TCOMM_32

A Serial Port Component for Delphi 2 & 3

Amber Computer Systems Inc.

14197 74 Ave.

Surrey, BC

V3W 7N2

CANADA�

Sales: +1 604 599-9279

FAX: +1 604 599-9261

Support: +1 604 599-9167

E-mail: sales@acsi.bc.ca

WEB Page: www.acsi.bc.ca

�
Copyright Claimed 1994, 1995, 1996, 1997

All material presented remains the property of Amber Computer Systems Inc. (Amber). Material presented is for evaluation purposes only unless purchased from Amber.

Ownership

Ownership of any designs and programs remains with ACSI. An unlimited license to use all programs and procedures developed is granted to the purchasing location upon purchase of the work or software from Amber. Installation at a second or any additional location or system requires express written consent and additional licensing for which there will be an additional fee payable to Amber.

Disclaimer & Warranty

ACSI makes no claims for fitness of purpose whatsoever. All responsibility for approving the design and deciding fitness for use is your responsibility. ACSI warrants components for a period of 90 days from sale to the customer. Any modifications to Amber Software by you invalidates the warranty.

Exclusions

ACSI does not warrant compilers, database systems, or computer languages etc. even when supplied by ACSI. All of these systems are warranted by their manufacturers. Should you change the system in any fashion without the express consent of ACSI, ACSI may charge additional fees for repair of any effects these changes may have, and may choose not to honor any warranty.

Documentation

Documentation is supplied “as is”. Although Amber makes every effort to maintain the documentation errors may be present from time to time due to upgrades and modifications. Please see the “Readme” files included with our software for the latest information.

Reverse Engineering & Non-Competition

If you evaluate, use or purchase this software you agree not to disassemble, reverse engineer or otherwise use any material or source code to produce a competitive product.

Duplication, Resale and Royalties

This software and the accompanying manual may not be duplicated or re-sold with out the express written consent of Amber. Amber does not charge royalties where its software is included as part of a larger work. Purchasers of our software may distribute the components freely when they are included as part of a larger work.

Governing Law

Any disputes or legal matters arising from the use, sale or distribution of this product shall be dealt with according to the laws of British Columbia, Canada, and any purchaser or user of Amber products must agree to these terms.

Thursday, May 08, 1997

�
Table of Contents

� TOC \o "1-5" �Table of Contents	� GOTOBUTTON _Toc393512190 � PAGEREF _Toc393512190 �4��

CommPort Component v. 1.4 (32-bit version).	� GOTOBUTTON _Toc393512191 � PAGEREF _Toc393512191 �7��

Properties:	� GOTOBUTTON _Toc393512192 � PAGEREF _Toc393512192 �7��

Baud	� GOTOBUTTON _Toc393512193 � PAGEREF _Toc393512193 �7��

ByteSize	� GOTOBUTTON _Toc393512194 � PAGEREF _Toc393512194 �7��

ComPort	� GOTOBUTTON _Toc393512195 � PAGEREF _Toc393512195 �7��

MCTSOn	� GOTOBUTTON _Toc393512196 � PAGEREF _Toc393512196 �7��

MDSROn	� GOTOBUTTON _Toc393512197 � PAGEREF _Toc393512197 �7��

MRingOn	� GOTOBUTTON _Toc393512198 � PAGEREF _Toc393512198 �8��

MRLSD	� GOTOBUTTON _Toc393512199 � PAGEREF _Toc393512199 �8��

Parity	� GOTOBUTTON _Toc393512200 � PAGEREF _Toc393512200 �8��

ParityEnable *	� GOTOBUTTON _Toc393512201 � PAGEREF _Toc393512201 �8��

RunRegardlessOS	� GOTOBUTTON _Toc393512202 � PAGEREF _Toc393512202 �8��

ReadTotalTimeOut	� GOTOBUTTON _Toc393512203 � PAGEREF _Toc393512203 �8��

StopBits	� GOTOBUTTON _Toc393512204 � PAGEREF _Toc393512204 �8��

Use_Settings	� GOTOBUTTON _Toc393512205 � PAGEREF _Toc393512205 �9��

Version	� GOTOBUTTON _Toc393512206 � PAGEREF _Toc393512206 �9��

WComID	� GOTOBUTTON _Toc393512207 � PAGEREF _Toc393512207 �9��

Additional Property Settings for the Expert User	� GOTOBUTTON _Toc393512208 � PAGEREF _Toc393512208 �9��

_AbortOnError	� GOTOBUTTON _Toc393512209 � PAGEREF _Toc393512209 �9��

_AbortOnError	� GOTOBUTTON _Toc393512210 � PAGEREF _Toc393512210 �9��

_CTSTxHandShake	� GOTOBUTTON _Toc393512211 � PAGEREF _Toc393512211 �9��

_DSRSensitivity	� GOTOBUTTON _Toc393512212 � PAGEREF _Toc393512212 �9��

_DSRTxHandShake	� GOTOBUTTON _Toc393512213 � PAGEREF _Toc393512213 �9��

_DTRHandShake	� GOTOBUTTON _Toc393512214 � PAGEREF _Toc393512214 �9��

_NullStrip	� GOTOBUTTON _Toc393512215 � PAGEREF _Toc393512215 �10��

_ParityErrSub	� GOTOBUTTON _Toc393512216 � PAGEREF _Toc393512216 �10��

_ParityReplChar	� GOTOBUTTON _Toc393512217 � PAGEREF _Toc393512217 �10��

_RTSHandShake	� GOTOBUTTON _Toc393512218 � PAGEREF _Toc393512218 �10��

_RxCharEvent	� GOTOBUTTON _Toc393512219 � PAGEREF _Toc393512219 �10��

_RxDTRHndShake	� GOTOBUTTON _Toc393512220 � PAGEREF _Toc393512220 �10��

_RxRTSHndShake	� GOTOBUTTON _Toc393512221 � PAGEREF _Toc393512221 �10��

_RxEOFChar	� GOTOBUTTON _Toc393512222 � PAGEREF _Toc393512222 �10��

_RxEventChar	� GOTOBUTTON _Toc393512223 � PAGEREF _Toc393512223 �11��

_RTSDisabledAtInit	� GOTOBUTTON _Toc393512224 � PAGEREF _Toc393512224 �11��

_TxContinueOnXoff	� GOTOBUTTON _Toc393512225 � PAGEREF _Toc393512225 �11��

WCOMID	� GOTOBUTTON _Toc393512226 � PAGEREF _Toc393512226 �11��

_XOnChar	� GOTOBUTTON _Toc393512227 � PAGEREF _Toc393512227 �11��

_XOffChar	� GOTOBUTTON _Toc393512228 � PAGEREF _Toc393512228 �11��

_XOnXOff	� GOTOBUTTON _Toc393512229 � PAGEREF _Toc393512229 �11��

_XOnRxLimit	� GOTOBUTTON _Toc393512230 � PAGEREF _Toc393512230 �11��

_XOffRxLimit	� GOTOBUTTON _Toc393512231 � PAGEREF _Toc393512231 �11��

Events	� GOTOBUTTON _Toc393512232 � PAGEREF _Toc393512232 �12��

OnReceive	� GOTOBUTTON _Toc393512233 � PAGEREF _Toc393512233 �12��

Methods:	� GOTOBUTTON _Toc393512234 � PAGEREF _Toc393512234 �12��

Public Methods Procedures & Functions	� GOTOBUTTON _Toc393512235 � PAGEREF _Toc393512235 �12��

function CloseComm(Value:Word):Boolean;	� GOTOBUTTON _Toc393512236 � PAGEREF _Toc393512236 �12��

function CommError: integer;	� GOTOBUTTON _Toc393512237 � PAGEREF _Toc393512237 �12��

Procedure SetMCDTR(Value:Boolean);	� GOTOBUTTON _Toc393512238 � PAGEREF _Toc393512238 �12��

Procedure SetMCRTS(Value:Boolean);	� GOTOBUTTON _Toc393512239 � PAGEREF _Toc393512239 �12��

Procedure SetMCXOn(Value:Boolean);	� GOTOBUTTON _Toc393512240 � PAGEREF _Toc393512240 �12��

Procedure SetMCBreak(Value:Boolean);	� GOTOBUTTON _Toc393512241 � PAGEREF _Toc393512241 �12��

procedure Open;	� GOTOBUTTON _Toc393512242 � PAGEREF _Toc393512242 �12��

function RxFlush : Boolean;	� GOTOBUTTON _Toc393512243 � PAGEREF _Toc393512243 �12��

function WriteCommString(StrOut:String):boolean;	� GOTOBUTTON _Toc393512244 � PAGEREF _Toc393512244 �12��

function TxFlush : Boolean;	� GOTOBUTTON _Toc393512245 � PAGEREF _Toc393512245 �12��

Private Methods, Procedures & Functions	� GOTOBUTTON _Toc393512246 � PAGEREF _Toc393512246 �13��

procedure SetBinaryMode(Value:Boolean);	� GOTOBUTTON _Toc393512247 � PAGEREF _Toc393512247 �13��

procedure SetParityCheck(Value:Boolean);	� GOTOBUTTON _Toc393512248 � PAGEREF _Toc393512248 �13��

procedure SetCTSTx(Value:Boolean);	� GOTOBUTTON _Toc393512249 � PAGEREF _Toc393512249 �13��

procedure SetDSRTx(Value:Boolean);	� GOTOBUTTON _Toc393512250 � PAGEREF _Toc393512250 �13��

procedure SetDTRInit(Value:Boolean);	� GOTOBUTTON _Toc393512251 � PAGEREF _Toc393512251 �13��

procedure SetXOnOff(Value:Boolean);	� GOTOBUTTON _Toc393512252 � PAGEREF _Toc393512252 �13��

procedure setPESubOn(Value:Boolean);	� GOTOBUTTON _Toc393512253 � PAGEREF _Toc393512253 �13��

procedure SetNullStrip(Value:Boolean);	� GOTOBUTTON _Toc393512254 � PAGEREF _Toc393512254 �13��

procedure SetRxChEv(Value:Boolean);	� GOTOBUTTON _Toc393512255 � PAGEREF _Toc393512255 �13��

procedure SetRxDTRFlow	� GOTOBUTTON _Toc393512256 � PAGEREF _Toc393512256 �13��

procedure SetRxRTSFlow(Value:Boolean);	� GOTOBUTTON _Toc393512257 � PAGEREF _Toc393512257 �14��

Structures	� GOTOBUTTON _Toc393512258 � PAGEREF _Toc393512258 �14��

CommStat	� GOTOBUTTON _Toc393512259 � PAGEREF _Toc393512259 �14��

How to use the CommPort component.	� GOTOBUTTON _Toc393512260 � PAGEREF _Toc393512260 �15��

Demo version notes:	� GOTOBUTTON _Toc393512261 � PAGEREF _Toc393512261 �16��

Version Changes and Bug Fix History	� GOTOBUTTON _Toc393512262 � PAGEREF _Toc393512262 �17��

Version 1.0 - Version 1.1	� GOTOBUTTON _Toc393512263 � PAGEREF _Toc393512263 �17��

Version 1.1 - Version 1.2	� GOTOBUTTON _Toc393512264 � PAGEREF _Toc393512264 �17��

Version 1.2 - Version 1.3	� GOTOBUTTON _Toc393512265 � PAGEREF _Toc393512265 �17��

Version 1.3 - Version 1.4	� GOTOBUTTON _Toc393512266 � PAGEREF _Toc393512266 �17��

Implementation Guide	� GOTOBUTTON _Toc393512267 � PAGEREF _Toc393512267 �18��

Operation of TCOMM with MODEMS	� GOTOBUTTON _Toc393512268 � PAGEREF _Toc393512268 �18��

Operation of TCOMM with Peripherals	� GOTOBUTTON _Toc393512269 � PAGEREF _Toc393512269 �18��

Delphi 2.x Component Installation	� GOTOBUTTON _Toc393512270 � PAGEREF _Toc393512270 �18��

Delphi 3.x Component Installation	� GOTOBUTTON _Toc393512271 � PAGEREF _Toc393512271 �19��

Demonstration Program Installation.	� GOTOBUTTON _Toc393512272 � PAGEREF _Toc393512272 �19��

Serial Port Wiring Configuration	� GOTOBUTTON _Toc393512273 � PAGEREF _Toc393512273 �20��

DE9 Connector	� GOTOBUTTON _Toc393512274 � PAGEREF _Toc393512274 �20��

DB25 Connector	� GOTOBUTTON _Toc393512275 � PAGEREF _Toc393512275 �20��

Null MODEM Cable	� GOTOBUTTON _Toc393512276 � PAGEREF _Toc393512276 �21��

Test Plug (25 Pin Plug)	� GOTOBUTTON _Toc393512277 � PAGEREF _Toc393512277 �21��

Typical Serial Port Configuration	� GOTOBUTTON _Toc393512278 � PAGEREF _Toc393512278 �21��

ASCII Value Table	� GOTOBUTTON _Toc393512279 � PAGEREF _Toc393512279 �22��

��
CommPort Component v. 1.4 (32-bit version).

The CommPort component belongs to the class TComponent. The CommPort component reads from and writes information to the serial port. The CommPort component is a multithreaded component having a separate thread for reading the comport. It was developed for 32 bit Windows, and has been tested with Windows NT 3.51, Windows NT 4.0 WS and Windows 95 - both A&B versions.

Properties:

The comport component has following properties:

Baud

BAUD is property which sets the Baud Rate for the port. The Object Inspector’s dropdown list contains standard values, such as 1200, 2400, 4800, etc., etc., but you can assign any value suitable for your application. It sets both read and write speed for the CommPort.

ByteSize

The Byte Size Can be one of the following: _6, _7, _8. The Byte size is determined either by your preference, or the requirements of the device with which you are communicating. The six bit data format is almost never used any more.

ComPort

This property sets the Comport to be activated. Object Inspector’s Dropdown list contains: Com1, Com2, Com3, Com4, but any port present in your system can be assigned. (This change is specifically for people using DigiBoard or other systems with many Communication Ports.)

MCTSOn

This is a read only Property which shows the state of the Clear to Send Line. A MODEM usually receives the RTS (Request to Send) line from the PC and returns it as Clear to Send (CTS) if the MODEM is able to transmit data. The PC can then send data if handshaking is enabled. The RTS-CTS combination of handshaking is normally used for synchronization of data transmission.

MDSROn

This is a read only Property which shows the state of the Data Set Ready Line. A MODEM usually receives the DTR (Data Terminal Ready) line from the PC and returns it as Data Set Ready (DSR) if the MODEM is has line power. The PC can then send data if handshaking is enabled. The DTR-DSR combination of handshaking is normally used for determining general MODEM Ready Status

MRingOn

This is a read only Property which shows the state of the Ring Line. A MODEM sends the RING signal from the MODEM to the PC when it has been called. You typically also receive a RING string on the receive line.

MRLSD

This is a read only Property which shows the state of the Carrier Detect or Receive Line Signal Detect as it is usually now called. A MODEM sets the RLSD line when the MODEM is ready, and synchronization with the remote MODEM has been established.

Parity

Parity can be one of the following: None, Odd, Even, Mark, Space. Many mainframe communication devices require the 7 bits, Even Parity, Parity parameters to be enabled.

ParityEnable *

Boolean Set to true if you want the parity bit sent on transmit and checked on receive.

RunRegardlessOS

Boolean. The TCOMM component reads the current OS and Version, and, depending on the platform, adjusts itself. Two basic platforms are supported: Windows95 and Windows NT. This version of the Component was developed under the Windows NT 3.51 and Windows 95 4.0 and Windows NT 4.0. If your operating system is equal or higher, set this property to False. We consider it the responsibility of the operating system developers, to support compatibility with previous versions of the OS, and by default, we presume any future OS will be fully compatible with our component. Setting this property to True allows the component to run if the operating system version is less then Windows NT 3.51 or Windows 95 4.0. However we can not guarantee the results.

ReadTotalTimeOut

Integer. Sets delay on reading event. ReadTotalTimeOut=1000 means that a delay of one second is introduced. As the expected maximum delay between receiving characters. Example: Suppose you have ReadTotalTimeOut=500 and you send the “AT” command to the modem. If as an answer you received “AT” only, then increase ReadTotalTimeOut till you get the expected answer of “OK”.

StopBits

Can be _1 or _1_5 or _2. Originally, this bit was required for mechanical delay in the receiving mechanism. It is now set to 1 bit over 90% of the time. If you have software or mechanical delays in the system which are causing errors, you should set it to 2 bits. The 1.5 BIT setting actually sets the port to 1 stop bit.

Use_Settings

Boolean. If False permits the component to use system settings of the comport and ignore all settings of the properties where the name begins with the “_”character (e.g. _XOnChar, _XOffChar etc.). If you want to modify the settings of these properties, set this property to True. This property is now disabled above version 1.3.

Version

A read only variable which returns the current version number.

WComID

Comport handle. Read only.

Additional Property Settings for the Expert User

Use these settings to control Hardware & Software Handshaking modes as well as Character Substitution for Parity errors.

_AbortOnError

If True the current write or read operation has an error the operation will abort and not send or receive the remaining items in the buffers or queues.

_AbortOnError

If True the current write or read operation has an error the operation will abort and not send or receive the remaining items in the buffers or queues.

_CTSTxHandShake

Boolean. Sets handshake true for CTS when transmitting. Setting this property true will allow automatic handshaking. Transmission will be suspended if the MODEM sets CTS low. (See fOutxCtsFlow in the DCB structure)

_DSRSensitivity

Normally set to False. When set to true, characters appearing at the receive data line will be ignored. This function is usefull if you have noisy telephone lines or other special handshaking circumstances.

_DSRTxHandShake

Boolean. Sets handshake true for DSR when transmitting. Setting this property true will allow automatic handshaking. Transmission will be suspended if the MODEM sets DSR low. (See fOutxDsrFlow in the DCB structure)

_DTRHandShake

Numeric Value defined by the set of conditions in TDTRVal. TDTRVal is an enumerated set which is used to set a 2 bit flag in the DCB header structure. In the object inspector, you will make one of the following choices:

 DTRDisable disable the DTR Handshaking. Remember that DTR is an Output line from the PC.

DTREnable: Enable the DTR line and leave it on.

DTRHandshake: Enable the DTR handshaking. You may not use the (implemented as the SetMCDTR procedure) EscapeComm function while this option is in use.

_NullStrip

Boolean. When true removes the null characters from the receive stream. Use with extreme caution as all data is now considered as BINARY, and hence the “00h” characters are likely useful data.

_ParityErrSub

Boolean. Allows Substitution of any characters with a parity error. The character substituted is defined in _ParityReplChar and is usually set as the ~ character (Tilde).

_ParityReplChar

Char. Value of the character to be substituted for a character received with a Parity Error (PE). Often set to a “~”.

_RTSHandShake

Numeric Value defined by the set of conditions in TRTSVal. TRTSVal is an enumerated set which is used to set a 2 bit flag in the DCB header structure. In the object inspector, you will make one of the following choices:

 RTSDisable: disable the RTS Handshaking line on open, and leave it disabled. Remember that DTR is an Output line from the PC.

RTSEnable: enable the RTS line on port open, and leave it on.

RTSHandshake: enable the RTS line, when the typeahead buffer is less than half full. Lower the RTS line when the type ahead buffer is more than ¾ full. You may not use the EscapeComm (implemented as SetMCRTS procedure) function when this option is used.

RTSToggle: enable the RTS line, and set it high if there are characters to Transmit.

_RxCharEvent

Boolean.

_RxDTRHndShake

A Boolean property which enables the hardware handshaking for the DTR line.

_RxRTSHndShake

A Boolean property which enables the hardware handshaking for the RTS line.

_RxEOFChar

Byte. This property contains the EOF character value. Again, this property would not typically be used for 32 bit Windows version of the communications port component.

_RxEventChar

Byte. Specifies the value of the character used to signal an event.

_RTSDisabledAtInit

This is a Boolean property. Some handshaking schemes will require that handshaking lines be off (-12V) when the port begins to function. The handshaking is then turned on under program control.

_TxContinueOnXoff

Normally set to true. When Set to False, transmission of Data will stop when your receive queue is full - presumably allowing faster processing.

WCOMID

Returns the Handle to the Com Port. Read Only Property. (It does not appear in the Object Inspector.)

_XOnChar

Byte. Value of the xOnChar. (Usually the CHR(17) character.

_XOffChar

Byte. Value of the xOffChar. (Usually the CHR(19) character.

_XOnXOff

Boolean. When true, the Port will respond to Xon and Xoff characters in the receive stream, and quit or resume transmitting as required.

_XOnRxLimit

Word.Value of the XOnRx limit. You can specify the minimum number of characters in the receive queue before the Xon (resume) character is sent.

_XOffRxLimit

Word.Value of the XOffRx limit. You can specify the maximum number of characters in the receive queue before the XOff (halt) character is sent.

Note: - Changes will not be visible to the comport unless you close the component (if it was opened), change the required property, then reopen the component.

�
Events

OnReceive

Occurs when the component receives data from the Comport.

Methods:

Public Methods Procedures & Functions

function CloseComm(Value:Word):Boolean;

Closes the comport. The return Value is a boolean. If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

function CommError: integer;

Returns the last error code and refreshes the commstat structure.

Procedure SetMCDTR(Value:Boolean);

Sets the DTR line true (12V) if Value is true otherwise sets it low (-12V) if Value is False .

 Procedure SetMCRTS(Value:Boolean);

Sets the RTS line true (12V) if Value is true otherwise sets it low (-12V) if Value is False .

Procedure SetMCXOn(Value:Boolean);

Force the Com Port to act like an XON was received if Value is true , Xoff if False

Procedure SetMCBreak(Value:Boolean);

 Suspends or breaks the Transmission of Data if set true, Clears or BREAKS if Value is False

procedure Open;

This Method opens the comport for communication, and writes all the values to the DCB structure - setting the BAUD rate and communications parameters..

function RxFlush : Boolean;

Flushes the Incoming buffer. If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

function WriteCommString(StrOut:String):boolean;

Writes a string to the comport. If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

function TxFlush : Boolean;

Flushes the Outgoing buffer. If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Private Methods, Procedures & Functions

procedure SetBinaryMode(Value:Boolean);

Sets the Binary mode on and off by changing DCB flags. The Win32 API does not support non binary mode transfers, so this function should be TRUE. Trying to use FALSE will not work.

procedure SetParityCheck(Value:Boolean);

Enables and disables the parity check.

procedure SetCTSTx(Value:Boolean);

Sets OutxCTSFlow flag of the DCB. Specifies whether the CTS (clear-to-send) signal is monitored for output flow control. If TRUE and CTS is turned off, output is suspended until CTS is sent again. This handshaking is handled automatically by the UART I if it is enabled.

procedure SetDSRTx(Value:Boolean);

Sets OutxDSRFlow flag of the DCB. Specifies whether the DSR (data-set-ready) signal is monitored for output flow control. If TRUE and DSR is turned off, output is suspended until DSR is sent again. This handshaking is handled automatically by the UART - if it is enabled.

procedure SetDTRInit(Value:Boolean);

Sets DTR enabled or disabled when the CommPort is first initialized. This is used when the lines must be controlled by the program. It is usually used for specialized handshaking on specialized hardware devices.

procedure SetXOnOff(Value:Boolean);

Sets Rx & Tx XON/XOFF bit 1&2. Specifies whether transmission stops when the input buffer is full and the driver has transmitted the XoffChar character. If TRUE, transmission continues after the input buffer has come within XoffLim bytes of being full and the driver has transmitted the XoffChar character to stop receiving bytes. If FALSE, transmission does not continue until the input buffer is within XonLim bytes of being empty and the driver has transmitted the XonChar character to resume reception.

procedure setPESubOn(Value:Boolean);

Sets PEChar.

procedure SetNullStrip(Value:Boolean);

Specifies whether null bytes are discarded. If Value is TRUE, null bytes are discarded when received.

procedure SetRxChEv(Value:Boolean);

Sets ChEvt flag.

procedure SetRxDTRFlow

Sets RxDTRFlow flag of the DCB.

procedure SetRxRTSFlow(Value:Boolean);

Sets RxRTSFlow on. This will allow the PC to establish hardware flow control with a MODEM or other device. The remote device - such as a MODEM typically responds by sending a CTS signal to the PC.

Structures

To save time, you can use these structures to define variables in your own program.

TParity = (None,Odd,Even, Mark,Space);

TByte = (_6,_7,_8);

TStop = (_1,_1_5,_2);

TRTSval = (RTSDisable,RTSEnable,RTSHandShake, RTSToggle);

TDTRval = (DTRDisable,DTREnable,DTRHandShake);

Var

DCB:TDCB;

CommStat

Comport status structure. Read it after a CommError method call. It is Read only. To get more information about CommStat structure see the ComStat chapter in any Win32 programmer’s reference.

For complete information on the DCB structure, see the Win32 Programmers Help File included with Delphi. You can also find the TDCB structure in the RTL source Code. Look in the Windows.pas file.

�
How to use the CommPort component.

To use the CommPort :

Set all properties you require. It is highly recommended, (unless you are experienced with comport manipulation) that you set Baud, ComPort, Parity, ByteSize, StopBits, ParityEnable, ReadTotalTimeOut properties only and keep the Use_Settings property False. Do not forget, that all of these properties must be set before opening. For the above mentioned properties changes made after opening the comport have no effect on the component operation.

Note: If you want to set a property whose name begins with the “_” character you have to set the Use_Settings property to True, set the property you wish the desired value and then open the port. You can also call the corresponding method after the port is opened. The first way is preferable. Note: this is disabled after version 1.3.

Open the component using the Open method.

Write to the port using WriteCommString method.

Read from the comport through the ‘OnReceive’ event handler. As a parameter of this handler the read buffer and its size will be transferred.

Close the component to free memory and make the comport available for other applications. Use the application.Processmessages method after the CommPort.Close method, to give the component a chance to close the thread.

�
Demo version notes:

If you have a demo version of the component it will work in the Delphi development mode only. An order.txt file is contained in the zip file, it contains an order form and instructions.

Amber Computer Systems Inc.

14197-74th Avenue

Surrey, British Columbia, Canada, V3W 7N2

Phone 1+(604)599-9279,

Fax 1+(604)599-9261,

E-mail: sales@acsi.bc.ca

WEB Page: www.acsi.bc.ca

Please feel free to submit any proposals or ideas regarding our communications component. We will be pleased to consider adding any features you may require.

�
Version Changes and Bug Fix History

Version 1.0 - Version 1.1

Add additional handshaking.

Version 1.1 - Version 1.2

Some of the handshaking was not working correctly- added additional hardware handshaking. The mask was not being correctly set according to the WIN32 API.

Version 1.2 - Version 1.3

Added additional BAUD rates and COM ports. Minor Fixes. Added version information and included digital signature in our code.

Version 1.3 - Version 1.4

Added additional BAUD rates and COM ports. You can now choose an unlimited number of COM ports. (This was done for users of DigiBoard and other multi port boards who may use up to 100 communication ports. Minor fixes were made that do not affect documentation or operation. The BAUD rate may now be set manually to any BAUD rate greater than zero, and less than or equal to the maximum allowable rate of 256K. The Demo program was updated to reflect the changes. Stop bits can now be set to 1 or 2. The 1.5 stop bit setting now sets the port to 1 stop bit. This change is consistent with the operation of Microsoft products and other communications programs.

�
Implementation Guide

The TCOMM component reads from and writes information to the serial port The TCOMM component is a multithreaded component having a separate thread for reading the comport. .

The TCOMM component belongs to the class TComponent. It was developed under the operating systems Windows NT 3.51 and Windows 95 4.0 and Microsoft NT 4.0.

The TCOMM component is suitable for sending or receiving data to most standard serial port devices. Plotters, Printers and MODEMS should be suitable for use with TCOMM_32.

Operation of TCOMM with MODEMS

The TCOMM Serial Port Component has been programmed to default settings which should allow you to communicate with most MODEMS or other Serial Port devices. On MODEMS, the handshaking pairs are RTS & CTS, and also DTR and DSR. The PC normally sets DTR (Data Terminal Ready), and the MODEM responds with DSR (Data Set Ready) if it is powered on. The RTS (Request to Send) line is sent to the MODEM, and if it has established communications, it responds with CTS (Clear to Send). The DCD (Data Carried Detect or CD) line is used to indicate that the remote MODEM has established communications with your MODEM, and that the link is ready for data transfer. The RLSD (Receive Line Signal Detect), CD and DCD designations all refer to the same line (Pin 8 on a 25 pin Cannon Plug). A simple MODEM test is to enter “AT(“ (followed by the enter key) then write the string to the MODEM port. The “AT(” should be returned followed by a Carriage return , and an “OK(” (enter) string. If that works enter “ATI4(”. This should return a description of the MODEM and the serial port configuration.

Operation of TCOMM with Peripherals

If you wish to communicate with a plotter, a printer, a Bar Code Reader or other device such as Weigh Scale Controllers. If you are using a device which handles large amounts of data you will probably need some form of Handshaking. Connect the plotters’ or printers’ handshaking line - usually pin 20 to the CTS line at the PC (pin 5 on a 20 pin connector) on the PC Serial Port and enable CTSTxHandshake (Set True). When the device has a full buffer, the CTS line will be set to -12V and therefore disable Transmission on the PC side until the buffer on the device empties.

Delphi 2.x Component Installation

Copy the TCOMM_32.dcu and the TCOMM_32.DCR into your Delphi Lib directory or the ..\LIB\ADD-INS directory if you have created one. Use the Component, Install Add menus, and then browse for wherever you have placed the component. Compile the component into the library by choosing OK as soon as you have Added the component.

Delphi 3.x Component Installation

To install the component copy .DCU and .DCR files into the LIB (or any other directory visible to the library builder) directory of your Delphi 3, and follow the instructions of the component installation from chapter 11 of your Delphi 3 User’s Guide.

Demonstration Program Installation.

Copy the program to its own directory. Load Delphi2 and Load the Project. Choose Run from the Delphi 2 IDE. The program will talk to a MODEM, or you can make a communications test plug for your initial testing.

To see if a MODEM will respond, enter ATI4 ((Enter Key) in the Write area of our demo program. Set the COM port parameters to appropriate settings for your MODEM, and open the COM port which is connected to the MODEM and click on the WRITE button. The MODEM should respond by sending a stream of characters with information about the ROM, DSP revisions, and Register status etc. These characters should appear in the read window.

To dial a Phone number with the MODEM, you would enter ATDT555-1212 - for example to use a TONE dial system or ATDP555-1212 for pulse dial. Your MODEM manual should give you a lot of commands you can try out. Just remember! Don’t change critical settings!

�
Serial Port Wiring Configuration

DE9 Connector

Pin�
Direction�
Description�
Acronym(s)�
�
1�
I�
Data Carrier Detect, Receive Line Signal Detect�
DCD, CD or RLSD�
�
2�
I�
Receive Data�
RxD�
�
3�
O�
Transmit Data�
TxD�
�
4�
O�
Data Terminal Ready�
DTR�
�
5�
-�
Ground�
GND�
�
6�
I�
Data Set Ready�
DSR�
�
7�
O�
Request To Send�
RTS�
�
8�
I�
Clear To Send�
CTS�
�
9�
I�
Ring Indicator�
RI�
�

Direction: I= Input line, O=Output Line

True or On = +12 Volts

False or Off = -12Volts

DB25 Connector

Pin�
Direction�
Description�
Acronym(s)�
�
8�
I�
Data Carrier Detect, Receive Line Signal Detect�
DCD, CD or RLSD�
�
3�
I�
Receive Data�
RxD�
�
2�
O�
Transmit Data�
TxD�
�
20�
O�
Data Terminal Ready�
DTR�
�
7�
-�
Ground�
GND�
�
6�
I�
Data Set Ready�
DSR�
�
4�
O�
Request To Send�
RTS�
�
5�
I�
Clear To Send�
CTS�
�
22�
I�
Ring Indicator�
RI�
�

Null MODEM Cable

Test Plug (25 Pin Plug)

2�
TxD�
3�
Rx�
�
3�
RxD�
2�
Tx�
�
4�
RTS�
5�
CTS�
�
20�
DTR�
6�
DSR�
�
20�
DTR�
8�
RLSD(CD)�
�
Typical Serial Port Configuration

Note that the interrupts are shared. You should not have two serial devices simultaneously using COM1 and COM3 since your software can become confused about which device it is servicing.

Com Port�
Address�
Interrupt�
�
COM1�
3F8�
4�
�
COM2�
2F8�
3�
�
COM3�
3E8�
4�
�
COM4�
2E8�
3�
�

�
ASCII Value Table

Decimal�
Hex�
Display�
Description�
�
0�
00�
�
NUL character�
�
1�
01�
(�
SOH Start of Header XMODEM protocol - Synchronous Com protocol�
�
2�
02�
(�
STX - Start of Text�
�
3�
03�
(�
ETX - End of Text�
�
4�
04�
(�
EOT End of Transmission�
�
5�
05�
(�
ENQ - Inquiry - requests ID from other system�
�
6�
06�
(�
ACK - Acknowledge - Used in XMODEM�
�
7�
07�
(�
BEL - Control-G - Beeps Terminal�
�
8�
08�
�
BS - Backspace�
�
9�
09�
(�
HT - Tab (Horizontal)�
�
10�
0A�
�
LF Line Feed�
�
11�
0B�
(�
VT - Vertical Tab�
�
12�
0C�
(�
FF - Form Feed�
�
13�
0D�
(�
CR - Carriage Return�
�
14�
0E�
((�
SO - Shift Out - shifts to new character set�
�
15�
0F�
¤�
SI - Shift In - shifts to original character set�
�
16�
10�
(�
DLE - Data link escape�
�
17�
11�
(�
DC1�
�
18�
12�
(�
DC2�
�
19�
13�
!!�
DC3�
�
20�
14�
¶�
DC4�
�
21�
15�
§�
NAK Negative Acknowledgment - XMODEM�
�
22�
16�
(�
SYN - Synchronous idle character�
�
23�
17�
(�
ETB - end of transmission block�
�
24�
18�
(�
CAN - cancel�
�
25�
19�
(�
EM - end of medium�
�
26�
1A�
(�
SUB - substitute�
�
27�
1B�
(�
ESC - Escape�
�
28�
1C�
(�
FS - file separator�
�
29�
1D�
(�
GS - Group separator�
�
30�
1E�
(�
RS Record Separator�
�
31�
1F�
(�
Unit Separator�
�
32�
20�
 �
Space�
�

Page � PAGE �3�

�

Amber Computer Systems Inc.

Amber Computer Systems Inc.

14197 74 Ave., Surrey, BC, V3W7N2, CANADA

Phone +1 604 599-9279 (FAX +1 604 599-9261 (EMAIL Sales@acsi.bc.ca

�

Amber Computer Systems Inc.

