KSF controls

[image: image1.bmp]TDBCustomTreeView

TDBCustomTreeView component is a data-bound control derived from TCustomTreeView. It is an explorer-style window control that displays a hierarchical list of items, files and directories on a disk or such headings in a document. Each item has a label (so called entry name) and may have a button ('+' or '-' in square), and one or two images (so called entry image and status image). Also, each item may have a list of subitems associated with it, which are shown as the next level entries in the tree.

This component has features of a data set navigator, a data-field editor and a lookup list at the same time, because it loads entries from a data set, allows the user to change an entry name (in-place editing). The control supports changing an entry's parent by dragging the entry to another entry. Navigating over the data set moving the data set to the entry's source record is also possible. It also reflects external record changing and synchronizes entry with the source record.

A data set to be used with this control has to match following conditions:

The data set should have:

· A text field, which can be used as the entry’s name source;

· A primary index (a set of fields, that uniquely identifies records);

· A parent-child one-to-many relation on itself;

· A parent index (a set of fields, that are involved in the parent-child relation as a foreign key).

Fields from the primary index (and hence in the parent index) should be of an integer type.

There should be a criteria that allows to distinct root entries (entries those have no parents) those will be displayed at the topmost tree level.

The data set may have:

· An integer field, that can be used as the image index;

· An integer field, that can be used as the status index.

The topmost tree level (root level) in the TDBCustomTreeView consists of objects that have no parent, (for instance, items, containing NULL-value in the parent index fields). The user may expand an entry by clicking the '+' button, double-clicking the entry's name or picture, or by selecting an item and pressing '+' key. Expanding an entry causes the entry's child loading, unless the children have already been loaded. Loaded entries remain in the tree until entire tree is reloaded. To display a recently loaded entry with a proper button, the control looks for its children and, if there are any, loads them all, or just the first one, depending on LoadStyle property.

A TDBCustomTreeView component uses one data source. The referred data set can be a table data set only. This data set should match listed above condition. The table should have an index property (IndexName, or IndexFieldName) set according to the primary index fields, it should have fields, required for using the DataSource as the master source for the same data set.

Public properties

Table 1
Name
Type
Comments

DataSource
TDataSource
Specifies the data source that contains loadable entries. TDBCustomTreeView emulates links between a “root” instance of the data source and “normal” instance of that source as 1 to 1 (if there are two equal objects in both instances) or 1 to 0 (if normal instance doesn’t contain corresponding object).

DefImage
Integer
An index that is used to choose a proper image for a node if the ImageIDField is not set or the data is Null.

DefStatus
Integer
An index that is used to choose a proper state image for a node if the StatusIDField is not set or its data is Null.

ImageIDField
string
Specifies field name of the data set to be used for loading image IDs.

InsertMode
TInsertMode
Specifies a type of initializing of parent reference fields in the data set.

ImAddChild. A node that is being created becomes a child for the current one.

ImAddSibling. A new node is set to be a sibling one for the current node.

ImAddRootNode. The tree creates a node as a root entry.

ImAddFromTable. Parent link of a node being created is got from the data set.

LinksFields
string
An expression that consists of one or several link statements delimited by a semicolon. Each statement contains names of two fields: parent reference field and key field with an arrow double-char: ‘->’. A parent reference field points to a record’s parent that is defined by a key. For example: ‘ParentID->ID;ParentCountryID->CountryID’.

LoadStyle
TLoadStyle
Specifies how a node’s children are loaded when the node is being displayed.

LsExplorer. Child nodes are not loaded when the node is displayed. A plus mark button is shown after the node is displayed (after expanding node’s parent).

LsOneAhead. When a node is displayed the tree looks ahead for at least one node’s child. If so a plus mark button will be displayed.

LsAllAhead. When a node is displayed the tree loads all its children. A plus button will be available if there are any child nodes.

NameField
string
Specifies a field used to load entries' names from

RootKey
string
An expression that defines a condition to separate top parent nodes from the data set.

StatusIDField
string
Specifies field name of the data set to be used for loading status IDs

Events

Table 2
Name
Comments

AfterInsert(Sender: TObject; Node: TTreeNode)
It is called immediately after node inserting. A Node parameter is a node that was inserted.

AfterNodesLoading(Sender: TObject)
Is called, when the entries loading done to allow the client to restore regular event handling

BeforeChildInsert(Sender: TObject; Parent: TTreeNode; Var AllowInsert: Boolean)
Is called when a record is inserted into the data set. The event is called if the proper node is created as a child node (if InsertMode is imAddChild, imAddRoot, imAddFromTable). A parent parameter specifies a node the tree adds a new child to. An AllowInsert variable allows or disallows to add a new node.

BeforeNodeInsert(Sender: TObject; Parent: TTreeNode; Var AllowInsert: Boolean)
Is called when a record is inserted into the data set. The event is called if the proper node is created as a sibling node (if InsertMode is imAddSibling). Description of the parameters is similar to the previous topic.

BeforeNodesLoading(Sender: TObject)
Is called before loading entries, to allow the client avoid handling some unexpected events that may be caused by the data set positioning)

OnNodeSetup(Sender: TObject; ANode: TtreeNode; ADataSet: TDataSet)
An event that is called each time the tree installs a node. Installing means reading or re-reading the node from the data set. Parameters: ANode — the node, ADataSet — a data set the node is read from.

Public methods

Table 3
Name
Comments

ChangeParent(ASonNode, AparentNode: TTreeNode)
Changes parent of ASonNode to AParentNode.

ClearTree
Deletes all the nodes from the tree.

InsertChild
Inserts a child node to a current one

InsertDefault
Inserts a node using parent referencing from the data set

InsertRootNode
Inserts a root node

InsertSibling
Inserts a sibling node to a current one

ReloadBranch(ANode: TDBTreeNode)
Reloads ANode’s branch

ReloadTree
Reloads the tree’s content.

[image: image2.bmp]TDBTreeView

TDBTreeView is a delphi control derived from the TDBCustomTreeView. The control adds no new features to that. It only publishes all the above mentioned public properties.

[image: image3.bmp]TDBCustomListView

TDBCustomListView component is a data-bound control, derived from TCustomListView. It is an explorer-style window that display a list of items with images. Each item has a label (so called entry name) and may have one or two images (so called entry image and status image) and data in some additional columns.

This component has features of a data set navigator, a data field editor and a lookup list at the same time, because it loads entries from a data set, allows the user to change an entry name (in-place editing). The control supports navigating over the data set by moving the data set's cursor to the entry's source record. It also reflects external record changing and synchronizes entry with the source record.

A data set, to be used with this control, has to match following conditions:

The data set should have:

· A text field that can be used as the entry name source.

· Fields for the additional columns.

· A primary index (a set of fields, that uniquely identifies records).

Fields from the primary index (and, so in the parent index) should be of an integer type.

The data set may have:

· An integer field, that can be used as the image index.

· An integer field, that can be used as the status index.

The component loads entries from the data set. It processes all records, so this control is not appropriate for data sets with huge number of records. Entries are loaded when the data set is being opened and are removed when the data set is being closed.

Public properties

Table 4
Name
Type
Comments

ColumnsFields
String
An expression that consists of one or several column statements delimited by a semicolon. Each statement contains field name whose value will be presented in the detail columns (in vsReport list view style).

DataSource
TDataSource
Specifies the data source that contains loadable entries.

DefImage
Integer
An index that is used to choose a proper image for an item if the ImageIDField is not set or the data is Null.

DefStatus
Integer
An index that is used to choose a proper state image for an item if the StatusIDField is not set or its data is Null.

ImageIDField
String
Specifies field name of the data set to be used for loading image IDs.

KeyFields
String
An expression written in the same manner as a ColumnsFileds. The group of fields will uniquely identify each record in the data set.

NameField
String
Specifies a field used to load entries' names from.

ObjectMenu
TPopupMenu
Refers to a popup menu that can be called as well as a menu specified in the PopupMenu property. But ObjectMenu is shown to the user when he clicks right mouse button on an item but PopupMenu is activated when the click happened on an empty surface of the list.

StatusIDField
String
Specifies field name of the data set to be used for loading status IDs.

Events

Table 5
Name
Comments

AfterItemsLoading(Sender: TObject)
Is called, when the entries loading done to allow the client to restore regular event handling.

BeforeItemsLoading(Sender: TObject)
Is called before loading entries, to allow the client avoid handling some unexpected events that may be caused by the data set positioning).

OnItemSetup(Sender: TObject; AItem: TListItem; ADataSet: TDataSet)
An event that is called each time the list installs an item. Installing means reading or re-reading the item from the data set. Parameters: AItem — the item, ADataSet — a data set the item is read from.

Public methods

Table 6
Name
Comments

ClearList
Deletes all the items from the list.

Reload
Reloads the list’s content.

[image: image4.bmp]TDBListView

TDBListView is a delphi control derived from the TDBCustomListView. The control adds no new features to the ancestor. It only publishes all the ancestor’s public properties.

[image: image5.bmp]TCustomDBImageList

The TCustomDBImageList is a regular component, descendant of TImageList. It is intended to use a data source (TTable and TQuery) for image loading. The data set, to be used with this component should satisfy following conditions:

It should have a BLOB field, containing BMP images.

It should have a primary index - an integer field (so called ID-field), that contains positive numbers (or zero) and uniquely identifies records.

Loading data from the table into the list storage is performed corresponding to the following rules:

TCustomDBImageList loads image into the storage position, specified by the its ID-field. In other words, ID-field defines a cell index in the list where corresponding to that ID image is stored. The ID values are supposed to be zero-based, continuous numbers.

If there are some list items, that didn’t get any images from the table, TCustomDBImageList fills them by template images. A template image is a rectangle of the current window worksheet color with the solid pattern.

LIMITATION: this component keeps images as an array. Therefore, it is recommended to keep ID values as small, and as much continuous as possible. Avoiding this rule will cause the component to reserve a lot of memory for images with missing IDs.

Public properties

Table 7
Name
Type
Comments

DataSet
TDataSet
Specifes the source data set, to be used for retrieving images.

IDFieldName
String
Specifies field name to be used as ID, is used to access an image. The fields of following types theoretically can be ID's: ftSmallint, ftInteger, ftWord, ftAutoInc.

ImageFieldName
String
Specifies field name to be used for picture loading (allowed pictures are bitmaps only). The field should be one of following types: ftBlob, ftMemo, ftGraphic, ftFmtMemo, ftParadoxOle, ftDBaseOle, ftTypedBinary.

Public methods

Table 8
Name
Comments

Reset
Removes all entries from the list

Refresh
Updates all changes of the data source, i.e. fully reloads its content from the linked data source

TDBImageList

TDBImageList is a delphi control derived from the TCustomDBImageList. The control adds no new features to the ancestor. It only publishes all the ancestor’s public properties.

TDBBitCheckBox

TDBBitCheckBox is a data aware control that allows the user to select or deselect a single logical value that represents content of one or several bits in a data field. The control is useful if a developer wants a field to hold more than one boolean value. In that case is stored in one bit of the field. If a developer wants to control some bits of the field simultaneously it is also possible by specifying a proper value for the Mask property.

Behavior of the control is the same as the standard DBCheckBox has: if the field’s data can be interpreted as true the box control is checked and vise versa. The check box is grayed if the field is empty. There is one new feature implemented in the bit check box. If the control has multiple bit data scheme and they are different the check box will be grayed.

Published properties

Table 9
Name
Type
Comments

Mask
Longint
Specifes the mask for bit scheme. Set bits in the mask value means that the proper bits in the field data will be taken into account to form the control’s appearance.

ValueChecked
String
Specifies a text string to present a true value. The string will be used if the linked data field is a text field.

ValueUnchecked
String
Specifies a text string to present a false value. The string will be used if the linked data field is a text field.

TDBValueLookupCombo

TDBValueLookupCombo is a descendant of TCustomComboBox. TDBValueLookupCombo is a combo box that represents a set of field values by its mnemonic readable names.

Use TDBValueLookupCombo to allow the user to change the value of a field on the current record in a dataset either by selecting an item from a list or by typing in the edit box part of the control. An associated value of the selected item or of entered text becomes the new value of the field if the database combo box’s ReadOnly property is False. As TDBComboBox the combo box can be customized to enable or disable typing in the edit region of the control, to display the list as a drop down or as a permanently displayed list, to sort the items in the list as well.

Published properties

Table 11
Name
Type
Comments

DataField
string
DataField identifies the field from which the combo box displays data.

Set DataField to specify which field is represented by the combo box. The value combo box displays the current value of this field, and allows the user to set the value of this field on the current record. The data set the field is located in is specified by the DataSource property.

DataSource
TDataSource
DataSource links the control to a data set.

Specify the data source component that identifies the data set the data is found in. To allow the combo box to represent the data for a field, both the DataSource and the DataField properties must be set.

LookupValues
TStrings
LookupValues property contains the strings that appear in the list of the value lookup combo box.

Use this to specify the values the user can choose from. Because Items is an object of type TStrings, you can add, delete, insert, and move items using the Add, Delete, Insert, Exchange, and Move methods of the TStrings object. Associated with the strings values are stored in the Objects property of the list. These values will substitute the strings in the field.

Note:

The associated values can be accessed only as of TObject type. You should convert it to Integer.

The values are not yet accessible at design time, so the developer should set the property at run time.

ReadOnly
Boolean
ReadOnly determines if the user can change the value of the field.

Set ReadOnly to specify whether the control should be used for representing data only. If ReadOnly is True, the combo box can only be used to show the associated value of the field’s data on the current record. If ReadOnly is False, the user can use the combo box to edit the field’s value.

Events

Table 12
Name
Comments

OnDataChanged(Sender: TObject)
The OnDataChange event occurs when the current record has been edited and the application moves from one field or record to another in an associated dataset.

