

Adept Software

presents

the

� TITLE * MERGEFORMAT �Programming Language Creator��
COPYRIGHT NOTICE

This product is protected by United States copyright laws and international treaty provisions. All rights are reserved. Copying any part of this product including the "look and feel", or creating derivative development tools using any part of this product is strictly forbidden.

DISCLAIMER

This product is provided "as-is". Your sole remedy from any problems relating to this product shall be a full refund of the purchase price submitted to Adept Software. You are responsible for any creations made with this product. Adept Software shall not be liable for any damages whatsoever caused by your creations.

ADEPT SOFTWARE DOES NOT WARRANT THAT THE OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED, ERROR FREE OR MEET YOUR SPECIFIC REQUIREMENTS. THE WARRANTY SET FORTH ABOVE IS IN LIEU OF ALL OTHER EXPRESS WARRANTIES WHETHER ORAL OR WRITTEN. THE AGENTS, EMPLOYEES, DISTRIBUTORS, AND DEALERS OF LICENSOR ARE NOT AUTHORIZED TO MAKE MODIFICATIONS TO THIS WARRANTY, OR ADDITIONAL WARRANTIES ON BEHALF OF ADEPT SOFTWARE. ADDITIONAL STATEMENTS SUCH AS DEALER ADVERTISING OR PRESENTATIONS, WHETHER ORAL OR WRITTEN, DO NOT CONSTITUTE WARRANTIES AND SHOULD NOT BE RELIED UPON. FURTHER WARRANTIES MAY BE GRANTED IN WRITTEN FORM AT ADEPT SOFTWARE'S DISCRETION.

IN NO EVENT WILL ADEPT SOFTWARE BE LIABLE FOR ANY DAMAGES, INCLUDING LOSS OF DATA, LOSS OF PROFITS, LOST SAVINGS, SPECIAL, INCIDENTAL, CONSEQUENTIAL, INDIRECT OR OTHER SIMILAR DAMAGES ARISING FROM BREACH OF WARRANTY, BREACH OF CONTRACT, NEGLIGENCE, OR OTHER LEGAL THEORY EVEN IF LICENSOR OR ITS AGENT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. ADEPT SOFTWARE DISCLAIMS ALL OTHER WARRANTIES, BOTH EXPRESS IMPLIED, INCLUDING BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE SOFTWARE AND THE ACCOMPANYING WRITTEN MATERIALS. THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHER RIGHTS WHICH VARY FROM JURISDICTION TO JURISDICTION. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

�
Table of Contents

� TOC \o "1-3" �Introduction	� GOTOBUTTON _Toc394899247 � PAGEREF _Toc394899247 �2��

Specifications	� GOTOBUTTON _Toc394899248 � PAGEREF _Toc394899248 �3��

Requirements	� GOTOBUTTON _Toc394899249 � PAGEREF _Toc394899249 �3��

Executing Source Code	� GOTOBUTTON _Toc394899250 � PAGEREF _Toc394899250 �4��

Creating A Language	� GOTOBUTTON _Toc394899251 � PAGEREF _Toc394899251 �5��

�

�
Introduction

The Programming Language Creator (PLC) allows you to easily create your own programming languages. The FREEWARE version of PLC includes a C language module, making it a C interpreter!

PLC parses and executes source files in any language created - and creating a language definition only requires programming about 200 lines of C! You can create custom keywords, operators, and commands just by filling in a data structure. Almost any language in existence can be approximated in a few hours.

With the C language module, most keywords such as FOR & SWITCH, and all operators work just like compiled C! Built-in enhancements allow you to do things like concatenate strings easily (String1+=”p.m.”). Variable types are detected automatically, so declaration is not necessary.

PLC can correctly execute any statements in a language module, from this:

10 PRINT “Hello World”

20 GOTO 10

to this:

do{

 Test+=(((++Count)/27)%3)+((Blah(“test.exe”,FIL_READONLY,4)>6)? 1 : 3);

}while(Test<500);

PLC includes the Adept C Library (also available separately), with simple interfaces to advanced functions like file compression, DMA programming, keyboard handling, and timer interception. For an example of PLC's versatility, check out the script capabilities of the AdeptRES Resource Manager (included with the Nautilus Engine.)

FREEWARE VERSION & SOURCE CODE AVAILABLE

A version of PLC is available to use completely FREE! Complete source code to PLC is also available for use confidentially. Please visit the Adept Software web page for our current price list and license documents.

For up to date information on our products, please visit our homepage on the web at:

http://www.adeptsoftware.com

�
Specifications

PLC is divided into 2 parts, the compiler and the executor. The compiler parses text into tokens according to the rules setup up in the language module. Each separate routine has its own environment, providing local variable scope. The executor begins execution with the routine specified, and stops when the routine returns control. If any expressions exist outside of a routine, in the header of a source file, they are always executed BEFORE any other execution. This allows for initialization of global variables.

CREATING A LANGUAGE

To create a language you need to first set up data structures for common strings, keywords, and operators (about 200 lines of code). These are all used in the compilation process. You also need a routine to handle the behavior of keywords during execution, and a routine to define the behavior of operators on different data types during execution (about 300 lines of code).

PERMANENT RESTRICTIONS

These restrictions will not be changed, but may be changed manually after obtaining the source code with the Pro License.

Variables and routines may not be declared; a variable’s type is determined automatically when an assignment first takes place

There are no structures, arrays, or pointers

The only data types available are in “PLC_DT.H”. Creating new data types is a relatively easy task with the Pro License.

A source file may consist of only: global declarations and routines

The � TITLE * MERGEFORMAT �Programming Language Creator� was written entirely in Watcom C for DOS Protected Mode. It is 100% Windows 95 compatible. It includes the Adept C library, and comes with a module for the language C.

Requirements

The � TITLE * MERGEFORMAT �Programming Language Creator� requires a 386+ with 2+ MB RAM, the Watcom C Compiler, and a moderate knowledge of C programming. Creating a language requires an advanced knowledge of C programming.

�
Executing Source Code

To execute a source file, follow these steps:

Call PLC_Startup()

Call the Init() routine for the language module you will be using

Use PLC_AddCommand() to add any external commands

Load a source file, and make sure the last byte of the buffer is a zero

Compile with PLC_CompileFile() or PLC_CompileStatements()

Check for errors

Call PLC_Execute() with the name of the routine to execute

Check for errors

Call PLC_Shutdown()

COMPILATION

To compile source code, use PLC_CompileFile() or PLC_CompileStatements().

PLC_CompileFile() searches a file for the following:

Routines enclosed in CompoundOpen & CompoundClose strings

Global variable assignment expressions

PLC_CompileStatements() compiles only statements within a routine, and may not include routine or global variable declarations. If the language you are using does not support separate routines, use only this routine to compile.

COMMANDS

Use PLC_AddCommand() to add external commands, which may be called just like routines.

PLC_GetParms() is for use within a command, to obtain an array of the parameters passed to it.

PLC_Err() functions the same as ERR_Report(), and should be used to report any errors within a command.

EXECUTION

Expressions in the header of a file but not within a routine (such as global variable assignments) are always executed before anything else.

PLC_Execute() is used to execute any routine that has been compiled.

PLC_Evaluate() evaluates a text expression (no keywords allowed). The result is placed in PLC_Result.

�
Creating A Language

The easiest way to learn how to create a language is by example. Examine the source code for the C language module “PLC_C.*”. The operators work for most languages, so you may find it easiest to copy this file and modify it to match the requirements of the language you are creating.

DATA STRUCTURES

The first thing to do when creating a language is to set up data structures for your common strings, keywords, and operators. These are all used in the compilation process.

Common Strings

Common strings include comment strings, whitespace, compound statement enclosures, and other strings that are used in most languages.

Keywords

A keyword definition includes the keword name string, and a list of the objects the parser should look for after the keyword.

Operators

An operator definition includes the operator string, the precedence group it belongs to, the direction to evaluate, and which of the surrounding expressions are affected by the operator.

ROUTINES

Your language must have 3 routines: Init(), ExecKeyword(), and ApplyOperator().

Init() sets up some variables in PLC for use with your language.

ExecKeyword() handles the behavior of keywords during execution. This routines is called whenever a keyword token is encountered.

ApplyOperator() defines the behavior of operators on different data types during execution. The datatypes available are in “PLC_DT.H”, and may not be modified unless you have the Pro Version of PLC.

COMPILING

If your language doesn’t contain multiple routines within each source file, and has no routine headers, use PLC_CompileRoutine(), not PLC_CompileFile().

�PAGE �

� TITLE * MERGEFORMAT �Programming Language Creator�	- � PAGE �2� -	Adept Software

