

� INCORPORER WordArt \s ���

�� INCORPORER Word.Picture.6 ���

Version 1.0

© Copyright 1995

by J.Philippe Champagne

�
� INCORPORER MSWordArt.2 \s ���

Section III -- Function Reference

	This document gives the function reference of the Function Builder API’s functions.

Terminology

	

Name

The name of the function(s) with a short description.

Synopsis

This section gives the functions’ syntax. It also list the include files needed for its call.

Description

The complete description of the function and its parameters.

Return Value

The complete list of the functions’ return values is given with a short explanation for each one. It is listed in the following format:

NN	DEFINED_CODE_NAME	A short description of the error code with a possible reason for its occurrence.

�
Name

FBInitAPI - 	Initialize the API.

FBCloseAPI - 	Close the API.

Synopsis

#include <fbapi.h>

int FBInitAPI(FBFctLimits *psfblimits);

int FBCloseAPI(void);

Description

FBInitAPI() opens the API and initialize basic objects needed during the operations of the API. This function call is optional. If it is not called, default values will be used. The FBCloseAPI() function free all memory objects allocated by the API. The maximum number of equations that the API can support can be set by calling FBInitAPI() as well as the maximum length the equation can have in text format. A default of 64 is used as the limit for the number of equations and 255 characters for the equation text string, 256 counting the zero ending character.

psfblimits	This argument is a pointer to a FBFctLimits structure containing the parameters needed by the initializing process.

The format of the FBFctLimits structure is as follow:

typedef struct{

	ushort	uhEquLength;		/* Maximum equation length */

	ushort	uhMaxNumEqu;		/* Maximum number of equation */

}FBFctLimits;

uhEquLength	This argument sets the maximum length of the equation text string given as a parameter to the FBCreateFunction(). It must contain a value between FB_MINEQULEN (40) and FB_MAXEQULEN (255). The default value, if FBInitAPI() is not called, is FB_MAXEQULEN (255). A 1 is added to that value to count for the zero character to end the character string.

uhMaxNumEqu 	This argument sets the maximum number of equation that can be supported by the API during the same time (see FBCreateFunction()). It’s value must be between FB_MINEQU (1) and FB_MAXEQU (64). The default value is FB_MAXEQU if FBInitAPI() is not called. This means FBCreateFunction() can be called up to FB_MAXEQU times after which FBEraseFunction() must be called to free an equation object for another function to be build.

Return Value

-31	FBERR_OUT_OF_MEMORY	Memory object allocation failed due to shortage of memory.

-32	FBERR_API_ALREADYINIT	API already initialized (FBInitAPI).

-33	FBERR_INVALID_PARAM	Invalid parameter. (FBInitAPI)

�
Name

FBCreateFunction - 	Build an equation based on given text.

FBEraseFunction - 	Erase equation.

Synopsis

#include <fbapi.h>

int FBCreateFunction(const char *pszEqText, int nEquNo);

int FBEraseFunction(int nEquNo);

Description

These two functions are the foundation of the API itself. FBCreateFunction() builds an equation using the string of text pointed to by pszEqText as the reference. The API will assign resources for the new equation and will then build the run-time equation from the string. It will then completes by returning an equation number which will reference that equation or an error code if an error is detected. FBCreateFunction() returns an equation number which must be used to reference the equation on the call to FBCompute().

pszEqText	This parameter points to a zero-ended character string. It must have at least one character length and at most the number specified by the uhEquLength argument on the FBInitAPI() call or the default value if FBInitAPI() was not called. (see FBInitAPI()).

nEquNo	For FBCreateFunction(), this parameter is a suggested equation number. If it is set to FB_ANYNUM, the API will assign the first equation number it finds available. For FBEraseFunction(), it specifies a previously created function.

The format of the text pointed by pszEqText reference a function of only one variable of the form y = f(x). For example, possible equations could be:

“4 + 2*x”

“sin(x) + cos(2 * x)”

“x^2 + 7 * x + 9”

The general rules are:

Spaces are discarded

The following symbols “^”, “+”, ”-”, “*” and “/” represents the mathematics operations of power, addition, subtraction, multiplication and division.

Mathematical priorities are respected and are: parenthesis, function, exponent, multiplication and division, addition and subtraction.

Minus sign are accepted for constant number. Example: “x--7” is equivalent to “x+7”.

Basic mathematics functions are supported.

Constant number are of the form: “[±]n.nnnE[±]nnn” or “[±]nnnnn.nnn”. The exponential sign is optional, the “+” is optional after the “E” sign and must be omitted at the beginning of the number. The “.” sign is also optional. It is recorded in a variable of type double inside the API and therefore, its range goes from ±1.7E-308 to ±1.7E+308.

These basic mathematics functions are:

Trigonometry:

	sin	sine

	cos	cosine

	tan	tangent

	asin	arc sinus

	acos	arc cosine

	atan	arc tangent

Hyperbolic:

	sinh	hyperbolic sinus

	cosh	hyperbolic cosine

	tanh	hyperbolic tangent

Exponential and logarithmic:

	exp	exponential of e to...

	log	logarithm

Miscellaneous:

	int	returns the integer portion of a real number.

	abs	returns the absolute value of a real number.

	sgn	returns 1 if the real number is positive, 0 if null and -1 if negative.

Return Value

-21	FBERR_INVEQU_BADFCT	Invalid or unrecognized function name in equation.

-22	FBERR_INVEQU_BADNUM	Invalid or unrecognized constant in equation.

-23	FBERR_INVEQU_TOO_MANY_CONST	Too many constant in equation. Maximum is half the maximum equation length possible (uhEquLength).

-24	FBERR_INVEQU_PARNTMISM	Missing parenthesis or parenthesis mismatch.

-25	FBERR_INVEQU_MISSING_ARG	Missing argument after an operation. An example is “sin(x) +”.

-26	FBERR_INVEQU_MISSING_PARAM	Missing parameter (either the “x” variable or a constant). Example: “sin()”.

-27	FBERR_INVEQU_TOO_MANY_OP	Too many operation in equation. Maximum is half the maximum equation length possible (uhEquLength).

-28	FBERR_INVEQU_SYNTAX_ERR	Syntax error in equation.

-29	FBERR_INTERNAL_ERROR	An internal error within the API has occurred.

-31	FBERR_OUT_OF_MEMORY	Memory object allocation failed due to shortage of memory.

-33	FBERR_INVALID_PARAM	Invalid parameter supplied.

-34	FBERR_TOO_MANY_EQU	All equation object are used. Free some using FBEraseFunction().

�
Name

FBCompute - 	Compute the given equation’s result for the specified value.

Synopsis

#include <fbapi.h>

int FBCompute(int nEquNo, double x, double *pdResult);

Description

This functions compute the result of the equation using the x argument specified.

nEquNo	This argument specify a valid equation number referencing an equation previously created using FBCreateFunction().

x	This is the x value to used for the computation. It is the x argument in the equation represented by “y = f(x)”.

pdResult	This argument points to a variable of type double that will receive the result of the equation for the given x.

It is possible that there may be no result computable for the x given. That situation is obvious for a case such as “log(x)” where x is negative. The API protects itself from such cases by checking the parameters before proceeding with each of the operation within the equation. There is two possible types of errors. The first one are errors where a result of an operation reach infinity such as “1/x + ...” where x is 0. In that case, the API proceed with the rest of the equation replacing the result with the maximum value that can be represented by the type double. On completion, it will copy the result in pdResult and will return an error code indicating a lost of precision. The second type are errors unrecoverable such as “log(x)” with a negative x as mentioned earlier. For that second type of error, the error code have the 12th bit set (0x1000). The FBFRS_FATAL_ERROR mask define can be used to see if that bit is set. If it is, the result is invalid. More than one error code can be ORed together if they all appeared during the processing of the equation and if they are all non-fatal errors. An example of such a situation would be “log(x-1) + 1/log(x)” on x = 1. The first log operation will result with the FBFRS_POS_OVERFLOW error code and the second one with FBFRS_NEG_OVERFLOW. Since both are non-fatal errors, the error returned will be 0x0002 ORed with 0x0001 = 0x0003. It can be seen that this method will not tell how many times the same error code was caught, but only if that error has been caught at least one.

Return Value

Two categories of errors are returned by the application. The first one have positive value and reports mathematics errors such as overflow. The second are the API standard errors and have negative values.

0x0000	FBFRS_VALID_RESULT	No errors. The result is valid.

0x0001	FBFRS_POS_OVERFLOW	A positive overflow has occurred. The API recovered by using the maximum value allowed for a value of type double as the result of the operation.

0x0002	FBFRS_NEG_OVERFLOW	A negative overflow has occurred. This is the same situation has a positive overflow.

0x0004	FBFRS_UNDERFLOW	An underflow occurred. The API recovered by using zero.

0x1008	FBFRS_OUT_OF_DOMAIN	A parameter given to a sub-function was out of the domain of the sub-function. An example would be log(-10.0). This is a fatal error. When such an error occur, the returned value is not valid.

0x1010	FBFRS_UNDETERMINED	A undetermined result occurred. A typical case is a division of 0 by 0. This is a fatal error, the value returned is not valid.

0x1020	FBFRS_SIGNF_LOSS	A lost of sign. This is a fatal error. An example is “1/x” on x=0. The result is infinity with an undetermined sign.

-29	FBERR_INTERNAL_ERROR	An internal error within the API has occurred.

-33	FBERR_INVALID_PARAM	An invalid equation number was given or the pnStatus argument is a NULL pointer.

�
Name

FBAddSubFunction - 	Add another sub-function to the internal list of the API.

FBDeleteSubFunction -	Retrieve a sub-function entered previously in the list.

Synopsis

#include <fbapi.h>

int FBAddSubFunction(const char *pszFctText, FBfptr pfSubFct);

int FBDeleteSubFunction(int nSubFctIndex);

Description

FBAddSubFunction() adds another sub-function to the internal list of sub-function of the API. A sub-function is a function that can be referenced within an equation text by a name of 3 to 4 letters. Current build-in sub-function are trigonometric functions, logarithmic and some others. An example of a build-in sub-function is “sin()” for the sine function. FBDeleteSubFunction() retrieves from the internal list the user sub-function.

pszFctText	This argument points to a string of text having the name of the function. It must have at least 3 letters and no more than 4. It is case insensitive and must be strictly composed of the letters of the alphabet (A to Z).

pfSubFct	This argument is a pointer to a function. It must point to the function to add in the reference. It will be called by the API when FBCompute() is executed for a function containing that sub-function. In order for a sub-function to be called, FBCreateFunction() must be called with an equation text containing its name (pszFctText).

nSubFctIndex	This is the index returned by FBAddSubFunction() to specify which sub-function is to be retrieved.

A maximum of 239 sub-functions can be added to the API. The prototype of the sub-function is as follow:

	double	SubFunction(int *pnResultStatus, double x);

The returned value by the sub-function must be the computed result. When called, pnResultStatus will point to an integer that must have the status of the result on the return from the call. The status result possible values are the same as the one mentioned for FBCompute() and are:

0x0000	FBFRS_VALID_RESULT	The result is valid.

0x0101	FBFRS_OUT_OF_DOMAIN	A parameter given to a sub-function was out of the domain of the sub-function. An example would be log(-10.0). This is a fatal error. When such an error occur, the returned value is not valid.

0x0002	FBFRS_POS_OVERFLOW	A positive overflow has occurred. The API recovered by using the maximum number allowed for a value of type double.

0x0003	FBFRS_NEG_OVERFLOW	A negative overflow has occurred. The same situation has a positive overflow prevails.

0x0004	FBFRS_UNDERFLOW	An underflow occurred. The API recovered by using zero.

0x0105	FBFRS_UNDETERMINED	A undetermined result occurred. A typical case is “sin(x)/x” on x=0. This is a fatal error, the value returned is not valid.

Return Value

>=0	Zero or positive integer	The index of the sub-function. This index is the value that must be given to FBDeleteSubFunction().

-33	FBERR_INVALID_PARAM	Invalid parameter.

-35	FBERR_TOO_MANY_SUBFCT	No more sub-function can be added.

-36	FBERR_INVALID_SUBFCTNAME	The sub-function name is invalid.

-37	FBERR_SUBF_INREFERENCE	Cannot delete sub-function since it is referenced by an equation. Delete the equation using FBEraseFunction().

			

			

Function Builder API - Function Reference�
FBInitAPI�
�
	

				

Page � PAGE �11�

Function Builder API - Function Reference�
FBCreateFunction�
�
	

				

Function Builder API - Function Reference�
FBCompute�
�
		

Function Builder API - Fun
