GNU Libidn

for version 0.1.6, 7 February 2003

Simon Josefsson (bug-libidn@gnu.org)

mailto:bug-libidn@gnu.org

This manual is for GNU Libidn (version 0.1.6, 7 February 2003), which is a library for
internationalized string processing.

Copyright (©) 2002, 2003 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

Table of Contents

1 Introduction............................... 1
1.1 Getting Started 1
1.2 Features........ ... 1
1.3 Supported Platforms 2
1.4 Bug Reports....... ... 3
2 Preparationciiiiiiieiiiennnnn 4
2.1 Header 4
2.2 Initialization.......... 5
2.3 Version Check.......... 5
2.4 Building the source........... 6
3 Stringprep Functions....................... 7
4 Punycode Functions 11
5 IDNA Functions..............cccviienn... 12
6 Examplesiiiiiiiiii... 16
6.1 Example 1..... ... 16
6.2 Example 2. 18
6.3 Example 3.... ... 23
6.4 Example d.... ... 24
7 Acknowledgements........................ 27
Appendix A GNU LESSER GENERAL PUBLIC
LICENSE, 28
A.0.1 Preamble......... 28

A.0.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION.......... 29

A.0.3 How to Apply These Terms to Your New Libraries

.. 36
Appendix B Copying This Manual 37
B.1 GNU Free Documentation License 37

B.1.1 ADDENDUM: How to use this License for your
documents 43

Chapter 1: Introduction 1

1 Introduction

GNU Libidn is an implementation of the Stringprep, Punycode and IDNA specifications
defined by the IETF Internationalized Domain Names (IDN) working group, used for inter-
nationalized domain names. Currently the Nameprep, Kerberos 5 and XMPP Stringprep
profiles are supported. It is available under the GNU Lesser General Public License.

The library contains a generic Stringprep implementation (including Unicode 3.2 NFKC
normalization, table mapping of characters, and Bidirectional Character handling), a few
Stringprep profiles, and an implementation of the functionality defined by Punycode and
IDNA.

The Stringprep API consists of two main functions, one for converting data from the
system’s native representation into UTF-8, and one function to perform the Stringprep pro-
cessing. Each stringprep profile has a corresponding CPP macro. Adding a new Stringprep
profile for your application within the API is straightforward. The Punycode API con-
sists of one encoding function and one decoding function. The IDNA API consists of the
ToASCII and ToUnicode functions, as well as an high-level interface for converting entire
domain names to and from the ACE encoded form.

The library is used by forthcoming network applications to process user names and
passwords before they are input to cryptographic operations. Libidn can be built into GNU
Libc to enables a new flag to getaddrinfo() for system-wide IDN processing.

GNU Libidn is developed for the GNU/Linux system, but runs on over 20 Unix platforms
(including Solaris, IRIX, AIX, and Tru64) and Windows.

1.1 Getting Started

This manual documents the library programming interface. All functions and data types
provided by the library are explained.

The reader is assumed to possess basic familiarity with internationalization concepts and
network programming in C or C++.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual (see Chapter 6 [Examples], page 16), and then only read up those parts of the
interface which are unclear.

1.2 Features

This library might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
Lesser General Public License.

Chapter 1: Introduction 2

It’s thread-safe

No global state is kept in the library.

It’s portable

It should work on all Unix like operating systems, including Windows.

1.3 Supported Platforms

1.

10.

11.

12.

13.

14.

Libidn has at some point in time been tested on the following platforms.
Debian GNU /Linux 3.0r0 (Woody)
GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-

unknown-linux-gnu, alphaev6-unknown-linux-gnu, hppa64-unknown-linux-gnu,
i686-pc-linux-gnu, ia64-unknown-linux-gnu.
Tru64 UNIX

Tru64 UNIX C compiler and Tru64 Make. alphaev68-dec-osf5.1.
SuSE Linux 7.1

GCC 2.96 and GNU Make. alphaev67-unknown-linux-gnu.

SuSE Linux 7.2a

GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

RedHat Linux 7.2

GCC 2.96 and GNU Make. i686-pc-linux-gnu.

RedHat Linux 8.0

GCC 3.2 and GNU Make. i686-pc-linux-gnu.

IRIX 6.5

mips-sgi-irix6.5, MIPS C compiler, IRIX Make.

AIX 4.3.2

rs6000-ibm-aix4.3.2.0, IBM C for AIX compiler, AIX Make.
Microsoft Windows 2000 (Cygwin)

GCC 3.2, GNU make. i686-pc-cygwin

HP-UX 11.11

HP-UX C compiler and HP Make. hppa2.0w-hp-hpux11.11.

SUN Solaris 2.8

Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.
NetBSD 1.6

GCC 2.95.3 and GNU Make. alpha-unknown-netbsd1.6, i386-unknown-netbsdelf1.6.
OpenBSD 3.1

GCC 2.95.3 and GNU Make. i386-unknown-openbsd3.1.

FreeBSD 4.7

GCC 2.95.4 and GNU Make. alpha-unknown-freebsd4.7, i386-unknown-freebsd4.7.

If you use Libidn on, or port Libidn to, a new platform please report it to the author.

Chapter 1: Introduction 3

1.4 Bug Reports

If you think you have found a bug in Libidn, please investigate it and report it.

e Please make sure that the bug is really in Libidn, and preferably also check that it
hasn’t already been fixed in the latest version.

e You have to send us a test case that makes it possible for us to reproduce the bug.

e You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-1ibidn@gnu.org’

Chapter 2: Preparation 4

2 Preparation

To use ‘Libidn’, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of this
chapter, it is described how the library is initialized, and how the requirements of the library
are verified.

A faster way to find out how to adapt your application for use with ‘Libidn’ may be to
look at the examples at the end of this manual (see Chapter 6 [Examples|, page 16).

2.1 Header

The library contains a few independent parts, and each part export the interfaces (data
types and functions) in a header file. You must include the appropriate header files in all
programs using the library, either directly or through some other header file, like this:

#include <stringprep.h>
The header files and the functions they define are categorized as follows:

stringprep.h
The low-level stringprep API entry point. Normal applications uses one specific
stringprep profile, and should rather include the corresponding profile header
file (see below). If you are writing an application that only makes use of the
utility functions, including this header file may be more appropriate however.

The name space of the stringprep part of Libidn is stringprep* for function
names, Stringprep* for data types and STRINGPREP_* for other symbols. In
addition the same name prefixes with one prepended underscore are reserved
for internal use and should never be used by an application.

stringprep_generic.h
The entry point to the generic tables specified in the stringprep specification. It
is normally only needed by applications that want to define its own stringprep
profile, based on the generic tables.

This header file uses the same namespace as the main stringprep.h header file.
stringprep_nameprep.h

The entry point to the nameprep profile of stringprep. This is the entry point

used by applications needing low-level access to the stringprep profile used in

IDN. Most applications requesting IDN functionality will want idna.h instead

though.

This header file uses the same namespace as the main stringprep.h header file.
stringprep_kerberosb.h

The entry point to the experimental Kerberos 5 profile of stringprep.

This header file uses the same namespace as the main stringprep.h header file.
stringprep_xmpp.h

The entry point to the experimental XMPP node and resource identifier profiles
of stringprep.

This header file uses the same namespace as the main stringprep.h header file.

Chapter 2: Preparation 5

punycode.h

idna.h

The entry point to Punycode encoding and decoding functions. Normally puny-
code is used via the idna.h interface, but some application may want to perform
raw punycode operations.

The name space of the punycode part of Libidn is punycode_x for function
names, Punycodex* for data types and PUNYCODE_x for other symbols. In ad-
dition the same name prefixes with one prepended underscore are reserved for
internal use and should never be used by an application.

The entry point to the IDNA functions. This is the normal entry point for
applications that need IDN functionality.

The name space of the IDNA part of Libidn is idna_x* for function names,
Idnax* for data types and IDNA_* for other symbols. In addition the same name
prefixes with one prepended underscore are reserved for internal use and should
never be used by an application.

2.2 Initialization

Libidn is

stateless and does not need any initialization.

2.3 Version Check

It is often desirable to check that the version of ‘Libidn’ used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup.

const char * stringprep_check_version (const char * [Function]
req_version)
req_version: Required version number, or NULL.

Check that the the version of the library is at minimum the requested one and return
the version string; return NULL if the condition is not satisfied. If a NULL is passed
to this function, no check is done, but the version string is simply returned.

See STRINGPREP_VERSION for a suitable req_version string.

Version string of run-time library, or NULL if the run-time library does not meet the

requir

ed version number.

The normal way to use the function is to put something similar to the following first in
your main():

if
{

}

(!'stringprep_check_version (STRINGPREP_VERSION))

printf ("stringprep_check_version() failed:\n"
"Header file incompatible with shared library.\n");
exit(1);

Chapter 2: Preparation 6

2.4 Building the source

If you want to compile a source file including e.g. the ‘idna.h’ header file, you must
make sure that the compiler can find it in the directory hierarchy. This is accomplished by
adding the path to the directory in which the header file is located to the compilers include
file search path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, ‘Libidn’ uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
1libidn. The following example shows how it can be used at the command line:

gcc —c foo.c ‘pkg-config libidn --cflags®
Adding the output of ‘pkg-config libidn --cflags’ to the compilers command line
will ensure that the compiler can find e.g. the idna.h header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘~L’ option). For this, the option ‘--1ibs’ to pkg-config
libidn can be used. For convenience, this option also outputs all other options that are
required to link the program with the ‘libidn’ libarary. The example shows how to link
‘foo.o’ with the ‘libidn’ library to a program foo.

gcc —o foo foo.o ‘pkg-config libidn --libs‘
Of course you can also combine both examples to a single command by specifying both
options to pkg-config:
gcc -o foo foo.c ‘pkg-config libidn --cflags --1ibs®

Chapter 3: Stringprep Functions 7

3 Stringprep Functions

Stringprep describes a framework for preparing Unicode text strings in order to increase
the likelihood that string input and string comparison work in ways that make sense for
typical users throughout the world. The stringprep protocol is useful for protocol identi-
fier values, company and personal names, internationalized domain names, and other text
strings.

STRINGPREP_NO_NFKC [Enumerated type of Stringprep_profile_flags|
STRINGPREP_NO_NFKC disables the NFKC normalization, as well as selecting the
non-NFKC case folding tables. Usually the profile specifies BIDI and NFKC settings.

STRINGPREP_NO_BIDI [Enumerated type of Stringprep_profile_flags]
STRINGPREP_NO_BIDI disables the BIDI step. Usually the profile specifies BIDI
and NFKC settings.

STRINGPREP_NO_UNASSIGNEDJEnumerated type of Stringprep_profile_flags]
STRINGPREP_NO_UNASSIGNED causes stringprep() abort with an error if string
contains unassigned characters according to profile.

int stringprep (char * in, int maxlen, int flags, [Function]
Stringprep_profile * profile)
in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.
flags: optional stringprep profile flags.
profile: pointer to stringprep profile to use.

Prepare the input UTF-8 string according to the stringprep profile. Normally appli-
cation programmers use stringprep profile macros such as stringprep_nameprep(),
stringprep_kerberos5() etc instead of calling this function directly.

Since the stringprep operation can expand the string, maxlen indicate how large
the buffer holding the string is. The flags are one of Stringprep_profile_flags, or 0.
The profile indicates processing details, see the profile header files, such as string-
prep-generic.h and stringprep_nameprep.h for two examples. Your application can
define new profiles, possibly re-using the generic stringprep tables that always will be
part of the library. Note that you must convert strings entered in the systems locale
into UTF-8 before using this function.

Returns 0 iff successful, or an error code.

unsigned long stringprep_utf8_to_unichar (const char * p) [Function]
p: a pointer to Unicode character encoded as UTF-8

Converts a sequence of bytes encoded as UTF-8 to a Unicode character. If p does not
point to a valid UTF-8 encoded character, results are undefined.

the resulting character

Chapter 3: Stringprep Functions 8

int stringprep_unichar_to_utf8 (unsigned long c, char * outbuf) [Function]

c: a ISO10646 character code

outbuf: output buffer, must have at least 6 bytes of space. If NULL, the length will
be computed and returned and nothing will be written to outbuf.

Converts a single character to UTF-8.

number of bytes written

unsigned long * stringprep_utf8_to_ucs4 (const char * str, int [Function]

char

char

len, int * items_written)
str: a UTF-8 encoded string
len: the maximum length of str to use. If 1en < 0, then the string is nul-terminated.
items_written: location to store the number of characters in the result, or NULL.
Convert a string from UTF-8 to a 32-bit fixed width representation as UCS-4, assum-
ing valid UTF-8 input. This function does no error checking on the input.
a pointer to a newly allocated UCS-4 string. This value must be freed with free().

*x stringprep_ucs4_to_utf8 (const unsigned long * str, int [Function]
len, int * items_read, int * items_written)

str: a UCS-4 encoded string

len: the maximum length of str to use. If 1len < 0, then the string is terminated with

a 0 character.

items_read: location to store number of characters read read, or NULL.

items_written: location to store number of bytes written or NULL. The value here
stored does not include the trailing 0 byte.

Convert a string from a 32-bit fixed width representation as UCS-4. to UTF-8. The
result will be terminated with a 0 byte.

a pointer to a newly allocated UTF-8 string. This value must be freed with free().
If an error occurs, NULL will be returned and error set.

x stringprep_utf8_nfkc_normalize (const char * str, int [Function]
len)

str: a UTF-8 encoded string.

len: length of str, in bytes, or -1 if str is nul-terminated.

Converts a string into canonical form, standardizing such issues as whether a char-
acter with an accent is represented as a base character and combining accent or as a
single precomposed character. You should generally call g_utf8_normalize () before
comparing two Unicode strings.

The normalization mode is NFKC (ALL COMPOSE). It standardizes differences that
do not affect the text content, such as the above-mentioned accent representation.
It standardizes the "compatibility" characters in Unicode, such as SUPERSCRIPT
THREE to the standard forms (in this case DIGIT THREE). Formatting information
may be lost but for most text operations such characters should be considered the
same. It returns a result with composed forms rather than a maximally decomposed
form.

a newly allocated string, that is the NFKC normalized form of str.

Chapter 3: Stringprep Functions 9

unsigned long * stringprep_ucs4_nfkc_normalize (unsigned long [Function]

* str, int len)
str: a Unicode string.

len: length of str array, or -1 if str is nul-terminated.
Converts UCS4 string into UTF-8 and runs stringprep_utf4_nfkc_normalize().

a newly allocated Unicode string, that is the NFKC normalized form of str.

const char * stringprep_locale_charset (void) [Function]

char

char

char

Return the character set used by the system locale. It will never return NULL, but
use "ASCII" as a fallback.

* stringprep_convert (const char * str, const char * [Function]
to_codeset, const char * from_codeset)
str: input zero-terminated string.

to_codeset: name of destination character set.
from_codeset: name of origin character set, as used by str.

Convert the string from one character set to another using the system’s iconv()
function.

Returns newly allocated zero-terminated string which is str transcoded into
to_codeset.

*x stringprep_locale_to_utf8 (const char * str) [Function]
str: input zero terminated string.

Convert string encoded in the locale’s character set into UTF-8 by using stringprep_
convert ().

Returns newly allocated zero-terminated string which is str transcoded into UTF-8.

*x stringprep_utf8_to_locale (const char * str) [Function]
str: input zero terminated string.

Convert string encoded in UTF-8 into the locale’s character set by using stringprep_
convert ().

Returns newly allocated zero-terminated string which is str transcoded into the lo-
cale’s character set.

int stringprep_nameprep_no_unassigned (char * in, int maxlen) [Function]

in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the nameprep profile. The AllowUnas-
signed flag is false, use stringprep_nameprep() for true AllowUnassigned. Returns
0 iff successful, or an error code.

Chapter 3: Stringprep Functions 10

int stringprep_kerberos5 (char * in, int maxlen) [Function]
in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the draft Kerberosb stringprep profile.
Returns 0 iff successful, or an error code.

int stringprep_xmpp_-nodeprep (char * in, int maxlen) [Function]
in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the draft XMPP node identifier profile.
Returns 0 iff successful, or an error code.

int stringprep_xmpp_resourceprep (char * in, int maxlen) [Function]
in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the draft XMPP resource identifier
profile. Returns 0 iff successful, or an error code.

int stringprep_generic (char * in, int maxlen) [Function]
in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.
Prepare the input UTF-8 string according to a hypotetical "generic" stringprep pro-
file. This is mostly used for debugging or when constructing new stringprep profiles.
Returns 0 iff successful, or an error code.

Chapter 4: Punycode Functions 11

4 Punycode Functions

Punycode is a simple and efficient transfer encoding syntax designed for use with In-
ternationalized Domain Names in Applications. It uniquely and reversibly transforms a
Unicode string into an ASCII string. ASCII characters in the Unicode string are repre-
sented literally, and non-ASCII characters are represented by ASCII characters that are
allowed in host name labels (letters, digits, and hyphens). This document defines a general
algorithm called Bootstring that allows a string of basic code points to uniquely represent
any string of code points drawn from a larger set. Punycode is an instance of Bootstring
that uses particular parameter values specified by this document, appropriate for IDNA.

int punycode_encode (size_t input_length, const unsigned long [Function]
inputl[], const unsigned char case_flags||, size_t * output_length, char
outputl])

input_length: The input_length is the number of code points in the input.

output_length: The output_length is an in/out argument: the caller passes in the
maximum number of code points that it can receive, and on successful return it will
contain the number of code points actually output.

Converts Unicode to Punycode.

The return value can be any of the punycode_status values defined above except
punycode_bad_input; if not punycode_success, then output_size and output might
contain garbage.

int punycode_decode (size_t input_length, const char input[|, [Function]
size_t * output_length, unsigned long output||, unsigned char
case_flags||)
input_length: The input_length is the number of code points in the input.

output_length: The output_length is an in/out argument: the caller passes in the
maximum number of code points that it can receive, and on successful return it will
contain the actual number of code points output.

Converts Punycode to Unicode.

The return value can be any of the punycode_status values defined above; if not
punycode_success, then output_length, output, and case_flags might contain garbage.
On success, the decoder will never need to write an output_length greater than in-
put_length, because of how the encoding is defined.

Chapter 5: IDNA Functions 12

5 IDNA Functions

Until now, there has been no standard method for domain names to use characters
outside the ASCII repertoire. The IDNA document defines internationalized domain names
(IDNs) and a mechanism called IDNA for handling them in a standard fashion. IDNs
use characters drawn from a large repertoire (Unicode), but IDNA allows the non-ASCII
characters to be represented using only the ASCII characters already allowed in so-called
host names today. This backward-compatible representation is required in existing protocols
like DNS, so that IDNs can be introduced with no changes to the existing infrastructure.
IDNA is only meant for processing domain names, not free text.

int idna_to_ascii (const unsigned long * in, size_t inlen, char * [Function]
out, int allowunassigned, int usestd3asciirules)
in: input array with unicode code points.

inlen: length of input array with unicode code points.

out: output zero terminated string that must have room for at least 63 characters
plus the terminating zero.

allowunassigned: boolean value as per IDNA specification.

usestd3asciirules: boolean value as per IDNA specification.

The ToASCII operation takes a sequence of Unicode code points that make up one
label and transforms it into a sequence of code points in the ASCII range (0..7F).

If ToASCII succeeds, the original sequence and the resulting sequence are equivalent
labels.

It is important to note that the ToASCII operation can fail. ToASCII fails if any step
of it fails. If any step of the ToASCII operation fails on any label in a domain name,
that domain name MUST NOT be used as an internationalized domain name. The
method for deadling with this failure is application-specific.

The inputs to ToASCII are a sequence of code points, the AllowUnassigned flag, and
the UseSTD3ASCIIRules flag. The output of ToASCII is either a sequence of ASCII
code points or a failure condition.

ToASCII never alters a sequence of code points that are all in the ASCII range to
begin with (although it could fail). Applying the ToASCII operation multiple times
has exactly the same effect as applying it just once.

Returns 0 on success, or an error code.

int idna_to_unicode (const unsigned long * in, size_t inlen, [Function]
unsigned long * out, size_t * outlen, int allowunassigned, int
usestd3asciirules)

in: input array with unicode code points.
inlen: length of input array with unicode code points.
out: output array with unicode code points.

outlen: on input, maximum size of output array with unicode code points, on exit,
actual size of output array with unicode code points.

allowunassigned: boolean value as per IDNA specification.

Chapter 5: IDNA Functions 13

usestd3asciirules: boolean value as per IDNA specification.

The ToUnicode operation takes a sequence of Unicode code points that make up one
label and returns a sequence of Unicode code points. If the input sequence is a label
in ACE form, then the result is an equivalent internationalized label that is not in
ACE form, otherwise the original sequence is returned unaltered.

ToUnicode never fails. If any step fails, then the original input sequence is returned
immediately in that step.

The ToUnicode output never contains more code points than its input. Note that
the number of octets needed to represent a sequence of code points depends on the
particular character encoding used.

The inputs to ToUnicode are a sequence of code points, the AllowUnassigned flag,
and the UseSTD3ASCIIRules flag. The output of ToUnicode is always a sequence of
Unicode code points.

Returns error condition, but it must only be used for debugging purposes. The output
buffer is always guaranteed to contain the correct data according to the specification
(sans malloc induced errors). NB! This means that you normally ignore the return
code from this function, as checking it means breaking the standard.

int idna_ucs4_to_ace (const unsigned long * input, char *x [Function]
output)
input: zero terminated input Unicode string.
output: pointer to newly allocated output string.

Convert UCS-4 domain name to ASCII string. The AllowUnassigned flag is false and
std3asciirules flag is false. The domain name may contain several labels, separated
by dots. The output buffer must be deallocated by the caller.

Returns IDNA_SUCCESS on success, or error code.

int idna_utf8_to_ace (const char * input, char ** output) [Function]
input: zero terminated input UTF-8 string.

output: pointer to newly allocated output string.

Convert UTF-8 domain name to ASCII string. The AllowUnassigned flag is false and
std3asciirules flag is false. The domain name may contain several labels, separated
by dots. The output buffer must be deallocated by the caller.

Returns IDNA_SUCCESS on success, or error code.

int idna_locale_to_ace (const char * input, char ** output) [Function]
input: zero terminated input UTF-8 string.

output: pointer to newly allocated output string.

Convert domain name in the locale’s encoding to ASCII string. The AllowUnassigned
flag is false and std3asciirules flag is false. The domain name may contain several
labels, separated by dots. The output buffer must be deallocated by the caller.

Returns IDNA_SUCCESS on success, or error code.

Chapter 5: IDNA Functions 14

int idna_ucs4ace_to_ucs4 (const unsigned long * input, unsigned [Function]
long ** output)
input: zero-terminated Unicode string.

output: pointer to newly allocated output Unicode string.

Convert possibly ACE encoded domain name in UCS-4 format into a UCS-4 string.
The AllowUnassigned flag is false and std3asciirules flag is false. The domain name
may contain several labels, separated by dots. The output buffer must be deallocated
by the caller.

Returns IDNA_SUCCESS on success, or error code.

int idna_utf8ace_to_ucs4 (const char * input, unsigned long ** [Function]
output)
input: zero-terminated UTF-8 string.
output: pointer to newly allocated output Unicode string.

Convert possibly ACE encoded domain name in UTF-8 format into a UCS-4 string.
The AllowUnassigned flag is false and std3asciirules flag is false. The domain name
may contain several labels, separated by dots. The output buffer must be deallocated
by the caller.

Returns IDNA_SUCCESS on success, or error code.

int idna_utf8ace_to_utf8 (const char * input, char ** output) [Function]
input: zero-terminated UTF-8 string.

output: pointer to newly allocated output UTF-8 string.

Convert possibly ACE encoded domain name in UTF-8 format into a UTF-8 string.
The AllowUnassigned flag is false and std3asciirules flag is false. The domain name
may contain several labels, separated by dots. The output buffer must be deallocated
by the caller.

Returns IDNA_SUCCESS on success, or error code.

int idna_utf8ace_to_locale (const char * input, char ** output) [Function]
input: zero-terminated UTF-8 string.

output: pointer to newly allocated output string encoded in the current locale’s
character set.

Convert possibly ACE encoded domain name in UTF-8 format into a string encoded in
the current locale’s character set. The AllowUnassigned flag is false and std3asciirules
flag is false. The domain name may contain several labels, separated by dots. The
output buffer must be deallocated by the caller.

Returns IDNA_SUCCESS on success, or error code.

int idna_localeace_to_locale (const char * input, char ** output) [Function]
input: zero-terminated string encoded in the current locale’s character set.

output: pointer to newly allocated output string encoded in the current locale’s
character set.

Chapter 5: IDNA Functions 15

Convert possibly ACE encoded domain name in the locale’s character set into a string
encoded in the current locale’s character set. The AllowUnassigned flag is false and
std3asciirules flag is false. The domain name may contain several labels, separated
by dots. The output buffer must be deallocated by the caller.

Returns IDNA_SUCCESS on success, or error code.

Chapter 6: Examples 16

6 Examples

This chapter contains example code which illustrate how ‘Libidn’ can be used when
writing your own application.

6.1 Example 1

This example demonstrates how the stringprep functions are used.

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/

example.c Example code showing how to use stringprep().
Copyright (C) 2002 Simon Josefsson

This file is part of GNU Libidn.

GNU Libidn is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

GNU Libidn is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with GNU Libidn; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stringprep_nameprep.h>

~
¥ X X X X X X X X X X

*
~

Compiling using libtool and pkg-config is recommended:

$ libtool cc -o example example.c ‘pkg-config --cflags --1libs libidn‘
$./example

Input string encoded as ‘IS0-8859-17:

Before locale2utf8 (length 2): aa Oa

Before stringprep (length 3): c2 aa Oa

After stringprep (length 2): 61 Oa

$

USAg

Chapter 6: Examples

int
main (int argc, char *argv[])

{

char buf [BUFSIZ];
char *p;
int rc, 1i;

17

printf ("Input string encoded as ‘Js’: ", stringprep_locale_charset ());l]

fflush (stdout);
fgets (buf, BUFSIZ, stdin);

printf ("Before locale2utf8 (length %d): ", strlen (buf));
for (i = 0; i < strlen (buf); i++)

printf ("%02x ", bufl[i] & OxFF);
printf ("\n");

p = stringprep_locale_to_utf8 (buf);
if (p)
{
strcpy (buf, p);
free (p);
}

else

printf ("Could not convert string to UTF-8, continuing anyway...\n");J}

printf ("Before stringprep (length %d): ", strlen (buf));
for (i = 0; i < strlen (buf); i++)

printf ("%02x ", buf[i] & OxFF);
printf ("\n");

rc = stringprep (buf, BUFSIZ, O, stringprep_nameprep);
if (rc !'= STRINGPREP_O0K)
printf ("Stringprep failed with rc %d...\n", rc);
else
{
printf ("After stringprep (length %d): ", strlen (buf));
for (i = 0; i < strlen (buf); i++)

printf ("%02x ", bufl[i] & OxFF);

}

printf ("\n");
}

return O;

Chapter 6: Examples 18

6.2 Example 2

This example demonstrates how the punycode functions are used.

~
*

¥ X X X X X X X K K K X X X X X X X *

example2.c Example code showing how to use punycode.
Copyright (C) 2002 Adam M. Costello
Copyright (C) 2002 Simon Josefsson

This file is part of GNU Libidn.

GNU Libidn is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

GNU Libidn is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with GNU Libidn; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

*
~

/

*

¥ X X X X X K X X X X X X

This file is derived from from draft-ietf-idn-punycode-03.txt by
Adam M. Costello.

Disclaimer and license: Regarding this entire document or any
portion of it (including the pseudocode and C code), the author
makes no guarantees and is not responsible for any damage resulting
from its use. The author grants irrevocable permission to anyone
to use, modify, and distribute it in any way that does not diminish
the rights of anyone else to use, modify, and distribute it,
provided that redistributed derivative works do not contain
misleading author or version information. Derivative works need
not be licensed under similar terms.

*
~

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

UsAg

Chapter 6: Examples 19

#include "punycode.h"

/* For testing, we’ll just set some compile-time limits rather than */
/* use malloc(), and set a compile-time option rather than using a */
/* command-line option. */

enum

{
unicode_max_length = 256,
ace_max_length = 256

s

static void
usage (char *xargv)
{
fprintf (stderr,
n \nll
"%s -e reads code points and writes a Punycode string.\n"
"%s -d reads a Punycode string and writes code points.\n"
n \nll
"Input and output are plain text in the native character set.\n"
"Code points are in the form uthex separated by whitespace.\n"
"Although the specification allows Punycode strings to contain\n"
"any characters from the ASCII repertoire, this test code\n"
"supports only the printable characters, and needs the Punycode\n"
"string to be followed by a newline.\n"
"The case of the u in uthex is the force-to-uppercase flag.\n",
argv[0], argv[0]);
exit (EXIT_FAILURE);
b

static void
fail (const char *msg)
{
fputs (msg, stderr);
exit (EXIT_FAILURE);
}

static const char too_bigl[] =
"input or output is too large, recompile with larger limits\n";

static const char invalid_input[] = "invalid input\n";
static const char overflow[] = "arithmetic overflow\n";
static const char io_error[] = "I/0 error\n";

/* The following string is used to convert printable */

Chapter 6: Examples

/* characters between ASCII and the native charset: */

static const char print_asciil[] =
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"
"OIN"#EUE O x+, - /"
"0123456789: ;<=>7"

"\x40ABCDEFGHI JKLMNQ"
"PQRSTUVWXYZ[\\]"_" "‘abcdefghijklmno" "pqrstuvwxyz{|} \n";
int
main (int argc, char x*argv)
{
int status;
int r;
unsigned int input_length, output_length, j;
unsigned char case_flags[unicode_max_length];
if (argc != 2)
usage (argv);
if (argv([1][0] != ’-’)
usage (argv);
if (argv[1][2] != 0)
usage (argv);
if (argv[1][1] == ’e’)
{
unsigned long input[unicode_max_length];
unsigned long codept;
char output[ace_max_length + 1], uplus[3];
int c;
/* Read the input code points: */
input_length = 0;
for (;;)
{

r = scanf ("%2s%lx", uplus, &codept);
if (ferror (stdin))

fail (io_error);
if (r == EOF || r == 0)

break;

if (r '= 2 || uplus[1] != ’+’ || codept > (unsigned long) -1)

{

Chapter 6: Examples

fail (invalid_input);

}

if (input_length == unicode_max_length)
fail (too_big);

if (uplus([0] == ’u’)
case_flags[input_length] = 0;
else if (uplus[0] == °U’)
case_flags[input_length] = 1;
else

fail (invalid_input);

input [input_length++] = codept;

/* Encode: */

output_length = ace_max_length;
status = punycode_encode (input_length, input, case_flags,
&output_length, output);
if (status == PUNYCODE_BAD_INPUT)
fail (invalid_input);
if (status == PUNYCODE_BIG_QUTPUT)
fail (too_big);
if (status == PUNYCODE_OVERFLOW)
fail (overflow);
assert (status == PUNYCODE_SUCCESS);

/* Convert to native charset and output: */
for (j = 0; j < output_length; ++j)

c = output[j];

assert (c >= 0 && c <= 127);

if (print_asciilc] == 0)
fail (invalid_input);

output[j] = print_asciilc];

output[j] = 0;
r = puts (output);
if (r == EOF)
fail (io_error);
return EXIT_SUCCESS;
}

21

Chapter 6: Examples

if (argv[1][1] == ’d’)
{
char input[ace_max_length + 2], *p, *pp;
unsigned long output[unicode_max_length];

/* Read the Punycode input string and convert to ASCII: */

fgets (input, ace_max_length + 2, stdin);
if (ferror (stdin))
fail (io_error);
if (feof (stdin))
fail (invalid_input);
input_length = strlen (input) - 1;
if (input[input_length] != ’\n’)
fail (too_big);
input [input_length] = 0;

for (p = input; *p != 0; ++p)
{
pp = strchr (print_ascii, *p);
if (pp == 0)
fail (invalid_input);
*p = pp - print_ascii;

}
/* Decode: *x/

output_length = unicode_max_length;
status = punycode_decode (input_length, input, &output_length,
output, case_flags);
if (status == PUNYCODE_BAD_INPUT)
fail (invalid_input);
if (status == PUNYCODE_BIG_QUTPUT)
fail (too_big);
if (status == PUNYCODE_OVERFLOW)
fail (overflow);
assert (status == PUNYCODE_SUCCESS) ;

/* Output the result: */

for (j = 0; j < output_length; ++j)

{
r = printf ("%s+%,041X\n",
case_flags[j] 7 "U" : "u", (unsigned long) outputl[jl);
if (r < 0)

fail (io_error);

Chapter

6: Examples 23

return EXIT_SUCCESS;
}

usage (argv);
return EXIT_SUCCESS; /* not reached, but quiets compiler warning */

6.3 Example 3

This

example demonstrates how the library is used to convert internationalized domain

names into ASCII compatible names.

/

*

#i
#i
#i
#i
#i

/*

*
*
*
*
*

example3.c Example code showing how to use Libidn.

Copyright (C) 2002 Simon Josefsson

This file is part of GNU Libidn.

GNU Libidn is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
GNU Libidn is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with GNU Libidn; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
/
nclude <stdio.h>

nclude <stdlib.h>

nclude <string.h>

nclude <stringprep.h> /* stringprep_locale_charset() */
nclude <idna.h> /* idna_locale_to_ace() */

Compiling using libtool and pkg-config is recommended:

USAg

$ libtool cc -o example3 example3.c ‘pkg-config --cflags --1libs libidn‘]]

$./example3
Input domain encoded as ‘IS0-8859-1’: www.rksmrgs.example

Chapter 6: Examples 24

* Read string (length 23): 77 77 77 2e 72 e4 6b 73 6d f6 72 67 e5 73 aa 2e 65 78 61 6
* ACE label (length 33): ’www.iesg--rksmrgsa-Ozap8p.example’

x 77 77 77 2e 69 65 73 67 2d 2d 72 6b 73 6d 72 67 73 61 2d 30 7a 61 70 38 70 2e 65 78
* §

*

*/

int
main (int argc, char *argv[])
{

char buf [BUFSIZ];

char *p;

int rc, i;

printf ("Input domain encoded as ‘%s’: ", stringprep_locale_charset ());l}
fflush (stdout);

fgets (buf, BUFSIZ, stdin);

buf [strlen (buf) - 1] = ’\0’;

printf ("Read string (length %d): ", strlen (buf));
for (i = 0; i < strlen (buf); i++)

printf ("%02x ", buf[i] & OxFF);
printf ("\n");

rc = idna_locale_to_ace (buf, &p);
if (rc '= IDNA_SUCCESS)
{
printf ("ToASCII() failed... %d\n", rc);
exit (1);
}

printf ("ACE label (length %d): ’%s’\n", strlen (p), p);
for (i = 0; i < strlen (p); i++)
printf ("%02x ", pl[i] & OxFF);
printf ("\n");
free (p);

return O;

6.4 Example 4

This example demonstrates how the library is used to convert ASCII compatible names
to internationalized domain names.

/* example4.c Example code showing how to use Libidn.

Chapter 6: Examples 25

Copyright (C) 2002 Simon Josefsson
This file is part of GNU Libidn.

GNU Libidn is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version