
Discrete-event simulation system

Delsi
Version 1.1

Copyright © 1998-1999 Softland (Rivne, Ukraine)

Getting Started

Rivne 1999

Getting Started 2

INTRODUCTION & CONTENTS

 Consideration of concrete examples is the best way to study Delsi. This document contains the
comments to 19 simulation applications developed in Delphi 3.0TM using Delsi components. Going from
the first to the nineteenth sample you will get step-by-step explanation of the most common aspects of
Delsi simulation.

Sample 1. Barber shop. The simplest model ……………………………………………………… 3
Sample 2. Input parameters and progress status ………………………………………………….. 4
Sample 3. Clearing statistics during simulation run ……………………………………………… 5
Sample 4. Experiments with changing parameters ……………………………………………….. 6
Sample 5. Tracing ………………………………………………………………………………… 7
Sample 6. Limited queue capacity and routing …………………………………………………… 8
Sample 7. Limited waiting in the queue ………………………………………………………….. 9
Sample 8. Changing the parameters during simulation run ………………………………………. 10
Sample 9. Using TCreator component …………………………………………………………… 11
Sample 10. Using TStorage component ………………………………………………………….. 12
Sample 11. Failures and recovering. TGate component. Method TServer.Release ……………… 13
Sample 12. Routing that depends on the state of blocks. Transaction fields. Tabulation ………… 14
Sample 13. TDivider and TAssembler …………………………………………………………….. 17
Sample 14. Using priorities with TQueuePrty component ………………………………………... 18
Sample 15. Preempted and postponed service ……………………………………………………. 19
Sample 16. Passing preempted low-priority transactions ………………………………………… 20
Sample 17. Preempting in TQueuePrty …………………………………………………………… 21
Sample 18. Preempting in TStoragePrty ………………………………………………………….. 23
Sample 19. Multiple forms ………………………………………………………………………… 24

Getting Started 3

Sample 1. Barbershop. The Simplest model

This example is the first in the well-known Red Book of Thomas J. Schriber "Simulation
Using GPSS". Let's imagine a barbershop with one barber and the hall for waiting customers.
Customers arrive to the shop. If the barber is busy they wait in the hall. They go for the service with
discipline "First come - first served" (FIFO). After service they go away.

We can describe arrival and service time intervals with help of probability distributions.
These are input parameters for our model.

 The arrival time is uniformly distributed in the range 12...24 min.
 The service time is uniformly distributed in the range 14...20 min.
 The total time of simulation is 480 min.

We are interested to determine the following values:

• Usage of the barber
• Average queue length
• Maximal queue length
• Average waiting time
• Deviation of waiting time
• Average waiting time for transactions with zero time spent in the queue
• Deviation of waiting time for transactions with zero time spent in the queue

 The components for the building model:

Entrance TGenerator Arrivals of customers
Hall TQueue Waiting for service with FIFO discipline
Barber TServer Serving by barber
ExitDoor TTerminator Leaving the barbershop

For more simplicity we output results into TMemo component. Actually, you can output the
results wherever you want: to ASCII file, database, canvas, QuickReport, HTML, etc.

To make the model ready for the new simulation start-up we use TModel.Reset method:

procedure TForm1.Button1Click(Sender: TObject);
begin

 Model.Simulate(SimTime);

 Model.Reset;
end;

The results of simulation are the following.

Usage of the barber: 0,92
Average queue length: 0,07
Maximal queue length: 1
Average waiting time: 1,33
Deviation of waiting time: 1,82
Average waiting time / excluding zero times: 3,03
Deviation of waiting time/ excluding zero times: 1,56

Getting Started 4

Sample 2. Input parameters and progress status.

This sample is interesting by the editing of input parameters and using progress status line.
We repeat model scheme of Sample 1. The arrival and service intervals are exponentially distributed.
We edit input parameters and simulation time with help of TEdit components.

For viewing simulation progress we use TProgressBar component.
For changing TProgressBar.Position property we use the event Model.OnNewTime.
This event is initialized when new model time is taken from the List of Future Events.

The source code for event handling is the following.

procedure TForm1.ModelNewTime(Sender: TAggregate; Trans: TTransaction);
var NewPos: integer;
 Ratio: real;
begin
 Ratio:=ModelTime/SimTime;
 if Ratio>1.0 then Ratio:=1.0;
 NewPos:=Round(Ratio*100.0);
 with ProgressBar do
 if Position<>NewPos then Position:=NewPos;
end;

If you want to use the same sequence of random numbers in each simulation run, do it with help
of TMultiRand.Reset method.

Getting Started 5

Sample 3. Clearing statistics during simulation run

This sample demonstrates the possibilities to clear statistics during simulation run. It may be
useful when you want to define the transient of output parameter.

We use OnPlanned event of TScheduler component for:

• printing results into Memo
• clearing statistics
• ordering the next event for TScheduler

The source code for event handling is the following.

procedure TForm1.Scheduler1Planned(Sender: TAggregate);
begin
 Memo.Lines.Add('Avarage time in the queue: '+
 FormatFloat('0.000',Hall.AverageTime)+' '+
 FormatFloat('0.00',ModelTime));
 Model.ClearStatistics;
 Sender.NextTime(ClearTime);
end;

The arrival and service time are uniformly distributed.

The example of simulation results is the following.

Average time in the queue: 2,735 10000,00
Average time in the queue: 2,500 20000,00
Average time in the queue: 2,094 30000,00
Average time in the queue: 2,070 40000,00
Average time in the queue: 2,348 50000,00
Average time in the queue: 2,430 60000,00
Average time in the queue: 2,140 70000,00
Average time in the queue: 2,525 80000,00
Average time in the queue: 2,431 90000,00
Average time in the queue: 2,804 100000,00

Getting Started 6

Sample 4. Experiments with changing parameters

This sample demonstrates the possibilities of experiment management. In this sample the arrival
and service time are exponentially distributed. The mean of service time is 10.0. The mean of arrival time
changes from 10.0 to 15.0 with step 1.0.

We need to estimate how the average queue length depends on the average arrival time.

The source code of experiment management:

ArrivalTime:=10.0;
ServiceTime:=10.0;

Memo.Lines.Clear;
for i:=0 to 5 do
begin
 Model.Simulate(LimitTime);
 Memo.Lines.Add('Average arrival time'+FormatFloat('0.00',ArrivalTime)+
 ' Average queue length: '+
 FormatFloat('0.00',Hall.AverageCount));
 Model.Reset;
 ArrivalTime:=ArrivalTime+1.0;
end;

The results of experiment for simulation time 1000.0

Average arrival time: 10,00 Average queue length: 6,88
Average arrival time: 11,00 Average queue length: 2,43
Average arrival time: 12,00 Average queue length: 3,12
Average arrival time: 13,00 Average queue length: 1,06
Average arrival time: 14,00 Average queue length: 1,07
Average arrival time: 15,00 Average queue length: 0,63

Getting Started 7

Sample 5. Tracing

In this sample we repeat the model of Sample 1. The only thing we demonstrate here is how to
trace the simulation process. To trace the transaction passing from one block to another we use the event
OnAfterPass of TModel component.

The source code of event handling is the following.

procedure TForm1.ModelAfterPass(Sender, Receiver: TBlock; Trans: TTransaction);
begin
Memo.Lines.Add(PadCh(Sender.Name,' ',12)+ // Name of Sender
 PadCh(Receiver.Name,' ',12)+ // Name of Receiver
 PadCh(IntToStr(Trans.GetTransID),' ',6)+ // Transaction ID
 FormatFloat('0.00',ModelTime)); // System time

end;

The result of tracing looks like this:

Entrance Hall 1 0,00
Hall Barber 1 0,00
Barber ExitDoor 1 14,50
Entrance Hall 1 20,49 // The second life of Transaction 1
Hall Barber 1 20,49
Barber ExitDoor 1 34,79
Entrance Hall 1 41,89
Hall Barber 1 41,89
Barber ExitDoor 1 60,08
Entrance Hall 1 64,48 // The third life of Transaction 1
Hall Barber 1 64,48
Entrance Hall 2 79,40
Barber ExitDoor 1 80,94
Hall Barber 2 80,94
Barber ExitDoor 2 96,11
Entrance Hall 2 96,44 // The second life of Transaction 2
Hall Barber 2 96,44
Entrance Hall 1 112,58

From these results of tracing you can see that each transaction can be used several times. It looks
like the transactions may have several lives per simulation run. But each transaction in each moment of
model time has unique ID.

By use of OnAfterPass and OnNewTime events you can create more sophisticated tracing, for
instance, with the queue lengths, transaction priorities or something else. Of course, you can customize the
look and the kind of the output.

Getting Started 8

Sample 6. Limited queue capacity and routing

Let's take in consideration that number of chairs in the hall is limited. If the customer finds out
that all chairs are busy she goes to another barbershop.

The arrival time is exponentially distributed with the mean equal to 11.0.
The service time is exponentially distributed with the mean equal to10.0.
We need to estimate the percentage of lost customers.

We define the capacity of queue in the property Capacity of TQueue component. We can do it in
Object Inspector or directly in source code just like in this sample.

Hall.Capacity:=QCapacity;

If the number of transactions in the queue is equal to the capacity, the queue becomes not ready to
receive transactions. We use this fact for the routing transactions.

procedure TForm1.EntranceRouting(Sender: TBlock; Trans: TTransaction);
begin
 if Hall.isReadyToReceive(Trans) then
 Sender.PassTo(Hall)
 else
 Sender.PassTo(AnotherShop);
end;

After the simulation run it is very easy to calculate the percentage of lost customers.

Memo.Lines.Add('Percent of lost customers: '+
 FormatFloat('0.00',AnotherShop.Entries*100.0/Entrance.Exits)+'%');

The example of sumulation results.

Capacity: 5
Total customers: 8990
Lost customers: 936
Percent of lost customers: 10,41%

Getting Started 9

Sample 7. Limited waiting in the queue

In previous sample we discussed the queue with limited capacity. We repeat that sample with
some addition.

Usually, some of customers can not spend a long time in the queue. Let's imagine that half of the
customers are not ready to spend in the queue more than 20 ... 30 min. (uniformly distributed). After this
period of time they leave the queue.

As it was in previous sample we need to calculate the percentage of lost customers.

To limit the waiting time for some customers we order the limiting time in the OnEnter event of
TQueue component.

procedure TForm1.HallEnter(Sender: TBlock; Trans: TTransaction);
begin
 if MultiRand.Uniform(0.0,1.0) > 0.5 then // only half of customers can’t wait
 Sender.NextTime(MultiRand.Uniform(20.0,30.0));
end;

When the limiting time finishes, the event OnTimeFinish occurs. We process this event by passing
transaction into terminator NoTime.

procedure TForm1.HallTimeFinish(Sender: TBlock; Trans: TTransaction);
begin
 Sender.Pass(AnotherShop); // Pass to terminator
end;

After simulation run we can calculate results.

Memo.Lines.Add('Total customers: '+IntToStr(Entrance.Exits));
Memo.Lines.Add('Total amount of lost customers: '+
 IntToStr(AnotherShop.Entries));
Memo.Lines.Add('Lost customers due to limited time waiting: '+
 IntToStr(Hall.TimeLimitExits));

Memo.Lines.Add('Lost customers due to limited capacity: '+
 IntToStr(AnotherShop.Entries-Hall.TimeLimitExits));
Memo.Lines.Add('Percent of lost customers: '+FormatFloat('0.00',
 AnotherShop.Entries*100.0/Entrance.Exits)+'%');

The example of simulation results.

Capacity: 5
Total customers: 9084
Total amount of lost customers: 1465
Lost customers due to limited time waiting: 1136
Lost customers due to limited capacity: 329
Percent of lost customers: 16,13%

Getting Started 10

Sample 8. Changing the parameters during simulation run

In this sample we repeat the model scheme of Sample 1. Let's take into consideration the fact that
arrival rate usually is not the same all time of the day. We need to build model with this additional
condition.

Both arrival and service time are exponentially distributed.
The mean of service time is 10.0.

We need to simulate barbershop with the following rate dependence.

Period (hrs) Period since opening (min.) Average arrival interval (min.)
8.00 - 10.00 0-120.00 14.0
10.00 - 12.00 120-240 12.0
12.00 - 15.00 240-420 10.0
15.00 - 17.00 420-540 12.0
17.00 - 20.00 540-720 14.0

To keep these values we use two arrays.

ChangeTime: array[1..5] of real = (0.0,120.0,240.0,420.0,540.0);
ArrivalMeans: array[1..5] of real = (14.0,12.0,10.0,12.0,14.0);

To change average arrival interval in defined moments of model time we use TScheduler component.

{Initializing first planned event}
procedure TForm1.Scheduler1BeforeTimeGoOn(Sender: TAggregate);
begin
 Sender.NextTime(0.0); // The first planned event will occur at 0.0
end;

{Handling planned event}
procedure TForm1.Scheduler1Planned(Sender: TAggregate);
begin
 TArrival:=ArrivalMeans[Counter]; // Setting the mean of arrival time
 if Counter<5 then
 Sender.NextTime(ChangeTime[Counter+1]); // Ordering the next event
 Inc(Counter);
end;

The results of simulation are the following.

Usage of the barber: 0,83
Average queue length: 2,16
Maximal queue length: 7
Average waiting time: 22,67
Deviation of waiting time: 19,46
Average waiting time / excluding zero times: 30,39
Deviation of waiting time/ excluding zero times: 16,53

Getting Started 11

Sample 9. Using TCreator component

Sometimes we need to generate transactions directly. In Delsi it is possible with the help of
TCreator component.

Let's imagine that before opening there are several people waiting for service. We need to define
the output parameters that depend on the number of that people. Both arrival and service time are
exponentially distributed with means 10.0 and 11.0 accordingly.

To create transactions directly we use OnBeforeTimeGoOn event of Entrance component.

procedure TForm1.EntranceBeforeTimeGoOn(Sender: TAggregate);
begin
 Sender.NextTime(MultiRand.Exponential(11.0));
 if NumberOfPeople>0 then
 PeopleInStreet.Generate(NumberOfPeople); // Direct generation of transactions
end;

Actually, you can use any event for direct generation of transaction.

We route generated transaction to queue Hall.

procedure TForm1.PeopleInStreetRouting(Sender: TBlock; Trans: TTransaction);
begin
 Sender.Pass(Hall);
end;

The results of simulation for 10 initially waiting clients are the following.

Usage of the barber: 0,90
Average queue length: 3,36
Maximal queue length: 11
Average waiting time: 32,26
Deviation of waiting time: 20,69
Average waiting time / excluding zero times: 35,79
Deviation of waiting time/ excluding zero times: 18,67

Getting Started 12

Sample 10. Using TStorage component

Let's return for sample 7. We have the system with limited capacity of the queue and limited
waiting period in the queue. Let's assume that there are several barbers in the barbershop. The owner of
the saloon needs our help to decide how many barbers should work for him.

The arrival and service time are exponentially distributed.
The mean of arrival time is 3.0
The mean of service time is 10.0.
The hall capacity is 5.

To simulate several barbers we use TStorage components. We carry out experiments changing capacity of
storage Barbers.

Memo.Lines.Add('Barbers Losses Usage of one barber');
for i:=1 to 8 do
begin
 Barbers.Capacity:=i;
 Model.Simulate(TLimit);
 Memo.Lines.Add(IntToStr(Barbers.Capacity)+' '+
 FormatFloat('00.00',(AnotherShop.Entries+NoTime.Entries)*
 100.0/Entrance.Exits)+'% ' +
 FormatFloat('00.00',Barbers.AverageCount*100.0/
 Barbers.Capacity)+'%');
 Model.Reset;
end;

The results of simulation for simulation time 720.0

Barbers Losses Usage of one barber
1 69,70% 100,00%
2 41,30% 97,36%
3 23,05% 93,16%
4 11,60% 81,84%
5 04,03% 75,26%
6 00,00% 50,50%
7 00,00% 49,53%
8 00,00% 45,07%

Getting Started 13

Sample 11. Failures and recovering. Component TGate. Method TServer.Release

 Let's consider a workshop, which consists of the box for details and machine tool. The details arrive
on handling on the machine tool from the box in LIFO order. After processing, details move to the another
site.
 From time to time machine tool breaks. The worker needs time for its recovering. After the breakage
of the tool the detail is removed from the machine tool and omitted in the box for further processing which
will take as much time as any other details in the box.
 Both arrival and processing intervals are exponentially distributed with the mean values 2.0 and 1.5
min. The input parameters are the mean of the interval between tool failures and the mean of recovery
interval. These times are exponentially distributed. Another input parameter is time of simulation.

Before simulation run we unlock the Gate and plan the first failure using TScheduler component
Scheduler.

procedure TForm1.SchedulerBeforeTimeGoOn(Sender: TAggregate);
begin
 Gate.Unlock;
 Sender.NextTime(MultiRand.Exponential(TFailure));
end;

During simulation we lock and unlock Gate using OnPlanned event of Scheduler. When we lock Gate, we
imitate removal of details by use of Release method.

procedure TForm1.SchedulerPlanned(Sender: TAggregate);
begin
 if Gate.isLocked then
 begin
 { Unlocking }
 Sender.NextTime(MultiRand.Exponential(TFailure));
 Gate.UnLock;
 end
 else
 begin
 { Locking }
 Sender.NextTime(MultiRand.Exponential(TRecovery));
 Tool.Release; // Removal of a details
 Gate.Lock;
 end;
end;

We pass removed transaction back into the Box by the use of OnRelease event of the Tool.

procedure TForm1.ToolRelease(Sender: TBlock; Trans: TTransaction);
begin
 Sender.PassTo(Box);
end;

If there is a transaction in the gate after locking, we pass it to bunker.

procedure TForm1.GateRouting(Sender: TBlock; Trans: TTransaction);
begin
 if Gate.isLocked then
 Sender.PassTo(Bunker)
 else
 Sender.PassTo(Tool);
end;

Getting Started 14

Sample 12. Routing that depends on the state of blocks. Transaction fields. Tabulation.

Let's imagine the bank with three cash desks. A visitor goes to the unused cash desk. If all cash
desks are busy she goes to the queue with minimal length. The arrival and service time are exponentially
distributed. We need to calculate the mean, the deviation of the time spent in the bank and to build
corresponding histogram.

We route transactions to queues when they exit from generator Entrance.

procedure TForm1.EntranceRouting(Sender: TBlock; Trans: TTransPtr);
var QueueID: integer;
 MinCount: longint;
begin

 if (CashDesk1.Count=0) and (Queue1.Count=0) then
 begin
 Sender.PassTo(Queue1);
 Exit;
 end;
 if (CashDesk2.Count=0) and (Queue2.Count=0) then
 begin
 Sender.PassTo(Queue2);
 Exit;
 end;
 if (CashDesk3.Count=0) and (Queue3.Count=0) then
 begin
 Sender.PassTo(Queue3);
 Exit;
 end;

 {Choosing the queue with minimal length}
 MinCount:=Queue1.Count;
 QueueID:=1;

 if Queue2.Count<MinCount then
 begin
 MinCount:=Queue2.Count;
 QueueID:=2;
 end;

 if Queue3.Count<MinCount then
 begin
 MinCount:=Queue3.Count;
 QueueID:=3;
 end;

 {Pass transaction to queue with minimal length}
 case QueueID of
 1: Sender.PassTo(Queue1);
 2: Sender.PassTo(Queue2);
 3: Sender.PassTo(Queue3);
 end;
end;

Getting Started 15

How to determine the time spent in the bank? We need to store the birth moment of the
transaction when the transaction exits form generator. In order to have a field to store the birth time in the
transaction we need to declare new transaction class by inheriting of TTransaction class.

MyTransaction = class(TTransaction)
public
 BirthTime: real;
end;

To tell internal simulation manager about the new declaration of transaction we use the method
TModel.SetTransactionClass before simulation run.

Model.SetTransactionClass(MyTransaction);
Model.Simulate(LimitTime);

We store the value of birth time when handle the event TGenerator.OnExit.

procedure TForm1.EntranceExit(Sender: TBlock; Trans: TTransPtr);
begin
 Sender.NextTime(MultiRand.Exponential(TArrival));
 (Trans as MyTransaction).BirthTime:=ModelTime;
end;

When transaction reaches the terminator we calculate the difference between current model time
and the birth time. To obtain the mean, deviation and histogram we tabulate these values using TTabulator
component.

procedure TForm1.ExitDoorEnter(Sender: TBlock; Trans: TTransPtr);
begin
 Tabulator1.PutValue(ModelTime-(Trans as MyTransaction).BirthTime);
end;

After simulation run we output the information collected in the tabulator.

with Tabulator1 do
begin
 Memo.Lines.Add('The histogram of time spending in the bank');
 Memo.Lines.Add('Below '+FormatFloat('000.00',LowerBound)+': '+
 IntToStr(Hits(0)));
 for i:=1 to Tabulator1.IntervalCount do
 begin
 Memo.Lines.Add(FormatFloat('000.00',LowerBound+Interval*(i-1))+' - '+
 FormatFloat('000.00',LowerBound+Interval*(i))+' '+
 IntToStr(Hits(i)));
 end;
 Memo.Lines.Add('Upper '+FormatFloat('000.00',LowerBound+
 Interval*IntervalCount)+': '+
 IntToStr(Hits(IntervalCount+1)));
 Memo.Lines.Add('___');
 Memo.Lines.Add('Average time in the bank: '+
 FormatFloat('0.00',Tabulator1.Mean));
 Memo.Lines.Add('Deviation of time in the bank: '+
 FormatFloat('0.00',Tabulator1.Deviation));
end;

Getting Started 16

The example of the result output is the following.

The histogram of time spent in the bank
Below 000,00: 0
000,00 - 002,00 789
002,00 - 004,00 526
004,00 - 006,00 269
006,00 - 008,00 126
008,00 - 010,00 83
010,00 - 012,00 35
012,00 - 014,00 10
014,00 - 016,00 0
016,00 - 018,00 0
018,00 - 020,00 0
Upper 020,00: 0

Average time in the bank: 3,09
Deviation of time in the bank: 2,60

Getting Started 17

Sample 13. TDivider and TAssembler

In this sample we consider the workshop. The details arrive to the workshop in boxes by batches
of 10 pieces. After processing on the machine tool they move to another box and move to another
workshop. The box arrival interval and processing time are uniformly distributed. It is necessary to build a
histogram of the box department interval. The input parameters are the lower and upper bounds of arrival
interval and processing time. One more input parameter is the simulation time.

We simulate box arriving by TGenerator component BoxArrival. To decompose “one box” into
“ten details” we use TDivider component BoxToDetails with capacity 10. After processing on machine
tool (TServer component Tool) we compose every “ten details” into “one box” by use of TAssembler
component DetailsToBox with capacity 10.

We build histogram with help of TTabulator component Tabulator1.

procedure TForm1.AnotherWorkShopEnter(Sender: TBlock; Trans: TTransaction);
begin
 Tabulator1.PutValue(ModelTime-LastArriveTime);
 LastArriveTime:=ModelTime;
end;

The result of simulation for arrival interval from 2.0 to 4.0 and interval of processing from 25.0 to 35.0

The histogram of box department interval
Below 020,00: 1
020,00 - 021,00 0
021,00 - 022,00 0
022,00 - 023,00 0
023,00 - 024,00 20
024,00 - 025,00 99
025,00 - 026,00 228
026,00 - 027,00 349
027,00 - 028,00 338
028,00 - 029,00 335
029,00 - 030,00 335
030,00 - 031,00 341
031,00 - 032,00 313
032,00 - 033,00 333
033,00 - 034,00 321
034,00 - 035,00 213
035,00 - 036,00 95
036,00 - 037,00 20
037,00 - 038,00 0
038,00 - 039,00 0
039,00 - 040,00 0
Upper 040,00: 0
__
Average output interval 29,93
Deviation of output interval: 3,03

That is a good illustration for the theorem of large numbers.

Getting Started 18

Sample 14. Using priorities with TQueuePrty component

In this sample we are considering the dental clinic with several doctors. The patients may be
divided into two categories: regular patients and patients with tooth pain. The patients may form the
queue. In that case patients with pain will go for the treatment first. So, we can say that they have higher
non-preemptive priority in the medical service.

The following parameters are known:

The arrival time is exponentially distributed.
The mean of arrival time for regular patients is 4.0 min.
The mean of arrival time for patients with tooth pain is 25.0 min.
The service time is uniformly distributed from 7.0 to 15 min.

We need to determine the average value and standard deviation of time spent in clinic for the both
categories of patients in dependence on the number of doctors.

By default, the priority of each new transaction is equal to 0. So, the generator RegularPatients generates
transaction with lower priority level.

We set the priority level for transactions generated by the generator ToothpainPatiens with help of
OnAfterGeneration event:

procedure TForm1.ToothpainPacientsAfterGeneration(Sender: TBlock; Trans: TTransaction);
begin
 Trans.SetPrty(1); // Sets priority value into 1
end;

The TQueuePrty component handles transactions so that high-priority transactions will be placed
at the beginning of the queue. They will leave the queue first. Actually, there are two hidden internal FIFO
queues inside the general queue. Generally, the number of the hidden queues is equal to numbers of
priority levels of transactions stored in that real queue. Each hidden queue stores transaction of some
priority level. If there are high-priority transactions in the queue, low priority transaction can leave the
queue only for the reason of limitation of waiting time.

The results of simulation for 3 doctors and simulation time 720.0:

1. Regular patients
 Number of patients: 155
 The average time spent in clinic: 24,88
 The deviation of time spent in clinic: 9,22
2. Patients with tooth pain
 Number of patients: 33
 The average time spent in clinic: 12,99
 The deviation of time spent in clinic: 3,36

Getting Started 19

Sample 15. Preempted and postponed service

In this sample we are considering the firm which executes some orders. There are two types of
orders: regular and urgent. The last one costs twice as much. When the firm executes regular order and
urgent order incomes to the firm, the firm preempts processing of regular order. After finishing urgent
order, the firm continues processing regular order. The following parameters are known:

The arrival and service times are exponentially distributed.
The mean of arrival time of regular orders is 5.0 days
The mean of arrival time of urgent orders is 15.0 days
The mean of service time is 3.5 days
Simulated time – 1 year (about 264 work days)

We need to determine the number and the average time of execution for both types of orders.

To solve this task we use transactions with different priority levels. To be able to preempt service
in the server the high-priority transactions have to be preemptive. We set the priority level and its
preemptive ability in OnAfterGeneration event.

procedure TForm1.UrgentOrdersAfterGeneration(Sender: TBlock; Trans: TTransPtr);
begin
 SetPrty(Trans,1);
 SetPreempt(Trans);
end;

When high-priority transaction preempts the service of low-priority one, the server generates
OnPreempt event. (Do not forget to set server’s property Preemptive into True). Handling that event, we
postpone the service of preempted transaction with help of Postpone method.

procedure TForm1.ProcessingPreempt(Sender: TBlock; Trans: TTransaction);
begin
 Sender.Postpone;
end;

When high-priority transaction leaves the server, the last one continues processing of low-priority
transaction.

The results of simulation are the following.

1. Regular orders
 Number of arrived orders: 44
 Number of executed orders: 34
 The average execution time: 21,95
 The deviation of execution time: 16,59
2. Urgent orders
 Number of arrived orders: 17
 Number of executed orders: 17
 The average execution time: 5,53
 The deviation of execution time: 4,22
__
 The average number of orders on processing: 1,12
 The maximal number of orders on processing: 2
 The loading of firm: 0,82
 The average length of the queue: 2,84
 The maximal length of the queue: 10
 The cost of executed orders: 680000,00

Getting Started 20

Sample 16. Passing preempted low-priority transactions

In this sample we consider another business strategy for the firm of Sample 15. When the
processing of regular order is preempted by urgent order, the firm gives that regular order to the company-
subcontractor. The input parameters and the task are the same like in the Sample 15.

By Handling OnPreempt event, we pass preempted transaction to another block.

procedure TForm1.ProcessingPreempt(Sender: TBlock; Trans: TTransaction);
begin
 Sender.PassTo(Subcontractor);
end;

The results of simulation are the following.

1. Regular orders
 Number of arrived orders: 45
 Number of executed orders: 25
 The average execution time: 12,22
 The deviation of execution time: 12,51
2. Urgent orders
 Number of arrived orders: 17
 Number of executed orders: 17
 The average execution time: 7,20
 The deviation of execution time: 7,98
3. Orders passed to subcontractor
 Number of orders: 13
__
 The average number of orders in processing: 0,69
 The maximal number of orders in processing: 1
 The loading of firm: 0,685
 The cost of executed orders: 590000,00

Getting Started 21

Sample 17. Preempting in TQueuePrty

In this sample we consider the third business strategy for the firm of Samples 15,16. According to
this strategy the firm limits the size of queue up to 3 orders. Urgent order may preempt the regular order
waiting in the queue. Also this strategy supposes preempting the processing.

Let’s imagine that firm process one order and keeps three other in the queue. We can consider two
variants of the new order arrival:

1. The new order is regular. In this case the firm passes the new order to a subcontractor.
2. The new order is urgent.
 2a: The queue contains three urgent orders. In this case new order will
 be passed to the subcontractor.
 2b: The queue contains at least one regular order. In this case urgent order will replace
 the regular one. The replaced regular order will be passed to the subcontractor.

The preempting service is used as well.

We implement the first variant by handling of OnRouting event of RegularOrders generator.

procedure TForm1.RegularOrdersRouting(Sender: TBlock; Trans: TTransaction);
begin
 if Queue.IsReadyToReceive(Trans) then
 Sender.PassTo(Queue)
 else
 Sender.PassTo(Subcontractor)
end;

We implement variant 2a in the same way.

procedure TForm1.UrgentOrdersRouting(Sender: TBlock; Trans: TTransaction);
begin
 if Queue.IsReadyToReceive(Trans) then
 Sender.PassTo(Queue)
 else
 Sender.PassTo(Subcontractor)
end;

In this procedure the function Queue.IsReadyToReceive(Trans) returns False only if the queue
contains three high-priority transactions, otherwise it returns True.

Considering the variant 2b, we can say that TQueuePrty is being preempted like a server. We pass
preempted transaction by handling OnPreempt event (Do not forget to set Preemptive property of
components Queue and Processing into True).

procedure TForm1.QueuePreempt(Sender: TBlock; Trans: TTransaction);
begin
 Sender.PassTo(Subcontractor);
end;

Getting Started 22

The results of simulation are the following.

1. Regular orders
 Number of arrived orders: 44
 Number of executed orders: 24
 The average execution time: 11,40
 The deviation of execution time: 10,52
2. Urgent orders
 Number of arrived orders: 17
 Number of executed orders: 17
 The average execution time: 4,55
 The deviation of execution time: 3,86
3. Orders passed to subcontractor
 Number of orders: 17
 Orders passed from queue: 2
 Orders passed from processing: 10
__
 The average number of orders in processing: 0,72
 The maximal number of orders in processing: 1
 The loading of firm: 0,72
 The average length of the queue: 1,0971
 The maximal length of the queue: 3
 The cost of executed orders: 580000,00

Getting Started 23

Sample 18. Preempting in TStoragePrty

In this sample we consider the forth business strategy for the firm of Samples 15,16,17.
This strategy is similar to the strategy of Sample 17 with preempting in TQueuePrty.

Let's imagine that firm is able to process several orders simultaneously. One employee can
process one order. If there is at least one urgent order in the queue and one regular order is on processing,
the urgent order will replace the regular one, which is being processed. The replaced regular order will be
passed to a subcontractor.

We simulate the processing with TStoragePrty component. The value of Capacity is the number
of employees.

We pass preempted transaction to the block Subcontractor by handling of OnPreempt event of
TStoragePrty.

procedure TForm1.ProcessingPreempt(Sender: TBlock; Trans: TTransPtr);
begin
 Sender.PassTo(Subcontractor);
end;

The results of simulation for three employees are the following.

1. Regular orders
 Number of arrived orders: 45
 Number of executed orders: 30
 The average execution time: 12,58
 The deviation of execution time: 8,79
2. Urgent orders
 Number of arrived orders: 17
 Number of executed orders: 16
 The average execution time: 8,59
 The deviation of execution time: 6,45
3. Orders passed to subcontractor
 Number of orders: 11
__
 The average number of orders in processing: 2,31
 The maximal number of orders in processing: 3
 The cost of executed orders: 620000,00

Getting Started 24

Sample 19. Multiple forms

What should we do if we have so many components in the model that we can not place them on
one form? We should place them on several forms. Before simulation run the internal control subsystem
will gather all aggregates into one united model.

In this sample we place the blocks of the model on different forms.

On Form2: generator Entrance, queue Hall;
On Form3: server Barber, terminator ExitDoor.

If we pass transaction to the block of another form, we need to do it this way.

procedure TForm2.HallRouting(Sender: TBlock; Trans: TTransaction);
begin
 Sender.PassTo(Form3.Barber);
end;

The same way we refer to MultiRand, which is placed in Form1.

procedure TForm2.EntranceExit(Sender: TBlock; Trans: TTransaction);
begin
 Sender.NextTime(Form1.MultiRand.Exponential(ArrivalTime));
end;

When we implement output of results, we also refer to the blocks placed in other forms.

procedure TForm1.Button1Click(Sender: TObject);
begin
 { Checking all input paramters }

 Model.Simulate(SimTime);
 Memo.Lines.Add('Usage of the barber:'+
 FormatFloat('0.00',Form3.Barber.Usage));
 Memo.Lines.Add('Average queue length: '+
 FormatFloat('0.00',Form2.Hall.AverageCount));
 Memo.Lines.Add('Maximal queue length: '+
 IntToStr(Form2.Hall.MaxCount));
 Memo.Lines.Add('Average waiting time: '+
 FormatFloat('0.00',Form2.Hall.AverageTime));
 Memo.Lines.Add('Deviation of waiting time: '+
 FormatFloat('0.00',Form2.Hall.DeviationTime));
 Memo.Lines.Add('Average waiting time / excluding zero times: '+
 FormatFloat('0.00',Form2.Hall.SAverageTime));
 Memo.Lines.Add('Deviation of waiting time/ excluding zero times: '+
 FormatFloat('0.00',Form2.Hall.SDeviationTime));
 Model.Reset;
 MultiRand.Reset;
end;

Do not forget to define Uses clause in implementation part of the unit.

In Sample19.pas: Uses Unit2,Unit3;

In Unit2.pas: Uses Sample19, Unit3;

In Unit3.pas: Uses Sample19;

