ProDelphi 2.0 - PROFILER.EXE

Copyright Helmuth J. H. Adolph 1998

The Profiler for Delphi 2/3

Profiling

The purpose of ProDelphi is to find out which parts of a program consume the

most CPU-time. As Borland gave up the profiler for 32-bit application, a

substitute had to be created.

Post Mortem Review

Another reason to develop ProDelphi was, that sometimes, when a program aborts

with an exception, Delphi gives no help to find out where the program aborted,

especially in the initialization and finalization part of a unit the error

adress can not be searched. Or it might be that we find the aborting routine but

don't know the call stack because the abortion occured when the program was

started without the debugger.

Differences between the shareware version and the registered version

The shareware version can measure or track until 20 procedures, the registered

version can measure 10000 procedures.

The registered version can measure and track local procedures too.

The registered version can automatically exclude procedures that consume very

little CPU time from measuring and so makes the optimization process faster.

How does ProDelphi work ?

A. Profiling

The source code of the programm to be optimized is vaccinated with calls to a

time measuring unit. The insertions are made at the begin and the end of a

procedure or function.

Any time a procedure / function (in the following named procedure) is called,

the start time of the procedure is memorized. At the end of the procedure the

ellapsed time is calculated. When the program ends, a file is created which

contents the runtimes for each procedure. The consumed time is listed this way:

a. Runtime of the procedury bodys exclusive called child procedures

 - runtime of the procedure in percentage of all measured procedures

 - number of calls

 - runtime in microseconds given for a single call

 - runtime sum (= runtime * number of calls)

b. Runtime of the procedure bodys inclusive called child procedures

 - runtime in microseconds inclusive child procedure for a single call

 - runtime sum (= runtime * number of calls)

c. Optional summary

 - the most often called procedures

 - the most CPU-time consuming procedures

d. The object wich consumed the most runtime (= the sum of all method runtimes)

e. The total runtime of the tested program (= the sum of all measured procedures)

For a quick test points a. and b. can be disabled.

For every procedure such line is given in the result file:

 Objectname-MethodName consumed time as described obove or

 ProcedureName consumed time as described above.

The listing is sorted, sort criteria is the file name of the unit or the file

name of an Include file. Procedures are listed in the order they are defined in

the source file.

All times given are exclusive the time measuring itself.

As the granularity of the time measuring Windows call is only 0.838 µS and a

simple instruction takes about 20 nS, one can imagine that the accurateness of

the results can not be very good for simple procedures, e.g.

 FUNCTION Increment (x : Integer) : Integer;

 BEGIN

 Result := x + 1;

 END;

To measure the runtime of such a function is absolutely useless, if you exclude

procedures from measuring, the runtime of these procedures is included in the

runtime of the calling procedure. (How to exclude functions will be described

later.)

A1. How to start profiling

Using ProDelphi is quite simple. It has been used in a project with a large

program, it contained more than 220 000 lines of code written by 12 programmers.

After more than two years of developping the program has been optimized with the

help of ProDelphi. The programs runtime could be decreased by 50 %.

Just make a copy of the program to be measured into a directory. Copy all PAS-,

INC-files and the DPR-file into the same directory. Units which are not in this

directory are not measured.

Don' use the original units for profiling, maybe ProDelphi still contents bugs.

After copying start ProDelphi (PROFILER.EXE), select the directory, select

'profile' and click the 'Run' - button. After a very short time all units are

vaccinated and have to be compiled again. For compilitation define the compiler

symbol PROFILE (Delphi - Project - Options - Conditional Compilation) for your

project, the compiler options for runtime checks should be deactivated (you

don't want to measure the runtime system of Delphi, do you?). Start the program

and let it do its job. After the program has ended, have a look into the file

with the measurement results, the file name is program-name.BEN .

In principal this is all that has to be done. If you want to let the program run

without time measurement, simply delete the compiler symbol PROFILE and make a

complete compilation.

A2. Optimizing measurement results

All Windows programs are message driven. So, if you define a function that for

instance handles mouse moves, ProDelphi will give you a very big percentage of

runtime for this procedure because it will be activated any time you move the

mouse over a window of your program. But you might not be interested in this

procedure.

What I described above, is the default setting of ProDelphi: all procedures

are measured, the measurement starts with the start of the program (if option

'autostart' is checked).

For normal you would like to measure only certain actions of the program and

might want to exclude functions which cannot be optmized (e.g. because thy are

very simple).

There are different ways of excluding function:

 1. Exclusion of complete units

 Just put these units into an extra directory.

 2. Exclusion of functions

 Before profiling insert statements before and after the procedures that

 have to be excluded to switch off the vaccination by ProDelphi:

 //PROFILE-NO

 Excluded procedure(s)

 //PROFILE-YES

 3. Automatic exclusion

 You can exclude procedures automatically by checking the option 'Deactivate

 functions consuming < 1 µS'. Checking this option means that those

 procedures, which are at least called 10 times during the measurement

 period and consume an average of less then 1 µS will not be measured the

 next time the program is started. For that purpose a file is created when

 the program ends. It contains all the procedures which have to be

 deactivated. When you start your program next time the file will be read

 and all named procedures are deactivated. It might be that then again some

 lines will be appended with procedures to be deactivated.

 The procedures that are not to be measured are stored in the file

 'ProgramName.SWO'.

 Caution, the next profiling will delete this file. If you want to make the

 exclusion permanent, put //PROFILE-NO statements into your sorce code.

Another way to make the result file better readable, is to measure only defined

actions of your program. In that case do not check the button for 'automatic

start' of measurement. Do the profiling of your source code and insert

activation statements at the relevant places.

Example:

 You only want to know how much time a sorting algorithym consumes and how much

 time all called child procedures consume. You are not interested in any other

 procedure. The sorting is started by a procedure named button click.

 PROCEDURE TForm1.ButtonClick;

 BEGIN

 {$IFDEF PROFILE}try; Proftime.ProfEnter(number,NIL or @self);{$ENDIF}

 SortAll; // the procedure of which you want to know the runtime

 {$IFDEF PROFILE}finally; Proftime.ProfExit(number); end; {$ENDIF}

 END;

 You can modify the code in four different ways:

 { possibillity 1 }

 PROCEDURE TForm1.ButtonClick;

 BEGIN

 {$IFDEF PROFILE}try; Proftime.ProfActivate;{$ENDIF}

 {$IFDEF PROFILE}try; Proftime.ProfEnter(number,NIL or @self);{$ENDIF}

 SortAll; // the procedure which you want to know the runtime of

 {$IFDEF PROFILE}finally; Proftime.ProfExit(number); end; {$ENDIF}

 {$IFDEF PROFILE}finally; Proftime.ProfDeactivate; end; {$ENDIF}

 END;

 { possibillity 2 }

 PROCEDURE TForm1.ButtonClick;

 BEGIN

 {$IFDEF PROFILE}try; Proftime.ProfEnter(number,NIL or @self);{$ENDIF}

 {$IFDEF PROFILE}try; Proftime.ProfActivate;{$ENDIF}

 SortAll; // the procedure which you want to know the runtime of

 {$IFDEF PROFILE}finally; Proftime.ProfDeactivate; end; {$ENDIF}

 {$IFDEF PROFILE}finally; Proftime.ProfExit(number); end; {$ENDIF}

 END;

 { possibillity 3 }

 PROCEDURE TForm1.ButtonClick;

 BEGIN

 {$IFDEF PROFILE}try; Proftime.ProfActivate;{$ENDIF}

 SortAll; // the procedure which you want to know the runtime of

 {$IFDEF PROFILE}finally; Proftime.ProfDeactivate; end; {$ENDIF}

 END;

 { possibillity 4 }

 //PROFILE-NO

 PROCEDURE TForm1.ButtonClick;

 BEGIN

 {$IFDEF PROFILE}try; Proftime.ProfActivate;{$ENDIF}

 SortAll; // the procedure which you want to know the runtime of

 {$IFDEF PROFILE}finally; Proftime.ProfDeactivate; end; {$ENDIF}

 END;

 //PROFILE-YES

 Be sure that you use more than one space between $IFDEF and PROFILE you

 inserted, otherwise the statements will be deleted the next time that the

 source code is vaccinated by ProDelphi.

Example:

 You want to activate the time measurement by a procedure named button1 and

 deactivate it by a procedure named button2 use the following construction:

 //PROFILE-NO

 PROCEDURE TForm1.Button1;

 BEGIN

 {$IFDEF PROFILE}Proftime.ProfActivate; {$ENDIF}

 END;

 PROCEDURE TForm1.Button2;

 BEGIN

 {$IFDEF PROFILE}Proftime.ProfDeactivate; {$ENDIF}

 END;

 //PROFILE-YES

A3. Producing measurement results before end of program

Normally at the start of the program the file fore the measurement results is

emptied and at the end of the program the measurement results are appended. If

you need more detailled information you can insert statements into your sources

to produce output information where you like to.

Just insert the statement

 {$IFDEF PROFILE}Proftime.ProfAppendResults; {$ENDIF }

into your source. In that case a new output will appended at the end of your

file and all counters will be reset.

Normally the headline of the result file will be 'At finishing application' any

time new results will be appended to the file.

For this example you might want to use a different headline. If so, you can set

the text for the headline by inserting

 {$IFDEF PROFILE}Proftime.ProfSetComment('your special comment'); {$ENDIF}

into your source.

A4. Options for profiling

 - Auto Start (default)

 If this option is checked, the time measurement will start as soon as your

 program is started.

 - Code contents threads

 If this option is checked the measurement is enhanced for handling threads.

 It is not useful to check this option if your program does not create

 threads, the program only runs slower. But it is absolutely necessary to

 check this option if you use threads, otherwise the results of the

 measurement are completely wrong.

 - Deactivate functions consuming < 1 µS

 Any time the measurement results are stored in the result file, those

 procedures that are called at least ten times and consume less then 1 µS

 are deactivated for the future. The deactivated functions are stored in

 the file 'ProgramName.SWO' for the next run. (Feature NOT availlable for

 the shareware version).

 - Inherited for parent

 This option is only valid for methods (procedures and function belonging

 to objects or classes).

 Normally times are measured separate for each procedure. Use this method if

 you want, that, if a method calls a method with the same name of an upper

 class (e.g. by INHERITED), the time of the inherited method is counted

 for the calling method.

 - Initialization and finalization

 Normally the initialization and finalization parts of the units are not

 measured. In case you want to do this, check the appropriate option if

 you use the keywords INITIALZATION and FINALIZATION.

 - Local Procedures

 Normally local procedures are not measured, if you activate this option

 they will be measured. (NOT availlable for the shareware version.)

 - Details

 The result file only contents detailed measurement results, the summary

 is not created.

 - Details + Summary (default)

 Detailled results are created as well as a summary.

 - Summary only

 Only the summary is created in the result file.

A5. Limitations of use

For the purpose of vaccinating the source code, ProDelphi reads the sources.

It is absolutely necessary, that the program can be compiled without any

compiler errors. ProDelphi expects code to be syntactically correct.

As ProDelphi does not make a complete syntax analysis, it might occur, that not

all places to insert the time measurement statements could be found. Maybe that

some strange code constructs have been forgotten by me. As mentioned before, the

large project, which was optimized with ProDelphi, was written by 12 different

programmers, all their code was recognized correctly. In case ProDelphi does not

recognize code correctly, you would get a compiler error by Delphi. In such

a case, try to structure your source more simple. If that doesn't help, send me

an E-Mail with the code.

Procedures which have the first 'BEGIN' statement and the last 'END' statement

in the same line, are NOT vaccinated. It's not a bug !!! It's a feature !!!

While measuring, a user stack is used by the profiler unit. The maximum stack

depth is 1200 calls.

The shareware version of ProDelphi can only measure 20 procedures, the

registered version can measure 10000 procedures.

As mentioned before, procedures which consume less 1 µS of time are not measured

accurate because it is not possible.

When you look at the results, always be aware of the granularity of the Windows

time measurement calls of 0.838 µS. If the runtime of a procedure is given as

e.g. 5 µS, in reality the runtime can be between 4.162 and 5.838 µS !

Another problem is Windows itself. Because it is a multitasking system, is may

let other tasks run besides the one you are just measuring. Maybe only for a few

microseconds. So your program can be interrupted by a task switch to another

application. I've made tests and let the same routine again and again and each

time I've got different results.

Don't forget the influence of the processor cache also. You might get different

results for each measurement, just because sometimes the instructions are

loaded into the cache already and sometimes not.

The time measurement costs time itself. It is tried to correct the time for the

measurement to have a more correct result. But from the reasons mentioned

before, the algorithym for calculating the time for correction is not save.

According to my practical experiences with a lot of control measurements,

beginning with a procedure runtime of >= 4 µS the measurement results are save

(on an AMD K6 with 166 MHz).

IF yor measured program uses threads, the results are not very correct. The

reason is, that a thread change is not recognized at the time of change. It is

recognized at the next procedure entry.

Be aware that, if you measure procedures that make I/O-calls, you might also get

different results each time. The reason is the disk cache of Windows. Sometimes

Windows writes into the cache sometimes directly to the disk.

A6. Modifying code vaccinated by ProDelphi

While working on the optimization of your program you can of cause modify your

code. The only limitation is, that, if you define new procedures, you have to

let ProDelphi process your code another time. It is NOT necessary to delete the

old statements inserted by ProDelphi before.

B. Post mortem review

As mentioned above, ProDelphi can vaccinate your sources with statements for

post mortem review. It also interpretes the sources and inserts statements at

the begin and at the end of a procedure.

In case of an aborting exception, a message box will open which will give you

the filename where the call stack is listed (ProgramName.PMR).

Also here the source comments //PROFILE-NO and //PROFILE-YES can exclude parts

of your sources.

The availlable options are 'Include local procedures' and 'Code contents

threads' (see A4).

The handling of Prodelphi is the same as for profiling.

If you have vaccinated ProDelphi with statements for post mortem review and

work with the IDE of Delphi and an exception occurs, you must continue your

program unless you have deactivated the option 'Stop at exception'.

C. Cleaning the sources

If you want to delete all lines that ProDelphi inserted into your sources, use

the 'Clean' command.

It is not necessary to clean the sources if you simply want to let your program

run without time measurement for a short time only. In that case just delete

the compiler symbol 'PROFILE' in your projects options.

It is also not necessary to clean the sources if you want to use the 'Profile'

command another time. Each profiling process automatically deletes all old

ProDelphi statements in the source code and inserts new statements. For that

purpose it scans the code for statement that start with

 {$IFDEF PROFILE} and with {$IFNDEF PROFILE }

and deletes them completely.

D. Files created by ProDelphi

ProDelphi creates the file PROFLST.TXT, it contains information about the

procedures to be measured for profiling or traced for post mortem review.

Your compiled program craetes PROGNAME.BEN, it contents the results of the time

measurement. It creates PROGNAME.SWO with the list of procedures that have to

be deactivated for time measurement at next program start (Registered version

only).

It also creates PROGNAME.PMR in case you have selected post mortem review and

an exception occured and was trapped. It contents the call stack.

E. Compatibility

ProDelphi was testet under

 - Windows 95 and Windows NT 4.0

 - AMD K6 166 MHz

 - Cyrix 6x86 PR 150+

 - Pentium Overdrive 120 MHz

 - Pentium Overdrive 83 MHz (P24T)

F. Author

Helmuth J. H. Adolph

Am Gruener Park 17

90766 Fuerth

Germany

E-Mail: 100632.2366@compuserve.com

