Form Designer Pro

Contents

1Form Designer Pro

1Contents

1Contact information

1Main Features

2Installation

2License Agreement

3Component reference

3
 - TzFormDesigner (unit - fmDsgn)

5
 - TInspectorList (unit - PropCtrl)

5
 - TComponentCombo (unit - cmbCombo)

5
 - TPalettePanel (unit - CompPal)

6
 - TPaletteTab (unit - CompPal)

6
 - TDesignerEvents (unit - DsnEvents)

7Object Reference

7DsnManager: TDesignerManager (unit - DsnCtrl)

8PackageMng: TPackageMng (unit - LibReg)

8MethRegister: TDefaultMethodRegister (unit - RegMeth)

9Routines

Contact information

Zaharov Mihail Yurjevich, firm “EControl”.

e-mail: ZaharovMU@ymz.yaroslavl.ru
http://EControl.narod.ru
I shall be glad to answer your questions. Registration and order information accessible on our web site. Please, visit it to get more information.

This manual is not full. It will be elaborated at near future.

Please, sorry for my English.

Main Features

Form Designer Pro now developed only for Delphi 5.

These packages must be used only with runtime packages, because registration of IDE objects is possible only for dynamic link libraries (*.bpl).

Key features are follows:

· Designer is fully compatible with Delphi IDE

· Expandable, such way as the Delphi IDE

· It is very easy to use, only drop TzFormDesigner on you form, set the editing target and set the Active property to True.

· Support of data module editing (or any Root object derived from TDataModule).

· Support of TQuickRep editing (or any Root object derived from TWinControl)

· Support editing of part of Form, for example, we can edit only one panel of the form, all other controls will be in runtime mode.

· Object inspector fully compatible with Delphi one.

· Object inspector use property editors to provide editing features compatible with Delphi IDE, for example collection editor, picture editor, etc.

· Runtime package loading with registration. Components, components editors, property editors, field objects, actions, custom modules registration are involved during this process.

· All main features of Delphi form designer such as selecting, moving, resizing, inserting and deleting of components. Form grids, hints, invisible components with captions are also supported.

· Customizing designer representation: display grid, snap to grid, show designer hints, multiple selection, show component captions, flat components icons, grid size, captions font, grab color, grab size.

· Compatible designer popup menu.

· Support components editors, which are founded in attached packages, except of component editor for TMenu. TMenu component editor is compiled in coride50.bpl, therefore I can’t use it. My custom editor for TMenu was developed to solv this problem.

· TPalettePanel – array of buttons for selecting component class which registered on a specified page.

· TPaletteTab – tab control with registered pages and selector for non selected class sate.

· Method registration object will provide possibilities of specifying events.

· Support cross modules references. For example you can set the DataSource of DBGrid which is placed in DataModule, also you can set event handler which is a method of other object.

Installation

1. Copy packages (zDesign.bpl, DsnDcl.bpl, zDesign. dcp, DsnDcl.dcp) in ($DELPHI)\Projects\Bpl.

2. Select “Component | Install packages…” menu in Delphi.

3. Add package zDesign.bpl to the Delphi IDE. The page “zDesign” will be added to component palette.

4. Installation is completed.

License Agreement

You should carefully read the following terms and conditions before using the software. By using this software you indicate that you accept the present license agreement.

Registered Version

One registered copy of this software may either be used by a single developer who uses the software personally on one or more computers, or installed on a single workstation used nonsimultaneously by multiple developers, but not both.

Shareware Version

You may use shareware version. It will work only while Delphi IDE running.

Distribution

Provided that you verify that you are distributing the Shareware Version you are hereby licensed to make as many copies of the Shareware version of the software and the documentation as you wish; give exact copies of the original Shareware version to anyone; and distribute the Shareware version of the software and the documentation in its unmodified form via electronic means. There is no charge for any of the above-mentioned actions.

You are prohibited from charging, or requesting donations, for any such copies, however made; and from distributing the software and / or the documentation with other products (commercial or otherwise) without a prior written permission

DISCLAIMER

This software is provided on an "as is" basis without warranty of any kind, expressed or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. The person using the software bears all risk as to the quality and performance of the software. The author will not be liable for any special, incidental, consequential, indirect or similar damages due to loss of data or any other reason, even if the author or an agent of the author has been advised of the possibility of such damages. In no event shall the author's liability for any damages ever exceed the price paid for the license to use the software, regardless of the form of the claim.

Component reference

[image: image7.png]

 - TzFormDesigner (unit - fmDsgn)

Form designer component. This component put the form and root in designing mode. It controls mouse and keyboard input to edit components and other actions of standard form designer like in Delphi.

This component descends form TComponent and IFormDesigner.

Properties

property Root: TComponent;

Only components of root component will be edited by the form designer. Root object must descends from:

1. TCustomForm – form or form control (for example Panel) will be edited.

2. TWinControl – new form will be created as the parent of root, client area is set to be equal to root size.

3. TDataModule – special container created for editing invisible components of Data Module.

property Form: TCustomForm;

Specifies form in which editing operations will performed. If Root isn’t descendant of TCustomForm the property value will be assigned automatically in active state.

property ContainerWindow: TWinControl;

Container window is the editing surface. If Root isn’t descendant of TCustomForm the property value will be assigned automatically in active state.

property Active: Boolean;

To activate designer set this property to True. To Exit from designing state set to False.

property GridStepX: integer;

Horizontal step of from grid. Grid will be visible only when editing the form object, when Root =Form=ContainerWindow.

property GridStepY: integer;

Vertical step of from grid. Grid will be visible only when editing the form object, when Root =Form=ContainerWindow.

property SnapToGrid: Boolean;

When this property is True, the discreet of changing location and size of components will be equal to grid steps.

property AllowComponents: Boolean;

When this property True, editing invisible components is allowed even the editing surface is not a form (for example when you editing Panel, component icons will be placed on container window). When editing Data modules this property take no effect (it is True).

property ShowCaptions: Boolean;

If this proper True, invisible components will be captions.

property ShowHints: Boolean;

When True, designer hints available.

property DisplayGrid: Boolean;

When False form grid not painted on the form and forms Paint methods called.

property MultiSelect: Boolean;

When False, only one component may be selected in designer.

property FlatIcons: Boolean;

Specifies the way of representation of invisible components.

property CaptionFont: TFont;

Specifies caption font of invisible components.

property GrabColor: TColor;

Specifies the Color of sizing grabs. These are visible when single component is selected.

property GrabSize: integer;

It is the size of grabs.

property OnValidateMethod: TValidateMethodEvent;

TValidateMethodEvent = procedure(Sender: TObject; TypeData: PTypeData; ARoot: TObject; MethAddr: pointer; const MethodName: string; var Accept: Boolean) of Object;

This event is called when designer validate method type. In this event handler you must verify is this method with this name (MethodName), address(MethAddr) and owner(ARoot) have the type TypeData.

If you use MethRegister, it is not necessary use this event.

property OnCanInsert: TCanInsertEvent;

TCanInsertEvent = procedure(Sender: TObject; Component: TComponent) of object;

This event is called after Custom Module validates Component (for example TDataModule can not accept any control). If you want skip component inserting raise exception in this event handler.

property OnActiveChanged: TNotifyEvent;

This event occurs after the active state of the designer was changed.

The events below are like in TWinControl but called for any user input on all editing surface.

property OnKeyDown: TKeyEvent;

property OnKeyPress: TKeyPressEvent;

property OnKeyUp: TKeyEvent;

property OnMouseDown: TMouseEvent;

property OnMouseMove: TMouseMoveEvent;

property OnMouseUp: TMouseEvent;

[image: image8.png]

 - TInspectorList (unit - PropCtrl)

This is visual control which provides possibility of property editing. It represents properties as a Tree like Delphi’s object inspector.

This component descends from TCustomControl and IDesignerNotify.

property TypeKinds: TTypeKinds;

Specifies property types which will be edited.

property SplitPos: integer;

It is position of splitter that divides property names and property values.

property ItemIndex: integer;

Currently selected item.

property ItemHeight: integer;

Height of the list items.

property TopItem: integer;

Item that is on the top of control.

property Component: TComponent;

If Component <> nil, then Inspector list will provide access to property of this component and will not update itself when the selection of current form designer is changed.

property OnAcceptProperty: TAcceptPropertyEvent;

TAcceptPropertyEvent = procedure(PropEdit: TPropertyEditor; var Accept: Boolean) of object;

This event handle called for any property editor added to inspector tree. You can filter property editor to provide access only to part of the properties. (For example, you can restrict to location and size properties, if you need).

[image: image9.png]

 - TComponentCombo (unit - cmbCombo)

TComponentCombo is the combo box with the list of components of Root Component of the current form designer.

property ShowComponents: Boolean;

If this property true the invisible components will be added to list.

property DropDownWidth: integer;

Specifies the width of the popup list box. If this value is 0, this width equal to combo box width.

property IncludeContainer: Boolean;

If this property is true, the Root object or Container Window will be added to the list.

[image: image10.png]

 - TPalettePanel (unit - CompPal)

TPalettePanel is buttons array with component icons to provide possibility of component class selection.

It’s descends from TCustomPanel and IClassSelector.

property Page: string read FPage write SetPage;

Specifies component classes that will be placed on the panel.

property RowCount: integer;

Number of button rows.

property ButtonWidth: integer;

Width of buttons.

property ButtonHeight: integer;

Height of buttons.

property DownButton: integer;

Currently selected button.

property Transparent: Boolean;

When Flat is True specify the transparency of buttons.

property Flat: Boolean;

Specifies whether or not buttons has flat borders.

property Margins: Boolean;

Specifies left, right, top and bottom margins of button array from the panel edges.

property AutoSize: Boolean;

Specifies whether the control sizes itself automatically to accommodate its contents.

property OnButtonClick: TButtonClickEvent;

TButtonClickEvent = procedure(Sender: TObject; Index: integer) of object;

Occurs when the user clicks one of the buttons.

[image: image11.png]s

 - TPaletteTab (unit - CompPal)

This tab control contains PageScroller, PalettePanel and arrow button (which sets the current class to nil). Its tabs are the pages. It refreshes itself when new package was loaded.

It’s descends from TCustomTabControl and IClassSelector.

property Flat: Boolean;

This property set the corresponding property of arrow button and palette panel.

property ResetOnChange: Boolean;

If this property True, Control reset current class to nil when the tab was changed.

[image: image12.png]

 - TDesignerEvents (unit - DsnEvents)

property OnClassChanged: TNotifyEvent;

Occurs after new Component Class was select in TPalettePanel.

property OnPaletteChanged: TNotifyEvent;

Occurs after Component Palette was changed.

property OnActiveDsnChanged: TNotifyEvent;

Occurs after Active Designer was changed.

property OnItemDeleted: TDsnItemEvent;

TDsnItemEvent = procedure(Sender, AItem: TObject) of object;

Occurs after AItem was deleted in Active Designer.

property OnItemInserted: TDsnItemEvent;

TDsnItemEvent = procedure(Sender, AItem: TObject) of object;

Occurs after AItem was inserted in Active Designer.

property OnItemsModified: TDesignerEvent;

TDesignerEvent = procedure(Sender: TObject; ADesigner: IUnknown) of object;

Occurs after selected objects of Active Designer were changed.

property OnSelectionChanged: TNotifyEvent;

Occurs after selection of Active Designer was changed.

property OnDesignerInitialized: TDesignerEvent;

TDesignerEvent = procedure(Sender: TObject; ADesigner: IUnknown) of object;

Occurs after ADesigner was initialized.

property OnDesignerClosed: TDesignerEvent;

TDesignerEvent = procedure(Sender: TObject; ADesigner: IUnknown) of object;

Occurs after ADesigner was closed.

property OnGetGlobalComponents: TGetGlobalsEvent;

TGetGlobalsEvent = function(Sender: IDesigner; const List: TList): Boolean of object;

In this event you must fill List with global objects, which will be available in cross modules references.

property OnDsnKeyDown: TDsnKeyDownEvent;

TDsnKeyDownEvent = procedure(Sender: IDesigner; var Key: Word; Shift: TShiftState) of object;

Occurs when key down in active designer.

property OnGetWorkspaceOrigin: TOnGetPoint;

TOnGetPoint = procedure(Sender: TObject; var P: TPoint) of Object;

In this event you may specify the workspace origin.

property OnKeyPress: TDsnKeyPressEvent;

TDsnKeyPressEvent = procedure(Sender: IDesigner; var Key: Char) of object;

Occurs when key press in active designer or in any designer window. In this event object inspector take focus and key is sent to property editor (see demo).

Object Reference

DsnManager: TDesignerManager (unit - DsnCtrl)

This object represents functions of designers, events, palette dispatcher.

property ActiveDesigner: IFormDesigner;

Specifies active designer.

property ComponentClass: TComponentClass;

Currently selected component class.

property MultiCreate: Boolean;

If this property is False, Component Class resets after inserting component.

PackageMng: TPackageMng (unit - LibReg)

procedure AddPackage(Name: string);

Loads package, call finalization, call Register procedures of each modules, contained in the package. All components, property editors, component editors, custom modules will be registered.

function GetCustomModule(Root: TComponent): TCustomModule;

Return custom module for the Root object, if such module exists, else result value is nil.

function FindClass(AClass: TClass): TComponentClassInfo;

Finds component information for the particular class.

function IsNoIcon(AClass: TClass): Boolean;

Validate AClass to have no icon at design time.

property Pages: TStrings;

Specifies Registered pages of component palette.
property Components[Index: integer]: TComponentClassInfo;

 TComponentClassInfo = class
 public
 AClass: TComponentClass; // Reference to component class

 Module: HMODULE; // Handle of loaded package

 Icon: TBitmap; // Component icon

 Page: string; // Page of component palette

 end;

Provide access to component descriptions array.

property ComponentCount: integer;

Return count of component descriptions in array.

 MethRegister: TDefaultMethodRegister (unit - RegMeth)

This object provide functionality of method registration. All registered method will be available in object inspector while editing method properties. When object whose methods was registered destroying call RemoveObject procedure to prevent access violation when calling its methods.

Alternate way for method type validation is to write event handler for OnValidateMethod of then TzFormDesigner, but using MethRegister is more easy and more comfortable for programming.

If You want to expand amount of event types you may to create yourself descendant object with additional procedures, which are looked like this:

procedure TDefaultMethodRegister.AddEndDragEvent(ev: TEndDragEvent);

begin
 AddMethod(GetTypeData(TypeInfo(TEndDragEvent)), PMethod(@@ev)^);

end;

Below realized set of such methods are listed:

procedure AddNotifyEvent(ev: TNotifyEvent);

procedure AddMouseEvent(ev: TMouseEvent);

procedure AddMouseMoveEvent(ev: TMouseMoveEvent);

procedure AddKeyEvent(ev: TKeyEvent);

procedure AddKeyPressEvent(ev: TKeyPressEvent);

procedure AddDragOverEvent(ev: TDragOverEvent);

procedure AddDragDropEvent(ev: TDragDropEvent);

procedure AddStartDragEvent(ev: TStartDragEvent);

procedure AddEndDragEvent(ev: TEndDragEvent);

procedure AddDockDropEvent(ev: TDockDropEvent);

procedure AddDockOverEvent(ev: TDockOverEvent);

procedure AddUnDockEvent(ev: TUnDockEvent);

procedure AddStartDockEvent(ev: TStartDockEvent);

procedure AddGetSiteInfoEvent(ev: TGetSiteInfoEvent);

procedure AddCanResizeEvent(ev: TCanResizeEvent);

procedure AddConstrainedResizeEvent(ev: TConstrainedResizeEvent);

procedure AddMouseWheelEvent(ev: TMouseWheelEvent);

procedure AddMouseWheelUpDownEvent(ev: TMouseWheelUpDownEvent);

procedure AddContextPopupEvent(ev: TContextPopupEvent);

Type validation is provided by the compiler. For each type of event you must call corresponding procedure.

function ValidateMethod(TypeData: PTypeData; const method: TMethod): Boolean;

Validate method, that is checks presence of method in array, and checks method is of type TypeData.
procedure AddMethod(TypeData: PTypeData; const method: TMethod);

Register method.

procedure GetMethodsNames(TypeData: PTypeData; const Proc: TGetStrProc; ARoot: TObject);

Retrieves methods of specified root object of specified type.

procedure RemoveObject(ARoot: TObject);

Remove all entries of object methods.

property Items[Index: integer]: PMethodInfo;

Provides access to method descriptions array.

property Count: integer;

Count of registered methods.

Routines

procedure DsnLoadPackage(const FileName: string);

Loads package and register its objects.

procedure DsnReadFromFile(const FileName: string; Designer: IDesigner);

Loads from*.DFM Designers root component. If Designer is nil Active Designer will be taken.

procedure DsnWriteToFile(const FileName: string; Designer: IDesigner);

Save to*.DFM Designers root component. If Designer is nil Active Designer will be taken.

function PerformDsnAction(act: TDesignerAction; Designer: IDesigner = nil): Boolean;

Performs standard designers actions. If Designer is nil Active Designer will be taken.

TDesignerAction = (daAlignToGrid, daBringToFront, daSendToBack, daAlignmentDlg,

daSizeDlg, daScale, daTabOrderDlg, daCreationOrederDlg, daFlipChildrenAll, daFlipChildren);

	daAlignToGrid
	Aligns selected components to the form grid.

	daBringToFront
	Brings selected controls to front

	daSendToBack
	Sends selected controls to back

	daAlignmentDlg
	

	daSizeDlg
	Call “Size” dialog

	daScale
	Call “Scale” dialog

	daTabOrderDlg
	Call “Tab Order” dialog

	daCreationOrederDlg
	Call “Creation Order” dialog

	daFlipChildrenAll
	Flips all controls of the container window

	daFlipChildren
	Flips only selected controls

procedure DsnAlignSelected(Horz, Vert: TCompAlign);

TCompAlign = (caNone, caMin, caCenters, caMax, caSpaceEq, caCenterWnd);

Perform align action for the Active Designer.

procedure ShowDesignerOptionsDlg(Designer: IDesigner);

Call “Designer options” dialog.

