
s1 = somf_TSortedSequenceNew();
_somfTSortedSequenceInitF(s1, ev,
 somf_MOrderableCollectibleClassData.somfCompare);
_somFree (s1);

Original Class
somf_TSortedSequence Class

Related Information
somfTSortedSequenceInitS Method

somf_TSortedSequence Class 295

somfTSortedSequenceInitS Method

somfTSortedSequenceInitS Method
Initializes a new sorted sequence, setting it equal to another given sorted sequence.

IDL Syntax
somf_TSortedSequence somfTSortedSequenceInitS (

in somf_TSortedSequence s);

Description
The somfTSortedSequenceInitS method initializes the new sorted sequence represented
by the receiving object. The method sets the new sorted sequence equal to a specified
source sorted sequence.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequence.

ev
A pointer to the Environment structure for the calling method.

s
A pointer to the somf_TSortedSequence object to which the new sorted sequence will
be equal.

Return Value
This method returns a pointer to an initialized somf_TSortedSequence object.

Example
somf_TSortedSequence s1;
somf_TSortedSequence s2;
Environment *ev;
ev = somGetGlobalEnvironment();
s1 = somf_TSortedSequenceNew();
s2 = somf_TSortedSequenceNew();
_somfTSortedSequenceInitS(s2, ev, s1);
_somFree (s1);
_somFree (s2);

Original Class
somf_TSortedSequence Class

Related Information
somfTSortedSequenceInitF Method

296 Programmer’s Reference for SOM Collection Classes

somf_TSortedSequenceIterator Class

somf_TSortedSequenceIterator Class
This class defines an iterator for the somf_TSortedSequence Class that will iterate over
all of the objects in a sorted sequence.

When you link, include the following library reference to get access to this class: somtk

Although the methods in this class are reentrant, the class is not thread-safe on
multi-thread applications. If a pointer to an instance of this class will be passed to
multiple threads, the code in those threads must guarantee thread-safe usage of the class.

File Stem
tssitr

Base
somf_TSequenceIterator Class

Metaclass
SOMClass Class

Ancestor Classes
somf_TSequenceIterator Class
somf_TIterator Class
SOMObject Class

New Methods
somfStartHere Method
somfTSortedSequenceIteratorInit Method

Overriding Methods
somfFirst Method
somfLast Method
somfNext Method
somfPrevious Method
somfRemove Method

somf_TSortedSequenceIterator Class 297

somfFirst Method

somfFirst Method
Resets the iterator and returns the first object of a sorted sequence.

IDL Syntax
somf_MCollectible somfFirst ();

Description
The somfFirst method resets the somf_TSortedSequenceIterator iterator given as the
receiving object. The method returns the first object of the somf_TSortedSequence
collection that corresponds to the specified iterator.

This method resets the iterator to the beginning of the sorted sequence even when other
operations on the collection cause the iterator to be invalidated. In the second case, this
method revalidates the iterator.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfFirst is a method name declared in multiple parents.
You will probably have to fully qualify the name of the method. This is the only way the
linker can tell them apart. This is not a problem in C++. In C++ you could have referenced
this method as:

itr->somfFirst(ev);

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• a pointer to the first somf_MCollectible object in the sorted sequence
• SOMF_NIL is returned if the collection is empty.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;
<Your class inheriting from somf_MOrderableCollectible> itrobj;
ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);
/* Iterate through the TSortedSequence */
itrobj =
 (<Your class that inherits from somf_MOrderableCollectible>*)
 somf_TSortedSequenceIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
/* Do something with itrobj */
{itrobj =
 (<Your class inheriting from somf_MOrderableCollectible>*)
 _somfNext(itr,ev);}
_somFree (ss);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

298 Programmer’s Reference for SOM Collection Classes

somfFirst Method

Related Information
somfNext Method
somfStartHere Method

somf_TSortedSequenceIterator Class 299

somfLast Method

somfLast Method
Gets the last object in a sorted sequence.

IDL Syntax
somf_MCollectible somfLast ();

Description
The somfLast method determines the last object in the somf_TSortedSequence Class
collection that corresponds to the somf_TSortedSequenceIterator Class iterator used as
the receiving object.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfLast is a method name declared in multiple parents
(for example: somf_TSequenceIterator, somf_TSequence). You will probably have to
fully qualify the name of the method. This is the only way the linker can tell them apart. This
is not a problem in C++. In C++ you could have referenced this method as:

itr->somfLast(ev);

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• a pointer to the last somf_MCollectible object in the sorted sequence.
• SOMF_NIL is returned if the collection is empty.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;
<Your class inheriting from somf_MOrderableCollectible> itrobj;
ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);
/* Go to the last object in ss */
itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 somf_TSortedSequenceIterator_somfLast(itr,ev);
_somFree (ss);
_somFree (itr);

Original Class
somf_TSequenceIterator (overridden here)

Related Information
somfPrevious Method

300 Programmer’s Reference for SOM Collection Classes

somfNext Method

somfNext Method
Gets the next object in a sorted sequence.

IDL Syntax
somf_MCollectible somfNext ();

Description
The somfNext method determines the next object in the somf_TSortedSequence Class
collection that corresponds to the somf_TSortedSequenceIterator iterator used as the
receiving object, and returns a pointer to it. Objects are retrieved in an order that reflects
the “ordered-ness” of the sorted sequence (or the lack of ordering on the sorted sequence
objects).

If the somf_TSortedSequence collection has changed since the last time the somfFirst
method was called, the iterator becomes invalid and will fail if asked to find the next object.
For example, if the collection’s somfAdd method were called after starting to iterate
through the collection, the iterator then would not allow iteration to continue. The iterator
must be reset, and the easiest way to do that is to call the iterator’s somfFirst method and
start over.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. Thus, if any child of somf_TIterator is used with a child of
somf_TPrimitiveLinkedListIterator, then the name of the method will have to be fully
qualified. This is the only way the linker can tell them apart. This is not a problem in C++. In
C++ you could have referenced this method as:

itr->somfNext(ev);

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible; a pointer to the next somf_MCollectible object in the sorted

sequence.
• SOMF_NIL; the end of the collection has been reached.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;
<Your class inheriting from somf_MOrderableCollectible> itrobj;
ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);
/* Iterate through the TSortedSequence */
itrobj =
 (<Your class inheriting from somf_MOrderableCollectible>*)
 somf_TSortedSequenceIterator_somfFirst(itr,ev);
while (itrobj != SOMF_NIL)
{
 /* Do something with itrobj */

somf_TSortedSequenceIterator Class 301

somfNext Method

 itrobj =
 (<Your class inheriting from somf_MOrderableCollectible>*)
 _somfNext(itr,ev);
}

_somFree (ss);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

Related Information
somfFirst Method
somfStartHere Method

302 Programmer’s Reference for SOM Collection Classes

somfPrevious Method

somfPrevious Method
Gets the previous object in a sorted sequence.

IDL Syntax
somf_MCollectible somfPrevious ();

Description
The somfPrevious method gets the previous object in the somf_TSortedSequence Class
collection that corresponds to the somf_TSortedSequenceIterator iterator used as the
receiving object, and returns a pointer to it.

If the somf_TSortedSequence collection has changed since somfLast was called, the
iterator becomes invalid and will fail if asked to find the previous object. If the collection’s
somfAdd method were called after starting to iterate through the collection, the iterator
then would not allow iteration to continue. The iterator must be reset. The easiest way is to
call the iterator’s somfLast method and restart.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. If any child of somf_TSequenceIterator is used with
somf_TPrimitiveLinkedListIterator, the name of the method will have to be fully qualified,
so the linker can tell them apart. This is not a problem in C++. In C++ you can referenced
this method as:

itr->somfPrevious(ev);

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceIterator.

ev
A pointer to the Environment structure for the calling method.

Return Value
• somf_MCollectible; a pointer to the previous object in the sorted sequence collection.
• SOMF_NIL; the beginning of the collection has been reached.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;
<Your class inheriting from somf_MOrderableCollectible> itrobj;
ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);
/* Go to the next to the last object in ss */
somf_TSortedSequenceIterator_somfLast(itr,ev);
itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 _somfPrevious(itr,ev);
_somFree (ss);
_somFree (itr);

Original Class
somf_TSortedSequenceIterator Class (overridden here)

Related Information
somfLast Method

somf_TSortedSequenceIterator Class 303

somfRemove Method

somfRemove Method
Removes the current object just returned by a previous method from a sorted sequence.

IDL Syntax
void somfRemove ();

Description
The somfRemove method removes the current object, the one returned by somfFirst,
somfNext, somfLast or somfPrevious, from the sorted sequence.

somfRemove is the only way to remove an object from a sorted sequence during iteration.
However, if multiple iterators are in process, all other iterators are invalidated, just as if
some other kind of change had occurred in the sorted sequence.

If the collection has changed (other than through the use of somfRemove of this iterator)
since the last time somfFirst or somfLast was called, this method will fail.

C cannot handle methods from different classes having the same name when they inherit
the name from different parents. somfRemove is a method name declared in multiple
parents. You will probably have to fully qualify the method name. This is the only way the
linker can tell them apart. This is not a problem in C++. In C++ you could have referenced
this method as:

itr->somfRemove(ev);

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceIterator.

ev
A pointer to the Environment structure for the calling method.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;
<Your class inheriting from somf_MOrderableCollectible> itrobj;
ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);
/* Use the Iterator’s Remove to remove the next to last object */
itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 somf_TSortedSequenceIterator_somfLast(itr,ev);
itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 _somfPrevious(itr,ev);
somf_TSortedSequenceIterator_somfRemove(itr,ev);
_somFree (ss);
_somFree (itr);

Original Class
somf_TIterator Class (overridden here)

304 Programmer’s Reference for SOM Collection Classes

somfStartHere Method

somfStartHere Method
Begins Iterating through a somf_TSortedSequence Class, starting at a given object.

IDL Syntax
somf_MOrderableCollectible somfStartHere (in somf_MOrderableCollectible obj);

Description
The somfStartHere method begins Iterating through a somf_TSortedSequence collection
that corresponds to the somf_TSortedSequenceIterator iterator used as the receiving
object. Iteration begins at the given object.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceIterator.

ev
A pointer to the Environment structure for the calling method.

obj
A pointer to the somf_MOrderableCollectible object where iteration will begin.

Return Value
• a pointer to the somf_MCollectible object where iteration started
• SOMF_NIL is returned if the collection is empty.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;
<Your class inheriting from somf_MOrderableCollectible> obj;
<Your class inheriting from somf_MOrderableCollectible> itrobj;

ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
obj = <Your Class that inherits from somf_MOrderableCollectible>New();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);

/* Iterate through the TSortedSequence starting at obj */
itrobj =
 (<Your class which inherits from somf_MOrderableCollectible>*)
 _somfStartHere(itr,ev,obj);
while (itrobj != SOMF_NIL)
{
 /* Do something with itrobj */
 itrobj =
 (<Your class inheriting from somf_MOrderableCollectible>*)
 _somfNext(itr,ev);
}
_somFree (ss);
_somFree (itr);

Original Class
somf_TSortedSequenceIterator Class

Related Information
somfFirst Method
somfNext Method

somf_TSortedSequenceIterator Class 305

somfTSortedSequenceIteratorInit Method

somfTSortedSequenceIteratorInit Method
Initializes a new somf_TSortedSequenceIterator object, given the collection of class
somf_TSortedSequence Class over which it will iterate.

IDL Syntax
somf_TSortedSequenceIterator somfTSortedSequenceIteratorInit (

 in somf_TSortedSequence h);

Description
The somfTSortedSequenceIteratorInit method initializes an iterator of class
somf_TSortedSequenceIterator, given the somf_TSortedSequence object over which
iteration is needed.

This is one of three ways to initialize a somf_TSortedSequenceIterator to point to an
instance of a somf_TSortedSequence. The other two ways are:

• to use the somf_TSortedSequence class’s somfCreateSequenceIterator method.
• to use somf_TSortedSequence’s somfCreateIterator Method.
Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceIterator.

ev
A pointer to the Environment structure for the calling method.

h
A pointer to the sorted sequence that the receiving object will iterate over.

Return Value
This method returns a pointer to an initialized somf_TSortedSequenceIterator object.

Example
somf_TSortedSequence ss;
Environment *ev;
somf_TSortedSequenceIterator itr;

ev = somGetGlobalEnvironment();
ss = somf_TSortedSequenceNew();
itr = somf_TSortedSequenceIteratorNew();
_somfTSortedSequenceIteratorInit(itr, ev, ss);

_somFree (ss);
_somFree (itr);

Original Class
somf_TSortedSequenceIterator Class

306 Programmer’s Reference for SOM Collection Classes

somfTSortedSequenceIteratorInit Method

somf_TSortedSequenceNode Class 307

somf_TSortedSequenceNode Class

somf_TSortedSequenceNode Class
The somf_TSortedSequenceNode class defines a node in a tree. Objects inserted into a
node must be of the somf_MOrderableCollectible Class. Each node contains a key and
links to a left child and a right child. An object of class somf_TSortedSequenceNode is
used by the somf_TSortedSequence Class for each node of a sorted sequence
collection. The somf_TSortedSequenceNode object provides the linkability to its two
adjacent nodes.

somf_TSortedSequenceNode class and methods are for creating a new class that:

• needs linkable nodes between objects of the class
• inherits from somf_TSortedSequence, and it would be appropriate to override some

methods of the somf_TSortedSequence class to define additional functionality for
those methods.

When you link, include the following library reference to get access to this class: somtk

This class is not thread-safe, even with semaphores around the calls, different tasks should
not be setting the values of the node. That situation is too prone to having multiple tasks
setting conflicting values, leaving the instance in an unacceptable state.

This class is reentrant.

File Stem
tssnode

Base
SOMObject Class

Metaclass
SOMClass Class

Ancestor Classes
SOMObject Class

New Methods
somfGetLeftChild Method
somfGetRightChild Method
somfGetParent Method
somfGetKey Method
somfGetRed Method
somfSetParent Method
somfSetLeftChild Method
somfSetRightChild Method
somfSetKey Method
somfSetRed Method
somfSetRedOn Method
somfTSortedSequenceNodeInitTMT Method
somfTSortedSequenceNodeInitTM Method
somfTSortedSequenceNodeInitT Method

Overriding Method
somDefaultInit Method

308 Programmer’s Reference for SOM Collection Classes

somfGetKey Method

somfGetKey Method
Gets the key to a node.

IDL Syntax
somf_MOrderableCollectible somfGetKey ();

Description
The somfGetKey method determines the key to the node represented by the receiving
object, and returns a pointer to the key.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the somf_MOrderableCollectible key.

Original Class
somf_TSortedSequenceNode

Related Information
somfSetKey Method

somf_TSortedSequenceNode Class 309

somfGetLeftChild Method

somfGetLeftChild Method
Gets the left child of a node.

IDL Syntax
somf_TSortedSequenceNode somfGetLeftChild ();

Description
The somfGetLeftChild method determines the left child of the node represented by the
receiving object, and returns a pointer to the node.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the left child of the node.

Original Class
somf_TSortedSequenceNode

Related Information
somfSetLeftChild Method

310 Programmer’s Reference for SOM Collection Classes

somfGetParent Method

somfGetParent Method
Gets the parent of a node.

IDL Syntax
somf_TSortedSequenceNode somfGetParent ();

Description
The somfGetParent method determines the parent of the node represented by the
receiving object, and returns a pointer to the parent.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns a pointer to the parent of the node.

Original Class
somf_TSortedSequenceNode

Related Information
somfSetParent Method

somf_TSortedSequenceNode Class 311

somfGetRed Method

somfGetRed Method
Determines whether a node is red or black.

IDL Syntax
boolean somfGetRed ();

Description
The somfGetRed method determines whether the node represented by the receiving
object is red or black.

Note: For a discussion of Red-Black Trees, you can refer to Algorithms in C++ by Robert
Sedgewick (Addison-Wesley Publishing Company, 1992).

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode.

ev
A pointer to the Environment structure for the calling method.

Return Value
• TRUE, the node is red.
• FALSE, the node is black.

Original Class
somf_TSortedSequenceNode

Related Information
somfSetRed Method
somfSetRedOn Method

312 Programmer’s Reference for SOM Collection Classes

somfGetRightChild Method

somfGetRightChild Method
Gets the right child of a node.

IDL Syntax
somf_TSortedSequenceNode somfGetRightChild ();

Description
The somfGetRightChild method determines the right child of the node represented by the
receiving object, and returns a pointer to the node.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode.

ev
A pointer to the Environment structure for the calling method.

Return Value
This method returns the pointer to the right child of the node.

Original Class
somf_TSortedSequenceNode

Related Information
somfSetRightChild Method

somf_TSortedSequenceNode Class 313

somfSetKey Method

somfSetKey Method
Sets the key to a node, given a pointer to a key object.

IDL Syntax
void somfSetKey (in somf_MOrderableCollectible k);

Description
The somfSetKey method sets the key to the node represented by the receiving object,
given a pointer to a somf_MOrderableCollectible object to be used as the key.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode.

ev
A pointer to the Environment structure for the calling method.

k
A pointer to the somf_MOrderableCollectible key.

Original Class
somf_TSortedSequenceNode

Related Information
somfGetKey Method

314 Programmer’s Reference for SOM Collection Classes

somfSetLeftChild Method

somfSetLeftChild Method
Sets the left child of a node, given a pointer to an object that will be the left child.

IDL Syntax
void somfSetLeftChild (in somf_TSortedSequenceNode n);

Description
The somfSetLeftChild method sets the left child of the node represented by the receiving
object, given a pointer to the somf_TSortedSequenceNode object to be used as the left
child.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode.

ev
A pointer to the Environment structure for the calling method.

n
A pointer to the left child of the node.

Original Class
somf_TSortedSequenceNode

Related Information
somfGetLeftChild Method

somf_TSortedSequenceNode Class 315

somfSetParent Method

somfSetParent Method
Sets the parent of a node, given an object to be used as the parent node.

IDL Syntax
void somfSetParent (in somf_TSortedSequenceNode n);

Description
The somfSetParent method sets the parent of the node represented by the receiving
object, given a pointer to the somf_TSortedSequenceNode object to be used as the
parent.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode.

ev
A pointer to the Environment structure for the calling method.

n
A pointer to the parent node of the receiving-object node.

Original Class
somf_TSortedSequenceNode

Related Information
somfGetParent Method

316 Programmer’s Reference for SOM Collection Classes

somfSetRed Method

somfSetRed Method
Sets a node to red or black.

IDL Syntax
void somfSetRed (in boolean on);

Description
The somfSetRed method sets the node represented by the receiving object to either red or
black, as determined by the boolean argument.

Note: For a discussion of Red-Black Trees, you can refer to Algorithms in C++ by Robert
Sedgewick (Addison-Wesley Publishing Company, 1992).

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode

ev
A pointer to the Environment structure for the calling method.

on
One of these two choices:

- TRUE, the node is red.
- FALSE, the node is black.

Original Class
somf_TSortedSequenceNode

Related Information
somfSetRedOn Method
somfGetRed Method

somf_TSortedSequenceNode Class 317

somfSetRedOn Method

somfSetRedOn Method
Sets a node to red.

IDL Syntax
void somfSetRedOn ();

Description
The somfSetRedOn method sets the node represented by the receiving object to red,
unconditionally.

Note: For a discussion of Red-Black Trees, you can refer to Algorithms in C++ by Robert
Sedgewick (Addison-Wesley Publishing Company, 1992).

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode.

ev
A pointer to the Environment structure for the calling method.

Original Class
somf_TSortedSequenceNode

Related Information
somfSetRed Method
somfGetRed Method

318 Programmer’s Reference for SOM Collection Classes

somfSetRightChild Method

somfSetRightChild Method
Sets the right child of a node, given a pointer to an object that will be the right child.

IDL Syntax
void somfSetRightChild (in somf_TSortedSequenceNode n);

Description
The somfSetRightChild method sets the right child of the node represented by the
receiving object, given a pointer to the somf_TSortedSequenceNode object to be used as
the right child.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode.

ev
A pointer to the Environment structure for the calling method.

n
A pointer to the right child of the node.

Original Class
somf_TSortedSequenceNode

Related Information
somfGetRightChild Method

somf_TSortedSequenceNode Class 319

somfTSortedSequenceNodeInitT Method

somfTSortedSequenceNodeInitT Method
Initializes a new somf_TSortedSequenceNode node, given its left child.

IDL Syntax
somf_TSortedSequenceNode somfTSortedSequenceNodeInitT (

 in somf_TSortedSequenceNode n1);

Description
The somfTSortedSequenceNodeInitT method initializes the new node represented by the
receiving object. The method call also specifies a somf_TSortedSequenceNode object to
be used as the left child of the new node.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode.

ev
A pointer to the Environment structure for the calling method.

n1
A pointer to the left child of the new somf_TSortedSequenceNode object.

Return Value
This method returns a pointer to an initialized somf_TSortedSequenceNode object.

Original Class
somf_TSortedSequenceNode

Related Information
somfTSortedSequenceNodeInitTMT Method
somfTSortedSequenceNodeInitTM Method

320 Programmer’s Reference for SOM Collection Classes

somfTSortedSequenceNodeInitTM Method

somfTSortedSequenceNodeInitTM Method
Initializes a new somf_TSortedSequenceNode node, given its left child and a key to the
new node.

IDL Syntax
somf_TSortedSequenceNode somfTSortedSequenceNodeInitTM (

 in somf_TSortedSequenceNode n1,
 in somf_MOrderableCollectible obj);

Description
The somfTSortedSequenceNodeInitTM method initializes the new node represented by
the receiving object. The method call also specifies a somf_TSortedSequenceNode
object to be used as the left child of the new node, and a somf_MOrderableCollectible
object to be used as the key to the new node.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode.

ev
A pointer to the Environment structure for the calling method.

n1
A pointer to the left child of the new somf_TSortedSequenceNode object.

obj
A pointer to the key of the new somf_TSortedSequenceNode object.

Return Value
This method returns a pointer to an initialized somf_TSortedSequenceNode object.

Original Class
somf_TSortedSequenceNode

Related Information
somfTSortedSequenceNodeInitTMT Method
somfTSortedSequenceNodeInitT Method

somf_TSortedSequenceNode Class 321

somfTSortedSequenceNodeInitTMT Method

somfTSortedSequenceNodeInitTMT Method
Initializes a new somf_TSortedSequenceNode node, given a key to the new node and its
left and right children.

IDL Syntax
somf_TSortedSequenceNode somfTSortedSequenceNodeInitTMT (

 in somf_TSortedSequenceNode n1,
 in somf_MOrderableCollectible obj,
 in somf_TSortedSequenceNode n2);

Description
The somfTSortedSequenceNodeInitTMT method initializes the new node represented by
the receiving object. The method call specifies a somf_MOrderableCollectible object to
be used as the key to the new node, and two somf_TSortedSequenceNode objects to be
used as the left and right children of the new node.

Note: You cannot override this method.

Parameters
receiver

A pointer to an object of class somf_TSortedSequenceNode.

ev
A pointer to the Environment structure for the calling method.

n1
A pointer to the left child of the new somf_TSortedSequenceNode object.

obj
A pointer to the key of the new somf_TSortedSequenceNode object.

n2
A pointer to the right child of the new somf_TSortedSequenceNode object.

Return Value
This method returns a pointer to an initialized somf_TSortedSequenceNode object.

Original Class
somf_TSortedSequenceNode

Related Information
somfTSortedSequenceNodeInitTM Method
somfTSortedSequenceNodeInitT Method

322 Programmer’s Reference for SOM Collection Classes

somfTSortedSequenceNodeInitTMT Method

323

A
Abstract classes

somf_TCollection 34
somf_TIterator 174
somf_TSequence 223
somf_TSequenceIterator 236

C
Collection classes

somf_MCollectible 1
somf_MLinkable 8
somf_MOrderableCollectible 14
somf_TAssoc 21
somf_TCollectibleLong 28
somf_TCollection 34
somf_TDeque 47
somf_TDequeIterator 75
somf_TDequeLinkable 83
somf_TDictionary 89
somf_TDictionaryIterator 132
somf_THashTable 139
somf_THashTableIterator 167
somf_TIterator 174
somf_TPrimitiveLinkedList 178
somf_TPrimitiveLinkedListIterator 192
somf_TPriorityQueue 199
somf_TPriorityQueueIterator 217
somf_TSequence 223
somf_TSequenceIterator 236
somf_TSet 243
somf_TSetIterator 269
somf_TSortedSequence 275
somf_TSortedSequenceIterator 296
somf_TSortedSequenceNode 307

D
Define

SOMF_CALL_COMPARE_FN 1
SOMF_CALL_HASH_FN 1
SOMF_NIL 1

E
EComparisonResult enum 14
enum

EComparisonResult 14

I
Iterator classes

som_TDictionaryIterator 132
somf_TDequeIterator 75
somf_THashTableIterator 167
somf_TPrimitiveLinkedListIterator 192
somf_TPriorityQueueIterator 217
somf_TSetIterator 269
somf_TSortedSequenceIterator 296

M
Main collection classes

somf_TDeque 47
somf_TDictionary 89
somf_THashTable 139
somf_TPrimitiveLinkedList 178
somf_TPriorityQueue 199
somf_TSet 243
somf_TSortedSequence 275

Mixin classes
somf_MCollectible 1
somf_MLinkable 8
somf_MOrderableCollectible 14

Q
Queues 47

S
SOMF_CALL_BETTER_ORDERABLE_COMPARE

_FN define 14
SOMF_CALL_COMPARE_FN define 1
SOMF_CALL_HASH_FN define 1
SOMF_CALL_ORDERABLE_COMPARE_FN

define 14
somf_MBetterOrderableCompareFn typedef 14
somf_MCollectible class 1

somfClone method 2
somfClonePointer method 3
somfHash method 4
somfIsEqual method 5
somfIsNotEqual method 6
somfIsSame method 7

Index

324 Programmer’s Reference for SOM Collection Classes

somf_MCollectibleCompareFn typedef 1
somf_MLinkable class 8

somfGetNext method 9
somfGetPrevious method 10
somfMLinkableInit method 11
somfSetNext method 12
somfSetPrevious method 13

somf_MollectibleHashFn typedef 1
somf_MOrderableCollectible class 14

somfCompare method 15
somfIsGreaterThan method 17
somfIsGreaterThanOrEqualTo method 18
somfIsLessThan method 19
somfIsLessThanOrEqualTo method 20

somf_MOrderableCompareFn typedef 14
SOMF_NIL define 1
somf_TAssoc class 21

somfGetKey method 22
somfGetValue method 23
somfSetKey method 24
somfSetValue method 25
somfTAssocInitM method 26
somfTAssocInitMM method 27

somf_TCollectibleLong class 28
somfGetValue method 29
somfHash method 30
somfIsEqual method 31
somfSetValue method 32
somfTCollectibleLongInit method 33

somf_TCollection class 34
somfAdd method 35
somfAddAll method 36
somfCount method 37
somfCreateIterator method 38
somfDeleteAll method 39
somfIsEqual method 40
somfMember method 41
somfRemove method 42
somfRemoveAll method 43
somfSetTestFunction method 44
somfTCollectionInit method 45
somfTestFunction method 46

somf_TDeque class 47
somfAdd method 49
somfAddAfter method 50
somfAddBefore method 51
somfAddFirst method 52
somfAddLast method 53
somfAfter method 54

somfAssign method 55
somfBefore method 56
somfCount method 57
somfCreateIterator method 58
somfCreateNewLink method 59
somfCreateSequenceIterator method 60
somfDeleteAll method 61
somfFirst method 62
somfInsert method 63
somfLast method 64
somfMember method 65
somfPop method 66
somfPush method 67
somfRemove method 68
somfRemoveAll method 69
somfRemoveFirst method 70
somfRemoveLast method 71
somfRemoveQ method 72
somfTDequeInitD method 73
somfTDequeInitF method 74

somf_TDequeIterator class 75
somfFirst method 76
somfLast method 77
somfNext method 78
somfPrevious method 80
somfRemove method 81
somfTDequeIteratorInit method 82

somf_TDequeLinkable class 83
somfGetValue method 84
somfSetValue method 85
somfTDequeLinkableInitDD method 86
somfTDequeLinkableInitDDM method 87

somf_TDictionary class 89
somfAdd method 91
somfAddKeyValuePairMM method 92
somfAddKeyValuePairMMB method 94
somfAssign method 96
somfCopyImplementation method 97
somfCount method 98
somfCreateIterator method 99
somfCreateNewImplementationF method 100
somfCreateNewImplementationFL method

102
somfCreateNewImplementationFLL method

104
somfCreateNewImplementationFLLL method

106
somfDeleteAll method 108
somfDeleteAllKeys method 109

 Index 325

somfDeleteAllValues method 110
somfDeleteKey method 111
somfGetHashFunction method 113
somfKeyAtM method 114
somfKeyAtMF method 115
somfMember method 117
somfRemove method 118
somfRemoveAll method 119
somfSetHashFunction method 120
somfTDictionaryInitD method 121
somfTDictionaryInitF method 122
somfTDictionaryInitFL method 123
somfTDictionaryInitFLL method 125
somfTDictionaryInitL method 127
somfTDictionaryInitLL method 128
somfTDictionaryInitLLF method 129
somfValueAt method 131

somf_TDictionaryIterator class 132
somfFirst method 133
somfNext method 135
somfRemove method 137
somfTDictionaryIteratorInit method 138

somf_THashTable class 139
somfAddMM method 141
somfAddMMB method 142
somfAssign method 144
somfCount method 145
somfDelete method 146
somfDeleteAll method 147
somfDeleteAllKeys method 148
somfDeleteAllValues method 149
somfGetGrowthRate method 150
somfGetHashFunction method 151
somfGetRehashThreshold method 152
somfGrow method 153
somfMember method 154
somfRemove method 155
somfRemoveAll method 156
somfRetrieve method 157
somfSetGrowthRate method 158
somfSetHashFunction method 159
somfSetRehashThreshold method 160
somfTHashTableInitFL method 161
somfTHashTableInitFLL method 162
somfTHashTableInitFLLL method 164
somfTHashTableInitH method 166

somf_THashTableIterator class 167
somfFirst method 168
somfHashTableIteratorInit method 173

somfNext method 170
somfRemove method 172

somf_TIterator class 174
somfFirst method 175
somfNext method 176
somfRemove method 177

somf_TPrimitiveLinkedList class 178
somfAddAfter method 179
somfAddBefore method 180
somfAddFirst method 180 to 181
somfAddLast method 182
somfAfter method 183
somfBefore method 184
somfCount method 185
somfFirst method 186
somfLast method 187
somfRemove method 188
somfRemoveAll method 189
somfRemoveFirst method 190
somfRemoveLast method 191

somf_TPrimitiveLinkedListIterator class 192
somfFirst method 193
somfLast method 194
somfNext method 195
somfPrevious method 196
somfTPrimitiveLinkedListIteratorInit method

197
somf_TPriorityQueue class 199

somfAdd method 201
somfAssign method 202
somfCount method 203
somfCreateIterator method 204
somfDeleteAll method 205
somfGetEqualityComparisonFunction method

 206
somfInsert method 207
somfMember method 208
somfPeek method 209
somfPop method 210
somfRemove method 211
somfRemoveAll method 212
somfReplace method 213
somfSetEqualityComparisonFuction method

214
somfTPriorityQueueInitF method 215
somfTPriorityQueueInitP method 216

somf_TPriorityQueueIterator class 217
somfFirst method 218
somfNext method 219

326 Programmer’s Reference for SOM Collection Classes

somfRemove method 220
somfTPriorityQueueIteratorInit method 221

somf_TSequence class 223
somfAdd method 224
somfAfter method 225
somfBefore method 226
somfCount method 227
somfCreateIterator method 228
somfDeleteAll method 229
somfFirst method 230
somfLast method 231
somfOccurrencesOf method 232
somfRemove method 233
somfRemoveAll method 234
somfTSequenceInit method 235

somf_TSequenceIterator class 236
somfFirst method 237
somfLast method 238
somfNext method 239
somfPrevious method 240
somfRemove method 241

somf_TSet class 243
somfAdd method 245
somfAssign method 246
somfCount method 247
somfCreateIterator method 248
somfDeleteAll method 249
somfDifferenceS method 250
somfDifferenceSS method 251
somfGetHashFunction method 252
somfIntersectionS method 253
somfIntersectionSS method 254
somfMember method 255
somfRehash method 256
somfRemove method 257
somfRemoveAll method 258
somfSetHashFunction method 259
somfTSetInitF method 260
somfTSetInitFL method 261
somfTSetInitL method 262
somfTSetInitLF method 263
somfTSetInitS method 264
somfUnionS method 265
somfUnionSS method 266
somfXorS method 267
somfXorSS method 268

somf_TSetIterator class 269
somfFirst method 270
somfNext method 271

somfRemove method 273
somfTSetIteratorInit method 274

somf_TSortedSequence class 275
somfAdd method 277
somfAfter method 278
somfAssign method 279
somfBefore method 280
somfCount method 281
somfCreateIterator method 282
somfCreateSequenceIterator method 283
somfCreateSortedSequenceNode method

284
somfDeleteAll method 285
somfFirst method 286
somfGetSequencingFunction method 287
somfLast method 288
somfMember method 289
somfOccurrencesOf method 290
somfRemove method 291
somfRemoveAll method 292
somfSetSequencingFunction method 293
somfTSortedSequenceInitF method 294
somfTSortedSequenceInitS method 295

somf_TSortedSequenceIterator class 296
somfFirst method 297
somfLast method 299
somfNext method 300
somfPrevious method 302
somfRemove method 303
somfStartHere method 304
somfTSortedSequenceIteratorInit method 305

somf_TSortedSequenceNode class 307
somfGetKey method 308
somfGetLeftChild method 309
somfGetParent method 310
somfGetRed method 311
somfGetRightChild method 312
somfSetKey method 313
somfSetLeftChild method 314
somfSetParent method 315
somfSetRed method 316
somfSetRefOn method 317
somfSetRightChild method 318
somfTSortedSequenceNodeInitT method 319
somfTSortedSequenceNodeInitTM method

320
somfTSortedSequenceNodeInitTMT method

321
somfAdd method 49, 91, 201, 224, 245, 277

 Index 327

somfAddAfter method 50, 179, 183
somfAddAll method 36
somfAddBefore method 51, 180
somfAddFirst method 52, 180 to 181
somfAddKeyValuePairMM method 92
somfAddKeyValuePairMMB method 94
somfAddLast method 53, 182
somfAddMM method 141
somfAddMMB method 142
somfAfter method 54, 225, 278
somfAssign method 55, 96, 144, 202, 246, 279
somfBefore method 56, 184, 226, 280
somfClone method 2
somfClonePointer method 3
somfCompare method 15
somfCopyImplementation method 97
somfCount method 57, 98, 145, 185, 203, 227,

247, 281
somfCreateIterator method 58, 99, 204, 228, 248,

 282
somfCreateNewImplementationF method 100
somfCreateNewImplementationFL method 102
somfCreateNewImplementationFLL method 104
somfCreateNewImplementationFLLL method 106
somfCreateNewLink method 59
somfCreateSequenceIterator method 60, 283
somfCreateSortedSequenceNode method 284
somfDelete method 146
somfDeleteAll method 61, 108, 147, 205, 229,

249, 285
somfDeleteAllKeys method 109, 148
somfDeleteAllValues method 110, 149
somfDeleteKey method 111
somfDifferenceS method 250
somfDifferenceSS method 251
somfFirst method 62, 76, 133, 168, 175, 186,

193, 218, 230, 237, 270, 286, 297
somfGetEqualityComparisonFunction method 206
somfGetGrowthRate method 150
somfGetHashFunction method 113, 151, 252
somfGetKey method 22, 308
somfGetLeftChild method 309
somfGetNext method 9
somfGetParent method 310
somfGetPrevious method 10
somfGetRed method 311
somfGetRehashThreshold method 152
somfGetRightChild method 312

somfGetSequencingFunction method 287
somfGetValue method 84
somfGrow method 153
somfHash method 4, 30
somfInsert method 63, 207
somfIntersectionS method 253
somfIntersectionSS method 254
somfIsEqual method 5, 31, 40
somfIsGreaterThan method 17
somfIsGreaterThanOrEqualTo method 18
somfIsLessThan method 19
somfIsLessThanOrEqualTo method 20
somfIsNotEqual method 6
somfIsSame method 7
somfKeyAtM method 114
somfKeyAtMF method 115
somfLast method 64, 77, 187, 194, 231, 238,

288, 299
somfMember method 65, 117, 154, 208, 255,

289
somfMLinkableInit method 11
somfNext method 78, 135, 170, 176, 195, 219,

239, 271, 300
somfOccurencesOf method 232
somfOccurrencesOf method 290
somfPeek method 209
somfPop method 66, 210
somfPrevious method 80, 196, 240, 302
somfPush method 67
somfRehash method 256
somfRemove method 68, 81, 118, 137, 155, 172,

 177, 188, 211, 220, 233, 241, 257, 273,
291, 303

somfRemoveAll method 69, 119, 156, 189, 212,
234, 258, 292

somfRemoveFirst method 70, 190
somfRemoveLast method 71, 191
somfRemoveQ method 72
somfReplace method 213
somfRetrieve method 157
somfSetEqualityComparisonFunction method 214
somfSetGrowthRate method 158
somfSetHashFunction method 120, 159, 259
somfSetKey method 24, 313
somfSetLeftChild method 314
somfSetNext method 12
somfSetParent method 315
somfSetPrevious method 13

328 Programmer’s Reference for SOM Collection Classes

somfSetRed method 316
somfSetRedOn method 317
somfSetRehashThreshold method 160
somfSetRightChild method 318
somfSetSequencingFunction method 293
somfSetTestFunction method 44
somfSetValue method 85
somfStartHere method 304
somfTAssocInitM method 26
somfTAssocInitMM method 27
somfTCollectibleLongInit method 33
somfTCollectionInit method 45
somfTDequeInitD method 73
somfTDequeInitF method 74
somfTDequeIteratorInit method 82
somfTDequeLinkableInitDD method 86
somfTDequeLinkableInitDDM method 87
somfTDicctionaryInitD method 121
somfTDicctionaryInitF method 122
somfTDicctionaryInitFL method 123
somfTDicctionaryInitFLL method 125
somfTDicctionaryInitL method 127
somfTDicctionaryInitLL method 128
somfTDicctionaryInitLLF method 129
somfTDictionaryIteratorInit method 138
somfTestFunction method 46
somfTHashTableInitFL method 161
somfTHashTableInitFLL method 162
somfTHashTableInitFLLL method 164
somfTHashTableInitH method 166
somfTHashTableIteratorInit method 173
somfTPrimitiveLinkedListIteratorInit method 197
somfTPriorityQueueInitF method 215
somfTPriorityQueueInitP method 216
somfTPriorityQueueIteratorInit method 221
somfTSequenceInit method 235
somfTSetInitF method 260
somfTSetInitFL method 261
somfTSetInitL method 262
somfTSetInitLF method 263
somfTSetInitS method 264
somfTSetIteratorInit method 274
somfTSortedSequenceInitF method 294
somfTSortedSequenceInitS method 295
somfTSortedSequenceIteratorInit method 305
somfTSortedSequenceNodeInitT method 319
somfTSortedSequenceNodeInitTM method 320
somfTSortedSequenceNodeInitTMT method 321

somfUnionS method 265
somfUnionSS method 266
somfValueAt method 131
somfXorS method 267
somfXorSS method 268
Stacks 47
Supporting classes

somf_TAssoc 21
somf_TCollectibleLong 28
somf_TDequeLinkable 83
somf_TSortedSequenceNode 307

T
typedef

somf_MCollectibleCompareFn 1
somf_MCollectibleHashFn 1

