
GNU SASL
Simple Authentication and Security Layer for the GNU system

for version 0.2.7, 16 July 2005

Simon Josefsson

This manual is last updated 16 July 2005 for version 0.2.7 of GNU SASL.
Copyright c© 2002, 2003, 2004, 2005 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with the Invariant Sections being
“Commercial Support”, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in the section entitled “GNU Free Documentation
License”.

i

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features . 2
1.3 SASL Overview . 2
1.4 Supported Platforms . 3
1.5 Getting help . 5
1.6 Commercial Support . 5
1.7 Downloading and Installing . 5
1.8 Bug Reports . 6
1.9 Contributing . 7

2 Preparation . 8
2.1 Header . 8
2.2 Initialization . 8
2.3 Version Check. 10
2.4 Building the source . 10
2.5 Autoconf tests . 11

2.5.1 Autoconf test via ‘pkg-config’ . 11
2.5.2 Standalone Autoconf test using Libtool 11

3 Using the Library . 13
3.1 Choosing a mechanism . 17
3.2 Using a callback . 18

4 Properties . 20

5 Mechanisms . 22
5.1 The EXTERNAL mechanism . 22
5.2 The ANONYMOUS mechanism . 22
5.3 The PLAIN mechanism . 23
5.4 The LOGIN mechanism. 23
5.5 The CRAM-MD5 mechanism . 23
5.6 The DIGEST-MD5 mechanism . 24
5.7 The NTLM mechanism . 24
5.8 The SECURID mechanism . 24
5.9 The GSSAPI mechanism . 25
5.10 The KERBEROS V5 mechanism . 25

6 Global Functions . 27

7 Callback Functions . 29

ii

8 Property Functions . 31

9 Session Functions . 33

10 Utilities . 35

11 Error Handling . 37
11.1 Error values . 37
11.2 Error strings . 40

12 Examples . 41
12.1 Example 1 . 41
12.2 Example 2 . 43
12.3 Example 3 . 46
12.4 Example 4 . 49

13 Acknowledgements . 53

14 Invoking gsasl . 54

Appendix A Protocol Clarifications 57
A.1 Use of SASLprep in CRAM-MD5 . 57
A.2 Use of SASLprep in LOGIN . 57

Appendix B Old Functions 58
B.1 Obsolete callback function prototypes . 75

Appendix C Copying This Manual 81
C.1 GNU Free Documentation License . 81

C.1.1 ADDENDUM: How to use this License for your documents
. 87

Concept Index . 88

Function and Data Index . 89

Chapter 1: Introduction 1

1 Introduction

GNU SASL is an implementation of the Simple Authentication and Security Layer frame-
work and a few common SASL mechanisms. SASL is used by network servers (e.g., IMAP,
SMTP) to request authentication from clients, and in clients to authenticate against servers.

GNU SASL consists of a library (‘libgsasl’), a command line utility (‘gsasl’) to access
the library from the shell, and a manual. The library includes support for the framework
(with authentication functions and application data privacy and integrity functions) and at
least partial support for the CRAM-MD5, EXTERNAL, GSSAPI, ANONYMOUS, PLAIN,
SECURID, DIGEST-MD5, LOGIN, and NTLM mechanisms.

The library is easily ported because it does not do network communication by itself,
but rather leaves it up to the calling application. The library is flexible with regards to
the authorization infrastructure used, as it utilize a callback into the application to decide
whether a user is authorized or not.

GNU SASL is developed for the GNU/Linux system, but runs on over 20 platforms
including most major Unix platforms and Windows, and many kind of devices including
iPAQ handhelds and S/390 mainframes.

GNU SASL is written in pure ANSI C89 to be portable to embedded and otherwise
limited platforms. The entire library, with full support for ANONYMOUS, EXTERNAL,
PLAIN, LOGIN and CRAM-MD5, and the front-end that support client and server mode,
and the IMAP and SMTP protocols, fits in under 60kb on an Intel x86 platform, without
any modifications to the code. (This figure was accurate as of version 0.0.13.)

The library is licensed under the GNU Lesser General Public License, and the command-
line interface, self-tests and examples are licensed under the GNU General Public License.

Illustration 1.1: Logical overview showing how applications use authentication mecha-
nisms through an abstract interface.

1.1 Getting Started

This manual documents the GNU SASL Library programming interface. All functions and
data types provided by the library are explained.

Chapter 1: Introduction 2

The reader is assumed to possess basic familiarity with SASL and network programming
in C or C++.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features

GNU SASL might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License. The library can even be distributed under the GNU
Lesser General Public License.

It’s thread-safe
No global variables are used and multiple library handles and session handles
may be used in parallel.

It’s internationalized
It handles non-ASCII username and passwords and user visible strings used in
the library (error messages) can be translated into the users’ language.

It’s portable
It should work on all Unix like operating systems, including Windows. The
library itself should be portable to any C89 system, not even POSIX is required.

Note that the library do not implement any policy to decide whether a certain user is
“authenticated” or “authorized” or not. Rather, it uses a callback into the application to
answer these questions.

1.3 SASL Overview

This section describes SASL from a protocol point of view.

The Simple Authentication and Security Layer (SASL) is a method for adding authen-
tication support to connection-based protocols. A protocol includes a command for identi-
fying and authenticating a user to a server and for optionally negotiating a security layer
for subsequent protocol interactions.

The command has a required argument identifying a SASL mechanism. SASL mech-
anisms are named by strings, from 1 to 20 characters in length, consisting of upper-case
letters, digits, hyphens, and/or underscores.

If a server supports the requested mechanism, it initiates an authentication protocol
exchange. This consists of a series of server challenges and client responses that are specific
to the requested mechanism. The challenges and responses are defined by the mechanisms
as binary tokens of arbitrary length. The protocol’s profile then specifies how these binary
tokens are then encoded for transfer over the connection.

Chapter 1: Introduction 3

After receiving the authentication command or any client response, a server may issue a
challenge, indicate failure, or indicate completion. The protocol’s profile specifies how the
server indicates which of the above it is doing.

After receiving a challenge, a client may issue a response or abort the exchange. The
protocol’s profile specifies how the client indicates which of the above it is doing.

During the authentication protocol exchange, the mechanism performs authentication,
transmits an authorization identity (frequently known as a userid) from the client to server,
and negotiates the use of a mechanism-specific security layer. If the use of a security layer
is agreed upon, then the mechanism must also define or negotiate the maximum cipher-text
buffer size that each side is able to receive.

The transmitted authorization identity may be different than the identity in the client’s
authentication credentials. This permits agents such as proxy servers to authenticate us-
ing their own credentials, yet request the access privileges of the identity for which they
are proxying. With any mechanism, transmitting an authorization identity of the empty
string directs the server to derive an authorization identity from the client’s authentication
credentials.

If use of a security layer is negotiated, it is applied to all subsequent data sent over the
connection. The security layer takes effect immediately following the last response of the
authentication exchange for data sent by the client and the completion indication for data
sent by the server. Once the security layer is in effect, the protocol stream is processed by
the security layer into buffers of cipher-text. Each buffer is transferred over the connection
as a stream of octets prepended with a four octet field in network byte order that represents
the length of the following buffer. The length of the cipher-text buffer must be no larger
than the maximum size that was defined or negotiated by the other side.

1.4 Supported Platforms

GNU SASL has at some point in time been tested on the following platforms.
1. Debian GNU/Linux 3.0 (Woody)

GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,
hppa-unknown-linux-gnu, hppa64-unknown-linux-gnu, i686-pc-linux-gnu,
ia64-unknown-linux-gnu, m68k-unknown-linux-gnu, mips-unknown-linux-gnu,
mipsel-unknown-linux-gnu, powerpc-unknown-linux-gnu, s390-ibm-linux-gnu,
sparc-unknown-linux-gnu.

2. Debian GNU/Linux 2.1
GCC 2.95.1 and GNU Make. armv4l-unknown-linux-gnu.

3. Tru64 UNIX
Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec-
osf5.1.

4. SuSE Linux 7.1
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

5. SuSE Linux 7.2a
GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

Chapter 1: Introduction 4

6. RedHat Linux 7.2

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

7. RedHat Linux 8.0

GCC 3.2 and GNU Make. i686-pc-linux-gnu.

8. RedHat Advanced Server 2.1

GCC 2.96 and GNU Make. i686-pc-linux-gnu.

9. Slackware Linux 8.0.01

GCC 2.95.3 and GNU Make. i686-pc-linux-gnu.

10. Mandrake Linux 9.0

GCC 3.2 and GNU Make. i686-pc-linux-gnu.

11. IRIX 6.5

MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

12. AIX 4.3.2

IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.

13. Microsoft Windows 2000 (Cygwin)

GCC 3.2, GNU make. i686-pc-cygwin.

14. HP-UX 11

HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.

15. SUN Solaris 2.8

Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

16. SUN Solaris 2.9

Sun Forte Developer 7 C compiler and GNU Make. sparc-sun-solaris2.9.

17. NetBSD 1.6

GCC 2.95.3 and GNU Make. alpha-unknown-netbsd1.6, i386-unknown-
netbsdelf1.6.

18. OpenBSD 3.1 and 3.2

GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, i386-unknown-
openbsd3.1.

19. FreeBSD 4.7

GCC 2.95.4 and GNU Make. alpha-unknown-freebsd4.7, i386-unknown-
freebsd4.7.

20. Cross compiled to uClinux/uClibc on Motorola Coldfire.

GCC 3.4 and GNU Make m68k-uclinux-elf.

If you port GNU SASL to a new platform, please report it to the author so this list can
be updated.

Chapter 1: Introduction 5

1.5 Getting help

A mailing list where users may help each other exists, and you can reach it by
sending e-mail to help-gsasl@gnu.org. Archives of the mailing list discussions, and
an interface to manage subscriptions, is available through the World Wide Web at
http://lists.gnu.org/mailman/listinfo/help-gsasl.

1.6 Commercial Support

Commercial support is available for users of GNU SASL. The kind of support that can be
purchased may include:
• Implement new features. Such as a new SASL mechanism.
• Port GNU SASL to new platforms. This could include porting to an embedded plat-

forms that may need memory or size optimization.
• Integrating SASL as a security environment in your existing project.
• System design of components related to SASL.

If you are interested, please write to:
Simon Josefsson Datakonsult
Hagagatan 24
113 47 Stockholm
Sweden

E-mail: simon@josefsson.org

If your company provide support related to GNU SASL and would like to be mentioned
here, contact the author (see Section 1.8 [Bug Reports], page 6).

1.7 Downloading and Installing

The package can be downloaded from several places, including:
http://josefsson.org/gsasl/releases/

The latest version is stored in a file, e.g., ‘gsasl-0.2.7.tar.gz’ where the ‘0.2.7’ value
is the highest version number in the directory.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

$ wget -q http://josefsson.org/gsasl/releases/gsasl-0.2.7.tar.gz
$ tar xfz gsasl-0.2.7.tar.gz
$ cd gsasl-0.2.7/
$./configure
...
$ make
...
$ make install

mailto:help-gsasl@gnu.org
http://lists.gnu.org/mailman/listinfo/help-gsasl
http://josefsson.org/gsasl/releases/

Chapter 1: Introduction 6

...

After that gsasl should be properly installed and ready for use.
A few configure options may be relevant, summarized in the table.

--disable-client
--disable-server

If your target system require a minimal implementation, you may wish to disable
the client or the server part of the code. This do not remove symbols from the
library, so if you attempt to call an application that uses server functions in a
library built with --disable-server, the function will return an error code.

--disable-obsolete
This remove backwards compatibility (see Appendix B [Old Functions],
page 58). Use if you want to limit the size of the library.

--disable-anonymous
--disable-external
--disable-plain
--disable-login
--disable-securid
--disable-ntlm
--disable-cram-md5
--disable-digest-md5
--disable-gssapi
--enable-kerberos_v5

Disable or enable individual mechanisms (see Chapter 5 [Mechanisms], page 22).

--without-stringprep
Disable internationalized string processing. Note that this will result in a SASL
library that is only compatible with RFC 2222.

For the complete list, refer to the output from configure --help.

1.8 Bug Reports

If you think you have found a bug in GNU SASL, please investigate it and report it.
• Please make sure that the bug is really in GNU SASL, and preferably also check that

it hasn’t already been fixed in the latest version.
• You have to send us a test case that makes it possible for us to reproduce the bug.
• You also have to explain what is wrong; if you get a crash, or if the results printed are

not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

Chapter 1: Introduction 7

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-gsasl@gnu.org’

1.9 Contributing

If you want to submit a patch for inclusion – from solve a typo you discovered, up to adding
support for a new feature – you should submit it as a bug report (see Section 1.8 [Bug
Reports], page 6). There are some things that you can do to increase the chances for it to
be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.

For code contributions, a number of style guides will help you:
• Coding Style. Follow the GNU Standards document (see 〈undefined〉 [top], page 〈un-

defined〉).
If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code (see 〈undefined〉 [top], page 〈undefined〉)
before submitting your work.

• Use the unified diff format ‘diff -u’.
• Return errors. No reason whatsoever should abort the execution of the library. Even

memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

• Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

• Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

• Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

• Supply a ChangeLog and NEWS entries, where appropriate.

Chapter 2: Preparation 8

2 Preparation

To use GNU SASL, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of this
chapter, it is described how the library is initialized, and how the requirements of the library
are verified.

A faster way to find out how to adapt your application for use with GNU SASL may be
to look at the examples at the end of this manual (see Chapter 12 [Examples], page 41).

2.1 Header

All interfaces (data types and functions) of the library are defined in the header file ‘gsasl.h’.
You must include this in all programs using the library, either directly or through some other
header file, like this:

#include <gsasl.h>

The name space is gsasl_* for function names, Gsasl* for data types and GSASL_*
for other symbols. In addition the same name prefixes with one prepended underscore are
reserved for internal use and should never be used by an application.

2.2 Initialization

The library must be initialized before it can be used. The library is initialized by calling
gsasl_init (see Chapter 6 [Global Functions], page 27). The resources allocated by the
initialization process can be released if the application no longer has a need to call ‘Libgsasl’
functions, this is done by calling gsasl_done. For example:

int
main (int argc, char *argv[])
{
Gsasl *ctx = NULL;
int rc;

...
rc = gsasl_init (&ctx);
if (rc != GSASL_OK)
{

printf ("SASL initialization failure (%d): %s\n",
rc, gsasl_strerror (rc));

return 1;
}

...

In order to make error messages from gsasl_strerror be translated (see section “Top”
in GNU Gettext) the application must set the current locale using setlocale before calling
gsasl_init. For example:

int
main (int argc, char *argv[])
{
Gsasl *ctx = NULL;

Chapter 2: Preparation 9

int rc;
...

setlocale (LC_ALL, "");
...

rc = gsasl_init (&ctx);
if (rc != GSASL_OK)
{

printf (gettext ("SASL initialization failure (%d): %s\n"),
rc, gsasl_strerror (rc));

return 1;
}

...

In order to take advantage of the secure memory features in Libgcrypt1, you need to
initialize secure memory in your application, and for some platforms even make your appli-
cation setuid root. See the Libgcrypt documentation for more information. Example code
to initialize secure memory in your code:

#include <gcrypt.h>
...
int
main (int argc, char *argv[])
{
Gsasl *ctx = NULL;
int rc;

...
/* Check version of libgcrypt. */
if (!gcry_check_version (GCRYPT_VERSION))
die ("version mismatch\n");

/* Allocate a pool of 16k secure memory. This also drops priviliges
on some systems. */

gcry_control (GCRYCTL_INIT_SECMEM, 16384, 0);

/* Tell Libgcrypt that initialization has completed. */
gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0);

...
rc = gsasl_init (&ctx);
if (rc != GSASL_OK)
{

printf ("SASL initialization failure (%d): %s\n",
rc, gsasl_strerror (rc));

return 1;
}

...

1 Note that GNU SASL can also use Nettle for the Crypto backend. Take care to verify that GNU SASL
really use Libgcrypt, if this is what you want.

Chapter 2: Preparation 10

If you do not do this, keying material will not be allocated in secure memory (which
for most application is not the biggest secure problem anyway). Note that the GNU SASL
Library has not been audited to make sure it only ever stores passwords or keys in secure
memory.

2.3 Version Check

It is often desirable to check that the version of the library used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup.

[Function]const char * gsasl_check_version (const char * req_version)
req version: version string to compare with, or NULL.
Check library version.
See GSASL_VERSION for a suitable req_version string.
Return value: Check that the the version of the library is at minimum the one given
as a string in req_version and return the actual version string of the library; return
NULL if the condition is not met. If NULL is passed to this function no check is done
and only the version string is returned.

The normal way to use the function is to put something similar to the following early in
your main:

if (!gsasl_check_version (GSASL_VERSION))
{

printf ("gsasl_check_version failed:\n"
"Header file incompatible with shared library.\n");

exit(1);
}

2.4 Building the source

If you want to compile a source file including the ‘gsasl.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, the library uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
libgsasl. The following example shows how it can be used at the command line:

gcc -c foo.c ‘pkg-config libgsasl --cflags‘

Adding the output of ‘pkg-config libgsasl --cflags’ to the compilers command line
will ensure that the compiler can find the ‘gsasl.h’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--libs’ to pkg-config

Chapter 2: Preparation 11

libgsasl can be used. For convenience, this option also outputs all other options that are
required to link the program with the ‘libgsasl’ libarary (for instance, the ‘-lidn’ option).
The example shows how to link ‘foo.o’ with the ‘libgsasl’ library to a program foo.

gcc -o foo foo.o ‘pkg-config libgsasl --libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

gcc -o foo foo.c ‘pkg-config libgsasl --cflags --libs‘

2.5 Autoconf tests

If you work on a project that uses Autoconf (see 〈undefined〉 [top], page 〈undefined〉) to help
find installed libraries, the suggestions in the previous section are not the entire story. There
are a few methods to detect and incorporate the GNU SASL Library into your Autoconf
based package. The preferred approach, is to use Libtool in your project, and use the
normal Autoconf header file and library tests.

2.5.1 Autoconf test via ‘pkg-config’

If your audience is a typical GNU/Linux desktop, you can often assume they have the
‘pkg-config’ tool installed, in which you can use its Autoconf M4 macro to find and set
up your package for use with Libgsasl. The following illustrate this scenario.

AC_ARG_ENABLE(gsasl,
AC_HELP_STRING([--disable-gsasl], [don’t use GNU SASL]),
gsasl=$enableval)
if test "$gsal" != "no" ; then
PKG_CHECK_MODULES(GSASL, libgsasl >= 0.2.7,
[gsasl=yes],

[gsasl=no])
if test "$gsasl" != "yes" ; then
sal=no
AC_MSG_WARN([Cannot find GNU SASL, disabling])
else
gsasl=yes
AC_DEFINE(USE_GSASL, 1, [Define to 1 if you want GNU SASL.])
fi
fi
AC_MSG_CHECKING([if GNU SASL should be used])
AC_MSG_RESULT($gsasl)

2.5.2 Standalone Autoconf test using Libtool

If your package uses Libtool(see 〈undefined〉 [top], page 〈undefined〉), you can use the normal
Autoconf tests to find Libgsasl and rely on the Libtool dependency tracking to include the
proper dependency libraries (e.g., Libidn). The following illustrate this scenario.

AC_CHECK_HEADER(gsasl.h,
AC_CHECK_LIB(gsasl, gsasl_check_version,
[gsasl=yes AC_SUBST(GSASL_LIBS, -lgsasl)],
gsasl=no),

Chapter 2: Preparation 12

gsasl=no)
AC_ARG_ENABLE(gsasl,
AC_HELP_STRING([--disable-gsasl], [don’t use GNU SASL]),
gsasl=$enableval)
if test "$gsasl" != "no" ; then
AC_DEFINE(USE_SASL, 1, [Define to 1 if you want GNU SASL.])
else
AC_MSG_WARN([Cannot find GNU SASL, diabling])
fi
AC_MSG_CHECKING([if GNU SASL should be used])
AC_MSG_RESULT($gsasl)

Chapter 3: Using the Library 13

3 Using the Library

Your application’s use of the library can be roughly modeled into the following steps: ini-
tialize the library, optionally specify the callback, perform the authentication, and finally
clean up. The following image illustrate this.

The third step may look the most complex, but for a simple client it will actually not
involve any code. If your application need to handle several concurrent clients, or if it is a
server that need to serve many clients simultaneous, things do get a bit more complicated.

For illustration, we will write a simple client. Writing a server would be similar, the only
difference is that, later on, instead of supplying username or passwords, you need to decide
whether someone should be allowed to log in or not. The code for what we have discussed
so far make up our main function in our client (see Section 12.1 [Example 1], page 41):

int main (int argc, char *argv[])
{
Gsasl *ctx = NULL;
int rc;

if ((rc = gsasl_init (&ctx)) != GSASL_OK)
{

printf ("Cannot initialize libgsasl (%d): %s",
rc, gsasl_strerror (rc));

return 1;
}

client (ctx);

gsasl_done (ctx);

return 0;
}

Here, the call to the function client correspond to the third step in the image above.
For a more complicated application, that have several clients running simultaneous,

instead of simply calling client, it may have created new threads for each session, and call
client within each thread. The library is thread safe.

Chapter 3: Using the Library 14

An actual authentication session is more complicated than what we have seen so far.
The steps that make up it are: decide which mechanism to use, start the session, optionally
specify the callback, optionally set any properties, perform the authentication loop, and
clean up. Naturally, your application will start to talk its own protocol (e.g., SMTP or
IMAP) after these steps have concluded.

The authentication loop is based on sending tokens (typically short messages encoded
in base 64) back and forth between the client and server. It continue until authentication
succeeds or there is an error. The format of the data to transfer, the number of iterations
in the loop, and other details are specified by each mechanism. The goal of the library is
to isolate your application from the details of all different mechanisms.

Note that the library do not send data to the server itself, but return it in an buffer.
You must send it to the server yourself, according to an application protocol profile. For
example, the SASL application protocol profile for SMTP is described in RFC 2554.

The following image illustrate the steps we have been talking about.

We will now show the implementation of the client function used before.
void client (Gsasl *ctx)
{
Gsasl_session *session;

Chapter 3: Using the Library 15

const char *mech = "PLAIN";
int rc;

/* Create new authentication session. */
if ((rc = gsasl_client_start (ctx, mech, &session)) != GSASL_OK)
{

printf ("Cannot initialize client (%d): %s\n",
rc, gsasl_strerror (rc));

return;
}

/* Set username and password in session handle. This info will be
lost when this session is deallocated below. */

gsasl_property_set (session, GSASL_AUTHID, "jas");
gsasl_property_set (session, GSASL_PASSWORD, "secret");

/* Do it. */
client_authenticate (ctx, session);

/* Cleanup. */
gsasl_finish (session);

}

This function is responsible for deciding which mechanism to use. In this case, the
‘PLAIN’ mechanism is hard coded, but you will see later how this can be made more flexible.
The function create a new session, store the username and password in the session handle,
then call another function client_authenticate to handle the authentication loop, and
end by cleaning up. Let’s continue with the implementation of client_authenticate.

void client_authenticate (Gsasl * ctx, Gsasl_session * session)
{
char buf[BUFSIZ] = "";
char *p;
int rc;

/* This loop mimic a protocol where the server get to send data
first. */

do
{

printf ("Input base64 encoded data from server:\n");
fgets (buf, sizeof (buf) - 1, stdin);
if (buf[strlen (buf) - 1] == ’\n’)
buf[strlen (buf) - 1] = ’\0’;

rc = gsasl_step64 (session, buf, &p);

if (rc == GSASL_NEEDS_MORE || rc == GSASL_OK)

Chapter 3: Using the Library 16

{
printf ("Output:\n%s\n", p);
free (p);

}
}

while (rc == GSASL_NEEDS_MORE);

printf ("\n");

if (rc != GSASL_OK)
{

printf ("Authentication error (%d): %s\n",
rc, gsasl_strerror (rc));

return;
}

/* The client is done. Here you would typically check if the
server let the client in. If not, you could try again. */

printf ("If server accepted us, we’re done.\n");
}

This last function need to be discussed in some detail. First, you should be aware that
there are two versions of this function, that differ in a subtle way. The version above (see
Section 12.2 [Example 2], page 43) is used for application profiles where the server send
data first. For some mechanisms, this may waste a roundtrip, because the server need
input from the client to proceed. Therefor, today the recommended approach is to permit
client to send data first (see Section 12.1 [Example 1], page 41). Which version you should
use depend on which application protocol you are implementing.

Further, you should realize that it is bad programming style to use a fixed size buffer.
On GNU systems, you may use the getline functions instead of fgets. However, in
practice, there are few mechanisms that use very large tokens. In typical configurations,
the mechanism with the largest tokens (GSSAPI) can use at least 500 bytes. A fixed buffer
size of 8192 bytes may thus be sufficient for now. But don’t say I didn’t warn you, when a
future mechanism doesn’t work in your application, because of a fixed size buffer.

The gsasl_step64 (and of course also gasl_step) return two non-error return codes.
GSASL_OK is used for success, indicating that the library consider the authentication finished.
That may include a successful server authentication, depending on the mechanism. You
must not let the client continue to the application protocol part unless you receive GSASL_
OK from these functions. In particular, don’t be fooled into believing authentication were
successful if the server reply “OK” but these function has failed with an error. The server
may have been hacked, and could be tricking you into sending confidential data, without
having successfully authenticated the server.

The non-error return code GSASL_NEEDS_MORE is used to signal to your application that
you should send the output token to the peer, and wait for a new token, and do another
iteration. If the server conclude the authentication process, with no data, you should call
gsasl_step64 (or gsasl_step) specifying a zero-length token.

Chapter 3: Using the Library 17

If the functions (gsasl_step and gsasl_step64) return any non-error code, the content
of the output buffer is undefined. Otherwise, it is the callers responsibility to deallocate
the buffer, by calling free. Note that in some situations, where the buffer is empty, NULL
is returned as the buffer value. You should treat this as an empty buffer.

3.1 Choosing a mechanism

Our earlier code was hard coded to use a specific mechanism. This is rarely a good idea.
Instead, it is recommended to select the best mechanism available from the list of mecha-
nism supported by the server. Note that without TLS or similar, the list may have been
maliciously altered, by an attacker. This means that you should abort if you cannot find
any mechanism that exceeds your minimum security level. There is a function gsasl_
client_suggest_mechanism (see Chapter 6 [Global Functions], page 27) that will try to
pick the “best” available mechanism from a list of mechanisms. Our simple interactive
example client (see Section 12.3 [Example 3], page 46) include the following function to
decide which mechanism to use. Note that the code doesn’t blindly use what is returned
from gsasl_client_suggest_mechanism, but rather let some logic (in this case the user,
through an interactive query) decide which mechanism is acceptable.

const char *client_mechanism (Gsasl *ctx)
{
static char mech[GSASL_MAX_MECHANISM_SIZE + 1] = "";
char mechlist[BUFSIZ] = "";
const char *suggestion;

printf ("Enter list of mechanism that server support, separate by SPC:\n");
fgets (mechlist, sizeof (mechlist) - 1, stdin);

suggestion = gsasl_client_suggest_mechanism (ctx, mechlist);
if (suggestion)
printf ("Library suggest use of ‘%s’.\n", suggestion);

printf ("Enter mechanism to use:\n");
fgets (mech, sizeof (mech) - 1, stdin);
mech[strlen (mech) - 1] = ’\0’;

return mech;
}

When running this example code, it might look like in the following output.
Enter list of mechanism that server support, separate by SPC:
CRAM-MD5 DIGEST-MD5 GSSAPI FOO BAR
Library suggest use of ‘GSSAPI’.
Enter mechanism to use:
CRAM-MD5
Input base64 encoded data from server:
Zm5vcmQ=
Output:
amFzIDkyY2U1NWE5MTM2ZTY4NzEyMTUyZTFjYmFmNjVkZjgx

Chapter 3: Using the Library 18

If server accepted us, we’re done.

3.2 Using a callback

Our earlier code specified the username and password before the authentication loop, as in:

gsasl_property_set (ctx, GSASL_AUTHID, "jas");
gsasl_property_set (ctx, GSASL_PASSWORD, "secret");

This may work for simple mechanisms, that only ever need an username and a password.
But some mechanism require more information, such as an authorization identity, a special
PIN or passcode, a realm, a hostname, a service name, or an anonymous identifier. Querying
the user for all that information, without knowing exactly which of it is really needed will
result in a poor user interface. The user should not have to input private information, if it
isn’t required.

The approach is a bad idea for another reason. What if the server abort the authenti-
cation process? Then your application have already queried the user for a username and
password. It would be better if you only asked the user for this information, annoying to
input, when it is known to be needed.

A better approach to this problem is to use a callback. Then the mechanism may query
your application whenever it need some information, like the username and password. It
will only do this at the precise step in the authentication when the information is actually
needed. Further, if the user abort, e.g., a password prompt, the mechanism is directly
informed of this (because it invoked the callback), and could recover somehow.

Our final example (see Section 12.4 [Example 4], page 49) specify a callback function,
inside main as below.

/* Set the callback handler for the library. */
gsasl_callback_set (ctx, callback);

The function itself is implemented as follows.

int callback (Gsasl * ctx, Gsasl_session * sctx, Gsasl_property prop)
{
char buf[BUFSIZ] = "";
int rc = GSASL_NO_CALLBACK;

/* Get user info from user. */

printf ("Callback invoked, for property %d.\n", prop);

switch (prop)
{
case GSASL_PASSCODE:

printf ("Enter passcode:\n");
fgets (buf, sizeof (buf) - 1, stdin);
buf[strlen (buf) - 1] = ’\0’;

gsasl_property_set (sctx, GSASL_PASSCODE, buf);

Chapter 3: Using the Library 19

rc = GSASL_OK;
break;

case GSASL_AUTHID:
printf ("Enter username:\n");
fgets (buf, sizeof (buf) - 1, stdin);
buf[strlen (buf) - 1] = ’\0’;

gsasl_property_set (sctx, GSASL_AUTHID, buf);
rc = GSASL_OK;
break;

default:
printf ("Unknown property! Don’t worry.\n");
break;

}

return rc;
}

Again, it is bad style to use a fixed size buffer. Mmm’kay.
Which properties you should handle is up to you. If you don’t know how to respond

to a certain property, simply return GSASL_NO_CALLBACK. The basic properties to support
are authentication identity (GSASL_AUTHID), authorization identity (GSASL_AUTHZID), and
password (GSASL_PASSWORD). See See Chapter 4 [Properties], page 20, for the list of all
properties, and what your callback should (ideally) do for them, and which properties each
mechanism require in order to work.

Chapter 4: Properties 20

4 Properties

Properties with associated data:
• GSASL_AUTHID

The authentication identity.
• GSASL_AUTHZID

The authorization identity.
• GSASL_PASSWORD

The password of the authentication identity.
• GSASL_ANONYMOUS_TOKEN

The anonymous token. This is typically the email address of the user.
• GSASL_SERVICE

The registered GSSAPI service name of the application service, e.g. “imap”. While
the names are registered for GSSAPI, other mechanisms such as DIGEST-MD5 may
also use this.

• GSASL_HOSTNAME

Should be the local host name of the machine.
• GSASL_GSSAPI_DISPLAY_NAME

Contain the GSSAPI “display name”, set by the server GSSAPI mechanism. Typically
you retrieve this property in your callback, when invoked for GSASL_VALIDATE_GSSAPI.

• GSASL_REALM

The name of the authentication domain. This is used by several mechanisms, including
DIGEST-MD5, GSS-API, KERBEROS V5 and NTLM.

• GSASL_PASSCODE

The SecurID passcode.
• GSASL_PIN

The SecurID personal identification number (PIN).
• GSASL_SUGGESTED_PIN

A SecurID personal identification number (PIN) suggested by the server.

Abstract properties, used to trigger the callback, typically used in servers to validate
client credentials:
• GSASL_VALIDATE_SIMPLE

You may retrieve GSASL AUTHID, GSASL AUTHZID and GSASL PASSWORD and
use them to make an authentication and authorization decision.

• GSASL_VALIDATE_EXTERNAL

Used by EXTERNAL mechanism on the server side to validate the client. The
GSASL AUTHID will contain the authorization identity of the client.

• GSASL_VALIDATE_ANONYMOUS

Used by ANONYMOUS mechanism on the server side to validate the client. The
GSASL ANONYMOUS TOKEN will contain token that identity the client.

Chapter 4: Properties 21

• GSASL_VALIDATE_GSSAPI

Used by the GSSAPI mechanism on the server side, to validate the client. You may
retrieve the authorization identity from GSASL AUTHZID and the GSS-API display
name from GSASL GSSAPI DISPLAY NAME.

• GSASL_VALIDATE_SECURID

Used by SECURID mechanism on the server side to validate client. The
GSASL AUTHID, GSASL AUTHZID, GSASL PASSCODE, and GSASL PIN will be
set. It can return GSASL SECURID SERVER NEED ADDITIONAL PASSCODE
to ask the client to supply another passcode, and GSASL SECURID SERVER NEED NEW PIN
to require the client to supply a new PIN code.

Chapter 5: Mechanisms 22

5 Mechanisms

Different SASL mechanisms have different requirements on the application using it. To
handle these differences the library can use a callback function into your application in
several different ways. Some mechanisms, such as ‘PLAIN’, are simple to explain and use.
The client callback query the user for a username and password. The server callback hand
the username and password into any local policy deciding authentication system (such as
‘/etc/passwd’ via PAM).

Mechanism such as ‘CRAM-MD5’ and ‘DIGEST-MD5’ uses hashed passwords. The client
callback behaviour is the same as for PLAIN. However, the server do not receive the plain
text password over the network but rather a hash of it. Existing policy deciding systems like
PAM cannot handle this, so the server callback for these mechanisms are more complicated.

Further, mechanisms like GSSAPI (Kerberos 5) assume a specific authentication system.
In theory this means that the SASL library would not need to interact with the application,
but rather call this specific authentication system directly. However, some callbacks are
supported anyway, to modify the behaviour of how the specific authentication system is
used (i.e., to handle “super-user” login as some other user).

Some mechanisms, like ‘EXTERNAL’ and ‘ANONYMOUS’ are entirely dependent on callbacks.

5.1 The EXTERNAL mechanism

The EXTERNAL mechanism is used to authenticate a user to a server based on out-of-band
authentication. EXTERNAL is typically used over TLS authenticated channels. Note that
in the server, you need to make sure that TLS actually authenticated the client successfully.
It is normally not sufficient that TLS is used, since they also support anonymous modes.

In the client, this mechanism is always enabled, and will send the GSASL_AUTHZID prop-
erty as the authorization name to the server, if the property is set. If the property is not
set, the empty authorization name is sent. You need not implement a callback.

In the server, this mechanism will invoke the GSASL_VALIDATE_EXTERNAL callback to
decide whether the client is authenticated and authorized to log in. Your callback can
retrieve the GSASL_AUTHZID property to inspect the requested authorization name from the
client.

5.2 The ANONYMOUS mechanism

The ANONYMOUS mechanism is used to “authenticate” clients to anonymous services;
or rather, just indicate that the client wishes to use the service anonymously. The client
sends a token, usually her email address, which serve the purpose of some trace information
suitable for log files. The token is not permitted to be empty.

In the client, this mechanism is always enabled, and will send the GSASL_ANONYMOUS_
TOKEN property as the trace information to the server.

In the server, this mechanism will invoke the GSASL_VALIDATE_ANONYMOUS callback to
decide whether the client should be permitted to log in. Your callback can retrieve the
GSASL_ANONYMOUS_TOKEN property to, for example, save it in a log file. The token is nor-
mally not used to decide whether the client should be permitted to log in or not.

Chapter 5: Mechanisms 23

5.3 The PLAIN mechanism

The PLAIN mechanism uses username and password to authenticate users. Two user names
are relevant. The first, the authentication identity, indicate the credential holder, i.e., whom
the provided password belongs to. The second, the authorization identity, is typically
empty, to indicate that the user requests to log on to the server as herself. However, if
the authorization identity is not empty, the server should decide whether the authenticated
user may log on as the authorization identity. Normally, only “super-user” accounts such
as ‘admin’ or similar should be allowed this.

In the client, this mechanism is always enabled, and require the GSASL_AUTHID and
GSASL_PASSWORD properties. If set, GSASL_AUTHZID will also be used.

In the server, the mechanism is always enabled. Two approaches to authenticate and
authorize the client is provided.

In the first approach, the server side of the mechanism will invoke the GSASL_VALIDATE_
SIMPLE callback property to decide whether the client should be accepted or not. The
callback may inspect the GSASL_AUTHID, GSASL_AUTHID, and GSASL_PASSWORD properties.
These properties values will be normalized.

If the first approach fails (because, e.g., your callback return ‘GSASL_NO_CALLBACK’ to
signal that it does not implement GSASL_VALIDATE_SIMPLE) the mechanism will continue
to query the application for a password, via the GSASL_PASSWORD property. Your callback
may use the GSASL_AUTHID and GSASL_AUTHZID properties to select the proper password.
The password is then normalized and compared to the client credential.

Which approach to use? If your database store hashed passwords, you have no option,
but must use the first approach. If passwords in your user database are stored in prepared
(SASLprep) form, the first approach will be faster. If you do not have prepared passwords
available, you can use the second approach to make sure the password is prepared properly
before comparison.

5.4 The LOGIN mechanism

The LOGIN mechanism is a non-standard mechanism, and is similar to the PLAIN mecha-
nism except that LOGIN lack the support for authorization identities. Always use PLAIN
instead of LOGIN in new applications.

The callback behaviour is the same as for PLAIN, except that GSASL_AUTHZID is not
used nor required, and that the server do not normalize the password using SASLprep.

See Section A.2 [Use of SASLprep in LOGIN], page 57, for a proposed clarification of
the interpretation of a hypothetical LOGIN specification.

5.5 The CRAM-MD5 mechanism

The CRAM-MD5 is a widely used, but officially deprecated (apparently in favor of DIGEST-
MD5), challenge-response mechanism that transfer hashed passwords instead of clear text
passwords. For insecure channels (e.g., when TLS is not used), it is safer than PLAIN. The
CRAM-MD5 mechanism do not support authorization identities; making the relationship
between CRAM-MD5 and DIGEST-MD5 similar to the relationship between LOGIN and
PLAIN.

Chapter 5: Mechanisms 24

The disadvantage with hashed passwords is that the server cannot use normal authen-
tication infrastructures such as PAM, because the server must have access to the correct
password in order to validate an authentication attempt.

In the client, this mechanism is always enabled, and require the GSASL_AUTHID and
GSASL_PASSWORD properties.

In the server, the mechanism will invoke the GSASL_PASSWORD callback, which may use
the GSASL_AUTHID property to determine which users’ password should be used. The GSASL_
AUTHID will be in normalized form. The server will then normalize the returned password,
and compare the client response with the computed correct response, and accept the user
accordingly.

See Section A.1 [Use of SASLprep in CRAM-MD5], page 57, for a clarification on the
interpretation of the CRAM-MD5 specification that this implementation rely on.

5.6 The DIGEST-MD5 mechanism

The DIGEST-MD5 mechanism is based on repeated hashing using MD5, which after the
MD5 break may be argued to be weaker than HMAC-MD5, but supports more features. For
example, authorization identities and data integrity and privacy protection are supported.
Like CRAM-MD5, only a hashed password is transfered. Consequently, DIGEST-MD5 need
access to the correct password (although it may be hashed, another improvement compared
to CRAM-MD5) to verify the client response. Alas, this make it impossible to use, e.g.,
PAM on the server side.

In the client, this mechanism is always enabled, and require the GSASL_AUTHID, GSASL_
PASSWORD, GSASL_SERVICE, and GSASL_HOSTNAME properties. If set, GSASL_AUTHZID and
GSASL_REALM will also be used.

In the server, the mechanism will invoke the GSASL_PASSWORD callback, which may use
the GSASL_AUTHID, GSASL_AUTHZID and GSASL_REALM properties to determine which users’
password should be used. The server will then compare the client response with a computed
correct response, and accept the user accordingly.

Currently only the authentication quality of service is implemented. In other words,
payload integrity or privacy protection are not supported. Consequently, there are no
properties for the maximum buffer size, quality of protection, and cipher fields.

5.7 The NTLM mechanism

The NTLM is a non-standard mechanism. Do not use it in new applications, and do not
expect it to be secure. Currently only the client side is supported.

In the client, this mechanism is always enabled, and require the GSASL_AUTHID and
GSASL_PASSWORD properties. It will set the ‘domain’ field in the NTLM request to the value
of GSASL_REALM. Some servers reportedly need non-empty but arbitrary values in that field.

5.8 The SECURID mechanism

The SECURID mechanism uses authentication and authorization identity together with a
passcode from a hardware token to authenticate users.

Chapter 5: Mechanisms 25

In the client, this mechanism is always enabled, and require the GSASL_AUTHID and
GSASL_PASSCODE properties. If set, GSASL_AUTHZID will also be used. If the server re-
quests it, the GSASL_PIN property is also required, and its callback may inspect the GSASL_
SUGGESTED_PIN property to discover a server-provided PIN to use.

In the server, this mechanism will invoke the GSASL_VALIDATE_SECURID callback. The
callback may inspect the GSASL_AUTHID, GSASL_AUTHZID, and GSASL_PASSCODE properties.
The callback can return GSASL_SECURID_SERVER_NEED_ADDITIONAL_PASSCODE to ask for
another additional passcode from the client. The callback can return GSASL_SECURID_
SERVER_NEED_NEW_PIN to ask for a new PIN code from the client, in which case it may
also set the GSASL_SUGGESTED_PIN property to indicate a recommended new PIN. If the
callbacks has invoked again, after having returned GSASL_SECURID_SERVER_NEED_NEW_PIN,
it may also inspect the GSASL_PIN property, in addition to the other properties, to find out
the client selected PIN code.

5.9 The GSSAPI mechanism

GSS-API is a framework, similar to SASL, for authentication. The GSSAPI mechanism
only support the Kerberos 5 GSS-API mechanism, though. (A new SASL mechanism to
support non-Kerberos 5 GSS-API mechanisms may be supported in the future.)

In the client, the mechanism is enabled only if the user has acquired credentials (i.e.,
a ticket granting ticket), and require the GSASL_AUTHID, GSASL_SERVICE, and GSASL_
HOSTNAME properties.

In the server, the mechanism require the GSASL_SERVICE, and GSASL_HOSTNAME prop-
erties, and will invoke the GSASL_VALIDATE_GSSAPI callback in order to validate the user.
The callback may inspect the GSASL_AUTHZID and GSASL_GSSAPI_DISPLAY_NAME proper-
ties to decide whether to authorize the user. Note that authentication is performed by the
GSS-API library.

XXX: explain more about quality of service, maximum buffer size, etc.

5.10 The KERBEROS V5 mechanism

The KERBEROS V5 is an experimental mechanism, the protocol specification is available
on the GNU SASL homepage. It can operate in three modes, non-infrastructure mode,
infrastructure mode and proxied infrastructure mode. Currently only non-infrastructure
mode is supported.

In the non-infrastructure mode, it works as a superset of most features provided by
PLAIN, CRAM-MD5, DIGEST-MD5 and GSSAPI while at the same time building on
what is believed to be proven technology (the RFC 1510 network security system). In the
non-infrastructure mode, the client must specify (via callbacks) the name of the user, and
optionally the server name and realm. The server must be able to retrieve passwords given
the name of the user.

In the infrastructure mode (proxied or otherwise), it allows clients and servers to au-
thenticate via SASL in an RFC 1510 environment, using a trusted third party, a “Key
Distribution Central”. In the normal mode, clients aquire tickets out of band and then
invokes a one roundtrip AP-REQ and AP-REP exchange. In the proxied mode, which can
be used by clients without IP addresses or without connectivity to the KDC (e.g., when

Chapter 5: Mechanisms 26

the KDC is IPv4 and the client is IPV6-only), the client uses the server to proxy ticket re-
quests and finishes with the AP-REQ/AP-REP exchange. In infrastructure mode (proxied
or otherwise), the client nor server need to implement any callbacks (this will likely change
later, to allow a server to authorize users, similar to the GSSAPI callback).

XXX: update when implementation has matured

Chapter 6: Global Functions 27

6 Global Functions

[Function]int gsasl_init (Gsasl ** ctx)
ctx: pointer to libgsasl handle.

This functions initializes libgsasl. The handle pointed to by ctx is valid for use with
other libgsasl functions iff this function is successful. It also register all builtin SASL
mechanisms, using gsasl_register().

Return value: GSASL OK iff successful, otherwise GSASL MALLOC ERROR.

[Function]void gsasl_done (Gsasl * ctx)
ctx: libgsasl handle.

This function destroys a libgsasl handle. The handle must not be used with other
libgsasl functions after this call.

[Function]int gsasl_client_mechlist (Gsasl * ctx, char ** out)
ctx: libgsasl handle.

out: newly allocated output character array.

Return a newly allocated string containing SASL names, separated by space, of mech-
anisms supported by the libgsasl client. out is allocated by this function, and it is
the responsibility of caller to deallocate it.

Return value: Returns GSASL OK if successful, or error code.

[Function]int gsasl_server_mechlist (Gsasl * ctx, char ** out)
ctx: libgsasl handle.

out: newly allocated output character array.

Return a newly allocated string containing SASL names, separated by space, of mech-
anisms supported by the libgsasl server. out is allocated by this function, and it is
the responsibility of caller to deallocate it.

Return value: Returns GSASL OK if successful, or error code.

[Function]int gsasl_client_support_p (Gsasl * ctx, const char * name)
ctx: libgsasl handle.

name: name of SASL mechanism.

Decide whether there is client-side support for a specified mechanism.

Return value: Returns 1 if the libgsasl client supports the named mechanism, other-
wise 0.

[Function]int gsasl_server_support_p (Gsasl * ctx, const char * name)
ctx: libgsasl handle.

name: name of SASL mechanism.

Decide whether there is server-side support for a specified mechanism.

Return value: Returns 1 if the libgsasl server supports the named mechanism, other-
wise 0.

Chapter 6: Global Functions 28

[Function]const char * gsasl_client_suggest_mechanism (Gsasl * ctx,
const char * mechlist)

ctx: libgsasl handle.
mechlist: input character array with SASL mechanism names, separated by invalid
characters (e.g. SPC).
Given a list of mechanisms, suggest which to use.
Return value: Returns name of "best" SASL mechanism supported by the libgsasl
client which is present in the input string.

[Function]int gsasl_register (Gsasl * ctx, const Gsasl mechanism * mech)
ctx: pointer to libgsasl handle.
mech: plugin structure with information about plugin.
This function initialize given mechanism, and if successful, add it to the list of plugins
that is used by the library.
Return value: GSASL OK iff successful, otherwise GSASL MALLOC ERROR.
Since: 0.2.0

Chapter 7: Callback Functions 29

7 Callback Functions

The callback is used by mechanisms to retrieve information, such as username and password,
from the application. In a server, the callback is used to decide whether a user is permitted
to log in or not. You tell the library of your callback function by calling gsasl_callback_
set.

Since your callback may need to access to data from other parts of your application, there
are hooks to store and retrieve application specific pointers. This avoid the use of global
variables in your application, which wouldn’t be thread safe. You store a pointer to some
information (opaque from the point of view of the library) by calling gsasl_callback_hook_
set and can later retrieve this data in your callback by calling gsasl_callback_hook_get.

[Function]void gsasl_callback_set (Gsasl * ctx, Gsasl callback function cb)
ctx: handle received from gsasl_init().
cb: pointer to function implemented by application.
Store the pointer to the application provided callback in the library handle.
The callback will be used, via gsasl_callback(), by mechanisms to discover
various parameters (such as username and passwords). The callback function will
be called with a Gsasl property value indicating the requested behaviour. For
example, for GSASL ANONYMOUS TOKEN, the function is expected to invoke
gsasl property set(CTX, GSASL ANONYMOUS TOKEN, "token") where "token"
is the anonymous token the application wishes the SASL mechanism to use. See the
manual for the meaning of all parameters.
Since: 0.2.0

[Function]int gsasl_callback (Gsasl * ctx, Gsasl session * sctx, Gsasl property
prop)

ctx: handle received from gsasl_init(), may be NULL to derive it from sctx.
sctx: session handle.
prop: enumerated value of Gsasl property type.
Invoke the application callback. The prop value indicate what the callback is expected
to do. For example, for GSASL ANONYMOUS TOKEN, the function is expected to
invoke gsasl property set(SCTX, GSASL ANONYMOUS TOKEN, "token") where
"token" is the anonymous token the application wishes the SASL mechanism to use.
See the manual for the meaning of all parameters.
Note that if no callback has been set by the application, but the obsolete callback
interface has been used, this function will translate the old callback interface into the
new. This interface should be sufficient to invoke all callbacks, both new and old.
Return value: Returns whatever the application callback return, or
GSASL NO CALLBACK if no application was known.
Since: 0.2.0

[Function]void gsasl_callback_hook_set (Gsasl * ctx, void * hook)
ctx: libgsasl handle.
hook: opaque pointer to application specific data.

Chapter 7: Callback Functions 30

Store application specific data in the libgsasl handle. The application data can be
later (for instance, inside a callback) be retrieved by calling gsasl_callback_hook_
get(). It is normally used by the application to maintain state between the main
program and the callback.
Since: 0.2.0

[Function]void * gsasl_callback_hook_get (Gsasl * ctx)
ctx: libgsasl handle.
Retrieve application specific data from libgsasl handle. The application data is set us-
ing gsasl_callback_hook_set(). It is normally used by the application to maintain
state between the main program and the callback.
Return value: Returns the application specific data, or NULL.
Since: 0.2.0

Chapter 8: Property Functions 31

8 Property Functions

[Function]void gsasl_property_set (Gsasl session * sctx, Gsasl property prop,
const char * data)

sctx: session handle.
prop: enumerated value of Gsasl property type, indicating the type of data in data.
data: zero terminated character string to store.
Make a copy of data and store it in the session handle for the indicated property
prop.
You can immediately deallocate data after calling this function, without affecting the
data stored in the session handle.
Since: 0.2.0

[Function]void gsasl_property_set_raw (Gsasl session * sctx, Gsasl property
prop, const char * data, size t len)

sctx: session handle.
prop: enumerated value of Gsasl property type, indicating the type of data in data.
data: character string to store.
len: length of character string to store.
Make a copy of len sized data and store a zero terminated version of it in the session
handle for the indicated property prop.
You can immediately deallocate data after calling this function, without affecting the
data stored in the session handle.
Except for the length indicator, this function is identical to gsasl property set.
Since: 0.2.0

[Function]const char * gsasl_property_fast (Gsasl session * sctx,
Gsasl property prop)

sctx: session handle.
prop: enumerated value of Gsasl property type, indicating the type of data in data.
Retrieve the data stored in the session handle for given property prop.
The pointer is to live data, and must not be deallocated or modified in any way.
This function will not invoke the application callback.
Return value: Return property value, if known, or NULL if no value known.
Since: 0.2.0

[Function]const char * gsasl_property_get (Gsasl session * sctx,
Gsasl property prop)

sctx: session handle.
prop: enumerated value of Gsasl property type, indicating the type of data in data.
Retrieve the data stored in the session handle for given property prop, possibly in-
voking the application callback to get the value.
The pointer is to live data, and must not be deallocated or modified in any way.

Chapter 8: Property Functions 32

This function will invoke the application callback, using gsasl_callback(), when a
property value is not known.
If no value is known, and no callback is specified or if the callback fail to return
data, and if any obsolete callback functions has been set by the application, this
function will try to call these obsolete callbacks, and store the returned data as the
corresponding property. This behaviour of this function will be removed when the
obsolete callback interfaces are removed.
Return value: Return data for property, or NULL if no value known.
Since: 0.2.0

Chapter 9: Session Functions 33

9 Session Functions

[Function]int gsasl_client_start (Gsasl * ctx, const char * mech,
Gsasl session ** sctx)

ctx: libgsasl handle.
mech: name of SASL mechanism.
sctx: pointer to client handle.
This functions initiates a client SASL authentication. This function must be called
before any other gsasl client *() function is called.
Return value: Returns GSASL OK if successful, or error code.

[Function]int gsasl_server_start (Gsasl * ctx, const char * mech,
Gsasl session ** sctx)

ctx: libgsasl handle.
mech: name of SASL mechanism.
sctx: pointer to server handle.
This functions initiates a server SASL authentication. This function must be called
before any other gsasl server *() function is called.
Return value: Returns GSASL OK if successful, or error code.

[Function]int gsasl_step (Gsasl session * sctx, const char * input, size t
input_len, char ** output, size t * output_len)

sctx: libgsasl session handle.
input: input byte array.
input len: size of input byte array.
output: newly allocated output byte array.
output len: pointer to output variable with size of output byte array.
Perform one step of SASL authentication. This reads data from the other end (from
input and input_len), processes it (potentially invoking callbacks to the application),
and writes data to server (into newly allocated variable output and output_len that
indicate the length of output).
The contents of the output buffer is unspecified if this functions returns anything
other than GSASL_OK or GSASL_NEEDS_MORE. If this function return GSASL_OK or
GSASL_NEEDS_MORE, however, the output buffer is allocated by this function, and it
is the responsibility of caller to deallocate it by calling free (output).
Return value: Returns GSASL_OK if authenticated terminated successfully, GSASL_
NEEDS_MORE if more data is needed, or error code.

[Function]int gsasl_step64 (Gsasl session * sctx, const char * b64input, char
** b64output)

sctx: libgsasl client handle.
b64input: input base64 encoded byte array.
b64output: newly allocated output base64 encoded byte array.

Chapter 9: Session Functions 34

This is a simple wrapper around gsasl_step() that base64 decodes the input and
base64 encodes the output.
The contents of the b64output buffer is unspecified if this functions returns anything
other than GSASL_OK or GSASL_NEEDS_MORE. If this function return GSASL_OK or
GSASL_NEEDS_MORE, however, the b64output buffer is allocated by this function, and
it is the responsibility of caller to deallocate it by calling free (b64output).
Return value: Returns GSASL_OK if authenticated terminated successfully, GSASL_
NEEDS_MORE if more data is needed, or error code.

[Function]void gsasl_finish (Gsasl session * sctx)
sctx: libgsasl session handle.
Destroy a libgsasl client or server handle. The handle must not be used with other
libgsasl functions after this call.

[Function]int gsasl_encode (Gsasl session * sctx, const char * input, size t
input_len, char ** output, size t * output_len)

sctx: libgsasl session handle.
input: input byte array.
input len: size of input byte array.
output: newly allocated output byte array.
output len: size of output byte array.
Encode data according to negotiated SASL mechanism. This might mean that data
is integrity or privacy protected.
The output buffer is allocated by this function, and it is the responsibility of caller
to deallocate it by calling free(output).
Return value: Returns GSASL OK if encoding was successful, otherwise an error
code.

[Function]int gsasl_decode (Gsasl session * sctx, const char * input, size t
input_len, char ** output, size t * output_len)

sctx: libgsasl session handle.
input: input byte array.
input len: size of input byte array.
output: newly allocated output byte array.
output len: size of output byte array.
Decode data according to negotiated SASL mechanism. This might mean that data
is integrity or privacy protected.
The output buffer is allocated by this function, and it is the responsibility of caller
to deallocate it by calling free(output).
Return value: Returns GSASL OK if encoding was successful, otherwise an error
code.

Chapter 10: Utilities 35

10 Utilities

[Function]int gsasl_saslprep (const char * in, Gsasl saslprep flags flags, char
** out, int * stringpreprc)

in: a UTF-8 encoded string.
flags: any SASLprep flag, e.g., GSASL_ALLOW_UNASSIGNED.
out: on exit, contains newly allocated output string.
stringpreprc: if non-NULL, will hold precise stringprep return code.
Prepare string using SASLprep. On success, the out variable must be deallocated by
the caller.
Return value: Returns GSASL_OK on success, or GSASL_SASLPREP_ERROR on error.
Since: 0.2.3

[Function]int gsasl_base64_to (const char * in, size t inlen, char ** out, size t
* outlen)

in: input byte array
inlen: size of input byte array
out: pointer to newly allocated output byte array
outlen: pointer to size of newly allocated output byte array
Encode data as base64. The string is zero terminated, and OUTLEN holds the length
excluding the terminating zero. The OUT buffer must be deallocated by the caller.
Return value: Returns GSASL_OK on success, or GSASL_MALLOC_ERROR if input was
too large or memory allocation fail.
Since: 0.2.2

[Function]int gsasl_base64_from (const char * in, size t inlen, char ** out,
size t * outlen)

in: input byte array
inlen: size of input byte array
out: pointer to newly allocated output byte array
outlen: pointer to size of newly allocated output byte array
Decode Base64 data. The OUT buffer must be deallocated by the caller.
Return value: Returns GSASL_OK on success, GSASL_BASE64_ERROR if input was in-
valid, and GSASL_MALLOC_ERROR on memory allocation errors.
Since: 0.2.2

[Function]int gsasl_simple_getpass (const char * filename, const char *
username, char ** key)

filename: filename of file containing passwords.
username: username string.
key : newly allocated output character array.
Retrieve password for user from specified file. The buffer key contain the password
if this function is successful. The caller is responsible for deallocating it.

Chapter 10: Utilities 36

The file should be on the UoW "MD5 Based Authentication" format, which means
it is in text format with comments denoted by # first on the line, with user entries
looking as username\tpassword. This function removes \r and \n at the end of lines
before processing.
Return value: Return GSASL OK if output buffer contains the password,
GSASL AUTHENTICATION ERROR if the user could not be found, or other error
code.

[Function]int gsasl_nonce (char * data, size t datalen)
data: output array to be filled with unpredictable random data.
datalen: size of output array.
Store unpredictable data of given size in the provided buffer.
Return value: Returns GSASL_OK iff successful.

[Function]int gsasl_random (char * data, size t datalen)
data: output array to be filled with strong random data.
datalen: size of output array.
Store cryptographically strong random data of given size in the provided buffer.
Return value: Returns GSASL_OK iff successful.

[Function]int gsasl_md5 (const char * in, size t inlen, char * out[16])
in: input character array of data to hash.
inlen: length of input character array of data to hash.
Compute hash of data using MD5. The out buffer must be deallocated by the caller.
Return value: Returns GSASL_OK iff successful.

[Function]int gsasl_hmac_md5 (const char * key, size t keylen, const char * in,
size t inlen, char * outhash[16])

key : input character array with key to use.
keylen: length of input character array with key to use.
in: input character array of data to hash.
inlen: length of input character array of data to hash.
Compute keyed checksum of data using HMAC-MD5. The outhash buffer must be
deallocated by the caller.
Return value: Returns GSASL_OK iff successful.

Chapter 11: Error Handling 37

11 Error Handling

Most functions in the GNU SASL Library are returning an error if they fail. For this reason,
the application should always catch the error condition and take appropriate measures, for
example by releasing the resources and passing the error up to the caller, or by displaying
a descriptive message to the user and cancelling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly.

11.1 Error values

Errors are returned as an int. Except for the OK case an application should always use the
constants instead of their numeric value. Applications are encouraged to use the constants
even for OK as it improves readability. Possible values are:

GSASL_OK This value indicates success. The value of this error is guaranteed to always be
0 so you may use it in boolean constructs.

GSASL_NEEDS_MORE
SASL mechanism needs more data

GSASL_UNKNOWN_MECHANISM
Unknown SASL mechanism

GSASL_MECHANISM_CALLED_TOO_MANY_TIMES
SASL mechanism called too many times

GSASL_MALLOC_ERROR
Memory allocation error in SASL library

GSASL_BASE64_ERROR
Base 64 coding error in SASL library

GSASL_CRYPTO_ERROR
Low-level crypto error in SASL library

GSASL_GSSAPI_RELEASE_BUFFER_ERROR
GSSAPI library could not deallocate memory in gss release buffer() in SASL
library. This is a serious internal error.

GSASL_GSSAPI_IMPORT_NAME_ERROR
GSSAPI library could not understand a peer name in gss import name() in
SASL library. This may be due to incorrect user supplied data.

GSASL_GSSAPI_INIT_SEC_CONTEXT_ERROR
GSSAPI error in client while negotiating security context in
gss init sec context() in SASL library. This is most likely due insuf-
ficient credentials or malicious interactions.

GSASL_GSSAPI_ACCEPT_SEC_CONTEXT_ERROR
GSSAPI error in server while negotiating security context in
gss init sec context() in SASL library. This is most likely due insuf-
ficient credentials or malicious interactions.

Chapter 11: Error Handling 38

GSASL_GSSAPI_UNWRAP_ERROR
GSSAPI error while decrypting or decoding data in gss unwrap() in SASL
library. This is most likely due to data corruption.

GSASL_GSSAPI_WRAP_ERROR
GSSAPI error while encrypting or encoding data in gss wrap() in SASL library.

GSASL_GSSAPI_ACQUIRE_CRED_ERROR
GSSAPI error acquiring credentials in gss acquire cred() in SASL library.
This is most likely due to not having the proper Kerberos key available in
/etc/krb5.keytab on the server.

GSASL_GSSAPI_DISPLAY_NAME_ERROR
GSSAPI error creating a display name denoting the client in gss display name()
in SASL library. This is probably because the client supplied bad data.

GSASL_GSSAPI_UNSUPPORTED_PROTECTION_ERROR
Other entity requested integrity or confidentiality protection in GSSAPI mech-
anism but this is currently not implemented.

GSASL_MECHANISM_PARSE_ERROR
SASL mechanism could not parse input

GSASL_AUTHENTICATION_ERROR
Error authenticating user

GSASL_INTEGRITY_ERROR
Integrity error in application payload

GSASL_NO_CLIENT_CODE
Client-side functionality not available in library (application error)

GSASL_NO_SERVER_CODE
Server-side functionality not available in library (application error)

GSASL_NO_CALLBACK
No callback specified by caller (application error).

GSASL_NO_ANONYMOUS_TOKEN
Authentication failed because the anonymous token was not provided.

GSASL_NO_AUTHID
Authentication failed because the authentication identity was not provided.

GSASL_NO_AUTHZID
Authentication failed because the authorization identity was not provided.

GSASL_NO_PASSWORD
Authentication failed because the password was not provided.

GSASL_NO_PASSCODE
Authentication failed because the passcode was not provided.

GSASL_NO_PIN
Authentication failed because the pin code was not provided.

Chapter 11: Error Handling 39

GSASL_NO_SERVICE
Authentication failed because the service name was not provided.

GSASL_NO_HOSTNAME
Authentication failed because the host name was not provided.

GSASL_SASLPREP_ERROR
Could not prepare internationalized (non-ASCII) string.

GSASL_TOO_SMALL_BUFFER
SASL function needs larger buffer (internal error)

GSASL_FOPEN_ERROR
Could not open file in SASL library

GSASL_FCLOSE_ERROR
Could not close file in SASL library

GSASL_CANNOT_GET_CTX
Cannot get internal library handle (library error)

GSASL_NEED_CLIENT_ANONYMOUS_CALLBACK
SASL mechanism needs gsasl client callback anonymous() callback (applica-
tion error)

GSASL_NEED_CLIENT_PASSWORD_CALLBACK
SASL mechanism needs gsasl client callback password() callback (application
error)

GSASL_NEED_CLIENT_PASSCODE_CALLBACK
SASL mechanism needs gsasl client callback passcode() callback (application
error)

GSASL_NEED_CLIENT_PIN_CALLBACK
SASL mechanism needs gsasl client callback pin() callback (application error)

GSASL_NEED_CLIENT_AUTHORIZATION_ID_CALLBACK
SASL mechanism needs gsasl client callback authorization id() callback (ap-
plication error)

GSASL_NEED_CLIENT_AUTHENTICATION_ID_CALLBACK
SASL mechanism needs gsasl client callback authentication id() callback (ap-
plication error)

GSASL_NEED_CLIENT_SERVICE_CALLBACK
SASL mechanism needs gsasl client callback service() callback (application er-
ror)

GSASL_NEED_SERVER_VALIDATE_CALLBACK
SASL mechanism needs gsasl server callback validate() callback (application
error)

GSASL_NEED_SERVER_CRAM_MD5_CALLBACK
SASL mechanism needs gsasl server callback cram md5() callback (application
error)

Chapter 11: Error Handling 40

GSASL_NEED_SERVER_DIGEST_MD5_CALLBACK
SASL mechanism needs gsasl server callback digest md5() callback (applica-
tion error)

GSASL_NEED_SERVER_ANONYMOUS_CALLBACK
SASL mechanism needs gsasl server callback anonymous() callback (applica-
tion error)

GSASL_NEED_SERVER_EXTERNAL_CALLBACK
SASL mechanism needs gsasl server callback external() callback (application
error)

GSASL_NEED_SERVER_REALM_CALLBACK
SASL mechanism needs gsasl server callback realm() callback (application er-
ror)

GSASL_NEED_SERVER_SECURID_CALLBACK
SASL mechanism needs gsasl server callback securid() callback (application er-
ror)

GSASL_NEED_SERVER_SERVICE_CALLBACK
SASL mechanism needs gsasl server callback service() callback (application er-
ror)

GSASL_NEED_SERVER_GSSAPI_CALLBACK
SASL mechanism needs gsasl server callback gssapi() callback (application er-
ror)

GSASL_NEED_SERVER_RETRIEVE_CALLBACK
SASL mechanism needs gsasl server callback retrieve() callback (application
error)

GSASL_UNICODE_NORMALIZATION_ERROR
Failed to perform Unicode Normalization on string.

GSASL_NO_MORE_REALMS
No more realms available (non-fatal)

GSASL_INVALID_HANDLE
The provided library handle was invalid (application error)

11.2 Error strings

[Function]const char * gsasl_strerror (int err)
err: libgsasl error code
Convert return code to human readable string.
Return value: Returns a pointer to a statically allocated string containing a descrip-
tion of the error with the error value err. This string can be used to output a
diagnostic message to the user.

Chapter 12: Examples 41

12 Examples

This chapter contains example code which illustrate how the GNU SASL Library can be
used when writing your own application.

12.1 Example 1

/* client.c --- Example SASL client.
* Copyright (C) 2004, 2005 Simon Josefsson
*
* This file is part of GNU SASL.
*
* GNU SASL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GNU SASL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU SASL; if not, write to the Free Software
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <gsasl.h>

static void
client_authenticate (Gsasl * ctx, Gsasl_session * session)
{
char buf[BUFSIZ] = "";
char *p;
int rc;

/* This loop mimic a protocol where the client send data first. */

do
{

/* Generate client output. */

Chapter 12: Examples 42

rc = gsasl_step64 (session, buf, &p);

if (rc == GSASL_NEEDS_MORE || rc == GSASL_OK)
{

/* If sucessful, print it. */
printf ("Output:\n%s\n", p);
free (p);

}

if (rc == GSASL_NEEDS_MORE)
{

/* If the client need more data from server, get it here. */
printf ("Input base64 encoded data from server:\n");
fgets (buf, sizeof (buf) - 1, stdin);
if (buf[strlen (buf) - 1] == ’\n’)
buf[strlen (buf) - 1] = ’\0’;

}
}

while (rc == GSASL_NEEDS_MORE);

printf ("\n");

if (rc != GSASL_OK)
{

printf ("Authentication error (%d): %s\n", rc, gsasl_strerror (rc));
return;

}

/* The client is done. Here you would typically check if the server
let the client in. If not, you could try again. */

printf ("If server accepted us, we’re done.\n");
}

static void
client (Gsasl * ctx)
{

Gsasl_session *session;
const char *mech = "PLAIN";
int rc;

/* Create new authentication session. */
if ((rc = gsasl_client_start (ctx, mech, &session)) != GSASL_OK)
{

printf ("Cannot initialize client (%d): %s\n", rc, gsasl_strerror (rc));
return;

}

Chapter 12: Examples 43

/* Set username and password in session handle. This info will be
lost when this session is deallocated below. */

gsasl_property_set (session, GSASL_AUTHID, "jas");
gsasl_property_set (session, GSASL_PASSWORD, "secret");

/* Do it. */
client_authenticate (ctx, session);

/* Cleanup. */
gsasl_finish (session);

}

int
main (int argc, char *argv[])
{

Gsasl *ctx = NULL;
int rc;

/* Initialize library. */
if ((rc = gsasl_init (&ctx)) != GSASL_OK)
{

printf ("Cannot initialize libgsasl (%d): %s", rc, gsasl_strerror (rc));
return 1;

}

/* Do it. */
client (ctx);

/* Cleanup. */
gsasl_done (ctx);

return 0;
}

12.2 Example 2

/* client-serverfirst.c --- Example SASL client, where server send data first.
* Copyright (C) 2004, 2005 Simon Josefsson
*
* This file is part of GNU SASL.
*
* GNU SASL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*

Chapter 12: Examples 44

* GNU SASL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU SASL; if not, write to the Free Software
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <gsasl.h>

static void
client_authenticate (Gsasl * ctx, Gsasl_session * session)
{
char buf[BUFSIZ] = "";
char *p;
int rc;

/* This loop mimic a protocol where the server get to send data first. */

do
{

printf ("Input base64 encoded data from server:\n");
fgets (buf, sizeof (buf) - 1, stdin);
if (buf[strlen (buf) - 1] == ’\n’)
buf[strlen (buf) - 1] = ’\0’;

rc = gsasl_step64 (session, buf, &p);

if (rc == GSASL_NEEDS_MORE || rc == GSASL_OK)
{

printf ("Output:\n%s\n", p);
free (p);

}
}

while (rc == GSASL_NEEDS_MORE);

printf ("\n");

if (rc != GSASL_OK)

Chapter 12: Examples 45

{
printf ("Authentication error (%d): %s\n", rc, gsasl_strerror (rc));
return;

}

/* The client is done. Here you would typically check if the server
let the client in. If not, you could try again. */

printf ("If server accepted us, we’re done.\n");
}

static void
client (Gsasl * ctx)
{

Gsasl_session *session;
const char *mech = "CRAM-MD5";
int rc;

/* Create new authentication session. */
if ((rc = gsasl_client_start (ctx, mech, &session)) != GSASL_OK)
{

printf ("Cannot initialize client (%d): %s\n", rc, gsasl_strerror (rc));
return;

}

/* Set username and password in session handle. This info will be
lost when this session is deallocated below. */

gsasl_property_set (session, GSASL_AUTHID, "jas");
gsasl_property_set (session, GSASL_PASSWORD, "secret");

/* Do it. */
client_authenticate (ctx, session);

/* Cleanup. */
gsasl_finish (session);

}

int
main (int argc, char *argv[])
{

Gsasl *ctx = NULL;
int rc;

/* Initialize library. */
if ((rc = gsasl_init (&ctx)) != GSASL_OK)
{

printf ("Cannot initialize libgsasl (%d): %s", rc, gsasl_strerror (rc));

Chapter 12: Examples 46

return 1;
}

/* Do it. */
client (ctx);

/* Cleanup. */
gsasl_done (ctx);

return 0;
}

12.3 Example 3

/* client-mech.c --- Example SASL client, with a choice of mechanism to use.
* Copyright (C) 2004, 2005 Simon Josefsson
*
* This file is part of GNU SASL.
*
* GNU SASL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GNU SASL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU SASL; if not, write to the Free Software
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <gsasl.h>

static void
client_authenticate (Gsasl * ctx, Gsasl_session * session)
{
char buf[BUFSIZ] = "";
char *p;

Chapter 12: Examples 47

int rc;

/* This loop mimic a protocol where the server get to send data first. */

do
{

printf ("Input base64 encoded data from server:\n");
fgets (buf, sizeof (buf) - 1, stdin);
if (buf[strlen (buf) - 1] == ’\n’)
buf[strlen (buf) - 1] = ’\0’;

rc = gsasl_step64 (session, buf, &p);

if (rc == GSASL_NEEDS_MORE || rc == GSASL_OK)
{

printf ("Output:\n%s\n", p);
free (p);

}
}

while (rc == GSASL_NEEDS_MORE);

printf ("\n");

if (rc != GSASL_OK)
{

printf ("Authentication error (%d): %s\n", rc, gsasl_strerror (rc));
return;

}

/* The client is done. Here you would typically check if the server
let the client in. If not, you could try again. */

printf ("If server accepted us, we’re done.\n");
}

static const char *
client_mechanism (Gsasl * ctx)
{

static char mech[GSASL_MAX_MECHANISM_SIZE + 1] = "";
char mechlist[BUFSIZ] = "";
const char *suggestion;

printf ("Enter list of mechanism that server support, separate by SPC:\n");
fgets (mechlist, sizeof (mechlist) - 1, stdin);

suggestion = gsasl_client_suggest_mechanism (ctx, mechlist);
if (suggestion)

Chapter 12: Examples 48

printf ("Library suggest use of ‘%s’.\n", suggestion);

printf ("Enter mechanism to use:\n");
fgets (mech, sizeof (mech) - 1, stdin);
mech[strlen (mech) - 1] = ’\0’;

return mech;
}

static void
client (Gsasl * ctx)
{

Gsasl_session *session;
const char *mech;
int rc;

/* Find out which mechanism to use. */
mech = client_mechanism (ctx);

/* Create new authentication session. */
if ((rc = gsasl_client_start (ctx, mech, &session)) != GSASL_OK)
{

printf ("Cannot initialize client (%d): %s\n", rc, gsasl_strerror (rc));
return;

}

/* Set username and password in session handle. This info will be
lost when this session is deallocated below. */

gsasl_property_set (session, GSASL_AUTHID, "jas");
gsasl_property_set (session, GSASL_PASSWORD, "secret");

/* Do it. */
client_authenticate (ctx, session);

/* Cleanup. */
gsasl_finish (session);

}

int
main (int argc, char *argv[])
{

Gsasl *ctx = NULL;
int rc;

/* Initialize library. */
if ((rc = gsasl_init (&ctx)) != GSASL_OK)
{

Chapter 12: Examples 49

printf ("Cannot initialize libgsasl (%d): %s", rc, gsasl_strerror (rc));
return 1;

}

/* Do it. */
client (ctx);

/* Cleanup. */
gsasl_done (ctx);

return 0;
}

12.4 Example 4

/* client-callback.c --- Example SASL client, with callback for user info.
* Copyright (C) 2004, 2005 Simon Josefsson
*
* This file is part of GNU SASL.
*
* GNU SASL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GNU SASL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU SASL; if not, write to the Free Software
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <gsasl.h>

static void
client_authenticate (Gsasl * ctx, Gsasl_session * session)
{
char buf[BUFSIZ] = "";

Chapter 12: Examples 50

char *p;
int rc;

/* This loop mimic a protocol where the server get to send data first. */

do
{

printf ("Input base64 encoded data from server:\n");
fgets (buf, sizeof (buf) - 1, stdin);
if (buf[strlen (buf) - 1] == ’\n’)
buf[strlen (buf) - 1] = ’\0’;

rc = gsasl_step64 (session, buf, &p);

if (rc == GSASL_NEEDS_MORE || rc == GSASL_OK)
{

printf ("Output:\n%s\n", p);
free (p);

}
}

while (rc == GSASL_NEEDS_MORE);

printf ("\n");

if (rc != GSASL_OK)
{

printf ("Authentication error (%d): %s\n", rc, gsasl_strerror (rc));
return;

}

/* The client is done. Here you would typically check if the server
let the client in. If not, you could try again. */

printf ("If server accepted us, we’re done.\n");
}

static void
client (Gsasl * ctx)
{

Gsasl_session *session;
const char *mech = "SECURID";
int rc;

/* Create new authentication session. */
if ((rc = gsasl_client_start (ctx, mech, &session)) != GSASL_OK)
{

printf ("Cannot initialize client (%d): %s\n", rc, gsasl_strerror (rc));

Chapter 12: Examples 51

return;
}

/* Do it. */
client_authenticate (ctx, session);

/* Cleanup. */
gsasl_finish (session);

}

static int
callback (Gsasl * ctx, Gsasl_session * sctx, Gsasl_property prop)
{

char buf[BUFSIZ] = "";
int rc = GSASL_NO_CALLBACK;

/* Get user info from user. */

printf ("Callback invoked, for property %d.\n", prop);

switch (prop)
{
case GSASL_PASSCODE:

printf ("Enter passcode:\n");
fgets (buf, sizeof (buf) - 1, stdin);
buf[strlen (buf) - 1] = ’\0’;

gsasl_property_set (sctx, GSASL_PASSCODE, buf);
rc = GSASL_OK;
break;

case GSASL_AUTHID:
printf ("Enter username:\n");
fgets (buf, sizeof (buf) - 1, stdin);
buf[strlen (buf) - 1] = ’\0’;

gsasl_property_set (sctx, GSASL_AUTHID, buf);
rc = GSASL_OK;
break;

default:
printf ("Unknown property! Don’t worry.\n");
break;

}

return rc;
}

Chapter 12: Examples 52

int
main (int argc, char *argv[])
{
Gsasl *ctx = NULL;
int rc;

/* Initialize library. */
if ((rc = gsasl_init (&ctx)) != GSASL_OK)
{

printf ("Cannot initialize libgsasl (%d): %s", rc, gsasl_strerror (rc));
return 1;

}

/* Set the callback handler for the library. */
gsasl_callback_set (ctx, callback);

/* Do it. */
client (ctx);

/* Cleanup. */
gsasl_done (ctx);

return 0;
}

Chapter 13: Acknowledgements 53

13 Acknowledgements

The makefiles, manuals, etc borrowed much from Libgcrypt written by Werner Koch.
Cryptographic functions for some SASL mechanisms uses Libgcrypt by Werner Koch et

al. The NTLM mechanism uses Libntlm by Grant Edwards et al, using code from Samba
written by Andrew Tridgell, and now maintained by Simon Josefsson. The KERBEROS V5
mechanism uses Shishi by Simon Josefsson. The GSSAPI mechanism uses a GSS-API
implementation, such as GSSLib by Simon Josefsson.

This manual borrows text from the SASL specification.

Chapter 14: Invoking gsasl 54

14 Invoking gsasl

Name

GNU SASL (gsasl) – Command line interface to libgsasl.

Description

gsasl is the main program of GNU SASL.

This section only lists the commands and options available.

Mandatory or optional arguments to long options are also mandatory or optional for any
corresponding short options.

Commands

gsasl recognizes these commands:

-c, --client Act as client.
--client-mechanisms Write name of supported client mechanisms

separated by space to stdout.
-s, --server Act as server.

--server-mechanisms Write name of supported server mechanisms
separated by space to stdout.

Network Options

Normally the SASL negotiation is performed on the terminal, with reading from stdin and
writing to stdout. It is also possible to perform the negotiation with a server over a TCP
network connection.

--connect=HOSTNAME[:SERVICE]
Connect to TCP server and negotiate on stream
instead of stdin/stdout. SERVICE is the protocol
service, or an integer denoting the port, and
defaults to 143 (imap) if not specified. Also sets
the --hostname default.

Chapter 14: Invoking gsasl 55

Miscellaneous Options:

These parameters affect overall behaviour.

-d, --application-data After authentication, read data from stdin and run
it through the mechanism’s security layer and
print it base64 encoded to stdout. The default is
to terminate after authentication.

--imap Use a IMAP-like logon procedure (client only).
Also sets the --service default to "imap".

-m, --mechanism=STRING Mechanism to use.
--no-client-first Disallow client to send data first (client only).

SASL Mechanism Options

These options modify the behaviour of the callbacks (see Chapter 7 [Callback Functions],
page 29) in the library. The default is the query the user on the terminal.

-a, --authentication-id=STRING Identity of credential owner.
--disable-cleartext-validate

Disable cleartext validate hook, forcing server to
prompt for password.

--enable-cram-md5-validate Validate CRAM-MD5 challenge and response
interactively.

--hostname=STRING Set the name of the server with the requested
service.

-n, --anonymous-token=STRING Token for anonymous authentication, usually
mail address (ANONYMOUS only).

-p, --password=STRING Password for authentication (insecure for
non-testing purposes).

--passcode=NUMBER Passcode for authentication (SECURID only).
--quality-of-protection=<auth | auth-int | auth-conf>

How application payload will be protected. "auth"
means no protection, "auth-int" means integrity
protection, "auth-conf" means integrity and
confidentialiy protection. Currently only used by
DIGEST-MD5, where the default is "auth-conf".

-r, --realm=STRING Realm. Defaults to hostname.
--service=STRING Set the requested service name (should be a

registered GSSAPI host based service name).
--service-name=STRING Set the generic server name in case of a

replicated server (DIGEST-MD5 only).
-x, --maxbuf=NUMBER Indicate maximum buffer size (DIGEST-MD5 only).
-z, --authorization-id=STRING Identity to request service for.

Chapter 14: Invoking gsasl 56

Other Options

These are some standard parameters.
-q, --quiet, --silent Don’t produce any diagnostic output.
-v, --verbose Produce verbose output.

-?, --help Give this help list
--usage Give a short usage message

-V, --version Print program version

Appendix A: Protocol Clarifications 57

Appendix A Protocol Clarifications

This appendix contain clarification to various SASL specification that we felt were necessary
to include, if for nothing else it may serve as a guide for other implementors that worry
about the same issues.

A.1 Use of SASLprep in CRAM-MD5

The specification, as of ‘draft-ietf-sasl-crammd5-04.txt’, is silent on whether a SASL
server implementation applying SASLprep on a password received from an external, non-
SASL specific database (i.e., the passwords are not stored in SASLprep form in the data-
base), should set or clear the AllowUnassigned bit. The motivation for the AU-bit in
StringPrep/SASLprep is for stored vs query strings. It could be argued that in this situation
the server can treat the external password either as a stored string (from a database) or as
a query (the server uses the string as a query into the fixed HMAC-MD5 hash).

The specification is also unclear on whether clients should set or clear the AllowUnas-
signed flag.

In the server, GNU SASL apply SASLprep to the password with the AllowUnassigned
bit cleared.

A.2 Use of SASLprep in LOGIN

The non-standard mechanism LOGIN presumably does not support non-ASCII. We suggest
that the client should send unprepared UTF-8 and that the server apply SASLprep with
the AllowUnassigned bit cleared on the received username and password.

Appendix B: Old Functions 58

Appendix B Old Functions

As GNU SASL is still under heavy development, some API functions have been found to
be less useful. Those old API functions will be supported during a transition period. Refer
to the NEWS file to find out since when a function has been deprecated.

[Function]int gsasl_client_listmech (Gsasl * ctx, char * out, size t *
outlen)

ctx: libgsasl handle.
out: output character array.
outlen: input maximum size of output character array, on output contains actual
length of output array.
Write SASL names, separated by space, of mechanisms supported by the libgsasl
client to the output array. To find out how large the output array must be, call this
function with out=NULL.
Return value: Returns GSASL OK if successful, or error code.
Deprecated: Use gsasl_client_mechlist() instead.

[Function]int gsasl_server_listmech (Gsasl * ctx, char * out, size t *
outlen)

ctx: libgsasl handle.
out: output character array.
outlen: input maximum size of output character array, on output contains actual
length of output array.
Write SASL names, separated by space, of mechanisms supported by the libgsasl
server to the output array. To find out how large the output array must be, call this
function with out=NULL.
Return value: Returns GSASL OK if successful, or error code.
Deprecated: Use gsasl_server_mechlist() instead.

[Function]int gsasl_client_step (Gsasl session * sctx, const char * input,
size t input_len, char * output, size t * output_len)

sctx: libgsasl client handle.
input: input byte array.
input len: size of input byte array.
output: output byte array.
output len: size of output byte array.
Perform one step of SASL authentication in client. This reads data from server
(specified with input and input len), processes it (potentially invoking callbacks to
the application), and writes data to server (into variables output and output len).
The contents of the output buffer is unspecified if this functions returns anything
other than GSASL NEEDS MORE.
Return value: Returns GSASL OK if authenticated terminated successfully,
GSASL NEEDS MORE if more data is needed, or error code.
Deprecated: Use gsasl_step() instead.

Appendix B: Old Functions 59

[Function]int gsasl_server_step (Gsasl session * sctx, const char * input,
size t input_len, char * output, size t * output_len)

sctx: libgsasl server handle.
input: input byte array.
input len: size of input byte array.
output: output byte array.
output len: size of output byte array.
Perform one step of SASL authentication in server. This reads data from client
(specified with input and input len), processes it (potentially invoking callbacks to
the application), and writes data to client (into variables output and output len).
The contents of the output buffer is unspecified if this functions returns anything
other than GSASL NEEDS MORE.
Return value: Returns GSASL OK if authenticated terminated successfully,
GSASL NEEDS MORE if more data is needed, or error code.
Deprecated: Use gsasl_step() instead.

[Function]int gsasl_client_step_base64 (Gsasl session * sctx, const char *
b64input, char * b64output, size t b64output_len)

sctx: libgsasl client handle.
b64input: input base64 encoded byte array.
b64output: output base64 encoded byte array.
b64output len: size of output base64 encoded byte array.
This is a simple wrapper around gsasl_client_step() that base64 decodes the input
and base64 encodes the output.
Return value: See gsasl_client_step().
Deprecated: Use gsasl_step64() instead.

[Function]int gsasl_server_step_base64 (Gsasl session * sctx, const char *
b64input, char * b64output, size t b64output_len)

sctx: libgsasl server handle.
b64input: input base64 encoded byte array.
b64output: output base64 encoded byte array.
b64output len: size of output base64 encoded byte array.
This is a simple wrapper around gsasl_server_step() that base64 decodes the input
and base64 encodes the output.
Return value: See gsasl_server_step().
Deprecated: Use gsasl_step64() instead.

[Function]void gsasl_client_finish (Gsasl session * sctx)
sctx: libgsasl client handle.
Destroy a libgsasl client handle. The handle must not be used with other libgsasl
functions after this call.
Deprecated: Use gsasl_finish() instead.

Appendix B: Old Functions 60

[Function]void gsasl_server_finish (Gsasl session * sctx)
sctx: libgsasl server handle.

Destroy a libgsasl server handle. The handle must not be used with other libgsasl
functions after this call.

Deprecated: Use gsasl_finish() instead.

[Function]Gsasl * gsasl_client_ctx_get (Gsasl session * sctx)
sctx: libgsasl client handle

Return value: Returns the libgsasl handle given a libgsasl client handle.

Deprecated: This function is not useful with the new 0.2.0 API.

[Function]void gsasl_client_application_data_set (Gsasl session * sctx,
void * application_data)

sctx: libgsasl client handle.

application data: opaque pointer to application specific data.

Store application specific data in the libgsasl client handle. The application data
can be later (for instance, inside a callback) be retrieved by calling gsasl_client_
application_data_get(). It is normally used by the application to maintain state
between the main program and the callback.

Deprecated: Use gsasl_callback_hook_set() instead.

[Function]void * gsasl_client_application_data_get (Gsasl session *
sctx)

sctx: libgsasl client handle.

Retrieve application specific data from libgsasl client handle. The application data
is set using gsasl_client_application_data_set(). It is normally used by the
application to maintain state between the main program and the callback.

Return value: Returns the application specific data, or NULL.

Deprecated: Use gsasl_callback_hook_get() instead.

[Function]Gsasl * gsasl_server_ctx_get (Gsasl session * sctx)
sctx: libgsasl server handle

Return value: Returns the libgsasl handle given a libgsasl server handle.

Deprecated: This function is not useful with the new 0.2.0 API.

[Function]void gsasl_server_application_data_set (Gsasl session * sctx,
void * application_data)

sctx: libgsasl server handle.

application data: opaque pointer to application specific data.

Store application specific data in the libgsasl server handle. The application data
can be later (for instance, inside a callback) be retrieved by calling gsasl_server_
application_data_get(). It is normally used by the application to maintain state
between the main program and the callback.

Deprecated: Use gsasl_callback_hook_set() instead.

Appendix B: Old Functions 61

[Function]void * gsasl_server_application_data_get (Gsasl session *
sctx)

sctx: libgsasl server handle.
Retrieve application specific data from libgsasl server handle. The application data
is set using gsasl_server_application_data_set(). It is normally used by the
application to maintain state between the main program and the callback.
Return value: Returns the application specific data, or NULL.
Deprecated: Use gsasl_callback_hook_get() instead.

[Function]int gsasl_randomize (int strong, char * data, size t datalen)
strong : 0 iff operation should not block, non-0 for very strong randomness.
data: output array to be filled with random data.
datalen: size of output array.
Store cryptographically random data of given size in the provided buffer.
Return value: Returns GSASL_OK iff successful.
Deprecated: Use gsasl_random() or gsasl_nonce() instead.

[Function]Gsasl * gsasl_ctx_get (Gsasl session * sctx)
sctx: libgsasl session handle
Return value: Returns the libgsasl handle given a libgsasl session handle.
Deprecated: This function is not useful with the new 0.2.0 API.

[Function]int gsasl_encode_inline (Gsasl session * sctx, const char * input,
size t input_len, char * output, size t * output_len)

sctx: libgsasl session handle.
input: input byte array.
input len: size of input byte array.
output: output byte array.
output len: size of output byte array.
Encode data according to negotiated SASL mechanism. This might mean that data
is integrity or privacy protected.
Return value: Returns GSASL OK if encoding was successful, otherwise an error
code.
Deprecated: Use gsasl_encode() instead.
Since: 0.2.0

[Function]int gsasl_decode_inline (Gsasl session * sctx, const char * input,
size t input_len, char * output, size t * output_len)

sctx: libgsasl session handle.
input: input byte array.
input len: size of input byte array.
output: output byte array.
output len: size of output byte array.

Appendix B: Old Functions 62

Decode data according to negotiated SASL mechanism. This might mean that data
is integrity or privacy protected.

Return value: Returns GSASL OK if encoding was successful, otherwise an error
code.

Deprecated: Use gsasl_decode() instead.

Since: 0.2.0

[Function]void gsasl_application_data_set (Gsasl * ctx, void * appdata)
ctx: libgsasl handle.

appdata: opaque pointer to application specific data.

Store application specific data in the libgsasl handle. The application data can be
later (for instance, inside a callback) be retrieved by calling gsasl_application_
data_get(). It is normally used by the application to maintain state between the
main program and the callback.

Deprecated: Use gsasl_callback_hook_set() instead.

[Function]void * gsasl_application_data_get (Gsasl * ctx)
ctx: libgsasl handle.

Retrieve application specific data from libgsasl handle. The application data is set
using gsasl_application_data_set(). It is normally used by the application to
maintain state between the main program and the callback.

Return value: Returns the application specific data, or NULL.

Deprecated: Use gsasl_callback_hook_get() instead.

[Function]void gsasl_appinfo_set (Gsasl session * sctx, void * appdata)
sctx: libgsasl session handle.

appdata: opaque pointer to application specific data.

Store application specific data in the libgsasl session handle. The application data
can be later (for instance, inside a callback) be retrieved by calling gsasl_appinfo_
get(). It is normally used by the application to maintain state between the main
program and the callback.

Deprecated: Use gsasl_callback_hook_set() instead.

[Function]void * gsasl_appinfo_get (Gsasl session * sctx)
sctx: libgsasl session handle.

Retrieve application specific data from libgsasl session handle. The application data
is set using gsasl_appinfo_set(). It is normally used by the application to maintain
state between the main program and the callback.

Return value: Returns the application specific data, or NULL.

Deprecated: Use gsasl_callback_hook_get() instead.

[Function]const char * gsasl_server_suggest_mechanism (Gsasl * ctx,
const char * mechlist)

ctx: libgsasl handle.

Appendix B: Old Functions 63

mechlist: input character array with SASL mechanism names, separated by invalid
characters (e.g. SPC).
Return value: Returns name of "best" SASL mechanism supported by the libgsasl
server which is present in the input string.
Deprecated: This function was never useful, since it is the client that chose which
mechanism to use.

[Function]void gsasl_client_callback_authentication_id_set (Gsasl *
ctx, Gsasl client callback authentication id cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the client to set the authentication identity. The
function can be later retrieved using gsasl_client_callback_authentication_id_
get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_client_callback_authentication_id
gsasl_client_callback_authentication_id_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_client_callback_
authentication_id_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_client_callback_authorization_id_set (Gsasl * ctx,
Gsasl client callback authorization id cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the client to set the authorization identity.
The function can be later retrieved using gsasl_client_callback_authorization_
id_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_client_callback_authorization_id
gsasl_client_callback_authorization_id_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_client_callback_
authorization_id_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

Appendix B: Old Functions 64

[Function]void gsasl_client_callback_password_set (Gsasl * ctx,
Gsasl client callback password cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the client to set the password. The function
can be later retrieved using gsasl_client_callback_password_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_client_callback_password
gsasl_client_callback_password_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_client_callback_
password_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_client_callback_passcode_set (Gsasl * ctx,
Gsasl client callback passcode cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the client to set the passcode. The function
can be later retrieved using gsasl_client_callback_passcode_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_client_callback_passcode
gsasl_client_callback_passcode_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_client_callback_
passcode_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_client_callback_pin_set (Gsasl * ctx,
Gsasl client callback pin cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the client to chose a new pin, possibly suggested
by the server, for the SECURID mechanism. This is not normally invoked, but only
when the server requests it. The function can be later retrieved using gsasl_client_
callback_pin_get().

Appendix B: Old Functions 65

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_client_callback_pin gsasl_client_callback_pin_get
(Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
pin_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_client_callback_service_set (Gsasl * ctx,
Gsasl client callback service cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the client to set the name of the service. The
service buffer should be a registered GSSAPI host-based service name, hostname the
name of the server. Servicename is used by DIGEST-MD5 and should be the name
of generic server in case of a replicated service. The function can be later retrieved
using gsasl_client_callback_service_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_client_callback_service
gsasl_client_callback_service_get (Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
service_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_client_callback_anonymous_set (Gsasl * ctx,
Gsasl client callback anonymous cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the client to set the anonymous token, which
usually is the users email address. The function can be later retrieved using gsasl_
client_callback_anonymous_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

Appendix B: Old Functions 66

[Function]Gsasl_client_callback_anonymous
gsasl_client_callback_anonymous_get (Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
anonymous_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_client_callback_qop_set (Gsasl * ctx,
Gsasl client callback qop cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the client to determine the qop to use after
looking at what the server offered. The function can be later retrieved using gsasl_
client_callback_qop_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_client_callback_qop gsasl_client_callback_qop_get
(Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
qop_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_client_callback_maxbuf_set (Gsasl * ctx,
Gsasl client callback maxbuf cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the client to inform the server of the largest
buffer the client is able to receive when using the DIGEST-MD5 "auth-int" or "auth-
conf" Quality of Protection (qop). If this directive is missing, the default value 65536
will be assumed. The function can be later retrieved using gsasl_client_callback_
maxbuf_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_client_callback_maxbuf
gsasl_client_callback_maxbuf_get (Gsasl * ctx)

ctx: libgsasl handle.

Appendix B: Old Functions 67

Return value: Returns the callback earlier set by calling gsasl_client_callback_
maxbuf_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_client_callback_realm_set (Gsasl * ctx,
Gsasl client callback realm cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the client to know which realm it belongs to.
The realm is used by the server to determine which username and password to use.
The function can be later retrieved using gsasl_client_callback_realm_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_client_callback_realm
gsasl_client_callback_realm_get (Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
realm_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_server_callback_validate_set (Gsasl * ctx,
Gsasl server callback validate cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the server for deciding if user is authenticated
using authentication identity, authorization identity and password. The function can
be later retrieved using gsasl_server_callback_validate_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_server_callback_validate
gsasl_server_callback_validate_get (Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
validate_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

Appendix B: Old Functions 68

[Function]void gsasl_server_callback_retrieve_set (Gsasl * ctx,
Gsasl server callback retrieve cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the server for deciding if user is authenticated
using authentication identity, authorization identity and password. The function can
be later retrieved using gsasl_server_callback_retrieve_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_server_callback_retrieve
gsasl_server_callback_retrieve_get (Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
retrieve_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_server_callback_cram_md5_set (Gsasl * ctx,
Gsasl server callback cram md5 cb)

ctx: libgsasl handle.

cb: callback function

Specify the callback function to use in the server for deciding if user is authenticated
using CRAM-MD5 challenge and response. The function can be later retrieved using
gsasl_server_callback_cram_md5_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_server_callback_cram_md5
gsasl_server_callback_cram_md5_get (Gsasl * ctx)

ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
cram_md5_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_server_callback_digest_md5_set (Gsasl * ctx,
Gsasl server callback digest md5 cb)

ctx: libgsasl handle.

cb: callback function

Appendix B: Old Functions 69

Specify the callback function to use in the server for retrieving the secret hash of
the username, realm and password for use in the DIGEST-MD5 mechanism. The
function can be later retrieved using gsasl_server_callback_digest_md5_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_server_callback_digest_md5
gsasl_server_callback_digest_md5_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Return the callback earlier set by calling gsasl_server_callback_
digest_md5_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_server_callback_external_set (Gsasl * ctx,
Gsasl server callback external cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server for deciding if user is authenticated
out of band. The function can be later retrieved using gsasl_server_callback_
external_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_server_callback_external
gsasl_server_callback_external_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
external_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_server_callback_anonymous_set (Gsasl * ctx,
Gsasl server callback anonymous cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server for deciding if user is permit-
ted anonymous access. The function can be later retrieved using gsasl_server_
callback_anonymous_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

Appendix B: Old Functions 70

[Function]Gsasl_server_callback_anonymous
gsasl_server_callback_anonymous_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
anonymous_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_server_callback_realm_set (Gsasl * ctx,
Gsasl server callback realm cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server to know which realm it serves. The
realm is used by the user to determine which username and password to use. The
function can be later retrieved using gsasl_server_callback_realm_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_server_callback_realm
gsasl_server_callback_realm_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
realm_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_server_callback_qop_set (Gsasl * ctx,
Gsasl server callback qop cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server to know which quality of protection
it accepts. The quality of protection eventually used is selected by the client though.
It is currently used by the DIGEST-MD5 mechanism. The function can be later
retrieved using gsasl_server_callback_qop_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_server_callback_qop gsasl_server_callback_qop_get
(Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
qop_set().

Appendix B: Old Functions 71

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_server_callback_maxbuf_set (Gsasl * ctx,
Gsasl server callback maxbuf cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server to inform the client of the largest
buffer the server is able to receive when using the DIGEST-MD5 "auth-int" or "auth-
conf" Quality of Protection (qop). If this directive is missing, the default value 65536
will be assumed. The function can be later retrieved using gsasl_server_callback_
maxbuf_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_server_callback_maxbuf
gsasl_server_callback_maxbuf_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
maxbuf_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_server_callback_cipher_set (Gsasl * ctx,
Gsasl server callback cipher cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server to inform the client of the cipher
suites supported. The DES and 3DES ciphers must be supported for interoperability.
It is currently used by the DIGEST-MD5 mechanism. The function can be later
retrieved using gsasl_server_callback_cipher_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_server_callback_cipher
gsasl_server_callback_cipher_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
cipher_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

Appendix B: Old Functions 72

[Function]void gsasl_server_callback_securid_set (Gsasl * ctx,
Gsasl server callback securid cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server for validating a user via the
SECURID mechanism. The function should return GSASL OK if user authenticated
successfully, GSASL SECURID SERVER NEED ADDITIONAL PASSCODE if
it wants another passcode, GSASL SECURID SERVER NEED NEW PIN
if it wants a PIN change, or an error. When (and only when)
GSASL SECURID SERVER NEED NEW PIN is returned, suggestpin can
be populated with a PIN code the server suggests, and suggestpinlen set to the
length of the PIN. The function can be later retrieved using gsasl_server_
callback_securid_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_server_callback_securid
gsasl_server_callback_securid_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
securid_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]void gsasl_server_callback_gssapi_set (Gsasl * ctx,
Gsasl server callback gssapi cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server for checking if a GSSAPI user
is authorized for username (by, e.g., calling krb5_userok()). The function should
return GSASL OK if the user should be permitted access, or an error code such
as GSASL AUTHENTICATION ERROR on failure. The function can be later re-
trieved using gsasl_server_callback_gssapi_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_server_callback_gssapi
gsasl_server_callback_gssapi_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
gssapi_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

Appendix B: Old Functions 73

[Function]void gsasl_server_callback_service_set (Gsasl * ctx,
Gsasl server callback service cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server to set the name of the service.
The service buffer should be a registered GSSAPI host-based service name, hostname
the name of the server. The function can be later retrieved using gsasl_server_
callback_service_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]Gsasl_server_callback_service
gsasl_server_callback_service_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
service_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get() to invoke the callback for certain properties.

[Function]char * gsasl_stringprep_nfkc (const char * in, ssize t len)
in: a UTF-8 encoded string.
len: length of str, in bytes, or -1 if str is nul-terminated.
Converts a string into canonical form, standardizing such issues as whether a character
with an accent is represented as a base character and combining accent or as a single
precomposed character.
The normalization mode is NFKC (ALL COMPOSE). It standardizes differences that
do not affect the text content, such as the above-mentioned accent representation.
It standardizes the "compatibility" characters in Unicode, such as SUPERSCRIPT
THREE to the standard forms (in this case DIGIT THREE). Formatting information
may be lost but for most text operations such characters should be considered the
same. It returns a result with composed forms rather than a maximally decomposed
form.
Return value: Return a newly allocated string, that is the NFKC normalized form of
str, o NULL on error.
Deprecated: No replacement functionality in GNU SASL, use GNU Libidn instead.
Note that in SASL, you most likely want to use SASLprep and not bare NFKC, see
gsasl_saslprep().

[Function]char * gsasl_stringprep_saslprep (const char * in, int *
stringprep_rc)

in: input ASCII or UTF-8 string with data to prepare according to SASLprep.
stringprep rc: pointer to output variable with stringprep error code, or NULL to indi-
cate that you don’t care about it.

Appendix B: Old Functions 74

Process a Unicode string for comparison, according to the "SASLprep" stringprep
profile. This function is intended to be used by Simple Authentication and Security
Layer (SASL) mechanisms (such as PLAIN, CRAM-MD5, and DIGEST-MD5) as well
as other protocols exchanging user names and/or passwords.
Return value: Return a newly allocated string that is the "SASLprep" processed
form of the input string, or NULL on error, in which case stringprep_rc contain the
stringprep library error code.
Deprecated: Use gsasl_saslprep() instead.

[Function]char * gsasl_stringprep_trace (const char * in, int *
stringprep_rc)

in: input ASCII or UTF-8 string with data to prepare according to "trace".
stringprep rc: pointer to output variable with stringprep error code, or NULL to indi-
cate that you don’t care about it.
Process a Unicode string for use as trace information, according to the "trace" string-
prep profile. The profile is designed for use with the SASL ANONYMOUS Mecha-
nism.
Return value: Return a newly allocated string that is the "trace" processed form of
the input string, or NULL on error, in which case stringprep_rc contain the stringprep
library error code.
Deprecated: No replacement functionality in GNU SASL, use GNU Libidn instead.

[Function]int gsasl_md5pwd_get_password (const char * filename, const char
* username, char * key, size t * keylen)

filename: filename of file containing passwords.
username: username string.
key : output character array.
keylen: input maximum size of output character array, on output contains actual
length of output array.
Retrieve password for user from specified file. To find out how large the output array
must be, call this function with out=NULL.
The file should be on the UoW "MD5 Based Authentication" format, which means
it is in text format with comments denoted by # first on the line, with user entries
looking as username\tpassword. This function removes \r and \n at the end of lines
before processing.
Return value: Return GSASL OK if output buffer contains the password,
GSASL AUTHENTICATION ERROR if the user could not be found, or other error
code.
Deprecated: Use gsasl_simple_getpass() instead.

[Function]int gsasl_base64_encode (char const * src, size t srclength, char *
target, size t targsize)

src: input byte array
srclength: size of input byte array
target: output byte array

Appendix B: Old Functions 75

targsize: size of output byte array

Encode data as base64. Converts characters, three at a time, starting at src into four
base64 characters in the target area until the entire input buffer is encoded.

Return value: Returns the number of data bytes stored at the target, or -1 on error.

Deprecated: Use gsasl_base64_to() instead.

[Function]int gsasl_base64_decode (char const * src, char * target, size t
targsize)

src: input byte array

target: output byte array

targsize: size of output byte array

Decode Base64 data. Skips all whitespace anywhere. Converts characters, four at
a time, starting at (or after) src from Base64 numbers into three 8 bit bytes in the
target area.

Return value: Returns the number of data bytes stored at the target, or -1 on error.

Deprecated: Use gsasl_base64_from() instead.

B.1 Obsolete callback function prototypes

[Prototype]int (*Gsasl_client_callback_anonymous) (Gsasl session ctx *
ctx, char * out, size t * outlen)

ctx: libgsasl handle.

out: output array with client token.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Type of callback function the application implements. It should populate the output
array with some input from the user and set the output array length, and return
GSASL_OK, or fail with an error code.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_server_callback_anonymous) (Gsasl session ctx *
ctx, const char * token)

ctx: libgsasl handle.

ctx: output array with client token.

ctx: on input the maximum size of the output array, on output contains the actual
size of the output array. If OUT is

Type of callback function the application implements. It should return GSASL_OK
if user should be permitted anonymous access, otherwise GSASL_AUTHENTICATION_
ERROR.

Appendix B: Old Functions 76

[Prototype]int (*Gsasl_client_callback_authentication_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.
out: output array with authentication identity.
outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.
Type of callback function the application implements. It should populate the output
array with authentiction identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authentication identity must be encoded
in UTF-8, but need not be normalized in any way.
If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_authorization_id)
(Gsasl session ctx * ctx, char * out, size t * outlen)

ctx: libgsasl handle.
out: output array with authorization identity.
outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.
Type of callback function the application implements. It should populate the output
array with authorization identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authorization identity must be encoded in
UTF-8, but need not be normalized in any way.
If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_service) (Gsasl session ctx * ctx,
char * service, size t * servicelen, char * hostname, size t *
hostnamelen, char * servicename, size t * servicenamelen)

ctx: libgsasl handle.
service: output array with name of service.
servicelen: on input the maximum size of the service output array, on output contains
the actual size of the service output array.
hostname: output array with hostname of server.
hostnamelen: on input the maximum size of the hostname output array, on output
contains the actual size of the hostname output array.
servicename: output array with generic name of server in case of replication
(DIGEST-MD5 only).
servicenamelen: on input the maximum size of the servicename output array, on
output contains the actual size of the servicename output array.
Type of callback function the application implements. It should retrieve the service
(which should be a registered GSSAPI host based service name, such as “imap”)

Appendix B: Old Functions 77

on the server, hostname of server (usually canoncial DNS hostname) and optionally
generic service name of server in case of replication (e.g. “mail.example.org” when the
hostname is “mx42.example.org”, see the RFC 2831 for more information). It should
return GSASL OK, or an error such as GSASL AUTHENTICATION ERROR if it
fails.
If SERVICE, HOSTNAME or SERVICENAME is NULL, the function should only
populate SERVICELEN, HOSTNAMELEN or SERVICENAMELEN with the output
length of the respective field, and return GSASL OK. This usage may be used by the
caller to allocate the proper buffer size. Furthermore, SERVICENAMELEN may also
be NULL, indicating that the mechanism is not interested in this field.

[Prototype]int (*Gsasl_server_callback_cram_md5) (Gsasl session ctx * ctx,
char * username, char * challenge, char * response)

ctx: libgsasl handle.
username: input array with username.
challenge: input array with CRAM-MD5 challenge.
response: input array with CRAM-MD5 response.
Type of callback function the application implements. It should return
GSASL OK if and only if the validation of the provided credential was succesful.
GSASL AUTHENTICATION ERROR is a good failure if authentication failed, but
any available return code may be used.

[Prototype]int (*Gsasl_server_callback_digest_md5) (Gsasl session ctx *
ctx, char * username, char * realm, char * secrethash)

ctx: libgsasl handle.
username: input array with authentication identity of user.
realm: input array with realm of user.
secrethash: output array that should contain hash of username, realm and password
as described for the DIGEST-MD5 mechanism.
Type of callback function the application implements. It should retrieve the secret
hash for the given user in given realm and return GSASL OK, or an error such as
GSASL AUTHENTICATION ERROR if it fails. The secrethash buffer is guaranteed
to have size for the fixed length MD5 hash.

[Prototype]int (*Gsasl_server_callback_external) (Gsasl session ctx *
ctx)

ctx: libgsasl handle.
Type of callback function the application implements. It should return GSASL_OK
if user is authenticated by out of band means, otherwise GSASL_AUTHENTICATION_
ERROR.

[Prototype]int (*Gsasl_server_callback_gssapi) (Gsasl session ctx * ctx,
char * clientname, char * authentication_id)

ctx: libgsasl handle.
clientname: input array with GSSAPI client name.
authentication id: input array with authentication identity.

Appendix B: Old Functions 78

Type of callback function the application implements. It should return GSASL OK
if and only if the GSSAPI user is authorized to log on as the given authentication id.
GSASL AUTHENTICATION ERROR is a good failure if authentication failed, but
any available return code may be used. This callback is usually implemented in the
application as a call to krb5 kuserok(), such as:

int
callback_gssapi (Gsasl_session_ctx *ctx,
char *clientname,
char *authentication_id)
{
int rc = GSASL_AUTHENTICATION_ERROR;

krb5_principal p;
krb5_context kcontext;

krb5_init_context (&kcontext);

if (krb5_parse_name (kcontext, clientname, &p) != 0)
return -1;

if (krb5_kuserok (kcontext, p, authentication_id))
rc = GSASL_OK;

krb5_free_principal (kcontext, p);

return rc;
}

[Prototype]int (*Gsasl_client_callback_passcode) (Gsasl session ctx * ctx,
char * out, size t * outlen)

ctx: libgsasl handle.

out: output array with passcode.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Type of callback function the application implements. It should populate the output
array with passcode of user and set the output array length, and return GSASL_OK,
or fail with an error code.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_client_callback_password) (Gsasl session ctx * ctx,
char * out, size t * outlen)

ctx: libgsasl handle.

out: output array with password.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Appendix B: Old Functions 79

Type of callback function the application implements. It should populate the output
array with password of user and set the output array length, and return GSASL_OK,
or fail with an error code. The password must be encoded in UTF-8, but need not
be normalized in any way.
If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL OK. This usage may be used by the caller to allocate the
proper buffer size.

[Prototype]int (*Gsasl_server_callback_retrieve) (Gsasl session ctx * ctx,
char * authentication_id, char * authorization_id, char * realm, char
* key, size t * keylen)

ctx: libgsasl handle.
authentication id: input array with authentication identity.
authorization id: input array with authorization identity, or NULL.
realm: input array with realm of user, or NULL.
key : output array with key for authentication identity.
keylen: on input the maximum size of the key output array, on output contains the
actual size of the key output array.
Type of callback function the application implements. It should retrieve the
password for the indicated user and return GSASL OK, or an error code such as
GSASL AUTHENTICATION ERROR. The key must be encoded in UTF-8, but
need not be normalized in any way.
If KEY is NULL, the function should only populate the KEYLEN output length field
with the length, and return GSASL OK. This usage may be used by the caller to
allocate the proper buffer size.

[Prototype]int (*Gsasl_server_callback_validate) (Gsasl session ctx * ctx,
char * authentication_id, char * authorization_id, char * passcode,
char * pin, char * suggestpin, size t * suggestpinlen)

ctx: libgsasl handle.
authorization id: input array with authorization identity.
authentication id: input array with authentication identity.
passcode: input array with passcode.
pin: input array with new pin (this may be NULL).
suggestpin: output array with new suggested PIN.
suggestpinlen: on input the maximum size of the output array, on output contains
the actual size of the output array.
Type of callback function the application implements. It should return
GSASL OK if and only if the validation of the provided credential was succesful.
GSASL AUTHENTICATION ERROR is a good failure if authentication failed, but
any available return code may be used.
Two SECURID specific error codes also exists. The function can re-
turn GSASL SECURID SERVER NEED ADDITIONAL PASSCODE to
request that the client generate a new passcode. It can also return

Appendix B: Old Functions 80

GSASL SECURID SERVER NEED NEW PIN to request that the client generate
a new PIN. If the server wishes to suggest a new PIN it can populate the
SUGGESTPIN field.
If SUGGESTPIN is NULL, the function should only populate the output length field
with the length, and return GSASL OK. This usage may be used by the caller to
allocate the proper buffer size.

[Prototype]int (*Gsasl_server_callback_service) (Gsasl session ctx * ctx,
char * service, size t * servicelen, char * hostname, size t *
hostnamelen)

ctx: libgsasl handle.
service: output array with name of service.
servicelen: on input the maximum size of the service output array, on output contains
the actual size of the service output array.
hostname: output array with hostname of server.
hostnamelen: on input the maximum size of the hostname output array, on output
contains the actual size of the hostname output array.
Type of callback function the application implements. It should retrieve the service
(which should be a registered GSSAPI host based service name, such as “imap”) the
server provides and hostname of server (usually canoncial DNS hostname). It should
return GSASL OK, or an error such as GSASL AUTHENTICATION ERROR if it
fails.
If SERVICE or HOSTNAME is NULL, the function should only populate SERVICE-
LEN or HOSTNAMELEN with the output length of the respective field, and return
GSASL OK. This usage may be used by the caller to allocate the proper buffer size.

[Prototype]int (*Gsasl_server_callback_validate) (Gsasl session ctx * ctx,
char * authorization_id, char * authentication_id, char * password)

ctx: libgsasl handle.
authorization id: input array with authorization identity.
authentication id: input array with authentication identity.
password: input array with password.
Type of callback function the application implements. It should return
GSASL OK if and only if the validation of the provided credential was succesful.
GSASL AUTHENTICATION ERROR is a good failure if authentication failed, but
any available return code may be used.

Appendix C: Copying This Manual 81

Appendix C Copying This Manual

C.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix C: Copying This Manual 82

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix C: Copying This Manual 83

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

Appendix C: Copying This Manual 84

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix C: Copying This Manual 85

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix C: Copying This Manual 86

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix C: Copying This Manual 87

C.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Concept Index 88

Concept Index

A
AIX . 4
Autoconf tests . 11

C
Callbacks . 29
command line . 54
Compiling your application 10
Configure tests . 11
Contributing . 7

D
Debian . 3
Deprecated functions . 58
Download . 5

E
Error Handling . 37
Examples . 41

F
FDL, GNU Free Documentation License 81
FreeBSD . 4

H
Hacking . 7
HP-UX . 4

I
Installation . 5
invoking gsasl . 54
IRIX . 4

M
Mandrake . 4

Motorola Coldfire . 4

N
NetBSD . 4

O
Obsolete functions . 58
OpenBSD . 4

P
Properties . 31

R
RedHat . 4
RedHat Advanced Server . 4
Reporting Bugs . 6

S
SASL sessions . 33
Solaris . 4
SuSE . 3
SuSE Linux . 3

T
Tru64 . 3

U
uClibc . 4
uClinux . 4

W
Windows . 4

Function and Data Index 89

Function and Data Index

(
(*Gsasl_client_callback_anonymous) 75
(*Gsasl_client_callback_authentication_id)

. 76
(*Gsasl_client_callback_authorization_id)

. 76
(*Gsasl_client_callback_passcode) 78
(*Gsasl_client_callback_password) 78
(*Gsasl_client_callback_service) 76
(*Gsasl_server_callback_anonymous) 75
(*Gsasl_server_callback_cram_md5) 77
(*Gsasl_server_callback_digest_md5) 77
(*Gsasl_server_callback_external) 77
(*Gsasl_server_callback_gssapi) 77
(*Gsasl_server_callback_retrieve) 79
(*Gsasl_server_callback_service) 80
(*Gsasl_server_callback_validate) 79, 80

G
gsasl . 54
gsasl_appinfo_get . 62
gsasl_appinfo_set . 62
gsasl_application_data_get 62
gsasl_application_data_set 62
gsasl_base64_decode . 75
gsasl_base64_encode . 74
gsasl_base64_from . 35
gsasl_base64_to . 35
gsasl_callback . 29
gsasl_callback_hook_get 30
gsasl_callback_hook_set 29
gsasl_callback_set . 29
gsasl_check_version . 10
gsasl_client_application_data_get 60
gsasl_client_application_data_set 60
gsasl_client_callback_anonymous_get 66
gsasl_client_callback_anonymous_set 65
gsasl_client_callback_authentication_id_get

. 63
gsasl_client_callback_authentication_id_set

. 63
gsasl_client_callback_authorization_id_get

. 63
gsasl_client_callback_authorization_id_set

. 63
gsasl_client_callback_maxbuf_get 66
gsasl_client_callback_maxbuf_set 66
gsasl_client_callback_passcode_get 64
gsasl_client_callback_passcode_set 64
gsasl_client_callback_password_get 64
gsasl_client_callback_password_set 64
gsasl_client_callback_pin_get 65
gsasl_client_callback_pin_set 64

gsasl_client_callback_qop_get 66
gsasl_client_callback_qop_set 66
gsasl_client_callback_realm_get 67
gsasl_client_callback_realm_set 67
gsasl_client_callback_service_get 65
gsasl_client_callback_service_set 65
gsasl_client_ctx_get . 60
gsasl_client_finish . 59
gsasl_client_listmech . 58
gsasl_client_mechlist . 27
gsasl_client_start . 33
gsasl_client_step . 58
gsasl_client_step_base64 59
gsasl_client_suggest_mechanism 28
gsasl_client_support_p . 27
gsasl_ctx_get . 61
gsasl_decode . 34
gsasl_decode_inline . 61
gsasl_done . 27
gsasl_encode . 34
gsasl_encode_inline . 61
gsasl_finish . 34
gsasl_hmac_md5 . 36
gsasl_init . 27
gsasl_md5 . 36
gsasl_md5pwd_get_password 74
gsasl_nonce . 36
gsasl_property_fast . 31
gsasl_property_get . 31
gsasl_property_set . 31
gsasl_property_set_raw . 31
gsasl_random . 36
gsasl_randomize . 61
gsasl_register . 28
gsasl_saslprep . 35
gsasl_server_application_data_get 61
gsasl_server_application_data_set 60
gsasl_server_callback_anonymous_get 70
gsasl_server_callback_anonymous_set 69
gsasl_server_callback_cipher_get 71
gsasl_server_callback_cipher_set 71
gsasl_server_callback_cram_md5_get 68
gsasl_server_callback_cram_md5_set 68
gsasl_server_callback_digest_md5_get 69
gsasl_server_callback_digest_md5_set 68
gsasl_server_callback_external_get 69
gsasl_server_callback_external_set 69
gsasl_server_callback_gssapi_get 72
gsasl_server_callback_gssapi_set 72
gsasl_server_callback_maxbuf_get 71
gsasl_server_callback_maxbuf_set 71
gsasl_server_callback_qop_get 70
gsasl_server_callback_qop_set 70
gsasl_server_callback_realm_get 70
gsasl_server_callback_realm_set 70

Function and Data Index 90

gsasl_server_callback_retrieve_get 68
gsasl_server_callback_retrieve_set 68
gsasl_server_callback_securid_get 72
gsasl_server_callback_securid_set 72
gsasl_server_callback_service_get 73
gsasl_server_callback_service_set 73
gsasl_server_callback_validate_get 67
gsasl_server_callback_validate_set 67
gsasl_server_ctx_get . 60
gsasl_server_finish . 60
gsasl_server_listmech . 58
gsasl_server_mechlist . 27

gsasl_server_start . 33
gsasl_server_step . 59
gsasl_server_step_base64 59
gsasl_server_suggest_mechanism 62
gsasl_server_support_p . 27
gsasl_simple_getpass . 35
gsasl_step . 33
gsasl_step64 . 33
gsasl_strerror . 40
gsasl_stringprep_nfkc . 73
gsasl_stringprep_saslprep 73
gsasl_stringprep_trace . 74

	Introduction
	Getting Started
	Features
	SASL Overview
	Supported Platforms
	Getting help
	Commercial Support
	Downloading and Installing
	Bug Reports
	Contributing

	Preparation
	Header
	Initialization
	Version Check
	Building the source
	Autoconf tests
	Autoconf test via pkg-config
	Standalone Autoconf test using Libtool

	Using the Library
	Choosing a mechanism
	Using a callback

	Properties
	Mechanisms
	The EXTERNAL mechanism
	The ANONYMOUS mechanism
	The PLAIN mechanism
	The LOGIN mechanism
	The CRAM-MD5 mechanism
	The DIGEST-MD5 mechanism
	The NTLM mechanism
	The SECURID mechanism
	The GSSAPI mechanism
	The KERBEROS_V5 mechanism

	Global Functions
	Callback Functions
	Property Functions
	Session Functions
	Utilities
	Error Handling
	Error values
	Error strings

	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Acknowledgements
	Invoking gsasl
	Protocol Clarifications
	Use of SASLprep in CRAM-MD5
	Use of SASLprep in LOGIN

	Old Functions
	Obsolete callback function prototypes

	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Concept Index
	Function and Data Index

