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CommPort Component v. 1.4 (32-bit version).


The CommPort component belongs to the class TComponent. The CommPort component reads from and writes information to the serial port. The CommPort component is a multithreaded component having  a separate thread for reading the comport. It was developed for 32 bit Windows, and has been tested with  Windows NT 3.51, Windows NT 4.0 WS  and  Windows 95 - both A&B versions.


Properties:


The comport component has following properties:





Baud


BAUD is property which sets the Baud Rate for the port. The Object Inspector’s dropdown list contains standard values, such as 1200, 2400, 4800, etc., etc.,  but you can assign any value suitable for your application. It sets both read and write speed for the CommPort.


ByteSize


The Byte Size Can be one of the following:  _6, _7, _8. The Byte size is determined either by your preference, or the requirements of the device with which you are communicating. The six bit data format is almost never used any more.


ComPort


This property sets the Comport to be activated. Object Inspector’s Dropdown list contains: Com1, Com2, Com3, Com4, but any port present in your system can be assigned. (This change is specifically for people using DigiBoard or other systems with many Communication Ports.)


MCTSOn


This is a read only Property which shows the state of the Clear to Send Line. A MODEM usually receives the RTS (Request to Send) line from the PC and returns it as Clear to Send (CTS) if the MODEM is able to transmit data. The PC can then send data if handshaking is enabled. The RTS-CTS combination of handshaking is normally used for synchronization of data transmission.


MDSROn


This is a read only Property which shows the state of the Data Set Ready Line. A MODEM usually receives the DTR (Data Terminal Ready) line from the PC and returns it as Data Set Ready (DSR) if the MODEM is has line power. The PC can then send data if handshaking is enabled. The DTR-DSR combination of handshaking is normally used for determining general MODEM Ready Status


MRingOn


This is a read only Property which shows the state of the Ring  Line. A MODEM sends the RING signal from the MODEM to the PC when it has been called. You typically also receive a RING string on the receive line.


MRLSD


This is a read only Property which shows the state of the Carrier Detect or Receive Line Signal Detect as it is usually now called. A MODEM sets the RLSD line when the MODEM is ready, and synchronization with the remote MODEM has been established.


Parity


Parity can be one of the following:  None, Odd, Even, Mark, Space. Many mainframe communication devices require the 7 bits, Even Parity, Parity parameters to be enabled.


ParityEnable  *


Boolean Set to true if you want the parity bit sent on transmit and checked on receive.


RunRegardlessOS


Boolean. The TCOMM component reads the current OS and Version, and, depending on the  platform, adjusts itself. Two basic platforms are supported: Windows95 and Windows NT. This version of the Component was developed under the  Windows NT 3.51 and Windows 95 4.0 and Windows NT 4.0. If your operating system is equal or higher, set this property to False. We consider it the responsibility of the operating system developers, to support compatibility with previous versions of the OS, and by default, we presume any future OS will be fully compatible with our component. Setting this property to True allows the component to run if the operating system version is less then Windows NT 3.51 or Windows 95 4.0. However we can not guarantee the results.


ReadTotalTimeOut 


Integer. Sets delay on reading event. ReadTotalTimeOut=1000 means that a delay of one second is introduced. As the expected maximum delay between receiving characters. Example: Suppose you have ReadTotalTimeOut=500 and you send the “AT”  command to the modem. If as an answer you received “AT” only, then increase ReadTotalTimeOut till you get the expected answer of “OK”.


StopBits


Can be _1 or _1_5 or _2. Originally, this bit was required for mechanical delay in the receiving mechanism. It is now set to 1 bit over 90% of the time. If you have software or mechanical delays in the system which are causing errors, you should set it to 2 bits. The 1.5 BIT setting actually sets the port to 1 stop bit.


Use_Settings


Boolean. If False permits the component to use system settings of the comport and ignore all settings of the properties where the  name  begins with  the “_”character (e.g.  _XOnChar, _XOffChar etc. ). If you want to modify the settings of these properties, set this property to True. This property is now disabled above version 1.3.


Version


A read only variable which returns the current version number.


WComID


Comport handle. Read only.


Additional Property Settings for the Expert User


Use these settings to control Hardware & Software Handshaking modes as well as Character Substitution for Parity errors.


_AbortOnError


If True the current write or read operation has an error the operation will abort and not send or receive the remaining items in the buffers or queues.


_AbortOnError


If True the current write or read operation has an error the operation will abort and not send or receive the remaining items in the buffers or queues.


_CTSTxHandShake


Boolean. Sets handshake true for CTS when transmitting. Setting this property true will allow automatic handshaking. Transmission will be suspended if the MODEM sets CTS low. (See fOutxCtsFlow in the DCB structure)


_DSRSensitivity


Normally set to False. When set to true, characters appearing at the receive data line will be ignored. This function is usefull if you have noisy telephone lines or other special handshaking circumstances.


_DSRTxHandShake


Boolean. Sets handshake true for DSR when transmitting. Setting this property true will allow automatic handshaking. Transmission will be suspended if the MODEM sets DSR low. (See fOutxDsrFlow in the DCB structure)


_DTRHandShake


Numeric Value defined by the set of conditions in TDTRVal. TDTRVal is an enumerated set which is used to set a 2 bit flag in the DCB header structure. In the object inspector, you will make one of the following choices:


 DTRDisable disable the  DTR Handshaking. Remember that DTR is an Output line from the PC.


DTREnable: Enable the DTR line and leave it on.


DTRHandshake: Enable the DTR handshaking. You may not use the (implemented as the SetMCDTR procedure) EscapeComm function while this option is in use.


_NullStrip


Boolean. When true removes the null characters from the receive stream. Use with extreme caution as all data is now considered as BINARY, and hence the “00h” characters are likely useful data.


_ParityErrSub


Boolean. Allows Substitution of any characters with a parity error. The character substituted is defined in _ParityReplChar and is usually set as the ~ character (Tilde).


_ParityReplChar


Char. Value of the character to be substituted for a character received with a Parity Error (PE). Often set to a “~”. 


_RTSHandShake


Numeric Value defined by the set of conditions in TRTSVal. TRTSVal is an enumerated set which is used to set a 2 bit flag in the DCB header structure. In the object inspector, you will make one of the following choices:


 RTSDisable: disable the  RTS Handshaking line on open, and leave it disabled. Remember that DTR is an Output line from the PC.


RTSEnable: enable the RTS line on port open, and leave it on.


RTSHandshake: enable the RTS line, when the typeahead buffer is less than half full. Lower the RTS line when the type ahead buffer is more than ¾ full. You may not use the EscapeComm (implemented as SetMCRTS procedure) function when this option is used.


RTSToggle: enable the RTS line, and set it high if there are characters to Transmit.


_RxCharEvent


Boolean.


_RxDTRHndShake


A Boolean property which enables the hardware handshaking for the DTR line.


_RxRTSHndShake


A Boolean property which enables the hardware handshaking for the RTS line.


_RxEOFChar


Byte. This property contains the EOF character value. Again, this property would not typically be used for 32 bit Windows version of the communications port component.


_RxEventChar


Byte. Specifies the value of the character used to signal an event.


_RTSDisabledAtInit


This is a Boolean property. Some handshaking schemes will require that handshaking lines be off (-12V) when the port begins to function. The handshaking is then turned on under program control.


_TxContinueOnXoff 


Normally set to true. When Set to False, transmission of Data will stop when your receive queue is full - presumably allowing faster processing.


WCOMID


Returns the Handle to the Com Port. Read Only Property. (It does not appear in the Object Inspector.)


_XOnChar


Byte. Value of the xOnChar. (Usually the CHR(17) character.


_XOffChar 


Byte. Value of the xOffChar. (Usually the CHR(19) character.


_XOnXOff


Boolean. When true, the Port will respond to Xon and Xoff characters in the receive stream, and quit or resume transmitting as required.


_XOnRxLimit


Word.Value of the XOnRx limit. You can specify the minimum number of characters in the receive queue before the Xon (resume) character is sent.


_XOffRxLimit


Word.Value of the XOffRx limit. You can specify the maximum number of characters in the receive queue before the XOff (halt) character is sent.





Note: - Changes will not be visible to the comport unless you close the component (if it was opened),  change the required property, then reopen the component.





�
Events


OnReceive


Occurs when the component receives data from the Comport.


Methods:


Public Methods Procedures & Functions


function CloseComm(Value:Word):Boolean;


Closes the comport. The return Value is a boolean. If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.


function CommError: integer;


Returns the last error code and refreshes the commstat  structure.


Procedure SetMCDTR(Value:Boolean);


Sets the DTR line true (12V) if Value is true otherwise sets it low (-12V) if Value is False .


 Procedure SetMCRTS(Value:Boolean);


Sets the RTS line true (12V) if Value is true otherwise sets it low (-12V) if Value is False .


Procedure SetMCXOn(Value:Boolean); 


Force the Com Port to act like an XON was received if Value is true , Xoff if False


Procedure SetMCBreak(Value:Boolean); 


 Suspends or breaks the Transmission of Data if set true, Clears or BREAKS if Value is False


procedure Open;


This Method opens the comport for communication, and writes all the values to the DCB structure - setting the BAUD rate and communications parameters.. 


function RxFlush : Boolean;


Flushes the Incoming buffer. If the function succeeds, the return value is TRUE.


If the function fails, the return value is FALSE.


function WriteCommString(StrOut:String):boolean;


Writes a string to the comport. If the function succeeds, the return value is TRUE.


If the function fails, the return value is FALSE.


function TxFlush : Boolean;


Flushes the Outgoing buffer. If the function succeeds, the return value is TRUE.


If the function fails, the return value is FALSE.


Private Methods, Procedures & Functions


procedure SetBinaryMode(Value:Boolean);


Sets the Binary mode on and off  by changing DCB flags. The Win32 API does not support non binary mode transfers, so this function should be TRUE. Trying to use FALSE will not work.


procedure SetParityCheck(Value:Boolean);


Enables and disables the  parity check.


procedure SetCTSTx(Value:Boolean);


Sets OutxCTSFlow flag of the DCB. Specifies whether the CTS (clear-to-send) signal is monitored for output flow control. If TRUE and CTS is turned off, output is suspended until CTS is sent again. This handshaking is handled automatically by the UART I if it is enabled.


procedure SetDSRTx(Value:Boolean);


Sets OutxDSRFlow flag of the DCB. Specifies whether the DSR (data-set-ready) signal is monitored for output flow control. If  TRUE and DSR is turned off, output is suspended until DSR is sent again. This handshaking is handled automatically by the UART - if it is enabled.


procedure SetDTRInit(Value:Boolean);


Sets DTR enabled or disabled when the CommPort is first initialized. This is used when the lines must be controlled by the program. It is usually used for specialized handshaking on specialized hardware devices.


procedure SetXOnOff(Value:Boolean);


Sets Rx & Tx XON/XOFF bit 1&2. Specifies whether transmission stops when the input buffer is full and the driver has transmitted the XoffChar  character. If  TRUE, transmission continues after the input buffer has come within XoffLim bytes of being full and the driver has transmitted the XoffChar character to stop receiving bytes. If  FALSE, transmission does not continue until the input buffer is within XonLim bytes of being empty and the driver has transmitted the XonChar character to resume reception.


procedure setPESubOn(Value:Boolean);


Sets PEChar. 


procedure SetNullStrip(Value:Boolean);


Specifies whether null bytes are discarded. If  Value is TRUE, null bytes are discarded when received.  


procedure SetRxChEv(Value:Boolean);


Sets ChEvt flag. 


procedure SetRxDTRFlow


Sets RxDTRFlow flag of the DCB.


procedure SetRxRTSFlow(Value:Boolean);


Sets RxRTSFlow on. This will allow the PC to establish hardware flow control with a MODEM or other device. The remote device - such as a MODEM typically responds by sending a CTS signal to the PC.


Structures


To save time, you can use these structures to define variables in your own program.





TParity   = (None,Odd,Even, Mark,Space);


TByte     = (_6,_7,_8);


TStop     = (_1,_1_5,_2);


TRTSval   = (RTSDisable,RTSEnable,RTSHandShake, RTSToggle);


TDTRval   = (DTRDisable,DTREnable,DTRHandShake);





Var


DCB:TDCB;





CommStat


Comport status structure. Read it after a CommError method call. It is Read only. To get more information about CommStat structure see the ComStat chapter in any Win32 programmer’s reference. 





For complete information on the DCB structure, see the Win32 Programmers Help File included with Delphi. You can also find the TDCB structure in the RTL source Code. Look in the Windows.pas file.








�
How to use the CommPort component.


To use the CommPort :


Set all properties you  require. It is highly recommended, (unless you are experienced with comport manipulation) that you set Baud, ComPort, Parity, ByteSize, StopBits, ParityEnable, ReadTotalTimeOut properties only and keep the Use_Settings property False. Do not forget, that all of these properties must be set before opening. For the above mentioned properties changes made after opening the comport have no effect on the component operation.





Note: If you want to set a property whose  name begins with the “_” character you have to set the Use_Settings property to True, set the property you wish the desired value and then open the port. You can also call the corresponding method after the port is opened. The first way is preferable. Note: this is disabled after version 1.3.





Open the component using the Open method.


Write to the port using WriteCommString method.


Read from the comport through the ‘OnReceive’ event handler. As a parameter of this handler the read buffer and its size will be transferred. 


Close the component to free memory and make the comport available for other applications. Use the application.Processmessages method after the CommPort.Close method, to give the  component a chance to close the thread. 


�
Demo version notes:


If you have a demo version of the component it will work in the Delphi  development mode only. An order.txt file is contained in the zip file, it contains an order form and instructions.








Amber Computer Systems Inc. 


14197-74th Avenue


Surrey, British Columbia, Canada,   V3W 7N2





Phone 1+(604)599-9279,


Fax 1+(604)599-9261,





E-mail: sales@acsi.bc.ca


WEB Page: www.acsi.bc.ca





Please feel free to submit any proposals or ideas regarding our communications component. We will be pleased to consider adding any features you may require.





�
Version Changes and Bug Fix History


Version 1.0 - Version 1.1


Add additional handshaking.


Version 1.1 - Version 1.2


Some of the handshaking was not working correctly- added additional hardware handshaking. The mask was not being correctly set according to the WIN32 API.


Version 1.2 - Version 1.3


Added additional BAUD rates and COM ports. Minor Fixes. Added version information and included digital signature in our code.


Version 1.3 - Version 1.4


Added additional BAUD rates and COM ports. You can now choose an unlimited number of COM ports. (This was done for users of DigiBoard and other multi port boards who may use up to 100 communication ports. Minor fixes were made that do not affect documentation or operation. The BAUD rate may now be set manually to any BAUD rate greater than zero, and less than or equal to the maximum allowable rate of 256K. The Demo program was updated to reflect the changes. Stop bits can now be set to 1 or 2. The 1.5 stop bit setting now sets the port to 1 stop bit. This change is consistent with the operation of Microsoft products and other communications programs.





�
Implementation Guide





The TCOMM component reads from and writes information to the serial port The TCOMM component is a multithreaded component having  a separate thread for reading the comport. . 





The TCOMM component belongs to the class TComponent.  It was developed under the operating systems Windows NT 3.51 and  Windows 95 4.0 and Microsoft NT 4.0.





The TCOMM component is suitable for sending or receiving data to most standard serial port devices. Plotters, Printers and MODEMS should be suitable for use with TCOMM_32.


Operation of TCOMM with MODEMS 


The TCOMM Serial Port Component has been programmed to default settings which should allow you to communicate with most MODEMS or other Serial Port devices. On MODEMS, the handshaking pairs are RTS & CTS, and also DTR and DSR. The PC normally sets DTR (Data Terminal Ready), and the MODEM responds with DSR (Data Set Ready) if it is powered on. The RTS (Request to Send) line is sent to the MODEM, and if it has established communications, it responds with CTS (Clear to Send). The DCD (Data Carried Detect or CD) line is used to indicate that the remote MODEM has established communications with your MODEM, and that the link is ready for data transfer. The RLSD (Receive Line Signal Detect), CD and DCD designations all refer to the same line (Pin 8 on a 25 pin Cannon Plug). A simple MODEM  test is to enter “AT( “ (followed by the enter key) then write the string to the MODEM port. The “AT(” should be returned followed by a Carriage return , and an “OK(” (enter) string. If that works enter “ATI4(”. This should return a description of the MODEM and the serial port configuration.


Operation of TCOMM with Peripherals


If you wish to communicate with a plotter, a printer, a Bar Code Reader or other device such as Weigh Scale Controllers. If you are using a device which handles large amounts of data you will probably need some form of Handshaking. Connect the plotters’ or printers’ handshaking line - usually pin 20 to the CTS line at the PC (pin 5 on a 20 pin connector) on the PC Serial Port and enable CTSTxHandshake (Set True). When the device has a full buffer, the CTS line will be set to -12V and therefore disable Transmission on the PC side until the buffer on the device empties.


Delphi 2.x Component Installation


Copy the TCOMM_32.dcu and the TCOMM_32.DCR into your Delphi Lib directory or the ..\LIB\ADD-INS directory if you have created one. Use the Component, Install Add menus, and then browse for wherever you have placed the component. Compile the component into the library by choosing OK as soon as you have Added the component.





Delphi 3.x Component Installation


To install the component copy .DCU and .DCR files into the LIB (or any other directory visible to the library builder) directory of your Delphi 3, and follow the instructions of the component installation from chapter 11 of your Delphi 3 User’s Guide.


Demonstration Program Installation.


Copy the program to its own directory. Load Delphi2 and Load the Project. Choose Run from the Delphi 2 IDE. The program will talk to a MODEM, or you can make a communications test plug for your initial testing. 





To see if a MODEM will respond, enter ATI4 ( (Enter Key) in the Write area of our demo program. Set the COM port parameters to appropriate settings for your MODEM, and open the COM port which is connected to the MODEM and click on the WRITE button. The MODEM should respond by sending a stream of characters with information about the ROM, DSP revisions, and Register status etc. These characters should appear in the read window.





To dial a Phone number with the MODEM, you would enter ATDT555-1212 - for example to use a TONE dial system or ATDP555-1212 for pulse dial. Your MODEM manual should give you a lot of commands you can try out. Just remember! Don’t change critical settings!





�
Serial Port Wiring Configuration


DE9 Connector


Pin�
Direction�
Description�
Acronym(s)�
�
1�
I�
Data Carrier Detect, Receive Line Signal Detect�
DCD, CD or RLSD�
�
2�
I�
Receive Data�
RxD�
�
3�
O�
Transmit Data�
TxD�
�
4�
O�
Data Terminal Ready�
DTR�
�
5�
-�
Ground�
GND�
�
6�
I�
Data Set Ready�
DSR�
�
7�
O�
Request To Send�
RTS�
�
8�
I�
Clear To Send�
CTS�
�
9�
I�
Ring Indicator�
RI�
�



Direction: I= Input line, O=Output Line


True or On = +12 Volts


False or Off = -12Volts





DB25 Connector


Pin�
Direction�
Description�
Acronym(s)�
�
8�
I�
Data Carrier Detect, Receive Line Signal Detect�
DCD, CD or RLSD�
�
3�
I�
Receive Data�
RxD�
�
2�
O�
Transmit Data�
TxD�
�
20�
O�
Data Terminal Ready�
DTR�
�
7�
-�
Ground�
GND�
�
6�
I�
Data Set Ready�
DSR�
�
4�
O�
Request To Send�
RTS�
�
5�
I�
Clear To Send�
CTS�
�
22�
I�
Ring Indicator�
RI�
�



Null MODEM Cable


Test Plug (25 Pin Plug)


2�
TxD�
3�
Rx�
�
3�
RxD�
2�
Tx�
�
4�
RTS�
5�
CTS�
�
20�
DTR�
6�
DSR�
�
20�
DTR�
8�
RLSD(CD)�
�
Typical Serial Port Configuration





Note that the interrupts are shared. You should not have two serial devices simultaneously using COM1 and COM3 since your software can become confused about which device it is servicing.





Com Port�
Address�
Interrupt�
�
COM1�
3F8�
4�
�
COM2�
2F8�
3�
�
COM3�
3E8�
4�
�
COM4�
2E8�
3�
�



�
ASCII Value Table


Decimal�
Hex�
Display�
Description�
�
0�
00�
�
NUL character�
�
1�
01�
(�
SOH Start of Header XMODEM protocol - Synchronous Com protocol�
�
2�
02�
(�
STX - Start of Text�
�
3�
03�
(�
ETX - End of Text�
�
4�
04�
(�
EOT End of Transmission�
�
5�
05�
(�
ENQ - Inquiry - requests ID from other system�
�
6�
06�
(�
ACK - Acknowledge - Used in XMODEM�
�
7�
07�
(�
BEL - Control-G - Beeps Terminal�
�
8�
08�
�
BS - Backspace�
�
9�
09�
(�
HT - Tab (Horizontal)�
�
10�
0A�
�
LF Line Feed�
�
11�
0B�
(�
VT - Vertical Tab�
�
12�
0C�
(�
FF - Form Feed�
�
13�
0D�
(�
CR - Carriage Return�
�
14�
0E�
((�
SO - Shift Out - shifts to new character set�
�
15�
0F�
¤�
SI - Shift In - shifts to original character set�
�
16�
10�
(�
DLE - Data link escape�
�
17�
11�
(�
DC1�
�
18�
12�
(�
DC2�
�
19�
13�
!!�
DC3�
�
20�
14�
¶�
DC4�
�
21�
15�
§�
NAK Negative Acknowledgment - XMODEM�
�
22�
16�
(�
SYN - Synchronous idle character�
�
23�
17�
(�
ETB - end of transmission block�
�
24�
18�
(�
CAN - cancel�
�
25�
19�
(�
EM - end of medium�
�
26�
1A�
(�
SUB - substitute�
�
27�
1B�
(�
ESC - Escape�
�
28�
1C�
(�
FS - file separator�
�
29�
1D�
(�
GS - Group separator�
�
30�
1E�
(�
RS Record Separator�
�
31�
1F�
(�
Unit Separator�
�
32�
20�
 �
Space�
�



Page � PAGE �3�


�


Amber Computer Systems Inc.








Amber Computer Systems Inc.


14197 74 Ave., Surrey, BC, V3W7N2, CANADA


Phone +1 604 599-9279 ( FAX +1 604 599-9261 ( EMAIL Sales@acsi.bc.ca





�


Amber Computer Systems Inc.











