Python Reference Manual

Guido van Rossum

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA
E-mail: guido@cnri.reston.va.us, guido@python.org

November 26, 1997
Release 1.5b1

ABSTRACT

Python is an interpreted, object-oriented, high-level programming language with dy-
namic semantics. Its high-level built in data structures, combined with dynamic typing
and dynamic binding, make it very attractive for rapid application development, as well
asfor use as a scripting or glue language to connect existing components together. Py-
thon'ssimple, easy to learn syntax emphasi zes readability and therefore reduces the cost
of program maintenance. Python supports modules and packages, which encourages
program modularity and code reuse. The Python interpreter and the extensive standard
library are availablein source or binary form without charge for all major platforms, and
can be freely distributed.

This reference manual describes the syntax and “core semantics’ of the language. It is
terse, but attempts to be exact and complete. The semantics of non-essentia built-in ob-
ject types and of the built-in functions and modules are described in the Python Library
Reference. For an informal introduction to the language, see the Python Tutorial. For C
or C++ programmers, two additional manuals exist: Extending and Embedding the Py-
thon Interpreter describes the high-level picture of how to write a Python extension
module, and the Python/C API Reference Manual describes the interfaces available to
C/C++ programmers in detail.

Copyright © 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and that the names of
Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or CNRI not be
used in advertising or publicity pertaining to distribution of the software without specific, written prior per-
mission.

While CWI isthe initial source for this software, a modified version is made available by the Corporation
for National Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIESWITH RE-
GARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILI-
TY AND FITNESS, INNO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN AC-
TION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Table of Contents

CHAPTER 1 Introduction 1
Notation. 1
CHAPTER 2 Lexical analysis, 3
Linestructure e 3
Logical lines. 3
Physicallines 3
Comments. e 3
Explicitlinejoining. 3
Implicitlinejoining., 4
Blanklines 4
Indentation 4
Whitespace betweentokens. 5
Othertokens., 5
Identifiersandkeywords 5
Keywords 6
Reserved classes of identifiers 6
Literals e 6
Stringliterals 6
String literal concatenation 8
Numericliterals., 8
Integer and long integer literals 8
Floating point literals 8
Imaginary literals, 9
Operators 9
Delimiters. e 9
CHAPTER 3 Datamodel 11
Objects, valuesandtypes. 11
Thestandard type hierarchy. 12
Special methodnames. oL 18
Basiccustomization. 18
Customizing attributeaccess 19

Emulating calableobjects 20

Table of Contents

Emulating sequence and mappingtypes 20
Additional methods for emulation of sequencetypes20
Emulating numerictypes 21
CHAPTER 4 Executionmodd L. 23
Code blocks, execution frames, and name spaces. 23
Exceptions. 25
CHAPTER 5 Expressions, 27
Arithmeticconversions 27
Atoms 27
Identifiers(Names) 27
Literals. 28
Parenthesizedforms. 28
Listdisplays. 28
Dictionary displays 28
Stringconversions. 29
Primaries. 29
Attributereferences 29
Subscriptions L 29
Sicings 30
Cals. 31
Thepoweroperator 32
Unary arithmetic operations. 32
Binary arithmeticoperations 32
Shiftingoperations 33
Binary bit-wiseoperations L. 33
Comparisons. 34
Booleanoperations L 35
Expressionlists 36

SUMMary 37

Table of Contents

CHAPTER 6 Smplestatements L. 39
Expressionstatements. L. 39
Assertstatements Lo 39
Assignmentstatements L 40
Thepassstatement 41
Thedel statement 41
Theprintstatement 42
Thereturnstatement 42
Theraisestatement 42
Thebresk statement. 43
Thecontinuestatement 43
Theimportstatement 43
Theglobal statement 44
Theexecstatement 44

CHAPTER 7 Compound statements 47
Theifstatement. 47
Thewhilestatement. 48
Theforstatement 438
Thetrystatement 49
Function definitions. L, 50
Classdefinitions. 51

CHAPTER 8 Top-level components 53
Complete Pythonprograms. 53
Fileinput 53
Interactiveinput. L 53
Expressioninput. 54

CHAPTER 1. INTRODUCTION

This reference manual describes the Python programming language. It is not intended as a tutorial .

While | am trying to be as precise as possible, | have chosen to use English rather than formal speci-
fications for everything except syntax and lexical analysis. This should make the document more un-
derstandable to the average reader, but will leave room for ambiguities. Consequently, if you were
coming from Mars and tried to re-implement Python from this document alone, you might have to
guess things and in fact you would probably end up implementing quite a different language. On the
other hand, if you are using Python and wonder what the precise rules about a particular area of the
language are, you should definitely be able to find them here. If you would like to see a more formal
definitition of the language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to alanguage reference document — the im-
plementation may change, and other implementations of the same language may work differently. On
the other hand, thereis currently only one Python implementation in widespread use, and its particul ar
quirks are sometimes worth being mentioned, especially where the implementati on imposes addition-
al limitations. Therefore, you'll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are not
documented here, but in the separate Python Library Reference document. A few built-in modulesare
mentioned when they interact in a significant way with the language definition.

1.1 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the
following style of definition:

name: lc_letter (lc_letter | " ")*
lc_letter: "at..."z"

The first line says that aname isan 1c¢_letter followed by a sequence of zero or more
lc_lettersand underscores. Anlc_letter inturnisany of the single characters ‘a through
‘Z'. (Thisruleis actually adhered to for the names used in lexical and grammar rules in this docu-
ment.)

Each rule begins with a name (which is the name defined by the rule) and acolon. A vertical bar (|)
is used to separate aternatives; it is the least binding operator in this notation. A star (*) means zero
or more repetitions of the preceding item; likewise, a plus (+) means one or more repetitions, and a
phrase enclosed in square brackets ([1) means zero or one occurrences (in other words, the enclosed
phraseisoptional). The * and + operators bind as tightly as possible; parentheses are used for group-
ing. Literal strings are enclosed in quotes. White space is only meaningful to separate tokens. Rules
are normally contained on a single line; rules with many alternatives may be formatted alternatively
with each line after the first beginning with avertical bar.

In lexical definitions (as in the example above), two more conventions are used: Two literal charac-
ters separated by three dots mean a choice of any single character in the given (inclusive) range of
ASCII characters. A phrase between angular brackets (<. . . >) gives an informal description of the
symbol defined; e.g. this could be used to describe the notion of ‘ control character’ if needed.

uononpo.|

Even though the notation used is amost the same, there is a big difference between the meaning of
lexical and syntactic definitions: alexical definition operates on theindividual characters of the input
source, while a syntax definition operates on the stream of tokens generated by the lexical analysis.
All uses of BNF in the next chapter (“Lexical Analysis’) are lexical definitions; uses in subsequent

chapters are syntactic definitions.

CHAPTER 2: LEXICAL ANALYSIS

A Python program is read by aparser. Input to the parser is a stream of tokens, generated by the lex-
ical analyzer. This chapter describes how the lexical analyzer breaks afileinto tokens.

Python uses the 7-bit ASCII character set for program text and string literals. 8-bit characters may be
used in string literals and comments but their interpretation is platform dependent; the proper way to
insert 8-hit charactersin string literalsis by using octal or hexadecimal escape sequences.

Therun-time character set depends on the I/O devices connected to the program but is generally a su-
perset of ASCII.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters
is1SO Latin-1 (an ASCII superset that covers most western languages that use the Latin alphabet),
but it is possible that in the future Unicode text editors will become common. These generally usethe
UTF-8 encoding, which isaso an ASCII superset, but with very different use for the characters with
ordinals 128-255. While there is no consensus on this subject yet, it is unwise to assume either Latin-
1 or UTF-8, even though the current implementation appearsto favor Latin-1. This applies both to the
source character set and the run-time character set.

2.1 Line structure
A Python program is divided in anumber of logical lines.

2.1.1 Logical lines

The end of each logical lineis represented by the token NEWLINE. Statements cannot cross logical
line boundaries except where NEWLINE is allowed by the syntax (e.g. between statements in com-
pound statements). A logical lineis constructed from one or more physical lines by following the ex-
plicit or implicit line joining rules.

2.1.2 Physical lines

A physical line endsin whatever the current platform’s conventionisfor terminating lines. On UNI X,
thisisthe ASCII LF (linefeed) character. On DOS/Windows, it isthe ASCII sequence CR LF (return
followed by linefeed). On Macintosh, it isthe ASCII CR (return) character.

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of
the physical line. A comment signifiesthe end of thelogical line unlessthe implicit linejoining rules
are invoked. Comments are ignored by the syntax ; they are not tokens.

2.1.4 Explicit line joining

Two or more physical linesmay bejoined intological linesusing backslash characters(\), asfollows:
when aphysical line endsin abackslash that is not part of astring literal or comment, it isjoined with
the following forming asingle logical line, deleting the backslash and the following end-of-line char-
acter. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \

sIsAjeue [eJIXa7 e

and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A back-
slash does not continue atoken except for string literals (i.e., tokens other than string literals cannot be split
across physical lines using a backslash). A backslashisillegal elsewhere on aline outside a string literal.

2.1.5 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line
without using backsashes. For example:

month names = [’Januari’, 'Februari’, ’'Maart’, # These are the
"April’, "Mei’, "Juni’, # Dutch names
"Juli’, "Augustus’, ’'September’, # for the months
"Oktober’, ’'November’, ’'December’] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important.
Blank continuation lines are allowed. Thereis no NEWLINE token between implicit continuation lines. Im-
plicit continued lines can also occur within triple-quoted strings (see below); in that case they cannot carry
comments.

2.1.6 Blank lines

A logical linethat contains only spaces, tabs, formfeeds, and possibly acomment, isignored (i.e., no NEW-
LINE token is generated), except that during interactive input of statements, an entirely blank logical line
(i.e. one containing not even whitespace or a comment) terminates a multi-line statement.

2.1.7 Indentation

L eading whitespace (spaces and tabs) at the beginning of alogical line is used to compute the indentation
level of the line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from |€eft to right) by one to eight spaces such that the total number of characters up
to there isamultiple of eight (thisisintended to be the same rule as used by UNIX). The total number of
gpaces preceding thefirst non-blank character then determines the line' s indentation. Indentation cannot be
split over multiple physical lines using backslashes; the whitespace up to the first backslash determines the
indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it isun-
wise to use a mixture of spaces and tabs for the indentation in asingle sourcefile.

A formfeed character may be present at the start of the line; formfeed characters occurring elsewherein the
leading whitespace have an undefined effect (for instance, they may reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a
stack, asfollows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off
again. The numbers pushed on the stack will always be strictly increasing from bottom to top. At the begin-
ning of each logical line, the line' sindentation level is compared to the top of the stack. If it is equal, noth-
ing happens. If it islarger, it is pushed on the stack, and one INDENT token is generated. If it issmaller, it

must be one of the numbers occurring on the stack; all numbers on the stack that are larger are popped
off, and for each number popped off aDEDENT token isgenerated. At the end of thefile, aDEDENT
token is generated for each number remaining on the stack that islarger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l) :
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r =[]
for 1 in range(len(l)):
s = 1[:1] + 1[i+1:]
p = perm(s)
for x in p:
r.append (1l[i:1i+1] + x)
return r

The following example shows various indentation errors:

def perm(l) : # error: first line indented
for 1 in range(len(l)): # error: not indented
s = 1[:1] + 1[1i+1:]
p = perm(1[:1] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append (1[i:1i+1] + x)
return r # error: inconsistent dedent

(Actualy, thefirst three errors are detected by the parser; only thelast error isfound by the lexical an-
ayzer — theindentation of return r does not match alevel popped off the stack.)

2.1.8 Whitespace between tokens
Except at the beginning of alogical lineor in string literals, the whitespace characters space, tab and
formfeed can be used interchangeably to separate tokens. Whitespace is heeded between two tokens

only if their concatenation could otherwise be interpreted as a different token (e.g., ab is one token,
but a b istwo tokens).

2.2 Other tokens
Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers,
keywords, literals, operators, and delimiters. Whitespace characters (other than line terminators, dis-

cussed earlier) are not tokens, but serve to delimit tokens. Where ambiguity exists, atoken comprises
the longest possible string that forms a legal token when read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions:

identifier: (letter|" ") (letter|digit|" ")x*
letter: lowercase | uppercase

lowercase: "at..."z"

uppercase: "A"., .. "Z2"

digit: "o, . ."9n

sIsAjeue [eJIXa7 e

Identifiers are unlimited in length. Caseis significant.

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as
ordinary identifiers. They must be spelled exactly as written here:

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass

def finally in print

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have specia meanings. These are:

Table 1. Special Meanings of Identifiers

Form Meaning
_* Not imported by £from module import *
__* | System-defined name
_* Class-private name mangling

(XXX need section references here.)
2.4 Literals
Literals are notations for constant values of some built-in types

2.4.1 String literals
String literals are described by the following lexical definitions:

stringliteral: [rawprefix] (shortstring | longstring)

rawprefix: "r" | "R"

shortstring: "/ shortstringitem* "’'" | /"’ gshortstringitem* ’"’
longstring: mrrrn longstringitem* "/ | rmnns Jongstringitem* sttt

shortstringitem: shortstringchar | escapeseq

longstringitem: longstringchar | escapeseg

shortstringchar: <any ASCII character except "\" or newline or the quotes>
longstringchar: <any ASCII character except "\">

escapeseq: "\" <any ASCII character>

In plain English: String literals can be enclosed in single quotes (*) or double quotes (). They can al'so be
enclosed in groups of three single or double quotes (these are generally referred to astriple-quoted strings).
The backslash (\) character is used to escape characters that otherwise have a special meaning, such as new-
line, backslash itself, or the quote character. String literals may optionally be prefixed with aletter ‘r’ or
‘R’; such strings are called raw strings and use different rules for backslash escape sequences.

In“long strings” (strings surrounded by sets of three quotes), unescaped newlines and quotes are al-
lowed (and are retained), except that three unescaped quotesin arow terminate the string. (A “ quote”
isthe character used to open the string, i.e. either * or ".)

Unlessan ‘1’ or ‘R’ prefix is present, escape sequences in strings are interpreted according to rules
similar to those used by Standard C. The recognized escape sequences are:

Table 2: Escape Sequences

Escape Sequence Meaning

\newline Ignored

\\ Backslash (\)

\’ Single quote (')

\" Double quote (")

\a ASCI| Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCI| Vertical Tab (VT)

\ 000 ASCII character with octal value ooo
\xXXX... ASCII character with hex value xx...

In strict compatibility with Standard C, up to three octal digits are accepted, but an unlimited number
of hex digitsistaken to be part of the hex escape (and then the lower 8 bits of the resulting hex num-
ber are used in all current implementations...).

Unlike Standard C, al unrecognized escape sequences are | eft in the string unchanged, i.e., the back-
dashisleft inthe string. (This behavior is useful when debugging: if an escape sequence is mistyped,
the resulting output is more easily recognized as broken.)

Whenan ‘r’ or ‘R’ prefix is present, all backslashes are left in the string. For example, the string lit-
eral r"\n" consistsof two characters. abackslash and alowercase ‘n’. String quotes can be escaped
with a backslash, but the backslash remainsin the string; for example, r"\ " " isavalid string literal
consisting of two characters: a backslash and a double quote.

sIsAjeue [eJIXa7 e

2.4.1.1 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conven-
tions, are alowed, and their meaning is the same as their concatenation. Thus, "hello" ‘world’

isequivalent to "helloworld". This feature can be used to reduce the number of backslashes
needed, to split long strings conveniently across long lines, or even to add comments to parts of
strings, for example:

regex.compile (" [A-Za-z]" # letter or underscore
"[A-Za-z0-9]*" # letter, digit or underscore

)

Note that thisfeature is defined at the syntactical level, but implemented at compiletime. The‘+' op-
erator must be used to concatenate string expressions at run time. Also note that literal concatenation
can use different quoting styles for each component.

24.2 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point humbers, and
imaginary numbers.

2.4.2.1 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger: integer ("1"|"L")

integer: decimalinteger | octinteger | hexinteger
decimalinteger: nonzerodigit digit* | "o"

octinteger: "0" octdigit+

hexinteger: "M ("x"|"X") hexdigit+

nonzerodigit: min, . mon

octdigit: Q...

hexdigit: digit|"a"™..."E"|"Ar, . nEF"

Although both lower case ‘I' and upper case ‘L’ are allowed as suffix for long integers, it is strongly
recommended to aways use ‘L’, since the letter ‘I’ looks too much like the digit ‘1'.

Plain integer decimal literals must be at most 2147483647 (i.e., the largest positive integer, using 32-
bit arithmetic). Plain octal and hexadecimal literals may be as large as 4294967295, but values larger
than 2147483647 are converted to a negative value by subtracting 4294967296. There is no limit for
long integer literals apart from what can be stored in available memory.

Some examples of plain and long integer literals:

7 2147483647 0177 0x80000000
3L 79228162514264337593543950336L 0377L 0x100000000L

2.4.2.2 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber: pointfloat | exponentfloat
pointfloat: [intpart] fraction | intpart "."
exponentfloat: (intpart | pointfloat) exponent
intpart: nonzerodigit digit* | "o0"

fraction: nom o digit+
exponent : (me" |"E") ["4m|v-n] digit+

Note that the integer part of a floating point number cannot look like an octal integer. The allowed
range of floating point literals is implementation-dependent. Some examples of floating point liter-
as:

3.14 10. .001 lel00 3.14e-10

2.4.2.3 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber : (floatnumber | intpart) ("j"|["J")

An imaginary literals yields a complex number with area part of 0.0. Complex numbers are repre-
sented as a pair of floating point numbers and have the same restrictions on their range. To create a

complex number with anonzero real part, add afloating point number toit, e.g. (3+43) . Some ex-
amples of imaginary literals:

3.1435 10.3 10 .001j 1el100j 3.14e-10j

Note that numeric literals do not include asign; aphrase like -1 is actually an expression composed
of the unary operator ‘ -’ and the literal 1.

2.5 Operators

The following tokens are operators:

+ - * %

>~
- 1 o°

*
<< >> & |

< > <= >= == .= <>

The comparison operators <> and ! = are aternate spellings of the same operator; != isthe preferred
spelling, <> is obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:
() [] { }

. \ .
I . . -]

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a
special meaning as ellipsesin dlices.

The following printing ASCII characters have special meaning as part of other tokens or are other-
wise significant to the lexical analyzer:

’ n # \

The following printing ASCII characters are not used in Python. Their occurrence outside string lit-
erals and comments is an unconditiona error:

@ S ?

sIsAjeue [eJIXa7 e

10

CHAPTER 3: DATA MODEL

3.1 Objects, values and types

Objects are Python's abstraction for data. All data in a Python program is represented by objects or
by relations between objects. (In conformance to Von Neumann’s model of a*“ stored program com-
puter”, code is aso represented by objects.)

Every object has an identity, atype and avalue. An object’s identity never changes once it has been
created; you may think of it asthe object’saddressin memory. The‘is’ operator comparesthe iden-
tity of two objects; theid ()’ function returns an integer representing its identity (currently imple-
mented as its address). An object’s type is also unchangeable. It determines the operations that an
object supports (e.g. “does it have alength?’) and also defines the possible values for objects of that
type. The ‘type ()’ function returns an object’ s type (which is an object itself). The value of some
objects can change. The ‘==" operator compares the value of two objects. Objects whose value can
change are said to be mutable; objects whose value is unchangeable once they are created are called
immutable. An object’s (im)mutability is determined by its type; for instance, numbers, strings and
tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be gar-
bage-collected. An implementation is allowed to postpone garbage collection or omit it altogether —
it isamatter of implementation quality how garbage collection isimplemented, as long as no objects
are collected that are till reachable. (Implementation note: the current implementation uses a refer-
ence-counting scheme which collects most objects as soon as they become unreachable, but never
collects garbage containing circular references.)

Note that the use of the implementation’ s tracing or debugging facilities may keep objects alive that
would normally be collectable. Also note that catching an exceptionwitha‘try. . .except’ state-
ment may keep objects dive.

Some objects contain references to “external” resources such as open files or windows. It is under-
stood that these resources are freed when the object is garbage-collected, but since garbage collection
is not guaranteed to happen, such objects also provide an explicit way to release the external resource,
usualy aclose () method. Programsare strongly recommended to always explicitly close such ob-
jects. The‘try...finally’ statement provides a convenient way to do this.

Some objects contain referencesto other objects; these are called containers. Examples of containers
are tuples, lists and dictionaries. The references are part of a container’s value. In most cases, when
wetalk about the value of acontainer, weimply the values, not theidentities of the contained objects;
however, when we talk about the (im)mutability of acontainer, only theidentities of the immediately
contained objects are implied. So, if an immutable container (like a tuple) contains a reference to a
mutabl e object, its value changes if that mutable object is changed.

Types affect dmost al aspects of object behavior. Even the importance of object identity is affected
in some sense: for immutable types, operations that compute new values may actually return arefer-
ence to any existing object with the same type and value, while for mutable objects this is not al-
lowed. E.g. after‘‘a = 1; b = 1", a andb may or may not refer to the same object with the value
one, depending on theimplementation, but after “‘c = [1; d = []1"7,candd areguaranteedto
refer to two different, unique, newly created empty lists. (Notethat *‘c = d = []" assignsthe
same object to both ¢ and 4.)

11

[opow ereq o

3.2 The standard type hierarchy

Below isalist of the types that are built into Python. Extension modules written in C can define ad-
ditional types. Future versions of Python may add types to the type hierarchy (e.g. rational numbers,
efficiently stored arrays of integers, etc.).

Some of the type descriptions below contain a paragraph listing ‘specia attributes'. These are at-
tributes that provide access to the implementation and are not intended for general use. Their defini-
tion may change in the future. There are also some ‘generic’ special attributes, not listed with the
individual objects: methods_ isalist of the method names of a built-in object, if it has any;
__members__ isalist of the data attribute names of a built-in object, if it has any.

None Thistype hasasingle value. Thereisasingle object with this value. This object is accessed
through the built-in name None. It is used to signify the absence of a value in many situa-
tions, e.g. it isreturned from functions that don’t explicitly return anything. Itstruth value is

false.
Ellipsis Thistype has asingle value. There is a single object with this value. This object is accessed
through the built-in name E11ipsis. It isused to indicate the presence of the **...”" syntax

inadlice. Itstruth value istrue.

Numbers These are created by numeric literals and returned as results by arithmetic operators and
arithmetic built-in functions. Numeric objects are immutable; once created their value never
changes. Python numbers are of course strongly related to mathematical numbers, but subject
to the limitations of numerical representation in computers.

Python distinguishes between integers and floating point numbers:

I nteger s These represent elements from the mathematical set of whole numbers
There are two types of integers.

Plain integers These represent numbersin the range -2147483648 through 2147483647.
(The range may be larger on machines with a larger natural word size, but not
smaller.) When the result of an operation falls outside this range, the exception
overflowError israised. For the purpose of shift and mask operations, inte-
gers are assumed to have a binary, 2's complement notation using 32 or more
bits, and hiding no bits from the user (i.e., all 4294967296 different bit patterns
correspond to different values).

L ong integers These represent numbers in an unlimited range, subject to available (vir-
tual) memory only. For the purpose of shift and mask operations, abinary repre-
sentation is assumed, and negative numbers are represented in a variant of 2's
complement which gives theillusion of an infinite string of sign bits extending
to the left.

The rules for integer representation are intended to give the most meaningful interpreta-
tion of shift and mask operations involving negative integers and the least surpriseswhen
switching between the plain and long integer domains. For any operation except left shift,
if it yields aresult in the plain integer domain without causing overflow, it will yield the
same result in the long integer domain or when using mixed operands.

Floating point number s Theserepresent machine-level double precision floating point num-
bers. You are at the mercy of the underlying machine architecture and C implementation
for the accepted range and handling of overflow. Python does not support single-preci-
sion floating point numbers; the savings in CPU and memory usage that are usually the
reason for using these is dwarfed by the overhead of using objectsin Python, so thereis

12

no reason to complicate the language with two kinds of floating point numbers.

Complex number s These represent complex numbers as apair of machine-level double pre-
cision floating point numbers. The same caveats apply asfor floating point numbers. The
real and imaginary value of a complex number z can be retrieved through the attributes
z.real and z. imag.

Sequences These represent finite ordered sets indexed by natural numbers. The built-in function
len () returnsthe number of items of a sequence. When the length of a sequenceisn, the
index set containsthe numbers 0, 1, ..., n. Item 1 of sequencea isselectedby a [i].

Sequences also support dicing: a[i:j] selects all items with index k such that
i <= k < j.When used as an expression, a dice is a sequence of the same type — this
impliesthat the index set is renumbered so that it starts at 0 again.

Sequences are distinguished according to their mutability:

I mmutable sequences An object of animmutable sequencetype cannot change onceitiscre-
ated. (If the object contains references to other objects, these other objects may be muta-
ble and may be changed; however the array of objects directly referenced by an
immutable object cannot change.)

The following types are immutabl e sequences:

Strings The items of a string are characters. There is no separate character type; a char-
acter is represented by a string of one item. Characters represent (at least) 8-bit
bytes. The built-infunctionschr () and ord () convert between charactersand
nonnegative integers representing the byte values. Bytes with the values 0-127
usually represent the corresponding ASCII values, but the interpretation of val-
uesis up to the program. The string data type is also used to represent arrays of
bytes, e.g. to hold dataread from afile.

(What should be done on systems whose native character set is not ASCII17?7?)

Tuples The items of atuple are arbitrary Python objects. Tuples of two or more items
are formed by comma-separated lists of expressions. A tuple of oneitem (a‘sin-
gleton’) can be formed by affixing a commato an expression (an expression by
itself does not create a tuple, since parentheses must be usable for grouping of
expressions). An empty tuple can be formed by enclosing ‘ nothing’ in parenthe-
ses ()"

M utable sequences M utable sequences can be changed after they are created. The subscrip-

tion and slicing notations can be used as the target of assignment and de1 (delete) state-
ments.

Thereis currently a single mutable sequence type:

Lists Theitems of alist are arbitrary Python objects. Lists are formed by placing a
comma-separated list of expressions in square brackets. (Note that there are no
special cases needed to form lists of length O or 1.)

The optional module array provides an additional example of amutable sequencetype.

M appings Theserepresent finite setsof objectsindexed by arbitrary index sets. The subscript notation
a [k] selectstheitem indexed by k from the mapping a; this can be used in expressions and
asthetarget of assignmentsor del statements. The built-infunction 1en () returnsthe num-
ber of itemsin a mapping.

13

[opow ereq o

Thereis currently asingle intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or
other mutable types that are compared by value rather than by object identity — the rea-
son being that the efficient implementation of dictionaries requires a key’s value to re-
main constant. Numeric types used for keys obey the norma rules for numeric
comparison: if two numbers compare equal (e.g. 1 and 1.0) then they can be used inter-
changeably to index the same dictionary entry.

Dictionaries are mutable; they are created by the { . . . } notation. (See“Dictionary dis-
plays’ on page 28.)

The optional library modules dbm, gdbm and bsddb provide additional examples of map-
ping types.

Callable types These are the types to which the function call operation (for invocation, See “ Calls”

14

on page 31.) isapplied:
User-defined functions A user-defined function object is created by a function definition.

(See “Function definitions’ on page 50.)

Specia read-only attributes: func_doc or __doc___isthe function’s documentation
string, or None if unavailable; func _name or __name_ _ is the function’s name;
func defaults is atuple containing default argument values for those arguments
that have defaults, or None if no arguments have a default value; func_code isthe
code object representing the compiled function body; func globals is (areference
to) the dictionary that holds the function’s global variables — it defines the global name
space of the module in which the function was defined. Additional information about a
function’ s definition can be retrieved from its code object; see the description of internal
types below.

User-defined methods A user-defined method object (ak.a. object closure) combines a

class, aclassinstance (or None) and a user-defined function.

Special read-only attributes: im_self isthe instance object; im func isthe function
object; im class istheclassthat defined the method (which may be abase class of the
class of which im_self is an instance); doc__ is the method’'s documentation
(same as im func. doc_); _ name_ _ is the method name (same as
im func. name).

User-defined method objects are created in two ways: when getting an attribute of aclass
that is auser-defined function object, or when getting an attributes of a classinstance that
is a user-defined function object. In the former case (class attribute), the im self at-
tribute isNone, and the method object is said to be unbound; in the latter case (instance
attribute), im_self istheinstance, and the method object is said to be bound. For in-
stance, when C isaclass which contains adefinition for afunction £, C. £ doesnot yield
thefunction object £; rather, it yields an unbound method object mwherem. im_class
iISC,m.im functionisf,andm.im self iSNone. Whenx isac instance, x . £
yields abound method object mwherem. im classisC,m.im functionisf, and
m.im selfisx.

When an unbound user-defined method object is called, the underlying function

(im_func) iscalled, with the restriction that the first argument must be an instance of
the proper class (im_class) or of aderived class thereof.

When a bound user-defined method object is called, the underlying function (im_func)
is called, inserting the class instance (im_self) in front of the argument list. For in-
stance, when ¢ isaclass which contains adefinition for afunction £, and x isan instance
of ¢, calingx.f (1) isequivdenttocalingC.f (x, 1).

Note that the transformation from function object to (unbound or bound) method object
happens each time the attribute is retrieved from the class or instance. In some cases, a
fruitful optimization is to assign the attribute to alocal variable and call that local vari-
able. Also notice that this transformation only happens for user-defined functions; other
callable objects (and all non-callable objects) are retrieved without transformation.

Built-in functions A built-in function object is awrapper around a C function. Examples of
built-in functions are 1en and math.sin (math is a standard built-in module). The
number and type of the arguments are determined by the C function. Special read-only
atributes: _ doc___is the function’s documentation string, or None if unavailable;
__name__isthefunction'sname; self issetto None (but see the next para-
graph).

Built-in methods Thisisreally adifferent disguise of abuilt-in function, thistime containing
an object passed to the C function as an implicit extra argument. An example of a built-
in method is 1ist .append, assuming 1ist isalist object. In this case, the specia
read-only attribute self issettothe object denoted by 1ist.

Classes Class objects are described below. When aclass object iscalled, anew classinstance
(also described below) is created and returned. This implies a call to the class's
__init methodif it hasone. Any argumentsarepassed ontothe init meth-
od—ifthereisno init method, the class must be called without arguments.

Classinstances Classinstances are described below. Classinstances can be called as afunc-
tion only whentheclasshasa call method; in this case, x (arguments) isa
shorthand for x. call (arguments).

Modules Modules areimported by the import statement. (See“ Theimport statement” on page 43.)
A module object has a name space implemented by adictionary object (thisisthe dictionary
referenced by the func globals attribute of functions defined in the module). Attribute
references are trandated to lookups in this dictionary, eg. m.x is equivalent to
m. dict ["x"].A module object does not contain the code object used to initialize
the module (since it isn’'t needed once the initialization is done).

Attribute assignment update the modul€’ sname spacedictionary, eg.“‘m.x = 1’ isequiv-

dentto'm. dict ["x"] = 1".
Specia read-only attribute: ~ dict isthe dictionary object that is the module’s name
space.

Predefined (writable) attributes: name isthemodulename; doc_ isthemodul€e's
documentation string, or None if unavailable; file isthe pathname of the file from
which the module was loaded, if it was loaded from afile. The file attributeis not
present for C modules that are statically linked into the interpreter; for extension modules
loaded dynamically from a shared library, it is the pathname of the shared library file.

Classes Class objects are created by class definitions (See “ Class definitions’ on page 51.). A class
has a name space implemented by adictionary object. Class attribute references aretrand ated
to lookups in this dictionary, e.g. “*C.x’" istranslated to *‘C. dict ["x"]". When
the attribute name is not found there, the attribute search continues in the base classes. The
search is depth-first, left-to-right in the order of their occurrence in the base class list. When

15

[opow ereq o

a class attribute reference would yield a user-defined function object, it is transformed into
an unbound user-defined method object (see above). The im _class attribute of this method
object isthe class in which the function object was found, not necessarily the class for which
the attribute reference was initiated.

Class attribute assignments update the class’ s dictionary, never the dictionary of abase class.
A class object can be called as afunction (see above) to yield a class instance (see below).

Special read-only attributes: dict is the dictionary that is the class's name space;
__name__ istheclassname; bases isatuple (possibly empty or a singleton) con-
taining the base classes, in the order of their occurrence in the base class list.

Predefined (writable) attribute: doc__ isthe class's documentation string, or None if un-
defined.

Classinstances A classinstanceis created by calling a class object as afunction (see above). A class

Files

instance has a name space implemented as a dictionary, which is the first place where in-
stance attributes are searched. When an attribute is not found there, the search continues with
the class attributes. If a class attribute is found that is a user-defined function object (and in
no other case), it istransformed into an unbound user-defined method object (see above). The
im class attribute of this method object is the class in which the function object was
found, not necessarily the class of the instance for which the attribute reference wasinitiated.
If no class attribute is found, and the object’'s classhasa getattr method, that is
called to satisfy the lookup.

Attribute assignments and deletions update the instance’ s dictionary, never a class' s dictio-
nary. If theclasshasa setattr or delattr method, thisis called instead of
updating the instance dictionary directly.

Class instances can pretend to be numbers, sequences, mappings, or callable objects, and
override various other special operations, if they have methods with certain special names.
See “ Special method names’ on page 18.

Specia attributes: dict yields the attribute dictionary; class_ yields the in-
stance's class. In some implementations these may be assigned a new value; the new value
must have the same type as the old value.

A file object represents an open file. File objects are created by the open () built-in function,
and also by os.popen (), os.fdopen () and themakefile () method of socket ob-
jects (and perhaps by other functions or methods provided by extension modules). The ob-
jects sys.stdin, sys.stdout and sys.stderr are initidized to file objects
corresponding to theinterpreter’ s standard input, output and error streams. See the Python Li-
brary Reference for complete documentation of file objects.

Internal types A few typesused internally by theinterpreter are exposed to the user. Their definitions

16

may change with future versions of the interpreter, but they are mentioned here for complete-
ness.

Code obj ects Code objects represent byte-compile executable Python code, or bytecode. The
difference between a code object and afunction object isthat the function object contains
an explicit reference to the function’s globals (the name space dictionary of the module
in which it was defined), while a code object contains no context; aso the default argu-
ment values are stored in the function object, not in the code object (because they repre-
sent values calculated at run-time). Unlike function objects, code objects are immutable
and contain no references (directly or indirectly) to mutable objects.

Special read-only attributes: co_argcount isthe number of positional arguments (in-
cluding arguments with default values); co nlocals isthe number of local variables
used by the function (including arguments); co varnames is a tuple containing the
names of the local variables (starting with the argument names); co_code is a string
representing the sequence of bytecode instructions; co_consts is a tuple containing
theliterals used by the bytecode; co _names isatuple containing the names used by the
bytecode; co filename is the filename from which the code was compiled;
co_flags isan integer encoding a number of flags for the interpreter. The following
flag bitsare defined: bit 2 isset if the function usesthe” *arguments’’ syntax to accept
an arbitrary number of positional arguments; bit 3 is set if the function uses the
““**xkeywords’’ syntax to accept arbitrary keyword arguments; other bits are used in-
ternally or reserved for future use. Thefirst item in co_consts is the documentation
string of the function, or None if undefined. To find out the first line number of a func-
tion, you have to disassemble the bytecode instructions; the standard library module
codehack defines a function get1lineno () that returns the first line number of a
code object.

Frame objects Frame objects represent execution frames. They may occur in traceback ob-
jects (see below).

Special read-only attributes: £ back isto the previous stack frame (towards the caller),
or None if thisis the bottom stack frame; £ code is the code object being executed in
thisframe; £ locals isthe dictionary used to look up locals variables, £ globals
is used for globa variables; £ builtins is used for built-in (intrinsic) names,
f restricted isaflagindicating whether the function is executing in restricted ex-
ecutionmode; £ 1ineno givesthecurrent linenumber and £ lasti givestheprecise
instruction (thisis an index into the instruction string of the code object).

Specia writable attributes: £ trace, if not None, is a function called at the start of
each source code line (thisis used by the debugger).

Traceback objects Traceback objects represent a stack trace of an exception. A traceback
object is created when an exception occurs. When the search for an exception handler un-
winds the execution stack, at each unwound level a traceback object isinserted in front
of the current traceback. When an exception handler is entered, the stack trace is made
available to the program. (See “The try statement” on page49.) It is accessible as
sys.exc_traceback, and aso as the third item of the tuple returned by
sys.exc_info (). Thelatter isthe preferred interface, since it works correctly when
the program is using multiple threads. When the program contains no suitable exception
handler, the stack trace is printed on the standard error stream; if the interpreter is inter-
active, it isalso made availableto theuser as sys . last _traceback.

Specia read-only attributes: tb_next is the next level in the stack trace (towards the
frame where the exception occurred), or None if there is no next level; tb frame
points to the execution frame of the current level; tb 1ineno gives the line number
where the exception occurred; tb_lasti indicates the precise instruction. The line
number and last instruction in the traceback may differ from the line number of itsframe
object if the exception occurred in a t ry statement with no matching except clause or
withafinally clause.

Slice abjects Slice objectsare used to represent sliceswhen extended slice syntaxisused (this
is a dlice using two colons, or multiple slices or ellipses separated by commas, e.g.
ali:j:stepl,ali:j, k:11,0ral..., i:j1). They are aso created by the
built-in s1ice () function.

17

[opow ereq o

Special read-only attributes: start isthe lowerbound; stop isthe upperbound; step
isthe step value; each isNone if omitted. These attributes can have any type.

3.3 Special method names

This section describes how user-defined classes can customize their behavior or emulate the behavior
of other abject types. In the following, if a class defines a particular method, any class derived from
it isalso understood to define that method (implicitly).

A class can implement certain operations that are invoked by special syntax (such as arithmetic oper-
ations or subscripting and slicing) by defining methodswith special names. For instance, if aclassde-
finesamethodnamed getitem |, andx isaninstanceof thisclass, thenx [1] isequivalent to
x. getitem (1i).(Thereverseisnottrue eg.if xisalistobject, x. getitem (i) is
not equivalent to x [1].) Except where mentioned, attempts to execute an operation raise an excep-
tion when no appropriate method is defined.

3.3.1 Basic customization

__init (self, [args...]) Cadledwhentheinstanceis created. The arguments are those
that were passed to the class constructor expression. If abaseclasshasan init method
thederivedclasss init method must explicitly call it to ensure proper initialization
of the base class part of the instance, e.g.

““BaseClass. init_(self, [args...])’.

__del (self) Cdledwhentheinstanceisabouttobedestroyed. If abaseclasshasa del
method thederivedclasss del method must explicitly cal it to ensure proper deletion
of the base class part of theinstance. e.g. ‘'BaseClass. del (self)’’. Notethat it
is possible (though not recommended!) for the del method to postpone destruction of
the instance by creating a new reference to it. It may then be called at a later time when this
new reference is deleted. It isnot guaranteed that del methods are called for objects
that till exist when the interpreter exits.

Programmer’snote: ‘‘del x'’ doesn't directly call x. del () — theformer decre-
ments the reference count for x by one, and the latter is only called when its reference count
reaches zero. Some common situations that may prevent the reference count of an object to
goto zero include: circular references between objects (e.g. adoubly-linked list or atree data
structure with parent and child pointers); a reference to the object on the stack frame of a
function that caught an exception (thetraceback storedinsys . exc_traceback keepsthe
stack frame alive); or a reference to the object on the stack frame that raised an unhandled
exception in interactive mode (the traceback stored in sys.last traceback keepsthe
stack frame alive). Thefirst situation can only be remedied by explicitly breaking the cycles;
the latter two situations can be resolved by storing None in sys.exc_traceback or
sys.last traceback.

Warning: dueto the precarious circumstancesunder which del methodsareinvoked,
exceptions that occur during their execution are ignored, and a warning is printed to
sys.stderr instead. Also, when del isinvoked is response to a module being de-
leted (e.g. when execution of the program isdone), other globalsreferenced by the del
method may already have been deleted. For thisreason, del methods should do the ab-
solute minimum needed to maintain external invariants. Python 1.5 guarantees that globals

18

whose hame begins with a single underscore are deleted from their module before other glo-
bals are deleted; if no other references to such globals exist, this may help in assuring that
imported modules are still available at thetimewhenthe del methodis called.

__repr (self) Cadled by the repr () built-in function and by string conversions (reverse
quotes) to compute the “official” string representation of an object. This should normally
look like avalid Python expression that can be used to recreate an object with the same value.

str (self) Caledbythestr () built-infunctionandbytheprint statement computethe
“‘informal’’ string representation of an object. Thisdiffersfrom repr inthatit doesn’t
haveto look like avalid Python expression: amore convenient or concise representation may
be used instead.

__cmp__ (self, other) Calledby all comparison operations. Should return anegative integer
if self < other, zero if self == other, a positive integer if self > other. If no
__cmp___ method is defined, class instances are compared by object identity (“address”).
(Note: the restriction that exceptions are not propagated by cmp has been removed in
Python 1.5)

__hash (self) Cadledforthekey object for dictionary operations, and by the built-in function
hash () . Should return a 32-bit integer usable as a hash value for dictionary operations. The
only required property is that objects which compare equal have the same hash value; it is
advised to somehow mix together (e.g. using exclusive or) the hash values for the compo-
nents of the object that also play apart in comparison of objects. If no_hash method is
defined, class instances are hashed by object identity (‘‘address’’). If a class does not define
a__cmp__ methodit should not definea__hash method either; if it defines_ cmp
butnot hash itsinstanceswill not be usable as dictionary keys. If a class defines mu-
table objectsand implementsa__cmp_ method it should not implement _ hash _ since
the dictionary implementation requires that a key’s hash value is immutable (if the object’s
hash value changes, it will bein the wrong hash bucket). nonzero (self) Caledto
implement truth value testing; should return 0 or 1. When this method is not defined,
__len iscalled, if it is defined (see below). If a class defines neither — 1en nor
__nonzero__, al itsinstances are considered true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assign-
ment to, or deletion of x. name) for class instances. For performance reasons, these methods are
cached in the class object at class definition time; therefore, they cannot be changed after the class
definition is executed.

__getattr (self, name) Caledwhen an attributelookup hasnot found the attributein the
usual places(i.e. itisnot aninstance attribute nor isit found inthe classtreefor se1f). name
is the attribute name. This method should return the (computed) attribute value or raise an
AttributeError exception.

Note that if the attribute is found through the normal mechanism, getattr_ isnot
caled. (Thisis an intentional asymmetry between getattr and setattr)
Thisis done both for efficiency reasons and because otherwise setattr would have
no way to access other attributes of the instance. Note that at |east for instance variables, you
can fake total control by not inserting any values in the instance attribute dictionary (but in-
stead inserting them in another object).

__setattr (self, name, value) Calledwhenever an attribute assignment is attempted.

19

[opow ereq o

Thisiscalledinstead of the normal mechanism (i.e. instead of storing the valuein theinstance
dictionary). name isthe attribute name, value isthe value to be assigned to it.

If setattr wants to assign to an instance attribute, it should not simply execute
‘““self.name = value’’ — thiswould cause arecursive call to itself. Instead, it should
insert the value in the dictionary of instance attributes, e.g.

““self. dict_ [name] = value’.

__delattr_ (self, name) Like setattr _ butfor atribute deletion instead of assign-
ment.

3.3.3 Emulating callable objects

__call (self, [args...]) Cadledwhentheinstanceis“called” asafunction;if thismeth-
odisdefined, x (argl, arg2, ...)isashorthandforx. call (argl, arg2,
).

3.3.4 Emulating sequence and mapping types

Thefollowing methods can be defined to emul ate sequence or mapping objects. Thefirst set of meth-
odsisused either to emulate a sequence or to emulate a mapping; the differenceisthat for a sequence,
the allowable keys should be the integers k for which 0 <= k < N where N is the length of the se-
quence, andthemethod getslice (seebelow) should be defined. It isalso recommended that
mappings provide methods keys, values and i tems behaving similar to those for Python’s stan-
dard dictionary objects; mutable sequences should provide methods append, count, index,
insert, sort, remove and reverse like Python standard list objects. Finally, sequence types
should implement addition (meaning concatenation) and multiplication (meaning repetition) by de-
finingthemethods add , radd , mul and_ rmul described below; they should
not define coerce or other numerical operators.

__len (self) Calledtoimplementthebuilt-infunctionlen (). Should returnthelength of the
object, aninteger >= 0. Also, an object that doesn't definea nonzero () method and
whose len () method returns zero is considered to be false in a Boolean context.

__getitem (self, key) Cdledtoimplementevaluationof self [key].Notethat thespe-
cia interpretation of negative keys (if the class wishes to emulate a sequence type) is up to
the_ getitem_ _ method.

__setitem (self, key, value) Calledtoimplementassignmenttoself [key].Same
noteasfor getitem .

__delitem (self, key) Cadled toimplement deletion of self [key]. Same note as for
__getitem .

3.3.4.1 Additional methods for emulation of sequence types

Thefollowing methods can be defined to further emulate sequence objects. For immutable sequences
methods, only getslice should be defined; for mutable sequences, all three methods should
be defined.

__getslice (self, i, j) Cadledtoimplementevaluationof self [i:7]. Thereturned
object should be of the sametype as se1f. Notethat missing i or j in the dlice expression
arereplaced by Oor 1en (self), respectively, and 1en (self) hasbeen added (once) to
originally negative i or j by thetimethisfunctioniscalled (unlikefor getitem).

__setslice (self, i, j, sequence) Cdledtoimplementassignmenttoself [i:7].

20

The sequence argument can have any type. The return value should be None. Same notes
foriandj asfor getslice .

__delslice (self, i, j) Caledtoimplementdeletionof self [i:7j].Samenotesfor i
and j asfor _ getslice .

Notice that these methods are only invoked when a single slice with asingle colon is used. For dlice
operations involving extended slice notation, getitem , setitem or delitem
iscalled.

3.3.5 Emulating numeric types

The following methods can be defined to emul ate numeric objects. Methods corresponding to opera-
tionsthat are not supported by the particular kind of number implemented (e.g., bitwise operationsfor
non-integral numbers) should be left undefined.

add_ (self, right)
__sub_ (self, right)
__mul (self, right)
__div__ (self, right)
__mod__ (self, right)
___divmod__ (self, right)
__pow__ (self, right)
__1shift (self, right)
__rshift (self, right)
__and__ (self, right)

__xor__ (self, right)

or (self, right)
These functions are called to implement the binary arithmetic operations (+, -, *, /, %, div-
mod(), pow(), <<, >>, &, ", |). For instance: to evaluate the expression x+y, where x is an

instance of aclassthat hasan __add method, x. _add (y) iscalled.

__radd__ (self, left)
__rsub__ (self, left)
__rmul (self, left)

()
(

__rdiv__ (self, left

__rmod__ (self, left)

__rdivmod (self, left)

__rpow__ (self, left)

__rlshift (self, left)

__rrshift (self, left)

__rand__ (self, left)

__rxor (self, left)

__ror_ (self, left) Thesefunctionsarecalledtoimplementthebinary arithmeticoperations
(+,-,%,/,%,divmod () ,,pow (), <<, >>, & ~, |) with reversed operands. These functions
areonly caledif theleft operand does ot support the corresponding operation (possibly after
coercion). For instance: to evaluate the expression x+y, where x is an instance of a class that
does not have an __add _ method, y. radd(x) is caled. If the class defines a
__coerce__method that coerces its arguments to a common type, these methods will never
be called and thus needn’t be defined. They are useful for classes that implement semi-nu-
merical datatypes (typesthat have some numerical behavior but don't adhereto all invariants
usually assumed about numbers).

21

[opow ereq o

__int

neg_(self)

__pos__ (self)

__abs (self)

__invert (self) Calledtoimplement the unary arithmetic operations (-, +, abs () and ~).
(self)

__long (self)
__float (self) Calledtoimplement thebuilt-infunctionsint (), long () and float ().

__oct

hex::

Should return avalue of the appropriate type.

(self)
(self) Cadledtoimplement the built-infunctionsoct () and hex (). Should return a
string value.

__coerce_ (self, other) Calledtoimplement “mixed-mode” numeric arithmetic. Should

22

either return a 2-tuple containing se1f and other converted to acommon numeric type, or
None if no conversion is possible. When the common type would be the type of other, it
is sufficient to return None, since the interpreter will also ask the other object to attempt a
coercion (but sometimes, if theimplementation of the other type cannot be changed, itisuse-
ful to do the conversion to the other type here).

Coercion rules: to evaluate x op Yy, the following steps are taken (where op and
__rop___ are the method names corresponding to op, eg. if op is '+, _add__ and
__radd__ areused). If an exception occurs at any point, the evaluation is abandoned and
exception handling takes over.

0. If xisastring object and op is the modulo operator (%), the string formatting operation
(see [Ref: XX X]) isinvoked and the remaining steps are skipped.

1. If xisaclassinstance:

la If xhasa coerce method: replace x and y with the 2-tuple returned by
x. coerce_ _ (y);skiptostep 2if the coercion returns None.

1b. If neither x nor y is aclass instance after coercion, go to step 3.

lc. If xhasamethod op ,returnx. op (y);otherwise, restorex andy to
their value before step 1a.

2. If yisaclassinstance:

2a. Ifyhasa coerce method: replacey and x with the 2-tuple returned by
y._ _coerce _ (x);skiptostep 3if the coercion returns None.

2b. If neither x nor y is aclass instance after coercion, go to step 3.
2b. Ifyhasamethod rop ,returny. rop (x); otherwise, restore x and
y to their value before step 2a.
3. Weonly get hereif neither x nor y isaclass instance.
3a If opis‘+’ and x is asequence, sequence concatenation isinvoked.
3b. If opis‘*’ and one operand is a sequence and the other an integer, sequence rep-

etition isinvoked.

3c. Otherwise, both operands must be numbers; they are coerced to a common type
if possible, and the numeric operation is invoked for that type.

CHAPTER 4. EXECUTION MODEL

4.1 Code blocks, execution frames, and name spaces

A code block is a piece of Python program text that can be executed as a unit, such as a module, a
class definition or a function body. Some code blocks (like modules) are normally executed only
once, others (like function bodies) may be executed many times. Code blocks may textually contain
other code blocks. Code blocks may invoke other code blocks (that may or may not be textually con-
tained in them) as part of their execution, e.g. by invoking (calling) afunction.

The following are code blocks: A module is a code block. A function body is a code block. A class
definition is a code block. Each command typed interactively is a separate code block; ascript file (a
file given as standard input to the interpreter or specified on the interpreter command line thefirst ar-
gument) is a code block; a script command (a command specified on the interpreter command line
with the‘-c’ option) is acode block. The string argument passed to the built-in function eval and to
the exec statement are code blocks. The file read by the built-in function execfile isacode
block. And finally, the expression read and eval uated by the built-in function input isacode block.
A code block is executed in an execution frame. An execution frame contains some administrative in-
formation (used for debugging), determines where and how execution continues after the code
block’ s execution has completed, and (perhaps most importantly) defines two name spaces, the local
and the global name space, that affect execution of the code block.

A name space is a mapping from names (identifiers) to objects. A particular name space may be ref-
erenced by more than one execution frame, and from other places as well. Adding a name to a name
spaceiscalled binding aname (to an object); changing the mapping of anameis called rebinding; re-
moving a name is unbinding. Name spaces are functionally equivalent to dictionaries (and often im-
plemented as dictionaries).

The local name space of an execution frame determines the default place where names are defined
and searched. The global name space determinesthe place where nameslistedin global statements
are defined and searched, and where names that are not bound anywhere in the current code block are
searched.

Whether anameislocal or global in acode block is determined by static inspection of the source text
for the code block: in the absence of global statements, aname that is bound anywherein the code
block islocal in the entire code block; all other names are considered global. Theglobal statement
forces global interpretation of specified names throughout the code block. The following constructs
bind names: formal parameters to functions, import statements, class and function definitions
(these bind the class or function name in the defining block), and targets that are identifiersif occur-
ring in an assignment, foxr loop header, or in the second position of an except clause header. Local
names are searched only on the local name space; global names are searched only in the global and
built-in namespace.!

A target occurringin adel statement isalso considered bound for this purpose (though the actual se-
mantics are to “unbind” the name).

1. If thecodeblock contains exec statementsor the construct *‘ from . . . import *'’, the semantics
of local names change subtly: local name lookup first searches in the local namespace, then in the
global namespace and in the built-in namespace.

23

[9POW UONNJaXT o

When a global name is not found in the global name space, it is searched in the built-in namespace. The
built-in namespace associated with the execution of a code block is actually found by looking up the name
__builtins isitsglobal name space; thisshould be adictionary or amodule (in the latter caseitsdic-
tionary is used). Normally, the builtins__ namespace is the dictionary of the built-in module
__builtin_ _ (note: no‘s); if it isn’t, restricted execution mode is in effect, see [Ref:XXX]. When a
nameisnot found at al, aNameError exception israised.

Thefollowing table lists the local and global name space used for all types of code blocks. The name space
for a particular module is automatically created when the module is first imported. Note that in almost all
cases, the global name space is the name space of the containing module — scopes in Python do not nest!

Table 3: Name Spacesfor Various Code Blocks

Code block type Global name space Local name space Notes
Module n.s. for thismodule same as global
Script (file or command) ns.for main same as global @
Interactive command ns.for main same as global
Class definition global n.s. of containing block new n.s.
Function body global n.s. of containing block new n.s.
String passed to global n.s. of containing block | local n.s. of containing | (2), (3)
exec statement block
String passed to eval () global n.s. of caller local n.s. of caler 2, (3
Fileread by execfile () global n.s. of caller local n.s. of caler 2, 3
Expression read by input global n.s. of caler local n.s. of caller

Notes:

n.s. means name space

(D] The main module for ascriptisalwayscalled main__;*‘thefilename don’t enter into it.”’

2 The global and local name space for these can be overridden with optional extra arguments.

3 The exec statement and the eval () and execfile () functions have optiona arguments to
override the global and local namespace. If only one namespace is specified, it is used for both.

The built-in functions globals () and 1locals () returnsadictionary representing the current global
and Iocal1 name space, respectively. The effect of modificationsto this dictionary on the name space are un-
defined.

1. The current implementations return the dictionary actually used to implement the name space, except for
functions, where the optimizer may cause the local name space to be implemented differently, and
locals () returnsadictionary that is ashadow copy of the actual local name space.

24

4.2 Exceptions

Exceptions are ameans of breaking out of the normal flow of control of a code block in order to han-
dle errors or other exceptional conditions. An exception is raised at the point where the error is de-
tected; it may be handled by the surrounding code block or by any code block that directly or
indirectly invoked the code block where the error occurred.

The Python interpreter raises an exception when it detects arun-time error (such asdivision by zero).
A Python program can also explicitly raise an exception with the raise statement. Exception han-
dlers are specified with the try. . . except statement. The try...finally statement specifies
cleanup code which does not handle the exception, but is executed whether an exception occurred or
not in the preceding code.

Python uses the “termination” model of error handling: an exception handler can find out what hap-
pened and continue execution at an outer level, but it cannot repair the cause of the error and retry the
failing operation (except by re-entering the the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of the program, or re-
turns to itsinteractive main loop. In this case, the interpreter normally prints a stack backtrace.

Exceptions areidentified by string objects or classinstances. Selection of amatching except clause
is based on object identity (i.e. two different string objects with the same value represent different ex-
ceptions). For string exceptions, the except clause must reference the same string object. For class ex-
ceptions, the except clause must reference the same class or a base class of it.

When an exception is raised, an object (maybe None) is passed as the exception’s “ parameter” or
“‘value'’; this object does not affect the selection of an exception handler, but is passed to the selected
exception handler as additional information. For class exceptions, this object must be an instance of
the exception class being raised.

See also the description of the try and raise statementsin “Compound statements’ on page 47.

25

[9POW UONNJaXT o

26

CHAPTER 5: EXPRESSIONS

This chapter explains the meaning of the elements of expressionsin Python.

Syntax notes:. in thisand the following chapters, extended BNF notation will be used to describe syn-
tax, not lexical analysis. When (one alternative of) a syntax rule has the form

name: othername

and no semantics are given, the semantics of thisform of name are the same asfor othername.

5.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are con-
verted to a common type”, the arguments are coerced using the coercion rules listed at the end of
chapter 3. If both arguments are standard numeric types, the following coercions are applied:

e If either argument is a complex number, the other is converted to complex;
« otherwise, if either argument is a floating point number, the other is converted to floating point;
» otherwise, if either argument is along integer, the other is converted to long integer;

« otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g. astring left argument to the ‘%’ operator). Ex-
tensions can define their own coercions.

52 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals.
Forms enclosed in reverse quotes or in parentheses, brackets or braces are also categorized syntacti-
cally as atoms. The syntax for atomsis:

atom: identifier | literal | enclosure
enclosure: parenth form|list display|dict display|string conversion

5.2.1 Identifiers (Names)

Anidentifier occurring as an atom isareferenceto alocal, global or built-in name binding. If aname
is assigned to anywhere in a code block (even in unreachable code), and is hot mentioned in a
global statement inthat code block, thenit refersto alocal name throughout that code block. When
it is not assigned to anywhere in the block, or when it is assigned to but also explicitly listed in a
global statement, it refersto a global name if one exists, else to a built-in name (and this binding
may dynamically change).

When the name is bound to an object, evaluation of the atom yields that object. When a name is not
bound, an attempt to evaluate it raises aNameError exception.

Private name mangling: when an identifier that textually occurs in a class definition begins with
two or more underscore characters and does not end in two or more underscores, it is considered a
“private name” of that class. Private names are transformed to alonger form before code is generated
for them. The transformation inserts the class name in front of the name, with leading underscores
removed, and a single underscore inserted in front of the class name. For example, the identifier
__spam occurring in aclass named Ham will be transformed to _Ham__spam. Thistransformationis

27

suoissaldxg .

28

independent of the syntactical context in which the identifier is used. If the transformed name is ex-
tremely long (longer than 255 characters), implementation defined truncation may happen. If theclass
name consists only of underscores, no transformation is done.

5.2.2 Literals

Python supports string literals and various numeric literals:

literal: stringliteral | integer | longinteger | floatnumber | imagnumber
Evaluation of aliteral yields an object of the given type (string, integer, long integer, floating point

number, complex number) with the given value. The value may be approximated in the case of float-
ing point and imaginary (complex) literals. (See“Literals’ on page 6 for details.)

All literals correspond to immutable data types, and hence the object’ sidentity islessimportant than
its value. Multiple evaluations of literals with the same value (either the same occurrence in the pro-
gram text or a different occurrence) may obtain the same object or a different object with the same
value.

5.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth form: "(" [expression list] ")™"

A parenthesized expression list yields whatever that expression list yields: if the list contains at |east

one comma, it yields a tuple; otherwise, it yields the single expression that makes up the expression
list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the rules for
literals apply(i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator. The ex-
ception isthe empty tuple, for which parentheses are required — allowing unparenthesi zed “ nothing”
in expressions would cause ambiguities and allow common typos to pass uncaught.

5.2.4 List displays

A list display is apossibly empty series of expressions enclosed in square brackets:

list display: "[" [expression list] "]"

A list display yields anew list object. If it has no expression list, the list object has no items. Other-
wise, the elements of the expression list are evaluated from left to right and inserted in the list object
in that order.

5.2.5 Dictionary displays

A dictionary display is apossibly empty series of key/datum pairs enclosed in curly braces:

dict display: m{n [key datum list] "}
key datum list: key datum ("," key datum)* [","]
key datum: expression ":" expression

A dictionary display yields a new dictionary object

The key/datum pairs are evaluated from left to right to define the entries of the dictionary: each key
object is used as a key into the dictionary to store the corresponding datum.

Restrictions on the types of the key values are listed earlier in “ The standard type hierarchy” on
page 12 (to summarize, the key type should be hashable, which excludes all mutable objects). Clash-
es between duplicate keys are not detected; the last datum (textually rightmost in the display) stored
for agiven key value prevails.

5.2.6 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string conversion: "'" expression_list "‘"

A string conversion evaluates the contained expression list and converts the resulting object into a
string according to rules specific to its type.

If the object is astring, anumber, None, or atuple, list or dictionary containing only objects whose
typeisone of these, the resulting string is avalid Python expression which can be passed to the built-
in function eval () to yield an expression with the same value (or an approximation, if floating
point numbers are involved).

(In particular, converting astring adds quotes around it and converts “funny” characters to escape se-
guences that are safe to print.)

Itisillegal to attempt to convert recursive objects (e.g. lists or dictionaries that contain areference to
themselves, directly or indirectly.)

The built-in function repr () performs exactly the same conversion in its argument as enclosing it
in parentheses and reverse quotes does. The built-in function str () performs asimilar but more
user-friendly conversion.

5.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary: atom | attributeref | subscription | slicing | call

5.3.1 Attribute references
An attribute reference is a primary followed by a period and a name:

attributeref: primary "." identifier

The primary must evaluate to an object of atype that supports attribute references. This object isthen
asked to produce the attribute whose name isthe identifier. If this attribute is not available, the excep-
tion AttributeError israised. Otherwise, the type and value of the object produced is deter-
mined by the object. Multiple evaluations of the same attribute reference may yield different objects.
5.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) object:

subscription: primary "[" expression list "]"

29

suoissaldxg .

30

The primary must evaluate to an object of a sequence or mapping type.

If the primary is a mapping, the expression list must evaluate to an object whose value is one of the
keys of the mapping, and the subscription selects the value in the mapping that corresponds to that

key.

If the primary is a sequence, the expression (list) must evaluate to a plain integer. If thisvalueis neg-
ative, the length of the sequenceisaddedtoit (sothat, e.g. x [- 1] selectsthelast item of x.) There-
sulting value must be a nonnegative integer less than the number of items in the sequence, and the
subscription selects the item whose index is that value (counting from zero).

A string’ sitems are characters. A character is not aseparate datatype but astring of exactly one char-
acter.

5.3.3 Slicings

A dlicing selects arange of itemsin a sequence (string, tuple or list) object. Slicings may be used as
expressions or as targets in assignment or del statements. The syntax for adicing:

slicing: simple slicing | extended slicing
simple slicing: primary "[" short slice "]"
extended slicing: primary "[" slice list "]"

slice list: slice item ("," slice_item)* [","]
slice item: expression | proper slice | ellipsis
proper_ slice: short slice | long slice

short slice: [lower bound] ":" [upper bound]
long slice: short_slice ":" [stride]

lower bound: expression

upper_bound: expression

stride: expression

ellipsis: oL

There' san ambiguity in the formal syntax here: anything that looks like an expression list also looks
like adlice list, so any subscription can be interpreted as a slicing. Rather than further complicating
the syntax, thisis disambiguated by declaring that in this case the interpretation as a subscription
takes priority over the interpretation as a dlicing (this is the case if the dice list contains no proper
slice nor ellipses). Similarly, when the dicelist has exactly one short slice and no trailing comma, the
interpretation as a simple slicing takes priority over that as an extended dlicing.

The semantics for asimple dlicing are as follows. The primary must evaluate to a sequence object.
The lower and upper bound expressions, if present, must evaluate to plain integers; defaults are zero
and the sequence’ s length, respectively. If either bound is negative, the sequence’ slength is added to
it. The dicing now selects al items with index k such that i <= k <j wherei and j are the specified
lower and upper bounds. This may be an empty sequence. It is not an error if i or j lie outside the
range of valid indexes (such items don't exist so they aren’t selected).

The semantics for an extended slicing are as follows. The primary must eval uate to amapping object,
and it isindexed with akey that is constructed from the slice list, as follows. If the slice list contains
at least one comma, the key isatuple containing the conversion of the slice items; otherwise, the con-
version of thelone dliceitem isthe key. The conversion of adiceitem that isan expression isthat ex-
pression. The conversion of an ellipsisdiceitemisthebuilt-in E11 ipsis object. The conversion of

aproper sliceisadlice object (see page 17) whose start, stop and step attributes are the values
of the expressions given as lower bound, upper bound and stride, respectively, substituting None for
missing expressions.

534 Calls

A call callsacallable object (e.g. afunction) with a possibly empty series of arguments:

call: primary " (" [argument list ([","]] ")™"

argument list: positional arguments ["," keyword arguments]
| keyword arguments

positional arguments: expression ("," expression)*

keyword arguments: keyword item ("," keyword item)*

keyword item: identifier "=" expression

A trailing comma may be present after an argument list but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of
built-in objects, class objects, methods of class instances, and certain class instances themselves are
callable; extensions may define additional callable object types). All argument expressions are eval-
uated before the call is attempted. Please refer to “Function definitions” on page 50 for the syntax of
formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First,
alist of unfilled dotsis created for the formal parameters. If there are N positional arguments, they
areplaced inthefirst N slots. Next, for each keyword argument, the identifier is used to determine the
corresponding slot (if the identifier is the same as the first formal parameter name, the first dlot is
used, and so on). If the dlot isalready filled, a TypeError exception israised. Otherwise, the value
of the argument is placed in the dot, filling it (even if the expression isNone, it fills the dot). When
al arguments have been processed, the slotsthat are still unfilled arefilled with the corresponding de-
fault value from the function definition. (Default values are cal culated, once, when the functionisde-
fined; thus, a mutable object such as alist or dictionary used as default value will be shared by all
callsthat don't specify an argument value for the corresponding slot; this should usually be avoided.)
If there are any unfilled slots for which no default value is specified, a TypeError exception is
raised. Otherwise, the list of filled slotsis used as the argument list for the call.

If there are more positional arguments than there are formal parameter dots, a TypeError excep-
tion israised, unless aformal parameter using the syntax'‘ *identifier’’ ispresent; in this case,
that formal parameter receives atuple containing the excess positional arguments (or an empty tuple
if there were no excess positional arguments).

If any keyword argument does not correspond to aformal parameter name, a TypeError exception
israised, unlessaformal parameter using thesyntax ** **identifier’’ ispresent;inthiscase, that
formal parameter receives a dictionary containing the excess keyword arguments (using the key-
words as keys and the argument values as corresponding values), or a (new) empty dictionary if there
were no excess keyword arguments.

Formal parameters using the syntax “* *identifier’ or “***identifier’’ cannot be used as
positional argument slots or as keyword argument names. Formal parameters using the syntax
““(sublist)’’ cannot be used as keyword argument names; the outermost sublist correspondsto a
single unnamed argument slot, and the argument value is assigned to the sublist using the usual tuple
assignment rules after all other parameter processing is done.

31

suoissaldxg .

32

A call aways returns some value, possibly None, unless it raises an exception. How thisvalue is

computed depends on the type of the callable object.

Ifitis:

a user -defined function:the code block for the function is executed, passing it the argument list. The
first thing the code block will do is bind the formal parameters to the arguments; thisis de-

scribed in section”Function definitions’ on page 50. When the code block executes a re -
turn statement, this specifies the return value of the function call.

a built-in function or method:the result is up to the interpreter; see the library reference manual for
the descriptions of built-in functions and methods.

a class obj ect:a new instance of that classis returned.
a classinstance method:the corresponding user-defined functionis called, with an argument list that
is one longer than the argument list of the call. The instance becomes the first argument.

5.4 The power operator

The power operator binds more tightly than unary operators on itsleft; it binds lesstightly than unary
operators on itsright. The syntax is.

power: primary ["**" u expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from
right to left (this does not constrain the evaluation order for the operands).

The power operator has the same semantics asthe built-in pow () function: it yieldsits|eft argument
raised to the power of its right argument. The numeric arguments are first converted to a common
type. The result typeisthat of the arguments after coercion; if theresult is not expressible in that type

(asinraising an integer to a negative power, or a hegative floating point number to a broken power),
aTypeError exception israised.

5.5 Unary arithmetic operations

All unary arithmetic (and bit-wise) operations have the same priority:

u_expr: power | "-" u expr | "+" u_expr | "~" u_expr
Theunary " -" (minus) operator yields the negation of its numeric argument.
Theunary "+" (plus) operator yields its numeric argument unchanged.

The unary "~" (invert) operator yields the bit-wise inversion of its plain or long integer argument.
The bit-wise inversion of x isdefined as - (x+1) . It only appliesto integral numbers.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

5.6 Binary arithmetic operations

The remaining binary arithmetic operations have the conventional priority levels. Note that some of
these operations also apply to certain non-numeric types. Apart from the power operator, there are
only two levels, one for multiplicative operators and one for additive operators:

m expr: U expr | m_expr "*" u expr
| m expr "/" u expr | m_expr "%" u expr
a_expr: m expr | aexpr "+" m _expr | aexpr "-" m_expr

The"*" (multiplication) operator yieldsthe product of itsarguments. The arguments must either both
be numbers, or one argument must be a plain integer and the other must be a sequence. In the former
case, the numbers are converted to acommon type and then multiplied together. In the latter case, se-
quence repetition is performed; a negative repetition factor yields an empty sequence.

The" /" (division) operator yields the quotient of its arguments. The numeric arguments are first con-
verted to a common type. Plain or long integer division yields an integer of the same type; the result
isthat of mathematical division with the ‘floor’ function applied to the result. Division by zero raises
the ZeroDivisionError exception

The"%" (modulo) operator yieldsthe remainder from the division of thefirst argument by the second.
The numeric arguments are first converted to a common type. A zero right argument raises the
ZeroDivisionError exception. The arguments may befloating point numbers, e.g. 3.14%0.7
equals 0.34 (since3.14 equals4*0.7+0.34). The modulo operator always yields a result with
the same sign as its second operand (or zero); the absolute value of the result is strictly smaller than
the second operand.

The integer division and modulo operators are connected by the followingidentity: x == (x/y) *y
+ (x%y) . Integer division and modulo are also connected with the built-in function divmod () :
divmod (x, y) == (x/y, x%y).Theseidentitiesdon’t hold for floating point and complex
numbers; there a similar identity holds where x/y isreplaced by f1oor (x/y)) or

floor ((x/y) .real), respectively.

The "+ (addition) operator yields the sum of its arguments. The arguments must either both be num-
bers, or both sequences of the same type. In the former case, the numbers are converted to acommon
type and then added together. In the latter case, the sequences are concatenated.

The " - " (subtraction) operator yields the difference of its arguments. The numeric arguments are
first converted to a common type.

5.7 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift expr: a expr | shift expr ("<<" | ">>") a expr

These operators accept plain or long integers as arguments. The arguments are converted to a com-
mon type. They shift the first argument to the left or right by the number of bits given by the second
argument.

A right shift by n bitsis defined as division by pow (2, n). A left shift by n bitsis defined as multi-
plication with pow (2, n); for plain integersthereis no overflow check so this drops bits and flipsthe

signif the result is not less than pow (2, 31) in absolute value. Negative shift countsraiseaval -
ueError exception.

5.8 Binary bit-wise operations

Each of the three bitwise operations has a different priority level:

33

suoissaldxg .

and_expr: shift expr | and expr "&" shift expr
XOr expr: and expr | xor expr """ and expr
or expr: xor expr | or expr "|" xor expr

The "&" operator yields the bit-wise AND of its arguments, which must be plain or long integers.
The arguments are converted to a common type.

The "* " operator yields the bitwise XOR (exclusive OR) of its arguments, which must be plain or
long integers. The arguments are converted to a common type.

The " | " operator yields the bitwise (inclusive) OR of its arguments, which must be plain or long in-
tegers. The arguments are converted to a common type.

5.9 Comparisons

Contrary to C, all comparison operations in Python have the same priority, which is lower than that
of any arithmetic, shifting or bitwise operation. Also contrary to C, expressionslikea < b < ¢
have the interpretation that is conventional in mathematics:

comparison: Or_ expr (comp_operator or_expr) *
comp operator: "<" | non | n__n | ne=n | Ne=n | Mo | np=n | "ig" ["not"] | ["not"] "in"

Comparisonsyield integer values: 1 for true, O for false.

Comparisons can be chained arbitrarily, 9. x < y <= zisequivaenttox < y and y <= z,
except that y is evaluated only once (but in both cases z isnot evaluated at all whenx < yisfound
to befalse).

Formally, if a, b, c, ..., y, zare expressions and opa, opb, ..., opy are comparison operators, then a opa
bopbc...yopyzisequivalenttoaopab and bopbcand ... yopyz except that each expression
is evaluated at most once.

Note that a opa b opb ¢ doesn’'t imply any kind of comparison betweenaandc, sothateg. x < y
> z isperfectly legal (though perhaps not pretty).

Theforms <> and ! = are equivalent; for consistency with C, ! = ispreferred; where ! = is mentioned
below <> isalso implied.

Theoperators"<", "s>", "==r, nvs=n ne=n gnd"!=" comparethe values of two objects.
The objects needn’'t have the same type. If both are numbers, they are converted to a common type.
Otherwise, objects of different types always compare unequal, and are ordered consistently but arbi-
trarily. (This unusual definition of comparison is done to simplify the definition of operations like
sorting and the in and not in operators.)

Comparison of objects of the same type depends on the type:

* Numbers are compared arithmetically.

e Strings are compared lexicographically using the numeric equivalents (the result of the built-in
function ord) of their characters.

» Tuplesand lists are compared lexicographically using comparison of corresponding items.

» Mappings (dictionaries) are compared through |exicographic comparison of their sorted (key, val-

ue) lists.

» Most other types compare unequal unless they are the same object; the choice whether one object
isconsidered smaller or larger than another one is made arbitrarily but consistently within one ex-
ecution of a program.

The operators in and not in test for sequence membership: if y isasequence, xiny istrueif and

only if there existsan index i such that x = y[i]. x not iny yields the inverse truth value. The exception

TypeError israised when y is not a sequence, or wheny isastring and x is not a string of length
2

one.

Theoperatorsis and is not test for object identity: x is yistrueif and only if xand y arethe same
object. x is not yyieldstheinverse truth value.

5.10 Boolean operations

Boolean operations have the lowest priority of all Python operations:

expression: or_test | lambda form

or_ test: and test | or_ test "or" and test
and_ test: not test | and test "and" not_test
not_test: comparison | "not" not_test

lambda_form:"lambda" [parameter list]: expression

In the context of Boolean operations, and also when expressions are used by control flow statements,
the following values are interpreted as false: None, numeric zero of all types, empty sequences
(strings, tuples and lists), and empty mappings (dictionaries). All other values are interpreted astrue.

The operator not yields 1 if itsargument is false, O otherwise.

The expression x and Yy first evaluates x; if x isfalse, its value is returned; otherwise, y is evaluated
and the resulting value is returned.

The expression X or Y first evaluates x; if X istrue, itsvalue is returned; otherwise, y is evauated and
the resulting value is returned.

(Note that neither and nor or restrict the value and type they return to 0 and 1, but rather return the
last evaluated argument. Thisis sometimes useful, e.g. if s isastring that should be replaced by ade-
fault valueif it is empty, the expression s or ' foo’ Yyieldsthe desired value. Because not hasto
invent a value anyway, it does not bother to return a value of the same type as its argument, so e.g.
not ’‘foo’ yiedso,not’ ’.)

Lambda forms (lambda expressions) have the same syntactic position as expressions. They are a
shorthand to create anonymous functions; the expression 1ambda arguments: expression yields a
function object that behaves virtually identical to one defined with

def name (arguments) :

1. Thisisexpensive since it requires sorting the keys first, but about the only sensible defini-
tion. An earlier version of Python compared dictionaries by identity only, but this caused
surprises because people expected to be able to test adictionary for emptiness by comparing
itto {}.

2. The latter restriction is sometimes a nuisance.

35

suoissaldxg .

return expression

See “Function definitions’ on page 50 for the syntax of parameter lists. Note that functions created
with lambda forms cannot contain statements.

5.11 Expression lists
expression list: expression ("," expression)* [","]

An expression list containing at least one commayields atuple. The length of the tupleis the number
of expressionsin the list. The expressions are evaluated from left to right.

Thetrailing commais required only to create asingle tuple (ak.a. asingle); it isoptional in all other

cases. A single expression without atrailing commadoesn’t create atuple, but rather yieldsthe value
of that expression. (To create an empty tuple, use an empty pair of parentheses: ().)

36

5.12 Summary

The following table summarizes the operator precedences in Python, from lowest precedence (least
binding) to highest precedence (most binding). Operators in the same box have the same precedence.
Unless the syntax is explicitly given, operators are binary. Operators in the same box group left to
right (except for comparisons, which chain from left to right — see above).

Table 4: Operator Precedence

or Boolean OR
and Boolean AND
not x Boolean NOT

in, not in

Membership tests

ig, 1is not I dentity tests
<, <=, >, >=, <>, l= Comparisons
| Bitwise OR
» Bitwise XOR
& Bitwise AND
<<, >> Shifts

Addition and subtraction

Multiplication, division, remainder

+X, -X Positive, negative
~X Bitwise not
x.attribute Attribute reference
x[index] Subscription
x[index:index] Slicing
f(arguments, ...) Function call

(expressions. . .)

[expressions. . .]

{key:.datum, . . .}
“expression’

Binding or tuple display
List display
Dictionary display
String conversion

37

suoissaldxg .

38

CHAPTER 6: SIMPLE STATEMENTS

Simple statements are comprised within asinglelogical line. Several simple statements may occur on
asingle line separated by semicolons. The syntax for simple statementsis:

simple stmt: expression stmt
| assert stmt

| assignment stmt
| pass stmt

| del stmt

| print stmt

| return stmt

| raise stmt

| break stmt

| continue stmt

| import stmt

| global stmt

| exec stmt

6.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usualy) to
call aprocedure (afunction that returns no meaningful result; in Python, procedures return the value
None). Other uses of expression statements are allowed and occasionally useful. The syntax for an
expression statement is:

expression stmt: expression list

An expression statement eval uates the expression list (which may be asingle expression). In interac-
tive mode, if the valueisnot None, it isconverted to astring using the built-in repr () functionand
the resulting string is written to standard output (see “The print statement” on page 42) on a line by

itself. (Expression statementsyielding None are not written, so that procedure calls do not cause any
output.)

6.2 Assert statements

Assert statements are a convenient way to insert debugging assertions into a program:

assert statement: "assert" expression ["," expression]

Thesimpleform, “assert expression”,iseguivaentto
if debug :
if not expression: raise AssertionError
The extended form, “assert expressionl, expression2”,isequivaentto
if debug :

if not expressionl: raise AssertionError, expressionZ2

These equivalencesassumethat debug and AssertionError refer to the built-in variables
with those names. In the current implementation, the built-invariable debug is1 under normal
circumstances, 0 when optimization is requested (command line option -0). The current code gener-

39

sjuswalels ol dwis .

ator omits no code for an assert statement when optimization is requested at compile time. Note that it
is unnecessary to include the source code for the expression that failed in the error message; it will be dis-
played as part of the stack trace.

6.3 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable
objects:

assignment stmt: (target list "=")+ expression list
target list: target ("," target)* [","]
target: identifier | "(" target list ")" | "[" target list "]"

| attributeref | subscription | slicing
(See “Primaries’ on page 29 for the syntax definitions for the last three symbols.)

An assignment statement eval uates the expression list (remember that this can be a single expression or a
commarseparated list, the latter yielding atuple) and assigns the single resulting object to each of the target
lists, from left to right.

Assignment is defined recursively depending on the form of thetarget (list). When atarget is part of amu-
table abject (an attribute reference, subscription or dicing), the mutable object must ultimately perform the
assignment and decide about its validity, and may raise an exception if the assignment is unacceptable. The
rules observed by various types and the exceptions raised are given with the definition of the object types
(See " The standard type hierarchy” on page 12.)

Assignment of an object to atarget list is recursively defined as follows.
» |f thetarget list isasingletarget: the object is assigned to that target.

» |f thetarget listisacomma-separated list of targets: the object must be a sequence with the same number
of items as there are targets in the target list, and the items are assigned, from left to right, to the corre-
sponding targets. (This rule has been relaxed since Python 1.5; in earlier versions, the object had to be a
tuple. Since strings are sequences, an assignment like“a, b = "xy"” isnow legal.)

Assignment of an object to asingle target is recursively defined as follows.
» |f thetarget isan identifier (name):

 |f the name does not occur in aglobal statement in the current code block: the name is bound
to the object in the current local name space.

» Otherwise: the name is bound to the object in the current global name space.

Thenameisrebound if it wasalready bound. This can cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its

» |f thetarget isatarget list enclosed in parentheses or square brackets: the object must be a sequence with
the same number of items there are targetsin the target list, and its items are assigned, from left to right,
to the corresponding targets.

» |f thetargetisan attribute reference: The primary expressionin thereferenceisevaluated. It should yield
an object with assignable attributes; if thisis not the case, TypeError israised. That object is then
asked to assign the assigned object to the given attribute; if it cannot perform the assignment, it raisesan
exception (usualy but not necessarily AttributeError).

If thetarget is asubscription: The primary expression in the reference is evaluated. It should yield
either amutabl e sequence object (e.g. alist) or amapping object (e.g. adictionary). Next, the sub-
script expression is evaluated.

If the primary is a mutable sequence object (e.g. alist), the subscript must yield a plain integer. If
it is negative, the sequence’ slength is added to it. The resulting value must be a nonnegative inte-
ger less than the sequence’ s length, and the sequence is asked to assign the assigned object to its
item with that index. If the index is out of range, IndexError israised (assignment to a sub-
scripted sequence cannot add new itemsto alist).

If the primary is a mapping object (e.g. a dictionary), the subscript must have a type compatible
with the mapping’ skey type, and the mapping isthen asked to create akey/datum pair which maps
the subscript to the assigned object. This can either replace an existing key/value pair with the
same key value, or insert anew key/value pair (if no key with the same value existed).

If thetarget isadlicing: The primary expression in the referenceis evaluated. It should yield amu-
table sequence object (e.g. alist). The assigned object should be a sequence object of the same
type. Next, the lower and upper bound expressions are eval uated, insofar they are present; defaults
are zero and the sequence’ slength. The bounds should evaluate to (small) integers. If either bound
is negative, the sequence’s length is added to it. The resulting bounds are clipped to lie between
zero and the sequence’ slength, inclusive. Finally, the sequence object is asked to replace the slice
with the items of the assigned sequence. The length of the slice may be different from the length
of the assigned sequence, thus changing the length of the target sequence, if the object alowsiit.

(In the current implementation, the syntax for targetsis taken to be the same as for expressions, and
invalid syntax is rejected during the code generation phase, causing less detailed error messages.)

War ning: Although the definition of assignment impliesthat overlaps between the | eft-hand side and
theright-hand side are ‘safe’ (e.g. ‘‘a, b =b, a'’ swapstwo variables), overlaps within the collec-
tion of assigned-to variables are not safe! For instance, the following program prints‘‘ [0, 2]1":

X
i
i,

(o, 1]
0

x[i] = 1, 2

print x

6.4 The pass statement

pass_stmt: "pass"

pass isanull operation — when it is executed, nothing happens. It is useful as a placeholder when
astatement is required syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)
class C: pass # a class with no methods (yet)

6.5 The del statement

del stmt: "del" target list

Deletion isrecursively defined very similar to the way assignment is defined. Rather that spelling it
out in full details, here are some hints.

Deletion of atarget list recursively deletes each target, from left to right.

41

sjuswalels ol dwis .

Deletion of a name removes the binding of that name (which must exist) from the local or global name
space, depending on whether the name occursin aglobal statement in the same code block.

Deletion of attribute references, subscriptions and slicingsis passed to the primary object involved; deletion
of adlicingisin general equivalent to assignment of an empty slice of the right type (but even thisis deter-
mined by the sliced object).

6.6 The print statement
print stmt: "print" [expression ("," expression)* [","]]

print evaluates each expression in turn and writes the resulting object to standard output (see below). If
an object isnot astring, it isfirst converted to astring using the rules for string conversions. The (resulting
or original) string isthen written. A space iswritten before each object is (converted and) written, unlessthe
output system believesit is positioned at the beginning of aline. Thisisthe case: (1) when no characters
have yet been written to standard output; or (2) when the last character written to standard output is \n; or
(3) when the last write operation on standard output was not aprint statement. (In some cases it may be
functional to write an empty string to standard output for this reason.)

A "\n" character iswritten at the end, unless the print statement ends with acomma. Thisis the only
action if the statement contains just the keyword print. Standard output is defined as the object named
stdout inthe built-in module sys. If no such object exists, or if it does not have awrite () method,
an exception is raised.

6.7 The return statement

return stmt: "return" [expression list]

return may only occur syntactically nested in afunction definition, not within a nested class definition.
If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a try statement with a finally clause, that finally clause is exe-
cuted before really leaving the function.

6.8 The raise statement

raise stmt: "raise" expression ["," expression ["," expression]]

raise evaluatesitsfirst expression, which must yield astring, class, or instance object. If thereisasecond
expression, thisis evaluated, else None is substituted. If the first expression is a class object, then the sec-
ond expression must be an instance of that class or one of itsderivatives. If thefirst expressionisan instance
object, the second expression must be None.

If thefirst object isaclassor string, it then rai ses the exception identified by the first object, with the second
one (or None) asits parameter. If thefirst object isan instance, it raisesthe exception identified by the class
of the object, with the instance as its parameter (and there should be no second object, or the second object
should be None).

42

If athird object is present, and it is not None, it should be atraceback object (see page 17 traceback
objects), and it is substituted instead of the current location asthe place where the exception occurred.
Thisisuseful to re-raise an exception transparently in an except clause.

6.9 The break statement
break stmt: "break"

break may only occur syntactically nestedinafor or while loop, but not nested in afunction or
class definition within that [oop.

It terminates the nearest enclosing loop, skipping the optional else clauseif the loop has one.
If afor loop isterminated by break, the loop control target keepsits current value.

When break passes control out of at ry statementwithafinally clause, that finally clauseisex-
ecuted before really leaving the loop.

6.10 The continue statement

continue stmt: "continue"

continue may only occur syntactically nested inafor or while loop, but not nested in afunction
or class definition or t ry statement within that loop.! It continues with the next cycle of the nearest

enclosing loop.

6.11 The import statement

import stmt: "import" module ("," module)*
| "from" module "import" identifier ("," identifier)*
| "from" module "import" "*"

module: (identifier ".")* identifier

Import statements are executed in two steps: (1) find amodule, and initiaizeit if necessary; (2) define
aname or namesin thelocal name space (of the scopewherethe import statement occurs). Thefirst
form (without £ rom) repeats these steps for each identifier in thelist. The form with £ rom performs
step (1) once, and then performs step (2) repeatedly.

The system maintains a table of modules that have been initialized, indexed by module name. (The
current implementation makes this table accessible as sys . modules.) When a module name is
found in thistable, step (1) isfinished. If not, a search for amodul e definition is started. When amod-
uleisfound, it isloaded. Details of the module searching and loading process are implementation and
platform specific. It generally involves searching for a “built-in” module with the given name and
then searching alist of locations given as sys . path.

When step (1) finishes without raising an exception, step (2) can begin.

1. Except that it may currently occur within an except clause.

43

sjuswalels ol dwis .

Thefirst form of import statement binds the module name in the local name space to the modul e object,
and then goes on to import the next identifier, if any. The £rom form does not bind the module name: it
goesthrough the list of identifiers, looks each one of them up in the module found in step (1), and bindsthe
name in the local name space to the object thus found. If anameis not found, ImportError israised. If
the list of identifiersis replaced by a star (*), al names defined in the module are bound, except those be-
ginning with an underscore().

Names bound by import statements should not occur in global statementsin the same scope.
The £rom form with * should only occur in a module scope.

(The current implementation does not enforce the latter two restrictions, but programs should not abuse this
freedom, as future implementations may enforce them or silently change the meaning of the program.)

Hierarchical module names: when the module names contains aone or more dots, the module search path
is carried out differently. The sequence of identifiers up to the last dot is used to find a*“ package”; the final
identifier is then searched inside the package. [XXX Can’t be bothered to spell this out right now; see the
URL http://grail.cnri.reston.va.us/python/essays/packages.nmtl for more details, also about how the mod-
ule search works from inside a package.]

6.12 The global statement

global stmt: "global" identifier ("," identifier)*

Theglobal statement isadeclaration which holds for the entire current code block. It meansthat the list-
ed identifiers are to be interpreted as globals. While using global names is automatic if they are not defined
in the local scope, assigning to global names would be impossible without global.

Names listed in aglobal statement must not be used in the same code block before that global state-
ment is executed.

Nameslistedinaglobal statement must not be defined asformal parametersor inafor loop control tar-
get, class definition, function definition, or import statement.

(The current implementation does not enforce the latter two restrictions, but programs should not abuse this
freedom, as future implementations may enforce them or silently change the meaning of the program.)

Programmer’s note: the global isadirective to the parser. It applies only to code parsed at the same
timeasthe global statement. In particular, aglobal statement contained in an exec statement does
not affect the code block containing the exec statement, and code contained in an exec statement is un-
affected by global statements in the code containing the exec statement. The same applies to the
eval (), execfile () and compile () functions.

6.13 The exec statement

exec_stmt: "exec" expression ["in" expression ["," expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to
either a string, an open file object, or a code object. If it is a string, the string is parsed as a suite of
Python statements which is then executed (unless a syntax error occurs). If it isan open file, thefile
is parsed until EOF and executed. If it is acode object, it is simply executed.

Inall cases, if the optional parts are omitted, the code is executed in the current scope. If only the first
expression after in is specified, it should be a dictionary, which will be used for both the global and
the local variables. If two expressions are given, both must be dictionaries and they are used for the
global and local variables, respectively.

Programmer’s hints: dynamic evaluation of expressions is supported by the built-in function
eval (). The built-in functions globals () and Locals () return the current global and local
dictionary, respectively, which may be useful to pass around for use by exec. When assigning to a
global variable, aglobal statement for that variable should be present in the source code string
passed to the exec statement.

45

sjuswalels ol dwis .

46

CHAPTER 7: COMPOUND STATEMENTS

Compound statements contain (groups of) other statements; they affect or control the execution of
those other statements in some way. In general, compound statements span multiple lines, although
in simple incarnations a whole compound statement may be contained in one line.

The if,while and for statementsimplement traditional control flow constructs. t ry specifies ex-
ception handlers and/or cleanup code for agroup of statements. Function and class definitionsare also
syntactically compound statements.

Compound statements consist of one or more ‘clauses . A clause consists of a header and a * suite'.
The clause headers of a particular compound statement are all at the same indentation level. Each
clause header begins with a uniquely identifying keyword and ends with a colon. A suite is a group
of statements controlled by a clause. A suite can be one or more semicolon-separated simple state-
ments on the same line as the header, following the header’ s colon, or it can be one or more indented
statements on subsequent lines. Only thelatter form of suite can contain nested compound statements;
the following is illegal, mostly because it wouldn’t be clear to which if clause afollowing else
clause would belong:

if testl: 1if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following ex-
ample, either al or none of the print statements are executed:

if x <y < z: print x; print y; print z

Summarizing:
compound_stmt: if stmt | while stmt | for_ stmt
| try stmt | funcdef | classdef
suite: stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement: stmt_list NEWLINE | compound_ stmt
stmt_list: simple stmt (";" simple stmt)* [";"]

Note that statements always end in aNEWLINE possibly followed by a DEDENT. Also note that op-
tional continuation clauses always begin with a keyword that cannot start a statement, thus there are
no ambiguities (the ‘dangling e1se’ problem is solved in Python by requiring nested i f statements
to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line
for clarity.

7.1 The if statement

The i £ statement is used for conditiona execution:

if stmt: "if" expression ":" suite
("elif" expression ":" suite)*
["else™ ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be
true (see section “Boolean operations’ on page 35 for the definition of true and false); then that suite
is executed (and no other part of the 1 £ statement is executed or evaluated). If al expressions are
false, the suite of the el se clause, if present, is executed.

47

suawalels punodwo) e

7.2 The while statement

Thewhile statement is used for repeated execution aslong as an expression is true:

while stmt: "while" expression ":" suite
["else" ":" suite]

Thisrepeatedly teststhe expression and, if it istrue, executes thefirst suite; if the expressionisfalse (which
may bethefirst timeit istested) the suite of thee1 se clause, if present, isexecuted and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the el se clause's
suite. A continue statement executed in the first suite skips the rest of the suite and goes back to testing
the expression.

7.3 The for statement

The for statement is used to iterate over the elements of a sequence (string, tuple or list):

for stmt: "for" target list "in" expression list ":" suite
["else" ":" suite]

The expression list is evaluated once; it should yield a sequence. The suite is then executed once for each
item in the sequence, in the order of ascending indices. Each itemin turn is assigned to the target list using
the standard rules for assignments, and then the suite is executed. When the items are exhausted (which is
immediately when the sequenceis empty), the suiteinthee1se clause, if present, is executed, and the loop
terminates.

A break statement executed in the first suite terminates the loop without executing the el se clause's
suite. A continue statement executed in the first suite skips the rest of the suite and continues with the
next item, or withtheelse clauseif there was no next item.

The suite may assign to the variable(s) in the target list; this does not affect the next item assigned to it.

The target list is not deleted when the loop is finished, but if the sequence is empty, it will not have been
assigned to at all by the loop. Hint: the built-in function range () returns a sequence of integers suitable
to emulate the effect of Pascal’sfor i := a to b do;eg. range (3) returnsthelist [0, 1, 2].

Warning: Thereis a subtlety when the sequence is being modified by the loop (this can only occur for mu-
table sequences, i.e. lists). An internal counter is used to keep track of which item is used next, and thisis
incremented on each iteration. When this counter has reached the length of the sequence the loop termi-
nates. This meansthat if the suite deletes the current (or a previous) item from the sequence, the next item
will be skipped (since it gets the index of the current item which has already been treated). Likewise, if the
suite inserts an item in the sequence before the current item, the current item will be treated again the next
time through the loop. This can lead to nasty bugs that can be avoided by making atemporary copy using a
dice of the whole sequence, e.g.

for x in al[:]:
if x < 0: a.remove (x)

7.4 The try statement

The try statement specifies exception handlers and/or cleanup code for a group of statements:

try stmt: try exc stmt | try fin stmt

try exc stmt: "try" ":" suite
("except" [expression ["," target]] ":" suite)+
["else™ ":" suite]

try fin stmt: "try" ":" suite
"finally"™ ":" suite

Therearetwo formsof try statement: try. . .except andtry. . .finally. Theseformscan-
not be mixed (but they can be nested in each other).

Thetry. . .except form specifies one or more exception handlers (the except clauses). When
no exception occurs in the try clause, no exception handler is executed. When an exception occurs
in the try suite, asearch for an exception handler is started. This inspects the except clausesin turn
until one is found that matches the exception. An expression-less except clause, if present, must be
last; it matches any exception. For an except clause with an expression, that expression is eval uated,
and the clause matches the exception if the resulting object is “compatible” with the exception. An
object is compatible with an exception if it is either the object that identifies the exception, or (for ex-
ceptions that are classes) it is a base class of the exception, or it is atuple containing an item that is
compatible with the exception. Note that the object identities must match, i.e. it must be the same ob-
ject, not just an object with the same value.

If no except clause matches the exception, the search for an exception handler continues in the sur-
rounding code and on the invocation stack.

If the evaluation of an expression in the header of an except clause raises an exception, the original
search for ahandler is cancelled and a search starts for the new exception in the surrounding code and
on the call stack (it istreated asif the entire t ry statement raised the exception).

When amatching except clause isfound, the exception’ s parameter is assigned to the target specified
in that except clause, if present, and the except clause’s suite is executed. When the end of this suite
isreached, execution continues normally after the entire try statement. (This meansthat if two nested
handlers exist for the same exception, and the exception occursin the try clause of the inner handler,
the outer handler will not handle the exception.)

Before an except clause’ s suite is executed, details about the exception are assigned to three variables
in the sys module: sys.exc type receives the object identifying the exception;

sys.exc_value receives the exception’s parameter; sys.exc_ traceback receives atrace-
back object (see page 17) identifying the point in the program where the exception occurred. These
details are also available through the sys.exc _info () function, which returns a tuple
(exc _type, exc value, exc_ traceback). Use of the corresponding variablesis depre-
cated in favor of thisfunction, since their use is unsafe in athreaded program. (As of Python 1.5, the
variables are restored to their old values when returning from a function that handled an exception.)

Theoptional else clauseisexecuted when no exception occursin the t ry clause. Exceptionsin the
else clause are not handled by the preceding except clauses.

49

suawalels punodwo) e

Thetry...finally form specifiesa‘cleanup’ handler. The try clause is executed. When no excep-
tion occurs, the finally clauseis executed. When an exception occurs in the try clause, the exception
is temporarily saved, the finally clause is executed, and then the saved exception is re-raised. If the
finally clause raises another exception or executes a return, break or continue statement, the
saved exception is lost. The exception information is not available to the program during execution of the
finally clause.

When areturn or break statement isexecuted inthe try suiteof atry. . . £inally statement, the

finally clauseis also executed ‘on the way out’. A continue statement isillegal in the try clause.
(The reason is a problem with the current implementation — this restriction may be lifted in the future).

7.5 Function definitions

A function definition defines a user-defined function object (see “ The standard type hierarchy” on page 12):

funcdef: "def" funcname " (" [parameter list] ")" ":" suite

parameter list: (defparameter ",")* ("*" identifier [, "**" identifier]
| "**" identifier
| defparameter [","])

defparameter: parameter ["=" expression]

sublist: parameter ("," parameter)* [",6 "]

parameter: identifier | " (" sublist ")"

funcname: identifier

A function definition is an executable statement. Its execution binds the function name in the current local
name space to a function object (awrapper around the executable code for the function). This function ob-
ject contains a reference to the current global name space as the global name space to be used when the
function iscalled.

The function definition does not execute the function body; this gets executed only when the function is
called.

When one or more top-level parameters have the form parameter = expression, the function is said to have
“default parameter values’. Default parameter values ar e evaluated when the function definition is ex-
ecuted. For a parameter with a default value, the correponding argument may be omitted from a call, in
which case the parameter’ s default value is substituted. If a parameter has a default value, all following pa-
ramelters must also have a default value — thisis a syntactic restriction that is not expressed by the gram-
mar.

Function call semantics are described in more detail in section “Calls’ on page 31. A function call always
assigns values to al parameters mentioned in the parameter list, either from position arguments, from key-
word arguments, or from default values. If theform "+identifier" iSpresent, itisinitialized to atuple
receiving any excess positional parameters, defaulting to the empty tuple. If theform "**identifier" is
present, it isinitialized to a new dictionary receiving anyt excess keyword arguments, defaulting to a new
empty dictionary.

1. Currently this is not checked; instead, def f(a=1,b) is interpreted as def
f (a=1, b=None).

50

It isalso possible to create anonymous functions (functions not initially bound to a name), for imme-
diate use in expressions. This uses lambda forms, described in section “Boolean operations’ on
page 35. Note that the lambdaform is merely a shorthand for asimplified function definition; afunc-
tiondefinedina"def" statement can be passed around or assigned to another name just like afunc-
tion defined by a lambda form. The "def" form is actually more powerful since it allows the
execution of multiple statements.

Programmer’s note: A "def" form executed inside a function definition defines a local function
that can be returned or passed around. Because of Python's two-scope philosophy, alocal function
defined in thisway does not have accessto the local variables of the function that contains its defini-
tion; the same rule applies to functions defined by alambda form. A standard trick to pass selected
local variablesinto alocally defined function is to use default argument values, like this:

Return a function that returns its argument incremented by ’'n’
def make incrementer (n) :
def increment (x, n=n):
return xX+n
return increment

addl = make incrementer (1)
print addl(3) # This prints ‘4’

7.6 Class definitions

A class definition defines a class object (see section “ The standard type hierarchy” on page 12):

classdef: "class" classname [inheritance] ":" suite
inheritance: "(" [expression_list] ")"
classname: identifier

A class definition is an executable statement. It first evaluates the inheritance list, if present. Each
itemin theinheritancelist should evaluate to aclass object. The class s suiteisthen executed in anew
execution frame (see section “ Code blocks, execution frames, and name spaces’ on page 23), using a
newly created local name space and the original global name space. (Usually, the suite contains only
function definitions.) When the class's suite finishes execution, its execution frame is discarded but
its local name space is saved. A class object is then created using the inheritance list for the base
classes and the saved local name space for the attribute dictionary. The class name is bound to this
class abject in the original local name space.

Programmer’s note: variables defined in the class definition are class variables; they are shared by
all instances. To define instance variables, they must be given avalueinthethe init method
or in another method. Both class and instance variables are accessible through the notation
“self .name”, and aninstance variable hides a class variable with the same name when accessed in
thisway. Class variables with immutable values can be used as defaults for instance variables.

51

suawalels punodwo) e

52

CHAPTER 8: TOP-LEVEL COMPONENTS

The Python interpreter can get its input from a number of sources; from a script passed to it as stan-
dard input or as program argument, typed in interactively, from amodule sourcefile, etc. Thischapter
gives the syntax used in these cases.

8.1 Complete Python programs

While alanguage specification need not prescribe how the language interpreter isinvoked, it isuseful
to have a notion of a complete Python program. A complete Python program is executed in a mini-
mally initialized environment: all built-in and standard modul es are avail able, but none have been ini-
tialized, except for sys (various system services), builtin _ (built-in functions, exceptions
andNone) and main . Thelatter is used to provide the local and global name space for execu-
tion of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a
complete program but reads and executes one statement (possibly compound) at atime. The initial
environment isidentical to that of acomplete program; each statement is executed in the name space
of main .

Under UNIX , acomplete program can be passed to the interpreter in three forms: with the -c string
command line option, as afile passed as the first command line argument, or as standard input. If the
file or standard input is atty device, theinterpreter entersinteractive mode; otherwise, it executesthe
file as a complete program.

8.2 Fileinput

All input read from non-interactive files has the same form:

file input: (NEWLINE | statement)*

This syntax is used in the following situations:
« when parsing a complete Python program (from afile or from a string);
» when parsing amodule;

« when parsing a string passed to the exec statement;

8.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive input: [stmt list] NEWLINE | compound stmt NEWLINE

Note that a (top-level) compound statement must be followed by ablank line ininteractive mode; this
is needed to help the parser detect the end of the input.

53

suauodwod |ang-do .

8.4 Expression input

There are two forms of expression input. Both ignore leading whitespace. The string argument to eval ()
must have the following form:

eval input: expression list NEWLINE*

Theinput lineread by input () must have the following form:

input input: expression list NEWLINE

Note: to read ‘raw’ input line without interpretation, you can use the built-in function raw _input () or
the readline () method of file objects.

Symbols
B 3
abs ... 22
add ... 21
and L 21
_bases ... 16
builtin ..o 24, 53
_builtins__ ... 24
el 15, 20
class ... 16
CMP_ 19
COBMCE it 22
de 18
exceptionin................ 18
_delattr .. 16, 20
delitem_ 20
deldice , 21
_dict__ ..o 15-16, 20
_div 21
_divmod__ ... 21
_doc ... 14-16
file ..o 15
float 22
_getattr__ 16, 19
getitem__ 18, 20
getsice ... 20
hash 19
hex ... 22
init__ ... 15, 18
it 22
invert_ ... 22
len ... 1920
long_ ... 22
Ishift_ 21
oman__ ... 24, 53
_members ... 12
_methods _ 12
_mod ... 21
omul 21
name ... 14-16
L NEO e 22
_nNoNzero__ ... 1920
_OCt 22
O 21

_POS 22
_POW__ 21
radd ... 21
Crand_ L 21
_rdiv 21
_rdivmod ...l 21
CTEPr 19
Crshift 21
_rmod__ .. 21
rmul 21
FOF e e 21
CIPOW_ 21
_rrshift 21
Crshift 21
rsub 21
9o] S 21
self 15
setattr 16, 19
setitem ... 20
setdice L. 20
- P 19
SUb 21
XOl e 21
A
abstraction 11
addition 33
and ... 35
bit-wise 34
argument
defaultvalue 31
function 14
keyword 31
arguments
positional 31
arayofbytes 13
ASCI 6—7,9, 13
assignment 13, 30
attribute 40
class......... ... 16
classinstance............ 16
atributes 40
list

55

target, 40
dicing 41
subscription 41
aom ... 27
atribute 12
class ..o 16
classinstance 16
geNENiC ..o 12
special ... 12
attributeaccess 19
attributesearch 15
AttributeError 19, 29, 40
B
back-quotes 19, 29
backsdash 6
backslashcharacter 3
binary arithmetic operations 21
binding
name 27,4344, 50-51
global 44
bitwise operations 21
blankline 4
block
code 23
BNF ... 1,27
break 43, 48, 50
built-in 15, 32
built-inmethod 32
byte....... ... 13
bytecode 16
byte-compile 16
C
Co 7,12, 15, 34
cal ... 31
built-infunction 32
built-inmethod 32
classinstance 32
classobject 15-16, 32
function 32
user-defined 32
functioninvocation 14
instancecovvun.. 32
method 32
procedure 39
cdlable 14, 31
characters oo ... 30
chr . 13
circular references 11
class 1516, 32, 51

56

I NDE X

classinstance 15
clausel 47
cose 11
codeblock 23,27, 44
code generationphase............ 41
codeobject 16

co argcount 17

cocode 17

COCONSIScvvvvnnnn 17

co filename 17

coflags 17

CONAMEScvvvvnnnn 17

conlocas 17

Co vVarnames 17
COEMCION ..o oo eeeenn 27,32
coercionrules 22
colon ... 47
comma

trailing 36, 42
commaoperator 28
commandline 53
comment, 3
COMPANISON .. vvvieeeeaeen s 34

chaining 34
comparisonoperator 9
compile 44
complex literal 9
complex number 9, 13, 27
constant 6
constructor

class 18
container 11, 16
continue 43, 48, 50
conversion

arithmetic 27

string ... 19, 29, 39
culybrace 4
D
data L 11
datum 28
debugger, 17
debugging 11
decimal literal 8
DEDENT token 4, 47
definition

cass 42, 51

function 42, 50
del 13, 18, 23, 30, 41
delete

atribute, 42

delimiter 9
dictionary 14-15, 19, 28-29, 41
display
dictionary 28
tuple. ... 28
divison 33
divmod 33
doubleprecision 12
E
eif ..o 47
Ellipsis.........ccoooiii. 12
dlipsis, 17
gdse ... 43, 4749
dangling................... 47
end-of-linecharacter 3
BITON e 25
erorhandling 25
escapesequence i 7
eva ... 23, 29, 44, 54
except 49
exceptclause 23
exception 25, 42
class........ ..o 49
rasingcovvvivinnnn... 42
exceptionhandler 25, 49
BXEC . it e 23,44
execfile 23, 44
executionmodel 23
EXPression ..., 27,30
lambda.................... 35
expressioninput 54
expressionlist 36, 39
extended slice notation 21
extended dicesyntax 17
F
fdopenl 16
file ... 16, 54
finaly 11, 42, 50
floatingpoint 12
floating point literal 8
floating point number 27
floor ... 33
flowof control 25
for ... 23, 43, 48
form
lambda.................... 35
formfeed character 4
frame 17
execution 23,51

I NDE X

frame object
fback 17
f builtins 17
fecode 17
foobas 17
flasti ...l 17
flineno 17
flocals 17
f restricted 17
ftrace 17
from 6, 23, 43
function 14, 32, 50
anonymouSovvenn... 35
built-in 15
user-defined 14, 50
functionobject 16
func code 14
func defaults 14
funcdoc 14
func globals 14-15
funhc name 14
G
garbagecollection 11
getlineno 17
globa 23, 27,40, 42, 44
globas 24, 45
grammariiean. 1
H
handle an exception 25
handler
exception 17
hash 19
hashcharacter 3
hexadecimal literal 8
I
id . 11
Identifier 5
identifier 27
special meaning 6
P 47
imclassoount 16
imsef 15
imaginary literal 9
immutable 13
import 6, 15, 23, 4344
ImportError 44
N 35, 48
INDENT token 4

57

Indentation 4
indentation 4
indentationerrors 5
index operation 13
IndexError 41
inheritance 51
iNpuUt 54
instance 15-16, 32
cal 20
classl 16
integer ... 8,12, 27
longo 8
integer literal 8
interactivemode 53
internaltype 16
interpreter 53
invertion 32
IS et 11, 35
ISNOt 35
item
selection................... 13
SNg ..o 30
K
key ... 28
key/datumpair 28
keyword 6
L
Lambda 35
leading whitespace 4
len......... . i 13
lexical analysis 3
lexical analyzer 5
line
blank 4
continuation 3
joiningo, 3
physical
splitacross............... 4
linejoining
implicit 4
linestructure 3
lines
logical 3
physical 3
list.............. 13, 28-30, 41, 48
empty ... 28
expression 36, 3940
target ... 40
deletion 41

58

Literalco i 6
literal 28
locals............cooi. 24, 45
logical line 3
longinteger 12, 27
longinteger literal 8
loop
over mutable sequence 48
M
makefile 16
mapping 13, 16, 29, 41
method 32
bound, 14
built-in 15
unbound 14
user-defined 14
creation 14
method object
name__ 14
imclass 14
imfunc 14
im func. _doc_ 14
imsef 14
MINUSccovininnnn... 32
module 15, 29, 43
extension 12
importing 43
modulo 33
multiplication 33
mutable 14, 4041
mutable sequence
loopover 48
N
nameccccouuun.. 5, 27
binding 23,40
class L. 51
function 50
globa 27
mangling 6
rebinding 23,40
unbinding 23,42
NaMesPace 23
globa 14, 23
locall 23
module 15
NameError 24, 27
negation 32
NEWLINEtoken 34,47
Nonecvvvinn.. 12, 39

Not i 35
NOLIN ..ot 35
notation oiu... 1
null operation 41
number 8,12, 16
NUMDErS ... oo 16
NUMENICov i 12
numeric arithmetic
mixedmode................ 22
numericliteral 8
O
object, 11
addressinmemory 11
container 11
identity 11
immutable 11
mutable 11
reference to external resource .. 11
type ... 11
unreachable 11
vaue ... 11
objectclosure.................. 14
octal literal 8
OPEN ..ttt 16
operation
arithmetic
binary 32
Unary . .ovvvvenennnnnnn. 32
bit-wise
binary 33
unaryoovivin... 32
boolean 35
nul ... 41
shifting 33
operatorcviiiiiiinn 9
optimization 15
OF 35
bit-wise 34
exclusve 34
inclusive 34
ord ... 13
output
standard 39, 42
OverflowError 12
P
parenthesized form 28
parser 3,5
Pascal 48
PasS ... 41

I NDE X

planinteger 12, 27
plaininteger literal 8
plus............ .o 32
popen 16
POW . ..o 32
power operator 32
primaryovuniuninn... 29
print, 19, 42
program 53
Q
quotes
backward 19, 29
double 6
FeVerseo.c.ouun. 19, 29
single 6
R
FAISE ot 42
raisedanexception.............. 25
FANgE . . vt 48
raw input 54
readline....................... 54
FECUrsiVe 29
reference
atribute, 29
circular, 11
count 18
counting 11
remainder 33
FEPr 19, 29, 39
representation
integer 12
reservedword 6
restricted execution mode 24
return 42, 50
S
SCOPE v vt 24
SCHPL .o 23
semicolon a7
sequence . .. 13, 16, 29-30, 35, 41, 48
immutable 13
mutable 13
SON . 9
dice ... 20, 30, 41
boundary 30,41
extended 30
smple 30
Sliceobjects 17
dicing 13, 30

59

SPACE . .t 4
spacecount 4
squarebracket 4
stack ... 4
execution 17
stackframe 17
standardinpu 53
standardoutput 42
Statement
assignment 13
compound 47
EXPression 39
loop ...oii 43, 48
smple 39
statementgrouping 4
statements
assignment 40
stderr ... 16
stdin ... 16
stdout 16, 42
S 19, 29
string ... 13, 2930, 48
triple-quoted 4
stringliteral ... 6
concatenation 8
subscription 13, 29
subtraction 33
Suite ... 47
suppression
newline 42
SynMtaxX ..ovvv v 1, 27
WS e 42, 53
exc traceback 17, 49
exctype................... 49
excvaue.................. 49
last_traceback 17
sys.exc traceback 18
syslast traceback 18
sysmodules 43
sysstderr .. 16
sysstdin ... 16
sysstdout 16
T
tab 4
target ... 40
deletion 41
loopcontrol 43
test
identity 35
membership 35

60

token ... 3
delimiter 5
identifier 5
keyword 5
literal ... 5
operator 5

tracback object
toframe................... 17
th lasti 17
tblineno 17
tbnext 17

trace
stack ... 17

traceback 43

traceback object
exc traceback 17
last_traceback 17

transformation 15

triple-quoted strings 6

try .o 11, 17, 42, 49
finally 43

tuple 13, 29-30, 36, 48
empty 13, 28, 36
singleton 13

type 11-12
data....................... 12

immutable 28
hierarchy 12

TypeError 29, 31-32, 40

U

UNIX ..o 4,53

unrecoghized escape sequences 7

user-defined 14

user-defined function 32

\%

value
parameter

default 50
writing 39

ValueError 33

values
writing oo 42

VonNeumann 11

W

while 43, 48

whitespace 4

I NDE X

Z
ZeroDivisionError

61

