TFormOpenDialog and TFormSaveDialog

for Delphi 3.0

Copyright 1997 Dmitry Streblechenko

dmitrys@asu.edu

(602) 968-3971

	Here is a small magic component: drop it on ANY form, and at run time the form with all its controls will become a Windows Open/Save common dialog box.

No more hassle with custom open/save, import/export dialogs.

	At design time you can do anything you would normally do to a Delphi form: drop

other components on it, add event handlers and a bunch of your code. TFormOpenDialog

(or TFormSaveDialog) component will be shown as a panel with a bitmap that you can drag to any place on your form. The bitmap (see below) is shown only at design time and will not be included in the executable file.

	At run time, Windows will place its normal Open/Save common dialog controls in place where TFormOpenDialog component was sitting at design time along with

everything else you had on the form. You can use any normal code to resize or

reposition the form, do anything you want with the other controls, in other words

act as if the common dialog is a Delphi form (which it is not, but you don't need to care about it).

�

Delphi form with TFormOpenDialog component at design time

�

Same form at run time.

Why bother?

	I guess I could write a couple components to mimic the look and behavior of the common dialog controls. I prefer not to: Microsoft has already done the job for all of us and they did it pretty good (with the exception of a couple minor bugs, call them "features" if you like it that way); another reason is Microsoft might add some new functionality to the Open/Save dialogs (say, you can browse the Internet in Windows 20XX.0). Most important reason is that those dialogs were designed to be extendable; Borland did use this new functionality in its TOpenPicture and TSavePicture dialogs, however, it was done in a completely nonvisual way. With this component, you can create some similar looking dialog in a couple minutes.

Installation

	This component comes as a unit for Delphi 3.0.

1) Put dsdialog.dcu, filtedit.dcu and dsdialog.dcr to any directory of your choice.

2) Click Component | Install component menu in Delphi 3, browse to

dsdialogs.dcu (or dsdialogs.pas if you have received the source code) and click Ok.

	I tried my best to create a Delphi 2.0 version of the components, but it does not seem feasible because of the numerous VCL improvement from version 2.0 to 3.0 that make these components possible.

Properties and methods

	Using the component is not much different from using TOpenDialog/TSaveDialog that comes with Delphi:

	1.) At design time create new form in Delphi, add TFormOpenDialog (or TFormSaveDialog), any other components and code. Leave form's Visible property false (Delphi does it by default).

	2.) At run time call TFormOpenDialog "Execute" method and let it do the job; you don't have to worry about low-level stuff.

	Component TFormSaveDialog is exactly the same as TFormOpenDialog, except that OkButtonCaption property defaults to "&Save", instead of "&Open".

	Along with old TOpenDialog methods and properties there are some new properties and methods you might find useful:

	Properties:

property DialogHandle: HWnd ; Windows handle to the panel where all controls are placed. To get the handle of the dialog box itself, use GetParent() API function.

property DialogShowing:boolean; True when dialog is being shown on the screen, false otherwise. This property is different from the Form's Visible property - it is true when "Execute" method is being called. DialogShowing is set to true before OnShow event and reset to false after OnClose event.

property Width:integer; Width of the area where Common dialog controls are placed.

property Height:integer; Height of the area where Common dialog controls are placed.

property Left:integer;

property Top:integer; Coordinates of the top-left corner of the area with common dialog controls. You can change these coordinates when dialog is not showing (DialogShowing=false) to change the position where controls are shown. Changing left and top while dialog is showing (DialogShowing=true) will have no effect.

property VisibleControls:TVisibleControlsSet;

 TVisibleControls = (ccOkButton,ccCancelButton,ccHelpButton,ccFolderCombo,

 ccFileNameEdit,ccFileTypeComboBox,ccReadOnlyCheckBox,

 ccLookInLabel,ccFileNameLabel,ccFileTypeLabel);

 TVisibleControlsSet= set of TVisibleControls;

Controls in the common dialog that are visible.

Example: to hide the folder combo box:

with FormOpenDialog do VisibleControls:=VisibleControls-[ccFolderCombo];

property OkButtonCaption:string;

property CancelButtonCaption:string;

property HelpButtonCaption:string; Captions of the corresponding buttons.

By default OkButtonCaption is "&Open" for TFormOpenDialog and "&Save" for TFormSaveDialog.

Example: FormOpenDialog.OkButtonCaption:='&Delete';

property OnClose: TNotifyEvent; notification message is sent by an Open or Save common dialog box when the user closes the dialog.

property OnShow: TNotifyEvent; notification message is sent by Open or Save common dialog box when the system has finished arranging the controls in the dialog box just before showing it on the screen.

property OnFolderChange: TNotifyEvent; notification message is sent by Open or Save common dialog box when a new folder is opened.

property OnSelectionChange: TNotifyEvent; notification message is sent by an Open or Save common dialog box when the selection changes in the list box that displays the contents of the currently opened folder or directory.

property OnTypeChange: TNotifyEvent; notification message is sent by an Open or Save common dialog box when the user selects a new file type from the file types combo box.

property OnFileOK: TCloseQueryEvent; notification message is sent by an Open or Save common dialog box when the user specifies a filename and clicks the OK button. Set CanClose function parameter to false to prevent dialog from closing.

property OnHelp : TNotifyEvent; notification message is sent by an Open or Save common dialog box when the user clicks the Help button.

property OnShareViolation: TNotifyEvent; notification message is sent by an Open or Save common dialog box when the user clicks the OK button and a network sharing violation occurs for the selected file.

All the other properties of TOpenDialog/TSaveDialog are valid at all time (Files, FileName, FilterIndex, etc.)

	Methods

 procedure ToolBarButtonClick(N:integer); simulate mouse click on

"Up One Level","Create New Folder","List","Details" button respectively. Use with caution: it's undocumented, even though it is unlikely to behave differently in future versions of Windows. The procedure will work only when DialogShowing=true.

Example: If you want to make file list show files' details instead of a simple list by default, call the procedure with N=4 ("Details" button) in the OnShow event of the dialog. Remember that every time you close the dialog box and reopen it, Windows recreates common dialog controls and you'll need to call ToolBarButtonClick(4) again; naturally, OnShow() event is the best place to do so.

procedure ShowToolBar(Value:boolean); Show (Value=true) or hide (Value=false) Common Dialog's toolbar with "Up One Level","Create New Folder","List","Details" buttons. Undocumented too, see limitation above. I did not create a property like ToolBarVisible on purpose: if you need to hide the ToolBar, do it explicitly by calling the procedure, rather than using default value of the property.

Known limitations

	You cannot do anything that forces Delphi's Form to recreate itself, i.e change Form's border style and border icons while the dialog is being shown (DialogShowing=true): nothing bad will happen, the changes just won't show up.

	Do not change WindowState property (e.g. setting it to wsMinimized). Everything else is perfectly fine: change form's size, position (left, top that is), close it etc.

	Changing Filter property while dialog is showing will not take effect until the dialog is closed and shown again by call to the Execute function. Changing Filters while dialog is shown would involve changing some undocumented properties of a Common Dialog, and I do not feel extremely comfortable doing it for a future compatibility reason, even though it is completely doable.

	This component was designed and compiled in a Small Windows Fonts setting; if you use Large Fonts, Windows changes the size of the common dialog controls (just like everything else on your form) and some controls may be misplaced. If you need to change this or want to play with some parts of the component, get the source code from me (see below).

Source code

	I feel pretty bad about not including the source code, but I have to put myself through the Grad School somehow :), so if you are interested in getting the source code, send $20 check or money order to

Dmitry Streblechenko

Department of Physics and Astronomy, Box 1504

Tempe, AZ 85287-1504, USA

e-mail: dmitrys@asu.edu

phone: (602)968-3971

	I will e-mail you the source code, or send it on a diskette if you prefer. If any further versions become available, you will get them for free.

	I guess it's worth it: you'll get a good example of interfacing VCL controls with anything else in the same window plus a few tips on doing things Borland discourages you from doing, like calling some class' protected methods from any other class. Fixing fatal Microsoft bugs is a story well known to all of us, so you'll see some of that stuff too.

	You may freely use these components in your own programs.

You can distribute this package intact without the source code (dsdialog.pas - if you have already received it from me). You cannot however distribute the source code or any portion of it without a written permission from me.

	I would greatly appreciate any comments, suggestions or bug reports sent to

	dmitrys@asu.edu

STANDARD DISCLAIMER

 	I DO NOT WARANTEE ANYTHING CONCERNING ANY OF THE FILES WHICH MAKE UP THIS PACKAGE. I ACCEPT NO RESPONSIBILITY FOR ANY LOSS OR DAMAGE OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, LOSSES OF A PHYSICAL, MENTAL, SOCIAL, FINANCIAL, MARITAL, OR OF WHATEVER NATURE, RESULTING FROM THE USE, OR THE PURPORTED USE, OF THIS PACKAGE OR ANY OF THE FILES IN THE PACKAGE FOR ANY PURPOSE WHATSOEVER. I DO NOT EVEN WARANTEE THAT THE FILES WILL NOT KILL YOU. USE THIS PACKAGE ENTIRELY AT YOUR OWN RISK, AND IF YOU SUPPLY IT TO YOUR CUSTOMERS, FRIENDS, FAMILY, ACQUAINTANCES, OR ENEMIES, DO IT ENTIRELY AT YOUR OWN RISK.

 	IF THESE TERMS ARE NOT ACCEPTABLE TO YOU, THEN PLEASE DELETE ALL THE FILES FROM YOUR DISKS IMMEDIATELY AND PERMANENTLY.

