
Command Writing(TCL) Command Writing(TCL)

NAME
TclCommandWriting - Writing C language extensions to Tcl.

OVERVIEW
This document is intended to help the programmer who wishes to extend Tcl with C language routines. It
should also be useful to someone wishing to add Tcl to an existing editor, comm program, etc. There is
also programming information in the Tcl.man manual directory of the Berkeley distribution.

WRITING TCL EXTENSIONS IN C
C extensions to Tcl must be written to receive their arguments in the manner Tcl uses to pass them.

A C routine is called from Tcl with four arguments, a client data pointer, an interpreter pointer, an argument
count and a pointer to an array of pointers to character strings containing the Tcl arguments to the routine.

A Tcl extension in C is now presented, and described below:

#include "tcl.h"

int Tcl_EchoCmd(clientData, interp, argc, argv)
void *clientData;
Tcl_Interp *interp;
int argc;
char **argv;

{
int i;

for (i = 1; i < argc; i++) {
printf("%s ",argv[i]);

}
printf("\n");
return TCL_OK;

}

The client data pointer will be described later.

The interpreter pointer is the ‘‘key’’ to an interpreter. It is returned by Tcl_CreateInterp or Tcl_CreateEx-
tendedInterp and is used within Tcl and by your C code. The structure pointed to by the interpreter pointer,
and all of the subordinate structures that branch off of it, make up an interpreter context, which includes all
of the currently defined procedures, commands, variables, arrays and the execution state of that interpreter.

The argument count and pointer to an array of pointers to textual arguments is handled by your C code in
the same manner that you would use in writing a C main function -- the argument count and array of point-
ers works the same as in a C main call; pointers to the arguments to the function are contained in the argv
array. Similar to a C main, the first argument (argv[0]) is the name the routine was called as (in a main, the
name the program was invoked as).

In the above example, all of the arguments are output with a space between each one by looping through
argv from one to the argument count, argc, and a newline terminates the line -- an echo command, although
a ‘‘real’’ echo command would not add a trailing blank like this one does.

All arguments from a Tcl call to a Tcl C extension are passed as strings. If your C routine expects certain
numeric arguments, your routine must first convert them using the Tcl_GetInt or Tcl_GetDouble function,
or some other method of your own devising. If you program produces a numeric result, it should return a
string equivalent to that numeric value. A common way of doing this is something like...

sprintf(interp->result, "%ld", result);

More sophisticated commands should verify their arguments when possible, both by examining the argu-
ment count, by verifying that numeric fields are really numeric, that values are in range when their ranges
are known, and so forth.

Tcl 1

Command Writing(TCL) Command Writing(TCL)

Tcl is designed to be as bullet-proof as possible, in the sense that Tcl programs should not be able to cause
Tcl to dump core. Please do the same with your C extensions by validating arguments as above.

In the command below, two or more arguments are compared and the one with the maximum value is
returned, if all goes well. It is an error if there are fewer than three arguments (the pointer to the ‘‘max’’
command text itself, argv[0], and pointers to at least two arguments to compare the values of).

This routine also shows the use of the programmer labor-saving Tcl_AppendResult routine. See the Tcl
manual page, SetResult.man, for details. Also examine the calls Tcl_SetErrorCode and Tcl_UnixError doc-
umented in the Tcl manual page AddErrInfo.man.

int
Tcl_MaxCmd (clientData, interp, argc, argv)

char *clientData;
Tcl_Interp *interp;
int argc;
char **argv;

{
int maxVal = MININT;
int maxIdx = 1;
int value, idx;

if (argc < 3) {
Tcl_AppendResult (interp, "bad # arg: ", argv[0],

" num1 num2 [..numN]", (char *)NULL);
return TCL_ERROR;

}

for (idx = 1; idx < argc; idx++) {
if (Tcl_GetInt (argv[idx], 10, &Value) != TCL_OK)

return TCL_ERROR;

if (value > maxVal) {
maxVal = value;
maxIdx = idx;

}
}
strcpy (interp->result, argv [maxIdx]);
return TCL_OK;

}

When Tcl-callable functions complete, they should normally return TCL_OK or TCL_ERROR.
TCL_OK is returned when the command succeeded and TCL_ERROR is returned when the command
has failed rather drastically. TCL_ERROR should be returned for all syntax errors, non-numeric values
where numeric ones were expected, and so forth. Less clear in some cases is whether Tcl errors should be
returned or whether a function should just return a status value. For example, end-of-file during a gets
returns a status, but open returns an error if the open fails. Errors can be caught from Tcl programs using
the catch command.

Less common return values are TCL_RETURN, TCL_BREAK and TCL_CONTINUE. These are used
if you are adding new control and/or looping structures to Tcl. To see these values in action, examine the
source to the while, for, if and loop commands.

INSTALLING YOUR COMMAND
To install your command into Tcl your must call Tcl_CreateCommand, passing it the pointer into the inter-
preter you want to install the command into, the name of the command, a pointer to the C function, a client

Tcl 2

Command Writing(TCL) Command Writing(TCL)

data pointer, and a pointer to an optional callback routine.

The client data pointer and the callback routine will be described later.

For example, for the max function above (which incidentally comes from math.c in the extend/src direc-
tory):

Tcl_CreateCommand (interp, "max", Tcl_MaxCmd, (ClientData)NULL,
(void (*)())NULL);

In the above example, the max function is added to the specified interpreter. The client data pointer and
callback function pointer are NULL.

CLIENT DAT A
The client data pointer provides a means for Tcl commands to have data associated through them that is not
global to the C program including the Tcl core. It is essential in a multi-interpreter environment (where a
single program has created and is making use of multiple Tcl interpreters) for the C routines to maintain
any permanent data they need relative to each interpreter being used, or there would be reentrancy prob-
lems. Tcl solves this through the client data mechanism. When you are about to call Tcl_CreateCommand
to add a new command to an interpreter, if that command needs to keep some read/write data from one
invocation to another, you should allocate the space, preferably using ckalloc, then pass the address of that
space as the ClientData pointer to Tcl_CreateCommand.

When your command is called from Tcl, the ClientData pointer you gav e to Tcl_CreateCommand when
you added the command to that interpreter is passed to your C routine through the ClientData pointer call-
ing argument.

Commands that need to share this data with one another can do so by using the same ClientData pointer
when the commands are added.

It is important to note that the Tcl extensions in the extended/src directory have had all of their data set up
in this way, so at the time of this writing (release 6.2) the Tcl extensions support multiple interpreters
within one invocation of Tcl.

INTEL ’286 GOTCHAS
The ’286 programmer who is not using an ANSI C standard compiler with function prototypes must be vig-
ilant to ensure that anytime NULL is passed to a function as a pointer it is explicitly cast to (void *) or
equivalent. Also remember that Tcl math within expressions is carried out to 32 bits, so that you should
usually use the long variable type for your integers, Tcl_GetLong (rather than Tcl_GetInt) to convert strings
to long integers, and remember to use %ld when printing results with sprintf, and so forth.

To maintain ’286 compatibility, all C programmers are asked to follow these guidelines. I know you don’t
want to, but there are a lot of 286 machines out there and it is nice that they are able to run Tcl.

THEORY OF HANDLES
Sometimes you need to have a data element that isn’t readily representable as a string within Tcl, for exam-
ple a pointer to a complex C data structure. We do not think it is a good idea to try to pass pointers around
within Tcl as strings by converting them to and from hex or integer representations, for example. It is too
easy to screw one up and the likely outcome of doing that is a core dump.

Instead what we have done is developed and made use of the concept of handles. Handles are identifiers a
C extension can pass to, and accept from, Tcl to make the transition between what your C code knows
something as and what name Tcl knows it by to be as safe and painless as possible. For example, the stdio
package included in Tcl uses file handles. When you open a file from Tcl, a handle is returned of the form
filen where n is a file number. When you pass the file handle back to puts, gets, seek, flush and so forth,
they validate the file handle by checking the the file text is present, then converting the file number to an
integer that they use to look into a data structure of pointers to Tcl open file structures, which contain a
Unix file descriptor, flags indicating whether or not the file is currently open, whether the file is a file or a
pipe and so forth.

Handles have proven so useful that, as of release 6.1a, general support has been added for them. If you

Tcl 3

Command Writing(TCL) Command Writing(TCL)

need a similar capability, it would be best to use the handle routines, documented in Handles.man. We rec-
ommend that you use a unique-to-your-package textual handle coupled with a specific identifier and let the
handle management routines validate it when it’s passed back. It is much easier to track down a bug with
an implicated handle named something like file4 or bitmap6 than just 6.

TRACKING MEMORY CORRUPTION PROBLEMS
Occasionally you may write code that scribbles past the end of an allocated piece of memory. The memory
debugging routines included in Tcl can help find these problems. See Memory(TCL) for details.

WRITING AN APPLICATION-SPECIFIC MAIN
For those writing an application-specific main, for example, those adding Tcl to an existing application or
including Tcl within a larger application, a few steps need to be taken to set up Tcl.

For one thing, several extern char * definitions must be fulfilled, providing data used by the infox com-
mand. These definitions are tclxVersion, the Extended Tcl version number, tclxPatchlevel, the Extended Tcl
patch level, tclAppName, the name of the application, tclAppLongname, a description of the application,
and tclAppVersion, the version number of the application.

A Tcl interpreter, including all of the extensions in Extended Tcl, is created with a call to Tcl_CreateEx-
tendedInterp. Next, any application-specific commands are added by calls to Tcl_CreateCommand.
Finally, Tcl_Startup is called to load the Tcl startup code, pull in all of the Tcl procs and paths, do com-
mand line processing, handle autoloads, packages, and so forth. If the application writer wants different
startup behavior, they should write a different Tcl startup routine. Tcl_Startup is defined in the file
tclstartup.c in the extended/src directory.

Finally, cleanup code is called to close down the application. Tcl_DeleteInterp is called to free memory
used by Tcl -- normally, this is only called if TCL_MEM_DEBUG was defined, since Unix will return all
of the allocated memory back to the system, anyway.

The writer of an application-specific main is invited to examine and use the main() routine defined in
extended/src/main.c as a template for their new main. There is a tcl++.C, which is a main for C++-based
Tcl applications.

Tcl 4

