E-Mail: 	blazer@erols.com

Fax:		(703) 227-6624

Mail:		Ned M. Hojnacki

		4114 Legato Rd

		Fairfax, Virginia

		22033

--

	 TSplashMessage

		 Component and Documentation

		 ©1997 Ned M. Hojnacki			

--

						

Table of Contents

I. 	Installation.

1.0 	Introduction

2.0 	How do I use TSplashMessage?

		2.1 First Method (Design Time)

		2.2 Second Method (Run Time)

3.0 	Tips and Tricks

4.0 	Reference

		4.1 Properties

		4.2 Methods

5.0 	This is FREEWARE.

6.0 	Warranty (I don't have one. If this component blows up your computer -It's not my fault!)

7.0 	Copyright & Distribution (Pure and Simple:

				 Don't violate my copyright or trademark.)

8.0	What's New

*Bug in Delphi 3 that was not refreshing the Form when a new message display's.

__

I. Installation

From the Delphi main menu:

		1) Select Options | Install Components.

		2) Select Add then Browse.

		3) Locate Splashms.DCU and click OK.

	

(TSplashMessage's full source is only $5)

__

1.0 Introduction

	TSplashMessage is a component for those who wish to provide the ability to splash a Message directly on the screen. However, TSplashMessage also gives users the ability to stop some processing taking place during run-time.

	TSplashMessage is more than just a MessageDlg screen. Although it looks similar to the Delphi MessageDlg, it is much more flexible, and useful. The problem with a MessageDlg is that it is created as a modal window. With a modal window, as you know, no processing can continue until the window has been addressed. Using TSlashMessage, this is no longer a problem. TSplashMessage is not created as a modal window, but it can act like a modal window via the modal property. This is probably the most useful feature about TSplashMessage, and it's what sets it apart from a MessageDlg window.

 The main purpose for creating this component was that our project team needed away to interact with users, while some, longer than normal, processing,was taking place underneath the interface. We also wanted to give the user the ability to stop that processing if they desired, from this same screen. This is possible using TSplashMessage. Using three public methods (splash, process, stop), and calling TSplashMessage's OnCloseForm event, users can interupt the processing, and continue working.

 TSplashMessage comes with several optional features presented to the developer. An Optional Gauge property (with Property Editor) is available that can show the progress of the processing. Optional buttons, when the user wishes only to display a message without stopping the processing. Optional, Message Icon, and form Icon. Or if you want to set your own Icon/Bitmap on the screen, this can be easily accomplished by setting TSplashMessage's Picture property.

2.0	How do I use TSplashMessage?

1) Click on the Component Palette tab "Samples."

2) Click on the SplashMessage Icon, then click on your form.

There are two ways to use TSplashMessage. The first is to use the Object Inspector to view and modify the properties. The second is to include the TSplashMessage unit (splashms) in the module you want to display the message, then set the properties.

2.1 First Method: (Design Time)

A Simple SplashMessage

	To create a normal Splash Message, first drop a TSplashMessage Component on your form. Type a message in the MessageText property that you want to see display'd on the Splash Message. Call the splash method at some point in your code where some processing is taking place. Then Call the stop method in the same code where the processing has been completed. If you want, for demonstration purposes, use a timer component and gauge, as I did in my demonstration program.

	

A Custom SplashMessage

	Almost all of the properites of Splash Message all you to customize the look of the window. There are also properties that can change the functionality the Splash Message screen. For example, one of the featured capabilites of Splash Message is it's ability to Show the form in Modal State. Splash Message does not actually display as a Modal window, however, it displays as a Modaless window with the application disabled. If you want the Splash Message to appear Modal, you can set the Modal property to true.

	If you want to see a progress bar on the Splash Message form, just set the ShowProgress property to true. Then you can control the progress of the Gauge in your application.

	If you want a custom BitMap or Icon to display instead of the DialogType's (mtInformation, mtError ..etc.) you can display your own Graphic via the Picture property. Simply set the DialogType to mtCuston, then load your custom graphic in the Picture property. The Picture will be automatically resized to be the size of the DialogType Icon's.

	You can set the BorderIcons, or BorderStyle properties to change the look of the SplashMessage Form. If you want to display a Form Icon, this can be accomplished by setting the Icon property.

	Call the stop method in your application where some processing is taking place. Call the stop method at the point in your application where the processing has completed.

	If you have a button on the Splash Message, you can check the status of the cancelled property of Splash Message inside the processing loop. Also, if you have the modal property set to true, you will need to call the process method.

	Basically, here is what you need to remember:

	

Call the splash method to Display the Splash Message.

Call the stop method to Stop the Splash Message.

Check the canceled property to see if a button was clicked.

Call the process method when you have the modal property set to true.

2.2 Second Method: (run-time)

	Splash Message gives users the ability to set properties at run-time. This allows users to change the appearance of Splash Message while the application is running.

	One useful application of this capability is to allow the Message to be changed. By setting the MessageText property at run-time, users can display a different message at different levels of processing. Furthermore, if you want the SplashMessage to always be the same Width, just set the FixedWidth property and the Splash Message will always stay the same width until it is finished. Either by calling the Stop method, or by clicking a Button (Cancel, Abort, Ok) on the Splash Message screen.

	Many times users would like to interupt some processing, and continue working elsewhere in the application. Splash Message allows just that. By running SplashMessage and checking the Canceled property (True or False), users can interupt the application and continue on with another task. You can also use the OnCloseForm event to check the state of the Canceled property, or use it to do what ever you want when the processing has been interrupted.

	If you want to have the Progress Bar/Gauge Display. You will likely want to update the Gauge's Progress property. The Gauge.progress property, along with all the other Gauge properties can be updated during run-time.

3.0 Tips and Tricks

	

	When re-setting the MessageText property during run-time, Splash Message works best if you enter a value for the FixedWidth property. This is because the Splash Message window is not re-drawn when the message label is changed. However, if you do not use FixedWidth, the Splash Message window will re-draw each time the message changes since the size of the window is calculated according to what the length (in bytes) that the message is.

	When setting the modal property to true, the buttons property will default to display a cancel button. However, you can manually change the button property therafter.

	Use the Picture property to display an icon or bitmap different from the DialogType icon's. Set DialogType to mtCuston, then load your graphic (i.e. icon or bitmap). The graphic will be automatically resized to be the same size as a DialogType icon.

	If you setup the Splash Message as a modal window (via setting madal to true), and you want to display the system menu (BorderIcons includes biSystemMenu), if you click the close form button from the system menu, the form will close, but processing will continue, However, if you are using a terminating button, cancel for example, then clicking this button will interupt the processing and SplashMessage will be destroyed. Thus, This is what separates SplashMessage from a MessageDlg window the most. Because Splash Message is not actually a modal window, processing can proceed underneath it. However, since the MessageDlg window is created as a modal window (reference dialog.pas), no processing in the application can continue until the window is acted upon and is destroyed.

	The Icon property is not one of the DialogType icons displayed in the window. It acts identical to the icon property of all Forms. An Icon will display in the upper left corner of the caption bar, and will show the icon if the Splash Message is minimized.

		

4.0	Reference

Properties

I. Published

BorderIcons: TBorderIcons (default: biSystemMenu)

	The BorderIcons property is a set whose values determine which icons appear on the title bar of a form.

BorderStyle: TFormBorderStyle (default: bsDialog)

	The BorderStyle property for forms specifies both the appearance and the behavior of the form border.

Buttons: TMsgDlgButtons (default: (mbCancel)

	The Buttons property allows users to choose one or more buttons, of type TMsgDlgButtons, on the splash message screen.

	

Caption: String

	The Caption property is the text that appears in the form's title bar; this text also appears as the icon label when the form is minimized.

DefaultFont: Boolean (default: true)

	Will use the default font settings (arial, size 8, color black,style regular). Set to false, then set the ScreenFont properties to override.

DialogType: TMsgDlgType (default: mtInformation)

	The DialogType property allows users to display a message icon of type TMsgDlgType.

Enabled: Boolean(default: true)

	The Enabled property controls whether the control responds to mouse, keyboard, and timer events.

FixedWidth: Integer (default: 0)

	Allows users to set a constant/fixed width of the Splash Message when 2 or more messages are displayed.

Gauge: TSplashGauge (default: BackColor clWhite, Color clBtnFace, ForeColor clActiveCaption, MaxValue 100, MinValue 0, Progress 0)

	The Gauge property displays a Progress Bar when the ShowProgress property is set to True. TSplashGauge is a custom Class, but includes the TGauge class . Complete with Property Editor.

Height: Integer (default: 0)

	The Height property of a control is the vertical size of the Splash Message form in pixels.

HelpContext: Integer (default: 0)

	The HelpContext property provides a context number for use in calling context-sensitive online Help.

Hint: String

	Displays Bubble help on the Form.

Icon: TIcon

	The Icon property determines the icon that is displayed when the window or form is minimized.

MessageText: String (default: 'Splash Message Component')

	Displays a message on the Splash Message screen.

Modal: Boolean (default: False)

	When set to true, the Splash Message will disable all controls of the working application, but allow processing to continue, giving the apperance of a modal window.

Name: String (default: 'SplashMessage1')

	The name of the SplashMessage Component.

Picture: TPicture

	The Picture property determines the image that appears on the image control. This property allows users to set a different image than the DialogType's.

ScreenFont: TFont (default: Arial, Size 8, Style Regular, Color Black)

	The ScreenFont property functions as a standard Font property. It is a font object that controls the attributes of text written on or in the component or object or sent to the printer.

ShowHint: Boolean (default: false)

	The ShowHint property determines if the control should display a Help Hint when the user's mouse pointer rests momentarily on the control.

ShowProgress: Boolean (default: false)

	Controls the display of the progress bar/gauge.

Tag: Integer

	The Tag property is available to store an integer value as part of a component.

Visible: Boolean (default: true)

	The Visible property determines whether the component appears onscreen.

II. Public:

Canceled: Boolean (default: false)

	This is the only public property, and is not visible on the Object Inspector. Users should check the status of this property to see if the user has closed the window via clicking one of the close buttons (Cancel, Ok, Abort, etc.).

Methods

Splash: Is Called to instanciate an Splash Message screen. Call this method at the start of some processing.

Stop: Destroys the Splash Message. Call at the end of some processing, or when you are finished displaying all messages.

Process: Call this property when the modal property is set to true. This allows windows to interupt processing of the application to respond to events. This allows the processing of the buttons click event.

5.0. This is Freeware!

This is Freeware.

But, considerable the effort that went into making this component!

Do you care?

If you appreciate this effort

 please send $2 cash or check to:

	Ned M. Hojnacki

	2118 Cartwright Place

	Reston, Va. 20191

Questions, comments, reactions may be sent to :

					blazer@erols.com

Please note that all support is on a "best effort" basis, and no promise is made that all questions can be answered, problems solved, features added nor bugs exterminated.

==

6.0 Warranty

If your computer blows up then it's not my fault.

If a customers computer blows up, it's not my fault!

In other words, I (Ned M. Hojnacki) shall not be liable for damages of any kind.

TSplashMessage is provided as is, without warranty of any kind.

When you use this software (or any of it's contents, programs, or functions), it indicates you agree to this.

==

7.0 Copyright and Distribution

TSplashMessage and it's demos and documentation are ©1997 by Ned Hojnacki.

	

You may copy and distribute TSplashMessage, it's demos, and documentation, so long as only the unmodified Splashms.ZIP is distributed or copied.

You are prohibited from:

 	modifying the package.

The package may NOT be distributed CD-ROM.

Unless you give me 2cents for every CDROM sold.

That's it!

[End Of a Long File]

