PsQRFilters version 1.0 User’s Manual

Page 1

PsQRFilters version 1.0

Export Filters for QuickReport

User’s Manual

Table of Contents

3Introduction

Installation
6
Filter Class Hierarchy
6
TPsQRFilters and TPsQRExportSettings -
10
Detailed list of Properties and Events
11
Ordering & Pricing
17
Contact
19

Introduction

One of the innumerable benefits of using Delphi or C++Builder is extensibility! PsQRFilters, we believe, is an example and a celebration of the wonderful Borland family of RAD tools. We have taken great care in making the use of PsQRFilters, smooth and reliable. If you do find anything amiss please shoot out a mail immediately, to components@pragnaan.com.

Enjoy the experience! Read through this user manual to enjoy it even more!

Installation – Trial Edition

Before you start

1. Uninstall any older versions of the software from the IDE and remove the old path from Library Path on the Library page of Tools|Environment Options...

2. Do you have the right packages installed?

(a) If you downloaded PsQRFilters for QuickReport Standard and TeeChart Standard (http://www.pragnaan.com/dnfiles/psqrfilt.zip) you need…

Delphi 4:

Compiled with QuickReport 3.0.5 Standard and TeeChart Standard.

Package required - VCL40, VCLDB40, VCLJPG40, QRPT40, TEEDB40, TEE40.

Delphi 5:

Compiled with QuickReport 3.0.7 Standard and TeeChart Professional.

Packages required - VCL50, VCLDB50, VCLJPG50, QRPT50, TEEDB45, TEE45 and TEEQR45.

C++Builder 5:

Compiled with QuickReport 3.0.5 Standard and TeeChart Standard.

Packages required - VCL50, VCLDB50, VCLX50, VCLJPG50, QRPT50, TEEDB50, TEE50 and TEEQR50.

(b) PsQRFilters, with the source, will compile, without any change of code, under any version of QuickReport 3.0.5+ Standard/Professional. The trial for QuickReport Professional will be available soon.

Now you are ready to install PsQRFilters

After you have unzipped the contents of PsQRFilt.zip to a folder of its own (Referred to below as PsQRFilt_DIR):

1. Copy the Run-time package file to the Windows\System folder in Win9X and Winnt\System32 folder in WinNT - PsQRD40.bpl for Delphi 4; PsQRD50.bpl for Delphi 5; PsQRC50.bpl for C++Builder 5

2. Run Delphi/C++Builder

3. Close all projects (recommended)

4. Choose Component|Install Packages... from the menu

5. Click Add...

6. Look in: PsQRFilt_DIR\D4 folder for Delphi 4; PsQRFilt_DIR\D5 folder for Delphi 5; PsQRFilt_DIR\CB5 folder for C++Builder 5

7. Select the Design-time package and Click Open - DCLPsQRD40.bpl for Delphi 4; DCLPsQRD50.bpl for Delphi 5; DCLPsQRC50.bpi for C++Builder 5

8. The DCLPsQRXxx Package should appear in the list of Design packages. Look for " PS QuickReport Export Filters"

9. Click OK

10. You should find the new Ps Controls & PsQRFilters components on the "PsQReport" page of the Component Palette

11. Make sure PsQRFilt_DIR is included in the Library Path. To do this Choose Tools|Environment Options... and open the Library page.

You are now ready to use the component in your applications.

Filter Class Hierarchy

All filter classes derive from TPsQRExportFilter, which in-turn derives from TQRExportFilter. The TPsQRDocumentFilter is designed to export to character based file formats; TPsQRImageFilter is designed for graphic file outputs of a report.

Apart from the above classes there are two other classes that are important from the user’s point of view. (1) TPsQRFilters class – the TComponent descendent that encapsulates all the registration and unregistration of the filter classes with the QuickReport Export Filter Library. (2) TPsQRExportSettings – The class that helps store all the property values published by TPsQRFilters. Most of the properties in TPsQRExportSettings are specific to a particular filter and they are stored as separate object properties. The chart below illustrates the property (or settings) classes.

1)

2)

The PsQR Controls – What’s in them?

These set of controls match one-to-one with the original QuickReport controls, that are shown on the QReport tab of the component palette. They all descendent from their matching QuickReport controls and are fully compatible with the ancestor class (E.g. TPsQRLabel = class(TQRLabel); TPsQRShape = class(TQRShape).

Why they are necessary?

The standard QuickReport text controls do not pass a lot of their essential attributes to the export filter, such as shading, framing, size and stretch, etc. As for the graphic controls they do not pass any information at all. The PsQR controls are a clean and simple way of providing just this missing data, to the PsQRExportFilters. They also serve in providing information about the band they are contained in, to the PsQRExportFilters.

A typical PsQR text control…

Below is the complete code of the TPsQRLabel. All the text controls do exactly as this:

interface

TPsQRLabel = class(TQRLabel)

protected

procedure Print(OfsX, OfsY: Integer); override;

end;

implementation

//------------------------------------//

// Helper routines //

//------------------------------------//

procedure DoBeginText(AControl: TQRCustomLabel;

X, Y: Integer);

begin

with AControl do

if Enabled and (ParentReport <> nil) and

ParentReport.Exporting and

(ParentReport.ExportFilter is TPsQRDocumentFilter)

then

TPsQRDocumentFilter(ParentReport.ExportFilter).

BeginText(AControl, X, Y);

end;

procedure DoEndText(AControl: TQRCustomLabel; X, Y: Integer; Continued: Boolean);

begin

with AControl do

if Enabled and (ParentReport <> nil) and

ParentReport.Exporting and (ParentReport.ExportFilter is TPsQRDocumentFilter) then

TPsQRDocumentFilter(ParentReport.ExportFilter).

EndText(AControl, X, Y, Continued);

end;

{TPsQRLabel}

procedure TPsQRLabel.Print(OfsX, OfsY: Integer);

var

Continued: Boolean;

begin

Continued := not PrintFinished;

DoBeginText(Self, OfsX, OfsY);

inherited Print(OfsX, OfsY);

DoEndText(Self, OfsX, OfsY, Continued);

end;

The graphic controls too do identically, except that they pass through a different helper function.

Converting reports to use PsQR controls

All that needs to be done is to change the class names from TQRxxx to TPsQRxxx, in the form (.dfm) file and save the form to let the IDE change the class declaration by itself (E.g. TQRLabel => TPsQRLabel; TQRShape => TPsQRShape…).

Note: PsQR controls are 100% compatible with QR controls. You can safely substitute them in place of QR controls, on all reports.

TPsQRFilters and TPsQRExportSettings -

The main component and its global helper object

TPsQRFilters manages all the registration and unregistration of the filter classes into the QRExportFilterLibrary. Registration of a filter class into the filter library makes QuickReport aware of the filter. After which point, until unregistration, the filter is available, for exporting reports, from the preview windows save dialog.

TPsQRFilters provides a very convenient way of customizing and configuring the filters through properties and events. All this magic takes place with the help of the PsQRExportSettings global object, an instance of the TPsQRExportSettings class. The properties and events published by TPsQRFilters and TPsQRExportSettings are identical and have one-to-one correspondence. The difference is that the data is actually stored in the global variable PsQRExportSettings.

Important usage note: All instances of TPsQRFilters in an application access and get their values from the PsQRExportSettings object. As a result they all reflect the same values. Maintaining only one set of values also makes sure there is only one entry of a particular filter in the QRExportFilterLibrary and the save dialog.

When to use which

In the design environment you need to drop a TPsQRFilters component on a form to gain access to the properties and configure the filters. When properties need to be set programmatically, at run-time, you can do so in code either through the PsQRExportSettings global variable or through an instance of TPsQRFilters, if you have dropped one on to the form or created one in code. For both these ways to work make sure the PsQRExport unit is included in the uses clause.

Sample:

PsQRFilters.HTML.SingleFile := False;

PsQRExportSettings.HTML.SingleFile := False;

Exporting programmatically:

procedure TForm1.SaveBtnClick(Sender: TObject);

var

AFilter: TPsQRHTMLFilter;

begin

AFilter := TPsQRHTMLFilter.Create('MyRep.htm');

try

QuickRep.Prepare;

QuickRep.ExportToFilter(AFilter);

finally

QuickRep.QRPrinter.Free;

QuickRep.QRPrinter := nil;

AFilter.Free;

end;

end;

Detailed list of Properties and Events

All the listed properties and events may be referenced through an instance of TPsQRFilters or through the PsQRExportSettings object. Both induce the same effect. Values written through one automatically reflect in the other.

Properties – Run-time only

ImgFileCount: Integer

Query ImgFileCount to know the total number of image files that were created during the last export to HTML operation. The value is undefined after any other export.

ImgFileNames: TStrings

ImgFileNames is a TStringList object that stores the names of all image files that were created during the last export to HTML operation. Read ImgFileNames if you need the file names of all images that were created.

RepFileCount: Integer

RepFileCount stores the total number of content files that were generated during the last export. RepFileCount is valid only after an export to HTML, GIF, JPEG, BMP, EMF or WMF formats.

RepFileNames: TStrings

Query RepFileNames after an export to HTML, GIF, JPEG, BMP, EMF or WMF to get the names of the generated export files.

Properties – Run-time and Design-time

BMP: TPsQRBMPSettings

Monochrome: Boolean
Default: False

Setting the property to True produces a Monochrome bitmap file when exporting reports to BMP. Set to False to get color images of the report.

PixelFormat: TPixelFormat
Default: pf24bit

TPixelFormat = (pfDevice, pf1bit, pf4bit, pf8bit, pf15bit, pf16bit, pf24bit, pf32bit, pfCustom)

Specifies the bit format and the color depth for the BMP export filter.

GIF: TPsQRGIFSettings

Properties are same as that of BMP settings.

EMF: TPsQRMetaFileSettings

FillUnusedArea: Boolean
Default: True

Setting the property to True fills the area outside the page margins, which otherwise would be transparent. The fill color used is white. Filling the unused area also increases the size of the output file but make it look identical to the previewed version.

JPEG: TPsQRJPEGSettings

Monochrome: Boolean
Default: False

Setting the property to True produces a Monochrome bitmap file when exporting reports to BMP. Set to False to get color images of the report.

PixelFormat: TPixelFormat
Default: pf24bit

TPixelFormat = (pfDevice, pf1bit, pf4bit, pf8bit, pf15bit, pf16bit, pf24bit, pf32bit, pfCustom)

Specifies the bit format and the color depth for the BMP export filter.

ProgressiveEncoding: Boolean
Default: True

Set ProgressiveEncoding to specify whether the JPEG image should be encoded in a manner such that it can be decompressed and displayed progressively. It is particularly useful, to set to true, for large files, so the user won’t be shown a blank screen while waiting for the whole image to decompress.

Quality: TJPEGQualityRange
Default: 100

TJPEGQualityRange = 1..100;

Quality determines the closeness of the, saved, JPEG image to the original. As sides effect it also matter to the size of the saved file. Setting a larger value improves image quality but also increases file size; a smaller value decreases image quality and also reduces file size. Alter it according to the need.

HTML: TPsQRHTMLSettings

Author: String
Default: Empty string

Set the value for the Author Meta content, that will be encoded into the HTML. The value you usually specify is your name, the author of the report.

Creator: String
Default: ‘QuickReport’

Specifies the tool that was used for creating the report. Rightly, it should always be ‘QuickReport’. Change it to any string that you want encoded in the Meta content of the HTML.

ExportImageFormat: TPsImageFormat
Default: ifJPG

TPsImageFormat = (ifGIF, ifJPG, ifBMP)

Use ExportImageFormat to specify the linked image file format for image controls used in the report. Images are reused where possible, For example, a TPsQRImage control’s image is saved only once and the same file is referenced wherever the control appears on the report. While for a TPsQRDBImage a new file is created, for every row of data.

ExportImages: Boolean
Default: True

Indicate whether images on the report should be included in the HTML file. Setting ExportImages to True includes images; setting False excludes them.

FirstLinkText: String
Default: ‘First’

LastLinkText: String
Default: ‘Last’

NextLinkText: String
Default: ‘Next’

PrevLinkText: String
Default: ‘Previous’

Indicate the text that should be used as the captions for the page navigator links that appear at the bottom of the produced HTML. The LinkText values are used only when ShowNavigator=True, UseTextLinks=True and SingleFile=False.

GraphicNavUseWebdings: Boolean
Default: False

Setting GraphicNavUseWebdings to True lets PsQRFilters use the arrow characters, available in the Webdings font, for the HTML page navigator links. These characters are more intuitive to the user than the characters in Wingdings. They also look similar to the standard navigator glyphs of Delphi. The value is relevant only when ShowNavigator=True, UseTextLinks=False and SingleFile=False.

Note: The Webdings font was not supported in Netscape when PsQRFilters was released. Use it after making sure it shows up correctly or if you are sure the HTML will be viewed only in IE.

ImageDir: String
Default: Empty string

Indicate the name of the folder image files should be created in. The default folder for image files is the folder in which the main HTML file was saved. Setting ImageDir is a convenient way of separating the HTML from the concomitant linked files. Specifying ImageDir will not cause any loss of HTML content, when the HTML and the image folder are copied to another location, as the images are encoded with relative path information (relative to the location of the HTML). If the path name specified in ImageDir does not exist an attempt is made to create the folder(s). If the string specified is not a valid path name images are created in the same folder as the HTML.

ImagePixelFormat: TPixelFormat
Default: pf24bit

TPixelFormat = (pfDevice, pf1bit, pf4bit, pf8bit, pf15bit, pf16bit, pf24bit, pf32bit, pfCustom)

Specifies the bit format and the color depth for the exporter image.

JPEGQuality: TJPEGQualityRange
Default: 100

TJPEGQualityRange = 1..100;

Used when ExportImageFormat=ifJPG. Specifies the quality of the JPEG image

Keywords: String
Default: Empty string

Specify a list of keywords for the document that should be encoded as the Keywords Meta content within the head of the HTML file.

ShowNavigator: Boolean
Default: True

Set to True to show a collection of links that enable easy navigation between pages of the exported HTML. The links function much like the navigator buttons in the standard preview of QuickReport: one link to jump to the first page; one to the last page; one to the next page and another to get back to the previous page. ShowNavigator is only effective when SingleFile=False.

SingleFile: Boolean
Default: False

Choose how the exported HTML content should be stored. Setting SingleFile to True results in a single HTML file which stores the entire report with page end lines. Setting False produces separate HTML files for each page of the report and optionally provides links to navigate between pages.

UseTextLinks: Boolean
Default: False

Indicate the type of the navigator links that should be encoded for a multi-file HTML output. Setting UseTextLinks to True uses the text provided in FirstLinkText, LastLinkText, NextLinkText and PrevLinkText as the hyperlink’s caption. Setting False uses characters from either Wingdings or Webdings, as specified. The property is effective only when ShowNavigator=True and SingleFile=False.

PDF: TPsQRPDFSettings

Author: String
Creator: String
ExportImageFormat: TPsImageFormat
ExportImages: Boolean
ImagePixelFormat: TPixelFormat
JPEGQuality: TJPEGQualityRange
Keywords: String
Purpose and conditions are same as that of HTML settings.

RTF: TPsQRRTFSettings

Author: String
Creator: String
ExportImageFormat: TPsImageFormat
ExportImages: Boolean
ImagePixelFormat: TPixelFormat
JPEGQuality: TJPEGQualityRange
Keywords: String
Purpose and conditions are same as that of HTML settings.

VisibleFilters: TPsQRVisibleFilters

Default: [fkHTML, fkPDF, fkRTF, fkGIF, fkJPEG,

fkBMP, fkEMF, fkWMF]
TPsQRFilterKind = (fkHTML, fkPDF, fkRTF, fkGIF,

fkJPEG, fkBMP, fkEMF, fkWMF)

TPsQRVisibleFilters = set of TPsQRFilterKind

Indicate the filters you want registered into QuickReport’s export filter library and shown as an option for File Type in the preview window’s save dialog. Regardless of the settings of VisibleFilters you can export to any of the formats through code just by creating an instance of the appropriate filter class and passing it to Report.ExportToFilter.

WMF: TPsQRMetaFileSettings

Properties are same as that of EMF settings.

Events

TPsQRNotifyEvent = procedure(Filter: TPsQRExportFilter) of object;

TCreateBitmapEvent = procedure(Sender: TPsQRExportFilter;

Bmp: TBitmap; FileStream: TFileStream; PageNo: Integer;

var Continue: Boolean) of object;

TMakeImgFileNameEvent = procedure(Sender: TPsQRExportFilter;

var FileName, AltText: string; PageNo: Integer) of object;

TMakeRepFileNameEvent = procedure(Sender: TPsQRExportFilter;

var FileName: string; PageNo: Integer) of object;

Trap these events to do any extra processing you need to do or to display messages (E.g. opening the document, emailing it…).

OnBeginJob: TPsQRNotifyEvent

Triggers immediately after the save command has been invoked. The export process has started but no conversion has taken place yet.

OnBeginPage: TPsQRNotifyEvent

Triggers once for every new page of the report, just before the conversion starts for that page.

OnEndJob: TPsQRNotifyEvent

Triggers after the export process is complete and the content has been saved in File(s).

OnEndPage: TPsQRNotifyEvent

Triggers at the end of exporting of each page of the report.

OnCreateBitmap: TCreateBitmapEvent
Triggers only when export to GIF, JPEG or BMP is happening. Program this event to gain control at the end of each page and after a Bitmap of the page has been created. You can use the passed value of Bmp to do any further processing on it, like pasting a watermark. You can also use this feature to save to any other image file format. In the event handler set Continue to False to stop PsQRFilters from saving the page but asking it to move to the next page instead.

OnMakeImgFileName: TMakeImgFileNameEvent
Triggers only when export to HTML is happening. Trap this event to specify a custom image file name (instead of the default RepName_I000.??? Format). The event is triggered at the instant of saving of an image file. You can also specify the AltText for the image.

OnMakeRepFileName: TMakeRepFileNameEvent
Triggers for all the multi-file formats – HTML and image filters (GIF, JPEG, BMP, EMF, and WMF). For HTML the event is generated in a loop once for each page in the report and all at the start of the export process. For the image filters it is generated at the start of each page for every page of the report. Trap this event to specify a custom report file name (instead of the default RepName0001.??? Format).

Ordering & Pricing

Ordering

You can order PsQRFilters online over the Internet in your own language at

English:

http://shareit1.element5.com/programs.html?productid=136468.

German:

http://shareit1.element5.com/programs.html?productid=136468&language=German

Portugese:

http://shareit1.element5.com/programs.html?productid=136468&language=Portugese

Spanish:

http://shareit1.element5.com/programs.html?productid=136468&language=Spanish

Italian:

http://shareit1.element5.com/programs.html?productid=136468&language=Italian

French:

http://shareit1.element5.com/programs.html?productid=136468&language=French

Alternatively, you can go to http://www.shareit.com and enter the PROGRAM NUMBER: 136468.

If you do not wish to order over the Internet, you have the option of doing it via phone, fax or postal mail. Please open the file "OrderFrm.txt" for details.

Once you make the payment in your preferred mode:

· ShareIt! will send us an email notification, with YOUR EMAIL address.

· Within 48 hours you will receive your appropriate deployment edition by email -- your email should be working, of course.

MAKE SURE you give your email at the time of ordering.

Pricing

There are 4 editions of the product:

Trial Edition

Which saves a maximum of 2 pages, is only for evaluation of the software.
US$ 0.

Single Developer Edition, without source
You may use this edition in applications that you distribute (deploy).
US$ 29.95.

Single Developer Edition, with source

Complete source code of the components.
US$ 49.95.

Site License Edition, with source

Complete source code of the components. You may use on all computers within your company at a single work site.
US$ 149.95.

Contact

If you have any queries about the components please feel free to contact us:

Pragnaan Software Private Limited

#200, 14th cross

3rd main, RMV II Stage

Bangalore - 560 094

INDIA

E-Mail:
mailto:components@pragnaan.com
Web:
http://www.pragnaan.com
TPsQRWMFFilter

TPsQREMFFilter

TPsQRMetafileFilter

TPsQRBMPFilter

TPsQRJPEGFilter

TPsQRGIFFilter

TPsQRHTMLFilter

TPsQRPDFFilter

TPsQRRTFFilter

TPsQRImageFilter

TPsQRDocumentFilter

TPsQRExportFilter

TQRExportFilter

TPsQRFilters

TComponent

TPsQRMetafileSettings

TPsQRBMPSettings

TPsQRJPEGSettings

TPsQRPDFSettings

TPsQRGIFSettings

TPsQRDocumentFilterSettings

TPsQRRTFSettings

TPsQRHTMLSettings

TPsQRExportSettings

TPersistent

Pragnaan Software Private Limited

www.pragnaan.com

